1
|
Jiménez-Cortegana C, Sánchez-Jiménez F, De La Cruz-Merino L, Sánchez-Margalet V. Role of Sam68 in different types of cancer (Review). Int J Mol Med 2025; 55:3. [PMID: 39450529 PMCID: PMC11537268 DOI: 10.3892/ijmm.2024.5444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
Src‑associated in mitosis 68 kDa protein (Sam68) is a protein encoded by the heteronuclear ribonucleoprotein particle K homology (KH) single domain‑containing, RNA‑binding, signal transduction‑associated protein 1 (known as KHDRBS1) gene in humans. This protein contains binding sites for critical components in a variety of cellular processes, including the regulation of gene expression, RNA processing and cell signaling. Thus, Sam68 may play a role in a variety of diseases, including cancer. Sam68 has been widely demonstrated to participate in tumor cell proliferation, progression and metastasis to be involved in the regulation of cancer stem cell self‑renewal. Based on the body of evidence available, Sam68 emerges as a promising target for this disease. The objectives of the present included summarizing the role of Sam68 in cancer murine models and cancer patients, unraveling the molecular mechanisms underlying its oncogenic potential and discussing the effectiveness of antitumor agents in reducing the malignant effects of Sam68 during tumorigenesis.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Flora Sánchez-Jiménez
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Department of Laboratory Medicine, Virgen Macarena University Hospital, 41009 Seville, Spain
| | - Luis De La Cruz-Merino
- Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain
- Medical Oncology Service, Virgen Macarena University Hospital, 41009 Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, 41013 Seville, Spain
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain
- Department of Laboratory Medicine, Virgen Macarena University Hospital, 41009 Seville, Spain
- Institute of Biomedicine of Seville, Virgen Macarena University Hospital, Consejo Superior de Investigaciones Científicas, University of Seville, 41013 Seville, Spain
| |
Collapse
|
2
|
Stevenson L, Cairns L, Li X, Jammula S, Taylor H, Douglas R, McCabe N, Gavory G, Jacq X, Fitzgerald RC, Kennedy RD, Harrison T, Turkington RC. Inhibition of AKT enhances chemotherapy efficacy and synergistically interacts with targeting of the Inhibitor of apoptosis proteins in oesophageal adenocarcinoma. Sci Rep 2024; 14:32121. [PMID: 39739112 DOI: 10.1038/s41598-024-83912-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
The incidence of oesophageal adenocarcinoma (OAC) has risen six-fold in western countries over the last forty years but survival rates have only marginally improved. Hyperactivation of the PI3K-AKT-mTOR pathway is a common occurrence in OAC, driving cell survival, proliferation and resistance to chemotherapeutic agents. Inhibition of AKT has been explored as a treatment strategy with limited success and current inhibitors have failed to progress through clinical trials. Our study, describes a novel allosteric AKT inhibitor, ALM301, and demonstrates an enhancement of the efficacy of conventional chemotherapy when combined with ALM301 in OAC. Reduced sensitivity to ALM301 is associated with high expression of the Inhibitor of Apoptosis (IAP) family of proteins, particularly XIAP. Combined AKT and IAP inhibition synergistically enhanced OAC cell death and successfully re-sensitized ALM301 and chemotherapy resistant cell lines. A high degree of synergism was also observed in patient-derived OAC organoids indicating the potential clinical relevance of the combination. This study demonstrates the role for dual AKT/IAP inhibition in OAC and provides a strong rationale for the further investigation of this highly efficacious combination strategy.
Collapse
Affiliation(s)
- Leanne Stevenson
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| | - Lauren Cairns
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| | - Xiaodun Li
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Sriganesh Jammula
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Harriet Taylor
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - Rosalie Douglas
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| | - Niamh McCabe
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland
| | | | - Xavier Jacq
- Almac Discovery Ltd, Craigavon, Northern Ireland
| | - Rebecca C Fitzgerald
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | | | | | - Richard C Turkington
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, Northern Ireland.
| |
Collapse
|
3
|
Klemke M, Veit N, Schmidt-Wolf I, Bundschuh RA, Essler M, Kreppel B. Regulation of PDL-1 expression in thyroid carcinoma cells by tumor cell derived cytokines activating STAT3. Immunol Res 2024; 73:20. [PMID: 39699782 DOI: 10.1007/s12026-024-09552-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Affiliation(s)
- Matthias Klemke
- Department of Nuclear Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Excellence Cluster ImmunoSensation, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Nadine Veit
- Department of Nuclear Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Excellence Cluster ImmunoSensation, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Ingo Schmidt-Wolf
- Center for Integrated Oncology (CIO), University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Excellence Cluster ImmunoSensation, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Ralph A Bundschuh
- Department of Nuclear Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Excellence Cluster ImmunoSensation, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Markus Essler
- Department of Nuclear Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
- Excellence Cluster ImmunoSensation, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| | - Barbara Kreppel
- Department of Nuclear Medicine, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
- Excellence Cluster ImmunoSensation, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| |
Collapse
|
4
|
Celik EG, Eroglu O. Combined treatment with ruxolitinib and MK-2206 inhibits ERα activity by inhibiting MAPK signaling in BT474 breast cancer cells. J Investig Med 2024:10815589241298184. [PMID: 39460579 DOI: 10.1177/10815589241298184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Triple-positive breast cancer (TPBC) is a type of breast cancer that overexpresses estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2). Dysregulation of ER signaling has been implicated in the pathogenesis of breast cancer. ERα activation triggers the production of second messengers, including cAMP, leading to the activation of signals such as PI3K/AKT or Ras/MAPK. Ruxolitinib is a specific inhibitor of JAK1/JAK2. MK-2206 is an allosteric inhibitor of the Akt. The limitations of the use of ruxolitinib and MK-2206 as single agents necessitate the development of combination therapies with other drugs. This study is the first to investigate the effects of combining ruxolitinib with MK-2206 on MAPK and PI3K/AKT signaling in BT474 breast cancer cells. In addition, this work aimed to increase the anticancer effects of cotreatment with MK-2206 and ruxolitinib. Ruxolitinib, MK-2206, and their combination reduced cell viability in a dose- and time-dependent manner, as determined by MTT assays after 48 h of treatment. Colony formation and wound healing assays demonstrated that MK-2206 exhibited a synergistic anti-proliferative effect. The effects of ruxolitinib, MK-2206, and their combination on PI3K/AKT and MAPK signaling were assessed via western blotting. Ruxolitinib and MK-2206 combined treatment inhibit cell death in BT474 cells by downregulating ERα, Src-1, ERK1/2, SAPK/JNK, and c-Jun. Our results revealed the relationships among the ERα, PI3K/AKT, and MAPK signaling pathways in ER+ breast cancer cells. Understanding the interactions among ERα, PI3K-AKT-mTOR, and MAPK could lead to novel combination therapies.
Collapse
Affiliation(s)
- Esin Guvenir Celik
- Department of Molecular Biology and Genetics, Faculty of Science, Bilecik Şeyh Edebali University, Bilecik, Turkey
- Department of Molecular Biology and Genetics, Institute of Graduate Education, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Onur Eroglu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
5
|
Tian G, Chen Z, Shi K, Wang X, Xie L, Yang F. The evolution of small-molecule Akt inhibitors from hit to clinical candidate. Eur J Med Chem 2024; 279:116906. [PMID: 39353238 DOI: 10.1016/j.ejmech.2024.116906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/04/2024]
Abstract
Akt, a key regulator of cell survival, proliferation, and metabolism, has become a prominent target for treatment of cancer and inflammatory diseases. The journey of small-molecule Akt inhibitors from discovery to the clinic has faced numerous challenges, with a significant emphasis on optimization throughout the development process. Early discovery efforts identified various classes of inhibitors, including ATP-competitive and allosteric modulators. However, during preclinical and clinical development, several issues arose, including poor specificity, limited bioavailability, and toxicity. Optimization efforts have been central to overcoming these hurdles. Researchers focused on enhancing the selectivity of inhibitors to target Akt isoforms more precisely, reducing off-target effects, and improving pharmacokinetic properties to ensure better bioavailability and distribution. Structural modifications and the design of prodrugs have played a crucial role in refining the efficacy and safety profile of these inhibitors. Additionally, efforts have been made to optimize the therapeutic window, balancing effective dosing with minimal adverse effects. The review highlights how these optimization strategies have been key in advancing small-molecule Akt inhibitors toward clinical success and underscores the importance of continued refinement in their development.
Collapse
Affiliation(s)
- Gengren Tian
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhuo Chen
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Keqing Shi
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xinwai Wang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lijuan Xie
- Department of Vascularsurgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Fuwei Yang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
6
|
Zhang W, Hu ML, Shi XY, Chen XL, Su X, Qi HZ, Yuan L, Zhang H. Discovery of novel Akt1 inhibitors by an ensemble-based virtual screening method, molecular dynamics simulation, and in vitro biological activity testing. Mol Divers 2024; 28:3949-3963. [PMID: 38240951 DOI: 10.1007/s11030-023-10788-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2024]
Abstract
Akt1, as an important member of the Akt family, plays a controlled role in cancer cell growth and survival. Inhibition of Akt1 activity can promote cancer cell apoptosis and inhibit tumor growth. Therefore, in this investigation, a multilayer virtual screening approach, including receptor-ligand interaction-based pharmacophore, 3D-QSAR, molecular docking, and deep learning methods, was utilized to construct a virtual screening platform for Akt1 inhibitors. 17 representative compounds with different scaffolds were identified as potential Akt1 inhibitors from three databases. Among these 17 compounds, the Hit9 exhibited the best inhibitory activity against Akt1 with inhibition rate of 33.08% at concentration of 1 μM. The molecular dynamics simulations revealed that Hit9 and Akt1 could form a compact and stable complex. Moreover, Hit9 interacted with some key residues by hydrophobic, electrostatic, and hydrogen bonding interactions and induced substantial conformation changes in the hinge region of the Akt1 active site. The average binding free energies for the Akt1-CQU, Akt1-Ipatasertib, and Akt1-Hit9 systems were - 34.44, - 63.37, and - 39.14 kJ mol-1, respectively. In summary, the results obtained in this investigation suggested that Hit9 with novel scaffold may be a promising lead compound for developing new Akt1 inhibitor for treatment of various cancers with Akt1 overexpressed.
Collapse
Affiliation(s)
- Wen Zhang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Mei-Ling Hu
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Xiu-Yun Shi
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Xiang-Long Chen
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Xue Su
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Hua-Zhao Qi
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Li Yuan
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China
| | - Hui Zhang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, Gansu, People's Republic of China.
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
7
|
Smith MA, Houghton PJ, Lock RB, Maris JM, Gorlick R, Kurmasheva RT, Li XN, Teicher BA, Chuang JH, Dela Cruz FS, Dyer MA, Kung AL, Lloyd MW, Mossé YP, Stearns TM, Stewart EA, Bult CJ, Erickson SW. Lessons learned from 20 years of preclinical testing in pediatric cancers. Pharmacol Ther 2024; 264:108742. [PMID: 39510293 DOI: 10.1016/j.pharmthera.2024.108742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
Programs for preclinical testing of targeted cancer agents in murine models of childhood cancers have been supported by the National Cancer Institute (NCI) since 2004. These programs were established to work collaboratively with industry partners to address the paucity of targeted agents for pediatric cancers compared with the large number of agents developed and approved for malignancies primarily affecting adults. The distinctive biology of pediatric cancers and the relatively small numbers of pediatric cancer patients are major challenges for pediatric oncology drug development. These factors are exacerbated by the division of cancers into multiple subtypes that are further sub-classified by their genomic properties. The imbalance between the large number of candidate agents and small patient populations requires careful prioritization of agents developed for adult cancers for clinical evaluation in children with cancer. The NCI-supported preclinical pediatric programs have published positive and negative results of efficacy testing for over 100 agents to aid the pediatric research community in identifying the most promising candidates to move forward for clinical testing in pediatric oncology. Here, we review and summarize lessons learned from two decades of experience with the design and execution of preclinical trials of antineoplastic agents in murine models of childhood cancers.
