1
|
Ali Ibrahim Mze A, Abdul Rahman A. Repurposing the antipsychotic drug penfluridol for cancer treatment (Review). Oncol Rep 2024; 52:174. [PMID: 39513619 PMCID: PMC11541647 DOI: 10.3892/or.2024.8833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024] Open
Abstract
Cancer is one of the most prevalent diseases and the leading cause of death worldwide. Despite the improved survival rates of cancer in recent years, the current available treatments often face resistance and side effects. Drug repurposing represents a cost‑effective and efficient alternative to cancer treatment. Recent studies revealed that penfluridol (PF), an antipsychotic drug, is a promising anticancer agent. In the present study, a scoping review was conducted to ascertain the anticancer properties of PF. For this, a literature search was performed using the Scopus, PubMed and Web of Science databases with the search string 'penfluridol' AND 'cancer'. A total of 23 original articles with in vivo and/or in vitro studies on the effect of PF on cancer were included in the scoping review. The outcome of the analysis demonstrated the anticancer potential of PF. PF significantly inhibited cell proliferation, metastasis and invasion while inducing apoptosis and autophagy in vivo and across a spectrum of cancer cell lines, including breast, lung, pancreatic, glioblastoma, gallbladder, bladder, oesophageal, leukaemia and renal cancers. However, research on PF derivatives with high anticancer activities and reduced neurological side effects may be necessary.
Collapse
Affiliation(s)
- Asma Ali Ibrahim Mze
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Sungai Buloh, Selangor 47000, Malaysia
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Sungai Buloh, Sungai Buloh, Selangor 47000, Malaysia
| | - Amirah Abdul Rahman
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Universiti Teknologi MARA (UiTM), Cawangan Selangor, Kampus Sungai Buloh, Sungai Buloh, Selangor 47000, Malaysia
- Institute of Medical Molecular Biotechnology, Faculty of Medicine, Universiti Teknologi MARA (UiTM) Cawangan Selangor, Kampus Sungai Buloh, Sungai Buloh, Selangor 47000, Malaysia
| |
Collapse
|
2
|
Nguyen MT, Lee GJ, Kim B, Kim HJ, Tak J, Park MK, Kim EJ, Kang GJ, Rho SB, Lee H, Lee K, Kim SG, Lee CH. Penfluridol suppresses MYC-driven ANLN expression and liver cancer progression by disrupting the KEAP1-NRF2 interaction. Pharmacol Res 2024; 210:107512. [PMID: 39643070 DOI: 10.1016/j.phrs.2024.107512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 11/05/2024] [Accepted: 11/16/2024] [Indexed: 12/09/2024]
Abstract
Hepatocellular carcinoma (HCC) comprises the majority of primary liver cancers and possesses a low 5-year survival rate when in the advanced stages. Anillin (ANLN), a key player in cell growth and cytokinesis, is implicated in HCC development. Currently, no treatment agents are known to suppress ANLN. Analysis of The Cancer Genome Atlas data showed that high ANLN expression is associated with poor prognosis and survival in HCC patients. ANLN knockdown was shown to inhibit proliferation, cell cycle progression, and PD-L1 expression in liver cancer cells. The antipsychotic drug penfluridol was identified to suppress ANLN expression in the Connectivity Map analysis. Penfluridol downregulated ANLN at both the mRNA and protein levels, leading to G2/M cell cycle arrest and reduced colony formation in liver cancer cells. Mechanistically, penfluridol inhibited the transcription factor MYC from binding to an E-box motif in the ANLN promoter. This process was mediated by penfluridol-induced upregulation of NRF2, which competitively bound and sequestered MYC away from the ANLN promoter. Penfluridol inhibited the interaction between NRF2 and KEAP1, increasing NRF2. In a syngeneic mouse model, penfluridol suppressed liver tumour growth accompanied by increased NRF2 and decreased MYC and ANLN expression. These findings suggest penfluridol can be applied as the first ANLN blocker to modulate the MYC/NRF2/KEAP1 axis.
Collapse
Affiliation(s)
- Minh Tuan Nguyen
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Gi Jeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Boram Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Hyun Ji Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Jihoon Tak
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Mi Kyung Park
- Department of Bio-Healthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Eun Ji Kim
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gyeoung Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Seung Bae Rho
- National Cancer Center, Goyang 10408, Republic of Korea
| | - Ho Lee
- National Cancer Center, Goyang 10408, Republic of Korea
| | - Kyung Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Sang Geon Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea
| | - Chang Hoon Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University, Seoul 04620, Republic of Korea.
| |
Collapse
|
3
|
Johnson S, Yu Z, Li X, Zarei M, Vaziri-Gohar A, Lee M, Upadhyay S, Du H, Zarei M, Safe S. A novel NR4A2-HuR axis promotes pancreatic cancer growth and tumorigenesis that is inhibited by NR4A2 antagonists. Am J Cancer Res 2024; 14:4337-4352. [PMID: 39417168 PMCID: PMC11477821 DOI: 10.62347/kcpn6689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/18/2024] [Indexed: 10/19/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) patients' express higher levels of the orphan Nuclear Receptor 4A2 (NR4A2, NURR1) compared to normal pancreas and NR4A2 is a prognostic factor for patient survival. Knockdown of NR4A2 by RNA interference (RNAi) inhibited cell proliferation, invasion, and migration. RNA sequencing performed in NR4A2(+/+) and NR4A2(-/-) MiaPaCa2 cells demonstrated that NR4A2 played a significant role in cellular metabolism. Human antigen R (HuR) and isocitrate dehydrogenase 1 (IDH1) were identified as NR4A2 target genes. HuR is a pro-oncogenic RNA binding protein and silencing of HuR by RNAi significantly downregulated expression of NR4A2. Expression of HuR and IDH1 were significantly downregulated after treatment with NR4A2 inverse agonist, 1,1-bis(3'-indolyl)-1-(p-chlorophenyl)methane resulting in significant inhibition of tumor growth in an athymic nude mouse xenograft model. This study demonstrates that NR4A2 and HuR regulate genes and signaling pathways that enhance tumorigenesis and targeting NR4A2 and HuR expression with an NR4A2 inverse agonist represents a novel regimen for treating PDAC.
Collapse
Affiliation(s)
- Sneha Johnson
- Department of Veterinary Physiology and Pharmacology, Texas A&M UniversityCollege Station, TX, USA
| | - Zuhua Yu
- Department of Veterinary Physiology and Pharmacology, Texas A&M UniversityCollege Station, TX, USA
- Henan University of Science and TechnologyLuoyang, Henan, P. R. China
| | - Xi Li
- Department of Veterinary Physiology and Pharmacology, Texas A&M UniversityCollege Station, TX, USA
| | - Mehrdad Zarei
- Department of Surgery, University HospitalsCleveland, OH, USA
- School of Medicine, Case Western UniversityCleveland, OH, USA
| | - Ali Vaziri-Gohar
- Department of Surgery, University HospitalsCleveland, OH, USA
- School of Medicine, Case Western UniversityCleveland, OH, USA
| | - Miok Lee
- Department of Veterinary Physiology and Pharmacology, Texas A&M UniversityCollege Station, TX, USA
- Department of Biochemistry and Biophysics, Texas A&M UniversityCollege Station, TX, USA
| | - Srijana Upadhyay
- Department of Veterinary Physiology and Pharmacology, Texas A&M UniversityCollege Station, TX, USA
| | - Heng Du
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical SchoolBoston, MA, USA
| | - Mahsa Zarei
- Department of Veterinary Physiology and Pharmacology, Texas A&M UniversityCollege Station, TX, USA
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical SchoolBoston, MA, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M UniversityCollege Station, TX, USA
| |
Collapse
|
4
|
Kim WJ, Ryu JY, Chang CS, Cho YJ, Choi JJ, Hwang JR, Choi JY, Lee JW. Anticancer effect of the antipsychotic agent penfluridol on epithelial ovarian cancer. J Gynecol Oncol 2024; 36:36.e28. [PMID: 39223944 DOI: 10.3802/jgo.2025.36.e28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/26/2024] [Accepted: 07/14/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE Chemoresistant-epithelial ovarian cancer (EOC) has a poor prognosis, prompting the search for new therapeutic drugs. The diphenylbutylpiperidine (DPBP) class of antipsychotic drugs used in schizophrenia has shown anticancer effects. This study aimed to investigate the preclinical efficacy of penfluridol, fluspirilene, and pimozide (DPBP) using in vitro and in vivo models of EOC. METHODS Human EOC cell lines A2780, HeyA8, SKOV3ip1, A2780-CP20, HeyA8-MDR, and SKOV3-TR were treated with penfluridol, fluspirilene, and pimozide, and cell proliferation, apoptosis, and migration were assessed. The preclinical efficacy of DPBP was also investigated using in vivo mouse models, including cell lines and patient-derived xenografts (PDX) of EOC. RESULTS DPBP drugs significantly decreased cell proliferation in chemosensitive (A2780, HeyA8, and SKOV3ip1) and chemoresistant (A2780-CP20, HeyA8-MDR, and SKOV3-TR) cell lines. Among these drugs, penfluridol exerted a relatively stronger cytotoxic effect on all cell lines. Penfluridol significantly increased apoptosis and inhibited migration of EOC cells. In the cell line xenograft mouse model with HeyA8, the penfluridol group showed significantly decreased tumor weight compared with the control group. In the paclitaxel-resistant model with HeyA8-MDR, the penfluridol group had significantly decreased tumor weight compared with the paclitaxel or control groups. Penfluridol exerted anticancer effects on the PDX model. CONCLUSION Penfluridol exerted significant anticancer effects on EOC cells and xenograft models, including PDX. Thus, penfluridol therapy, as a drug repurposing strategy, might be a potential therapeutic for EOCs.
Collapse
Affiliation(s)
- Won-Ji Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji-Yoon Ryu
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chi-Son Chang
- Department of Obstetrics and Gynecology, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong, Korea
| | - Young-Jae Cho
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jung-Joo Choi
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Ryoung Hwang
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ju-Yeon Choi
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeong-Won Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
5
|
Zeng X, Lin GX, Zeng X, Zheng J, Ren C, Luo Z, Xiao K, Sun N, Zhang L, Rui G, Chen X. Penfluridol regulates p62 / Keap1 / Nrf2 signaling pathway to induce ferroptosis in osteosarcoma cells. Biomed Pharmacother 2024; 177:117094. [PMID: 38996707 DOI: 10.1016/j.biopha.2024.117094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
The cure rate for patients with osteosarcoma (OS) has stagnated over the past few decades. Penfluridol, a first-generation antipsychotic, has demonstrated to prevent lung and esophageal malignancies from proliferation and metastasis. However, the effect of penfluridol on OS and its underlying molecular mechanism remains unclear. This study revealed that penfluridol effectively inhibited cell proliferation and migration, and induced G2/M phase arrest in OS cells. In addition, penfluridol treatment was found to increased reactive oxygen species (ROS) levels in OS cells. Combined with the RNA-Seq results, the anti-OS effect of penfluridol was hypothesized to be attributed to the induction of ferroptosis. Western blot results showed that penfluridol promoted intracellular Fe2+ concentration, membrane lipid peroxidation, and decreased intracellular GSH level to induce ferroptosis. Further studies showed that p62/Keap1/Nrf2 signaling pathway was implicated in penfluridol-induced ferroptosis in OS cells. Overexpression of p62 effectively reversed penfluridol-induced ferroptosis. In vivo, penfluridol effectively inhibited proliferation and prolonged survival in xenograft tumor model. Therefore, penfluridol is a promising drug targeting OS in the future.
