1
|
Velasco-Sidro M, Arroyo-Ródenas J, Díez-Alonso L, Ramírez-Fernández Á, Álvarez-Vallina L. Dual-targeted STAb-T cells secreting BCMA and CD19 T cell engagers for improved control of haematological cancers. Oncoimmunology 2025; 14:2444701. [PMID: 39723764 DOI: 10.1080/2162402x.2024.2444701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/15/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Despite recent advances in immunotherapy against B cell malignancies such as BCMA (B cell maturation antigen) and CD19-targeted treatments using soluble T cell-engaging (TCE) antibodies or chimeric antigen receptor T cells (CAR-T), there is still an important number of patients experiencing refractory/relapsed (R/R) disease. Approaches to avoid tumor-intrinsic mechanisms of resistance such as immune pressure-mediated antigen downmodulation, are being broadly investigated. These strategies include BCMA/CD19 dual-targeting therapies, which may be of particular interest to patients with B cell lymphoma and multiple myeloma, where a specific double-positive immature subpopulation is commonly associated with poor prognosis and poor response to current treatments. In fact, several clinical trials targeting both antigens through different strategies are currently underway. Here, based on the previously validated STAb (in situ secretion of T cell-redirecting bispecific antibodies) concept, we used two different engineering strategies (pool and co-transduction) to generate dual-targeted STAb-T cells simultaneously secreting BCMA TCE and CD19 TCE that outperformed single-targeted STAb-T cells in different in vitro models. These promising results encourage further preclinical clinical testing of dual STAb-T cells in R/R B-cell malignancies.
Collapse
Affiliation(s)
- Miriam Velasco-Sidro
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Javier Arroyo-Ródenas
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Laura Díez-Alonso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ángel Ramírez-Fernández
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Luis Álvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario12 de Octubre, Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
2
|
Pan J, Shen X, Ouyang H, Sun J, Liufu S, Jiang D, Chen W, Peng S, Xu D, Tian Y, Huang Y, He J. Immunization with OPN5 increased seasonal degradation of reproductive activity in Magang ganders. Poult Sci 2025; 104:104753. [PMID: 39754930 DOI: 10.1016/j.psj.2024.104753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025] Open
Abstract
To investigate the regulatory mechanism mediated by hypothalamic OPN5 on seasonal changes in the reproductive activities of domestic geese, 60 Magang ganders in their breeding period were selected for the experiment and evenly divided into an immunization group(OPN5-IM) and a control group. On days 0, 15 and 30, ganders in the immunized group were immunized with OPN5-KLH protein vaccine, and ganders in the control were immunized with the same amount of blank emulsified vaccine. Additionally, 120 female geese were provided to stimulate the reproductive activities of male geese. The results showed that the arrangement of spermatogenic cells was disturbed, the number of sperm decreased, and the testicular weight, seminiferous tubule area, length diameter, spermatogenic epithelium thickness decreased significantly with the natural day length prolonged. Moreover, the concentration of testosterone and LH decreased significantly while PRL increased. The prolonged photoperiod significantly affected the gene expression of GnRH-I, VIP, FSHβ, FSHR, LHβ, PRL, and PRLR in ganders. Specifically, the gene expression of GnRH-I, FSHβ, and LHβ in the hypothalamus and pituitary decreased, while the gene expression of VIP, PRL, and PRLR increased. Following OPN5 immunization, the anti-OPN5 antibody titer of ganders in the OPN5-IM group was notably higher than in the control group. The testicular degeneration was severe in OPN5-IM group compared with the control, as evidenced by a significant reduction in seminiferous tubule area, length diameter, and thickness of spermatogenic epithelium in the immunized group on day 60. Additionally, the concentrations of testosterone and LH were lower in the OPN5-IM group than in the control group, whereas PRL was higher. Moreover, OPN5 immunization significantly affected the expression of GnRH-I, PRL, and PRLR. OPN5 mRNA and protein expression were higher in the immunized group, whereas TRH, DIO2, and TSHR mRNA expressions were lower. However, DIO3 mRNA and protein were up-regulated in the immunized group. In conclusion, our results indicated that the reproductive performance of Magang geese degraded from the breeding to the non-breeding period as daylight was extended. Immunization against OPN5 increased OPN5 expression and down-regulated the TSH-DIO2/DIO3 pathway, further to affect the HPG axis and accelerate the degradation of reproductive activity. Therefore, OPN5 may play an important mediating role in light-regulating seasonal reproductive degradation in Magang geese.
Collapse
Affiliation(s)
- Jianqiu Pan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xu Shen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Hongjia Ouyang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Junfeng Sun
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Sui Liufu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Danli Jiang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenjun Chen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Siyue Peng
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Danning Xu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yunbo Tian
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yunmao Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
3
|
Lu Y, Li H, Zhao P, Wang X, Shao W, Liu Y, Tian L, Zhong R, Liu H, Cheng Y. Crosstalk between cancer-associated fibroblasts and non-neuroendocrine tumor cells in small cell lung cancer involves in glycolysis and antigen-presenting features. Mol Med 2024; 30:274. [PMID: 39722014 DOI: 10.1186/s10020-024-01051-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) is a highly fatal malignancy, the complex tumor microenvironment (TME) is a critical factor affecting SCLC progression. Cancer-associated fibroblasts (CAFs) are crucial components of TME, yet their role in SCLC and the underlying mechanisms during their interaction with SCLC cells remain to be determined. METHODS Microenvironmental cell components were estimated using transcriptome data from SCLC tissue available in public databases, analyzed with bioinformatic algorithms. A co-culture system comprising MRC5 fibroblasts and SCLC cell lines was constructed. RNA sequencing (RNA-seq) was performed on co-cultured and separately cultured MRC5 and H196 cells to identify differentially expressed genes (DEGs) and enriched signaling pathways. Glycolysis and STING signaling in SCLC cells were assessed using glucose uptake assays, qRT-PCR, and Western blot analysis. Immunohistochemical staining of SCLC tissue arrays quantified α-SMA, HLA-DRA and CD8 expression. RESULTS Non-neuroendocrine (non-NE) SCLC-derived CAFs exhibited more abundance and DEGs than NE SCLC-derived CAFs did, which interact with non-NE SCLC cells can induce the enrichment of glycolysis-related genes, increasement of glucose uptake, upregulation of glycolytic signaling proteins in non-NE SCLC cells and accumulation of lactate in the extracellular environment, confirming CAF-mediated glycolysis promotion. Additionally, glycolysis-induced ATP production activated STING signaling in non-NE SCLC cells, which upregulated T cell chemo-attractants. However, CAF abundance did not correlate with CD8 + T cell numbers in SCLC tissues. Additionally, non-NE SCLC cell-educated CAFs exhibited features of antigen-presenting CAFs (apCAFs), as indicated by the expression of major histocompatibility complex (MHC) molecules. Co-localization of HLA-DRA and α-SMA signals in SCLC tissues confirmed apCAF presence. The apCAFs and CD8 + T cells were co-located in the SCLC stroma, and there was a positive correlation between CAFs and regulatory T cell (Treg) abundance. CONCLUSION Our findings suggest that crosstalk between CAFs and non-NE SCLC cells promotes glycolysis in non-NE SCLC cells, thereby increase T cell chemo-attractant expression via activating STING signaling. On the other hand, it promotes the presence of apCAFs, which probably contributes to CD8 + T cell trapping and Treg differentiation. This study emphasizes the pro-tumor function of CAFs in SCLC by promoting glycolysis and impairing T cell function, providing direction for the development of novel therapeutic approaches targeting CAF in SCLC.
Collapse
Affiliation(s)
- Yuanhua Lu
- Postdoctoral Research Workstation, Jilin Cancer Hospital, Changchun, 130012, China
| | - Hui Li
- Medical Oncology Translational Research Lab, Jilin Cancer Hospital, Changchun, 130012, China
| | - Peiyan Zhao
- Medical Oncology Translational Research Lab, Jilin Cancer Hospital, Changchun, 130012, China
| | - Xinyue Wang
- Postdoctoral Research Workstation, Jilin Cancer Hospital, Changchun, 130012, China
| | - Wenjun Shao
- Postdoctoral Research Workstation, Jilin Cancer Hospital, Changchun, 130012, China
| | - Yan Liu
- Medical Oncology Translational Research Lab, Jilin Cancer Hospital, Changchun, 130012, China
| | - Lin Tian
- Postdoctoral Research Workstation, Jilin Cancer Hospital, Changchun, 130012, China
| | - Rui Zhong
- Medical Oncology Translational Research Lab, Jilin Cancer Hospital, Changchun, 130012, China
| | - Haifeng Liu
- Jilin Cancer Hospital, Changchun, 130012, China.
| | - Ying Cheng
- Medical Oncology Translational Research Lab, Jilin Cancer Hospital, Changchun, 130012, China.