Collapse
Affiliation(s)
- Malcolm A Smith
- National Cancer Institute, Bethesda, MD, United States of America.
| | - Peter J Houghton
- The University of Texas Health at San Antonio, TX, United States of America
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - John M Maris
- The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Richard Gorlick
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | | | - Xiao-Nan Li
- Lurie Children's Hospital, Northwestern University Feiberg School of Medicine, Chicago, IL, United States of America
| | | | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States of America
| | - Filemon S Dela Cruz
- Memorial Sloan Kettering Cancer Center, New York City, NY, United States of America
| | - Michael A Dyer
- St. Jude Children's Research Hospital, Memphis, TN, United States of America
| | - Andrew L Kung
- Memorial Sloan Kettering Cancer Center, New York City, NY, United States of America
| | - Michael W Lloyd
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, United States of America
| | - Yael P Mossé
- The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Timothy M Stearns
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, United States of America
| | - Elizabeth A Stewart
- St. Jude Children's Research Hospital, Memphis, TN, United States of America
| | - Carol J Bult
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, United States of America
| | | |
Collapse
|
8
|
Leroux LP, Chaparro V, Plouffe A, Johnston B, Jaramillo M. Toxoplasma gondii infection induces the expression of the chemokine CXCL16 in macrophages to promote chemoattraction of CXCR6 + cells. Infect Immun 2024; 92:e0030924. [PMID: 39436058 PMCID: PMC11556035 DOI: 10.1128/iai.00309-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
CXCL16 is a multifaceted chemokine expressed by macrophages and other immune cells in response to viral and bacterial pathogens. However, few studies have investigated its role in parasitic infections. The obligate intracellular parasite Toxoplasma gondii (T. gondii) is the causative agent of toxoplasmosis, an infection with potentially deleterious consequences in immunocompromised individuals and the developing fetus of acutely infected pregnant women. Chemokines are critical mediators of host defense and, as such, dysregulation of their expression is a subversion strategy often employed by the parasite to ensure its survival. Herein, we report that types I and II T. gondii strains upregulated the expression of both transmembrane and soluble forms of CXCL16 in infected bone marrow-derived macrophages (BMDM). Exposure to soluble T. gondii antigens (STAg) and to excreted-secreted proteins (TgESP) led to the induction of CXCL16. Cxcl16 mRNA abundance and CXCL16 protein levels increased in a time-dependent manner upon T. gondii infection. Importantly, conditioned medium (CM) collected from T. gondii-infected wild-type (WT) macrophage cultures promoted the migration of RAW264.7 cells expressing CXCR6, the cognate receptor of CXCL16, an effect that was significantly reduced by a neutralizing anti-CXCL16 antibody or use of CM from CXCL16 knockout (KO) macrophages. Lastly, T. gondii-driven CXCL16 expression appeared to modulate cytokine-induced (IL-4 + IL-13) alternative macrophage activation and M2 phenotypic marker expression. Further investigation is required to determine whether this chemokine contributes to the pathogenesis of toxoplasmosis and to elucidate the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Louis-Philippe Leroux
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie (CAFSB), Laval, Québec, Canada
| | - Visnu Chaparro
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie (CAFSB), Laval, Québec, Canada
| | - Alexandra Plouffe
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie (CAFSB), Laval, Québec, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Maritza Jaramillo
- Institut National de la Recherche Scientifique (INRS)-Centre Armand-Frappier Santé Biotechnologie (CAFSB), Laval, Québec, Canada
| |
Collapse
|
9
|
Van Vranken JG, Li J, Mintseris J, Wei TY, Sniezek CM, Gadzuk-Shea M, Gygi SP, Schweppe DK. Large-scale characterization of drug mechanism of action using proteome-wide thermal shift assays. eLife 2024; 13:RP95595. [PMID: 39526730 PMCID: PMC11554310 DOI: 10.7554/elife.95595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
In response to an ever-increasing demand of new small molecules therapeutics, numerous chemical and genetic tools have been developed to interrogate compound mechanism of action. Owing to its ability to approximate compound-dependent changes in thermal stability, the proteome-wide thermal shift assay has emerged as a powerful tool in this arsenal. The most recent iterations have drastically improved the overall efficiency of these assays, providing an opportunity to screen compounds at a previously unprecedented rate. Taking advantage of this advance, we quantified more than one million thermal stability measurements in response to multiple classes of therapeutic and tool compounds (96 compounds in living cells and 70 compounds in lysates). When interrogating the dataset as a whole, approximately 80% of compounds (with quantifiable targets) caused a significant change in the thermal stability of an annotated target. There was also a wealth of evidence portending off-target engagement despite the extensive use of the compounds in the laboratory and/or clinic. Finally, the combined application of cell- and lysate-based assays, aided in the classification of primary (direct ligand binding) and secondary (indirect) changes in thermal stability. Overall, this study highlights the value of these assays in the drug development process by affording an unbiased and reliable assessment of compound mechanism of action.
Collapse
Affiliation(s)
| | - Jiaming Li
- Department of Cell Biology, Harvard Medical SchoolBostonUnited States
| | - Julian Mintseris
- Department of Cell Biology, Harvard Medical SchoolBostonUnited States
| | - Ting-Yu Wei
- Department of Cell Biology, Harvard Medical SchoolBostonUnited States
| | | | - Meagan Gadzuk-Shea
- Department of Genome Sciences, University of WashingtonSeattleUnited States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical SchoolBostonUnited States
| | - Devin K Schweppe
- Department of Genome Sciences, University of WashingtonSeattleUnited States
| |
Collapse
|
10
|
Okita T, Kita S, Fukuda S, Kondo Y, Sakaue TA, Iioka M, Fukuoka K, Kawada K, Nagao H, Obata Y, Fujishima Y, Ebihara T, Matsumoto H, Nakagawa S, Kimura T, Nishizawa H, Shimomura I. Soluble T-cadherin secretion from endothelial cells is regulated via insulin/PI3K/Akt signalling. Biochem Biophys Res Commun 2024; 732:150403. [PMID: 39047402 DOI: 10.1016/j.bbrc.2024.150403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/27/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
AIM AND OBJECTIVE Our recent report showed that soluble T-cadherin promotes pancreatic beta-cell proliferation. However, how and where the secretion of soluble T-cadherin is regulated remain unclear. METHODS AND RESULTS Soluble T-cadherin levels significantly increased in leptin receptor-deficient db/db mice with hypoinsulinaemia or in wild-type mice treated with insulin receptor blockade by S961. Similar results were observed in human subjects; Diabetic ketoacidosis patients at the time of hospitalization had increased plasma soluble T-cadherin levels, which decreased after insulin infusion therapy. Patients with recurrent ovarian cancer who were administered a phosphatidylinositol-3 kinase (PI3K)-alpha inhibitor (a new anticancer drug) had increased plasma soluble T-cadherin and plasma C-peptide levels. Endothelial cell-specific T-cadherin knockout mice, but not skeletal muscle- or cardiac muscle-specific T-cadherin knockout mice, showed a 26 % reduction in plasma soluble T-cadherin levels and a significant increase in blood glucose levels in streptozocin-induced diabetes. The secretion of soluble T-cadherin from human endothelial cells was approximately 20 % decreased by insulin and this decrease was canceled by blockade of insulin receptor/Akt signalling, not Erk signalling. CONCLUSION We conclude that insulin regulates soluble T-cadherin levels and soluble T-cadherin secretion from endothelial cells is positively regulated by insulin/insulin receptor/Akt signalling.
Collapse
Affiliation(s)
- Tomonori Okita
- Departments of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shunbun Kita
- Departments of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Shiro Fukuda
- Departments of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Yuta Kondo
- Departments of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Taka-Aki Sakaue
- Departments of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masahito Iioka
- Departments of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Keita Fukuoka
- Departments of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Keitaro Kawada
- Departments of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hirofumi Nagao
- Departments of Metabolism and Atherosclerosis, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshinari Obata
- Departments of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuya Fujishima
- Departments of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takeshi Ebihara
- Departments of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hisatake Matsumoto
- Departments of Traumatology and Acute Critical Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Satoshi Nakagawa
- Departments of Obstetrics and Gynecology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tadashi Kimura
- Departments of Obstetrics and Gynecology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hitoshi Nishizawa
- Departments of Metabolism and Atherosclerosis, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Iichiro Shimomura
- Departments of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
11
|
Sakuma H, Tomiyasu H, Tani A, Goto-Koshino Y, Tani H, Ohno K, Tsujimoto H, Bonkobara M, Okuda M. Antitumor effects of inhibitors of ERK and Akt pathways in canine histiocytic sarcoma cell lines. Vet J 2024; 308:106264. [PMID: 39505062 DOI: 10.1016/j.tvjl.2024.106264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Canine histiocytic sarcoma (CHS) is characterized by aggressive biological behavior. In our previous study, ERK and Akt pathways were found to be activated in CHS tissues. Thus, the objective of this study was set to investigate the relationships between the activation status of these pathways and the proliferation of CHS cell lines by examining the effects of single and co-administrations of drugs targeting these pathways. First, we evaluated the changes in cell proliferations and the activations of ERK and Akt pathways after treatments with ERK and Akt-specific inhibitors in CHS cells. Then, these changes after treatments with dasatinib and trametinib were also examined in CHS cells. Inhibitors specific to ERK and Akt pathways successfully inhibited the respective pathways in CHS cell lines. It was also indicated that these pathways were associated with the regulations of proliferations of CHS cells, although the anti-proliferative effect was not necessarily observed by inhibition of Akt pathway alone. Dasatinib and trametinib also showed the inhibitions of Akt and ERK pathway activations, respectively, in CHS cells. However, the anti-proliferative effects of these drugs varied among CHS cell lines, and co-administration showed enhanced anti-proliferative effects in only a part of CHS cell lines. Further studies are needed to investigate the molecular mechanisms associated with the sensitivities to these molecular-targeted drugs in CHS cells.
Collapse
Affiliation(s)
- H Sakuma
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - H Tomiyasu
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - A Tani
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Y Goto-Koshino
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - H Tani
- Laboratory of Veterinary Radiology, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - K Ohno
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - H Tsujimoto
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - M Bonkobara
- Department of Veterinary Clinical Pathology, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo 180-8602, Japan
| | - M Okuda
- Laboratory of Veterinary Internal Medicine, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
12
|
Tang AC, Besley NA, Trimpey-Warfhatig R, Yang P, Wessel H, Brown L, Kirshner Z, Jaffe GJ. The novel secretome ST266 activates Akt and protects against oxidative stress-mediated injury in human RPE and Müller cells. Exp Eye Res 2024; 248:110060. [PMID: 39182598 DOI: 10.1016/j.exer.2024.110060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/07/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Oxidative stress-mediated retinal pigment epithelial (RPE) cell damage is associated with age-related macular degeneration (AMD). ST266 is the biological secretome produced by a novel population of amnion-derived multipotent progenitor cells. Herein, we investigated the effect of ST266 on RPE cell injury induced by hydroquinone (HQ), a cigarette smoke related oxidant, hydrogen peroxide (H2O2) and all-trans retinal (atRal), a pro-oxidant component of the retinoid cycle. We additionally investigated its effect on Müller cell injury induced by H2O2. Cultured human RPE cells were pre-treated for 1 h in the presence or absence of MK-2206, a protein kinase B (Akt) inhibitor, then treated with varying concentrations of HQ, H2O2, or atRal for 1.5 h. Cultured human Müller cells (MIO-M1) were pre-treated for 1 h in the presence or absence of MK-2206, then treated with varying concentrations of H2O2 for 1.5 h. Media were then replaced with STM100 (control media into which the ST266 secretome proteins were collected) or ST266 at various times. Cell viability was determined with WST-1 reagent. Mitochondrial membrane potential (Δψm) was quantified by a fluorescence plate reader. The protein phosphorylation levels of Akt, glycogen synthase kinase 3 beta (GSK-3β), and p70 ribosomal S6 kinase (p70S6K) were measured by Western blot. ST266 significantly improved RPE and MIO-M1 cell viability that was reduced by oxidant exposure and improved oxidant-disrupted Δψm. In both cell types, ST266 induced phosphorylation of Akt, GSK-3β, and p70S6K. MK-2206 significantly eliminated ST266-mediated protein phosphorylation of Akt, GSK-3β, and p70S6K and abolished the ST266-protective effect on cell viability. In conclusion, ST266 activates Akt, protects against oxidative stress-mediated cell injury in an Akt-dependent manner, and improves Δψm, suggesting a potential role for ST266 therapy in treating retinal diseases such as AMD.
Collapse
Affiliation(s)
- Alan C Tang
- Department of Ophthalmology, Duke University, Durham, NC, 27710, USA
| | - Nicholas A Besley
- Department of Ophthalmology, Duke University, Durham, NC, 27710, USA
| | | | - Ping Yang
- Department of Ophthalmology, Duke University, Durham, NC, 27710, USA
| | - Howard Wessel
- Noveome Biotherapeutics, Inc., Pittsburgh, PA, 27708, USA
| | - Larry Brown
- Noveome Biotherapeutics, Inc., Pittsburgh, PA, 27708, USA
| | - Ziv Kirshner
- Noveome Biotherapeutics, Inc., Pittsburgh, PA, 27708, USA
| | - Glenn J Jaffe
- Noveome Biotherapeutics, Inc., Pittsburgh, PA, 27708, USA.
| |
Collapse
|
13
|
Chan KH, Zheng BX, Leung ASL, Long W, Zhao Y, Zheng Y, Wong WL. A NRAS mRNA G-quadruplex structure-targeting small-molecule ligand reactivating DNA damage response in human cancer cells for combination therapy with clinical PI3K inhibitors. Int J Biol Macromol 2024; 279:135308. [PMID: 39244134 DOI: 10.1016/j.ijbiomac.2024.135308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
The Neuroblastoma RAS (NRAS) oncogene homologue plays crucial roles in diverse cellular processes such as cell proliferation, survival, and differentiation. Several strategies have been developed to inhibit NRAS or its downstream effectors; however, there is no effective drug available to treat NRAS-driven cancers and thus new approaches are needed to be established. The mRNA sequence expressing NRAS containing several guanine(G)-rich regions may form quadruplex structures (G4s) and regulate NRAS translation. Therefore, targeting NRAS mRNA G4s to repress NRAS expression at translational level with ligands may be a feasible strategy against NRAS-driven cancers but it is underexplored. We reported herein a NRAS mRNA G4-targeting ligand, B3C, specifically localized in cytoplasm in HeLa cells. It effectively downregulates NRAS proteins, reactivates the DNA damage response (DDR), causes cell cycle arrest in G2/M phase, and induces apoptosis and senescence. Moreover, combination therapy with NARS mRNA G4-targeting ligands and clinical PI3K inhibitors for cancer cells inhibition treatment is unexplored, and we demonstrated that B3C combining with PI3Ki (pictilisib (GDC-0941)) showed potent antiproliferation activity against HeLa cells (IC50 = 1.03 μM (combined with 10 μM PI3Ki) and 0.42 μM (combined with 20 μM PI3Ki)) and exhibited strong synergistic effects in inhibiting cell proliferation. This study provides new insights into drug discovery against RAS-driven cancers using this conceptually new combination therapy strategy.