Collapse
Affiliation(s)
- Xiangchen Zeng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China; School of Medicine, Xiamen University, Xiamen 361102, China
| | - Guang-Xun Lin
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China; School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xianhui Zeng
- Department of Infectious Diseases, Hainan Women and Children's Medical Center, Hainan Medical University, Haikou 570206, China
| | - Jiyuan Zheng
- The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Chong Ren
- School of Medicine, Xiamen University, Xiamen 361102, China
| | - Zhong Luo
- School of Medicine, Xiamen University, Xiamen 361102, China
| | - Keyi Xiao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China; School of Medicine, Xiamen University, Xiamen 361102, China
| | - Naikun Sun
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China; School of Medicine, Xiamen University, Xiamen 361102, China
| | - Long Zhang
- Department of Pain, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.
| | - Gang Rui
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China; School of Medicine, Xiamen University, Xiamen 361102, China.
| | - Xiaohui Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361001, China; School of Medicine, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
6
|
Safe S. Natural products and synthetic analogs as selective orphan nuclear receptor 4A (NR4A) modulators. Histol Histopathol 2024; 39:543-556. [PMID: 38116863 PMCID: PMC11267491 DOI: 10.14670/hh-18-689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Although endogenous ligands for the orphan nuclear receptor 4A1 (NR4A1, Nur77), NR4A2 (Nurr1), and NR4A3 (Nor-1) have not been identified, several natural products and synthetic analogs bind NR4A members. These studies are becoming increasingly important since members of the NR4A subfamily of 3 receptors are potential drug targets for treating cancer and non-cancer endpoints and particularly those conditions associated with inflammatory diseases. Ligands that bind NR4A1, NR4A2, and NR4A3 including Cytosporone B, celastrol, bis-indole derived (CDIM) compounds, tryptophan/indolic, metabolites, prostaglandins, resveratrol, piperlongumine, fatty acids, flavonoids, alkaloids, peptides, and drug families including statins and antimalarial drugs. The structural diversity of NR4A ligands and their overlapping and unique effects on NR4A1, NR4A2, and NR4A3 suggest that NR4A ligands are selective NR4A modulators (SNR4AMs) that exhibit tissue-, structure-, and response-specific activities. The SNR4AM activities of NR4A ligands are exemplified among the Cytosporone B analogs where n-pentyl-2-[3,5-dihydroxy-2-(nonanoyl)]phenyl acetate (PDNPA) binds NR4A1, NR4A2 and NR4A3 but activates only NR4A1 and exhibits significant functional differences with other Cytosporone B analogs. The number of potential clinical applications of agents targeting NR4A is increasing and this should spur future development of SNR4AMs as therapeutics that act through NR4A1, NR4A2 and NR4A3.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
7
|
Safe S. Specificity Proteins (Sp) and Cancer. Int J Mol Sci 2023; 24:5164. [PMID: 36982239 PMCID: PMC10048989 DOI: 10.3390/ijms24065164] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/10/2023] Open
Abstract
The specificity protein (Sp) transcription factors (TFs) Sp1, Sp2, Sp3 and Sp4 exhibit structural and functional similarities in cancer cells and extensive studies of Sp1 show that it is a negative prognostic factor for patients with multiple tumor types. In this review, the role of Sp1, Sp3 and Sp4 in the development of cancer and their regulation of pro-oncogenic factors and pathways is reviewed. In addition, interactions with non-coding RNAs and the development of agents that target Sp transcription factors are also discussed. Studies on normal cell transformation into cancer cell lines show that this transformation process is accompanied by increased levels of Sp1 in most cell models, and in the transformation of muscle cells into rhabdomyosarcoma, both Sp1 and Sp3, but not Sp4, are increased. The pro-oncogenic functions of Sp1, Sp3 and Sp4 in cancer cell lines were studied in knockdown studies where silencing of each individual Sp TF decreased cancer growth, invasion and induced apoptosis. Silencing of an individual Sp TF was not compensated for by the other two and it was concluded that Sp1, Sp3 and Sp4 are examples of non-oncogene addicted genes. This conclusion was strengthened by the results of Sp TF interactions with non-coding microRNAs and long non-coding RNAs where Sp1 contributed to pro-oncogenic functions of Sp/non-coding RNAs. There are now many examples of anticancer agents and pharmaceuticals that induce downregulation/degradation of Sp1, Sp3 and Sp4, yet clinical applications of drugs specifically targeting Sp TFs are not being used. The application of agents targeting Sp TFs in combination therapies should be considered for their potential to enhance treatment efficacy and decrease toxic side effects.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
8
|
The role and application of transcriptional repressors in cancer treatment. Arch Pharm Res 2023; 46:1-17. [PMID: 36645575 DOI: 10.1007/s12272-023-01427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023]
Abstract
Gene expression is modulated through the integration of many regulatory elements and their associated transcription factors (TFs). TFs bind to specific DNA sequences and either activate or repress transcriptional activity. Through decades of research, it has been established that aberrant expression or functional abnormalities of TFs can lead to uncontrolled cell division and the development of cancer. Initial studies on transcriptional regulation in cancer have focused on TFs as transcriptional activators. However, recent studies have demonstrated several different mechanisms of transcriptional repression in cancer, which could be potential therapeutic targets for the development of specific anti-cancer agents. In the first section of this review, "Emerging roles of transcriptional repressors in cancer development," we summarize the current understanding of transcriptional repressors and their involvement in the molecular processes of cancer progression. In the subsequent section, "Therapeutic applications," we provide an updated overview of the available therapeutic targets for drug discovery and discuss the new frontier of such applications.
Collapse
|
9
|
Liu Z, Wei X, Gao Y, Gao X, Li X, Zhong Y, Wang X, Liu C, Shi T, Lv J, Liu T. Zbtb34 promotes embryonic stem cell proliferation by elongating telomere length. Aging (Albany NY) 2022; 14:7126-7136. [PMID: 36098743 PMCID: PMC9512507 DOI: 10.18632/aging.204285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022]
Abstract
Zbtb34 is a novel zinc finger protein, which is revealed by biological software analysis to have 3 zinc fingers, but its functions remain unknown. In this study, mouse Zbtb34 cDNA was amplified by PCR and inserted into the plasmid pEGFP-N1 to generate Zbtb34-EGFP fusion protein. The upregulation of Zbtb34 in mouse embryonic stem cells promoted telomere elongation and increased cell proliferation. In order to understand the above phenomena, the telomere co-immunoprecipitation technique was employed to investigate the relationship between Zbtb34 and telomeres. The results indicated that Zbtb34 could bind to the DNA sequences of the telomeres. Alanine substitution of the third zinc finger abolished such binding. Since Pot1 is the only protein binding to the single-stranded DNA at the end of the telomeres, we further investigated the relationship between Zbtb34 and Pot1. The results revealed that the upregulation of Zbtb34 decreased the binding of Pot1b to the telomeres. Through the upregulation of Pot1b, the binding of Zbtb34 to the telomeres was also reduced. In conclusion, we showed that the main biological function of Zbtb34 was to bind telomere DNA via its third ZnF, competing with Pot1b for the binding sites, resulting in telomere elongation and cell proliferation.
Collapse
Affiliation(s)
- Zheng Liu
- College of Medical Laboratory Science, Guilin Medical University, Guilin, Guangxi 541004, China
- Guihang Guiyang Hospital Affiliated to Zunyi Medical University, Guiyang, Guizhou 550027, China
| | - Xinran Wei
- College of Medical Laboratory Science, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Yue Gao
- College of Medical Laboratory Science, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Xiaodie Gao
- College of Medical Laboratory Science, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Xia Li
- Clinical Laboratory, Hospital Affiliated to Guilin Medical University, Guilin, Guangxi 541001, China
| | - Yujuan Zhong
- College of Medical Laboratory Science, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Xiujuan Wang
- College of Medical Laboratory Science, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Chong Liu
- College of Medical Laboratory Science, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Tianle Shi
- College of Medical Laboratory Science, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Jiabin Lv
- College of Medical Laboratory Science, Guilin Medical University, Guilin, Guangxi 541004, China
| | - Tao Liu
- Guihang Guiyang Hospital Affiliated to Zunyi Medical University, Guiyang, Guizhou 550027, China
| |
Collapse
|
10
|
Brown JS. Treatment of cancer with antipsychotic medications: Pushing the boundaries of schizophrenia and cancer. Neurosci Biobehav Rev 2022; 141:104809. [PMID: 35970416 DOI: 10.1016/j.neubiorev.2022.104809] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 10/15/2022]
Abstract
Over a century ago, the phenothiazine dye, methylene blue, was discovered to have both antipsychotic and anti-cancer effects. In the 20th-century, the first phenothiazine antipsychotic, chlorpromazine, was found to inhibit cancer. During the years of elucidating the pharmacology of the phenothiazines, reserpine, an antipsychotic with a long historical background, was likewise discovered to have anti-cancer properties. Research on the effects of antipsychotics on cancer continued slowly until the 21st century when efforts to repurpose antipsychotics for cancer treatment accelerated. This review examines the history of these developments, and identifies which antipsychotics might treat cancer, and which cancers might be treated by antipsychotics. The review also describes the molecular mechanisms through which antipsychotics may inhibit cancer. Although the overlap of molecular pathways between schizophrenia and cancer have been known or suspected for many years, no comprehensive review of the subject has appeared in the psychiatric literature to assess the significance of these similarities. This review fills that gap and discusses what, if any, significance the similarities have regarding the etiology of schizophrenia.
Collapse
|
11
|
Hu J, Cao J, Jin R, Zhang B, Topatana W, Juengpanich S, Li S, Chen T, Lu Z, Cai X, Chen M. Inhibition of AMPK/PFKFB3 mediated glycolysis synergizes with penfluridol to suppress gallbladder cancer growth. Cell Commun Signal 2022; 20:105. [PMID: 35842652 PMCID: PMC9288071 DOI: 10.1186/s12964-022-00882-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/12/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Penfluridol (PF) is an FDA-approved antipsychotic drug that has recently been shown to have anticancer activity. However, the anticancer effects and underlying mechanisms of PF are not well-established in gallbladder cancer (GBC). METHODS The anticancer efficacy of PF on GBC was investigated via a series of cell functions experiments, including cell viability, colony formation, apoptosis assays, and so on. The corresponding signaling changes after PF treatment were explored by western blotting. Then, nude mice were utilized to study and test the anticancer activity of PF in vivo. Besides, glucose consumption and lactic production assays were used to detect the glycolysis alteration. RESULTS In this study, we discovered that PF greatly inhibited the proliferation and invasion ability of GBC cells (GBCs). The glucose consumption and lactic generation ability of GBCs were dramatically elevated following PF treatment. Additionally, we discovered that inhibiting glycolysis could improve PF's anticancer efficacy. Further studies established that the activation of the AMPK/PFKFB3 signaling pathway medicated glycolysis after PF treatment. We proved mechanistically that inhibition of AMPK/PFKFB3 singling pathway mediated glycolysis was a potential synergetic strategy to improve the anticancer efficacy of PF on GBC. CONCLUSIONS By inhibiting AMPK, the anticancer effects of PF on GBCs were amplified. As a result, our investigations shed new light on the possibility of repurposing PF as an anticancer drug for GBC, and AMPK inhibition in combination with PF may represent a novel therapeutic strategy for GBC. Video abstract.
Collapse
Affiliation(s)
- Jiahao Hu
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Provinc, China
| | - Jiasheng Cao
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Provinc, China
| | - Ren'an Jin
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China
| | - Bin Zhang
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Provinc, China
| | - Win Topatana
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Provinc, China
| | - Sarun Juengpanich
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Provinc, China
| | - Shijie Li
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Provinc, China
| | - Tian'en Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.,School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Provinc, China
| | - Ziyi Lu
- School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Provinc, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China. .,School of Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang Provinc, China. .,Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China. .,Zhejiang Minimal Invasive Diagnosis and Treatment Technology Research Center of Severe Hepatobiliary Disease, Hangzhou, China. .,Zhejiang Research and Development Engineering Laboratory of Minimally Invasive Technology and Equipment, Hangzhou, China.
| | - Mingyu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China. .,Key Laboratory of Laparoscopic Technique Research of Zhejiang Province, No. 3 East Qingchun Road, Hangzhou, 310016, Zhejiang Province, China.
| |
Collapse
|
12
|
Zhang L, Martin G, Mohankumar K, Hampton JT, Liu WR, Safe S. RESVERATROL BINDS NUCLEAR RECEPTOR 4A1 (NR4A1) AND ACTS AS AN NR4A1 ANTAGONIST IN LUNG CANCER CELLS. Mol Pharmacol 2022; 102:MOLPHARM-AR-2021-000481. [PMID: 35680166 PMCID: PMC9341251 DOI: 10.1124/molpharm.121.000481] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/27/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022] Open
Abstract
Resveratrol is a polyphenolic phytochemical found in fruits, nuts and vegetables that contributes to the remarkable dietary effects of polyphenolic as inhibitors aging and multiple aging related diseases. In addition, resveratrol has been extensively investigated as an inhibitor of inflammatory diseases including cancer, however, the underlying mechanisms of these chemotherapeutic effects of resveratrol are not completely understood. In cancer cells resveratrol inhibits cell growth, survival, migration and invasion, and many of the effects of resveratrol resemble those observed for bis-indole derived (CDIM) compounds that bind the pro-oncogenic nuclear receptor 4A1 (NR4A1, Nur77) and act as receptor antagonists. Using an isothermal titration calorimetry binding assay, we observed that resveratrol bound to the ligand binding domain of NR4A1 with a KD value of 2.4 µM and a ΔG of -32.2 kJ/mol. Resveratrol also inhibited NR4A1-dependent transactivation in H460 and H1299 lung cancer cells suggesting that resveratrol is an NR4A1 antagonist. This observation was confirmed in a series of functional (cell proliferation, survival, migration and invasion) and gene expression assays in H460 and H1299 cells showing that treatment with resveratrol mimicked the effects of NR4A1 knockdown and were similar to results of previous studies using CDIM/NR4A1 antagonists. These data indicate that applications of resveratrol may be more effective in patients that overexpress NR4A1 which is a negative prognostic factor for patients with some solid tumor-derived cancers. Significance Statement We have examined the mechanism of action of resveratrol and show binding to NR4A1 (KD = 2.4 µM) and inhibition of NR4A1-dependent transactivation in lung cancer cells. Treatment of H460 and H1299 lung cancer cells with resveratrol inhibits cell growth, survival, migration/invasion and related genes, and acts as an NR4A1 antagonist. Resveratrol can now be used more effectively in cancer chemotherapy by targeting patients that overexpress NR4A1 in lung cancer.