- Department of Medical Thoracic Oncology, Jilin Cancer Hospital, Changchun, 130012, China.
| |
Collapse
|
4
|
Taha Z, Crupi MJF, Alluqmani N, MacKenzie D, Vallati S, Whelan JT, Fareez F, Alwithenani A, Petryk J, Chen A, Spinelli MM, Ng K, Sobh J, de Souza CT, Bharadwa PR, Lee TKH, Thomas DA, Huang BZ, Kassas O, Poutou J, Gilchrist VH, Boulton S, Thomson M, Marius R, Hooshyar M, McComb S, Arulanandam R, Ilkow CS, Bell JC, Diallo JS. Complementary dual-virus strategy drives synthetic target and cognate T-cell engager expression for endogenous-antigen agnostic immunotherapy. Nat Commun 2024; 15:7267. [PMID: 39179564 PMCID: PMC11343834 DOI: 10.1038/s41467-024-51498-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 08/09/2024] [Indexed: 08/26/2024] Open
Abstract
Targeted antineoplastic immunotherapies have achieved remarkable clinical outcomes. However, resistance to these therapies due to target absence or antigen shedding limits their efficacy and excludes tumours from candidacy. To address this limitation, here we engineer an oncolytic rhabdovirus, vesicular stomatitis virus (VSVΔ51), to express a truncated targeted antigen, which allows for HER2-targeting with trastuzumab. The truncated HER2 (HER2T) lacks signaling capabilities and is efficiently expressed on infected cell surfaces. VSVΔ51-mediated HER2T expression simulates HER2-positive status in tumours, enabling effective treatment with the antibody-drug conjugate trastuzumab emtansine in vitro, ex vivo, and in vivo. Additionally, we combine VSVΔ51-HER2T with an oncolytic vaccinia virus expressing a HER2-targeted T-cell engager. This dual-virus therapeutic strategy demonstrates potent curative efficacy in vivo in female mice using CD3+ infiltrate for anti-tumour immunity. Our findings showcase the ability to tailor the tumour microenvironment using oncolytic viruses, thereby enhancing compatibility with "off-the-shelf" targeted therapies.
Collapse
Affiliation(s)
- Zaid Taha
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| | - Mathieu Joseph François Crupi
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| | - Nouf Alluqmani
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Duncan MacKenzie
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Sydney Vallati
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Jack Timothy Whelan
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Faiha Fareez
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Akram Alwithenani
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Julia Petryk
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Andrew Chen
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Marcus Mathew Spinelli
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Kristy Ng
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Judy Sobh
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | | | - Priya Rose Bharadwa
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Timothy Kit Hin Lee
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Dylan Anthony Thomas
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Ben Zhen Huang
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Omar Kassas
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Joanna Poutou
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Victoria Heather Gilchrist
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Stephen Boulton
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Max Thomson
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Ricardo Marius
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Mohsen Hooshyar
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Scott McComb
- Cancer Immunology Team, National Research Council of Canada, Human Health Therapeutics, Ottawa, ON, K1A 0R6, Canada
| | - Rozanne Arulanandam
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
| | - Carolina Solange Ilkow
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - John Cameron Bell
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| | - Jean-Simon Diallo
- Centre for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, K1H 8L6, Canada.
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
5
|
Shen J, Qian N, Xu G, Dou X, An Y, Yang C, Liu Y, Liu Y, Pan X, Wang J, Bai G, Chen H, Zhu X, Gao X, Zhou G, Xu Q. IMT030122, A novel engineered EpCAM/CD3/4-1BB tri-specific antibody, enhances T-cell recruitment and demonstrates anti-tumor activity in mouse models of colorectal cancer. Int Immunopharmacol 2024; 137:112424. [PMID: 38878486 DOI: 10.1016/j.intimp.2024.112424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 07/11/2024]
Abstract
Colorectal cancer is a major global health burden, with limited efficacy of traditional treatment modalities in improving survival rates. However, recently advances in immunotherapy has improved treatment outcomes for patients with this cancer. To address the continuing need for improved treatment efficacy, this study introduced a novel tri-specific antibody, IMT030122, that targets EpCAM, 4-1BB, and CD3. We evaluated the pharmacological efficacy and mechanism of action of IMT030122 in vitro and in vivo. In in vitro studies, IMT030122 exhibited differential binding to antigens and cells expressing EpCAM, 4-1BB, and CD3. Moreover, IMT030122 relied on EpCAM-targeted activation of intracellular CD3 and 4-1BB signaling and mediated T cell cytotoxicity specific to HCT116 colorectal cancer cells. In vivo, IMT030122 demonstrated potent anti-tumor activity, significantly inhibiting the growth of colon cancer HCT116 and MC38-hEpCAM subcutaneous grafts. Further pharmacological analysis revealed that IMT030122 recruited lymphocytes from peripheral blood into colorectal cancer tissue and exerted durable anti-tumor activity, predominantly by promoting the activation, proliferation, and differentiation of CD8T cells. Notably, IMT030122 still exhibited anti-tumor efficacy even in the presence of significantly depleted lymphocytes in colorectal cancer tissue. The potent pharmacological activity and anti-tumor effects of IMT030122 suggest it may enhance treatment efficacy and substantially extend the survival of patients with colorectal cancer in the future.
Collapse
Affiliation(s)
- Jianbo Shen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Niliang Qian
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Guili Xu
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Xiaoqian Dou
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Ying An
- Department of Preventive Treatment of Disease, Chengde Traditional Medicine Hospital, Hebei 067000, China
| | - Cuima Yang
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Yujie Liu
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Yunhui Liu
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Xiujie Pan
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Jingjing Wang
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Guijun Bai
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Hao Chen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xiaolin Zhu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xin Gao
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China
| | - Guoxiong Zhou
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China.
| | - Qinzhi Xu
- Beijing Immunoah Pharma Tech Co., Ltd., Beijing 100141, China.
| |
Collapse
|
6
|
Jin Z, Pang W, Zhao Y, Min H, Yao S, Bian Z, Wen Y, Peng C, Cao Y, Zheng L. Oral administration of IPI549 protects mice from neuropathology and an overwhelming inflammatory response during experimental cerebral malaria. Int J Parasitol Drugs Drug Resist 2024; 25:100539. [PMID: 38621317 PMCID: PMC11021959 DOI: 10.1016/j.ijpddr.2024.100539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024]
Abstract
Infection with Plasmodium falciparum is often deadly when it results in cerebral malaria, which is associated with neuropathology described as an overwhelming inflammatory response and mechanical obstruction of cerebral microvascular. PI3Kγ is a critical component of intracellular signal transduction and plays a central role in regulating cell chemotaxis, migration, and activation. The purpose of this study was to examine the relationship between inhibiting the PI3Kγ pathway and the outcome of experimental cerebral malaria (ECM) in C57BL/6J mice infected with the mouse malaria parasite, Plasmodium berghei ANKA. We observed that oral administration of the PI3Kγ inhibitor IPI549 after infection completely protected mice from ECM. IPI549 treatment significantly dampened the magnitude of inflammatory responses, with reduced production of pro-inflammatory factors, decreased T cell activation, and altered differentiation of antigen-presenting cells. IPI549 treatment protected the infected mice from neuropathology, as assessed by an observed reduction of pathogenic T cells in the brain. Treating the infected mice with IPI549 three days after parasite inoculation improved the murine blood brain barrier (BBB) integrity and helped the mice pass the onset of ECM. Together, these data indicate that oral administration of the PI3Kγ inhibitor IPI549 has a suppressive role in host inflammation and alleviates cerebral pathology, which supports IPI549 as a new malaria treatment option with potential therapeutic implications for cerebral malaria.
Collapse
Affiliation(s)
- Zhuoru Jin
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China; Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei Pang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Hui Min
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Shijie Yao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Zhifang Bian
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Yixin Wen
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China
| | - Chuanyang Peng
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China; Department of Emergency and Oral Medicine, School and Hospital of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| | - Li Zheng
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
7
|
van Elsas MJ, Middelburg J, Labrie C, Roelands J, Schaap G, Sluijter M, Tonea R, Ovcinnikovs V, Lloyd K, Schuurman J, Riesenfeld SJ, Gajewski TF, de Miranda NFCC, van Hall T, van der Burg SH. Immunotherapy-activated T cells recruit and skew late-stage activated M1-like macrophages that are critical for therapeutic efficacy. Cancer Cell 2024; 42:1032-1050.e10. [PMID: 38759656 DOI: 10.1016/j.ccell.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/23/2024] [Accepted: 04/24/2024] [Indexed: 05/19/2024]
Abstract
Total tumor clearance through immunotherapy is associated with a fully coordinated innate and adaptive immune response, but knowledge on the exact contribution of each immune cell subset is limited. We show that therapy-induced intratumoral CD8+ T cells recruited and skewed late-stage activated M1-like macrophages, which were critical for effective tumor control in two different murine models of cancer immunotherapy. The activated CD8+ T cells summon these macrophages into the tumor and their close vicinity via CCR5 signaling. Exposure of non-polarized macrophages to activated T cell supernatant and tumor lysate recapitulates the late-stage activated and tumoricidal phenotype in vitro. The transcriptomic signature of these macrophages is also detected in a similar macrophage population present in human tumors and coincides with clinical response to immune checkpoint inhibitors. The requirement of a functional co-operation between CD8+ T cells and effector macrophages for effective immunotherapy gives warning to combinations with broad macrophage-targeting strategies.