Collapse
Affiliation(s)
- Ka-Hin Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Bo-Xin Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Alan Siu-Lun Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Wei Long
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Yuchen Zhao
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Yingying Zheng
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong, China.
| |
Collapse
|
14
|
Zhao P, Chang J, Chen Y, Sun X, Ma X, Zhou C, Zhou L, Wang Y, Yang Y. Cellular Senescence-Related Long Non-coding RNA Signatures Predict Prognosis in Juvenile Osteosarcoma. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:430-452. [PMID: 39723224 PMCID: PMC11666862 DOI: 10.1007/s43657-023-00132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 12/28/2024]
Abstract
Osteosarcoma is the most common malignant bone tumor and is frequently diagnosed in juvenile. Cellular senescence is a fundamental hallmark of osteosarcoma and plays a vital role in the initiation and progression of aging and tumorigenesis. Long non-coding RNAs (lncRNAs) are implicated in tumorigenesis. In this study, six cellular senescence-related lncRNAs with independent prognostic significance in juvenile osteosarcoma patients were identified through univariate Cox regression analysis, least absolute shrinkage and selection operator (LASSO) regression analysis, and multivariate Cox regression analysis. Prognostic significance was further confirmed by Kaplan-Meier (KM) survival curves, co-expression interaction networks, and sankey diagrams. A prognostic model of cellular senescence-related genes in juvenile osteosarcoma patients was then constructed using multivariate Cox regression analysis based on these six genes. High- and low-risk groups were identified according to the median risk score calculated by the prognostic model. The favorable prognostic significance of this model was demonstrated through survival curves, receiver operating characteristic (ROC) curves, distribution scatter plots and lncRNA expression heatmaps. Furthermore, cellular senescence-related lncRNAs were validated by enrichment analysis, immunological correlation analysis, m6A correlation analysis, and drug sensitivity correlation analysis. These findings are important for improving the prognosis of juvenile osteosarcoma patients and understanding the mechanisms underlying cellular senescence in juvenile osteosarcoma development.
Collapse
Affiliation(s)
- Peng Zhao
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032 China
| | - Junli Chang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032 China
| | - YeKai Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Xingyuan Sun
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032 China
| | - Xiaoping Ma
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032 China
| | - Chujie Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032 China
| | - Lei Zhou
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032 China
| | - Yanping Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032 China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education, Shanghai, 200032 China
| |
Collapse
|
15
|
Yu S, Jiang Y, Li Q, Li M, Su J, Lai S, Gan Z, Ding Z, Yu Q. Nano-sensitizer with self-amplified drug release and hypoxia normalization properties potentiates efficient chemoradiotherapy of pancreatic cancer. Biomaterials 2024; 310:122634. [PMID: 38823195 DOI: 10.1016/j.biomaterials.2024.122634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/29/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
The hypoxic nature of pancreatic cancer, one of the most lethal malignancies worldwide, significantly impedes the effectiveness of chemoradiotherapy. Although the development of oxygen carriers and hypoxic sensitizers has shown promise in overcoming tumor hypoxia. The heterogeneity of hypoxia-primarily caused by limited oxygen penetration-has posed challenges. In this study, we designed a hypoxia-responsive nano-sensitizer by co-loading tirapazamine (TPZ), KP372-1, and MK-2206 in a metronidazole-modified polymeric vesicle. This nano-sensitizer relies on efficient endogenous NAD(P)H quinone oxidoreductase 1-mediated redox cycling induced by KP372-1, continuously consuming periphery oxygen and achieving evenly distributed hypoxia. Consequently, the normalized tumor microenvironment facilitates the self-amplified release and activation of TPZ without requiring deep penetration. The activated TPZ and metronidazole further sensitize radiotherapy, significantly reducing the radiation dose needed for extensive cell damage. Additionally, the coloaded MK-2206 complements inhibition of therapeutic resistance caused by Akt activation, synergistically enhancing the hypoxic chemoradiotherapy. This successful hypoxia normalization strategy not only overcomes hypoxia resistance in pancreatic cancer but also provides a potential universal approach to sensitize hypoxic tumor chemoradiotherapy by reshaping the hypoxic distribution.
Collapse
Affiliation(s)
- Shuchen Yu
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yitong Jiang
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qian Li
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mengmeng Li
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiamin Su
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shicong Lai
- Department of Urology, Peking University People's Hospital, Peking University, Beijing, 100044, China
| | - Zhihua Gan
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhenshan Ding
- Department of Urology, China-Japan Friendship Hospitals, Beijing, 100029, China.
| | - Qingsong Yu
- Beijing Laboratory of Biomedical Materials, The State Key Laboratory of Organic-Inorganic Composites, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
16
|
Nouri M, Varkaris A, Ridinger M, Dalrymple SL, Dennehy CM, Isaacs JT, Einstein DJ, Brennen WN, Balk SP. AKT Inhibition Sensitizes to Polo-Like Kinase 1 Inhibitor Onvansertib in Prostate Cancer. Mol Cancer Ther 2024; 23:1404-1417. [PMID: 38894678 PMCID: PMC11444904 DOI: 10.1158/1535-7163.mct-23-0933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/12/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Polo-like kinase 1 (PLK1) inhibitors have had limited antitumor efficacy as single agents, and focus of current efforts is on combination therapies. We initially confirmed that the PLK1-specific inhibitor onvansertib (ONV) could enhance responses to a PARP inhibitor (olaparib) in prostate cancer xenografts. To identify more effective combinations, we screened a library of bioactive compounds for efficacy in combination with ONV in LNCaP prostate cancer cells, which identified a series of compounds including multiple AKT inhibitors. We confirmed in vitro synergy between ONV and the AKT inhibitor ipatasertib (IPA) and found that the combination increased apoptosis. Mechanistic studies showed that ONV increased expression of the antiapoptotic protein SURVIVIN and that this was mitigated by IPA. Studies in three PTEN-deficient prostate cancer xenograft models showed that cotreatment with IPA and ONV led to significant tumor growth inhibition compared with monotherapies. Together, these in vitro and in vivo studies demonstrate that the efficacy of PLK1 antagonists can be enhanced by PARP or AKT inhibition and support further development of these combination therapies.
Collapse
Affiliation(s)
- Mannan Nouri
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - Andreas Varkaris
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | | - Susan L. Dalrymple
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Baltimore, MD, 21231, USA
| | - Christopher M. Dennehy
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - John T. Isaacs
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Baltimore, MD, 21231, USA
| | - David J. Einstein
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | - W. Nathaniel Brennen
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center (SKCCC), Baltimore, MD, 21231, USA
| | - Steven P. Balk
- Division of Medical Oncology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
17
|
Li X, Shen B, Feng F, Li K, Tang Z, Ma L, Li H. Dual-view jointly learning improves personalized drug synergy prediction. Bioinformatics 2024; 40:btae604. [PMID: 39423102 PMCID: PMC11524890 DOI: 10.1093/bioinformatics/btae604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/23/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024] Open
Abstract
MOTIVATION Accurate and robust estimation of the synergistic drug combination is important for medicine precision. Although some computational methods have been developed, some predictions are still unreliable especially for the cross-dataset predictions, due to the complex mechanism of drug combinations and heterogeneity of cancer samples. RESULTS We have proposed JointSyn that utilizes dual-view jointly learning to predict sample-specific effects of drug combination from drug and cell features. JointSyn outperforms existing state-of-the-art methods in predictive accuracy and robustness across various benchmarks. Each view of JointSyn captures drug synergy-related characteristics and makes complementary contributes to the final prediction of the drug combination. Moreover, JointSyn with fine-tuning improves its generalization ability to predict a novel drug combination or cancer sample using a small number of experimental measurements. We also used JointSyn to generate an estimated atlas of drug synergy for pan-cancer and explored the differential pattern among cancers. These results demonstrate the potential of JointSyn to predict drug synergy, supporting the development of personalized combinatorial therapies. AVAILABILITY AND IMPLEMENTATION Source code and data are available at https://github.com/LiHongCSBLab/JointSyn.
Collapse
Affiliation(s)
- Xueliang Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bihan Shen
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fangyoumin Feng
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kunshi Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhixuan Tang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Liangxiao Ma
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Science, Shanghai 200031, China
| | - Hong Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
18
|
Asiri A, Al Qarni A, Bakillah A. The Interlinking Metabolic Association between Type 2 Diabetes Mellitus and Cancer: Molecular Mechanisms and Therapeutic Insights. Diagnostics (Basel) 2024; 14:2132. [PMID: 39410536 PMCID: PMC11475808 DOI: 10.3390/diagnostics14192132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 10/20/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) and cancer share common risk factors including obesity, inflammation, hyperglycemia, and hyperinsulinemia. High insulin levels activate the PI3K/Akt/mTOR signaling pathway promoting cancer cell growth, survival, proliferation, metastasis, and anti-apoptosis. The inhibition of the PI3K/Akt/mTOR signaling pathway for cancer remains a promising therapy; however, drug resistance poses a major problem in clinical settings resulting in limited efficacy of agents; thus, combination treatments with therapeutic inhibitors may solve the resistance to such agents. Understanding the metabolic link between diabetes and cancer can assist in improving the therapeutic strategies used for the management of cancer patients with diabetes and vice versa. This review provides an overview of shared molecular mechanisms between diabetes and cancer as well as discusses established and emerging therapeutic anti-cancer agents targeting the PI3K/Akt/mTOR pathway in cancer management.
Collapse
Affiliation(s)
- Abutaleb Asiri
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 36428, Saudi Arabia; (A.A.); (A.A.Q.)
- Division of Medical Research Core-A, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| | - Ali Al Qarni
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 36428, Saudi Arabia; (A.A.); (A.A.Q.)
- Division of Medical Research Core-A, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| | - Ahmed Bakillah
- King Abdullah International Medical Research Center (KAIMRC), Eastern Region, Al Ahsa 36428, Saudi Arabia; (A.A.); (A.A.Q.)
- Division of Medical Research Core-A, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Al Ahsa 36428, Saudi Arabia
- King Abdulaziz Hospital, Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa 36428, Saudi Arabia
| |
Collapse
|
19
|
Egger AS, Rauch E, Sharma S, Kipura T, Hotze M, Mair T, Hohenegg A, Kobler P, Heiland I, Kwiatkowski M. Linking metabolism and histone acetylation dynamics by integrated metabolic flux analysis of Acetyl-CoA and histone acetylation sites. Mol Metab 2024; 90:102032. [PMID: 39305948 PMCID: PMC11492620 DOI: 10.1016/j.molmet.2024.102032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024] Open
Abstract
OBJECTIVES Histone acetylation is an important epigenetic modification that regulates various biological processes and cell homeostasis. Acetyl-CoA, a hub molecule of metabolism, is the substrate for histone acetylation, thus linking metabolism with epigenetic regulation. However, still relatively little is known about the dynamics of histone acetylation and its dependence on metabolic processes, due to the lack of integrated methods that can capture site-specific histone acetylation and deacetylation reactions together with the dynamics of acetyl-CoA synthesis. METHODS In this study, we present a novel proteo-metabo-flux approach that combines mass spectrometry-based metabolic flux analysis of acetyl-CoA and histone acetylation with computational modelling. We developed a mathematical model to describe metabolic label incorporation into acetyl-CoA and histone acetylation based on experimentally measured relative abundances. RESULTS We demonstrate that our approach is able to determine acetyl-CoA synthesis dynamics and site-specific histone acetylation and deacetylation reaction rate constants, and that consideration of the metabolically labelled acetyl-CoA fraction is essential for accurate determination of histone acetylation dynamics. Furthermore, we show that without correction, changes in metabolic fluxes would be misinterpreted as changes in histone acetylation dynamics, whereas our proteo-metabo-flux approach allows to distinguish between the two processes. CONCLUSIONS Our proteo-metabo-flux approach expands the repertoire of metabolic flux analysis and cross-omics and represents a valuable approach to study the regulatory interplay between metabolism and epigenetic regulation by histone acetylation.
Collapse
Affiliation(s)
- Anna-Sophia Egger
- Department of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Eva Rauch
- Department of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria; Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Suraj Sharma
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway; Neuro-SysMed, Department of Neurology, Haukeland University Hospital, Bergen, 5021, Norway
| | - Tobias Kipura
- Department of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Madlen Hotze
- Department of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Thomas Mair
- Department of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria; Section / Core Facility Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alina Hohenegg
- Department of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Philipp Kobler
- Department of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Ines Heiland
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway; Department of Arctic and Marine Biology, UiT the Arctic University of Norway, 9037 Tromsø, Norway.
| | - Marcel Kwiatkowski
- Department of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
20
|
Santini L, Kowald S, Cerron-Alvan LM, Huth M, Fabing AP, Sestini G, Rivron N, Leeb M. FoxO transcription factors actuate the formative pluripotency specific gene expression programme. Nat Commun 2024; 15:7879. [PMID: 39251582 PMCID: PMC11384738 DOI: 10.1038/s41467-024-51794-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
Naïve pluripotency is sustained by a self-reinforcing gene regulatory network (GRN) comprising core and naïve pluripotency-specific transcription factors (TFs). Upon exiting naïve pluripotency, embryonic stem cells (ESCs) transition through a formative post-implantation-like pluripotent state, where they acquire competence for lineage choice. However, the mechanisms underlying disengagement from the naïve GRN and initiation of the formative GRN are unclear. Here, we demonstrate that phosphorylated AKT acts as a gatekeeper that prevents nuclear localisation of FoxO TFs in naïve ESCs. PTEN-mediated reduction of AKT activity upon exit from naïve pluripotency allows nuclear entry of FoxO TFs, enforcing a cell fate transition by binding and activating formative pluripotency-specific enhancers. Indeed, FoxO TFs are necessary and sufficient for the activation of the formative pluripotency-specific GRN. Our work uncovers a pivotal role for FoxO TFs in establishing formative post-implantation pluripotency, a critical early embryonic cell fate transition.