Collapse
Affiliation(s)
- Lei Zhang
- Veterinary Physiology & Pharmacology, Texas A&M University, United States
| | - Greg Martin
- Veterinary Physiology & Pharmacology, Texas A&M University, United States
| | | | | | | | - Stephen Safe
- Veterinary Physiology and Pharmacology, Texas A&M University, United States
| |
Collapse
|
13
|
Chen YH, Liu RH, Cui YZ, Hettinghouse A, Fu WY, Zhang L, Zhang C, Liu CJ. Penfluridol targets acid sphingomyelinase to inhibit TNF signaling and is therapeutic against inflammatory autoimmune diseases. Arthritis Res Ther 2022; 24:27. [PMID: 35045889 PMCID: PMC8767691 DOI: 10.1186/s13075-021-02713-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/23/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Penfluridol, isolated from an FDA-approved small-molecule drug library as an inhibitor of tumor necrosis factor α (TNFα)-stimulated NF-κB activation, is clinically used to treat chronic schizophrenia and related disorders. This study is aimed to investigate the therapeutic effect of penfluridol on TNFα-stimulated inflammatory autoimmune diseases, particularly inflammatory arthritis. METHODS Various in vitro studies to confirm the inhibitory effect of penfluridol on TNFα-induced NF-κB activity in bone marrow-derived macrophages or Raw 264.7 macrophage cell line. In vivo studies assessed the therapeutic effects of penfluridol in various disease models, including TNFα transgenic mice, collagen-induced arthritis, DSS-induced colitis, and TNBS-induced colitis. Identification and characterization of the binding of penfluridol to acid sphingomyelinase using bioinformatics and drug affinity responsive target stability assay. Acid sphingomyelinase activity assays to reveal penfluridol-mediated inhibition of acid sphingomyelinase activity. siRNA knockdown experiments to illustrate the dependence of penfluridol's anti-TNF activity on acid sphingomyelinase. RESULTS Penfluridol effectively inhibited TNFα-induced NF-κB activation in vitro and alleviated the severity of arthritis and colitis in vivo. Mechanistic studies revealed that penfluridol bound to acid sphingomyelinase and inhibited its activation. In addition, knockdown of acid sphingomyelinase largely abolished the inhibitory effects of penfluridol on TNFα-induced inflammatory cytokine production. Furthermore, penfluridol suppressed the differentiation of spleen naive CD4+T cells to TH1 and TH17 and inhibited M1 macrophage polarization. CONCLUSION This study provides the rationale for the possible innovative use of penfluridol as a newly identified small-molecule drug for TNFα-driven diseases, such as inflammatory arthritis and colitis.
Collapse
Affiliation(s)
- Yue-Hong Chen
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, Rm 1608, HJD, 301 East 17th Street, New York, NY, 10003, USA
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, 610000, China
| | - Rong-Han Liu
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, Rm 1608, HJD, 301 East 17th Street, New York, NY, 10003, USA
| | - Ya-Zhou Cui
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, Rm 1608, HJD, 301 East 17th Street, New York, NY, 10003, USA
| | - Aubryanna Hettinghouse
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, Rm 1608, HJD, 301 East 17th Street, New York, NY, 10003, USA
| | - Wen-Yu Fu
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, Rm 1608, HJD, 301 East 17th Street, New York, NY, 10003, USA
| | - Lei Zhang
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, Rm 1608, HJD, 301 East 17th Street, New York, NY, 10003, USA
| | - Chen Zhang
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, Rm 1608, HJD, 301 East 17th Street, New York, NY, 10003, USA
| | - Chuan-Ju Liu
- Department of Orthopaedic Surgery, New York University Grossman School of Medicine, Rm 1608, HJD, 301 East 17th Street, New York, NY, 10003, USA.
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
14
|
Inhibition of Growth of Colon Tumors and Proliferation of HT-29 Cells by Warburgia ugandensis Extract through Mediating G 0/G 1 Cell Cycle Arrest, Cell Apoptosis, and Intracellular ROS Generation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:8807676. [PMID: 35003521 PMCID: PMC8736697 DOI: 10.1155/2021/8807676] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/18/2021] [Accepted: 11/30/2021] [Indexed: 01/05/2023]
Abstract
Warburgia ugandensis Sprague (W. ugandensis), widely distributed in Africa, is a traditional medicinal plant used for the treatment of various diseases including cancer. We intended to evaluate the anticolorectal cancer (CRC) activities of the crude extract from W. ugandensis (WUD) and reveal the underlying molecular mechanisms of its action. We found that WUD inhibited the proliferation of HT-29 and HCT116 cells in a time- and dose-dependent manner and induced intracellular ROS generation. The inhibitory effect of WUD on the proliferation of HT-29 and HCT116 cells could be attenuated by NAC (a ROS scavenger) in a dose-dependent manner. WUD induced G0/G1 phase arrest, down-regulated the protein expression of Cyclin D1 via ROS accumulation in HT-29 cells. In search of the molecular mechanism involved in WUD-induced Cyclin D1 down-regulation, it was found that WUD can suppress PI3K/Akt/GSK3β signaling pathway in HT-29 cells. Next, it was found that WUD also activated apoptosis, poly-ADP ribose polymerase 1 (PARP1) cleavage and down-regulated pro-caspase 3 in HT-29 and HCT116 cells. Besides, WUD decreased the growth of colon tumors in vivo in the xenograft mouse model. We demonstrated for the first time that ROS and their modulation in the corresponding intracellular signaling could play a significant role in the potential activity of WUD against CRC cells.
Collapse
|
15
|
Mohankumar K, Shrestha R, Safe S. Nuclear receptor 4A1 (NR4A1) antagonists target paraspeckle component 1 (PSPC1) in cancer cells. Mol Carcinog 2022; 61:73-84. [PMID: 34699643 PMCID: PMC8665050 DOI: 10.1002/mc.23362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 01/03/2023]
Abstract
Paraspeckles compound 1 (PSPC1) is a multifunctional protein that plays an important role in cancer cells, where PSPC1 is a master regulator of pro-oncogenic responses that includes activation of TGFβ (TGFβ1), TGFβ-dependent EMT, and metastasis. The pro-oncogenic activities of PSPC1 closely resembled those observed for the orphan nuclear receptor 4A1 (NR4A1, Nur77) and knockdown of NR4A1 decreased expression of PSPC1 in MDA-MB-231 breast, H1299 lung, and SNU449 liver cancer cells. Similar results were observed in these same cell lines after treatment with bisindole-derived (CDIMs) NR4A1 antagonists. Moreover, PSPC1-dependent regulation of TGFβ, genes associated with cancer stem cells and epithelial to mesenchymal transition (EMT) were also downregulated after NR4A1 silencing or treatment of breast, lung, and liver cancer cells with CDIM/NR4A1 antagonists. Results of chromatin immunoprecipitation (ChIP) assays suggest that NR4A1 regulates PSPC1 through interaction with an NBRE sequence in the PSPC1 gene promoter. These results coupled with in vivo studies showing that NR4A1 antagonists inhibit breast tumor growth and downregulate PSPC1 in tumors indicate that the pro-oncogenic nuclear PSPC1 factor can be targeted by CDIM/NR4A1 antagonists.
Collapse
Affiliation(s)
- Kumaravel Mohankumar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843 USA
| | - Rupesh Shrestha
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, USA, 77843
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
16
|
Safe S, Shrestha R, Mohankumar K. Orphan nuclear receptor 4A1 (NR4A1) and novel ligands. Essays Biochem 2021; 65:877-886. [PMID: 34096590 PMCID: PMC11410023 DOI: 10.1042/ebc20200164] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022]
Abstract
The nuclear receptor (NR) superfamily of transcription factors encodes expression of 48 human genes that are important for maintaining cellular homeostasis and in pathophysiology, and this has been observed for all sub-families including orphan receptors for which endogenous ligands have not yet been identified. The orphan NR4A1 (Nur77 and TR3) and other members of this sub-family (NR4A2 and NR4A3) are immediate early genes induced by diverse stressors, and these receptors play an important role in the immune function and are up-regulated in some inflammatory diseases including solid tumors. Although endogenous ligands for NR4A have not been identified, several different classes of compounds have been characterized as NR4A1 ligands that bind the receptor. These compounds include cytosporone B and structurally related analogs, bis-indole derived (CDIM) compounds, the triterpenoid celastrol and a number of other chemicals including polyunsaturated fatty acids. NR4A1 ligands bind different regions/surfaces of NR4A1 and exhibit selective NR4A1 modulator (SNR4AM) activities that are dependent on ligand structure and cell/tissue context. NR4A1 ligands exhibit pharmacologic activities in studies on cancer, endometriosis metabolic and inflammatory diseases and are promising agents with clinical potential for treating multiple diseases.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, U.S.A
| | - Rupesh Shrestha
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, U.S.A
| | - Kumaravel Mohankumar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, U.S.A
| |
Collapse
|
17
|
Malik JA, Ahmed S, Jan B, Bender O, Al Hagbani T, Alqarni A, Anwar S. Drugs repurposed: An advanced step towards the treatment of breast cancer and associated challenges. Biomed Pharmacother 2021; 145:112375. [PMID: 34863612 DOI: 10.1016/j.biopha.2021.112375] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 02/09/2023] Open
Abstract
Breast cancer (BC) is mostly observed in women and is responsible for huge mortality in women subjects globally. Due to the continued development of drug resistance and other contributing factors, the scientific community needs to look for new alternatives, and drug repurposing is one of the best opportunities. Here we light upon the drug repurposing with a major focus on breast cancer. BC is a division of cancer known as the leading cause of death of 2.3 million women globally, with 685,000 fatalities. This number is steadily rising, necessitating the development of a treatment that can extend survival time. All available treatments for BC are very costly as well as show side effects. This unfulfilled requirement of the anti-cancer drugs ignited an enthusiasm for drug repositioning, which means finding out the anti-cancer use of already marketed drugs for other complications. With the advancement in proteomics, genomics, and computational approaches, the drug repurposing process hastens. So many drugs are repurposed for the BC, including alkylating agents, antimetabolite, anthracyclines, an aromatase inhibitor, mTOR, and many more. The drug resistance in breast cancer is rising, so reviewing how the challenges in breast cancer can be combated with drug repurposing. This paper provides the updated information on all the repurposed drugs candidates for breast cancer with the molecular mechanism responsible for their anti-tumor activity. Additionally, all the challenges that occur during the repurposing of the drugs are discussed.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, India; Department of Biomedical engineering, Indian Institute of Technology (IIT), Ropar, Punjab, India
| | - Sakeel Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali, India
| | - Bisma Jan
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India
| | - Onur Bender
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Aali Alqarni
- Pharmaceutical Chemistry Department, Pharmacology unit, College of Clinical Pharmacy, Al Baha University, Saudi Arabia
| | - Sirajudheen Anwar
- Pharmacology and Toxicology Department, College of Pharmacy, University of Hail, Hail, Saudi Arabia.
| |
Collapse
|
18
|
Repurposing Antipsychotics for Cancer Treatment. Biomedicines 2021; 9:biomedicines9121785. [PMID: 34944601 PMCID: PMC8698939 DOI: 10.3390/biomedicines9121785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/21/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022] Open
Abstract
Cancer is a leading cause of death worldwide, with approximately 19 million new cases each year. Lately, several novel chemotherapeutic drugs have been introduced, efficiently inhibiting tumor growth and proliferation. However, developing a new drug is a time- and money-consuming process, requiring around 1 billion dollars and nearly ten years, with only a minority of the initially effective anti-cancer drugs experimentally finally being efficient in human clinical trials. Drug repurposing for cancer treatment is an optimal alternative as the safety of these drugs has been previously tested, and thus, in case of successful preclinical studies, can be introduced faster and with a lower cost into phase 3 clinical trials. Antipsychotic drugs are associated with anti-cancer properties and, lately, there has been an increasing interest in their role in cancer treatment. In the present review, we discussed in detail the in-vitro and in-vivo properties of the most common typical and atypical antipsychotics, along with their mechanism of action.