Collapse
Affiliation(s)
- Marit J van Elsas
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Jim Middelburg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Camilla Labrie
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Jessica Roelands
- Department of Pathology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Gaby Schaap
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Marjolein Sluijter
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Ruxandra Tonea
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, Chicago, IL 60637, USA
| | | | | | | | | | - Thomas F Gajewski
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Noel F C C de Miranda
- Department of Pathology, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden 2333ZA, the Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden 2333ZA, the Netherlands.
| |
Collapse
|
8
|
Yang W, Li W, Zhou W, Wang S, Wang W, Wang Z, Feng N, Wang T, Xie Y, Zhao Y, Yan F, Xia X. Establishment and application of a surrogate model for human Ebola virus disease in BSL-2 laboratory. Virol Sin 2024; 39:434-446. [PMID: 38556051 PMCID: PMC11279801 DOI: 10.1016/j.virs.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/22/2024] [Indexed: 04/02/2024] Open
Abstract
The Ebola virus (EBOV) is a member of the Orthoebolavirus genus, Filoviridae family, which causes severe hemorrhagic diseases in humans and non-human primates (NHPs), with a case fatality rate of up to 90%. The development of countermeasures against EBOV has been hindered by the lack of ideal animal models, as EBOV requires handling in biosafety level (BSL)-4 facilities. Therefore, accessible and convenient animal models are urgently needed to promote prophylactic and therapeutic approaches against EBOV. In this study, a recombinant vesicular stomatitis virus expressing Ebola virus glycoprotein (VSV-EBOV/GP) was constructed and applied as a surrogate virus, establishing a lethal infection in hamsters. Following infection with VSV-EBOV/GP, 3-week-old female Syrian hamsters exhibited disease signs such as weight loss, multi-organ failure, severe uveitis, high viral loads, and developed severe systemic diseases similar to those observed in human EBOV patients. All animals succumbed at 2-3 days post-infection (dpi). Histopathological changes indicated that VSV-EBOV/GP targeted liver cells, suggesting that the tissue tropism of VSV-EBOV/GP was comparable to wild-type EBOV (WT EBOV). Notably, the pathogenicity of the VSV-EBOV/GP was found to be species-specific, age-related, gender-associated, and challenge route-dependent. Subsequently, equine anti-EBOV immunoglobulins and a subunit vaccine were validated using this model. Overall, this surrogate model represents a safe, effective, and economical tool for rapid preclinical evaluation of medical countermeasures against EBOV under BSL-2 conditions, which would accelerate technological advances and breakthroughs in confronting Ebola virus disease.
Collapse
Affiliation(s)
- Wanying Yang
- Hebei Key Lab of Laboratory Animal Science, Department of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, 050017, China; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Wujian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China; College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Wujie Zhou
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Weiqi Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China; College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zhenshan Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China; College of Veterinary Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| | - Ying Xie
- Hebei Key Lab of Laboratory Animal Science, Department of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China.
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China
| |
Collapse
|
9
|
Liu X, Wang W, Chen B, Wang S. Integrative analysis based on the cell cycle-related genes identifies TPX2 as a novel prognostic biomarker associated with tumor immunity in breast cancer. Aging (Albany NY) 2024; 16:7188-7216. [PMID: 38643462 PMCID: PMC11087105 DOI: 10.18632/aging.205752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND This study aims to identify the essential cell cycle-related genes associated with prognosis in breast cancer (BRCA), and to verify the relationship between the central gene and immune infiltration, so as to provide detailed and comprehensive information for the treatment of BRCA. MATERIALS AND METHODS Gene expression profiles (GSE10780, GSE21422, GSE61304) and the Cancer Genome Atlas (TCGA) BRCA data were used to identify differentially expressed genes (DEGs) and further functional enrichment analysis. STRING and Cytoscape were employed for the protein-protein interaction (PPI) network construction. TPX2 was viewed as the crucial prognostic gene by the Survival and Cox analysis. Furthermore, the connection between TPX2 expression and immune infiltrating cells and immune checkpoints in BRCA was also performed by the TIMER online database and R software. RESULTS A total of 18 cell cycle-related DEGs were identified in this study. Subsequently, an intersection analysis based on TCGA-BRCA prognostic genes and the above DEGs identified three genes (TPX2, UBE2C, CCNE2) as crucial prognostic candidate biomarkers. Moreover, we also demonstrated that TPX2 is closely associated with immune infiltration in BRCA and a positive relation between TPX2 and PD-L1 expression was firstly detected. CONCLUSIONS These results revealed that TPX2 is a potential prognostic biomarker and closely correlated with immune infiltration in BRCA, which could provide powerful and efficient strategies for breast cancer immunotherapy.
Collapse
Affiliation(s)
- Xinli Liu
- Department of Medical Oncology, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361100, China
| | - Wenyi Wang
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361026, China
| | - Bing Chen
- Department of Thyroid and Breast Surgery, Xiamen Humanity Hospital Fujian Medical University, Xiamen 361006, China
| | - Shengjie Wang
- Department of Thyroid and Breast Surgery, Xiamen Humanity Hospital Fujian Medical University, Xiamen 361006, China
| |
Collapse
|
10
|
Groeneveldt C, Kinderman P, Griffioen L, Rensing O, Labrie C, van den Wollenberg DJ, Hoeben RC, Coffey M, Loghmani H, Verdegaal EM, Welters MJ, van der Burg SH, van Hall T, van Montfoort N. Neutralizing Antibodies Impair the Oncolytic Efficacy of Reovirus but Permit Effective Combination with T cell-Based Immunotherapies. Cancer Immunol Res 2024; 12:334-349. [PMID: 38194598 PMCID: PMC10911706 DOI: 10.1158/2326-6066.cir-23-0480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/31/2023] [Accepted: 01/05/2024] [Indexed: 01/11/2024]
Abstract
Reovirus type 3 Dearing (Reo), manufactured for clinical application as pelareorep, is an attractive anticancer agent under evaluation in multiple phase 2 clinical trials for the treatment of solid tumors. It elicits its anticancer efficacy by inducing both oncolysis and intratumoral T-cell influx. Because most people have been preexposed to Reo, neutralizing antibodies (NAb) are prevalent in patients with cancer and might present a barrier to effective Reo therapy. Here, we tested serum of patients with cancer and healthy controls (n = 100) and confirmed that Reo NAbs are present in >80% of individuals. To investigate the effect of NAbs on both the oncolytic and the immunostimulatory efficacy of Reo, we established an experimental mouse model with Reo preexposure. The presence of preexposure-induced NAbs reduced Reo tumor infection and prevented Reo-mediated control of tumor growth after intratumoral Reo administration. In B cell-deficient mice, the lack of NAbs provided enhanced tumor growth control after Reo monotherapy, indicating that NAbs limit the oncolytic capacity of Reo. In immunocompetent mice, intratumoral T-cell influx was not affected by the presence of preexposure-induced NAbs and consequently, combinatorial immunotherapy strategies comprising Reo and T-cell engagers or checkpoint inhibitors remained effective in these settings, also after a clinically applied regimen of multiple intravenous pelareorep administrations. Altogether, our data indicate that NAbs hamper the oncolytic efficacy of Reo, but not its immunotherapeutic capacity. Given the high prevalence of seropositivity for Reo in patients with cancer, our data strongly advocate for the application of Reo as part of T cell-based immunotherapeutic strategies.
