1
|
Luo M, Chen N, Han D, Hu B, Zuo H, Weng S, He J, Xu X. A Negative Regulatory Feedback Loop within the JAK-STAT Pathway Mediated by the Protein Tyrosine Phosphatase DUSP14 in Shrimp. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:63-74. [PMID: 38767414 DOI: 10.4049/jimmunol.2300871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
The JAK-STAT pathway is a central communication node for various biological processes. Its activation is characterized by phosphorylation and nuclear translocation of the transcription factor STAT. The regulatory balance of JAK-STAT signaling is important for maintenance of immune homeostasis. Protein tyrosine phosphatases (PTPs) induce dephosphorylation of tyrosine residues in intracellular proteins and generally function as negative regulators in cell signaling. However, the roles of PTPs in JAK-STAT signaling, especially in invertebrates, remain largely unknown. Pacific white shrimp Penaeus vannamei is currently an important model for studying invertebrate immunity. This study identified a novel member of the dual-specificity phosphatase (DUSP) subclass of the PTP superfamily in P. vannamei, named PvDUSP14. By interacting with and dephosphorylating STAT, PvDUSP14 inhibits the excessive activation of the JAK-STAT pathway, and silencing of PvDUSP14 significantly enhances humoral and cellular immunity in shrimp. The promoter of PvDUSP14 contains a STAT-binding motif and can be directly activated by STAT, suggesting that PvDUSP14 is a regulatory target gene of the JAK-STAT pathway and mediates a negative feedback regulatory loop. This feedback loop plays a role in maintaining homeostasis of JAK-STAT signaling and is involved in antibacterial and antiviral immune responses in shrimp. Therefore, the current study revealed a novel inhibitory mechanism of JAK-STAT signaling, which is of significance for studying the regulatory mechanisms of immune homeostasis in invertebrates.
Collapse
Affiliation(s)
- Mengting Luo
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Nuo Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Deyu Han
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bangping Hu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Hongliang Zuo
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Sun Yat-sen University, Guangzhou, China
| | - Shaoping Weng
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Sun Yat-sen University, Guangzhou, China
| | - Xiaopeng Xu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Aquatic Economic Animals, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Marine Aquaculture Technology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Ma Z, Zhou F, Jin H, Wu X. Crosstalk between CXCL12/CXCR4/ACKR3 and the STAT3 Pathway. Cells 2024; 13:1027. [PMID: 38920657 PMCID: PMC11201928 DOI: 10.3390/cells13121027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
The reciprocal modulation between the CXCL12/CXCR4/ACKR3 axis and the STAT3 signaling pathway plays a crucial role in the progression of various diseases and neoplasms. Activation of the CXCL12/CXCR4/ACKR3 axis triggers the STAT3 pathway through multiple mechanisms, while the STAT3 pathway also regulates the expression of CXCL12. This review offers a thorough and systematic analysis of the reciprocal regulatory mechanisms between the CXCL12/CXCR4/ACKR3 signaling axis and the STAT3 signaling pathway in the context of diseases, particularly tumors. It explores the potential clinical applications in tumor treatment, highlighting possible therapeutic targets and novel strategies for targeted tumor therapy.
Collapse
Affiliation(s)
| | | | | | - Xiaoming Wu
- Laboratory of Molecular Genetics of Aging & Tumor, Medical School, Kunming University of Science and Technology, Chenggong Campus, 727 South Jingming Road, Kunming 650500, China; (Z.M.); (F.Z.); (H.J.)
| |
Collapse
|
3
|
Jung YY, Kim C, Shanmugam MK, Deivasigamani A, Chinnathambi A, Alharbi SA, Rangappa KS, Hui KM, Sethi G, Mohan CD, Ahn KS. Leonurine ameliorates the STAT3 pathway through the upregulation of SHP-1 to retard the growth of hepatocellular carcinoma cells. Cell Signal 2024; 114:111003. [PMID: 38048857 DOI: 10.1016/j.cellsig.2023.111003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that directs the transcription of genes involved in the promotion of cell survival and proliferation, inflammation, angiogenesis, invasion, and migration. Overactivation of STAT3 is often witnessed in human cancers, thereby making it a good target in oncology. Herein the efficacy of Leonurine (Leo), a bioactive alkaloid present in Herba leonuri, was investigated for its STAT3-inhibitory potential in hepatocellular carcinoma (HCC) cells. Leo downregulated the persistent as well as IL-6-driven activation of STAT3. Leo abrogated the nuclear localization and DNA interacting ability of STAT3. Leo was also found to impart STAT3 inhibition by mitigating the activation of upstream kinases such as JAK1, JAK2, and Src both in constitutive and IL-6 inducible systems. Leo curbed the STAT3-driven luciferase gene expression and the depletion of STAT3 resulted in the reduced responsiveness of HCC cells to Leo. Pervanadate exposure counteracted Leo-induced STAT3 inhibition suggesting the involvement of a protein tyrosine phosphatase. SHP-1 was significantly elevated upon Leo exposure whereas the depletion of SHP-1 was found to revert the effect of Leo on STAT3. Leo induced apoptosis and also significantly potentiated the cytotoxic effect of paclitaxel, doxorubicin, and sorafenib. Leo was found to be non-toxic up to the dose of 10 mg/kg in NCr nude mice. In conclusion, Leo was demonstrated to induce cytotoxicity in HCC cells by mitigating the persistent of activation of STAT3 pathway.
Collapse
Affiliation(s)
- Young Yun Jung
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Chulwon Kim
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Amudha Deivasigamani
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh 11451, Saudi Arabia
| | - Kanchugarakoppal S Rangappa
- Institution of Excellence, Vijnana Bhavan, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Chakrabhavi Dhananjaya Mohan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
4
|
Yang MH, Sethi G, Ravish A, Mohan AK, Pandey V, Lobie PE, Basappa S, Basappa B, Ahn KS. Discovery of imidazopyridine-pyrazoline-hybrid structure as SHP-1 agonist that suppresses phospho-STAT3 signaling in human breast cancer cells. Chem Biol Interact 2023; 386:110780. [PMID: 37879592 DOI: 10.1016/j.cbi.2023.110780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/28/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) promotes breast cancer malignancy and controls key processes including proliferation, differentiation, and survival in breast cancer cells. Although many methods for treating breast cancer have been improved, there is still a need to discover and develop new methods for breast cancer treatment. Therefore, we synthesized a new compound 2-(4-(2,3-dichlorophenyl)piperazin-1-yl)-1-(3-(2,6-dimethylimidazo[1,2-a]pyridin-3-yl)-5-(3-nitrophenyl)-4,5-dihydro-1H-pyrazol-1-yl)ethanone (DIP). We aimed to evaluate the anti-cancer effect of DIP in breast cancer cells and clarify its mode of action. We noted that DIP abrogated STAT3 activation and STAT3 upstream kinases janus-activated kinase (JAK) and Src kinases. In addition, DIP promoted the levels of SHP-1 protein and acts as SHP-1 agonist. Further, silencing of SHP-1 gene reversed the DIP-induced attenuation of STAT3 activation and apoptosis. DIP also induced apoptosis through modulating PARP cleavage and oncogenic proteins. Moreover, DIP also significantly enhanced the apoptotic effects of docetaxel through the suppression of STAT3 activation in breast cancer cells. Overall, our data indicated that DIP may act as a suppressor of STAT3 cascade, and it could be a new therapeutic strategy in breast cancer cells.
Collapse
Affiliation(s)
- Min Hee Yang
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore.
| | - Akshay Ravish
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore, 570006, India.
| | - Arun Kumar Mohan
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore, 570006, India.
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China.
| | - Peter E Lobie
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Shenzhen Bay Laboratory, Shenzhen, 518055, Guangdong, China.
| | - Shreeja Basappa
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Jawahar Nagar, Medchal, 500078, India.
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore, 570006, India.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
5
|
Hashemi M, Sabouni E, Rahmanian P, Entezari M, Mojtabavi M, Raei B, Zandieh MA, Behroozaghdam M, Mirzaei S, Hushmandi K, Nabavi N, Salimimoghadam S, Ren J, Rashidi M, Raesi R, Taheriazam A, Alexiou A, Papadakis M, Tan SC. Deciphering STAT3 signaling potential in hepatocellular carcinoma: tumorigenesis, treatment resistance, and pharmacological significance. Cell Mol Biol Lett 2023; 28:33. [PMID: 37085753 PMCID: PMC10122325 DOI: 10.1186/s11658-023-00438-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/15/2023] [Indexed: 04/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is considered one of the greatest challenges to human life and is the most common form of liver cancer. Treatment of HCC depends on chemotherapy, radiotherapy, surgery, and immunotherapy, all of which have their own drawbacks, and patients may develop resistance to these therapies due to the aggressive behavior of HCC cells. New and effective therapies for HCC can be developed by targeting molecular signaling pathways. The expression of signal transducer and activator of transcription 3 (STAT3) in human cancer cells changes, and during cancer progression, the expression tends to increase. After induction of STAT3 signaling by growth factors and cytokines, STAT3 is phosphorylated and translocated to the nucleus to regulate cancer progression. The concept of the current review revolves around the expression and phosphorylation status of STAT3 in HCC, and studies show that the expression of STAT3 is high during the progression of HCC. This review addresses the function of STAT3 as an oncogenic factor in HCC, as STAT3 is able to prevent apoptosis and thus promote the progression of HCC. Moreover, STAT3 regulates both survival- and death-inducing autophagy in HCC and promotes cancer metastasis by inducing the epithelial-mesenchymal transition (EMT). In addition, upregulation of STAT3 is associated with the occurrence of chemoresistance and radioresistance in HCC. Specifically, non-protein-coding transcripts regulate STAT3 signaling in HCC, and their inhibition by antitumor agents may affect tumor progression. In this review, all these topics are discussed in detail to provide further insight into the role of STAT3 in tumorigenesis, treatment resistance, and pharmacological regulation of HCC.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Eisa Sabouni
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Behnaz Raei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Division of Epidemiology, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Division of Epidemiology, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, 200032, China
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Chen YL, Hsieh CC, Chu PM, Chen JY, Huang YC, Chen CY. Roles of protein tyrosine phosphatases in hepatocellular carcinoma progression (Review). Oncol Rep 2023; 49:48. [PMID: 36660927 PMCID: PMC9887465 DOI: 10.3892/or.2023.8485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/15/2022] [Indexed: 01/20/2023] Open
Abstract
Hepatocellular carcinoma (HCC) represents almost 80% of all liver cancers, is the sixth most common cancer and is the second‑highest cause of cancer‑related deaths worldwide. Protein tyrosine phosphatases (PTPs), which are encoded by the largest family of phosphatase genes, play critical roles in cellular responses and are implicated in various signaling pathways. Moreover, PTPs are dysregulated and involved in various cellular processes in numerous cancers, including HCC. Kinases and phosphatases are coordinators that modulate cell activities and regulate signaling responses. There are multiple interacting signaling networks, and coordination of these signaling networks in response to a stimulus determines the physiological outcome. Numerous issues, such as drug resistance and inflammatory reactions in the tumor microenvironment, are implicated in cancer progression, and the role of PTPs in these processes has not been well elucidated. Therefore, the present review focused on discussing the relationship of PTPs with inflammatory cytokines and chemotherapy/targeted drug resistance, providing detailed information on how PTPs can modulate inflammatory reactions and drug resistance to influence progression in HCC.
Collapse
Affiliation(s)
- Yi-Li Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| | - Ching-Chuan Hsieh
- Division of General Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan, R.O.C
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
| | - Jing-Yi Chen
- Department of Medical Laboratory Science, College of Medicine, I‑Shou University, Kaohsiung 82445, Taiwan, R.O.C
| | - Yu-Chun Huang
- Aging and Diseases Prevention Research Center, Fooyin University, Kaohsiung 83102, Taiwan, R.O.C
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, R.O.C
| |
Collapse
|
7
|
Jiang Z, Dai C. Potential Treatment Strategies for Hepatocellular Carcinoma Cell Sensitization to Sorafenib. J Hepatocell Carcinoma 2023; 10:257-266. [PMID: 36815094 PMCID: PMC9939808 DOI: 10.2147/jhc.s396231] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
Liver cancer is highly malignant, has a low sensitivity to chemotherapy, and is associated with poor patient prognosis. The last 3 years have seen the emergence of promising targeted therapies for the treatment of hepatocellular carcinoma (HCC). For over 10 years, before the discovery of lenvatinib, sorafenib was only first-line therapeutic agent available for the treatment of advanced HCC. However, several clinical studies have shown that a considerable proportion liver cancer patients are insensitive to sorafenib. Very few patients actually substantially benefit from treatment with sorafenib, and the overall efficacy of the drug has not been satisfactory; therefore, sorafenib has attracted considerable research attention. This study, which is based on previous studies and reports, reviews the potential mechanisms underlying sorafenib resistance and summarizes combination therapies and potential drugs that can be used to sensitize HCC cells to sorafenib.