Collapse
Affiliation(s)
- Laura Santini
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, Medical University of Vienna, 1030, Vienna, Austria
| | - Saskia Kowald
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030, Vienna, Austria
| | - Luis Miguel Cerron-Alvan
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, Medical University of Vienna, 1030, Vienna, Austria
| | - Michelle Huth
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, Medical University of Vienna, 1030, Vienna, Austria
| | - Anna Philina Fabing
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030, Vienna, Austria
| | - Giovanni Sestini
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna, Medical University of Vienna, 1030, Vienna, Austria
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, 1030, Vienna, Austria
| | - Nicolas Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, 1030, Vienna, Austria
| | - Martin Leeb
- Max Perutz Laboratories Vienna, University of Vienna, Vienna BioCenter, 1030, Vienna, Austria.
| |
Collapse
|
21
|
Lei JX, Wang R, Hu C, Lou X, Lv MY, Li C, Gai B, Wu XJ, Dou R, Cai D, Gao F. Deciphering tertiary lymphoid structure heterogeneity reveals prognostic signature and therapeutic potentials for colorectal cancer: a multicenter retrospective cohort study. Int J Surg 2024; 110:5627-5640. [PMID: 38833363 PMCID: PMC11392219 DOI: 10.1097/js9.0000000000001684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/10/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Tertiary lymphoid structures (TLSs) exert a crucial role in the tumor microenvironment (TME), impacting tumor development, immune escape, and drug resistance. Nonetheless, the heterogeneity of TLSs in colorectal cancer (CRC) and their impact on prognosis and treatment response remain unclear. METHODS The authors collected genome, transcriptome, clinicopathological information, and digital pathology images from multiple sources. An unsupervised clustering algorithm was implemented to determine diverse TLS patterns in CRC based on the expression levels of 39 TLS signature genes (TSGs). Comprehensive explorations of heterogeneity encompassing mutation landscape, TME, biological characteristics, response to immunotherapy, and drug resistance were conducted using multiomics data. TLSscore was then developed to quantitatively assess TLS patterns of individuals for further clinical applicability. RESULTS Three distinct TLS patterns were identified in CRC. Cluster 1 exhibited upregulation of proliferation-related pathways, high metabolic activity, and intermediate prognosis, while Cluster 2 displayed activation of stromal and carcinogenic pathways and a worse prognosis. Both Cluster 1 and Cluster 2 may potentially benefit from adjuvant chemotherapy. Cluster 3, characterized by the activation of immune regulation and activation pathways, demonstrated a favorable prognosis and enhanced responsiveness to immunotherapy. The authors subsequently employed a regularization algorithm to construct the TLSscore based on nine core genes. Patients with lower TLSscore trended to prolonged prognosis and a more prominent presence of TLSs, which may benefit from immunotherapy. Conversely, those with higher TLSscore exhibited increased benefits from adjuvant chemotherapy. CONCLUSIONS The authors identified distinct TLS patterns in CRC and characterized their heterogeneity through multiomics analyses. The TLSscore held promise for guiding clinical decision-making and further advancing the field of personalized medicine in CRC.
Collapse
Affiliation(s)
- Jia-Xin Lei
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou Province
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, ShenzhenGuangdong Province
| | - Runxian Wang
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, ZhuhaiGuangdong Province
| | - Chuling Hu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou Province
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong Province
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou
| | - Xiaoying Lou
- Department of Pathology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou
| | - Min-Yi Lv
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou Province
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong Province
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou
| | - Chenghang Li
- Artificial Intelligence Thrust, The Hong Kong University of Science and Technology, Guangzhou, People's Republic of China
| | - Baowen Gai
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou Province
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong Province
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou
| | - Xiao-Jian Wu
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou Province
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong Province
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou
| | - Ruoxu Dou
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Sun Yat-sen University, ZhuhaiGuangdong Province
| | - Du Cai
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou Province
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong Province
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou
| | - Feng Gao
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou Province
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou, Guangdong Province
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University Guangzhou
| |
Collapse
|
22
|
Nussinov R, Jang H. The value of protein allostery in rational anticancer drug design: an update. Expert Opin Drug Discov 2024; 19:1071-1085. [PMID: 39068599 PMCID: PMC11390313 DOI: 10.1080/17460441.2024.2384467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Allosteric drugs are advantageous. However, they still face hurdles, including identification of allosteric sites that will effectively alter the active site. Current strategies largely focus on identifying pockets away from the active sites into which the allosteric ligand will dock and do not account for exactly how the active site is altered. Favorable allosteric inhibitors dock into sites that are nearby the active sites and follow nature, mimicking diverse allosteric regulation strategies. AREAS COVERED The following article underscores the immense significance of allostery in drug design, describes current allosteric strategies, and especially offers a direction going forward. The article concludes with the authors' expert perspectives on the subject. EXPERT OPINION To select a productive venue in allosteric inhibitor development, we should learn from nature. Currently, useful strategies follow this route. Consider, for example, the mechanisms exploited in relieving autoinhibition and in harnessing allosteric degraders. Mimicking compensatory, or rescue mutations may also fall into such a thesis, as can molecular glues that capture features of scaffolding proteins. Capturing nature and creatively tailoring its mimicry can continue to innovate allosteric drug discovery.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
23
|
Yoo H, Kim Y, Kim J, Cho H, Kim K. Overcoming Cancer Drug Resistance with Nanoparticle Strategies for Key Protein Inhibition. Molecules 2024; 29:3994. [PMID: 39274842 PMCID: PMC11396748 DOI: 10.3390/molecules29173994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/06/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Drug resistance remains a critical barrier in cancer therapy, diminishing the effectiveness of chemotherapeutic, targeted, and immunotherapeutic agents. Overexpression of proteins such as B-cell lymphoma 2 (Bcl-2), inhibitor of apoptosis proteins (IAPs), protein kinase B (Akt), and P-glycoprotein (P-gp) in various cancers leads to resistance by inhibiting apoptosis, enhancing cell survival, and expelling drugs. Although several inhibitors targeting these proteins have been developed, their clinical use is often hampered by systemic toxicity, poor bioavailability, and resistance development. Nanoparticle-based drug delivery systems present a promising solution by improving drug solubility, stability, and targeted delivery. These systems leverage the Enhanced Permeation and Retention (EPR) effect to accumulate in tumor tissues, reducing off-target toxicity and increasing therapeutic efficacy. Co-encapsulation strategies involving anticancer drugs and resistance inhibitors within nanoparticles have shown potential in achieving coordinated pharmacokinetic and pharmacodynamic profiles. This review discusses the mechanisms of drug resistance, the limitations of current inhibitors, and the advantages of nanoparticle delivery systems in overcoming these challenges. By advancing these technologies, we can enhance treatment outcomes and move towards more effective cancer therapies.
Collapse
Affiliation(s)
- Hyeonji Yoo
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yeonjin Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jinseong Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hanhee Cho
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Kwangmeyung Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
24
|
Van Vranken JG, Li J, Mintseris J, Wei TY, Sniezek CM, Gadzuk-Shea M, Gygi SP, Schweppe DK. Large-scale characterization of drug mechanism of action using proteome-wide thermal shift assays. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577428. [PMID: 38328090 PMCID: PMC10849652 DOI: 10.1101/2024.01.26.577428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
In response to an ever-increasing demand of new small molecules therapeutics, numerous chemical and genetic tools have been developed to interrogate compound mechanism of action. Owing to its ability to approximate compound-dependent changes in thermal stability, the proteome-wide thermal shift assay has emerged as a powerful tool in this arsenal. The most recent iterations have drastically improved the overall efficiency of these assays, providing an opportunity to screen compounds at a previously unprecedented rate. Taking advantage of this advance, we quantified more than one million thermal stability measurements in response to multiple classes of therapeutic and tool compounds (96 compounds in living cells and 70 compounds in lysates). When interrogating the dataset as a whole, approximately 80% of compounds (with quantifiable targets) caused a significant change in the thermal stability of an annotated target. There was also a wealth of evidence portending off-target engagement despite the extensive use of the compounds in the laboratory and/or clinic. Finally, the combined application of cell- and lysate-based assays, aided in the classification of primary (direct ligand binding) and secondary (indirect) changes in thermal stability. Overall, this study highlights the value of these assays in the drug development process by affording an unbiased and reliable assessment of compound mechanism of action.
Collapse
Affiliation(s)
| | - Jiaming Li
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115 USA
| | - Julian Mintseris
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115 USA
| | - Ting-Yu Wei
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115 USA
| | - Catherine M Sniezek
- Department of Genome Sciences, University of Washington, Seattle, WA 98195 USA
| | - Meagan Gadzuk-Shea
- Department of Genome Sciences, University of Washington, Seattle, WA 98195 USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, 02115 USA
| | - Devin K Schweppe
- Department of Genome Sciences, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
25
|
Guo J, Jiang X, Lian J, Li H, Zhang F, Xie J, Deng J, Hou X, Du Z, Hao E. Evaluation of the effect of GSK-3β on liver cancer based on the PI3K/AKT pathway. Front Cell Dev Biol 2024; 12:1431423. [PMID: 39156976 PMCID: PMC11327086 DOI: 10.3389/fcell.2024.1431423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
The PI3K/AKT/GSK-3β signaling pathway plays a pivotal role in numerous physiological and pathological processes, including cell proliferation, apoptosis, differentiation, and metabolic regulation. Aberrant activation of the PI3K/AKT pathway is intricately linked to development of tumor. GSK-3β, belonging to the serine/threonine protein kinase family, is crucial in the pathogenesis of liver cancer. As a key rate-limiting enzyme in the glucose metabolism pathway, GSK-3β significantly impacts the growth, proliferation, metastasis, and apoptosis of liver cancer cells. It is also implicated in chemotherapy resistance. Elevated expression of GSK-3β diminishes the sensitivity of liver cancer cells to chemotherapeutic agents, thereby playing a substantial role in the development of drug resistance. Consequently, targeting of GSK-3β, particularly within the PI3K/AKT signaling pathway, is regarded as a promising therapeutic strategy for liver cancer. The precise identification and subsequent modulation of this pathway represent a substantial potential for innovative clinical interventions in the management of liver cancer.
Collapse
Affiliation(s)
- Jiageng Guo
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Xinya Jiang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Jing Lian
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Huaying Li
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Fan Zhang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Jinling Xie
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhengcai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
26
|
He L, Lin J, Lu S, Li H, Chen J, Wu X, Yan Q, Liu H, Li H, Shi Y. CKB Promotes Mitochondrial ATP Production by Suppressing Permeability Transition Pore. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403093. [PMID: 38896801 PMCID: PMC11336976 DOI: 10.1002/advs.202403093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/04/2024] [Indexed: 06/21/2024]
Abstract
Creatine kinases are essential for maintaining cellular energy balance by facilitating the reversible transfer of a phosphoryl group from ATP to creatine, however, their role in mitochondrial ATP production remains unknown. This study shows creatine kinases, including CKMT1A, CKMT1B, and CKB, are highly expressed in cells relying on the mitochondrial F1F0 ATP synthase for survival. Interestingly, silencing CKB, but not CKMT1A or CKMT1B, leads to a loss of sensitivity to the inhibition of F1F0 ATP synthase in these cells. Mechanistically, CKB promotes mitochondrial ATP but reduces glycolytic ATP production by suppressing mitochondrial calcium (mCa2+) levels, thereby preventing the activation of mitochondrial permeability transition pore (mPTP) and ensuring efficient mitochondrial ATP generation. Further, CKB achieves this regulation by suppressing mCa2+ levels through the inhibition of AKT activity. Notably, the CKB-AKT signaling axis boosts mitochondrial ATP production in cancer cells growing in a mouse tumor model. Moreover, this study also uncovers a decline in CKB expression in peripheral blood mononuclear cells with aging, accompanied by an increase in AKT signaling in these cells. These findings thus shed light on a novel signaling pathway involving CKB that directly regulates mitochondrial ATP production, potentially playing a role in both pathological and physiological conditions.
Collapse
Affiliation(s)
- Le He
- Tongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Jianghua Lin
- Tongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Shaojuan Lu
- Tongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Hao Li
- Tongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Jie Chen
- Tongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Xinyi Wu
- Tongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Qixin Yan
- Tongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Hailiang Liu
- Tongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
- State Key Laboratory of Cardiology and Medical Innovation CenterShanghai East HospitalSchool of MedicineTongji UniversityShanghai200123China
| | - Hui Li
- Tongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| | - Yufeng Shi
- Tongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of EducationTongji University Cancer CenterShanghai Tenth People's Hospital of Tongji UniversitySchool of MedicineTongji UniversityShanghai200092China
| |
Collapse
|
27
|
Jiang Q, Xiao J, Hsieh YC, Kumar NL, Han L, Zou Y, Li H. The Role of the PI3K/Akt/mTOR Axis in Head and Neck Squamous Cell Carcinoma. Biomedicines 2024; 12:1610. [PMID: 39062182 PMCID: PMC11274428 DOI: 10.3390/biomedicines12071610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignancies globally, representing a significant public health problem with a poor prognosis. The development of efficient therapeutic strategies for HNSCC prevention and treatment is urgently needed. The PI3K/AKT/mTOR (PAM) signaling pathway is a highly conserved transduction network in eukaryotic cells that promotes cell survival, growth, and cycle progression. Dysfunction in components of this pathway, such as hyperactivity of PI3K, loss of PTEN function, and gain-of-function mutations in AKT, are well-known drivers of treatment resistance and disease progression in cancer. In this review, we discuss the major mutations and dysregulations in the PAM signaling pathway in HNSCC. We highlight the results of clinical trials involving inhibitors targeting the PAM signaling pathway as a strategy for treating HNSCC. Additionally, we examine the primary mechanisms of resistance to drugs targeting the PAM pathway and potential therapeutic strategies.
Collapse
Affiliation(s)
- Qian Jiang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210093, China; (Q.J.)