Collapse
Affiliation(s)
- Christianne Groeneveldt
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Priscilla Kinderman
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Lisa Griffioen
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Olivia Rensing
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Camilla Labrie
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Rob C. Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Matt Coffey
- Oncolytics Biotech Incorporated, Calgary, Canada
| | | | - Els M.E. Verdegaal
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Marij J.P. Welters
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Sjoerd H. van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Nadine van Montfoort
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
11
|
Díez-Alonso L, Falgas A, Arroyo-Ródenas J, Romencín PA, Martínez A, Gómez-Rosel M, Blanco B, Jiménez-Reinoso A, Mayado A, Pérez-Pons A, Aguilar-Sopeña Ó, Ramírez-Fernández Á, Segura-Tudela A, Perez-Amill L, Tapia-Galisteo A, Domínguez-Alonso C, Rubio-Pérez L, Jara M, Solé F, Hangiu O, Almagro L, Albitre Á, Penela P, Sanz L, Anguita E, Valeri A, García-Ortiz A, Río P, Juan M, Martínez-López J, Roda-Navarro P, Martín-Antonio B, Orfao A, Menéndez P, Bueno C, Álvarez-Vallina L. Engineered T cells secreting anti-BCMA T cell engagers control multiple myeloma and promote immune memory in vivo. Sci Transl Med 2024; 16:eadg7962. [PMID: 38354229 DOI: 10.1126/scitranslmed.adg7962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024]
Abstract
Multiple myeloma is the second most common hematological malignancy in adults and remains an incurable disease. B cell maturation antigen (BCMA)-directed immunotherapy, including T cells bearing chimeric antigen receptors (CARs) and systemically injected bispecific T cell engagers (TCEs), has shown remarkable clinical activity, and several products have received market approval. However, despite promising results, most patients eventually become refractory and relapse, highlighting the need for alternative strategies. Engineered T cells secreting TCE antibodies (STAb) represent a promising strategy that combines the advantages of adoptive cell therapies and bispecific antibodies. Here, we undertook a comprehensive preclinical study comparing the therapeutic potential of T cells either expressing second-generation anti-BCMA CARs (CAR-T) or secreting BCMAxCD3 TCEs (STAb-T) in a T cell-limiting experimental setting mimicking the conditions found in patients with relapsed/refractory multiple myeloma. STAb-T cells recruited T cell activity at extremely low effector-to-target ratios and were resistant to inhibition mediated by soluble BCMA released from the cell surface, resulting in enhanced cytotoxic responses and prevention of immune escape of multiple myeloma cells in vitro. These advantages led to robust expansion and persistence of STAb-T cells in vivo, generating long-lived memory BCMA-specific responses that could control multiple myeloma progression in xenograft models, outperforming traditional CAR-T cells. These promising preclinical results encourage clinical testing of the BCMA-STAb-T cell approach in relapsed/refractory multiple myeloma.
Collapse
Affiliation(s)
- Laura Díez-Alonso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Aïda Falgas
- Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain
- Red Española de Terapias Avanzadas (TERAV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Arroyo-Ródenas
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Paola A Romencín
- Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain
| | - Alba Martínez
- Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain
| | - Marina Gómez-Rosel
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Belén Blanco
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
- Red Española de Terapias Avanzadas (TERAV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Anaïs Jiménez-Reinoso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Andrea Mayado
- Cancer Research Center (IBMCC, USAL-CSIC), Department of Medicine and Cytometry Service (NUCLEUS), Universidad de Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Alba Pérez-Pons
- Cancer Research Center (IBMCC, USAL-CSIC), Department of Medicine and Cytometry Service (NUCLEUS), Universidad de Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Óscar Aguilar-Sopeña
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, 28040 Madrid, Spain
- Lymphocyte Immunobiology Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Ángel Ramírez-Fernández
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Alejandro Segura-Tudela
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Lorena Perez-Amill
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic de Barcelona, 08036 Barcelona, Spain
| | - Antonio Tapia-Galisteo
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Carmen Domínguez-Alonso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Laura Rubio-Pérez
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
- Chair for Immunology UFV/Merck, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Maria Jara
- Cancer Research Center (IBMCC, USAL-CSIC), Department of Medicine and Cytometry Service (NUCLEUS), Universidad de Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Francesc Solé
- Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain
| | - Oana Hangiu
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Laura Almagro
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, 28040 Madrid, Spain
- Lymphocyte Immunobiology Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Ángela Albitre
- Centro de Biología Molecular Severo Ochoa CSIC-UAM, 28049 Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
| | - Petronila Penela
- Centro de Biología Molecular Severo Ochoa CSIC-UAM, 28049 Madrid, Spain
- Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain
| | - Laura Sanz
- Molecular Immunology Unit, Hospital Universitario Puerta de Hierro Majadahonda, Majadahonda, 28222 Madrid, Spain
| | - Eduardo Anguita
- Department of Medicine, Medical School, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Department of Hematology, IML, IdISSC, Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Antonio Valeri
- H12O-CNIO Hematological Malignancies Clinical Research Unit, Spanish National Cancer Research (CNIO), 28029 Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Almudena García-Ortiz
- H12O-CNIO Hematological Malignancies Clinical Research Unit, Spanish National Cancer Research (CNIO), 28029 Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Paula Río
- Red Española de Terapias Avanzadas (TERAV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Division of Hematopoietic Innovative Therapies, Biomedical Innovation Unit, Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Manel Juan
- Red Española de Terapias Avanzadas (TERAV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic de Barcelona, 08036 Barcelona, Spain
- Servei d'Immunologia, Hospital Clínic de Barcelona, 08036 Barcelona, Spain
- Plataforma Immunoterapia, Hospital Sant Joan de Deu, 08950 Barcelona, Spain
- Universitat de Barcelona, 08007 Barcelona, Spain
| | - Joaquín Martínez-López
- Red Española de Terapias Avanzadas (TERAV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- H12O-CNIO Hematological Malignancies Clinical Research Unit, Spanish National Cancer Research (CNIO), 28029 Madrid, Spain
- Department of Hematology, Hospital Universitario 12 de Octubre-Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Pedro Roda-Navarro
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense, 28040 Madrid, Spain
- Lymphocyte Immunobiology Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Beatriz Martín-Antonio
- Department of Experimental Hematology, Instituto de Investigación Sanitaria Fundación Jiménez Diaz, (IIS-FJD), Universidad Autónoma de Madrid, 28040 Madrid, Spain
| | - Alberto Orfao
- Cancer Research Center (IBMCC, USAL-CSIC), Department of Medicine and Cytometry Service (NUCLEUS), Universidad de Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Biomedical Research Institute of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Pablo Menéndez
- Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain
- Red Española de Terapias Avanzadas (TERAV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Biomedicine, School of Medicine, Universitat de Barcelona, 08007 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Clara Bueno
- Josep Carreras Leukaemia Research Institute, 08036 Barcelona, Spain
- Red Española de Terapias Avanzadas (TERAV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Luis Álvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
- Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- H12O-CNIO Cancer Immunotherapy Clinical Research Unit, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
- Chair for Immunology UFV/Merck, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
12
|
Cui Y, Wu S, Liu K, Zhao H, Ma B, Gong L, Zhou Q, Li X. Extra villous trophoblast-derived PDL1 can ameliorate macrophage inflammation and promote immune adaptation associated with preeclampsia. J Reprod Immunol 2024; 161:104186. [PMID: 38134680 DOI: 10.1016/j.jri.2023.104186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
INTRODUCTION Severe preeclampsia (sPE) is a systemic syndrome that may originate from chronic inflammation. Maintaining maternal-fetal hemostasis by the co-inhibitory molecule programmed death ligand 1 (PDL1) can be favorable for ameliorating inflammation from immune cells. Apart from programmed death 1 (PD1) expression, decidual macrophages (dMs) produce inflammatory cytokines, in response to cells which express PDL1. However, strong evidence is lacking regarding whether the PDL1/PD1 interaction between trophoblasts and decidual macrophages affects inflammation during sPE development. METHODS To determine whether the trophoblast-macrophage crosstalk via the PDL1/PD1 axis modulates the inflammatory response in sPE-like conditions, at first, maternal-fetal tissues from sPE and normal patients were collected, and the PDL1/PD1 distribution was analyzed by Western blot, immunohistochemistry/ immunofluorescence and flow cytometry. Next, a coculture system was established and flow cytometry was used to identify how PDL1 was involved in macrophage-related inflammation under hypoxic stress. Transcriptional analysis was performed to clarify the inflammation-associated pathway induced by the PDL1/PD1 interaction. Finally, the Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME) mouse model was used to examine the effect of PDL1 on macrophage-related inflammation by measuring PE-like symptoms. RESULTS In maternal-fetal tissue from sPE patients, placental extravillous trophoblasts (EVTs) and dMs had a surprisingly increase of PDL1 and PD1 expression, respectively, accompanied by a higher percentage of CD68 +CD86 + dMs. In vitro experiments showed that trophoblast-derived PDL1 under hypoxia interacted with PD1 on CD14 +CD80 +macrophages, leading to suppression of inflammation through the TNFα-p38/NFκB pathway. Accordingly, the PE-like mouse model showed a reversal of PE-like symptoms and a reduced F4/80 + CD86 + macrophage percentage in the uterus in response to recombinant PDL1 protein administration, indicating the protective effect of PDL1. DISCUSSION Our results initially explained an immunological adaptation of trophoblasts under placental hypoxia, although this protection was insufficient. Our findings suggest the possible capacity of modulating PDL1 expression as a potential therapeutic strategy to target the inflammatory response in sPE.