Collapse
Affiliation(s)
- Zhonghao Jiang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Chaoliu Dai
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China,Correspondence: Chaoliu Dai, Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China, Email
| |
Collapse
|
8
|
Targeting protein phosphatases in cancer immunotherapy and autoimmune disorders. Nat Rev Drug Discov 2023; 22:273-294. [PMID: 36693907 PMCID: PMC9872771 DOI: 10.1038/s41573-022-00618-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/25/2023]
Abstract
Protein phosphatases act as key regulators of multiple important cellular processes and are attractive therapeutic targets for various diseases. Although extensive effort has been dedicated to phosphatase-targeted drug discovery, early expeditions for competitive phosphatase inhibitors were plagued by druggability issues, leading to the stigmatization of phosphatases as difficult targets. Despite challenges, persistent efforts have led to the identification of several drug-like, non-competitive modulators of some of these enzymes - including SH2 domain-containing protein tyrosine phosphatase 2, protein tyrosine phosphatase 1B, vascular endothelial protein tyrosine phosphatase and protein phosphatase 1 - reigniting interest in therapeutic targeting of phosphatases. Here, we discuss recent progress in phosphatase drug discovery, with emphasis on the development of selective modulators that exhibit biological activity. The roles and regulation of protein phosphatases in immune cells and their potential as powerful targets for immuno-oncology and autoimmunity indications are assessed.
Collapse
|
9
|
Ghamry HI. Impending Chemotherapeutic Impact of Arthrospira platensis Nanoparticles and/or Sorafenib against Hepatocellular Carcinoma through Modulation of Antioxidant Status, Tumor Marker Genes, and Anti-Inflammatory Signaling Pathways. TOXICS 2023; 11:107. [PMID: 36850982 PMCID: PMC9964820 DOI: 10.3390/toxics11020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
This study investigated Arthrospira platensis nanoparticles (NSP) to overcome sorafenib resistance in diethyl nitrosamine-induced hepatocellular carcinoma (HCC) in rats. This study used sixty Wistar male rats randomly grouped into two main groups, the normal control group, and the HCC model. For the normal control group (n = 12), animals were injected i.p. with PBS two times/week for 16 weeks. The remaining 48 rats were injected i.p. with using a single dose of diethyl nitrosamine (DENA) (200 mg/kg, ip), followed by phenobarbital sodium (0.05%) in drinking water for 16 weeks. At the end of the 16th week, rats were allocated into four groups (11 rats/each), one group was left without treatment (DENA group), and the other three groups were treated with either sorafenib (30 mg/kg; p.o.) or Arthrospira platensis Nanoparticles (NSP) (0.5 mg/kg body weight) once daily orally with the aid of gastric gavage or their combination for another four weeks. Blood and tissue samples were collected for further biochemical, histological, immunohistochemical, and gene expression analysis. Our result revealed that DENA-treated rats showed a marked elevation of hepatic enzyme markers with an increase in the total protein and globulin and decreases in the hepatic SOD. Catalase and GSH, with significantly increased MDA levels, subsequently increased the tumor biomarkers (AFP and CEA). On the molecular level, the DENA-treated rats showed significant up-regulation of Cyp19 mRNA and the inflammatory cytokines (TNF-α, iNOS, and TGF-1β) as well as the Ki-67 gene expression (p < 0.05) with down-regulation of the PPAR-γ and FOXO-1. In addition, the HCC group showed a loss of hepatic architecture, as well as atypia, swelling, macrosteatosis of hepatocytes, and fibrosis, besides increased vascularization. The immunohistochemical findings show increased expression of both GPC-3 and Hep Par 1 in the HCC group. SOR, NSP, or a combination of NSP and SOR.NSP treatment significantly overturned the DENA's harmful effect near the normal levels and restored all cancer biomarkers and antioxidant activities, indicating the chemotherapeutic impact of NSP. The present study provides evidence that NSP exerts a major anticancer effect on DENA-induced HCC. SOR/NSP is a promising combination for tumor suppression and overcoming sorafenib resistance in HCC by modulating antioxidants, anti-inflammatory signals, and tumor markers.
Collapse
Affiliation(s)
- Heba I Ghamry
- Department of Home Economics, College of Home Economics, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia
| |
Collapse
|
10
|
Xu L, Mu X, Liu M, Wang Z, Shen C, Mu Q, Feng B, Xu Y, Hou T, Gao L, Jiang H, Li J, Zhou Y, Wang W. Novel thieno[2,3-b]quinoline-procaine hybrid molecules: A new class of allosteric SHP-1 activators evolved from PTP1B inhibitors. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
11
|
Hong Y, Zhang Y, Zhao H, Chen H, Yu QQ, Cui H. The roles of lncRNA functions and regulatory mechanisms in the diagnosis and treatment of hepatocellular carcinoma. Front Cell Dev Biol 2022; 10:1051306. [PMID: 36467404 PMCID: PMC9716033 DOI: 10.3389/fcell.2022.1051306] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/07/2022] [Indexed: 10/27/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most frequent and deadly type of liver cancer. While the underlying molecular mechanisms are poorly understood, it is documented that lncRNAs may play key roles. Many HCC-associated lncRNAs have been linked to HBV and HCV infection, mediating gene expression, cell growth, development, and death. Studying the regulatory mechanisms and biological functions of HCC-related lncRNAs will assist our understanding of HCC pathogenesis as well as its diagnosis and management. Here, we address the potential of dysregulated lncRNAs in HCC as diagnostic and therapeutic biomarkers, and we evaluate the oncogenic or tumor-suppressive properties of these lncRNAs.
Collapse
Affiliation(s)
- Yuling Hong
- School of Clinical Medicine, Jining Medical University, Jining, China
| | - Yunxing Zhang
- Jining First People’s Hospital, Jining Medical College, Jining, China
| | - Haibo Zhao
- Jining First People’s Hospital, Jining Medical College, Jining, China
| | - Hailing Chen
- School of Clinical Medicine, Jining Medical University, Jining, China
| | - Qing-Qing Yu
- Jining First People’s Hospital, Jining Medical College, Jining, China
| | - Hongxia Cui
- Jining First People’s Hospital, Jining Medical College, Jining, China
| |
Collapse
|
12
|
Small Molecule Inhibitors for Hepatocellular Carcinoma: Advances and Challenges. Molecules 2022; 27:molecules27175537. [PMID: 36080304 PMCID: PMC9457820 DOI: 10.3390/molecules27175537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 12/12/2022] Open
Abstract
According to data provided by World Health Organization, hepatocellular carcinoma (HCC) is the sixth most common cause of deaths due to cancer worldwide. Tremendous progress has been achieved over the last 10 years developing novel agents for HCC treatment, including small-molecule kinase inhibitors. Several small molecule inhibitors currently form the core of HCC treatment due to their versatility since they would be more easily absorbed and have higher oral bioavailability, thus easier to formulate and administer to patients. In addition, they can be altered structurally to have greater volumes of distribution, allowing them to block extravascular molecular targets and to accumulate in a high concentration in the tumor microenvironment. Moreover, they can be designed to have shortened half-lives to control for immune-related adverse events. Most importantly, they would spare patients, healthcare institutions, and society as a whole from the burden of high drug costs. The present review provides an overview of the pharmaceutical compounds that are licensed for HCC treatment and other emerging compounds that are still investigated in preclinical and clinical trials. These molecules are targeting different molecular targets and pathways that are proven to be involved in the pathogenesis of the disease.
Collapse
|
13
|
Vishnoi K, Ke R, Viswakarma N, Srivastava P, Kumar S, Das S, Singh SK, Principe DR, Rana A, Rana B. Ets1 mediates sorafenib resistance by regulating mitochondrial ROS pathway in hepatocellular carcinoma. Cell Death Dis 2022; 13:581. [PMID: 35789155 PMCID: PMC9253325 DOI: 10.1038/s41419-022-05022-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 01/21/2023]
Abstract
The incidence and mortality of hepatocellular carcinoma (HCC) are on a rise in the Western countries including US, attributed mostly to late detection. Sorafenib has been the first-line FDA-approved drug for advanced unresectable HCC for almost a decade, but with limited efficacy due to the development of resistance. More recently, several other multi-kinase inhibitors (lenvatinib, cabozantinib, regorafenib), human monoclonal antibody (ramucirumab), and immune checkpoint inhibitors (nivolumab, pembrolizumab) have been approved as systemic therapies. Despite this, the median survival of patients is not significantly increased. Understanding of the molecular mechanism(s) that govern HCC resistance is critically needed to increase efficacy of current drugs and to develop more efficacious ones in the future. Our studies with sorafenib-resistant (soraR) HCC cells using transcription factor RT2 Profiler PCR Arrays revealed an increase in E26 transformation-specific-1 (Ets-1) transcription factor in all soraR cells. HCC TMA studies showed an increase in Ets-1 expression in advanced HCC compared to the normal livers. Overexpression or knocking down Ets-1 modulated sorafenib resistance-related epithelial-mesenchymal transition (EMT), migration, and cell survival. In addition, the soraR cells showed a significant reduction of mitochondrial damage and mitochondrial reactive oxygen species (mROS) generation, which were antagonized by knocking down Ets-1 expression. More in-depth analysis identified GPX-2 as a downstream mediator of Ets-1-induced sorafenib resistance, which was down-regulated by Ets-1 knockdown while other antioxidant pathway genes were not affected. Interestingly, knocking down GPX2 expression significantly increased sorafenib sensitivity in the soraR cells. Our studies indicate the activation of a novel Ets-1-GPX2 signaling axis in soraR cells, targeting which might successfully antagonize resistance and increase efficacy.
Collapse
Affiliation(s)
- Kanchan Vishnoi
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Rong Ke
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Navin Viswakarma
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Piush Srivastava
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Sandeep Kumar
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Subhasis Das
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.185648.60000 0001 2175 0319University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Sunil Kumar Singh
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Daniel R. Principe
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA
| | - Ajay Rana
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.185648.60000 0001 2175 0319University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.280892.90000 0004 0419 4711Jesse Brown VA Medical Center, Chicago, IL 60612 USA
| | - Basabi Rana
- grid.185648.60000 0001 2175 0319Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.185648.60000 0001 2175 0319University of Illinois Hospital and Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612 USA ,grid.280892.90000 0004 0419 4711Jesse Brown VA Medical Center, Chicago, IL 60612 USA
| |
Collapse
|
14
|
Zhang T, Li S, Li J, Yin F, Hua Y, Wang Z, Wang H, Zuo D, Xu J, Cai Z. Pectolinarigenin acts as a potential anti-osteosarcoma agent via mediating SHP-1/JAK2/STAT3 signaling. Biomed Pharmacother 2022; 153:113323. [PMID: 35752008 DOI: 10.1016/j.biopha.2022.113323] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) plays essential roles in cancer progression and has been considered as a promising target for cancer therapy. Here, we used a dual luciferase assay to identify that pectolinarigenin inhibited STAT3 transcriptional activity. Further, results showed pectolinarigenin inhibited constitutive and IL6 induced STAT3 signaling, diminished the accumulation of STAT3 in the nucleus, dimerization and blocked STAT3 DNA binding activity. Mechanism investigations indicated that pectolinarigenin disturbed the STAT3/DNMT1/HDAC1 complex formation in the promoter region of SHP-1, which reversely mediates STAT3 signaling, leading to the upregulation of SHP-1 expression in osteosarcoma. We also found pectolinarigenin significantly suppressed osteosarcoma growth, induced apoptosis. In addition, pectolinarigenin blocked tumor cells migration, invasion and reserved EMT phenotype. In spontaneous tibial injection and patient-derived xenograft models of osteosarcoma, we identified administration (i.p.) of pectolinarigenin (20 mg/kg/2 days and 50 mg/kg/2 days) blocked STAT3 activation and disturbed tumor growth and metastasis with superior pharmacodynamic properties. Taken together, our findings demonstrate that pectolinarigenin may be a candidate for osteosarcoma intervention linked to its STAT3 signaling inhibitory activity.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China.
| | - Suoyuan Li
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China; Suzhou Municipal Hospital, Suzhou, PR China
| | - Jingjie Li
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Fei Yin
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Yingqi Hua
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Zhuoying Wang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Hongsheng Wang
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Dongqing Zuo
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Jing Xu
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China
| | - Zhengdong Cai
- Department of Orthopedics, Shanghai Bone Tumor Institution, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, PR China.
| |
Collapse
|
15
|
Yu J, Zhang W, Ding D, Hu Y, Guo G, Wang J, Han Y. Bioinformatics Analysis Combined With Experiments Predicts PUDP as a Potential Prognostic Biomarker for Hepatocellular Carcinoma Through Its Interaction With Tumor Microenvironment. Front Oncol 2022; 12:830174. [PMID: 35350563 PMCID: PMC8957838 DOI: 10.3389/fonc.2022.830174] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest tumors in the world and is notorious for poor prognosis. There is mounting evidence that pseudouridine performs key functions in the initiation and progression of several cancers. A previous study demonstrated that Pseudouridine 5’-phosphatase (PUDP) may be a novel prognostic biomarker in colorectal cancer. However, in the past, we have paid little attention to PUDP and we are still not clear about its function and role in cancer. In this study, a pan-cancer analysis of PUDP expression and prognosis was performed firstly using The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) data and we found that PUDP may be a potential oncogene for HCC. Then the most potential upstream microRNA contributing to PUDP was identified as let-7c-5p through expression analysis, correlation analysis, and survival analysis. Subsequently, the result of single cell RNA sequencing (scRNA-seq) demonstrated that PUDP was significantly highly expressed on malignant cells. In addition, there are significantly positive correlations between PUDP and tumor immune cell infiltration, biomarkers of immune cells, and immune checkpoint expression, especially with tumor-promoting immune cells such as T cell regulatory (Treg), Myeloid-derived suppressor cell (MDSC), cancer-associated fibroblast (CAF). Moreover, we found the methylation level of three loci was positively correlated with PUDP expression and four loci were negatively correlated. 15 pairs of HCC and normal adjacent tissues from HCC patients who were treated at our center were used to verify the results of the bioinformatics analysis and the results of experiments are similar to the bioinformatics analysis. Our study demonstrated that HCC patients with high PUDP expression are less likely to benefit from immunotherapy, and in addition, we explored the relationship between PUDP and anticancer drugs. Finally, we explored the clinical relevance of PUDP, identified PUDP as an independent risk factor for HCC patients and constructed a prognostic model, used International Cancer Genome Consortium (ICGC) data to do external validation. Collectively, our study demonstrated that high expression of PUDP suggested a poor prognosis and low response to immunotherapy, providing new insight into the treatment and prognosis of HCC.