- International Dentist Pathway, University of California, San Francisco, CA 94158, USA
| | - Jingyi Xiao
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210093, China; (Q.J.)
| | - Yao-Ching Hsieh
- International Dentist Pathway, University of California, San Francisco, CA 94158, USA
| | - Neha Love Kumar
- International Dentist Pathway, University of California, San Francisco, CA 94158, USA
| | - Lei Han
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210093, China; (Q.J.)
| | - Yuntao Zou
- Division of Hospital Medicine, University of California, San Francisco, CA 94158, USA
| | - Huang Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210093, China; (Q.J.)
| |
Collapse
|
28
|
Kelly LM, Rutter JC, Lin KH, Ling F, Duchmann M, Latour E, Arang N, Pasquer H, Ho Nhat D, Charles J, Killarney ST, Ang HX, Namor F, Culeux C, Lombard B, Loew D, Swaney DL, Krogan NJ, Brunel L, Carretero É, Verdié P, Amblard M, Fodil S, Huynh T, Sebert M, Adès L, Raffoux E, Fenouille N, Itzykson R, Lobry C, Benajiba L, Forget A, Martin AR, Wood KC, Puissant A. Targeting a lineage-specific PI3Kɣ-Akt signaling module in acute myeloid leukemia using a heterobifunctional degrader molecule. NATURE CANCER 2024; 5:1082-1101. [PMID: 38816660 DOI: 10.1038/s43018-024-00782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
Dose-limiting toxicity poses a major limitation to the clinical utility of targeted cancer therapies, often arising from target engagement in nonmalignant tissues. This obstacle can be minimized by targeting cancer dependencies driven by proteins with tissue-restricted and/or tumor-restricted expression. In line with another recent report, we show here that, in acute myeloid leukemia (AML), suppression of the myeloid-restricted PIK3CG/p110γ-PIK3R5/p101 axis inhibits protein kinase B/Akt signaling and compromises AML cell fitness. Furthermore, silencing the genes encoding PIK3CG/p110γ or PIK3R5/p101 sensitizes AML cells to established AML therapies. Importantly, we find that existing small-molecule inhibitors against PIK3CG are insufficient to achieve a sustained long-term antileukemic effect. To address this concern, we developed a proteolysis-targeting chimera (PROTAC) heterobifunctional molecule that specifically degrades PIK3CG and potently suppresses AML progression alone and in combination with venetoclax in human AML cell lines, primary samples from patients with AML and syngeneic mouse models.
Collapse
Affiliation(s)
- Lois M Kelly
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
| | - Justine C Rutter
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Kevin H Lin
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Frank Ling
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
| | - Matthieu Duchmann
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
| | - Emmanuelle Latour
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
| | - Nadia Arang
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Hélène Pasquer
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
| | - Duong Ho Nhat
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
| | - Juliette Charles
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
| | - Shane T Killarney
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Hazel X Ang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Federica Namor
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
| | - Cécile Culeux
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
| | - Bérangère Lombard
- Curie Institute, Mass Spectrometry and Proteomics Facility, PSL Research University, Paris, France
| | - Damarys Loew
- Curie Institute, Mass Spectrometry and Proteomics Facility, PSL Research University, Paris, France
| | - Danielle L Swaney
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Gladstone Institutes, San Francisco, California, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Gladstone Institutes, San Francisco, California, USA
| | - Luc Brunel
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Élodie Carretero
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Pascal Verdié
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Muriel Amblard
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Sofiane Fodil
- Department of Hematology and Immunology, Saint-Louis Hospital, AP-HP, Paris Cité University, Paris, France
| | - Tony Huynh
- Department of Hematology and Immunology, Saint-Louis Hospital, AP-HP, Paris Cité University, Paris, France
| | - Marie Sebert
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
- Department of Hematology and Immunology, Saint-Louis Hospital, AP-HP, Paris Cité University, Paris, France
| | - Lionel Adès
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
- Department of Hematology and Immunology, Saint-Louis Hospital, AP-HP, Paris Cité University, Paris, France
| | - Emmanuel Raffoux
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
- Department of Hematology and Immunology, Saint-Louis Hospital, AP-HP, Paris Cité University, Paris, France
| | - Nina Fenouille
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
| | - Raphaël Itzykson
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
- Department of Hematology and Immunology, Saint-Louis Hospital, AP-HP, Paris Cité University, Paris, France
| | - Camille Lobry
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
| | - Lina Benajiba
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
- Clinical Investigation Center, Saint-Louis Hospital, AP-HP, Paris Cité University, Paris, France
| | - Antoine Forget
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Anthony R Martin
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| | - Alexandre Puissant
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France.
| |
Collapse
|
29
|
Zhu X, Yu G, Lv Y, Yang N, Zhao Y, Li F, Zhao J, Chen Z, Lai Y, Chen L, Wang X, Xiao J, Cai Y, Feng Y, Ding J, Gao W, Zhou K, Xu H. Neuregulin-1, a member of the epidermal growth factor family, mitigates STING-mediated pyroptosis and necroptosis in ischaemic flaps. BURNS & TRAUMA 2024; 12:tkae035. [PMID: 38855574 PMCID: PMC11162832 DOI: 10.1093/burnst/tkae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/11/2024]
Abstract
Background Ensuring the survival of the distal end of a random flap during hypoperfusion (ischaemia) is difficult in clinical practice. Effective prevention of programmed cell death is a potential strategy for inhibiting ischaemic flap necrosis. The activation of stimulator of interferon genes (STING) pathway promotes inflammation and leads to cell death. The epidermal growth factor family member neuregulin-1 (NRG1) reduces cell death by activating the protein kinase B (AKT) signalling pathway. Moreover, AKT signalling negatively regulates STING activity. We aimed to verify the efficacy of NRG1 injection in protecting against flap necrosis. Additionally, we investigated whether NRG1 effectively enhances ischemic flap survival by inhibiting pyroptosis and necroptosis through STING suppression. Methods A random-pattern skin flap model was generated on the backs of C57BL/6 mice. The skin flap survival area was determined. The blood supply and vascular network of the flap was assessed by laser Doppler blood flow analysis. Cluster of differentiation 34 immunohistochemistry (IHC) and haematoxylin and eosin (H&E) staining of the flap sections revealed microvessels. Transcriptome sequencing analysis revealed the mechanism by which NRG1 promotes the survival of ischaemic flaps. The levels of angiogenesis, oxidative stress, necroptosis, pyroptosis and indicators associated with signalling pathways in flaps were examined by IHC, immunofluorescence and Western blotting. Packaging adeno-associated virus (AAV) was used to activate STING in flaps. Results NRG1 promoted the survival of ischaemic flaps. An increased subcutaneous vascular network and neovascularization were found in ischaemic flaps after the application of NRG1. Transcriptomic gene ontology enrichment analysis and protein level detection indicated that necroptosis, pyroptosis and STING activity were reduced in the NRG1 group. The phosphorylation of AKT and forkhead box O3a (FOXO3a) were increased after NRG1 treatment. The increased expression of STING in flaps induced by AAV reversed the therapeutic effect of NRG1. The ability of NRG1 to phosphorylate AKT-FOXO3a, inhibit STING and promote flap survival was abolished after the application of the AKT inhibitor MK2206. Conclusions NRG1 inhibits pyroptosis and necroptosis by activating the AKT-FOXO3a signalling pathway to suppress STING activation and promote ischaemic flap survival.
Collapse
Affiliation(s)
- Xuwei Zhu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Gaoxiang Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Ya Lv
- The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang Street, Ouhai District, Wenzhou 325000, China
| | - Ningning Yang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Yinuo Zhao
- School of Pharmaceutical Science of Zhejiang Chinese Medical University, NO. 548 Binwen Road, Binjiang District, Hangzhou 310000, China
| | - Feida Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Jiayi Zhao
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Zhuliu Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Yingying Lai
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Liang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Chashan University Town, Ouhai District, Wenzhou, 325000, China
| | - Yuepiao Cai
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Chashan University Town, Ouhai District, Wenzhou, 325000, China
| | | | - Jian Ding
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Weiyang Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| | - Hui Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, No. 109 West Xueyuan Road, Lucheng District, Wenzhou 325027, China
| |
Collapse
|
30
|
Giaccari C, Antonouli S, Anifandis G, Cecconi S, Di Nisio V. An Update on Physiopathological Roles of Akt in the ReprodAKTive Mammalian Ovary. Life (Basel) 2024; 14:722. [PMID: 38929705 PMCID: PMC11204812 DOI: 10.3390/life14060722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/19/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
The phosphoinositide 3-kinase (PI3K)/Akt pathway is a key signaling cascade responsible for the regulation of cell survival, proliferation, and metabolism in the ovarian microenvironment. The optimal finetuning of this pathway is essential for physiological processes concerning oogenesis, folliculogenesis, oocyte maturation, and embryo development. The dysregulation of PI3K/Akt can impair molecular and structural mechanisms that will lead to follicle atresia, or the inability of embryos to reach later stages of development. Due to its pivotal role in the control of cell proliferation, apoptosis, and survival mechanisms, the dysregulation of this molecular pathway can trigger the onset of pathological conditions. Among these, we will focus on diseases that can harm female fertility, such as polycystic ovary syndrome and premature ovarian failure, or women's general health, such as ovarian cancer. In this review, we report the functions of the PI3K/Akt pathway in both its physiological and pathological roles, and we address the existing application of inhibitors and activators for the balancing of the molecular cascade in ovarian pathological environments.
Collapse
Affiliation(s)
- Carlo Giaccari
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy;
| | - Sevastiani Antonouli
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41334 Larisa, Greece; (S.A.); (G.A.)
| | - George Anifandis
- Department of Obstetrics and Gynaecology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41334 Larisa, Greece; (S.A.); (G.A.)
| | - Sandra Cecconi
- Department of Life, Health, and Environmental Sciences, Università dell’Aquila, 67100 L’Aquila, Italy
| | - Valentina Di Nisio
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, SE-14186 Stockholm, Sweden;
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, SE-14186 Stockholm, Sweden
| |
Collapse
|
31
|
Zhang H, Read A, Cataisson C, Yang HH, Lee WC, Turk BE, Yuspa SH, Luo J. Protein phosphatase 6 activates NF-κB to confer sensitivity to MAPK pathway inhibitors in KRAS- and BRAF-mutant cancer cells. Sci Signal 2024; 17:eadd5073. [PMID: 38743809 PMCID: PMC11238902 DOI: 10.1126/scisignal.add5073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
The Ras-mitogen-activated protein kinase (MAPK) pathway is a major target for cancer treatment. To better understand the genetic pathways that modulate cancer cell sensitivity to MAPK pathway inhibitors, we performed a CRISPR knockout screen with MAPK pathway inhibitors on a colorectal cancer (CRC) cell line carrying mutant KRAS. Genetic deletion of the catalytic subunit of protein phosphatase 6 (PP6), encoded by PPP6C, rendered KRAS- and BRAF-mutant CRC and BRAF-mutant melanoma cells more resistant to these inhibitors. In the absence of MAPK pathway inhibition, PPP6C deletion in CRC cells decreased cell proliferation in two-dimensional (2D) adherent cultures but accelerated the growth of tumor spheroids in 3D culture and tumor xenografts in vivo. PPP6C deletion enhanced the activation of nuclear factor κB (NF-κB) signaling in CRC and melanoma cells and circumvented the cell cycle arrest and decreased cyclin D1 abundance induced by MAPK pathway blockade in CRC cells. Inhibiting NF-κB activity by genetic and pharmacological means restored the sensitivity of PPP6C-deficient cells to MAPK pathway inhibition in CRC and melanoma cells in vitro and in CRC cells in vivo. Furthermore, a R264 point mutation in PPP6C conferred loss of function in CRC cells, phenocopying the enhanced NF-κB activation and resistance to MAPK pathway inhibition observed for PPP6C deletion. These findings demonstrate that PP6 constrains the growth of KRAS- and BRAF-mutant cancer cells, implicates the PP6-NF-κB axis as a modulator of MAPK pathway output, and presents a rationale for cotargeting the NF-κB pathway in PPP6C-mutant cancer cells.
Collapse
Affiliation(s)
- Haibo Zhang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Abigail Read
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- Current affiliation: Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Howard H. Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Wei-Chun Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Benjamin E. Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Stuart H. Yuspa
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Ji Luo
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
32
|
Eberlein C, Williamson SC, Hopcroft L, Ros S, Moss JI, Kerr J, van Weerden WM, de Bruin EC, Dunn S, Willis B, Ross SJ, Rooney C, Barry ST. Capivasertib combines with docetaxel to enhance anti-tumour activity through inhibition of AKT-mediated survival mechanisms in prostate cancer. Br J Cancer 2024; 130:1377-1387. [PMID: 38396173 PMCID: PMC11014923 DOI: 10.1038/s41416-024-02614-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND/OBJECTIVE To explore the anti-tumour activity of combining AKT inhibition and docetaxel in PTEN protein null and WT prostate tumours. METHODS Mechanisms associated with docetaxel capivasertib treatment activity in prostate cancer were examined using a panel of in vivo tumour models and cell lines. RESULTS Combining docetaxel and capivasertib had increased activity in PTEN null and WT prostate tumour models in vivo. In vitro short-term docetaxel treatment caused cell cycle arrest in the majority of cells. However, a sub-population of docetaxel-persister cells did not undergo G2/M arrest but upregulated phosphorylation of PI3K/AKT pathway effectors GSK3β, p70S6K, 4E-BP1, but to a lesser extent AKT. In vivo acute docetaxel treatment induced p70S6K and 4E-BP1 phosphorylation. Treating PTEN null and WT docetaxel-persister cells with capivasertib reduced PI3K/AKT pathway activation and cell cycle progression. In vitro and in vivo it reduced proliferation and increased apoptosis or DNA damage though effects were more marked in PTEN null cells. Docetaxel-persister cells were partly reliant on GSK3β as a GSK3β inhibitor AZD2858 reversed capivasertib-induced apoptosis and DNA damage. CONCLUSION Capivasertib can enhance anti-tumour effects of docetaxel by targeting residual docetaxel-persister cells, independent of PTEN status, to induce apoptosis and DNA damage in part through GSK3β.