Collapse
|
19
|
Hung WY, Lee WJ, Cheng GZ, Tsai CH, Yang YC, Lai TC, Chen JQ, Chung CL, Chang JH, Chien MH. Blocking MMP-12-modulated epithelial-mesenchymal transition by repurposing penfluridol restrains lung adenocarcinoma metastasis via uPA/uPAR/TGF-β/Akt pathway. Cell Oncol (Dordr) 2021; 44:1087-1103. [PMID: 34319576 DOI: 10.1007/s13402-021-00620-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/11/2021] [Indexed: 01/30/2023] Open
Abstract
PURPOSE Metastasis of lung adenocarcinoma (LADC) is a crucial factor determining patient survival. Repurposing of the antipsychotic agent penfluridol has been found to be effective in the inhibition of growth of various cancers. As yet, however, the anti-metastatic effect of penfluridol on LADC has rarely been investigated. Herein, we addressed the therapeutic potential of penfluridol on the invasion/metastasis of LADC cells harboring different epidermal growth factor receptor (EGFR) mutation statuses. METHODS MTS viability, transwell migration and invasion, and tumor endothelium adhesion assays were employed to determine cytotoxic and anti-metastatic effects of penfluridol on LADC cells. Protease array, Western blot, immunohistochemistry (IHC), immunofluorescence (IF) staining, and expression knockdown by shRNA or exogenous overexpression by DNA plasmid transfection were performed to explore the underlying mechanisms, both in vitro and in vivo. RESULTS We found that nontoxic concentrations of penfluridol reduced the migration, invasion and adhesion of LADC cells. Protease array screening identified matrix metalloproteinase-12 (MMP-12) as a potential target of penfluridol to modulate the motility and adhesion of LADC cells. In addition, we found that MMP-12 exhibited the most significantly adverse prognostic effect in LADC among 39 cancer types. Mechanistic investigations revealed that penfluridol inhibited the urokinase plasminogen activator (uPA)/uPA receptor/transforming growth factor-β/Akt axis to downregulate MMP-12 expression and, subsequently, reverse MMP-12-induced epithelial-mesenchymal transition (EMT). Subsequent analysis of clinical LADC samples revealed a positive correlation between MMP12 and mesenchymal-related gene expression levels. A lower survival rate was found in LADC patients with a SNAl1high/MMP12high profile compared to those with a SNAl1low/MMP12low profile. CONCLUSIONS Our results indicate that MMP-12 may serve as a useful biomarker for predicting LADC progression and as a promising penfluridol target for treating metastatic LADC.
Collapse
Affiliation(s)
- Wen-Yueh Hung
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, 11031, Taipei, Taiwan
| | - Wei-Jiunn Lee
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Guo-Zhou Cheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, 11031, Taipei, Taiwan
| | - Ching-Han Tsai
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, 11031, Taipei, Taiwan
| | - Yi-Chieh Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, 11031, Taipei, Taiwan
- Department of Medical Research, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Tsung-Ching Lai
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Hsing Long Road, Section 3, Taipei, 11696, Taiwan
| | - Ji-Qing Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, 11031, Taipei, Taiwan
- Department of Cancer Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Chi-Li Chung
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Jer-Hwa Chang
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Hsing Long Road, Section 3, Taipei, 11696, Taiwan.
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan.
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, 11031, Taipei, Taiwan.
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
20
|
Ashraf-Uz-Zaman M, Shahi S, Akwii R, Sajib MS, Farshbaf MJ, Kallem RR, Putnam W, Wang W, Zhang R, Alvina K, Trippier PC, Mikelis CM, German NA. Design, synthesis and structure-activity relationship study of novel urea compounds as FGFR1 inhibitors to treat metastatic triple-negative breast cancer. Eur J Med Chem 2021; 209:112866. [PMID: 33039722 PMCID: PMC7744370 DOI: 10.1016/j.ejmech.2020.112866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive type of cancer characterized by higher metastatic and reoccurrence rates, where approximately one-third of TNBC patients suffer from the metastasis in the brain. At the same time, TNBC shows good responses to chemotherapy, a feature that fuels the search for novel compounds with therapeutic potential in this area. Recently, we have identified novel urea-based compounds with cytotoxicity against selected cell lines and with the ability to cross the blood-brain barrier in vivo. We have synthesized and analyzed a library of more than 40 compounds to elucidate the key features responsible for the observed activity. We have also identified FGFR1 as a molecular target that is affected by the presence of these compounds, confirming our data using in silico model. Overall, we envision that these compounds can be further developed for the potential treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Md Ashraf-Uz-Zaman
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Sadisna Shahi
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Racheal Akwii
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Md Sanaullah Sajib
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | | | - Raja Reddy Kallem
- Clinical Pharmacology & Experimental Therapeutics Center, Texas Tech University Health Sciences Center, Dallas, TX, USA
| | - William Putnam
- Clinical Pharmacology & Experimental Therapeutics Center, Texas Tech University Health Sciences Center, Dallas, TX, USA
| | - Wei Wang
- College of Pharmacy, University of Houston, Houston, TX, USA
| | - Ruiwen Zhang
- College of Pharmacy, University of Houston, Houston, TX, USA
| | - Karina Alvina
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA; Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA; UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Nadezhda A German
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
21
|
Shrestha R, Mohankumar K, Jin UH, Martin G, Safe S. The Histone Methyltransferase Gene G9A Is Regulated by Nuclear Receptor 4A1 in Alveolar Rhabdomyosarcoma Cells. Mol Cancer Ther 2020; 20:612-622. [PMID: 33277444 DOI: 10.1158/1535-7163.mct-20-0474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/09/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022]
Abstract
The histone methyltransferase G9A (EHMT2) gene catalyzes methylation of histone 3 lysine 9 (H3K9), and this gene silencing activity contributes to the tumor promoter-like activity of G9A in several tumor types including alveolar rhabdomyosarcoma (ARMS). Previous studies show the orphan nuclear receptor 4A1 (NR4A1, Nur77) is overexpressed in rhabdomyosarcoma and exhibits pro-oncogenic activity. In this study, we show that knockdown of NR4A1 in ARMS cells decreased expression of G9A mRNA and protein. Moreover, treatment of ARMS cells with several bis-indole-derived NR4A1 ligands (antagonists) including 1,1-bis(3'-indolyl)-1-(4-hydroxyphenyl)methane (CDIM8), 3,5-dimethyl (3,5-(CH3)2), and 3-bromo-5-methoxy (3-Br-5-OCH3) analogs also decreased G9A expression. Furthermore, NR4A1 antagonists also decreased G9A expression in breast, lung, liver, and endometrial cancer cells confirming that G9A is an NR4A1-regulated gene in ARMS and other cancer cell lines. Mechanistic studies showed that the NR4A1/Sp1 complex interacted with the GC-rich 511 region of the G9A promoter to regulate G9A gene expression. Moreover, knockdown of NR4A1 or treatment with NR4A1 receptor antagonists decreased overall H3K9me2, H3K9me2 associated with the PTEN promoter, and PTEN-regulated phospho-Akt. In vivo studies showed that the NR4A1 antagonist (3-Br-5-OCH3) inhibited tumor growth in athymic nude mice bearing Rh30 ARMS cells and confirmed that G9A was an NR4A1-regulated gene that can be targeted by NR4A1 receptor antagonists.
Collapse
Affiliation(s)
- Rupesh Shrestha
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Kumaravel Mohankumar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Un-Ho Jin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Gregory Martin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Stephen Safe
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas. .,Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| |
Collapse
|
22
|
Safe S, Karki K. The Paradoxical Roles of Orphan Nuclear Receptor 4A (NR4A) in Cancer. Mol Cancer Res 2020; 19:180-191. [PMID: 33106376 DOI: 10.1158/1541-7786.mcr-20-0707] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/22/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022]
Abstract
The three-orphan nuclear receptor 4A genes are induced by diverse stressors and stimuli, and there is increasing evidence that NR4A1 (Nur77), NR4A2 (Nurr1), and NR4A3 (Nor1) play an important role in maintaining cellular homeostasis and in pathophysiology. In blood-derived tumors (leukemias and lymphomas), NR4A expression is low and NR4A1-/-/NR4A3-/- double knockout mice rapidly develop acute myelocytic leukemia, suggesting that these receptors exhibit tumor suppressor activity. Treatment of leukemia and most lymphoma cells with drugs that induce expression of NR4A1and NR4A3 enhances apoptosis, and this represents a potential clinical application for treating this disease. In contrast, most solid tumor-derived cell lines express high levels of NR4A1 and NR4A2, and both receptors exhibit pro-oncogenic activities in solid tumors, whereas NR4A3 exhibits tumor-specific activities. Initial studies with retinoids and apoptosis-inducing agents demonstrated that their cytotoxic activity is NR4A1 dependent and involved drug-induced nuclear export of NR4A1 and formation of a mitochondrial proapoptotic NR4A1-bcl-2 complex. Drug-induced nuclear export of NR4A1 has been reported for many agents/biologics and involves interactions with multiple mitochondrial and extramitochondrial factors to induce apoptosis. Synthetic ligands for NR4A1, NR4A2, and NR4A3 have been identified, and among these compounds, bis-indole derived (CDIM) NR4A1 ligands primarily act on nuclear NR4A1 to inhibit NR4A1-regulated pro-oncogenic pathways/genes and similar results have been observed for CDIMs that bind NR4A2. Based on results of laboratory animal studies development of NR4A inducers (blood-derived cancers) and NR4A1/NR4A2 antagonists (solid tumors) may be promising for cancer therapy and also for enhancing immune surveillance.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas.
| | - Keshav Karki
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| |
Collapse
|
23
|
Wang NN, Zhang PZ, Zhang J, Wang HN, Li L, Ren F, Dai PF, Li H, Lv XF. Penfluridol triggers mitochondrial-mediated apoptosis and suppresses glycolysis in colorectal cancer cells through down-regulating hexokinase-2. Anat Rec (Hoboken) 2020; 304:520-530. [PMID: 32470200 DOI: 10.1002/ar.24464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/01/2020] [Accepted: 03/22/2020] [Indexed: 01/22/2023]
Abstract
Penfluridol, a commonly used antipsychotic agent in a clinical setting, exhibits potential anticancer properties against various human malignancies. Here, we investigated the effect of penfluridol on the biological behavior of colorectal cancer (CRC) cells. Cell viability and clonogenic potential were detected by the cell counting kit-8 and colony formation assay. The cell apoptosis and cell cycle distribution were quantified through flow cytometry. Caspase-3 activity, glucose consumption, lactate production, and intracellular ATP levels were evaluated using the corresponding commercial detection kits. The protein levels of related genes were detected through western blotting. Mitochondrial membrane potential was detected using JC-1 staining. A CRC xenograft tumor model was used to validate the antitumor activity of penfluridol in vivo. Penfluridol reduced cell survival and promoted apoptotic cell death effectively through the mitochondria-mediated intrinsic pathway in a dose-dependent manner. Furthermore, the process of glycolysis in HCT-116 and HT-29 cells was inhibited upon penfluridol treatment, as evidenced by the decrease in glucose consumption, lactate production, and intracellular ATP levels. Further mechanistic studies revealed that penfluridol influenced cell apoptosis and glycolysis in CRC cells by downregulating hexokinase-2 (HK-2). The proapoptotic effect and glycolytic inhibition-induced by penfluridol were effectively reversed by HK-2 overexpression. Consistent with in vitro results, penfluridol could also suppress tumor growth and trigger apoptosis in vivo. Penfluridol triggers mitochondrial-mediated apoptosis and induces glycolysis inhibition via modulating HK-2 in CRC and provides a theoretical basis to support penfluridol as a repurposed drug for CRC patients.