Collapse
Affiliation(s)
- Jiahao Yu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Weirui Zhang
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi'an, China
| | - Dawei Ding
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Yinan Hu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Guanya Guo
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Jingbo Wang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| | - Ying Han
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
16
|
Chang YS, Su CW, Chen SC, Chen YY, Liang YJ, Wu JC. Upregulation of USP22 and ABCC1 during Sorafenib Treatment of Hepatocellular Carcinoma Contribute to Development of Resistance. Cells 2022; 11:cells11040634. [PMID: 35203285 PMCID: PMC8870465 DOI: 10.3390/cells11040634] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 12/10/2022] Open
Abstract
Sorafenib is a small molecule that blocks tumor proliferation by targeting the activity of multi-kinases for the treatment of advanced hepatocellular carcinoma (HCC). Increasing sorafenib resistance following long-term treatment is frequently encountered. Mechanisms underlying sorafenib resistance remain not completely clear. To further understand the mechanism of sorafenib resistance in HCC, we established sorafenib-resistant cell lines by slowly increasing sorafenib concentration in cell culture medium. Upregulation of USP22 and ABCC1 were found in Sorafenib-resistant cells. Sorafenib-resistant cells treated with USP22 siRNA showed significant reduction in endogenous mRNA and protein levels of ABCC1. During sorafenib treatment, upregulation of USP22 increases ABCC1 expression and subsequently contributes to sorafenib resistance in HCC cells. Immunohistochemical analysis revealed a positive correlation between USP22 and ABCC1 expression in tissue samples from sorafenib-resistant patients (Pearson’s correlation = 0.59, p = 0.03). Our findings indicate that upregulation of USP22 and ABCC1 expression during treatment contribute to sorafenib resistance in HCC cells and that USP22 has strong potential as a therapeutic target for overcoming sorafenib resistance in HCC patients.
Collapse
Affiliation(s)
- Yung-Sheng Chang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (Y.-S.C.); (S.-C.C.)
| | - Chien-Wei Su
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - San-Chi Chen
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (Y.-S.C.); (S.-C.C.)
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
- Department of Oncology, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yen-Ying Chen
- Department of Pathology, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Yuh-Jin Liang
- Medical Research Department, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
| | - Jaw-Ching Wu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; (Y.-S.C.); (S.-C.C.)
- Medical Research Department, Taipei Veterans General Hospital, Taipei 11217, Taiwan;
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Correspondence: ; Tel.: +886-2-28712121 (ext. 3218)
| |
Collapse
|
17
|
Chen SH, Xu DD, Zhou PJ, Wang Y, Liu QY, Ren Z, Liu Z, Wang X, Huang HQ, Xue X, Wang Y, Wang YF. Combination treatment with sorafenib and wh‑4 additively suppresses the proliferation of liver cancer cells. Exp Ther Med 2022; 23:232. [PMID: 35222709 PMCID: PMC8815050 DOI: 10.3892/etm.2022.11156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 12/06/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Su-Hong Chen
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Dan-Dan Xu
- College of Biotechnology, Guangdong Food and Drug Vocational College, Guangzhou, Guangdong 510520, P.R. China
| | - Peng-Jun Zhou
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Yao Wang
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Qiu-Ying Liu
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Zhe Ren
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Zhong Liu
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| | - Xia Wang
- College of Biotechnology, Guangdong Food and Drug Vocational College, Guangzhou, Guangdong 510520, P.R. China
| | - Hui-Qing Huang
- College of Biotechnology, Guangdong Food and Drug Vocational College, Guangzhou, Guangdong 510520, P.R. China
| | - Xue Xue
- College of Biotechnology, Guangdong Food and Drug Vocational College, Guangzhou, Guangdong 510520, P.R. China
| | - Ying Wang
- College of Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, P.R. China
| | - Yi-Fei Wang
- College of Life Science and Technology, Jinan University, Guangzhou, Guangdong 510632, P.R. China
| |
Collapse
|
18
|
Woei‐A‐Jin FSH, Weijl NI, Burgmans MC, Fariña Sarasqueta A, van Wezel JT, Wasser MN, Coenraad MJ, Burggraaf J, Osanto S. Neoadjuvant Treatment with Angiogenesis-Inhibitor Dovitinib Prior to Local Therapy in Hepatocellular Carcinoma: A Phase II Study. Oncologist 2021; 26:854-864. [PMID: 34251745 PMCID: PMC8488766 DOI: 10.1002/onco.13901] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/02/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) recurrence rates following locoregional treatment are high. As multireceptor tyrosine kinase inhibitors targeting vascular endothelial growth factor receptors (VEGFRs) are effective in advanced HCC, we assessed the efficacy and safety of neoadjuvant systemic treatment with dovitinib in early- and intermediate-stage HCC. MATERIALS AND METHODS Twenty-four patients with modified Child-Pugh class A early- and intermediate-stage HCC received neoadjuvant oral dovitinib 500 mg daily (5 days on/2 days off) for 4 weeks, followed by locoregional therapy. Primary endpoints were objective response rates and intratumoral blood flow changes. Secondary endpoints were safety, pharmacodynamical plasma markers of VEGFR-blockade, time to progression (TTP), and overall survival (OS). RESULTS Modified RECIST overall response rate was 48%, including 13% complete remission, and despite dose reduction/interruption in 83% of patients, intratumoral perfusion index decreased significantly. Grade 3-4 adverse events, most frequently (on-target) hypertension (54%), fatigue (25%), and thrombocytopenia (21%), occurred in 88% of patients. Plasma VEGF-A, VEGF-D, and placental growth factor increased significantly, whereas sTie-2 decreased, consistent with VEGFR-blockade. Following neoadjuvant dovitinib, all patients could proceed to their original planned locoregional treatment. No delayed toxicity occurred. Seven patients (three early, four intermediate stage) underwent orthotopic liver transplant after median 11.4 months. Censoring at transplantation, median TTP and OS were 16.8 and 34.8 months respectively; median cancer-specific survival was not reached. CONCLUSION Already after a short 4-week dovitinib treatment period, intratumoral blood flow reduction and modest antitumor responses were observed. Although these results support use of systemic neoadjuvant strategies, the poor tolerability indicates that dovitinib dose adaptations are required in HCC. IMPLICATIONS FOR PRACTICE Orthotopic liver transplantation may cure early and intermediate-stage hepatocellular carcinoma. Considering the expected waiting time >6 months because of donor liver scarcity, there is an unmet need for effective neoadjuvant downsizing strategies. Angiogenesis inhibition by dovitinib does not negatively affect subsequent invasive procedures, is safe to administer immediately before locoregional therapy, and may provide a novel treatment approach to improve patient outcomes if tolerability in patients with hepatocellular carcinoma can be improved by therapeutic drug monitoring and personalized dosing.
Collapse
Affiliation(s)
- F.J. Sherida H. Woei‐A‐Jin
- Department of Medical Oncology, Leiden University Medical CenterLeiden,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical CenterLeiden
| | - Nir I. Weijl
- Department of Medical Oncology, Leiden University Medical CenterLeiden
| | - Mark C. Burgmans
- Department of Radiology, Leiden University Medical CenterLeidenThe Netherlands
| | | | - J. Tom van Wezel
- Department of Pathology, Leiden University Medical CenterLeidenThe Netherlands
| | | | - Minneke J. Coenraad
- Department of Gastroenterology and Hepatology, Leiden University Medical CenterLeidenThe Netherlands
| | | | - Susanne Osanto
- Department of Medical Oncology, Leiden University Medical CenterLeiden,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical CenterLeiden
| |
Collapse
|
19
|
Ali S, Khan MR, Iqbal J, Batool R, Naz I, Yaseen T, Abbasi BA, Nasir JA, El-Serehy HA. Chemical composition and pharmacological bio-efficacy of Parrotiopsis jacquemontiana (Decne) Rehder for anticancer activity. Saudi J Biol Sci 2021; 28:4969-4986. [PMID: 34466072 PMCID: PMC8381063 DOI: 10.1016/j.sjbs.2021.07.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 11/17/2022] Open
Abstract
Consistent STAT3 (Single transducer and activator of transcription 3) activation is observed in many tumors and promotes malignant cell transformation. In the present investigation, we evaluated the anticancer effects of Parrotiopsis jacquemontiana methanol fraction (PJM) on STAT3 inhibition in HCCLM3 and MDA-MB 231 cells. PJM suppressed the activation of upstream kinases i.e. JAK-1/2 (Janus kinase-1/2), and c-Src (Proto-oncogene tyrosine-protein kinase c-Src), and upregulated the expression levels of PIAS-1/3 (Protein Inhibitor of Activated STATs-1/3), SHP-1/2 (Src-homology region 2 domain-containing phosphatase-1/2), and PTP-1β (Protein tyrosine phosphatase 1 β) which negatively regulate STAT3 signaling pathway. PJM also decreased the levels of protein products conferring to various oncogenes, which in turn repressed the proliferation, migration, invasion, and induced apoptosis in cancer cell lines. The growth inhibitory effects of PJM on cell-cycle and metastasis were correlated with decreased expression levels of CyclinD1, CyclinE, MMP-2 (Matrix metalloproteinases-2), and MMP-9 (Matrix metalloproteinases-9). Induction of apoptosis was indicated by the cleavage and subsequent activation of Caspases (Cysteine-dependent Aspartate-directed Proteases) i.e. caspase-3, 7, 8, 9, and PARP (Poly (ADP-ribose) polymerase) as well as through the down-regulation of anti-apoptotic proteins. These apoptotic effects of PJM were preceded by inhibition of STAT3 cell-signaling pathway. STAT3 was needed for PJM-induced apoptosis, and inhibition of STAT3 via pharmacological inhibitor (Stattic; SC-203282) abolished the apoptotic effects. Conclusively, our results demonstrate the capability of PJM to inhibit cancer cell-proliferation and induce apoptosis by suppressing STAT3 via upregulation of STAT3 inhibitors and pro-apoptotic proteins whereas the down-regulation of upstream kinases and anti-apoptotic protein expression. In future, one-step advance studies of PHM regarding its role in metastatic inhibition, immune response modulation for reducing tumor, and inducing apoptosis in suitable animal models would be an interesting and promising research area.
Collapse
Key Words
- Apoptosis
- BAK, Bcl-2 homologous antagonist/killer
- BAX, Bcl-2-Associate X protein
- BCL-XL, B-cell lymphoma-extra large
- Cancer
- HCCLM3
- JAK-1/2, Janus kinase-1/2
- MDA–MB 231
- MMP-2/9, Matrix metalloproteinases-2/9
- MTT, 3-(4, 5-Dimethylthiazol-2-yl) −2,5 diphenyltetrazoliumbromide
- PARP, Poly (ADP-ribose) polymerase
- PIAS-1/3, Protein Inhibitor of Activated STATs-1/3
- Parrotiopsis jacquemontiana
- SHP-1/2, Src-homology region 2 domain-containing phosphatase-1/2
- STAT3
- STAT3, Single transducer and activator of transcription 3
- Stattic
- XIAP, X-linked inhibitor of apoptosis protein
Collapse
Affiliation(s)
- Saima Ali
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Muhammad Rashid Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkkhwa, Pakistan
| | - Riffat Batool
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Irum Naz
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Tabassum Yaseen
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkkhwa, Pakistan
| | - Banzeer Ahsan Abbasi
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Jamal Abdul Nasir
- University College London, Kathleen Lonsdale Materials Chemistry, Department of Chemistry, 20 Gordon Street, London WC1H 0AJ, UK
| | - Hamed A El-Serehy
- Department of Zoology, College of Science, King Saud University, Riyadh l1451, Saudi Arabia
| |
Collapse
|
20
|
Niu M, Yi M, Li N, Wu K, Wu K. Advances of Targeted Therapy for Hepatocellular Carcinoma. Front Oncol 2021; 11:719896. [PMID: 34381735 PMCID: PMC8350567 DOI: 10.3389/fonc.2021.719896] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the common and fatal malignancies, which is a significant global health problem. The clinical applicability of traditional surgery and other locoregional therapies is limited, and these therapeutic strategies are far from satisfactory in improving the outcomes of advanced HCC. In the past decade, targeted therapy had made a ground-breaking progress in advanced HCC. Those targeted therapies exert antitumor effects through specific signals, including anti-angiogenesis or cell cycle progression. As a standard systemic therapy option, it tremendously improves the survival of this devastating disease. Moreover, the combination of targeted therapy with immune checkpoint inhibitor (ICI) has demonstrated more potent anticancer effects and becomes the hot topic in clinical studies. The combining medications bring about a paradigm shift in the treatment of advanced HCC. In this review, we presented all approved targeted agents for advanced HCC with an emphasis on their clinical efficacy, summarized the advances of multi-target drugs in research for HCC and potential therapeutic targets for drug development. We also discussed the exciting results of the combination between targeted therapy and ICI.