Collapse
Affiliation(s)
- Cath Eberlein
- Bioscience, Early Oncology, AstraZeneca, Alderley Park, UK
| | | | | | - Susana Ros
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | | | - James Kerr
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Wytske M van Weerden
- Department of Experimental Urology, Josephine Nefkens Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Shanade Dunn
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | - Brandon Willis
- Bioscience, Early Oncology, AstraZeneca, Boston, MA, USA
| | - Sarah J Ross
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK
| | | | - Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK.
| |
Collapse
|
33
|
Zhang H, Xie F, Yuan XY, Dai XT, Tian YF, Sun MM, Yu SQ, Cai JY, Sun B, Zhang WC, Shan CL. Discovery of a nitroaromatic nannocystin with potent in vivo anticancer activity against colorectal cancer by targeting AKT1. Acta Pharmacol Sin 2024; 45:1044-1059. [PMID: 38326625 PMCID: PMC11053100 DOI: 10.1038/s41401-024-01231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/19/2024] [Indexed: 02/09/2024] Open
Abstract
The development of targeted chemotherapeutic agents against colorectal cancer (CRC), one of the most common cancers with a high mortality rate, is in a constant need. Nannocystins are a family of myxobacterial secondary metabolites featuring a 21-membered depsipeptide ring. The in vitro anti-CRC activity of natural and synthetic nannocystins was well documented, but little is known about their in vivo efficacy and if positive, the underlying mechanism of action. In this study we synthesized a nitroaromatic nannocystin through improved preparation of a key fragment, and characterized its in vitro activity and in vivo efficacy against CRC. We first described the total synthesis of compounds 2-4 featuring Heck macrocyclization to forge their 21-membered macrocycle. In a panel of 7 cancer cell lines from different tissues, compound 4 inhibited the cell viability with IC values of 1-6 nM. In particular, compound 4 (1, 2, 4 nM) inhibited the proliferation of CRC cell lines (HCT8, HCT116 and LoVo) in both concentration and time dependent manners. Furthermore, compound 4 concentration-dependently inhibited the colony formation and migration of CRC cell lines. Moreover, compound 4 induced cell cycle arrest at sub-G1 phase, apoptosis and cellular senescence in CRC cell lines. In three patient-derived CRC organoids, compound 4 inhibited the PDO with IC values of 3.68, 28.93 and 11.81 nM, respectively. In a patient-derived xenograft mouse model, injection of compound 4 (4, 8 mg/kg, i.p.) every other day for 12 times dose-dependently inhibited the tumor growth without significant change in body weight. We conducted RNA-sequencing, molecular docking and cellular thermal shift assay to elucidate the anti-CRC mechanisms of compound 4, and revealed that it exerted its anti-CRC effect at least in part by targeting AKT1.
Collapse
Affiliation(s)
- Han Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Fei Xie
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Xiao-Ya Yuan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Xin-Tong Dai
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Yun-Feng Tian
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Ming-Ming Sun
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Si-Qi Yu
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Jia-You Cai
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Bin Sun
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Wei-Cheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China.
| | - Chang-Liang Shan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China.
| |
Collapse
|
34
|
Pervanidis KA, D'Angelo GD, Weisner J, Brandherm S, Rauh D. Akt Inhibitor Advancements: From Capivasertib Approval to Covalent-Allosteric Promises. J Med Chem 2024; 67:6052-6063. [PMID: 38592948 DOI: 10.1021/acs.jmedchem.4c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Akt kinase is vital in cell growth, survival, metabolism, and migration. Dysregulation of Akt signaling is implicated in cancer and metabolic disorders. In the context of cancer, overactive Akt promotes cell survival and proliferation. This has spurred extensive research into developing Akt inhibitors as potential therapeutic agents to disrupt aberrant Akt signaling. Akt inhibitors are classified into three main types: ATP-competitive, allosteric, and covalent-allosteric inhibitors (CAAIs). ATP-competitive inhibitors compete with ATP for binding to Akt, allosteric inhibitors interact with the Pleckstrin homology (PH) domain, and covalent-allosteric inhibitors form covalent bonds, making them more potent and selective. Notably, capivasertib (AZD5363), a potent ATP-competitive Akt inhibitor, received FDA approval in November 2023 for use in combination with the estrogen receptor degrader fulvestrant to treat breast cancer. Challenges remain, including improving selectivity, identifying biomarkers to tailor treatments, and enhancing therapeutic efficacy while minimizing adverse effects. Particularly covalent-allosteric inhibitors hold promise for future more effective and personalized treatments.
Collapse
Affiliation(s)
- Kosmas Alexandros Pervanidis
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Giovanni Danilo D'Angelo
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Jörn Weisner
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
- KyDo Therapeutics, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
| | - Sven Brandherm
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
- KyDo Therapeutics, Otto-Hahn-Strasse 15, 44227 Dortmund, Germany
| | - Daniel Rauh
- Department of Chemistry and Chemical Biology, TU Dortmund University and Drug Discovery Hub Dortmund (DDHD), Zentrum für Integrierte Wirkstoffforschung (ZIW), Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| |
Collapse
|
35
|
Zhang P, You N, Ding Y, Zhu W, Wang N, Xie Y, Huang W, Ren Q, Qin T, Fu R, Zhang L, Xiao Z, Cheng T, Ma X. Gadd45g insufficiency drives the pathogenesis of myeloproliferative neoplasms. Nat Commun 2024; 15:2989. [PMID: 38582902 PMCID: PMC10998908 DOI: 10.1038/s41467-024-47297-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/22/2024] [Indexed: 04/08/2024] Open
Abstract
Despite the identification of driver mutations leading to the initiation of myeloproliferative neoplasms (MPNs), the molecular pathogenesis of MPNs remains incompletely understood. Here, we demonstrate that growth arrest and DNA damage inducible gamma (GADD45g) is expressed at significantly lower levels in patients with MPNs, and JAK2V617F mutation and histone deacetylation contribute to its reduced expression. Downregulation of GADD45g plays a tumor-promoting role in human MPN cells. Gadd45g insufficiency in the murine hematopoietic system alone leads to significantly enhanced growth and self-renewal capacity of myeloid-biased hematopoietic stem cells, and the development of phenotypes resembling MPNs. Mechanistically, the pathogenic role of GADD45g insufficiency is mediated through a cascade of activations of RAC2, PAK1 and PI3K-AKT signaling pathways. These data characterize GADD45g deficiency as a novel pathogenic factor in MPNs.
Collapse
Affiliation(s)
- Peiwen Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Na You
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Yiyi Ding
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Wenqi Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Nan Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Yueqiao Xie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Wanling Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Qian Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Tiejun Qin
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Rongfeng Fu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China
| | - Lei Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.
| | - Zhijian Xiao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.
- Department of Stem Cell and Regenerative Medicine, Peking Union Medical College, Tianjin, China.
| | - Xiaotong Ma
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
- Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin, China.
| |
Collapse
|
36
|
Leong E, Al-Bitar H, Marshall JS, Bezuhly M. Ketotifen directly modifies the fibrotic response of human skin fibroblasts. Sci Rep 2024; 14:7076. [PMID: 38528089 DOI: 10.1038/s41598-024-57776-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/21/2024] [Indexed: 03/27/2024] Open
Abstract
Fibrosis is a destructive, end-stage disease process. In the skin, it is associated with systemic sclerosis and scarring with considerable health burden. Ketotifen is a clinical antihistamine and mast cell stabilizer. Studies have demonstrated mast cell-dependent anti-fibrotic effects of ketotifen but direct effects on fibroblasts have not been determined. Human dermal fibroblasts were treated with pro-fibrotic transforming growth factor-β1 (TGFβ) followed by ketotifen or control treatments to determine direct effects on fibrotic fibroblasts. Ketotifen impaired TGFβ-induced α-smooth muscle actin gene and protein responses and decreased cytoskeletal- and contractility-associated gene responses associated with fibrosis. Ketotifen reduced Yes-associated protein phosphorylation, transcriptional coactivator with PDZ binding motif transcript and protein levels, and phosphorylation of protein kinase B. In a fibroblast-populated collagen gel contraction assay, ketotifen reduced the contractile activity of TGFβ-activated fibroblasts. In a murine model of bleomycin-induced skin fibrosis, collagen density and dermal thickness were significantly decreased in ketotifen-treated mice supporting in vitro findings. These results support a novel, direct anti-fibrotic activity of ketotifen, reducing pro-fibrotic phenotypic changes in fibroblasts and reducing collagen fibres in fibrotic mouse skin. Together, these findings suggest novel therapeutic potential and a novel mechanism of action for ketotifen in the context of fibrosis.
Collapse
Affiliation(s)
- Edwin Leong
- Department of Pathology, Dalhousie University, 5850 College Street, Room 7-C, PO BOX 15000, Halifax, NS, B3H 4R2, Canada
| | - Haya Al-Bitar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada
| | - Jean S Marshall
- Department of Pathology, Dalhousie University, 5850 College Street, Room 7-C, PO BOX 15000, Halifax, NS, B3H 4R2, Canada.
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada.
- Beatrice Hunter Cancer Research Institute, Halifax, Canada.
| | - Michael Bezuhly
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Canada.
- Beatrice Hunter Cancer Research Institute, Halifax, Canada.
- Division of Plastic Surgery, Izaak Walton Killam Health Centre, 5850/5980 University Avenue, PO Box 9700, Halifax, NS, B3K 6R8, Canada.
- Department of Surgery, Dalhousie University, Halifax, Canada.
| |
Collapse
|
37
|
Prem S, Dev B, Peng C, Mehta M, Alibutud R, Connacher RJ, St Thomas M, Zhou X, Matteson P, Xing J, Millonig JH, DiCicco-Bloom E. Dysregulation of mTOR signaling mediates common neurite and migration defects in both idiopathic and 16p11.2 deletion autism neural precursor cells. eLife 2024; 13:e82809. [PMID: 38525876 PMCID: PMC11003747 DOI: 10.7554/elife.82809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 03/04/2024] [Indexed: 03/26/2024] Open
Abstract
Autism spectrum disorder (ASD) is defined by common behavioral characteristics, raising the possibility of shared pathogenic mechanisms. Yet, vast clinical and etiological heterogeneity suggests personalized phenotypes. Surprisingly, our iPSC studies find that six individuals from two distinct ASD subtypes, idiopathic and 16p11.2 deletion, have common reductions in neural precursor cell (NPC) neurite outgrowth and migration even though whole genome sequencing demonstrates no genetic overlap between the datasets. To identify signaling differences that may contribute to these developmental defects, an unbiased phospho-(p)-proteome screen was performed. Surprisingly despite the genetic heterogeneity, hundreds of shared p-peptides were identified between autism subtypes including the mTOR pathway. mTOR signaling alterations were confirmed in all NPCs across both ASD subtypes, and mTOR modulation rescued ASD phenotypes and reproduced autism NPC-associated phenotypes in control NPCs. Thus, our studies demonstrate that genetically distinct ASD subtypes have common defects in neurite outgrowth and migration which are driven by the shared pathogenic mechanism of mTOR signaling dysregulation.
Collapse
Affiliation(s)
- Smrithi Prem
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Graduate Program in Neuroscience, Rutgers UniversityPiscatawayUnited States
| | - Bharati Dev
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
| | - Cynthia Peng
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
| | - Monal Mehta
- Graduate Program in Neuroscience, Rutgers UniversityPiscatawayUnited States
- Center for Advanced Biotechnology and Medicine, Rutgers UniversityPiscatawayUnited States
| | - Rohan Alibutud
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
| | - Robert J Connacher
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Graduate Program in Neuroscience, Rutgers UniversityPiscatawayUnited States
| | - Madeline St Thomas
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Graduate Program in Neuroscience, Rutgers UniversityPiscatawayUnited States
| | - Xiaofeng Zhou
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
| | - Paul Matteson
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Center for Advanced Biotechnology and Medicine, Rutgers UniversityPiscatawayUnited States
| | - Jinchuan Xing
- Department of Genetics, Rutgers UniversityPiscatawayUnited States
| | - James H Millonig
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Center for Advanced Biotechnology and Medicine, Rutgers UniversityPiscatawayUnited States
| | - Emanuel DiCicco-Bloom
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical SchoolNew BrunswickUnited States
| |
Collapse
|
38
|
Jiang M, Wu W, Xiong Z, Yu X, Ye Z, Wu Z. Targeting autophagy drug discovery: Targets, indications and development trends. Eur J Med Chem 2024; 267:116117. [PMID: 38295689 DOI: 10.1016/j.ejmech.2023.116117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 02/25/2024]
Abstract
Autophagy plays a vital role in sustaining cellular homeostasis and its alterations have been implicated in the etiology of many diseases. Drugs development targeting autophagy began decades ago and hundreds of agents were developed, some of which are licensed for the clinical usage. However, no existing intervention specifically aimed at modulating autophagy is available. The obstacles that prevent drug developments come from the complexity of the actual impact of autophagy regulators in disease scenarios. With the development and application of new technologies, several promising categories of compounds for autophagy-based therapy have emerged in recent years. In this paper, the autophagy-targeted drugs based on their targets at various hierarchical sites of the autophagic signaling network, e.g., the upstream and downstream of the autophagosome and the autophagic components with enzyme activities are reviewed and analyzed respectively, with special attention paid to those at preclinical or clinical trials. The drugs tailored to specific autophagy alone and combination with drugs/adjuvant therapies widely used in clinical for various diseases treatments are also emphasized. The emerging drug design and development targeting selective autophagy receptors (SARs) and their related proteins, which would be expected to arrest or reverse the progression of disease in various cancers, inflammation, neurodegeneration, and metabolic disorders, are critically reviewed. And the challenges and perspective in clinically developing autophagy-targeted drugs and possible combinations with other medicine are considered in the review.