Collapse
Affiliation(s)
- Ning-Ning Wang
- Department of Intervention Diagnosis and Treatment, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, China
| | - Peng-Zhen Zhang
- Department of Intervention Diagnosis and Treatment, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, China
| | - Jing Zhang
- Department of Intervention Diagnosis and Treatment, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, China
| | - Hai-Ning Wang
- Department of Cosmetic Surgery, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, China
| | - Ling Li
- Department of Outpatient, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, China
| | - Feng Ren
- Endoscopic Consulting Room, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, China
| | - Peng-Fei Dai
- Coronary Care Unit, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, China
| | - Hui Li
- Hemodialysis Room, Qingdao Hospital of Traditional Chinese Medicine (Qingdao Hiser Hospital), Qingdao, China
| | - Xiao-Feng Lv
- Department of Pharmacy, Reproductive Medicine Center of Zibo Maternity and Child Health Hospital, Zibo, China
| |
Collapse
|
24
|
Dandawate P, Kaushik G, Ghosh C, Standing D, Sayed AAA, Choudhury S, Subramaniam D, Manzardo A, Banerjee T, Santra S, Ramamoorthy P, Butler M, Padhye SB, Baranda J, Kasi A, Sun W, Tawfik O, Coppola D, Malafa M, Umar S, Soares MJ, Saha S, Weir SJ, Dhar A, Jensen RA, Thomas SM, Anant S. Diphenylbutylpiperidine Antipsychotic Drugs Inhibit Prolactin Receptor Signaling to Reduce Growth of Pancreatic Ductal Adenocarcinoma in Mice. Gastroenterology 2020; 158:1433-1449.e27. [PMID: 31786131 PMCID: PMC7103550 DOI: 10.1053/j.gastro.2019.11.279] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/04/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Prolactin (PRL) signaling is up-regulated in hormone-responsive cancers. The PRL receptor (PRLR) is a class I cytokine receptor that signals via the Janus kinase (JAK)-signal transducer and activator of transcription and mitogen-activated protein kinase pathways to regulate cell proliferation, migration, stem cell features, and apoptosis. Patients with pancreatic ductal adenocarcinoma (PDAC) have high plasma levels of PRL. We investigated whether PRLR signaling contributes to the growth of pancreatic tumors in mice. METHODS We used immunohistochemical analyses to compare levels of PRL and PRLR in multitumor tissue microarrays. We used structure-based virtual screening and fragment-based drug discovery to identify compounds likely to bind PRLR and interfere with its signaling. Human pancreatic cell lines (AsPC-1, BxPC-3, Panc-1, and MiaPaCa-2), with or without knockdown of PRLR (clustered regularly interspaced short palindromic repeats or small hairpin RNA), were incubated with PRL or penfluridol and analyzed in proliferation and spheroid formation. C57BL/6 mice were given injections of UNKC-6141 cells, with or without knockdown of PRLR, into pancreas, and tumor development was monitored for 4 weeks, with some mice receiving penfluridol treatment for 21 days. Human pancreatic tumor tissues were implanted into interscapular fat pads of NSG mice, and mice were given injections of penfluridol daily for 28 days. Nude mice were given injections of Panc-1 cells, xenograft tumors were grown for 2 weeks, and mice were then given intraperitoneal penfluridol for 35 days. Tumors were collected from mice and analyzed by histology, immunohistochemistry, and immunoblots. RESULTS Levels of PRLR were increased in PDAC compared with nontumor pancreatic tissues. Incubation of pancreatic cell lines with PRL activated signaling via JAK2-signal transducer and activator of transcription 3 and extracellular signal-regulated kinase, as well as formation of pancospheres and cell migration; these activities were not observed in cells with PRLR knockdown. Pancreatic cancer cells with PRLR knockdown formed significantly smaller tumors in mice. We identified several diphenylbutylpiperidine-class antipsychotic drugs as agents that decreased PRL-induced JAK2 signaling; incubation of pancreatic cancer cells with these compounds reduced their proliferation and formation of panco spheres. Injections of 1 of these compounds, penfluridol, slowed the growth of xenograft tumors in the different mouse models, reducing proliferation and inducing autophagy of the tumor cells. CONCLUSIONS Levels of PRLR are increased in PDAC, and exposure to PRL increases proliferation and migration of pancreatic cancer cells. Antipsychotic drugs, such as penfluridol, block PRL signaling in pancreatic cancer cells to reduce their proliferation, induce autophagy, and slow the growth of xenograft tumors in mice. These drugs might be tested in patients with PDAC.
Collapse
Affiliation(s)
- Prasad Dandawate
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Gaurav Kaushik
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160
| | - Chandrayee Ghosh
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - David Standing
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Afreen Asif Ali Sayed
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Sonali Choudhury
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | | | - Ann Manzardo
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS 66160
| | - Tuhina Banerjee
- Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Santimukul Santra
- Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA
| | - Prabhu Ramamoorthy
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Merlin Butler
- Department of Psychiatry and Behavioral Sciences, University of Kansas Medical Center, Kansas City, KS 66160
| | - Subhash B. Padhye
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, Interdisciplinary Science and Technology Research Academy, Abeda Inamdar College, University of Pune, Pune 411001
| | - Joaquina Baranda
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Anup Kasi
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Weijing Sun
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Ossama Tawfik
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Domenico Coppola
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Mokenge Malafa
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612
| | - Shahid Umar
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS 66160
| | - Michael J. Soares
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS 66160, Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, Center for Perinatal Research, Children’s Research Institute, Children’s Mercy-Kansas City, MO 64108
| | - Subhrajit Saha
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Scott J. Weir
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160
| | - Animesh Dhar
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Roy A. Jensen
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160
| | - Sufi Mary Thomas
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, Department of Otolaryngology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas; Department of Surgery, University of Kansas Medical Center, Kansas City, Kansas; Interdisciplinary Science and Technology Research Academy, Abeda Inamdar College, University of Pune, Pune.
| |
Collapse
|
25
|
Zang D, Zhang C, Li C, Fan Y, Li Z, Hou K, Che X, Liu Y, Qu X. LPPR4 promotes peritoneal metastasis via Sp1/integrin α/FAK signaling in gastric cancer. Am J Cancer Res 2020; 10:1026-1044. [PMID: 32266108 PMCID: PMC7136906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/20/2020] [Indexed: 06/11/2023] Open
Abstract
Gastric cancer (GC) is one of the most common malignancies which has high incidence and mortality worldwide. Peritoneal dissemination is the main route of metastasis in advanced GC. However, few reliable diagnostic or prognostic biomarkers are available for peritoneal metastasis of GC. This study aimed to investigate the effect of lipid phosphate phosphatase-related protein type 4 (LPPR4) on the prognosis of peritoneal metastasis in GC, so as to explore the underlying molecular mechanisms and clinical significance of the process. Differentially expressed genes (DEGs) between tumor tissues and adjacent normal tissues were identified. The prognostic values of the DEGs were tested in two independent cohorts (TCGA-STAD cohort and GSE62254 cohort). Eight DEGs including LPPR4 with prognostic value in GC peritoneal metastasis were identified. The expression of LPPR4 increased in peritoneal metastasis of GC tissues, and high LPPR4 expression was associated with poor overall survival in GC. Loss- and gain-of functional experiments were performed to reveal that LPPR4 could promote the migration, invasion and adhesion abilities of GC cells in vitro. Tumor peritoneal dissemination was investigated in a mouse model to reveal that LPPR4 could promote peritoneal metastasis of GC cells in vivo. According to the Kyoto Encyclopedia of Genes and Genomics (KEGG) and gene set enrichment analysis (GSEA), LPPR4 was found to be related to focal adhesion, cell adhesion molecules (CAMs) and ECM-receptor interaction pathways. LPPR4 knockdown significantly inhibited the expression of integrin α1, integrin α2, integrin α5, integrin α6, integrin α7, p-FAK, p-Akt, p-Src and MMP2. Moreover, this process was regulated by the Specificity Protein 1 (Sp1) transcription factor. Taken together, LPPR4 plays an essential role in promoting peritoneal metastasis of GC through Sp1/integrin α/FAK signaling, and acts as a novel biomarker of prognosis of GC peritoneal metastasis. The results suggest that LPPR4 may serve as a new therapeutic target for patients with GC peritoneal metastasis.
Collapse
Affiliation(s)
- Dan Zang
- Department of Medical Oncology, The First Hospital of China Medical UniversityShenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical UniversityShenyang 110001, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical UniversityShenyang 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical UniversityShenyang 110001, China
| | - Chuang Zhang
- Department of Medical Oncology, The First Hospital of China Medical UniversityShenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical UniversityShenyang 110001, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical UniversityShenyang 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical UniversityShenyang 110001, China
| | - Ce Li
- Department of Medical Oncology, The First Hospital of China Medical UniversityShenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical UniversityShenyang 110001, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical UniversityShenyang 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical UniversityShenyang 110001, China
| | - Yibo Fan
- Department of Medical Oncology, The First Hospital of China Medical UniversityShenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical UniversityShenyang 110001, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical UniversityShenyang 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical UniversityShenyang 110001, China
| | - Zhi Li
- Department of Medical Oncology, The First Hospital of China Medical UniversityShenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical UniversityShenyang 110001, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical UniversityShenyang 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical UniversityShenyang 110001, China
| | - Kezuo Hou
- Department of Medical Oncology, The First Hospital of China Medical UniversityShenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical UniversityShenyang 110001, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical UniversityShenyang 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical UniversityShenyang 110001, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical UniversityShenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical UniversityShenyang 110001, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical UniversityShenyang 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical UniversityShenyang 110001, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical UniversityShenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical UniversityShenyang 110001, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical UniversityShenyang 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical UniversityShenyang 110001, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical UniversityShenyang 110001, China
- Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical UniversityShenyang 110001, China
- Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical UniversityShenyang 110001, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical UniversityShenyang 110001, China
| |
Collapse
|
26
|
Vellingiri B, Iyer M, Devi Subramaniam M, Jayaramayya K, Siama Z, Giridharan B, Narayanasamy A, Abdal Dayem A, Cho SG. Understanding the Role of the Transcription Factor Sp1 in Ovarian Cancer: from Theory to Practice. Int J Mol Sci 2020; 21:E1153. [PMID: 32050495 PMCID: PMC7038193 DOI: 10.3390/ijms21031153] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 12/23/2022] Open
Abstract
Ovarian cancer (OC) is one of the deadliest cancers among women contributing to high risk of mortality, mainly owing to delayed detection. There is no specific biomarker for its detection in early stages. However, recent findings show that over-expression of specificity protein 1 (Sp1) is involved in many OC cases. The ubiquitous transcription of Sp1 apparently mediates the maintenance of normal and cancerous biological processes such as cell growth, differentiation, angiogenesis, apoptosis, cellular reprogramming and tumorigenesis. Sp1 exerts its effects on cellular genes containing putative GC-rich Sp1-binding site in their promoters. A better understanding of the mechanisms underlying Sp1 transcription factor (TF) regulation and functions in OC tumorigenesis could help identify novel prognostic markers, to target cancer stem cells (CSCs) by following cellular reprogramming and enable the development of novel therapies for future generations. In this review, we address the structure, function, and biology of Sp1 in normal and cancer cells, underpinning the involvement of Sp1 in OC tumorigenesis. In addition, we have highlighted the influence of Sp1 TF in cellular reprogramming of iPSCs and how it plays a role in controlling CSCs. This review highlights the drugs targeting Sp1 and their action on cancer cells. In conclusion, we predict that research in this direction will be highly beneficial for OC treatment, and chemotherapeutic drugs targeting Sp1 will emerge as a promising therapy for OC.
Collapse
Affiliation(s)
- Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, India
| | - Mahalaxmi Iyer
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, India; (M.I.); (K.J.)
| | - Mohana Devi Subramaniam
- Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, Chennai 600006, India;
| | - Kaavya Jayaramayya
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore 641043, India; (M.I.); (K.J.)
| | - Zothan Siama
- Department of Zoology, School of Life-science, Mizoram University, Aizawl 796004, Mizoram, India;
| | - Bupesh Giridharan
- R&D Wing, Sree Balaji Medical College and Hospital (SBMCH), BIHER, Chromepet, Chennai 600044, Tamil Nadu, India;
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India;
| | - Ahmed Abdal Dayem
- Molecular & Cellular Reprogramming Center, Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea;
| | - Ssang-Goo Cho
- Molecular & Cellular Reprogramming Center, Department of Stem Cell & Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea;
| |
Collapse
|
27
|
Low Dose of Penfluridol Inhibits VEGF-Induced Angiogenesis. Int J Mol Sci 2020; 21:ijms21030755. [PMID: 31979394 PMCID: PMC7036977 DOI: 10.3390/ijms21030755] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 12/23/2022] Open
Abstract
Metastasis is considered a major burden in cancer, being responsible for more than 90% of cancer-related deaths. Tumor angiogenesis is one of the main processes that lead to tumor metastasis. Penfluridol is a classic and commonly used antipsychotic drug, which has a great ability to cross the blood–brain barrier. Recent studies have revealed that penfluridol has significant anti-cancer activity in diverse tumors, such as metastatic breast cancer and glioblastoma. Here, we aim to identify the effect of low doses of penfluridol on tumor microenvironment and compare it with its effect on tumor cells. Although low concentration of penfluridol was not toxic for endothelial cells, it blocked angiogenesis in vitro and in vivo. In vitro, penfluridol inhibited VEGF-induced primary endothelial cell migration and tube formation, and in vivo, it blocked VEGF- and FGF-induced angiogenesis in the matrigel plug assay. VEGF-induced VEGFR2 phosphorylation and the downstream p38 and ERK signaling pathways were not affected in endothelial cells, although VEGF-induced Src and Akt activation were abrogated by penfluridol treatment. When cancer cells were treated with the same low concentration of penfluridol, basal Src activation levels were mildly impaired, thus impacting their cell migration and wound healing efficiency. The potential of cancer-induced paracrine effect on endothelial cells was explored, although that did not seem to be a player for angiogenesis. Overall, our data demonstrates that low penfluridol levels, similar to the ones clinically used for anti-psychotic conditions, suppress angiogenic efficiency in the tumor microenvironment.