Collapse
Affiliation(s)
- Yutong Cui
- Department Obstetrics, Obstetrics and Gynaecology Hospital of Fudan University, Shanghai, China
| | - Suwen Wu
- Department Obstetrics, Obstetrics and Gynaecology Hospital of Fudan University, Shanghai, China
| | - Ketong Liu
- Department Obstetrics, Obstetrics and Gynaecology Hospital of Fudan University, Shanghai, China
| | - Huanqiang Zhao
- Department of Obstetrics, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China
| | - Bo Ma
- Department Obstetrics, Obstetrics and Gynaecology Hospital of Fudan University, Shanghai, China
| | - Lili Gong
- Department Obstetrics, Obstetrics and Gynaecology Hospital of Fudan University, Shanghai, China
| | - Qiongjie Zhou
- Department Obstetrics, Obstetrics and Gynaecology Hospital of Fudan University, Shanghai, China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, China.
| | - Xiaotian Li
- Department Obstetrics, Obstetrics and Gynaecology Hospital of Fudan University, Shanghai, China; Department of Obstetrics, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
13
|
Wang L, Leach V, Muthusamy N, Byrd J, Long M. A CD3 humanized mouse model unmasked unique features of T-cell responses to bispecific antibody treatment. Blood Adv 2024; 8:470-481. [PMID: 37871327 PMCID: PMC10837186 DOI: 10.1182/bloodadvances.2023010971] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023] Open
Abstract
ABSTRACT T-cell bispecific antibodies (T-BsAbs) such as blinatumomab hold great promise for cancer immunotherapy. A better understanding of the in vivo immune response induced by T-BsAbs is crucial to improving their efficacy and safety profile. However, such efforts are hindered by the limitations of current preclinical models. To address this, we developed a syngeneic murine model with humanized CD3 and target antigen (CD20). This model enables the development of disseminated leukemia with a high tumor burden, which mirrors clinical findings in human patients with relapsed/refractory acute lymphoblastic leukemia. Treatment of this model with T-BsAbs results in cytokine release syndrome, with cytokine profiles and levels reflecting observations made in human patients. This model also faithfully recapitulates the dynamics of T-cell activation seen in human patients, including the temporary disappearance of T cells from the bloodstream. During this phase, T cells are sequestered in secondary lymphoid organs and undergo activation. Clinical correlative studies that rely primarily on peripheral blood samples are likely to overlook this critical activation stage, leading to a substantial underestimation of the extent of T-cell activation. Furthermore, we demonstrate that surface expression of the T-BsAb target antigen by leukemia cells triggers a swift immune response, promoting their own rejection. Humanizing the target antigen in the recipient mice is crucial to facilitate tolerance induction and successful establishment of high tumor burden. Our findings underscore the importance of meticulously optimized syngeneic murine models for investigating T-BsAb-induced immune responses and for translational research aimed at improving efficacy and safety.
Collapse
Affiliation(s)
- Lingling Wang
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Vincent Leach
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - Natarajan Muthusamy
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| | - John Byrd
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Meixiao Long
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH
| |
Collapse
|
14
|
Middelburg J, Sluijter M, Schaap G, Göynük B, Lloyd K, Ovcinnikovs V, Zom GG, Marijnissen RJ, Groeneveldt C, Griffioen L, Sandker GGW, Heskamp S, van der Burg SH, Arakelian T, Ossendorp F, Arens R, Schuurman J, Kemper K, van Hall T. T-cell stimulating vaccines empower CD3 bispecific antibody therapy in solid tumors. Nat Commun 2024; 15:48. [PMID: 38167722 PMCID: PMC10761684 DOI: 10.1038/s41467-023-44308-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
CD3 bispecific antibody (CD3 bsAb) therapy is clinically approved for refractory hematological malignancies, but responses in solid tumors have been limited so far. One of the main hurdles in solid tumors is the lack of sufficient T-cell infiltrate. Here, we show that pre-treatment vaccination, even when composed of tumor-unrelated antigens, induces CXCR3-mediated T-cell influx in immunologically 'cold' tumor models in male mice. In the absence of CD3 bsAb, the infiltrate is confined to the tumor invasive margin, whereas subsequent CD3 bsAb administration induces infiltration of activated effector CD8 T cells into the tumor cell nests. This combination therapy installs a broadly inflamed Th1-type tumor microenvironment, resulting in effective tumor eradication. Multiple vaccination formulations, including synthetic long peptides and viruses, empower CD3 bsAb therapy. Our results imply that eliciting tumor infiltration with vaccine-induced tumor-(un)related T cells can greatly improve the efficacy of CD3 bsAbs in solid tumors.
Collapse
Affiliation(s)
- Jim Middelburg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Marjolein Sluijter
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Gaby Schaap
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Büşra Göynük
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | | | | | - Christianne Groeneveldt
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Lisa Griffioen
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Gerwin G W Sandker
- Department of Medical Imaging, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Tsolere Arakelian
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ferry Ossendorp
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Ramon Arens
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
15
|
Wang Z, Liu W, Hu H, Jiang J, Yang C, Zhang X, Yuan Q, Yang X, Huang M, Bao Y, Ji N, Zhang M. CD146 deficiency promotes inflammatory type 2 responses in pulmonary cryptococcosis. Med Microbiol Immunol 2023; 212:391-405. [PMID: 37650914 DOI: 10.1007/s00430-023-00780-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
Cryptococcus neoformans (C. neoformans) is an important opportunistic fungal pathogen for pulmonary cryptococcosis. Previously, we demonstrated that CD146 mediated the adhesion of C. neoformans to the airway epithelium. CD146 is more than an adhesion molecule. In the present study, we aimed to explore the roles of CD146 in the inflammatory response in pulmonary cryptococcosis. CD146 was decreased in lung tissues from patients with pulmonary cryptococcosis. Similarly, C. neoformans reduced pulmonary CD146 expression in mice following intratracheal inoculation. To explore the pathological roles of CD146 reduction in pulmonary cryptococcosis, CD146 knockout (KO) mice were inoculated with C. neoformans via intratracheal instillation. CD146 deficiency aggravated C. neoformans infection, as evidenced by a shortened survival time and increased fungal burdens in the lung. Inflammatory type 2 cytokines (IL-4, IL-5, and TNF-α) and alternatively activated macrophages were increased in the pulmonary tissues of CD146 KO-infected mice. CD146 is expressed in immune cells (macrophages, etc.) and nonimmune cells, i.e., epithelial cells and endothelial cells. Bone marrow chimeric mice were established and infected with C. neoformans. CD146 deficiency in immune cells but not in nonimmune cells increased fungal burdens in the lung. Mechanistically, upon C. neoformans challenge, CD146 KO macrophages produced more neutrophil chemokine KC and inflammatory cytokine TNF-α. Meanwhile, CD146 KO macrophages decreased the fungicidity and production of reactive oxygen species. Collectively, C. neoformans infection decreased CD146 in pulmonary tissues, leading to inflammatory type 2 responses, while CD146 deficiency worsened pulmonary cryptococcosis.
Collapse
Affiliation(s)
- Zhengxia Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Wei Liu
- NHC Key Laboratory of Antibody Technique, Jiangsu Province Engineering Research Center of Antibody Drug, Jiangsu Key Laboratory of Pathogen Biology, Department of Immunology, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Huidi Hu
- Department of Pathology, Nanjing Chest Hospital, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jingxian Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Chen Yang
- Department of Pathology, Nanjing Chest Hospital, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xijie Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Qi Yuan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xiaofan Yang
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Mao Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yanming Bao
- Department of Respirology, Shenzhen Children's Hospital, Shenzhen, 518026, Guangdong, China.