Collapse
Affiliation(s)
- Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Kongju Wu
- Department of Nursing, Medical School of Pingdingshan University, Pingdingshan, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
21
|
Chen YJ, Wu JY, Deng YY, Wu Y, Wang XQ, Li ASM, Wong LY, Fu XQ, Yu ZL, Liang C. Ginsenoside Rg3 in combination with artesunate overcomes sorafenib resistance in hepatoma cell and mouse models. J Ginseng Res 2021; 46:418-425. [PMID: 35600776 PMCID: PMC9120623 DOI: 10.1016/j.jgr.2021.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 12/11/2022] Open
Abstract
Background Sorafenib is effective in treating hepatoma, but most patients develop resistance to it. STAT3 signaling has been implicated in sorafenib resistance. Artesunate (ART) and 20(R)-ginsenoside Rg3 (Rg3) have anti-hepatoma effects and can inhibit STAT3 signaling in cancer cells. This study aimed to evaluate the effects of Rg3 in combination with ART (Rg3-plus-ART) in overcoming sorafenib resistance, and to examine the involvement of STAT3 signaling in these effects. Methods Sorafenib-resistant HepG2 cells (HepG2-SR) were used to evaluate the in vitro anti-hepatoma effects of Rg3-plus-ART. A HepG2-SR hepatoma-bearing BALB/c-nu/nu mouse model was used to assess the in vivo anti-hepatoma effects of Rg3-plus-ART. CCK-8 assays and Annexin V-FITC/PI double staining were used to examine cell proliferation and apoptosis, respectively. Immunoblotting was employed to examine protein levels. ROS generation was examined by measuring DCF-DA fluorescence. Results Rg3-plus-ART synergistically reduced viability of, and evoked apoptosis in HepG2-SR cells, and suppressed HepG2-SR tumor growth in mice. Mechanistic studies revealed that Rg3-plus-ART inhibited activation/phosphorylation of Src and STAT3 in HepG2-SR cultures and tumors. The combination also decreased the STAT3 nuclear level and induced ROS production in HepG2-SR cultures. Furthermore, over-activation of STAT3 or removal of ROS diminished the anti-proliferative effects of Rg3-plus-ART, and removal of ROS diminished Rg3-plus-ART's inhibitory effects on STAT3 activation in HepG2-SR cells. Conclusions Rg3-plus-ART overcomes sorafenib resistance in experimental models, and inhibition of Src/STAT3 signaling and modulation of ROS/STAT3 signaling contribute to the underlying mechanisms. This study provides a pharmacological basis for developing Rg3-plus-ART into a novel modality for treating sorafenib-resistant hepatoma.
Collapse
|
22
|
Huang X, Wang B, Chen R, Zhong S, Gao F, Zhang Y, Niu Y, Li C, Shi G. The Nuclear Farnesoid X Receptor Reduces p53 Ubiquitination and Inhibits Cervical Cancer Cell Proliferation. Front Cell Dev Biol 2021; 9:583146. [PMID: 33889569 PMCID: PMC8056046 DOI: 10.3389/fcell.2021.583146] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 03/10/2021] [Indexed: 02/05/2023] Open
Abstract
The role of farnesoid X receptor (FXR) in cervical cancer and the underlying molecular mechanism remain largely unknown. Therefore, this study aimed to assess the mechanism of FXR in cervical cancer. Western blot, qRT-PCR, and immunohistochemistry demonstrated that FXR was significantly reduced in squamous cell carcinoma tissues, although there were no associations of metastasis and TNM stage with FXR. In Lenti-FXR cells obtained by lentiviral transfection, the overexpression of FXR reduced cell viability and colony formation. Compared with the Lenti-Vector groups, the overexpression of FXR induced early and late apoptosis and promoted G1 arrest. With time, early apoptosis decreased, and late apoptosis increased. In tumor xenograft experiments, overexpression of FXR upregulated small heterodimer partner (SHP), murine double minute-2 (MDM2), and p53 in the nucleus. Co-immunoprecipitation (Co-IP) showed that SHP directly interacted with MDM2, which is important to protect p53 from ubiquitination. Nutlin3a increased MDM2 and p53 amounts in the Lenti-Vector groups, without effects in the Lenti-FXR groups. Silencing SHP reduced MDM2 and p53 levels in the Lenti-FXR groups, and Nutlin3a counteracted these effects. Taken together, these findings suggest that FXR inhibits cervical cancer via upregulation of SHP, MDM2, and p53.
Collapse
Affiliation(s)
- Xiaohua Huang
- Department of Pediatrics, Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Bin Wang
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Runji Chen
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Shuping Zhong
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, Los Angeles, CA, United States
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Yanmei Zhang
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Yongdong Niu
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Congzhu Li
- Department of Gynecology, Cancer Hospital, Shantou University Medical College, Shantou, China
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| |
Collapse
|
23
|
Wang J, Lou Y, Lu J, Luo Y, Lu A, Chen A, Fu J, Liu J, Zhou X, Yang J. A Deep Look into the Program of Rapid Tumor Growth of Hepatocellular Carcinoma. J Clin Transl Hepatol 2021; 9:22-31. [PMID: 33604252 PMCID: PMC7868698 DOI: 10.14218/jcth.2020.00084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/12/2020] [Accepted: 12/01/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND AIMS Great efforts have been made towards increasing our understanding of the pathogenesis involved in hepatocellular carcinoma (HCC), but the rapid growth inherent to such tumor development remains to be explored. METHODS We identified distinct gene coexpression modes upon liver tumor growth using weighted gene coexpression network analysis. Modeling of tumor growth as signaling activity was employed to understand the main cascades responsible for the growth. Hub genes in the modules were determined, examined in vitro, and further assembled into the growth signature. RESULTS We revealed modules related to the different growth states in HCC, especially the fastest growth module, which is preserved among different HCC cohorts. Moreover, signaling flux in the cell cycle pathway was found to act as a driving force for rapid growth. Twenty hub genes in the module were identified and assembled into the growth signature, and two genes (NCAPH, and RAD54L) were tested for their growth potential in vitro. Genetic alteration of the growth signature affected the global gene expression. The activity of the signature was associated with tumor metabolism and immunity in HCC. Finally, the prognosis effect of the growth signature was reproduced in nine cancers. CONCLUSIONS These results collectively demonstrate the molecule organization of rapid tumor growth in HCC, which is a highly synergistic process, with implications for the future management of patients.
Collapse
Affiliation(s)
- Jie Wang
- Department of Translational Medicine, Affiliated Hospital of Hangzhou Normal University, Institute of Hepatology and Metabolic Diseases of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Department of Liver Disease, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yi Lou
- Department of Occupational Medicine, Hangzhou Red Cross Hospital, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, Zhejiang, China
| | - Jianmin Lu
- Department of Orthopedics, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Yuxiao Luo
- Department of Orthopedics, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Anqian Lu
- Department of Translational Medicine, Affiliated Hospital of Hangzhou Normal University, Institute of Hepatology and Metabolic Diseases of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Anna Chen
- Department of Translational Medicine, Affiliated Hospital of Hangzhou Normal University, Institute of Hepatology and Metabolic Diseases of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jiantao Fu
- Department of Translational Medicine, Affiliated Hospital of Hangzhou Normal University, Institute of Hepatology and Metabolic Diseases of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jing Liu
- Department of Translational Medicine, Affiliated Hospital of Hangzhou Normal University, Institute of Hepatology and Metabolic Diseases of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Department of Liver Disease, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiang Zhou
- Department of Translational Medicine, Affiliated Hospital of Hangzhou Normal University, Institute of Hepatology and Metabolic Diseases of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Department of Liver Disease, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Correspondence to: Jin Yang, Department of Translational Medicine, Affiliated Hospital of Hangzhou Normal University, Institute of Hepatology and Metabolic Diseases of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China. Tel: +86-571-88358062, E-mail: ; Xiang Zhou, Department of Liver Disease, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China. Tel: +86-571-88303403, E-mail:
| | - Jin Yang
- Department of Translational Medicine, Affiliated Hospital of Hangzhou Normal University, Institute of Hepatology and Metabolic Diseases of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Department of Liver Disease, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang, China
- Correspondence to: Jin Yang, Department of Translational Medicine, Affiliated Hospital of Hangzhou Normal University, Institute of Hepatology and Metabolic Diseases of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China. Tel: +86-571-88358062, E-mail: ; Xiang Zhou, Department of Liver Disease, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China. Tel: +86-571-88303403, E-mail:
| |
Collapse
|
24
|
Jiang Y, Chen P, Hu K, Dai G, Li J, Zheng D, Yuan H, He L, Xie P, Tu M, Peng S, Qu C, Lin W, Chung RT, Hong J. Inflammatory microenvironment of fibrotic liver promotes hepatocellular carcinoma growth, metastasis and sorafenib resistance through STAT3 activation. J Cell Mol Med 2021; 25:1568-1582. [PMID: 33410581 PMCID: PMC7875922 DOI: 10.1111/jcmm.16256] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/14/2019] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
The pro‐inflammatory and pro‐fibrotic liver microenvironment facilitates hepatocarcinogenesis. However, the effects and mechanisms by which the hepatic fibroinflammatory microenvironment modulates intrahepatic hepatocellular carcinoma (HCC) progression and its response to systematic therapy remain largely unexplored. We established a syngeneic orthotopic HCC mouse model with a series of persistent liver injury induced by CCl4 gavage, which mimic the dynamic effect of hepatic pathology microenvironment on intrahepatic HCC growth and metastasis. Non‐invasive bioluminescence imaging was applied to follow tumour progression over time. The effect of the liver microenvironment modulated by hepatic injury on sorafenib resistance was investigated in vivo and in vitro. We found that the persistent liver injury facilitated HCC growth and metastasis, which was positively correlated with the degree of liver inflammation rather than the extent of liver fibrosis. The inflammatory cytokines in liver tissue were clearly increased after liver injury. The two indicated cytokines, tumour necrosis factor‐α (TNF‐α) and interleukin‐6 (IL‐6), both promoted intrahepatic HCC progression via STAT3 activation. In addition, the hepatic inflammatory microenvironment contributed to sorafenib resistance through the anti‐apoptotic protein mediated by STAT3, and STAT3 inhibitor S3I‐201 significantly improved sorafenib efficacy impaired by liver inflammation. Clinically, the increased inflammation of liver tissues was accompanied with the up‐regulated STAT3 activation in HCC. Above all, we concluded that the hepatic inflammatory microenvironment promotes intrahepatic HCC growth, metastasis and sorafenib resistance through activation of STAT3.
Collapse
Affiliation(s)
- Yuchuan Jiang
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Peng Chen
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Kaishun Hu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Guanqi Dai
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jinying Li
- Department of Gastroenterology, Guangzhou Overseas Chinese Hospital, Jinan University, Guangzhou, China
| | - Dandan Zheng
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Hui Yuan
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lu He
- Department of Radiotherapy, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Penghui Xie
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Mengxian Tu
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shuang Peng
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou, China
| | - Chen Qu
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wenyu Lin
- Liver Center and Gastrointestinal Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Raymond T Chung
- Liver Center and Gastrointestinal Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jian Hong
- Department of Abdominal Surgery, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Abstract
Sorafenib was the first tyrosine kinase inhibitor (TKI) that showed success in extending survival in patients with advanced hepatocellular carcinoma (HCC). In recent years, additional TKIs have been shown to improve survival and expanded the armamentarium for treating this malignancy. The current landscape includes other classes of drugs, such as immune checkpoint inhibitors and monoclonal antibodies. The challenge is now placed on how to best select, combine, and sequence drugs with the goal of improving efficacy and minimizing toxicities to deliver better outcomes for HCC patients.
Collapse
Affiliation(s)
- Leonardo G da Fonseca
- Clinical Oncology, Instituto do Cancer do Estado de São Paulo, University of São Paulo, Av. Dr. Arnaldo, 251-Cerqueira Cesar, São Paulo, São Paulo CEP 01246-000, Brazil
| | - Maria Reig
- Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Hospital Clinic Barcelona, IDIBAPS, Villarroel 170, Barcelona 08036, Spain; University of Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | - Jordi Bruix
- Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Hospital Clinic Barcelona, IDIBAPS, Villarroel 170, Barcelona 08036, Spain; University of Barcelona, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain.
| |
Collapse
|
26
|
Yang PL, Liu LX, Li EM, Xu LY. STAT3, the Challenge for Chemotherapeutic and Radiotherapeutic Efficacy. Cancers (Basel) 2020; 12:cancers12092459. [PMID: 32872659 PMCID: PMC7564975 DOI: 10.3390/cancers12092459] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 02/05/2023] Open
Abstract
Chemoradiotherapy is one of the most effective and extensively used strategies for cancer treatment. Signal transducer and activator of transcription 3 (STAT3) regulates vital biological processes, such as cell proliferation and cell growth. It is constitutively activated in various cancers and limits the application of chemoradiotherapy. Accumulating evidence suggests that STAT3 regulates resistance to chemotherapy and radiotherapy and thereby impairs therapeutic efficacy by mediating its feedback loop and several target genes. The alternative splicing product STAT3β is often identified as a dominant-negative regulator, but it enhances sensitivity to chemotherapy and offers a new and challenging approach to reverse therapeutic resistance. We focus here on exploring the role of STAT3 in resistance to receptor tyrosine kinase (RTK) inhibitors and radiotherapy, outlining the potential of targeting STAT3 to overcome chemo(radio)resistance for improving clinical outcomes, and evaluating the importance of STAT3β as a potential therapeutic approach to overcomes chemo(radio)resistance. In this review, we discuss some new insights into the effect of STAT3 and its subtype STAT3β on chemoradiotherapy sensitivity, and we explore how these insights influence clinical treatment and drug development for cancer.