Collapse
|
28
|
Karki K, Wright GA, Mohankumar K, Jin UH, Zhang XH, Safe S. A Bis-Indole-Derived NR4A1 Antagonist Induces PD-L1 Degradation and Enhances Antitumor Immunity. Cancer Res 2020; 80:1011-1023. [PMID: 31911554 DOI: 10.1158/0008-5472.can-19-2314] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/20/2019] [Accepted: 01/03/2020] [Indexed: 12/31/2022]
Abstract
PD-L1 is expressed in tumor cells and its interaction with PD-1 plays an important role in evading immune surveillance; this can be overcome using PD-L1 or PD-1 immunotherapy antibodies. This study reports a novel approach for targeting PD-L1. In human breast cancer cell lines and 4T1 mouse mammary tumor cells, PD-L1 expression was regulated by the nuclear receptor NR4A1/Sp1 complex bound to the proximal germinal center (GC)-rich region of the PD-L1 gene promoter. Treatment of breast cancer cells with bis-indole-derived NR4A1 antagonists including 1,1-bis(3'-indolyl)-1-(3-chloro-4-hydroxy-5-methoxyphenyl)methane (Cl-OCH3) decreased expression of PD-L1 mRNA, promoter-dependent luciferase activity, and protein. In in vivo studies using a syngeneic mouse model bearing orthotopically injected 4T1 cells, Cl-OCH3 decreased tumor growth and weight and inhibited lung metastasis. Cl-OCH3 also decreased expression of CD3+/CD4+/CD25+/FoxP3+ regulatory T cells and increased the Teff/Treg ratio. Therefore, the potent anticancer activities of NR4A1 antagonists are also accompanied by enhanced antitumor immunity in PD-L1-expressing triple-negative breast cancer and thus represent a novel class of drugs that mimic immunotherapy. SIGNIFICANCE: These findings show that the orphan nuclear receptor NR4A1 controls PD-L1 expression and identify a chemical probe capable of disrupting this regulatory axis.
Collapse
Affiliation(s)
- Keshav Karki
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Gus A Wright
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas
| | - Kumaravel Mohankumar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Un-Ho Jin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Xing-Han Zhang
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas.
| |
Collapse
|
29
|
Shaw V, Srivastava S, Srivastava SK. Repurposing antipsychotics of the diphenylbutylpiperidine class for cancer therapy. Semin Cancer Biol 2019; 68:75-83. [PMID: 31618686 DOI: 10.1016/j.semcancer.2019.10.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/18/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023]
Abstract
The recent development of high throughput compound screening has allowed drug repurposing to emerge as an effective avenue for discovering novel treatments for cancer. FDA-approved antipsychotic drugs fluspirilene, penfluridol, and pimozide are clinically used for the treatment of psychotic disorders, primarily schizophrenia. These compounds, belong to diphenylbutylpiperidine class of antipsychotic drugs, are the potent inhibitors of dopamine D2 receptor and calcium channel. A correlation has been found that patients treated for schizophrenia have lower incidences of certain types of cancer, such as respiratory, prostate, and bladder cancers. These compounds have also been shown to inhibit cancer proliferation in a variety of cancer cells, including melanoma, lung carcinoma, breast cancer, pancreatic cancer, glioma, and prostate cancer, among others. Antipsychotic drugs induce apoptosis and suppress metastasis in in vitro and in vivo models through mechanisms involving p53, STAT3, STAT5, protein phosphatase 2A, cholesterol homeostasis, integrins, autophagy, USP1, wnt/β-catenin signaling, and DNA repair. Additionally, pre-clinical evidence suggests that penfluridol and pimozide act synergistically with existing chemotherapeutic agents, such as dasatinib, temozolomide, and cisplatin. Some studies have also reported that the cytotoxic activity of the antipsychotics is selective for dividing cells. Based on this growing body of evidence and the availability and previous FDA-approval of the drugs, the compounds appear to be promising anti-cancer agents.
Collapse
Affiliation(s)
- Vikram Shaw
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Suyash Srivastava
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Sanjay K Srivastava
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA; Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX, 79601, USA.
| |
Collapse
|
30
|
Penfluridol as a Candidate of Drug Repurposing for Anticancer Agent. Molecules 2019; 24:molecules24203659. [PMID: 31614431 PMCID: PMC6832311 DOI: 10.3390/molecules24203659] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/29/2019] [Accepted: 10/08/2019] [Indexed: 12/24/2022] Open
Abstract
Penfluridol has robust antipsychotic efficacy and is a first-generation diphenylbutylpiperidine. Its effects last for several days after a single oral dose and it can be administered once a week to provide better compliance and symptom control. Recently; strong antitumour effects for penfluridol were discovered in various cancer cell lines; such as breast; pancreatic; glioblastoma; and lung cancer cells via several distinct mechanisms. Therefore; penfluridol has drawn much attention as a potentially novel anti-tumour agent. In addition; the anti-cancer effects of penfluridol have been demonstrated in vivo: results showed slight changes in the volume and weight of organs at doses tested in animals. This paper outlines the potential for penfluridol to be developed as a next-generation anticancer drug.
Collapse
|
31
|
Wu SY, Wen YC, Ku CC, Yang YC, Chow JM, Yang SF, Lee WJ, Chien MH. Penfluridol triggers cytoprotective autophagy and cellular apoptosis through ROS induction and activation of the PP2A-modulated MAPK pathway in acute myeloid leukemia with different FLT3 statuses. J Biomed Sci 2019; 26:63. [PMID: 31470848 PMCID: PMC6717358 DOI: 10.1186/s12929-019-0557-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/22/2019] [Indexed: 12/17/2022] Open
Abstract
Background Chemotherapy is the main treatment for acute myeloid leukemia (AML), but the cure rates for AML patients remain low, and the notorious adverse effects of chemotherapeutic drugs drastically reduce the life quality of patients. Penfluridol, a long-acting oral antipsychotic drug, has an outstanding safety record and exerts oncostatic effects on various solid tumors. Until now, the effect of penfluridol on AML remains unknown. Methods AML cell lines harboring wild-type (WT) Fms-like tyrosine kinase 3 (FLT3) and internal tandem duplication (ITD)-mutated FLT3 were used to evaluate the cytotoxic effects of penfluridol by an MTS assay. A flow cytometric analysis and immunofluorescence staining were employed to determine the cell-death phenotype, cell cycle profile, and reactive oxygen species (ROS) and acidic vesicular organelle (AVO) formation. Western blotting and chemical inhibitors were used to explore the underlying mechanisms involved in penfluridol-mediated cell death. Results We observed that penfluridol concentration-dependently suppressed the cell viability of AML cells with FLT3-WT (HL-60 and U937) and FLT3-ITD (MV4–11). We found that penfluridol treatment not only induced apoptosis as evidenced by increases of nuclear fragmentation, the sub-G1 populations, poly (ADP ribose) polymerase (PARP) cleavage, and caspase-3 activation, but also triggered autophagic responses, such as the light chain 3 (LC3) turnover and AVO formation. Interestingly, blocking autophagy by the pharmacological inhibitors, 3-methyladenine and chloroquine, dramatically enhanced penfluridol-induced apoptosis, indicating the cytoprotective role of autophagy in penfluridol-treated AML cells. Mechanistically, penfluridol-induced apoptosis occurred through activating protein phosphatase 2A (PP2A) to suppress Akt and mitogen-activated protein kinase (MAPK) activities. Moreover, penfluridol’s augmentation of intracellular ROS levels was critical for the penfluridol-induced autophagic response. In the clinic, we observed that patients with AML expressing high PP2A had favorable prognoses. Conclusions These findings provide a rationale for penfluridol being used as a PP2A activator for AML treatment, and the combination of penfluridol with an autophagy inhibitor may be a novel strategy for AML harboring FLT3-WT and FLT3-ITD. Electronic supplementary material The online version of this article (10.1186/s12929-019-0557-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Szu-Yuan Wu
- Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ching Wen
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Chi Ku
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Chieh Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jyh-Ming Chow
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wei-Jiunn Lee
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan. .,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan. .,Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
32
|
Hedrick E, Li X, Cheng Y, Lacey A, Mohankumar K, Zarei M, Safe S. Potent inhibition of breast cancer by bis-indole-derived nuclear receptor 4A1 (NR4A1) antagonists. Breast Cancer Res Treat 2019; 177:29-40. [PMID: 31119568 PMCID: PMC6681651 DOI: 10.1007/s10549-019-05279-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/13/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Nuclear receptor 4A1 (NR4A1) is overexpressed in mammary tumors, and the methylene-substituted bis-indole derivative 1,1-bis(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH) acts as an NR4A1 antagonist (inverse agonist) and inhibits NR4A1-regulated pro-oncogenic pathways/genes in breast and other cancer cells. METHODS Buttressed analogs of DIM-C-pPhOH were synthesized by condensation of the substituted p-hydroxybenzaldehydes with indole. Breast cancer cell growth, survival, and migration assays were carried out by cell counting, Annexin V staining, and Boyden chamber assays, respectively. Changes in RNA and protein expression were determined by RT-PCR and western blots, respectively. Analysis of RNAseq results was carried out using Ingenuity Pathway Analysis, and in vivo potencies of NR4A1 antagonists were determined in athymic nude mice bearing MDA-MB-231 cells in an orthotopic model. RESULTS Ingenuity Pathway analysis of common genes modulated by NR4A1 knockdown or treatment with DIM-C-pPhOH showed that changes in gene expression were consistent with the observed decreased functional responses, namely inhibition of growth and migration and increased apoptosis. DIM-C-pPhOH is rapidly metabolized and the effects and potencies of buttressed analogs of DIM-C-pPhOH which contain one or two substituents ortho to the hydroxyl groups were investigated using NR4A1-regulated gene/gene products as endpoints. The buttressed analogs were more potent than DIM-C-pPhOH in both in vitro assays and as inhibitors of mammary tumor growth. Moreover, using 1,1-bis(3'-indolyl)-1-(3-chloro-4-hydroxy-5-methoxyphenyl)methane (DIM-C-pPhOh-3-Cl-5-OCH3) significant tumor growth inhibition was observed at doses as low as 2 mg/kg/d which was at least an order of magnitude more potent than DIM-C-pPhOH. CONCLUSIONS These buttressed analogs represent a more potent set of second generation NR4A1 antagonists as inhibitors of breast cancer.
Collapse
Affiliation(s)
- Erik Hedrick
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
- Cleveland Clinic, Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Xi Li
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Yating Cheng
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
- MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Kumaravel Mohankumar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Mahsa Zarei
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
33
|
Autophagosome accumulation-mediated ATP energy deprivation induced by penfluridol triggers nonapoptotic cell death of lung cancer via activating unfolded protein response. Cell Death Dis 2019; 10:538. [PMID: 31308361 PMCID: PMC6629704 DOI: 10.1038/s41419-019-1785-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/16/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
Anticancer chemotherapeutic drugs mainly trigger apoptosis induction to eliminate malignant cells. However, many cancer cells are chemoresistant because of defective apoptosis induction. Targeting the autophagic pathway is currently regarded as an alternative strategy for cancer drug discovery. Penfluridol, an antipsychotic drug, has been reported to exert oncostatic effects, but the effect of penfluridol on lung cancer remains unknown. Herein, the antitumor activity of penfluridol was determined in vitro in non-small-cell lung cancer (NSCLC) cell lines using MTS, plate clonogenic, and transwell migration assays and in vivo in an orthotopic xenograft model. Flow cytometry, holotomographic microscopy, immunofluorescence, and immunohistochemistry were employed to determine the cell-death phenotype induced by penfluridol in vitro and in vivo. Western blotting and genetic knockdown by small interfering RNA were performed to explore the underlying mechanisms involved in penfluridol-mediated cell death. We uncovered that penfluridol inhibited the viability and motility of NSCLC cells in vitro and in vivo. Penfluridol induced nonapoptotic cell death by blocking autophagic flux and inducing accumulation of autophagosome-related protein, light chain 3 (LC3) B-II, in HCC827 and A549 NSCLC cells, and in an A549 orthotopic xenograft tumor model. Autophagosome accumulation-induced cell viability inhibition by penfluridol was mainly attributed to ATP energy deprivation. Moreover, we observed that patients with lung tumors expressing high LC3B had longer overall and disease-free survival times. Mechanistically, upregulation of endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) pathways and activation of p38 mitogen-activated protein kinase (MAPK) were critical for penfluridol-induced autophagosome accumulation. Our findings identify that penfluridol acts as an inducer of ER stress and p38 MAPK activation, which led to UPR-mediated nonapoptotic cell death via autophagosome accumulation-caused energy loss. Penfluridol is clinically used for schizophrenia, and our study results strongly support penfluridol as a repurposed drug for treating NSCLC.