| | - Ningfei Ji
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| | - Mingshun Zhang
- Department of Pathology, Nanjing Chest Hospital, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
16
|
Sandker GGW, Middelburg J, Wilbrink E, Molkenboer-Kuenen J, Aarntzen E, van Hall T, Heskamp S. Longitudinal evaluation of the biodistribution and cellular internalization of the bispecific CD3xTRP1 antibody in syngeneic mouse tumor models. J Immunother Cancer 2023; 11:e007596. [PMID: 37899133 PMCID: PMC10619024 DOI: 10.1136/jitc-2023-007596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND CD3 bispecific antibodies (CD3-bsAbs) require binding of both a tumor-associated surface antigen and CD3 for their immunotherapeutic effect. Their efficacy is, therefore, influenced by the tumor uptake and the extracellular dose. To optimize their currently limited efficacy in solid tumors, increased understanding of their pharmacokinetics and in vivo internalization is needed. METHODS Here, were studied the pharmacokinetics and in vivo internalization of CD3xTRP1, a fully murine Fc-inert bsAb, in endogenous TRP1-expressing immunocompetent male C57BL/6J mice bearing TRP1-positive and negative tumors over time. Matching bsAbs lacking TRP1-binding or CD3-binding capacity served as controls. BsAbs were radiolabeled with 111In to investigate their pharmacokinetics, target binding, and biodistribution through SPECT/CT imaging and ex vivo biodistribution analyses. Co-injection of 111In- and 125I-labeled bsAb was performed to investigate the in vivo internalization by comparing tissue concentrations of cellular residing 111In versus effluxing 125I. Antitumor therapy effects were evaluated by monitoring tumor growth and immunohistochemistry. RESULTS SPECT/CT and biodistribution analyses showed that CD3xTRP1 specifically targeted TRP1-positive tumors and CD3-rich lymphoid organ and uptake peaked 24 hours pi (KPC3-TRP1: 37.7%ID/g±5.3%ID/g, spleen: 29.0%ID/g±3.9%ID/g). Studies with control bsAbs demonstrated that uptake of CD3xTRP1 in TRP1-positive tumors and CD3-rich tissues was primarily receptor-mediated. Together with CD3xTRP1 in the circulation being mainly unattached, this indicates that CD3+ T cells are generally not traffickers of CD3-bsAbs to the tumor. Additionally, target-mediated clearance by TRP1-expressing melanocytes was not observed. We further demonstrated rapid internalization of CD3xTRP1 in KPC3-TRP1 tumors (24 hours pi: 54.9%±2.3% internalized) and CD3-rich tissues (spleen, 24 hours pi: 79.7%±0.9% internalized). Therapeutic effects by CD3xTRP1 were observed for TRP1-positive tumors and consisted of high tumor influx of CD8+ T cells and neutrophils, which corresponded with increased necrosis and growth delay. CONCLUSIONS We show that CD3xTRP1 efficiently targets TRP1-positive tumors and CD3-rich tissues primarily through receptor-mediated targeting. We further demonstrate rapid receptor-mediated internalization of CD3xTRP1 in TRP1-positive tumors and CD3-rich tissues. Even though this significantly decreases the therapeutical available dose, CD3xTRP1 still induced effective antitumor T-cell responses and inhibited tumor growth. Together, our data on the pharmacokinetics and mechanism of action of CD3xTRP1 pave the way for further optimization of CD3-bsAb therapies.
Collapse
Affiliation(s)
| | - Jim Middelburg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Evienne Wilbrink
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Erik Aarntzen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
17
|
Huang X, He Y, Zhang M, Lu Z, Zhang T, Wang B. GPP-TSAIII nanocomposite hydrogel-based photothermal ablation facilitates melanoma therapy. Expert Opin Drug Deliv 2023; 20:1277-1295. [PMID: 37039332 DOI: 10.1080/17425247.2023.2200997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 03/01/2023] [Indexed: 04/12/2023]
Abstract
BACKGROUND Photothermal therapy (PTT) is a promising cancer treatment, but its application is limited by low photoconversion efficiency. In this study, we aimed to develop a novel graphene oxide (GO)-based nanocomposite hydrogel to improve the bioavailability of timosaponin AIII (TSAIII) while maximizing PTT efficacy and enhancing the antitumor effect. METHODS GO was modified via physical cross-linking with polyvinyl alcohol. The pore structure of the gel was adjusted by repeated freeze-thawing and the addition of polyethylene glycol 2000 to obtain a nanocomposite hydrogel (GPP). The GPP loaded with TSAIII constituted a GPP-TSAIII drug delivery system, and its efficacy was evaluated by in vitro cytotoxicity, apoptosis, migration, and uptake analyses, and in vivo antitumor studies. RESULTS The encapsulation rate of GPP-TSAIII was 66.36 ± 3.97%, with slower in vitro release and higher tumor cell uptake (6.4-fold) compared to TSAIII. GPP-TSAIII in combination with PTT showed better bioavailability and antitumor effects in vivo than did TSAIII, with a 1.9-fold higher tumor suppression rate than the TSAIII group. CONCLUSIONS GPP is a potential vehicle for delivery of TSAIII-like poor water-soluble anticancer drugs. The innovative PTT co-delivery system may serve as a safe and effective melanoma treatment platform for further anticancer translational purposes.
Collapse
Affiliation(s)
- Xing Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yihao He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Miao Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhenhui Lu
- Institute of Respiratory Disease, Long hua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bing Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
18
|
Skeltved N, Nordmaj MA, Berendtsen NT, Dagil R, Stormer EMR, Al-Nakouzi N, Jiang K, Aicher A, Heeschen C, Gustavsson T, Choudhary S, Gögenur I, Christensen JP, Theander TG, Daugaard M, Salanti A, Nielsen MA. Bispecific T cell-engager targeting oncofetal chondroitin sulfate induces complete tumor regression and protective immune memory in mice. J Exp Clin Cancer Res 2023; 42:106. [PMID: 37118819 PMCID: PMC10142489 DOI: 10.1186/s13046-023-02655-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/28/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND The malaria protein VAR2CSA binds oncofetal chondroitin sulfate (ofCS), a unique chondroitin sulfate, expressed on almost all mammalian cancer cells. Previously, we produced a bispecific construct targeting ofCS and human T cells based on VAR2CSA and anti-CD3 (V-aCD3Hu). V-aCD3Hu showed efficacy against xenografted tumors in immunocompromised mice injected with human immune cells at the tumor site. However, the complex effects potentially exerted by the immune system as a result of the treatment cannot occur in mice without an immune system. Here we investigate the efficacy of V-aCD3Mu as a monotherapy and combined with immune checkpoint inhibitors in mice with a fully functional immune system. METHODS We produced a bispecific construct consisting of a recombinant version of VAR2CSA coupled to an anti-murine CD3 single-chain variable fragment. Flow cytometry and ELISA were used to check cell binding capabilities and the therapeutic effect was evaluated in vitro in a killing assay. The in vivo efficacy of V-aCD3Mu was then investigated in mice with a functional immune system and established or primary syngeneic tumors in the immunologically "cold" 4T1 mammary carcinoma, B16-F10 malignant melanoma, the pancreatic KPC mouse model, and in the immunologically "hot" CT26 colon carcinoma model. RESULTS V-aCD3Mu had efficacy as a monotherapy, and the combined treatment of V-aCD3Mu and an immune checkpoint inhibitor showed enhanced effects resulting in the complete elimination of solid tumors in the 4T1, B16-F10, and CT26 models. This anti-tumor effect was abscopal and accompanied by a systemic increase in memory and activated cytotoxic and helper T cells. The combined treatment also led to a higher percentage of memory T cells in the tumor without an increase in regulatory T cells. In addition, we observed partial protection against re-challenge in a melanoma model and full protection in a breast cancer model. CONCLUSIONS Our findings suggest that V-aCD3Mu combined with an immune checkpoint inhibitor renders immunologically "cold" tumors "hot" and results in tumor elimination. Taken together, these data provide proof of concept for the further clinical development of V-aCD3 as a broad cancer therapy in combination with an immune checkpoint inhibitor.
Collapse
Affiliation(s)
- Nanna Skeltved
- Centre for Medical Parasitology, Department of Infectious Diseases, University of Copenhagen and, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mie A Nordmaj
- Centre for Medical Parasitology, Department of Infectious Diseases, University of Copenhagen and, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nicolai T Berendtsen
- Centre for Medical Parasitology, Department of Infectious Diseases, University of Copenhagen and, Copenhagen University Hospital, Copenhagen, Denmark
| | - Robert Dagil
- Centre for Medical Parasitology, Department of Infectious Diseases, University of Copenhagen and, Copenhagen University Hospital, Copenhagen, Denmark
| | - Emilie M R Stormer
- Centre for Medical Parasitology, Department of Infectious Diseases, University of Copenhagen and, Copenhagen University Hospital, Copenhagen, Denmark
| | - Nader Al-Nakouzi
- Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
| | - Ke Jiang
- Center for Single-Cell Omics and Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Alexandra Aicher
- Precision Immunotherapy, Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Christopher Heeschen
- Center for Single-Cell Omics and Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute - FPO - IRCCS, Candiolo (Torino), Italy
| | - Tobias Gustavsson
- Centre for Medical Parasitology, Department of Infectious Diseases, University of Copenhagen and, Copenhagen University Hospital, Copenhagen, Denmark
- Var2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Swati Choudhary
- Centre for Medical Parasitology, Department of Infectious Diseases, University of Copenhagen and, Copenhagen University Hospital, Copenhagen, Denmark
- Var2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Ismail Gögenur
- Department of Clinical Medicine, University of Copenhagen and Center for Surgical Science, Zealand University Hospital, Copenhagen, Denmark
| | - Jan P Christensen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thor G Theander
- Centre for Medical Parasitology, Department of Infectious Diseases, University of Copenhagen and, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mads Daugaard
- Vancouver Prostate Centre, University of British Columbia, Vancouver, Canada
- Var2 Pharmaceuticals ApS, Copenhagen, Denmark
| | - Ali Salanti
- Centre for Medical Parasitology, Department of Infectious Diseases, University of Copenhagen and, Copenhagen University Hospital, Copenhagen, Denmark.