Collapse
Affiliation(s)
- Ping-Lian Yang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China; (P.-L.Y.); (L.-X.L.)
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Lu-Xin Liu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China; (P.-L.Y.); (L.-X.L.)
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China; (P.-L.Y.); (L.-X.L.)
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
- Correspondence: (E.-M.L.); (L.-Y.X.); Tel.: +86-754-88900460 (L.-Y.X.); Fax: +86-754-88900847 (L.-Y.X.)
| | - Li-Yan Xu
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou 515041, Guangdong, China; (P.-L.Y.); (L.-X.L.)
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, China
- Correspondence: (E.-M.L.); (L.-Y.X.); Tel.: +86-754-88900460 (L.-Y.X.); Fax: +86-754-88900847 (L.-Y.X.)
| |
Collapse
|
27
|
Shi W, Zhang S, Ma D, Yan D, Zhang G, Cao Y, Wang Z, Wu J, Jiang C. Targeting SphK2 Reverses Acquired Resistance of Regorafenib in Hepatocellular Carcinoma. Front Oncol 2020; 10:694. [PMID: 32670862 PMCID: PMC7327090 DOI: 10.3389/fonc.2020.00694] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Regorafenib is a second-line therapy drug used for advanced hepatocellular carcinoma (HCC). Unfortunately, the survival benefit of the patients receiving this treatment is modest, which may be attributed to drug resistance. In the present study, sphingosine kinase 2 (SphK2) was targeted to reverse regorafenib resistance in HCC. Methods: The functions of SphK2 and sphingosine-1-phosphate (S1P), the catalytic product of SphK2 in regorafenib resistance of HCC cells, were evaluated by cell counting kit-8 assay, colony formation, cell cycle evaluation, and annexin V–fluorescein isothiocyanate/propidium iodide double-staining assay. The antitumor activity of combined treatment of regorafenib and the SphK2-specific inhibitor ABC294640 was examined in HCC cells in vitro and xenograft model in vivo. The molecular mechanisms of SphK2/S1P-mediating regorafenib resistance were investigated using cell line establishment and Western blot analysis. Results: Well-developed regorafenib-resistant HCC cells indicated high expression levels of SphK2. The sensitivity to regorafenib of regorafenib-resistant HCC cells was restored following SphK2 knockdown or pharmacological inhibition by ABC294640. In addition, ectopic expression of SphK2 and exogenous addition of S1P decreased the sensitivity of HCC cells to regorafenib. Furthermore, the combination treatment with ABC294640 sensitized resistant tumor to regorafenib in xenograft model of HCC. The phosphorylation levels of nuclear factor κB (NF-κB), as well as those of signal transducer and activator of transcription 3 (STAT3), were positively associated with SphK2 and S1P. Conclusions: SphK2/S1P mediates regorafenib resistance of HCC through NF-κB and STAT3 activation. Targeting SphK2 by ABC294640 potently reduces regorafenib resistance of HCC cells both in vitro and in vivo. The combination of ABC294640 and regorafenib could be developed as a novel potential treatment strategy for advanced HCC.
Collapse
Affiliation(s)
- Weiwei Shi
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Shan Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Ding Ma
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Dongliang Yan
- Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, China
| | - Guang Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China.,Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, China
| | - Yin Cao
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China.,Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, China
| | - Zhongxia Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China.,Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, China
| | - Junhua Wu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Chunping Jiang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China.,Department of Hepatobiliary Surgery, Drum Tower Clinical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
28
|
Varone A, Spano D, Corda D. Shp1 in Solid Cancers and Their Therapy. Front Oncol 2020; 10:935. [PMID: 32596156 PMCID: PMC7300250 DOI: 10.3389/fonc.2020.00935] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Shp1 is a cytosolic tyrosine phosphatase that regulates a broad range of cellular functions and targets, modulating the flow of information from the cell membrane to the nucleus. While initially studied in the hematopoietic system, research conducted over the past years has expanded our understanding of the biological role of Shp1 to other tissues, proposing it as a novel tumor suppressor gene functionally involved in different hallmarks of cancer. The main mechanism by which Shp1 curbs cancer development and progression is the ability to attenuate and/or terminate signaling pathways controlling cell proliferation, survival, migration, and invasion. Thus, alterations in Shp1 function or expression can contribute to several human diseases, particularly cancer. In cancer cells, Shp1 activity can indeed be affected by mutations or epigenetic silencing that cause failure of Shp1-mediated homeostatic maintenance. This review will discuss the current knowledge of the cellular functions controlled by Shp1 in non-hematopoietic tissues and solid tumors, the mechanisms that regulate Shp1 expression, the role of its mutation/expression status in cancer and its value as potential target for cancer treatment. In addition, we report information gathered from the public available data from The Cancer Genome Atlas (TCGA) database on Shp1 genomic alterations and correlation with survival in solid cancers patients.
Collapse
Affiliation(s)
- Alessia Varone
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Spano
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Corda
- Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy.,Department of Biomedical Sciences, National Research Council, Rome, Italy
| |
Collapse
|
29
|
Abd-Elbaset M, Mansour AM, Ahmed OM, Abo-Youssef AM. The potential chemotherapeutic effect of β-ionone and/or sorafenib against hepatocellular carcinoma via its antioxidant effect, PPAR-γ, FOXO-1, Ki-67, Bax, and Bcl-2 signaling pathways. Naunyn Schmiedebergs Arch Pharmacol 2020; 393:1611-1624. [PMID: 32270258 DOI: 10.1007/s00210-020-01863-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/24/2020] [Indexed: 12/20/2022]
Abstract
Proliferation and apoptosis are two primary driving forces behind the pathogenesis of hepatocellular carcinoma (HCC). HCC is associated with Ki-67 and Bcl-2 overexpression, reduced Bax expression inducing disturbance of equilibrium between cellular proliferation and apoptosis, and exacerbated by reduced expression of PPAR-γ and FOXO-1. Our objective was to examine the mechanism by which the cyclic isoprenoid, β-ionone (βI), attenuated hepatocarcinogenesis and compare its possible anticancer activity with sorafenib (SF) as standard HCC treatment. HCC induction was achieved by supplying Wistar rats with 0.01% diethylnitrosamine (DENA) for 8 consecutive weeks by free access of drinking water. The effects of βI (160 mg/kg/day) administered orally were evaluated by biochemical, oxidative stress, macroscopical, and histopathological analysis. In addition, immunohistochemical assay for localization and expression of Bax and Bcl-2 and RT-PCR for expression levels of PPAR-γ, FOXO-1, and Ki-67 mRNA were performed. βI treatment significantly reduced the incidence, total number, and multiplicity of visible hepatocyte nodules, attenuated LPO, near-normal restoration of all cancer biomarkers, and antioxidant activities, indicating the chemotherapeutic impact of βI. Histopathological analysis of the liver confirmed that further. βI also induced pro-apoptotic protein Bax expression and reduced anti-apoptotic expression of Bcl-2 protein. Moreover, βI induced mRNA expression of tumor suppressor genes (PPAR-γ and FOXO-1) and decreased proliferative marker Ki-67 mRNA expression. For the first time, the present study provides evidence that βI exerts a major anticancer effect on DENA-induced HCC, at least in part, through inhibition of cell proliferation, oxidative stress, and apoptogenic signal induction mediated by downregulation of Bcl-2 and upregulation of Bax, PPAR-γ, and FOXO-1 expressions.
Collapse
Affiliation(s)
- Mohamed Abd-Elbaset
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, P.O. Box 62514, Beni-Suef, Egypt.
| | - Ahmed M Mansour
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Boys), Al-Azhar University, P.O. Box 11884, Cairo, Egypt
| | - Osama M Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Amira M Abo-Youssef
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, P.O. Box 62514, Beni-Suef, Egypt
| |
Collapse
|
30
|
Xu T, Guo P, He Y, Pi C, Wang Y, Feng X, Hou Y, Jiang Q, Zhao L, Wei Y. Application of curcumin and its derivatives in tumor multidrug resistance. Phytother Res 2020; 34:2438-2458. [PMID: 32255545 DOI: 10.1002/ptr.6694] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/27/2020] [Accepted: 03/22/2020] [Indexed: 12/16/2022]
Abstract
Malignant tumor endangers seriously the health of all mankind. Multidrug resistance (MDR) is one of the main causes of clinical tumor chemotherapy failure. Curcumin (CUR) has not only antitumor activity but also reversing tumor MDR effect. CUR reverses tumor MDR via regulating related signal pathways or corresponding expressed proteins or gene. When combined with chemotherapeutic agents, CUR can be a chemotherapeutic sensitive agent to enhance chemotherapy efficacy and weaken tumor MDR. On the other hand, to improve the MDR reversal effect of CUR, its derivatives have been extensively studied. Therefore, this article mainly focuses on reviewing the application of CUR and its derivatives in MDR and its mechanism of reversing MDR.
Collapse
Affiliation(s)
- Ting Xu
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Pu Guo
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yingmeng He
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Chao Pi
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yuanyuan Wang
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Xianhu Feng
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yi Hou
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Qingsheng Jiang
- School of International Education, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Ling Zhao
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| | - Yumeng Wei
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People's Republic of China
| |
Collapse
|
31
|
Gong H, Tai H, Huang N, Xiao P, Mo C, Wang X, Han X, Zhou J, Chen H, Tang X, Zhao T, Xu W, Gong C, Zhang G, Yang Y, Wang S, Xiao H. Nrf2-SHP Cascade-Mediated STAT3 Inactivation Contributes to AMPK-Driven Protection Against Endotoxic Inflammation. Front Immunol 2020; 11:414. [PMID: 32210977 PMCID: PMC7076194 DOI: 10.3389/fimmu.2020.00414] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/21/2020] [Indexed: 02/05/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is implicated in inflammation processing, but the mechanism of its regulation mostly remains limited to Janus kinase (JAK)-mediated phosphorylation. Although AMP-activated protein kinase (AMPK)-mediated STAT3 inactivation has got documented, the molecular signaling cascade connecting STAT3 inactivation and the anti-inflammatory role of AMPK is far from established. In the present study, we addressed the interplay between AMPK and STAT3, and revealed the important role of STAT3 inactivation in the anti-inflammatory function of AMPK in lipopolysaccharide-stressed macrophages and mice. Firstly, we found that pharmacological inhibition of STAT3 can improve the anti-inflammatory effect of AMPK in wild-type mice, and the expression of STAT3 in macrophage of mice is a prerequisite for the anti-inflammatory effect of AMPK. As to the molecular signaling cascade linking AMPK to STAT3, we disclosed that AMPK suppressed STAT3 not only by attenuating JAK signaling but also by activating nuclear factor erythroid-2-related factor-2 (Nrf2), a redox-regulating transcription factor, which consequently increased the expression of small heterodimer protein (SHP), thus repressing the transcriptional activity of STAT3. In summary, this study provided a unique set of evidence showing the relationship between AMPK and STAT3 signaling and explored a new mechanism of AMPK-driven STAT3 inactivation that involves Nrf2-SHP signaling cascade. These findings expand our understanding of the interplay between pro- and anti-inflammatory signaling pathways and are beneficial for the therapeutic development of sepsis treatments.
Collapse
Affiliation(s)
- Hui Gong
- Lab for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Haoran Tai
- Lab for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Development and Regeneration Key Lab of Sichuan Province, Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu, China
| | - Ning Huang
- Lab for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Xiao
- Lab for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Chunfen Mo
- Lab for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, China
| | - Xiaobo Wang
- Lab for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojuan Han
- Lab for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Zhou
- Lab for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Honghan Chen
- Lab for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Tingting Zhao
- Lab for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Weitong Xu
- Lab for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Chuhui Gong
- Lab for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Gongchang Zhang
- Lab for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Yang
- Lab for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Shuang Wang
- Lab for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Hengyi Xiao
- Lab for Aging Research, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
32
|
Choi J, Park S, Ahn J. RefDNN: a reference drug based neural network for more accurate prediction of anticancer drug resistance. Sci Rep 2020; 10:1861. [PMID: 32024872 PMCID: PMC7002431 DOI: 10.1038/s41598-020-58821-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 01/20/2020] [Indexed: 11/23/2022] Open
Abstract
Cancer is one of the most difficult diseases to treat owing to the drug resistance of tumour cells. Recent studies have revealed that drug responses are closely associated with genomic alterations in cancer cells. Numerous state-of-the-art machine learning models have been developed for prediction of drug responses using various genomic data and diverse drug molecular information, but those methods are ineffective to predict drug response to untrained drugs and gene expression patterns, which is known as the cold-start problem. In this study, we present a novel deep neural network model, termed RefDNN, for improved prediction of drug resistance and identification of biomarkers related to drug response. RefDNN exploits a collection of drugs, called reference drugs, to learn representations for a high-dimensional gene expression vector and a molecular structure vector of a drug and predicts drug response labels using the reference drug-based representations. These calculations come from the observation that similar chemicals have similar effects. The proposed model not only outperformed existing computational prediction models in most comparative experiments, but also showed more robust prediction for untrained drugs and cancer types than traditional machine learning models. RefDNN exploits the ElasticNet regularization to deal with high-dimensional gene expression data, which allows identification of gene markers associated with drug resistance. Lastly, we described an application of RefDNN in exploring a new candidate drug for liver cancer. As the proposed model can guarantee good prediction of drug responses to untrained drugs for given gene expression patterns, it may be of potential benefit in drug repositioning and personalized medicine.