Collapse
Affiliation(s)
- Mengjia Jiang
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Wayne Wu
- College of Osteopathic Medicine, New York Institute of Technology, USA
| | - Zijie Xiong
- Department of Pharmacology and Pharmacy, China Jiliang University, China
| | - Xiaoping Yu
- Department of Biology, China Jiliang University, China
| | - Zihong Ye
- Department of Biology, China Jiliang University, China
| | - Zhiping Wu
- Department of Pharmacology and Pharmacy, China Jiliang University, China.
| |
Collapse
|
39
|
Parkman GL, Turapov T, Kircher DA, Burnett WJ, Stehn CM, O’Toole K, Culver KM, Chadwick AT, Elmer RC, Flaherty R, Stanley KA, Foth M, Lum DH, Judson-Torres RL, Friend JE, VanBrocklin MW, McMahon M, Holmen SL. Genetic Silencing of AKT Induces Melanoma Cell Death via mTOR Suppression. Mol Cancer Ther 2024; 23:301-315. [PMID: 37931033 PMCID: PMC10932877 DOI: 10.1158/1535-7163.mct-23-0474] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/08/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Aberrant activation of the PI3K-AKT pathway is common in many cancers, including melanoma, and AKT1, 2 and 3 (AKT1-3) are bona fide oncoprotein kinases with well-validated downstream effectors. However, efforts to pharmacologically inhibit AKT have proven to be largely ineffective. In this study, we observed paradoxical effects following either pharmacologic or genetic inhibition of AKT1-3 in melanoma cells. Although pharmacological inhibition was without effect, genetic silencing of all three AKT paralogs significantly induced melanoma cell death through effects on mTOR. This phenotype was rescued by exogenous AKT1 expression in a kinase-dependent manner. Pharmacological inhibition of PI3K and mTOR with a novel dual inhibitor effectively suppressed melanoma cell proliferation in vitro and inhibited tumor growth in vivo. Furthermore, this single-agent-targeted therapy was well-tolerated in vivo and was effective against MAPK inhibitor-resistant patient-derived melanoma xenografts. These results suggest that inhibition of PI3K and mTOR with this novel dual inhibitor may represent a promising therapeutic strategy in this disease in both the first-line and MAPK inhibitor-resistant setting.
Collapse
Affiliation(s)
- Gennie L. Parkman
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Tursun Turapov
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - David A. Kircher
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - William J. Burnett
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Christopher M. Stehn
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Kayla O’Toole
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Katie M. Culver
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Ashley T. Chadwick
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Riley C. Elmer
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Ryan Flaherty
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Karly A. Stanley
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Mona Foth
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - David H. Lum
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Robert L. Judson-Torres
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | | | - Matthew W. VanBrocklin
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Martin McMahon
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Dermatology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | - Sheri L. Holmen
- Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
- Department of Surgery, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| |
Collapse
|
40
|
Sabbah DA, Hajjo R, Bardaweel SK, Zhong HA. Targeting the PI3K/AKT signaling pathway in anticancer research: a recent update on inhibitor design and clinical trials (2020-2023). Expert Opin Ther Pat 2024; 34:141-158. [PMID: 38557273 DOI: 10.1080/13543776.2024.2338100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION Recent years have witnessed great achievements in drug design and development targeting the phosphatidylinositol 3-kinase/protein kinase-B (PI3K/AKT) signaling pathway, a pathway central to cell growth and proliferation. The nearest neighbor protein-protein interaction networks for PI3K and AKT show the interplays between these target proteins which can be harnessed for drug discovery. In this review, we discuss the drug design and clinical development of inhibitors of PI3K/AKT in the past three years. We review in detail the structures, selectivity, efficacy, and combination therapy of 35 inhibitors targeting these proteins, classified based on the target proteins. Approaches to overcoming drug resistance and to minimizing toxicities are discussed. Future research directions for developing combinational therapy and PROTACs of PI3K and AKT inhibitors are also discussed. AREA COVERED This review covers clinical trial reports and patent literature on inhibitors of PI3K and AKT published between 2020 and 2023. EXPERT OPINION To address drug resistance and drug toxicity of inhibitors of PI3K and AKT, it is highly desirable to design and develop subtype-selective PI3K inhibitors or subtype-selective AKT1 inhibitors to minimize toxicity or to develop allosteric drugs that can form covalent bonds. The development of PROTACs of PI3Kα or AKT helps to reduce off-target toxicities.
Collapse
Affiliation(s)
- Dima A Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- National Center for Epidemics and Communicable Disease Control (JCDC), Amman, Jordan
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Jordan, Amman, Jordan
| | - Haizhen A Zhong
- DSC 309, Department of Chemistry, The University of Nebraska at Omaha, Omaha, NE, USA
| |
Collapse
|
41
|
Yurube T, Buchser WJ, Zhang Z, Silwal P, Lotze MT, Kang JD, Sowa GA, Vo NV. Rapamycin mitigates inflammation-mediated disc matrix homeostatic imbalance by inhibiting mTORC1 and inducing autophagy through Akt activation. JOR Spine 2024; 7:e1303. [PMID: 38222800 PMCID: PMC10782056 DOI: 10.1002/jsp2.1303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/05/2023] [Accepted: 10/31/2023] [Indexed: 01/16/2024] Open
Abstract
Background Low back pain is a global health problem that originated mainly from intervertebral disc degeneration (IDD). Autophagy, negatively regulated by the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway, prevents metabolic and degenerative diseases by removing and recycling damaged cellular components. Despite growing evidence that autophagy occurs in the intervertebral disc, the regulation of disc cellular autophagy is still poorly understood. Methods Annulus fibrosus (rAF) cell cultures derived from healthy female rabbit discs were used to test the effect of autophagy inhibition or activation on disc cell fate and matrix homeostasis. Specifically, different chemical inhibitors including rapamycin, 3-methyladenine, MK-2206, and PP242 were used to modulate activities of different proteins in the PI3K/Akt/mTOR signaling pathway to assess IL-1β-induced cellular senescence, apoptosis, and matrix homeostasis in rAF cells grown under nutrient-poor culture condition. Results Rapamycin, an inhibitor of mTOR complex 1 (mTORC1), reduced the phosphorylation of mTOR and its effector p70/S6K in rAF cell cultures. Rapamycin also induced autophagic flux as measured by increased expression of key autophagy markers, including LC3 puncta number, LC3-II expression, and cytoplasmic HMGB1 intensity and decreased p62/SQSTM1 expression. As expected, IL-1β stimulation promoted rAF cellular senescence, apoptosis, and matrix homeostatic imbalance with enhanced aggrecanolysis and MMP-3 and MMP-13 expression. Rapamycin treatment effectively mitigated IL-1β-mediated inflammatory stress changes, but these alleviating effects of rapamycin were abrogated by chemical inhibition of Akt and mTOR complex 2 (mTORC2). Conclusions These findings suggest that rapamycin blunts adverse effects of inflammation on disc cells by inhibiting mTORC1 to induce autophagy through the PI3K/Akt/mTOR pathway that is dependent on Akt and mTORC2 activities. Hence, our findings identify autophagy, rapamycin, and PI3K/Akt/mTOR signaling as potential therapeutic targets for IDD treatment.
Collapse
Affiliation(s)
- Takashi Yurube
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic SurgeryUniversity of Pittsburgh Medical Cancer, University of PittsburghPittsburghPennsylvaniaUSA
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - William J. Buchser
- Damage Associated Molecular Pattern Molecule Laboratory, Department of Surgery, Hillman Cancer CenterUniversity of Pittsburgh Cancer Institute, University of PittsburghPittsburghPennsylvaniaUSA
| | - Zhongying Zhang
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic SurgeryUniversity of Pittsburgh Medical Cancer, University of PittsburghPittsburghPennsylvaniaUSA
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Prashanta Silwal
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic SurgeryUniversity of Pittsburgh Medical Cancer, University of PittsburghPittsburghPennsylvaniaUSA
| | - Michael T. Lotze
- Damage Associated Molecular Pattern Molecule Laboratory, Department of Surgery, Hillman Cancer CenterUniversity of Pittsburgh Cancer Institute, University of PittsburghPittsburghPennsylvaniaUSA
| | - James D. Kang
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic SurgeryUniversity of Pittsburgh Medical Cancer, University of PittsburghPittsburghPennsylvaniaUSA
- Department of Orthopedics, Brigham and Women's Hospital, School of MedicineHarvard UniversityBostonMassachusettsUSA
| | - Gwendolyn A. Sowa
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic SurgeryUniversity of Pittsburgh Medical Cancer, University of PittsburghPittsburghPennsylvaniaUSA
- Department of Physical Medicine and RehabilitationUniversity of Pittsburgh Medical Cancer, University of PittsburghPittsburghPennsylvaniaUSA
| | - Nam V. Vo
- Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic SurgeryUniversity of Pittsburgh Medical Cancer, University of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
42
|
Ichikawa K, Ito S, Kato E, Abe N, Machida T, Iwasaki J, Tanaka G, Araki H, Wakayama K, Jona H, Sugimoto T, Miyadera K, Ohkubo S. TAS0612, a Novel RSK, AKT, and S6K Inhibitor, Exhibits Antitumor Effects in Preclinical Tumor Models. Mol Cancer Ther 2024; 23:174-186. [PMID: 37906695 DOI: 10.1158/1535-7163.mct-21-1037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 11/18/2022] [Accepted: 10/27/2023] [Indexed: 11/02/2023]
Abstract
The MAPK and PI3K pathways are involved in cancer growth and survival; however, the clinical efficacy of single inhibitors of each pathway is limited or transient owing to resistance mechanisms, such as feedback signaling and/or reexpression of receptor-type tyrosine kinases (RTK). This study identified a potent and novel kinase inhibitor, TAS0612, and characterized its properties. We found that TAS0612 is a potent, orally available compound that can inhibit p90RSK (RSK), AKT, and p70S6K (S6K) as a single agent and showed a strong correlation with the growth inhibition of cancer cells with PTEN loss or mutations, regardless of the presence of KRAS and BRAF mutations. Additional RSK inhibitory activity may differentiate the sensitivity profile of TAS0612 from that of signaling inhibitors that target only the PI3K pathway. Moreover, TAS0612 demonstrated broad-spectrum activity against tumor models wherein inhibition of MAPK or PI3K pathways was insufficient to exert antitumor effects. TAS0612 exhibited a stronger growth-inhibitory activity against the cancer cell lines and tumor models with dysregulated signaling with the genetic abnormalities described above than treatment with inhibitors against AKT, PI3K, MEK, BRAF, and EGFR/HER2. In addition, TAS0612 demonstrated the persistence of blockade of downstream growth and antiapoptotic signals, despite activation of upstream effectors in the signaling pathway and FoxO-dependent reexpression of HER3. In conclusion, TAS0612 with RSK/AKT/S6K inhibitory activity may provide a novel therapeutic strategy for patients with cancer to improve clinical responses and overcome resistance mechanisms.
Collapse
Affiliation(s)
- Koji Ichikawa
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Satoshi Ito
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Emi Kato
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Naomi Abe
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Takumitsu Machida
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Junya Iwasaki
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Gotaro Tanaka
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Hikari Araki
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Kentaro Wakayama
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Hideki Jona
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Tetsuya Sugimoto
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Kazutaka Miyadera
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| | - Shuichi Ohkubo
- Discovery and Preclinical Research Division, Taiho Pharmaceutical Co., Ltd., Tsukuba, Ibaraki, Japan
| |
Collapse
|
43
|
Hachey SJ, Hatch CJ, Gaebler D, Mocherla A, Nee K, Kessenbrock K, Hughes CCW. Targeting tumor-stromal interactions in triple-negative breast cancer using a human vascularized micro-tumor model. Breast Cancer Res 2024; 26:5. [PMID: 38183074 PMCID: PMC10768273 DOI: 10.1186/s13058-023-01760-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is highly aggressive with limited available treatments. Stromal cells in the tumor microenvironment (TME) are crucial in TNBC progression; however, understanding the molecular basis of stromal cell activation and tumor-stromal crosstalk in TNBC is limited. To investigate therapeutic targets in the TNBC stromal niche, we used an advanced human in vitro microphysiological system called the vascularized micro-tumor (VMT). Using single-cell RNA sequencing, we revealed that normal breast tissue stromal cells activate neoplastic signaling pathways in the TNBC TME. By comparing interactions in VMTs with clinical data, we identified therapeutic targets at the tumor-stromal interface with potential clinical significance. Combining treatments targeting Tie2 signaling with paclitaxel resulted in vessel normalization and increased efficacy of paclitaxel in the TNBC VMT. Dual inhibition of HER3 and Akt also showed efficacy against TNBC. These data demonstrate the potential of inducing a favorable TME as a targeted therapeutic approach in TNBC.
Collapse
Affiliation(s)
- Stephanie J Hachey
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA.
| | | | - Daniela Gaebler
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Aneela Mocherla
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Kevin Nee
- Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Kai Kessenbrock
- Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Christopher C W Hughes
- Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
- Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
44
|
Burkett WC, Zhao Z, Newton MA, Sun W, Deng B, Secord AA, Zhou C, Bae-Jump V. Ipatasertib, an oral AKT inhibitor, in combination with carboplatin exhibits anti-proliferative effects in uterine serous carcinoma. Ann Med 2023; 55:603-614. [PMID: 36773034 PMCID: PMC9930841 DOI: 10.1080/07853890.2023.2177883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/18/2022] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
PURPOSE Uterine serous carcinoma (USC) exhibits worse survival rates compared to the endometrioid subtype, and there is currently no effective treatment options for recurrence of this disease after platinum-based chemotherapy. Activation of PIK3CA/AKT/mTOR signaling pathway is a common biological feature in USC. MATERIALS AND METHODS Ipatasertib (IPAT) is an investigational, orally administered, ATP-competitive, highly selective inhibitor of pan AKT that has demonstrated anti-proliferative activity in a variety of tumor cells and tumor models. In this study, we used IPAT, carboplatin and their combination to investigate the anti-tumor activity in SPEC-2 and ARK-1 cells. RESULTS Our results indicate that IPAT combined with carboplatin at low doses was more effective at reducing proliferation, inducing apoptosis and causing cellular stress than IPAT or carboplatin alone. In particular, inhibition of the PIK3CA/AKT/mTOR pathway and induction of DNA damage were involved in the synergistic inhibition by combination treatment of cell viability in USC cells treated with the combination. Furthermore, IPAT in combination with carboplatin significantly reduced cell adhesion and inhibited cell invasion. CONCLUSIONS These findings suggest that the combination of IPAT and carboplatin has potential clinical implications for developing new USC treatment strategies.