| | - Morten A Nielsen
- Centre for Medical Parasitology, Department of Infectious Diseases, University of Copenhagen and, Copenhagen University Hospital, Copenhagen, Denmark.
| |
Collapse
|
19
|
Azulay M, Shahar M, Shany E, Elbaz E, Lifshits S, Törngren M, Friedmann A, Kramer R, Hedlund G. Tumor-targeted superantigens produce curative tumor immunity with induction of memory and demonstrated antigen spreading. J Transl Med 2023; 21:222. [PMID: 36967382 PMCID: PMC10041807 DOI: 10.1186/s12967-023-04064-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Despite remarkable progress, the immunotherapies currently used in the clinic, such as immune checkpoint blockade (ICB) therapy, still have limited efficacy against many types of solid tumors. One major barrier to effective treatment is the lack of a durable long-term response. Tumor-targeted superantigen (TTS) therapy may overcome this barrier to enhance therapeutic efficacy. TTS proteins, such as the clinical-stage molecule naptumomab estafenatox (NAP), increase tumor recognition and killing by both coating tumor cells with bacterial-derived superantigens (SAgs) and selectively expanding T-cell lineages that can recognize them. The present study investigated the efficacy and mechanism of action of repeated TTS (C215Fab-SEA) treatments leading to a long-term antitumor immune response as monotherapy or in combination with PD-1/PD-L1 inhibitors in murine tumor models. METHODS We used syngeneic murine tumor models expressing the human EpCAM target (C215 antigen) to assess the efficacy and mechanism of action of repeated treatment with TTS C215Fab-SEA alone or with anti-PD-1/PD-L1 monoclonal antibodies. Tumor draining lymph nodes (TDLNs) and tumor tissues were processed and analyzed by immunophenotyping and immunohistochemistry. Isolated RNA from tumors was used to analyze gene expression and the TCR repertoire. Tumor rechallenge and T-cell transfer studies were conducted to test the long-term antitumor memory response. RESULTS TTS therapy inhibited tumor growth and achieved complete tumor rejection, leading to a T-cell-dependent long-term memory response against the tumor. The antitumor effect was derived from inflammatory responses converting the immunosuppressive TME into a proinflammatory state with an increase in T-cell infiltration, activation and high T-cell diversity. The combination of TTS with ICB therapy was significantly more effective than the monotherapies and resulted in higher tumor-free rates. CONCLUSIONS These new results indicate that TTSs not only can turn a "cold" tumor into a "hot" tumor but also can enable epitope spreading and memory response, which makes TTSs ideal candidates for combination with ICB agents and other anticancer agents.
Collapse
Affiliation(s)
| | | | | | - Eti Elbaz
- NeoTX Therapeutics LTD, Rehovot, Israel
| | | | | | - Adam Friedmann
- NeoTX Therapeutics LTD, Rehovot, Israel
- Department of Genetics, The Hebrew University, Jerusalem, Israel
| | | | - Gunnar Hedlund
- NeoTX Therapeutics LTD, Rehovot, Israel
- ImmunoPoint Consulting AB, Lund, Sweden
| |
Collapse
|
20
|
Yang C, Qian Q, Zhao Y, Huang B, Chen R, Gong Q, Ji H, Wang C, Xia L, You Z, Zhang J, Chen X. Fibrinogen-like protein 1 promotes liver-resident memory T-cell exhaustion in hepatocellular carcinoma. Front Immunol 2023; 14:1112672. [PMID: 36993960 PMCID: PMC10040674 DOI: 10.3389/fimmu.2023.1112672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Background and aimsThe key role of tissue-resident memory T (TRM) cells in the immune regulation of hepatocellular carcinoma (HCC) has been investigated and reported, but the regulatory mechanism of tumor microenvironment on TRM cells is still unclear. Lymphocyte activating gene 3 (LAG-3) is a promising next-generation immune checkpoint that is continuously expressed due to persistent antigen exposure in the tumor microenvironment. Fibrinogen-like protein 1 (FGL1) is a classical ligand of LAG-3 and can promote T cell exhaustion in tumors. Here, we excavated the effect of FGL1-LAG3 regulatory axis on TRM cells in HCC.MethodsThe function and phenotype of intrahepatic CD8+ TRM cells in 35 HCC patients were analyzed using multicolor flow cytometry. Using a tissue microarray of 80 HCC patients, we performed the prognosis analysis. Moreover, we investigated the suppressive effect of FGL1 on CD8+ TRM cells both in in vitro induction model and in vivo orthotopic HCC mouse model.ResultsThere was an increase in LAG3 expression in CD8+ TRM cells in end-stage HCC; moreover, FGL1 levels were negatively correlated with CD103 expression and related to poor outcomes in HCC. Patients with high CD8+ TRM cell proportions have better outcomes, and FGL1-LAG3 binding could lead to the exhaustion of CD8+ TRM cells in tumors, indicating its potential as a target for immune checkpoint therapy of HCC. Increased FGL1 expression in HCC may result in CD8+ TRM cell exhaustion, causing tumor immune escape.ConclusionsWe identified CD8+TRM cells as a potential immunotherapeutic target and reported the effect of FGL1-LAG3 binding on CD8+ TRM cell function in HCC.
Collapse
Affiliation(s)
- Changjie Yang
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qiwei Qian
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yudong Zhao
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bingyuan Huang
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ruilin Chen
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qiyu Gong
- Shanghai Institute of Immunology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Ji
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chenchen Wang
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Xia
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengrui You
- Division of Gastroenterology and Hepatology, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Zhang
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xiaosong Chen, ; Jianjun Zhang,
| | - Xiaosong Chen
- Department of Liver Surgery, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Xiaosong Chen, ; Jianjun Zhang,
| |
Collapse
|
21
|
Menon AP, Moreno B, Meraviglia-Crivelli D, Nonatelli F, Villanueva H, Barainka M, Zheleva A, van Santen HM, Pastor F. Modulating T Cell Responses by Targeting CD3. Cancers (Basel) 2023; 15:1189. [PMID: 36831533 PMCID: PMC9953819 DOI: 10.3390/cancers15041189] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023] Open
Abstract
Harnessing the immune system to fight cancer has become a reality with the clinical success of immune-checkpoint blockade (ICB) antibodies against PD(L)-1 and CTLA-4. However, not all cancer patients respond to ICB. Thus, there is a need to modulate the immune system through alternative strategies for improving clinical responses to ICB. The CD3-T cell receptor (TCR) is the canonical receptor complex on T cells. It provides the "first signal" that initiates T cell activation and determines the specificity of the immune response. The TCR confers the binding specificity whilst the CD3 subunits facilitate signal transduction necessary for T cell activation. While the mechanisms through which antigen sensing and signal transduction occur in the CD3-TCR complex are still under debate, recent revelations regarding the intricate 3D structure of the CD3-TCR complex might open the possibility of modulating its activity by designing targeted drugs and tools, including aptamers. In this review, we summarize the basis of CD3-TCR complex assembly and survey the clinical and preclinical therapeutic tools available to modulate CD3-TCR function for potentiating cancer immunotherapy.