Collapse
Affiliation(s)
- Jonghwan Choi
- Department of Computer Science, Yonsei University, Seoul, South Korea
| | - Sanghyun Park
- Department of Computer Science, Yonsei University, Seoul, South Korea.
| | - Jaegyoon Ahn
- Department of Computer Science & Engineering, Incheon National University, Incheon, South Korea.
| |
Collapse
|
33
|
Suk FM, Liu CL, Hsu MH, Chuang YT, Wang JP, Liao YJ. Treatment with a new benzimidazole derivative bearing a pyrrolidine side chain overcomes sorafenib resistance in hepatocellular carcinoma. Sci Rep 2019; 9:17259. [PMID: 31754201 PMCID: PMC6872581 DOI: 10.1038/s41598-019-53863-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/08/2019] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a major cause of cancer-related death worldwide. Currently, sorafenib is the standard first-line drug for patients with advanced HCC. However, long-term exposure to sorafenib often results in reduced sensitivity of tumour cells to the drug, leading to acquired resistance. Therefore, developing new compounds to treat sorafenib resistance is urgently needed. Although benzimidazole and its derivatives have been reported to exert antimicrobial and antitumour effects, the anti-drug resistance potential of these molecules is still unknown. In this study, we established sorafenib-resistant (SR) cell lines and an acquired sorafenib resistance xenograft model. We showed that treatment with a benzimidazole derivative bearing a pyrrolidine side chain (compound 9a) inhibited the proliferation of SR cells by blocking the phosphorylation of AKT, p70S6 and the downstream molecule RPS6. In addition, caspase 3/PARP-dependent apoptotic signals were induced in 9a-treated cells. Regarding epithelial-mesenchymal transition (EMT) activities, 9a treatment significantly suppressed the migration of SR cells. In particular, the levels of EMT-related transcription factors (snail, slug and twist) and mesenchymal markers (vimentin and N-cadherin) were downregulated. In the acquired sorafenib resistance xenograft model, compound 9a administration decreased the growth of tumours with acquired sorafenib resistance and the expression of the HCC markers α-fetoprotein, glypican 3 and survivin. In conclusion, treatment with this compound may be a novel therapeutic strategy for patients with sorafenib resistance.
Collapse
Affiliation(s)
- Fat-Moon Suk
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chao-Lien Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Ming-Hua Hsu
- Department of Chemistry, National Changhua University of Education, Changhua, Taiwan
| | - Yu-Ting Chuang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Jack P Wang
- Department of International Medicine, Taipei City Hospital Ranai Branch, Taipei, Taiwan
| | - Yi-Jen Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
34
|
Saraswati S, Alhaider A, Abdelgadir AM, Tanwer P, Korashy HM. Phloretin attenuates STAT-3 activity and overcomes sorafenib resistance targeting SHP-1-mediated inhibition of STAT3 and Akt/VEGFR2 pathway in hepatocellular carcinoma. Cell Commun Signal 2019; 17:127. [PMID: 31619257 PMCID: PMC6794763 DOI: 10.1186/s12964-019-0430-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is the most common primary liver malignancy. Phloretin (PH) possesses anticancer, antitumor, and hepatoprotective effects, however, the effects and potential mechanisms of phloretin remain elusive. Methods Five HCC cells were tested in vitro for sensitivity to PH, Sorafenib (Sor) or both and the apoptosis, signal transduction and phosphatase activity were analyzed. To validate the role of SHP-1, we used PTP inhibitor III and SHP-1 siRNA. Further, we used purified SHP-1 proteins or HCC cells expressing deletion N-SH2 domain or D61A point mutants to study the PH efficacy on SHP-1. The `in vivo studies were conducted using HepG2 and SK-Hep1 and Sor resistant HepG2SR and Huh7SR xenografts. Molecular docking was done with Swiss dock and Auto Dock Vina. Results PH inhibited cell growth and induced apoptosis in all HCC cells by upregulating SHP-1 expression and downregulating STAT3 expression and further inhibited pAKT/pERK signaling. PH activated SHP-1 by disruption of autoinhibition of SHP-1, leading to reduced p-STAT3Tyr705 level. PH induced apoptosis in two Sor-resistant cell lines and overcome STAT3, AKT, MAPK and VEGFR2 dependent Sor resistance in HCCs. PH potently inhibited tumor growth in both Sor-sensitive and Sor-resistant xenografts in vivo by impairing angiogenesis, cell proliferation and inducing apoptosis via targeting the SHP-1/STAT3 signaling pathway. Conclusion Our data suggest that PH inhibits STAT3 activity in Sor-sensitive and -resistant HCCs via SHP-1–mediated inhibition of STAT3 and AKT/mTOR/JAK2/VEGFR2 pathway. Our results clearly indicate that PH may be a potent reagent for hepatocellular carcinoma and a noveltargeted therapy for further clinical investigations. Graphical abstract ![]()
Electronic supplementary material The online version of this article (10.1186/s12964-019-0430-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarita Saraswati
- Department of Pharmacology and Physiology, College of Medicine,
- King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Abdulqader Alhaider
- Department of Pharmacology and Physiology, College of Medicine,
- King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Abdelgalil Mohamed Abdelgadir
- Department of Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Pooja Tanwer
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas-New Delhi, India
| | - Hesham M Korashy
- Department of Pharmaceutical Sciences, College of Pharmacy, Qatar University, Doha, 2713, Qatar.
| |
Collapse
|
35
|
Dovitinib Triggers Apoptosis and Autophagic Cell Death by Targeting SHP-1/ p-STAT3 Signaling in Human Breast Cancers. JOURNAL OF ONCOLOGY 2019; 2019:2024648. [PMID: 31485222 PMCID: PMC6710795 DOI: 10.1155/2019/2024648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 07/29/2019] [Indexed: 01/13/2023]
Abstract
Breast cancer is the most common cancer and the leading cause of cancer deaths in women worldwide. The rising incidence rate and female mortality make it a significant public health concern in recent years. Dovitinib is a novel multitarget receptor tyrosine kinase inhibitor, which has been enrolled in several clinical trials in different cancers. However, its antitumor efficacy has not been well determined in breast cancers. Our results demonstrated that dovitinib showed significant antitumor activity in human breast cancer cell lines with dose- and time-dependent manners. Downregulation of phosphor-(p)-STAT3 and its subsequent effectors Mcl-1 and cyclin D1 was responsible for this drug effect. Ectopic expression of STAT3 rescued the breast cancer cells from cell apoptosis induced by dovitinib. Moreover, SHP-1 inhibitor reversed the downregulation of p-STAT3 induced by dovitinib, indicating that SHP-1 mediated the STAT3 inhibition effect of dovitinib. In addition to apoptosis, we found for the first time that dovitinib also activated autophagy to promote cell death in breast cancer cells. In conclusion, dovitinib induced both apoptosis and autophagy to block the growth of breast cancer cells by regulating the SHP-1-dependent STAT3 inhibition.
Collapse
|
36
|
Drießen D, Stuhldreier F, Frank A, Stark H, Wesselborg S, Stork B, Müller TJJ. Novel meriolin derivatives as rapid apoptosis inducers. Bioorg Med Chem 2019; 27:3463-3468. [PMID: 31248707 DOI: 10.1016/j.bmc.2019.06.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/28/2019] [Accepted: 06/18/2019] [Indexed: 12/14/2022]
Abstract
3-(Hetero)aryl substituted 7-azaindoles possessing multikinase inhibitor activity are readily accessed in a one-pot Masuda borylation-Suzuki coupling sequence. Several promising derivatives were identified as apoptosis inducers and, emphasizing the multikinase inhibition potential, as sphingosine kinase 2 inhibitors. Our measurements provide additional insights into the structure-activity relationship of meriolin derivatives, suggesting derivatives bearing a pyridine moiety with amino groups in 2-position as most active anticancer compounds and thus as highly promising candidates for future in vivo studies.
Collapse
Affiliation(s)
- Daniel Drießen
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Fabian Stuhldreier
- Institut für Molekulare Medizin I, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Annika Frank
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße1, D-40225 Düsseldorf, Germany
| | - Holger Stark
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße1, D-40225 Düsseldorf, Germany
| | - Sebastian Wesselborg
- Institut für Molekulare Medizin I, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Björn Stork
- Institut für Molekulare Medizin I, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Thomas J J Müller
- Institut für Organische Chemie und Makromolekulare Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
| |
Collapse
|
37
|
Wu M, Song D, Li H, Yang Y, Ma X, Deng S, Ren C, Shu X. Negative regulators of STAT3 signaling pathway in cancers. Cancer Manag Res 2019; 11:4957-4969. [PMID: 31213912 PMCID: PMC6549392 DOI: 10.2147/cmar.s206175] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/17/2019] [Indexed: 12/19/2022] Open
Abstract
STAT3 is the most ubiquitous member of the STAT family and involved in many biological processes, such as cell proliferation, differentiation, and apoptosis. Mounting evidence has revealed that STAT3 is aberrantly activated in many malignant tumors and plays a critical role in cancer progression. STAT3 is usually regarded as an effective molecular target for cancer treatment, and abolishing the STAT3 activity may diminish tumor growth and metastasis. Recent studies have shown that negative regulators of STAT3 signaling such as PIAS, SOCS, and PTP, can effectively retard tumor progression. However, PIAS, SOCS, and PTP have also been reported to correlate with tumor malignancy, and their biological function in tumorigenesis and antitumor therapy are somewhat controversial. In this review, we summarize actual knowledge on the negative regulators of STAT3 in tumors, and focus on the potential role of PIAS, SOCS, and PTP in cancer treatment. Furthermore, we also outline the STAT3 inhibitors that have entered clinical trials. Targeting STAT3 seems to be a promising strategy in cancer therapy.
Collapse
Affiliation(s)
- Moli Wu
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China.,College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Danyang Song
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Hui Li
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Yang Yang
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Xiaodong Ma
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Sa Deng
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Changle Ren
- Surgery Department of Dalian Municipal Central Hospital, Dalian Medical University, Dalian 116033, People's Republic of China
| | - Xiaohong Shu
- College of Pharmacy, Dalian Medical University, Dalian 116044, People's Republic of China
| |
Collapse
|
38
|
Joo MK, Park JJ, Chun HJ. Proton pump inhibitor: The dual role in gastric cancer. World J Gastroenterol 2019; 25:2058-2070. [PMID: 31114133 PMCID: PMC6506576 DOI: 10.3748/wjg.v25.i17.2058] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/17/2019] [Accepted: 03/25/2019] [Indexed: 02/06/2023] Open
Abstract
Proton pump inhibitors (PPIs) are one of the most frequently used medications for upper gastrointestinal diseases. However, a number of physicians have raised concern about the serious side effects of long-term use of PPIs, including the development of gastric cancer. Recent epidemiological studies have reported a significant association between long-term PPI intake and the risk of gastric cancer, even after successful Helicobacter pylori eradication. However, the effects of PPIs on the development of pre-malignant conditions such as atrophic gastritis or intestinal metaplasia are not fully known, suggesting the need for comprehensive and confirmative studies are needed in the future. Meanwhile, several experimental studies have demonstrated the effects of PPIs in reducing chemoresistance in gastric cancer cells by modulating the acidic microenvironment, cancer stemness and signal transducer and activator of transcription 3 (STAT3) signaling pathway. The inhibitory effects of PPIs on STAT3 activity may overcome drug resistance and enhance the efficacy of conventional or targeted chemotherapeutic agents. Taken together, PPIs may “play dual role” in gastric carcinogenesis and treatment of gastric cancer.