Collapse
|
34
|
Mitsiogianni M, Koutsidis G, Mavroudis N, Trafalis DT, Botaitis S, Franco R, Zoumpourlis V, Amery T, Galanis A, Pappa A, Panayiotidis MI. The Role of Isothiocyanates as Cancer Chemo-Preventive, Chemo-Therapeutic and Anti-Melanoma Agents. Antioxidants (Basel) 2019; 8:E106. [PMID: 31003534 PMCID: PMC6523696 DOI: 10.3390/antiox8040106] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/03/2019] [Accepted: 04/12/2019] [Indexed: 12/11/2022] Open
Abstract
Many studies have shown evidence in support of the beneficial effects of phytochemicals in preventing chronic diseases, including cancer. Among such phytochemicals, sulphur-containing compounds (e.g., isothiocyanates (ITCs)) have raised scientific interest by exerting unique chemo-preventive properties against cancer pathogenesis. ITCs are the major biologically active compounds capable of mediating the anticancer effect of cruciferous vegetables. Recently, many studies have shown that a higher intake of cruciferous vegetables is associated with reduced risk of developing various forms of cancers primarily due to a plurality of effects, including (i) metabolic activation and detoxification, (ii) inflammation, (iii) angiogenesis, (iv) metastasis and (v) regulation of the epigenetic machinery. In the context of human malignant melanoma, a number of studies suggest that ITCs can cause cell cycle growth arrest and also induce apoptosis in human malignant melanoma cells. On such basis, ITCs could serve as promising chemo-therapeutic agents that could be used in the clinical setting to potentiate the efficacy of existing therapies.
Collapse
Affiliation(s)
- Melina Mitsiogianni
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Georgios Koutsidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| | - Nikos Mavroudis
- Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6AP, UK.
| | - Dimitrios T Trafalis
- Laboratory of Pharmacology, Unit of Clinical Pharmacology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| | - Sotiris Botaitis
- Second Department of Surgery, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Rodrigo Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Vasilis Zoumpourlis
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 11635 Athens, Greece.
| | - Tom Amery
- The Watrercress Company / The Wasabi Company, Waddock, Dorchester, Dorset DT2 8QY, UK.
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece.
| | - Mihalis I Panayiotidis
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
35
|
Gupta N, Gupta P, Srivastava SK. Penfluridol overcomes paclitaxel resistance in metastatic breast cancer. Sci Rep 2019; 9:5066. [PMID: 30911062 PMCID: PMC6434141 DOI: 10.1038/s41598-019-41632-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/01/2019] [Indexed: 12/27/2022] Open
Abstract
Paclitaxel is a first line chemotherapeutic agent for the patients with metastatic breast cancer. But inherited or acquired resistance to paclitaxel leads to poor response rates in a majority of these patients. To identify mechanisms of paclitaxel resistance, we developed paclitaxel resistant breast cancer cell lines, MCF-7 and 4T1 by continuous exposure to paclitaxel for several months. Western blot analysis showed increased expression of HER2 and β-catenin pathway in resistant cell lines as compared to parent cells. Hence, we hypothesized that HER2/β-catenin mediates paclitaxel resistance in breast cancer and suppression of HER2/β-catenin signaling could overcome paclitaxel resistance. Our data showed that penfluridol (PFL) treatment significantly reduced the survival of paclitaxel-resistant cells. Western blot analysis revealed that PFL treatment suppressed HER2, as well as, β-catenin pathway. In vivo data confirmed that PFL significantly potentiated tumor growth suppressive effects of paclitaxel in an orthotropic breast cancer model. In addition, tumors from paclitaxel and PFL-treated mice showed reduced HER2 and β-catenin expression, along with increased apoptosis. Taken together our results demonstrate a novel role of HER2/β-catenin in paclitaxel resistance and open up new avenues for application of PFL as a therapeutic option for overcoming paclitaxel resistance.
Collapse
Affiliation(s)
- Nehal Gupta
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, Texas, 79601, USA
| | - Parul Gupta
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA
| | - Sanjay K Srivastava
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, Texas, 79601, USA.
| |
Collapse
|
36
|
Safe S, Nair V, Karki K. Metformin-induced anticancer activities: recent insights. Biol Chem 2018; 399:321-335. [PMID: 29272251 DOI: 10.1515/hsz-2017-0271] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/11/2017] [Indexed: 12/12/2022]
Abstract
Metformin is a widely used antidiabetic drug, and there is evidence among diabetic patients that metformin is a chemopreventive agent against multiple cancers. There is also evidence in human studies that metformin is a cancer chemotherapeutic agent, and several clinical trials that use metformin alone or in combination with other drugs are ongoing. In vivo and in vitro cancer cell culture studies demonstrate that metformin induces both AMPK-dependent and AMPK-independent genes/pathways that result in inhibition of cancer cell growth and migration and induction of apoptosis. The effects of metformin in cancer cells resemble the patterns observed after treatment with drugs that downregulate specificity protein 1 (Sp1), Sp3 and Sp4 or by knockdown of Sp1, Sp3 and Sp4 by RNA interference. Studies in pancreatic cancer cells clearly demonstrate that metformin decreases expression of Sp1, Sp3, Sp4 and pro-oncogenic Sp-regulated genes, demonstrating that one of the underlying mechanisms of action of metformin as an anticancer agent involves targeting of Sp transcription factors. These observations are consistent with metformin-mediated effects on genes/pathways in many other tumor types.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Vijayalekshmi Nair
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| | - Keshav Karki
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, TX 77843-4466, USA
| |
Collapse
|
37
|
Vucicevic L, Misirkic-Marjanovic M, Harhaji-Trajkovic L, Maric N, Trajkovic V. Mechanisms and therapeutic significance of autophagy modulation by antipsychotic drugs. Cell Stress 2018; 2:282-291. [PMID: 31225453 PMCID: PMC6551804 DOI: 10.15698/cst2018.11.161] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this review we analyze the ability of antipsychotic medications to modulate macroautophagy, a process of controlled lysosomal digestion of cellular macromolecules and organelles. We focus on its molecular mechanisms, consequences for the function/survival of neuronal and other cells, and the contribution to the beneficial and side-effects of antipsychotics in the treatment of schizophrenia, neurodegeneration, and cancer. A wide range of antipsychotics was able to induce neuronal autophagy as a part of the adaptive stress response apparently independent of mammalian target of rapamycin and dopamine receptor blockade. Autophagy induction by antipsychotics could contribute to reducing neuronal dysfunction in schizophrenia, but also to the adverse effects associated with their long-term use, such as brain volume loss and weight gain. In neurodegenerative diseases, antipsychotic-stimulated autophagy might help to increase the clearance and reduce neurotoxicity of aggregated proteotoxins. However, the possibility that some antipsychotics might block autophagic flux and potentially contribute to proteotoxin-mediated neurodegeneration must be considered. Finally, the anticancer effects of autophagy induction by antipsychotics make plausible their repurposing as adjuncts to standard cancer therapy.
Collapse
Affiliation(s)
- Ljubica Vucicevic
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | | | | | - Nadja Maric
- Clinic of Psychiatry, Clinical Centre of Serbia and School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Trajkovic
- Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade, Serbia
| |
Collapse
|
38
|
Ashraf-Uz-Zaman M, Sajib MS, Cucullo L, Mikelis CM, German NA. Analogs of penfluridol as chemotherapeutic agents with reduced central nervous system activity. Bioorg Med Chem Lett 2018; 28:3652-3657. [PMID: 30389290 DOI: 10.1016/j.bmcl.2018.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/21/2018] [Accepted: 10/23/2018] [Indexed: 11/30/2022]
Abstract
Several recent reports have highlighted the feasibility of the use of penfluridol, a well-known antipsychotic agent, as a chemotherapeutic agent. In vivo experiments have confirmed the cytotoxic activity of penfluridol in triple-negative breast cancer model, lung cancer model, and further studies have been proposed to assess its anticancer activity and viability for the treatment of glioblastomas. However, penfluridol anticancer activity was observed at a dosage significantly higher than that administered in antipsychotic therapy, thus raising the concern for the potential onset of CNS side effects in patients undergoing intensive pharmacological treatment. In this study, we evaluate the potential CNS toxicity of penfluridol side by side with a set of analogs.
Collapse
Affiliation(s)
- Md Ashraf-Uz-Zaman
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX 79106, United States
| | - Md Sanaullah Sajib
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX 79106, United States
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX 79106, United States
| | - Constantinos M Mikelis
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX 79106, United States
| | - Nadezhda A German
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX 79106, United States.
| |
Collapse
|
39
|
Wu L, Chen L. Characteristics of Nur77 and its ligands as potential anticancer compounds (Review). Mol Med Rep 2018; 18:4793-4801. [PMID: 30272297 PMCID: PMC6236262 DOI: 10.3892/mmr.2018.9515] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/05/2018] [Indexed: 01/01/2023] Open
Abstract
Nuclear receptor subfamily 4 group A member 1 (NR4A1; also termed Nur77/TR3/NGFIB), a member of the nuclear receptor superfamily, is expressed as an early response gene to regulate the expression of multiple target genes. Nur77 has the typical structure of a nuclear receptor, including an N‑terminal domain, a DNA binding domain, and a ligand‑binding domain. The expression and localization of Nur77 are closely associated with its roles in cell proliferation and apoptosis. Nur77 was first identified as an orphan receptor, the endogenous ligand of which has not yet been identified; however, an increasing number of compounds targeting Nur77 have been reported to have beneficial effects in the treatment of cancer and other diseases. This review provides a brief overview of the identification, structure, expression and localization, transcriptional role and non‑genomic function of Nur77, and summarizes the ligands that have been shown to interact with Nur77, including cytosporone B, cisplatin, TMPA, PDNPA, CCE9, THPN, Z‑ligustilide, celastrol and bisindole methane compounds, which may potentially be used to treat cancer in humans.
Collapse
Affiliation(s)
- Lingjuan Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P.R. China
| | - Liqun Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, P.R. China
| |
Collapse
|
40
|
Karki K, Harishchandra S, Safe S. Bortezomib Targets Sp Transcription Factors in Cancer Cells. Mol Pharmacol 2018; 94:1187-1196. [PMID: 30115673 DOI: 10.1124/mol.118.112797] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/01/2018] [Indexed: 12/29/2022] Open
Abstract
Bortezomib alone and in combination with other anticancer agents are extensively used for chemotherapeutic treatment of multiple myeloma (MM) patients and are being developed for treating other cancers. Bortezomib acts through multiple pathways, and in this study with ANBL-6 and RPMI 8226 MM cells we show that bortezomib inhibited growth and induced apoptosis and that this was accompanied by downregulation of specificity protein (Sp) 1, Sp3, and Sp4 transcription factors that are overexpressed in these cells. Similar results were observed in pancreatic and colon cancer cells. The functional importance of this pathway was confirmed by showing that individual knockdown of Sp1, Sp3, and Sp4 in MM cells inhibited cell growth and induced apoptosis, and that this correlates with the results of previous studies in pancreatic, colon, and other cancer cell lines. The mechanism of bortezomib-mediated downregulation of Sp transcription factors in MM was due to the induction of caspase-8 and upstream factors, including Fas-associated death domain. These results demonstrate that an important underlying mechanism of action of bortezomib was due to the activation of caspase-8-dependent downregulation of Sp1, Sp3, Sp4, and pro-oncogenic Sp-regulated genes.
Collapse
Affiliation(s)
- Keshav Karki
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Sneha Harishchandra
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| |
Collapse
|
41
|
Hedrick E, Mohankumar K, Safe S. TGFβ-Induced Lung Cancer Cell Migration Is NR4A1-Dependent. Mol Cancer Res 2018; 16:1991-2002. [PMID: 30072581 DOI: 10.1158/1541-7786.mcr-18-0366] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/08/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023]
Abstract
TGFβ induces migration of lung cancer cells (A549, H460, and H1299), dependent on activation of c-Jun N-terminal kinase (JNK1), and is inhibited by the JNK1 inhibitor SP600125. Moreover, TGFβ-induced migration of the cells is also blocked by the nuclear export inhibitor leptomycin B (LMB) and the orphan nuclear receptor 4A1 (NR4A1) ligand 1,1-bis(3'-indolyl)-1-(p-hydroxyphenyl)methane (CDIM8), which retains NR4A1 in the nucleus. Subsequent analysis showed that the TGFβ/TGFβ receptor/PKA/MKK4 and -7/JNK pathway cascade phosphorylates and induces nuclear export of NR4A1, which in turn forms an active complex with Axin2, Arkadia (RNF111), and RNF12 (RLIM) to induce proteasome-dependent degradation of SMAD7 and enhance lung cancer cell migration. Thus, NR4A1 also plays an integral role in mediating TGFβ-induced lung cancer invasion, and the NR4A1 ligand CDIM8, which binds nuclear NR4A1, represents a novel therapeutic approach for TGFβ-induced blocking of lung cancer migration/invasion. IMPLICATIONS: Effective treatment of TGFβ-induced lung cancer progression could involve a number of agents including the CDIM/NR4A1 antagonists that block not only TGFβ-induced migration, but several other NR4A1-regulated prooncogenic genes/pathways in lung cancer cell lines.