Collapse
Affiliation(s)
- Wesley C. Burkett
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, NC
| | - Ziyi Zhao
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, NC
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health care Hospital, Beijing, P. R. China
| | - Meredith A. Newton
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, NC
| | - Wenchuan Sun
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, NC
| | - Boer Deng
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, NC
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health care Hospital, Beijing, P. R. China
| | - Angeles Alvarez Secord
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Duke University, Durham, NC
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC
| |
Collapse
|
45
|
Shen B, Shi JP, Zhu ZX, He ZD, Liu SY, Shi W, Zhang YX, Ying HY, Wang J, Xu RF, Fang F, Chang HX, Chen Z, Zhang NN. EGFR Inhibition Overcomes Resistance to FGFR4 Inhibition and Potentiates FGFR4 Inhibitor Therapy in Hepatocellular Carcinoma. Mol Cancer Ther 2023; 22:1479-1492. [PMID: 37710057 DOI: 10.1158/1535-7163.mct-23-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/07/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
Aberrant activation of the FGF19-FGFR4 signaling pathway plays an essential role in the tumorigenesis of hepatocellular carcinoma (HCC). As such, FGFR4 inhibition has emerged as a novel therapeutic option for the treatment of HCC and has shown preliminary efficacy in recent clinical trials for patients exhibiting aberrant FGF19 expression. Resistance to kinase inhibitors is common in oncology, presenting a major challenge in the clinical treatment process. Hence, we investigated the potential mechanisms mediating and causing resistance to FGFR4 inhibition in HCC. Upon the successful establishment of a battery of cellular models developing resistance to FGFR4 inhibitors, we have identified the activation of EGFR, MAPK, and AKT signaling as the primary mechanisms mediating the acquired resistance. Combination of inhibitors against EGFR or its downstream components restored sensitivity to FGFR4 inhibitors. In parental HCC cell lines, EGF treatment also resulted in resistance to FGFR4 inhibitors. This resistance was effectively reverted by inhibitors of the EGFR signaling pathway, suggesting that EGFR activation is a potential cause of intrinsic resistance. We further confirmed the above findings in vivo in mouse xenograft tumor models. Genomic analysis of patient samples from The Cancer Genome Atlas confirmed that a segment of patients with HCC harboring FGF19 overexpression indeed exhibited increased activation of EGFR signaling. These findings conclusively indicate that both induced and innate activation of EGFR could mediate resistance to FGFR4 inhibition, suggesting that dual blockade of EGFR and FGFR4 may be a promising future therapeutic strategy for the treatment of FGF19-FGFR4 altered HCC.
Collapse
Affiliation(s)
- Bin Shen
- Abbisko Therapeutics Co., Ltd., Shanghai, China
| | | | | | - Zhi-Dong He
- Abbisko Therapeutics Co., Ltd., Shanghai, China
| | | | - Wan Shi
- Abbisko Therapeutics Co., Ltd., Shanghai, China
| | | | | | - Jie Wang
- Abbisko Therapeutics Co., Ltd., Shanghai, China
| | - Rui-Feng Xu
- Abbisko Therapeutics Co., Ltd., Shanghai, China
| | - Fei Fang
- Abbisko Therapeutics Co., Ltd., Shanghai, China
| | | | - Zhui Chen
- Abbisko Therapeutics Co., Ltd., Shanghai, China
| | | |
Collapse
|
46
|
Karunakaran K, Muniyan R. Identification of allosteric inhibitor against AKT1 through structure-based virtual screening. Mol Divers 2023; 27:2803-2822. [PMID: 36522517 DOI: 10.1007/s11030-022-10582-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
AKT (serine/threonine protein kinase) is a potential therapeutic target for many types of cancer as it plays a vital role in cancer progression. Many AKT inhibitors are already in practice under single and combinatorial therapy. However, most of these inhibitors are orthosteric / pan-AKT that are non-selective and non-specific to AKT kinase and their isoforms. Hence, researchers are searching for novel allosteric inhibitors that bind in the interface between pH and kinase domain. In this study, we performed structure-based virtual screening from the afroDB (a diverse natural compounds library) to find the potential inhibitor targeting the AKT1. These compounds were filtered through Lipinski, ADMET properties, combined with a molecular docking approach to obtain the 8 best compounds. Then we performed molecular dynamics simulation for apoprotein, AKT1 with 8 complexes, and AKT1 with the positive control (Miransertib). Molecular docking and simulation analysis revealed that Bianthracene III (hit 1), 10-acetonyl Knipholonecyclooxanthrone (hit 2), Abyssinoflavanone VII (hit 5) and 8-c-p-hydroxybenzyldiosmetin (hit 6) had a better binding affinity, stability, and compactness than the reference compound. Notably, hit 1, hit 2 and hit 5 had molecular features required for allosteric inhibition.
Collapse
Affiliation(s)
- Keerthana Karunakaran
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India
| | - Rajiniraja Muniyan
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
47
|
Huang X, You L, Nepovimova E, Psotka M, Malinak D, Valko M, Sivak L, Korabecny J, Heger Z, Adam V, Wu Q, Kuca K. Inhibitors of phosphoinositide 3-kinase (PI3K) and phosphoinositide 3-kinase-related protein kinase family (PIKK). J Enzyme Inhib Med Chem 2023; 38:2237209. [PMID: 37489050 PMCID: PMC10392309 DOI: 10.1080/14756366.2023.2237209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/11/2023] [Indexed: 02/02/2024] Open
Abstract
Phosphoinositide 3-kinases (PI3K) and phosphoinositide 3-kinase-related protein kinases (PIKK) are two structurally related families of kinases that play vital roles in cell growth and DNA damage repair. Dysfunction of PIKK members and aberrant stimulation of the PI3K/AKT/mTOR signalling pathway are linked to a plethora of diseases including cancer. In recent decades, numerous inhibitors related to the PI3K/AKT/mTOR signalling have made great strides in cancer treatment, like copanlisib and sirolimus. Notably, most of the PIKK inhibitors (such as VX-970 and M3814) related to DNA damage response have also shown good efficacy in clinical trials. However, these drugs still require a suitable combination therapy to overcome drug resistance or improve antitumor activity. Based on the aforementioned facts, we summarised the efficacy of PIKK, PI3K, and AKT inhibitors in the therapy of human malignancies and the resistance mechanisms of targeted therapy, in order to provide deeper insights into cancer treatment.
Collapse
Affiliation(s)
- Xueqin Huang
- College of Life Science, Yangtze University, Jingzhou, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Miroslav Psotka
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - David Malinak
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Bratislava, Slovakia
| | - Ladislav Sivak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Brno, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
48
|
Kanno SI, Hara A. Everolimus prevents doxorubicin-induced apoptosis in H9c2 cardiomyocytes but not in MCF-7 cancer cells: Cardioprotective roles of autophagy, mitophagy, and AKT. Toxicol In Vitro 2023; 93:105698. [PMID: 37739323 DOI: 10.1016/j.tiv.2023.105698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
Cardiotoxicity is a severe side effect of the chemotherapeutic agent doxorubicin (DOX). We recently showed that DOX-induced cardiomyocyte apoptosis and death were attenuated through autophagy pre-induction. Herein, we assessed how the autophagy/mitophagy-inducing antitumor drug everolimus (EVL) affected DOX-induced cytotoxicity in the rat cardiomyocyte cell line H9c2 and human breast cancer cell line MCF-7. Apoptosis was assessed using annexin V assay. Autophagy and mitophagy were assessed using fluorescence assays. Cellular protein levels were determined using western blotting. Pretreatment with EVL (1 nM) before DOX exposure inhibited mammalian target of rapamycin (mTOR) activity, induced autophagy and mitophagy, and activated protein kinase B (AKT) in H9c2 cells. In mitochondria, DOX (1 μM) induced structural damage (decreased membrane potential and release of cytochrome c), increased superoxide levels, decreased apoptosis inhibitor Bcl-2, and increased apoptosis inducer Bax, leading to apoptosis and reduced viability in H9c2 cells. EVL pretreatment suppressed DOX-induced changes. EVL anti-apoptotic effects were inhibited by treatment with MK-2206, a selective AKT inhibitor. Furthermore, EVL suppressed DOX-induced cardiotoxicity through autophagy/mitophagy and AKT activation but did not attenuate DOX-induced apoptosis or reduction in viability in MCF-7 cells. Altogether, EVL can protect cardiomyocytes from DOX-induced apoptosis and toxicity without reducing DOX antitumor effects, allowing safer chemotherapy.
Collapse
Affiliation(s)
- Syu-Ichi Kanno
- Department of Clinical Pharmacotherapeutics, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan.
| | - Akiyoshi Hara
- Department of Clinical Pharmacotherapeutics, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| |
Collapse
|
49
|
Foy R, Crozier L, Pareri AU, Valverde JM, Park BH, Ly T, Saurin AT. Oncogenic signals prime cancer cells for toxic cell overgrowth during a G1 cell cycle arrest. Mol Cell 2023; 83:4047-4061.e6. [PMID: 37977117 DOI: 10.1016/j.molcel.2023.10.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 07/10/2023] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
CDK4/6 inhibitors are remarkable anti-cancer drugs that can arrest tumor cells in G1 and induce their senescence while causing only relatively mild toxicities in healthy tissues. How they achieve this mechanistically is unclear. We show here that tumor cells are specifically vulnerable to CDK4/6 inhibition because during the G1 arrest, oncogenic signals drive toxic cell overgrowth. This overgrowth causes permanent cell cycle withdrawal by either preventing progression from G1 or inducing genotoxic damage during the subsequent S-phase and mitosis. Inhibiting or reverting oncogenic signals that converge onto mTOR can rescue this excessive growth, DNA damage, and cell cycle exit in cancer cells. Conversely, inducing oncogenic signals in non-transformed cells can drive these toxic phenotypes and sensitize the cells to CDK4/6 inhibition. Together, this demonstrates that cell cycle arrest and oncogenic cell growth is a synthetic lethal combination that is exploited by CDK4/6 inhibitors to induce tumor-specific toxicity.
Collapse
Affiliation(s)
- Reece Foy
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Lisa Crozier
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Aanchal U Pareri
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Juan Manuel Valverde
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Ben Ho Park
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Tony Ly
- Molecular Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Adrian T Saurin
- Cellular and Systems Medicine, Jacqui Wood Cancer Centre, School of Medicine, University of Dundee, Dundee DD1 9SY, UK.
| |
Collapse
|
50
|
Gao Y, Li Y, Liu Z, Dong Y, Yang S, Wu B, Xiao M, Chen C, Wen Y, Chen L, Jiang H, Yao Y. AHSA1 Regulates Hepatocellular Carcinoma Progression via the TGF-β/Akt-Cyclin D1/CDK6 Pathway. J Hepatocell Carcinoma 2023; 10:2021-2036. [PMID: 38022728 PMCID: PMC10640837 DOI: 10.2147/jhc.s407680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Background Activator of heat shock protein 90 (HSP90) ATPase Activity 1 (AHSA1) regulates proliferation, apoptosis, migration, and invasion of osteosarcoma and hepatocellular carcinoma (HCC). However, the novel mechanism of AHSA1 in the tumor biology of hepatocellular carcinoma (HCC) remains unclear. Methods We analyzed AHSA1 expression in 85 pairs of clinical samples of HCC and the Cancer Genome Atlas database. The role of AHSA1 in HCC was proved by cell proliferation, colony formation, migration, cell cycle analysis in vitro, xenograft models and tumor metastasis assay in vivo, and bioinformatics. Results High AHSA1 expression was demonstrated in HCC and associated with invasive depth, clinical stage, and poor overall survival of patients. Univariate Cox analysis confirmed that AHSA1 was an independent prognostic factor for patients with HCC. Meanwhile, AHSA1 upregulation promoted cell proliferation, colony formation, and cell migration in vitro and tumor cell proliferation and metastasis of HCC cells in vivo. AHSA1 upregulation increased the cell cycle transition from G1 to S phase by increasing the expression of cyclinD1, cyclinD3, and cyclin-dependent kinase 6(CD). Transforming growth factor beta 1 (TGF-β1)-induced protein kinase B (Akt) signaling regulated the expression of downstream targets, including cyclinD1. AHSA1 expression was closely correlated with the expression of TGF-β, Akt, cyclinD1, cyclinD3, and CDK6 using the Gene Expression Profiling Interactive Analysis database. AHSA1 upregulation participated in HCC progression by regulating TGF-β/Akt-cyclinD1/CDK6 signaling. Conclusion AHSA1 might serve as a biomarker for predicting the clinical outcome of patients with HCC. It is vital in tumor metastasis and disease progression of HCC and may facilitate the development of clinical intervention strategies against HCC.
Collapse
Affiliation(s)
- Yanjun Gao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Provincial Research Center for Precision Medicine of Cancer, Wuhan, 430200, People’s Republic of China
| | - Yingge Li
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Provincial Research Center for Precision Medicine of Cancer, Wuhan, 430200, People’s Republic of China
| | - Zheming Liu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Provincial Research Center for Precision Medicine of Cancer, Wuhan, 430200, People’s Republic of China
| | - Yi Dong
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Provincial Research Center for Precision Medicine of Cancer, Wuhan, 430200, People’s Republic of China
| | - Siqi Yang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Provincial Research Center for Precision Medicine of Cancer, Wuhan, 430200, People’s Republic of China
| | - Bin Wu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Department of Oncology, Huang-Gang Central Hospital, Huanggang, 438000, People’s Republic of China
| | - Mengxia Xiao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Department of Oncology, Yichun People’s Hospital, Yichun, 336000, People’s Republic of China
| | - Chen Chen
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
| | - Yingmei Wen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Provincial Research Center for Precision Medicine of Cancer, Wuhan, 430200, People’s Republic of China
| | - Lei Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
| | - Haijuan Jiang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People’s Republic of China
| | - Yi Yao
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Provincial Research Center for Precision Medicine of Cancer, Wuhan, 430200, People’s Republic of China
| |
Collapse
|