Collapse
Affiliation(s)
- Moon Kyung Joo
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital, Seoul 08308, South Korea
| | - Jong-Jae Park
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital, Seoul 08308, South Korea
| | - Hoon Jai Chun
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Institute of Digestive Disease and Nutrition, Korea University College of Medicine, Seoul 02841, South Korea
| |
Collapse
|
39
|
Pan S, Deng Y, Fu J, Zhang Y, Zhang Z, Ru X, Qin X. TRIM52 promotes colorectal cancer cell proliferation through the STAT3 signaling. Cancer Cell Int 2019; 19:57. [PMID: 30918473 PMCID: PMC6419475 DOI: 10.1186/s12935-019-0775-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/08/2019] [Indexed: 01/05/2023] Open
Abstract
Background The tripartite motif (TRIM) family proteins are implicated in the pathogenesis of various human malignancies. The up-regulation and oncogenic roles of TRIM52 have been reported in hepatocellular carcinoma. In the current study, we aimed to examine its expression and possible function in colorectal cancer (CRC). Method Immunohistochemical staining or immunoblotting analysis was carried out to detect protein expression. Cell proliferation and apoptosis was evaluated by Cell Counting Kit-8 (CCK-8) and flow cytometry assay, respectively. Results TRIM52 expression was increased in 67.5% of CRC tissues (54/80) compared to matched normal colonic mucosa. TRIM52 expression was closely related with tumor size (p = 0.0376), tumor stage (p = 0.0227) and overall survival (p = 0.0177). Short hairpin RNAs (shRNAs) targeting TRIM52 had the potential anti-proliferative effects on CRC cell lines, SW480 and LoVo, by inducing cell apoptosis. In addition, an in vivo xenograft experiment confirmed the in vitro results. In addition, TRIM52 shRNAs decreased the phosphorylation of STAT3, but increased the protein expression of SHP2, a negative regulator of STAT3 phosphorylation. TRIM52 formed a complex with SHP2 and promoted the ubiquitination of SHP2. Furthermore, inhibition of the STAT3 signaling by AG490 in RKO cells significantly abolished the effects of TRIM52 overexpression on cell proliferation, apoptosis and STAT3 activation. Conclusions TRIM52 might exert oncogenic role in CRC via regulating the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Shengli Pan
- Division of Gastrointestinal Surgery, Department of General Surgery, Shanghai Eighth People's Hospital, No. 8 Caobao Road, Xuhui District, Shanghai, 200232 China
| | - Yingying Deng
- Department of Ophtalmology, Shanghai Eighth People's Hospital, Shanghai, China
| | - Jun Fu
- Division of Gastrointestinal Surgery, Department of General Surgery, Shanghai Eighth People's Hospital, No. 8 Caobao Road, Xuhui District, Shanghai, 200232 China
| | - Yuhao Zhang
- Division of Gastrointestinal Surgery, Department of General Surgery, Shanghai Eighth People's Hospital, No. 8 Caobao Road, Xuhui District, Shanghai, 200232 China
| | - Zhijin Zhang
- Division of Gastrointestinal Surgery, Department of General Surgery, Shanghai Eighth People's Hospital, No. 8 Caobao Road, Xuhui District, Shanghai, 200232 China
| | - Xiaokun Ru
- Division of Gastrointestinal Surgery, Department of General Surgery, Shanghai Eighth People's Hospital, No. 8 Caobao Road, Xuhui District, Shanghai, 200232 China
| | - Xianju Qin
- Division of Gastrointestinal Surgery, Department of General Surgery, Shanghai Eighth People's Hospital, No. 8 Caobao Road, Xuhui District, Shanghai, 200232 China
| |
Collapse
|
40
|
Kondo R, Ishino K, Wada R, Takata H, Peng WX, Kudo M, Kure S, Kaneya Y, Taniai N, Yoshida H, Naito Z. Downregulation of protein disulfide‑isomerase A3 expression inhibits cell proliferation and induces apoptosis through STAT3 signaling in hepatocellular carcinoma. Int J Oncol 2019; 54:1409-1421. [PMID: 30720090 DOI: 10.3892/ijo.2019.4710] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/14/2018] [Indexed: 11/05/2022] Open
Abstract
Protein disulfide‑isomerase A3 (PDIA3) is a chaperone protein that modulates folding of newly synthesized glycoproteins and responds to endoplasmic reticulum (ER) stress. Previous studies reported that increased expression of PDIA3 in hepatocellular carcinoma (HCC) is a marker for poor prognosis. However, the mechanism remains poorly understood. The aim of the present study, therefore, was to understand the role of PDIA3 in HCC development. First, immunohistochemical staining of tissues from 53 HCC cases revealed that HCC tissues with high PDIA3 expression exhibited a higher proliferation index and contained fewer apoptotic cells than those with low expression. In addition, the knockdown of PDIA3 significantly inhibited cell proliferation and induced apoptosis in HCC cell lines. These results suggest that PDIA3 regulates cell proliferation and apoptosis in HCC. An examination of whether PDIA3 knockdown induced apoptosis through ER stress revealed that PDIA3 knockdown did not increase ER stress marker, 78 kDa glucose‑regulated protein, in HCC cell lines. Furthermore, the association between PDIA3 and the signal transducer and activator of transcription 3 (STAT3) signaling pathway were investigated in vitro and in vivo. Immunofluorescence staining and co‑immunoprecipitation experiments revealed colocalization and binding, respectively, of PDIA3 and STAT3 in HCC cell lines. The knockdown of PDIA3 decreased the levels of phosphorylated STAT3 (P‑STAT3; Tyr705) and downstream proteins of the STAT3 signaling pathway: The anti‑apoptotic proteins (Bcl‑2‑like protein 1, induced myeloid leukemia cell differentiation protein Mcl‑1, survivin and X‑linked inhibitor of apoptosis protein). In addition, PDIA3 knockdown provided little inhibitory effect on cell proliferation in HCC cell lines treated with AG490, a tyrosine‑protein kinase JAK/STAT3 signaling inhibitor. Finally, an association was demonstrated between PDIA3 and P‑STAT3 expression following immunostaining of 35 HCC samples. Together, the present data suggest that PDIA3 promotes HCC progression through the STAT3 signaling pathway.
Collapse
Affiliation(s)
- Ryota Kondo
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo 113‑8602, Japan
| | - Kousuke Ishino
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo 113‑8602, Japan
| | - Ryuichi Wada
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo 113‑8602, Japan
| | - Hideyuki Takata
- Department of Gastrointestinal and Hepato‑Biliary‑Pancreatic Surgery, Nippon Medical School, Tokyo 113‑8602, Japan
| | - Wei-Xia Peng
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo 113‑8602, Japan
| | - Mitsuhiro Kudo
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo 113‑8602, Japan
| | - Shoko Kure
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo 113‑8602, Japan
| | - Yohei Kaneya
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo 113‑8602, Japan
| | - Nobuhiko Taniai
- Department of Gastrointestinal and Hepato‑Biliary‑Pancreatic Surgery, Nippon Medical School, Tokyo 113‑8602, Japan
| | - Hiroshi Yoshida
- Department of Gastrointestinal and Hepato‑Biliary‑Pancreatic Surgery, Nippon Medical School, Tokyo 113‑8602, Japan
| | - Zenya Naito
- Department of Integrated Diagnostic Pathology, Nippon Medical School, Tokyo 113‑8602, Japan
| |
Collapse
|
41
|
Song HS, Song YH, Singh N, Kim H, Jeon H, Kim I, Kang SC, Chi KW. New Self-assembled Supramolecular Bowls as Potent Anticancer Agents for Human Hepatocellular Carcinoma. Sci Rep 2019; 9:242. [PMID: 30659228 PMCID: PMC6338755 DOI: 10.1038/s41598-018-36755-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 11/27/2018] [Indexed: 01/13/2023] Open
Abstract
We report herein on the design, synthesis and biological activity of Ru-based self-assembled supramolecular bowls as a potent anticancer therapeutic in human hepatocellular cancer. The potent complex induces production of reactive oxygen species (ROS) by higher fatty acid β-oxidation and down-regulation of glucose transporter-mediated pyruvate dehydrogenase kinase 1 via reduced hypoxia-inducible factor 1α. Also, overexpressed acetyl-CoA activates the tricarboxylic acid cycle and the electron transport system and induces hypergeneration of ROS. Finally, ROS overexpressed through this pathway leads to apoptosis. Furthermore, we demonstrate that the naphthalene derived molecular bowl activates classical apoptosis via crosstalk between the extrinsic and intrinsic signal pathway. Our work into the mechanism of Ru-based self-assembled supramolecular bowls can provide valuable insight into the potential for use as a promising anticancer agent.
Collapse
Affiliation(s)
- Hae Seong Song
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Young Ho Song
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Nem Singh
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Republic of Korea
| | - Hyunuk Kim
- Convergence Materials Laboratory, Korea Institute of Energy Research, Daejeon, 28119, Republic of Korea
| | - Hyelin Jeon
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Inhye Kim
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea.
| | - Se Chan Kang
- Department of Oriental Medicine Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Republic of Korea.
| | - Ki-Whan Chi
- Department of Chemistry, University of Ulsan, Ulsan, 44610, Republic of Korea.
| |
Collapse
|
42
|
Protein Tyrosine Phosphatases as Potential Regulators of STAT3 Signaling. Int J Mol Sci 2018; 19:ijms19092708. [PMID: 30208623 PMCID: PMC6164089 DOI: 10.3390/ijms19092708] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/29/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023] Open
Abstract
The signal transducer and activator of transcription 3 (STAT3) protein is a major transcription factor involved in many cellular processes, such as cell growth and proliferation, differentiation, migration, and cell death or cell apoptosis. It is activated in response to a variety of extracellular stimuli including cytokines and growth factors. The aberrant activation of STAT3 contributes to several human diseases, particularly cancer. Consequently, STAT3-mediated signaling continues to be extensively studied in order to identify potential targets for the development of new and more effective clinical therapeutics. STAT3 activation can be regulated, either positively or negatively, by different posttranslational mechanisms including serine or tyrosine phosphorylation/dephosphorylation, acetylation, or demethylation. One of the major mechanisms that negatively regulates STAT3 activation is dephosphorylation of the tyrosine residue essential for its activation by protein tyrosine phosphatases (PTPs). There are seven PTPs that have been shown to dephosphorylate STAT3 and, thereby, regulate STAT3 signaling: PTP receptor-type D (PTPRD), PTP receptor-type T (PTPRT), PTP receptor-type K (PTPRK), Src homology region 2 (SH-2) domain-containing phosphatase 1(SHP1), SH-2 domain-containing phosphatase 2 (SHP2), MEG2/PTP non-receptor type 9 (PTPN9), and T-cell PTP (TC-PTP)/PTP non-receptor type 2 (PTPN2). These regulators have great potential as targets for the development of more effective therapies against human disease, including cancer.
Collapse
|
43
|
Hu G, Zhang Y, Ouyang K, Xie F, Fang H, Yang X, Liu K, Wang Z, Tang X, Liu J, Yang L, Jiang Z, Tao W, Zhou H, Zhang L. In vivo acquired sorafenib-resistant patient-derived tumor model displays alternative angiogenic pathways, multi-drug resistance and chromosome instability. Oncol Lett 2018; 16:3439-3446. [PMID: 30127946 PMCID: PMC6096179 DOI: 10.3892/ol.2018.9078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 09/28/2017] [Indexed: 02/06/2023] Open
Abstract
Acquired resistance to targeted therapies is an important clinical challenge. Research focusing on acquired resistance is hindered by the lack of relevant model systems. In the present study, the generation and characterization of an in vivo acquired sorafenib-resistant hepatocellular carcinoma (HCC) xenograft model derived from a patient tumor is reported. A cancer cell line (LIXC-004SR) was generated from a tumor that had developed following ~100 days of sorafenib treatment of a HCC patient-derived xenograft (PDX) model (LIX004). The xenograft tumors derived from this cell line demonstrated sorafenib-resistance in vivo. By contrast, a cell line (LIXC-004NA) generated from a vehicle-treated LIX004 PDX model remained sensitive to sorafenib in vivo. Following treatment with sorafenib in vivo, angiogenesis was significantly elevated in the LIXC-004SR tumors when compared with that in the LIXC-004NA tumors. The LIXC-004SR cell culture supernatant stimulated human umbilical vein endothelial cell proliferation and extracellular-signal-regulated kinase and protein kinase B phosphorylation, which can only be inhibited by the combination of sorafenib and a fibroblast growth factor receptor 1 (FGFR1) inhibitor, AZD4547. The tumor growth of the sorafenib-resistant LIXC-004SR xenograft was inhibited by the FGFR1 inhibitor in vivo, suggesting that one of the underlying mechanisms of the acquired resistance is likely due to activation of alternative angiogenic pathways. The LIXC-004SR cell line also exhibited signs of multi-drug resistance and genetic instability. Taken together, these data suggest that this in vivo model of acquired resistance from a PDX model may reflect sorafenib-resistance in certain patients and may facilitate drug resistance research, as well as contributing to the clinical prevention and management of drug resistance.
Collapse
Affiliation(s)
- Gang Hu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China.,Shanghai ChemPartner Co., Ltd., Shanghai 201203, P.R. China.,Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai 201203, P.R. China.,ClinicalExplorer (Shanghai) Co., Ltd., Shanghai 201203, P.R. China
| | - Yixin Zhang
- Department of Surgery, Nantong Cancer Hospital, Nantong, Jiangsu 226361, P.R. China
| | - Kedong Ouyang
- Shanghai ChemPartner Co., Ltd., Shanghai 201203, P.R. China
| | - Fubo Xie
- Shanghai ChemPartner Co., Ltd., Shanghai 201203, P.R. China.,Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai 201203, P.R. China
| | - Houshun Fang
- Shanghai ChemPartner Co., Ltd., Shanghai 201203, P.R. China
| | - Xueyang Yang
- Shanghai ChemPartner Co., Ltd., Shanghai 201203, P.R. China
| | - Kunyan Liu
- Shanghai ChemPartner Co., Ltd., Shanghai 201203, P.R. China.,Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai 201203, P.R. China.,ClinicalExplorer (Shanghai) Co., Ltd., Shanghai 201203, P.R. China
| | - Zongyu Wang
- Shanghai ChemPartner Co., Ltd., Shanghai 201203, P.R. China.,Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai 201203, P.R. China
| | - Xuzhen Tang
- Shanghai ChemPartner Co., Ltd., Shanghai 201203, P.R. China
| | - Jibin Liu
- Department of Surgery, Nantong Cancer Hospital, Nantong, Jiangsu 226361, P.R. China
| | - Lei Yang
- Department of Surgery, Nantong Cancer Hospital, Nantong, Jiangsu 226361, P.R. China
| | - Zhenzhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| | - Weikang Tao
- Shanghai ChemPartner Co., Ltd., Shanghai 201203, P.R. China
| | - He Zhou
- Shanghai ChemPartner Co., Ltd., Shanghai 201203, P.R. China.,Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai 201203, P.R. China
| | - Luyong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, P.R. China
| |
Collapse
|
44
|
Kuruvilla SP, Tiruchinapally G, Kaushal N, ElSayed ME. Effect of N-acetylgalactosamine ligand valency on targeting dendrimers to hepatic cancer cells. Int J Pharm 2018; 545:27-36. [DOI: 10.1016/j.ijpharm.2018.04.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 02/28/2018] [Accepted: 04/13/2018] [Indexed: 12/21/2022]
|
45
|
Xie L, Zeng Y, Dai Z, He W, Ke H, Lin Q, Chen Y, Bu J, Lin D, Zheng M. Chemical and genetic inhibition of STAT3 sensitizes hepatocellular carcinoma cells to sorafenib induced cell death. Int J Biol Sci 2018; 14:577-585. [PMID: 29805309 PMCID: PMC5968850 DOI: 10.7150/ijbs.22220] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/01/2018] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has become the second leading cause of cancer related death, with an increasing death rate in recent years. For advanced HCC, sorafenib is the first-line FDA approved drug, with no more than 3 months' overall survival advantage. Recently, a novel strategy has been proposed to improve sorafenib efficacy through enhancing the ability of sorafenib to induce cell death. STAT3 plays a key role in cancer development and recurrence by promoting cell proliferation, survival and immune evasion through its well-established function as a transcription factor in cancer. Notably, STAT3 transcription activity, indicated by its phosphorylation on Y705 is heterogeneous in different liver cancer cell lines. And sorafenib attenuates STAT3 phosphorylation on Y705. However, the role of STAT3 in sorafenib induced cell death is still largely unknown. Here, we show that liver cancer cells also exhibit heterogeneous sensitivities to sorafenib induced cell death, which co-relates with the STAT3-Y705 phosphorylation levels and JAK1/2 expression levels in Hep3B, Huh7 and HepG2 cells. Furthermore, overexpression or knockdown of STAT3 could switch HCC cells between resistant and sensitive to sorafenib induced cell death, which could be partially due to its regulation on Mcl-1, an anti-apoptotic protein. Finally, both inhibitors of STAT3 SH2 domain (S3i-201) or STAT3 upstream kinases JAKs (JAK inhibitor I) could synergistically enhance sorafenib induced cell death. Taken together, these data strongly suggest that STAT3 is not only a downstream effector of sorafenib, but also a key regulator of cellular sensitivity to sorafenib induced cell death, which provide support for the notion to develop STAT3-targeting drugs to improve clinical efficacy of sorafenib in liver cancer.