Collapse
Affiliation(s)
- Erik Hedrick
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Kumaravel Mohankumar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas.
| |
Collapse
|
42
|
Mohankumar K, Lee J, Wu CS, Sun Y, Safe S. Bis-Indole-Derived NR4A1 Ligands and Metformin Exhibit NR4A1-Dependent Glucose Metabolism and Uptake in C2C12 Cells. Endocrinology 2018; 159:1950-1963. [PMID: 29635345 PMCID: PMC5888234 DOI: 10.1210/en.2017-03049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/09/2018] [Indexed: 12/16/2022]
Abstract
Treatment of C2C12 muscle cells with metformin or the NR4A1 ligand 1,1-bis(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH) induced NR4A1 and Glut4 messenger RNA and protein expression. Similar results were observed with buttressed (3- or 3,5-substituted) analogs of DIM-C-pPhOH, including 1,1-bis(3'-indolyl)-1-(3-chloro-4-hydroxy-5-methoxyphenyl)methane (DIM-C-pPhOH-3-Cl-5-OCH3), and the buttressed analogs were more potent than DIM-C-pPhOH NR4A1 agonists. Metformin and the bis-indole substituted analogs also induced expression of several glycolytic genes and Rab4, which has previously been linked to enhancing cell membrane accumulation of Glut4 and overall glucose uptake in C2C12 cells, and these responses were also observed after treatment with metformin and the NR4A1 ligands. The role of NR4A1 in mediating the responses induced by the bis-indoles and metformin was determined by knockdown of NR4A1, and this resulted in attenuating the gene and protein expression and enhanced glucose uptake responses induced by these compounds. Our results demonstrate that the bis-indole-derived NR4A1 ligands represent a class of drugs that enhance glucose uptake in C2C12 muscle cells, and we also show that the effects of metformin in this cell line are NR4A1-dependent.
Collapse
Affiliation(s)
- Kumaravel Mohankumar
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Jehoon Lee
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Chia Shan Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| | - Yuxiang Sun
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
- Correspondence: Stephen Safe, PhD, Department of Veterinary Physiology and Pharmacology, Texas A&M University, 4466 TAMU, College Station, Texas 77843. E-mail:
| |
Collapse
|
43
|
Yu Y, Shang R, Chen Y, Li J, Liang Z, Hu J, Liu K, Chen C. Tumor suppressive ZBTB4 inhibits cell growth by regulating cell cycle progression and apoptosis in Ewing sarcoma. Biomed Pharmacother 2018; 100:108-115. [PMID: 29425745 DOI: 10.1016/j.biopha.2018.01.132] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/21/2018] [Accepted: 01/28/2018] [Indexed: 12/24/2022] Open
|
44
|
Safe S, Abbruzzese J, Abdelrahim M, Hedrick E. Specificity Protein Transcription Factors and Cancer: Opportunities for Drug Development. Cancer Prev Res (Phila) 2018; 11:371-382. [PMID: 29545399 DOI: 10.1158/1940-6207.capr-17-0407] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/14/2018] [Accepted: 02/28/2018] [Indexed: 02/06/2023]
Abstract
Specificity protein (Sp) transcription factors (TFs) such as Sp1 are critical for early development but their expression decreases with age and there is evidence that transformation of normal cells to cancer cells is associated with upregulation of Sp1, Sp3, and Sp4, which are highly expressed in cancer cells and tumors. Sp1 is a negative prognostic factor for pancreatic, colon, glioma, gastric, breast, prostate, and lung cancer patients. Functional studies also demonstrate that Sp TFs regulate genes responsible for cancer cell growth, survival, migration/invasion, inflammation and drug resistance, and Sp1, Sp3 and Sp4 are also nononcogene addiction (NOA) genes and important drug targets. The mechanisms of drug-induced downregulation of Sp TFs and pro-oncogenic Sp-regulated genes are complex and include ROS-dependent epigenetic pathways that initially decrease expression of the oncogene cMyc. Many compounds such as curcumin, aspirin, and metformin that are active in cancer prevention also exhibit chemotherapeutic activity and these compounds downregulate Sp TFs in cancer cell lines and tumors. The effects of these compounds on downregulation of Sp TFs in normal cells and the contribution of this response to their chemopreventive activity have not yet been determined. Cancer Prev Res; 11(7); 371-82. ©2018 AACR.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas.
| | - James Abbruzzese
- Department of Medicine, Division of Oncology, Duke University School of Medicine, Durham, North Carolina
| | - Maen Abdelrahim
- GI Medical Oncology, Cockrell Center for Advanced Therapeutics, Houston Methodist Cancer Center and Institute of Academic Medicine, Houston, Texas
| | - Erik Hedrick
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| |
Collapse
|
45
|
Penfluridol suppresses glioblastoma tumor growth by Akt-mediated inhibition of GLI1. Oncotarget 2018; 8:32960-32976. [PMID: 28380428 PMCID: PMC5464842 DOI: 10.18632/oncotarget.16515] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/03/2017] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma (GBM) is the most common brain tumor with poor survival rate. Our results show that penfluridol, an antipsychotic drug significantly reduced the survival of ten adult and pediatric glioblastoma cell lines with IC50 ranging 2-5 μM after 72 hours of treatment and induced apoptosis. Penfluridol treatment suppressed the phosphorylation of Akt at Ser473 and reduced the expression of GLI1, OCT4, Nanog and Sox2 in several glioblastoma cell lines in a concentration-dependent manner. Inhibiting Akt with LY294002 and siRNA, or inhibiting GLI1 using GANT61, cyclopamine, siRNA and CRISPR/Cas9 resulted in enhanced cell growth suppressive effects of penfluridol. On the other hand, overexpression of GLI1 significantly attenuated the effects of penfluridol. Our results further demonstrated that penfluridol treatment inhibited the growth of U87MG tumors by 65% and 72% in subcutaneous and intracranial in vivo glioblastoma tumor models respectively. Immunohistochemical and western blot analysis of tumors revealed reduced pAkt (Ser 473), GLI1, OCT4 and increase in caspase-3 cleavage and TUNEL staining, confirming in vitro findings. Taken together, our results indicate that overall glioblastoma tumor growth suppression by penfluridol was associated with Akt-mediated inhibition of GLI1.
Collapse
|
46
|
Du J, Shang J, Chen F, Zhang Y, Yin N, Xie T, Zhang H, Yu J, Liu F. A CRISPR/Cas9–Based Screening for Non-Homologous End Joining Inhibitors Reveals Ouabain and Penfluridol as Radiosensitizers. Mol Cancer Ther 2017; 17:419-431. [DOI: 10.1158/1535-7163.mct-17-0090] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/20/2017] [Accepted: 08/25/2017] [Indexed: 11/16/2022]
|
47
|
Zhang C, Wang X, Li X, Zhao N, Wang Y, Han X, Ci C, Zhang J, Li M, Zhang Y. The landscape of DNA methylation-mediated regulation of long non-coding RNAs in breast cancer. Oncotarget 2017; 8:51134-51150. [PMID: 28881636 PMCID: PMC5584237 DOI: 10.18632/oncotarget.17705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/24/2017] [Indexed: 12/22/2022] Open
Abstract
Although systematic studies have identified a host of long non-coding RNAs (lncRNAs) which are involved in breast cancer, the knowledge about the methyla-tion-mediated dysregulation of those lncRNAs remains limited. Here, we integrated multi-omics data to analyze the methylated alteration of lncRNAs in breast invasive carcinoma (BRCA). We found that lncRNAs showed diverse methylation patterns on promoter regions in BRCA. LncRNAs were divided into two categories and four subcategories based on their promoter methylation patterns and expression levels be-tween tumor and normal samples. Through cis-regulatory analysis and gene ontology network, abnormally methylated lncRNAs were identified to be associated with can-cer regulation, proliferation or expression of transcription factors. Competing endog-enous RNA network and functional enrichment analysis of abnormally methylated lncRNAs showed that lncRNAs with different methylation patterns were involved in several hallmarks and KEGG pathways of cancers significantly. Finally, survival analysis based on mRNA modules in networks revealed that lncRNAs silenced by high methylation were associated with prognosis significantly in BRCA. This study enhances the understanding of aberrantly methylated patterns of lncRNAs and pro-vides a novel insight for identifying cancer biomarkers and potential therapeutic tar-gets in breast cancer.
Collapse
Affiliation(s)
- Chunlong Zhang
- Department of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163000, China
| | - Xinyu Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xuecang Li
- Department of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163000, China
| | - Ning Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150081, China
| | - Yihan Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Xiaole Han
- Department of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163000, China
| | - Ce Ci
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Jian Zhang
- Department of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163000, China
| | - Meng Li
- Department of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing, 163000, China
| | - Yan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| |
Collapse
|
48
|
Karki K, Hedrick E, Kasiappan R, Jin UH, Safe S. Piperlongumine Induces Reactive Oxygen Species (ROS)-Dependent Downregulation of Specificity Protein Transcription Factors. Cancer Prev Res (Phila) 2017; 10:467-477. [PMID: 28673967 PMCID: PMC6357769 DOI: 10.1158/1940-6207.capr-17-0053] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/19/2017] [Accepted: 06/20/2017] [Indexed: 01/08/2023]
Abstract
Piperlongumine is a natural product found in the plant species Piper longum, and this compound exhibits potent anticancer activity in multiple tumor types and has been characterized as an inducer of reactive oxygen species (ROS). Treatment of Panc1 and L3.6pL pancreatic, A549 lung, 786-O kidney, and SKBR3 breast cancer cell lines with 5 to 15 μmol/L piperlongumine inhibited cell proliferation and induced apoptosis and ROS, and these responses were attenuated after cotreatment with the antioxidant glutathione. Piperlongumine also downregulated expression of Sp1, Sp3, Sp4, and several pro-oncogenic Sp-regulated genes, including cyclin D1, survivin, cMyc, EGFR and hepatocyte growth factor receptor (cMet), and these responses were also attenuated after cotreatment with glutathione. Mechanistic studies in Panc1 cells showed that piperlongumine-induced ROS decreased expression of cMyc via an epigenetic pathway, and this resulted in downregulation of cMyc-regulated miRNAs miR-27a, miR-20a, and miR-17 and induction of the transcriptional repressors ZBTB10 and ZBTB4. These repressors target GC-rich Sp-binding sites to decrease transactivation. This pathway observed for piperlongumine in Panc1 cells has previously been reported for other ROS-inducing anticancer agents and shows that an important underlying mechanism of action of piperlongumine is due to downregulation of Sp1, Sp3, Sp4, and pro-oncogenic Sp-regulated genes. Cancer Prev Res; 10(8); 467-77. ©2017 AACR.
Collapse
Affiliation(s)
- Keshav Karki
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Erik Hedrick
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Ravi Kasiappan
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Un-Ho Jin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas.
| |
Collapse
|
49
|
Jin UH, Cheng Y, Zhou B, Safe S. Bardoxolone Methyl and a Related Triterpenoid Downregulate cMyc Expression in Leukemia Cells. Mol Pharmacol 2017; 91:438-450. [PMID: 28275049 PMCID: PMC5399643 DOI: 10.1124/mol.116.106245] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 02/10/2017] [Indexed: 11/22/2022] Open
Abstract
Structurally related pentacyclic triterpenoids methyl 2-cyano-3,12-dioxoolean-1,9-dien-28-oate [bardoxolone-methyl (Bar-Me)] and methyl 2-trifluoromethyl-3,11-dioxoolean-1,12-dien-30-oate (CF3DODA-Me) contain 2-cyano-1-en-3-one and 2-trifluoromethyl-1-en-3-one moieties, respectively, in their A-rings and differ in the position of their en-one structures in ring C. Only Bar-Me forms a Michael addition adduct with glutathione (GSH) and inhibits IKKβ phosphorylation. These differences may be due to steric hindrance by the 11-keto group in CF3DODA-Me, which prevents Michael addition by the conjugated en-one in the A-ring. In contrast, both Bar-Me and CF3DODA-Me induce reactive oxygen species in HL-60 and Jurkat leukemia cells, inhibit cell growth, induce apoptosis and differentiation, and decrease expression of specificity proteins (Sp) 1, 3, and 4, and cMyc, and these effects are significantly attenuated after cotreatment with the antioxidant GSH. In contrast to solid tumor-derived cells, cMyc and Sp transcriptions are regulated independently and cMyc plays a more predominant role than Sp transcription factors in regulating HL-60 or Jurkat cell proliferation and differentiation compared with that observed in cells derived from solid tumors.
Collapse
Affiliation(s)
- Un-Ho Jin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Yating Cheng
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Beiyan Zhou
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas
| |
Collapse
|