Collapse
Affiliation(s)
- Linna Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China.,Department of Food and Bioengineering, Fujian Vocational College of Bioengineering, Fuzhou, Fujian, 350007, China
| | - Yanhua Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Zichan Dai
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Wensheng He
- Department of Food and Bioengineering, Fujian Vocational College of Bioengineering, Fuzhou, Fujian, 350007, China
| | - Huozhao Ke
- Department of Food and Bioengineering, Fujian Vocational College of Bioengineering, Fuzhou, Fujian, 350007, China
| | - Qiaofa Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Yan Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Jingjing Bu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Dexin Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Min Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China.,Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, Fujian Medical University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
46
|
Chiu CM, Huang SY, Chang SF, Liao KF, Chiu SC. Synergistic antitumor effects of tanshinone IIA and sorafenib or its derivative SC-1 in hepatocellular carcinoma cells. Onco Targets Ther 2018; 11:1777-1785. [PMID: 29636623 PMCID: PMC5881525 DOI: 10.2147/ott.s161534] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is the most common form of hepatic malignancy in the world. We aimed to determine the effect of tanshinone IIA (Tan-IIA) in combination with sorafenib or its derivative SC-1 on cytotoxicity, apoptosis, and metastasis in human HCC cells. Materials and methods Cytotoxicity was detected by MTT assay. Apoptosis and sub-G1 populations were analyzed by flow cytometry. Cell migration and invasion were evaluated by Transwell assay. Protein expression was detected by Western blot. Results Tan-IIA combined with sorafenib or SC-1 exerted synergistic cytotoxicity in HCC cells. Elevated proportions of sub-G1 and caspase activation were observed in the combinative treatments; in addition, marked inhibition of cell migration and invasion, which could be mediated by the modulation of epithelial–mesenchymal transition was observed. pSTAT3 levels were significantly reduced as well. Conclusion A combination therapy using Tan-IIA and sorafenib or SC-1 could be a promising approach to target HCC, and further preclinical investigations are warranted to establish their synergetic advantage.
Collapse
Affiliation(s)
- Chien-Ming Chiu
- Division of Colorectal Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Sung-Ying Huang
- Department of Ophthalmology, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Shu-Fang Chang
- Department of Research, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Kuan-Fu Liao
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.,Department of Internal Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Sheng-Chun Chiu
- Department of Research, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan.,Department of Laboratory Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan.,General Education Center, Tzu Chi University of Science and Technology, Hualien, Taiwan
| |
Collapse
|
47
|
Huang Y, Zhang Y, Ge L, Lin Y, Kwok HF. The Roles of Protein Tyrosine Phosphatases in Hepatocellular Carcinoma. Cancers (Basel) 2018; 10:cancers10030082. [PMID: 29558404 PMCID: PMC5876657 DOI: 10.3390/cancers10030082] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 02/08/2023] Open
Abstract
The protein tyrosine phosphatase (PTP) family is involved in multiple cellular functions and plays an important role in various pathological and physiological processes. In many chronic diseases, for example cancer, PTP is a potential therapeutic target for cancer treatment. In the last two decades, dozens of PTP inhibitors which specifically target individual PTP molecules were developed as therapeutic agents. Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and is the second most lethal cancer worldwide due to a lack of effective therapies. Recent studies have unveiled both oncogenic and tumor suppressive functions of PTP in HCC. Here, we review the current knowledge on the involvement of PTP in HCC and further discuss the possibility of targeting PTP in HCC.
Collapse
Affiliation(s)
- Yide Huang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| | - Yafei Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Lilin Ge
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yao Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| |
Collapse
|
48
|
Ding CH, Yin C, Chen SJ, Wen LZ, Ding K, Lei SJ, Liu JP, Wang J, Chen KX, Jiang HL, Zhang X, Luo C, Xie WF. The HNF1α-regulated lncRNA HNF1A-AS1 reverses the malignancy of hepatocellular carcinoma by enhancing the phosphatase activity of SHP-1. Mol Cancer 2018; 17:63. [PMID: 29466992 PMCID: PMC5822613 DOI: 10.1186/s12943-018-0813-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/08/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Our previous study has demonstrated that hepatocyte nuclear factor 1α (HNF1α) exerts potent therapeutic effects on hepatocellular carcinoma (HCC). However, the molecular mechanisms by which HNF1α reverses HCC malignancy need to be further elucidated. METHODS lncRNA microarray was performed to identify the long noncoding RNAs (lncRNAs) regulated by HNF1α. Chromatin immunoprecipitation and luciferase reporter assays were applied to clarify the mechanism of the transcriptional regulation of HNF1α to HNF1A antisense RNA 1 (HNF1A-AS1). The effect of HNF1A-AS1 on HCC malignancy was evaluated in vitro and in vivo. RNA pulldown, RNA-binding protein immunoprecipitation and the Bio-Layer Interferometry assay were used to validate the interaction of HNF1A-AS1 and Src homology region 2 domain-containing phosphatase 1 (SHP-1). RESULTS HNF1α regulated the expression of a subset of lncRNAs in HCC cells. Among these lncRNAs, the expression levels of HNF1A-AS1 were notably correlated with HNF1α levels in HCC cells and human HCC tissues. HNF1α activated the transcription of HNF1A-AS1 by directly binding to its promoter region. HNF1A-AS1 inhibited the growth and the metastasis of HCC cells in vitro and in vivo. Moreover, knockdown of HNF1A-AS1 reversed the suppressive effects of HNF1α on the migration and invasion of HCC cells. Importantly, HNF1A-AS1 directly bound to the C-terminal of SHP-1 with a high binding affinity (KD = 59.57 ± 14.29 nM) and increased the phosphatase activity of SHP-1. Inhibition of SHP-1 enzymatic activity substantially reversed the HNF1α- or HNF1A-AS1-induced reduction on the metastatic property of HCC cells. CONCLUSIONS Our data revealed that HNF1A-AS1 is a direct transactivation target of HNF1α in HCC cells and involved in the anti-HCC effect of HNF1α. HNF1A-AS1 functions as phosphatase activator through the direct interaction with SHP-1. These findings suggest that regulation of the HNF1α/HNF1A-AS1/SHP-1 axis may have beneficial effects in the treatment of HCC.
Collapse
Affiliation(s)
- Chen-Hong Ding
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Chuan Yin
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Shi-Jie Chen
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China
| | - Liang-Zhi Wen
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.,Present address: Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Kai Ding
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Shu-Juan Lei
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Jin-Pei Liu
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Jian Wang
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Kai-Xian Chen
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China
| | - Hua-Liang Jiang
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Cheng Luo
- Drug Discovery and Design Center, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences (CAS), Shanghai, 201203, China.
| | - Wei-Fen Xie
- Department of Gastroenterology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
49
|
Kim SH, Yoo HS, Joo MK, Kim T, Park JJ, Lee BJ, Chun HJ, Lee SW, Bak YT. Arsenic trioxide attenuates STAT-3 activity and epithelial-mesenchymal transition through induction of SHP-1 in gastric cancer cells. BMC Cancer 2018; 18:150. [PMID: 29409467 PMCID: PMC5801683 DOI: 10.1186/s12885-018-4071-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 01/29/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND We investigated the effect of arsenic trioxide (ATO) for inhibition of signal transducer and activator of transcription 3 (STAT3) and epithelial-mesenchymal transition (EMT) in gastric cancer cells, and the role of SH2 domain-containing phosphatase-1 (SHP-1) during this process. METHODS We used AGS cells, which showed minimal SHP-1 expression and constitutive STAT3 expression. After treatment of ATO, cellular migration and invasion were assessed by using wound closure assay, Matrigel invasion assay and 3-D culture invasion assay. To validate the role of SHP-1, pervanadate, a pharmacologic phosphatase inhibitor, and SHP-1 siRNA were used. Xenograft tumors were produced, and ATO or pervanadate were administered via intraperitoneal (IP) route. RESULTS Treatment of ATO 5 and 10 μM significantly decreased cellular migration and invasion in a dose-dependent manner. Western blot showed that ATO upregulated SHP-1 expression and downregulated STAT3 expression, and immunofluorescence showed upregulation with E-cadherin (epithelial marker) and downregulation of Snail1 (mesenchymal marker) expression by ATO treatment. Anti-migration and invasion effect and modulation of SHP-1/STAT3 axis by ATO were attenuated by pervanadate or SHP-1 siRNA. IP injection of ATO significantly decreased the xenograft tumor volume and upregulated SHP-1 expression, which were attenuated by co-IP injection of pervanadate. CONCLUSION Our data suggest that ATO inhibits STAT3 activity and EMT process by upregulation of SHP-1 in gastric cancer cells.
Collapse
Affiliation(s)
- Sung Ho Kim
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, 152-703, Republic of Korea
| | - Hyo Soon Yoo
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, 152-703, Republic of Korea
| | - Moon Kyung Joo
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, 152-703, Republic of Korea.
| | - Taehyun Kim
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, 152-703, Republic of Korea
| | - Jong-Jae Park
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, 152-703, Republic of Korea
| | - Beom Jae Lee
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, 152-703, Republic of Korea
| | - Hoon Jai Chun
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Anam Hospital, 73, Inchon-ro, Seongbuk-gu, Seoul, 136-705, Republic of Korea
| | - Sang Woo Lee
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Ansan Hospital, 123, Jeokgeum-ro, Danwon-gu, Ansan-si, Gyeonggi-do, 425-707, Republic of Korea
| | - Young-Tae Bak
- Division of Gastroenterology, Department of Internal Medicine, Korea University College of Medicine Guro Hospital, 148, Gurodong-ro, Guro-gu, Seoul, 152-703, Republic of Korea
| |
Collapse
|
50
|
Swamy SG, Kameshwar VH, Shubha PB, Looi CY, Shanmugam MK, Arfuso F, Dharmarajan A, Sethi G, Shivananju NS, Bishayee A. Targeting multiple oncogenic pathways for the treatment of hepatocellular carcinoma. Target Oncol 2017; 12:1-10. [PMID: 27510230 DOI: 10.1007/s11523-016-0452-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common forms of liver cancer diagnosed worldwide. HCC occurs due to chronic liver disease and is often diagnosed at advanced stages. Chemotherapeutic agents such as doxorubicin are currently used as first-line agents for HCC therapy, but these are non-selective cytotoxic molecules with significant side effects. Sorafenib, a multi-targeted tyrosine kinase inhibitor, is the only approved targeted drug for HCC patients. However, due to adverse side effects and limited efficacy, there is a need for the identification of novel pharmacological drugs beyond sorafenib. Several agents that target and inhibit various signaling pathways involved in HCC are currently being assessed for HCC treatment. In the present review article, we summarize the diverse signal transduction pathways responsible for initiation as well as progression of HCC and also the potential anticancer effects of selected targeted therapies that can be employed for HCC therapy.
Collapse
Affiliation(s)
- Supritha G Swamy
- Department of Biotechnology, JSS Science and Technology University, JSS Technical Institutions Campus, Mysore, Karnataka, 570006, India
| | - Vivek H Kameshwar
- Department of Biotechnology, JSS Science and Technology University, JSS Technical Institutions Campus, Mysore, Karnataka, 570006, India
| | - Priya B Shubha
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore, 570 006, Karnataka, India
| | - Chung Yeng Looi
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Frank Arfuso
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Bentley, Western Australia, 6009, Australia
| | - Arunasalam Dharmarajan
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Bentley, Western Australia, 6009, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Biosciences Research Precinct, Curtin University, Bentley, Western Australia, 6009, Australia
| | - Nanjunda Swamy Shivananju
- Department of Biotechnology, JSS Science and Technology University, JSS Technical Institutions Campus, Mysore, Karnataka, 570006, India.
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, 18301 N. Miami Avenue, Miami, FL, 33169, USA.
| |
Collapse
|