Collapse
Affiliation(s)
- Ashwathi Puravankara Menon
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Beatriz Moreno
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
| | - Daniel Meraviglia-Crivelli
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Francesca Nonatelli
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
| | - Helena Villanueva
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Martin Barainka
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Angelina Zheleva
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Hisse M. van Santen
- Unidad Desarrollo y Función del Sistema Inmunitario, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Pastor
- Molecular Therapeutics Program, Center for Applied Medical Research, CIMA, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Recinto de Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| |
Collapse
|
22
|
Wu C, Zhang J, Wang H, Zhang W, Liu J, Zhou N, Chen K, Wang Y, Peng S, Fu L. TRAF2 as a key candidate gene in clinical hepatitis B-associated liver fibrosis. Front Mol Biosci 2023; 10:1168250. [PMID: 37091870 PMCID: PMC10113534 DOI: 10.3389/fmolb.2023.1168250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Objectives: Approximately 240 million individuals are infected with chronic hepatitis B virus (HBV) worldwide. HBV infection can develop into liver fibrosis. The mechanism of HBV-related liver fibrosis has not been fully understood, and there are few effective treatment options. The goal of this study was to use transcriptomics in conjunction with experimental validation to identify new targets to treat HBV-related liver fibrosis. Methods: To identify differentially expressed genes (DEGs), five liver tissues were collected from both healthy individuals and patients with chronic hepatitis B. NovoMagic and Java GSEA were used to screen DEGs and key genes, respectively. Immunocell infiltration analysis of RNA-seq data was, and the results were confirmed by Western blotting (WB), real-time quantitative polymerase chain reaction (RT-qPCR), and immunohistochemistry. Results: We evaluated 1,105 genes with differential expression, and 462 and 643 genes showed down- and upregulation, respectively. The essential genes, such as tumor necrosis factor (TNF) receptor-associated factor-2 (TRAF2), were screened out of DEGs. TRAF2 expression was abnormally high in hepatic fibrosis in patients with hepatitis B compared with healthy controls. The degree of hepatic fibrosis and serum levels of glutamate transaminase (ALT), aspartate aminotransferase (AST), and total bilirubin (TBIL) were positively linked with TRAF2 expression. TRAF2 may be crucial in controlling T lymphocyte-mediated liver fibrosis. Conclusion: Our findings imply that TRAF2 is essential for HBV-induced liver fibrosis progression, and it may potentially be a promising target for the treatment of hepatic fibrosis in hepatitis B.
Collapse
Affiliation(s)
- Cichun Wu
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Jian Zhang
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Huiwen Wang
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Wei Zhang
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Jingqing Liu
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Nianqi Zhou
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Keyu Chen
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
| | - Ying Wang
- Department of Pathology, Xiangya Hospital Central South University, Changsha, China
| | - Shifang Peng
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
- *Correspondence: Lei Fu, ; Shifang Peng,
| | - Lei Fu
- Department of Infectious Diseases, Xiangya Hospital Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
- *Correspondence: Lei Fu, ; Shifang Peng,
| |
Collapse
|
23
|
Xiao QH, Sun XH, Cui ZQ, Hu XY, Yang T, Guan JW, Gu Y, Li HY, Zhang HY. TMEM16F may be a new therapeutic target for Alzheimer’s disease. Neural Regen Res 2023; 18:643-651. [DOI: 10.4103/1673-5374.350211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
24
|
Liu L, Chen J. Therapeutic antibodies for precise cancer immunotherapy: current and future perspectives. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:555-569. [PMID: 37724258 PMCID: PMC10471122 DOI: 10.1515/mr-2022-0033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/25/2022] [Indexed: 09/20/2023]
Abstract
Antibodies, as one of the most important components of host adaptive immune system, play an important role in defense of infectious disease, immune surveillance, and autoimmune disease. Due to the development of recombinant antibody technology, antibody therapeutics become the largest and rapidly expanding drug to provide major health benefits to patients, especially for the treatment of cancer patients. Many antibody-based therapeutic strategies have been developed including monoclonal antibodies, antibody-drug conjugates, bispecific and trispecific antibodies and pro-antibodies with promising results from both clinical and pre-clinical trials. However, the response rate and side-effect still vary between patients with undefined mechanisms. Here, we summarized the current and future perspectives of antibody-based cancer immunotherapeutic strategies for designing next-generation drugs.
Collapse
Affiliation(s)
- Longchao Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiahui Chen
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
25
|
Li W, Lv L, Ruan M, Xu J, Zhu W, Li Q, Jiang X, Zheng L, Zhu W. Qin Huang formula enhances the effect of Adriamycin in B-cell lymphoma via increasing tumor infiltrating lymphocytes by targeting toll-like receptor signaling pathway. BMC Complement Med Ther 2022; 22:185. [PMID: 35818037 PMCID: PMC9272877 DOI: 10.1186/s12906-022-03660-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/29/2022] [Indexed: 12/05/2022] Open
Abstract
Background As an original traditional Chinese medicinal formula, Qin Huang formula (QHF) is used as adjuvant therapy for treating lymphoma in our hospital and has proven efficacy when combined with chemotherapy. However, the underlying mechanisms of QHF have not been elucidated. Methods A network pharmacological-based analysis method was used to screen the active components and predict the potential mechanisms of QHF in treating B cell lymphoma. Then, a murine model was built to verify the antitumor effect of QHF combined with Adriamycin (ADM) in vivo. Finally, IHC, ELISA, 18F-FDG PET-CT scan, and western blot were processed to reveal the intriguing mechanism of QHF in treating B cell lymphoma. Results The systemic pharmacological study revealed that QHF took effect following a multiple-target and multiple-pathway pattern in the human body. In vivo study showed that combination therapy with QHF and ADM potently inhibited the growth of B cell lymphoma in a syngeneic murine model, and significantly increased the proportion of tumor infiltrating CD4+ and CD8+ T cells in the tumor microenvironment (TME). Furthermore, the level of CXCL10 and IL-6 was significantly increased in the combination group. Finally, the western blot exhibited that the level of TLR2 and p38 MAPK increased in the combination therapy group. Conclusion QHF in combination of ADM enhances the antitumor effect of ADM via modulating tumor immune microenvironment and can be a combination therapeutic strategy for B cell lymphoma patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03660-8.
Collapse
|
26
|
Huang D, Li X, Liu Y, Yang J, Liu J, Zhang M, Liu X, Meng Q, Zhang S, Li H. Significance of differential expression of OLFM4 in the development of endometrial adenocarcinoma. Medicine (Baltimore) 2022; 101:e31858. [PMID: 36451436 PMCID: PMC9704920 DOI: 10.1097/md.0000000000031858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The incidence of endometrial adenocarcinoma (EA) has increased worldwide in recent years due to the widespread use of estrogen therapy and the overall increase in life expectancy. However, we know of no sensitive molecular index that can be used to predict the onset of EA, evaluate the therapeutic effects of treatment agents, or provide prognostic benefit in post-treatment follow-up. To explore the correlation between human olfactomedin 4 (OLFM4) and the clinicopathologic parameters of EA, and to determine the precise involvement of OLFM4 as a related factor in the occurrence and development of EA. We enrolled 61 gynecologic patients for a retrospective study at the Tai'an Central Hospital of Shandong Province from January 1, 2016, to June 30, 2022. We determined the expression levels of estrogen receptor α (ERα), progesterone receptor (PR), and OLFM4 proteins in endometrial tissue with the immunohistochemical S-P staining method, and analyzed the correlations among ERα, PR, and OLFM4 protein expression levels and with the pathologic stage, histologic grade, myometrial invasiveness, and lymphatic metastasis of EA. The expression levels of OLFM4 in EA were higher than in normal endometrium (P = .036). The expression level of OLFM4 protein in stage II-III patients was higher than that in stage I patients (P = .034), and the expression levels of ERα and PR proteins in EA were lower than those in normal endometrial tissue (P = .014 and P = .0005). While we observed no correlation in endometrial tissues of disparate pathologic types between OLFM4 and the expression levels of ERα and PR proteins, we noted a positive correlation between the expression levels of ERα and PR protein. The expression level of OLFM4 protein increased with the malignant degree of endometrial lesions and OLFM4 protein expression was related to the FIGO stage of EA. And OLFM4 protein can be used as 1 of the potential diagnostic factors for endometrial lesions, which is worthy of further study.
Collapse
Affiliation(s)
- Di Huang
- Shandong First Medical University, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, China
| | - Xuefei Li
- Taian City Central Hospital of Qingdao University, Taian, China
| | - Yingzi Liu
- Taian City Central Hospital of Qingdao University, Taian, China
| | - Jie Yang
- Taian City Central Hospital of Qingdao University, Taian, China
| | - Jing Liu
- Taian City Central Hospital of Qingdao University, Taian, China
| | - Mingwei Zhang
- Taian City Central Hospital of Qingdao University, Taian, China
| | - Xiulan Liu
- Taian City Central Hospital of Qingdao University, Taian, China
| | - Qi Meng
- Taian City Central Hospital of Qingdao University, Taian, China
| | - Shuheng Zhang
- Taian City Central Hospital of Qingdao University, Taian, China
| | - Hua Li
- Taian City Central Hospital of Qingdao University, Taian, China
- * Correspondence: Hua Li, Taian City Central Hospital of Qingdao University, Taian 271000, China (e-mail: )
| |
Collapse
|
27
|
Kemper K, Gielen E, Boross P, Houtkamp M, Plantinga TS, de Poot SAH, Burm SM, Janmaat ML, Koopman LA, van den Brink EN, Rademaker R, Verzijl D, Engelberts PJ, Satijn D, Sasser AK, Breij ECW. Mechanistic and pharmacodynamic studies of DuoBody-CD3x5T4 in preclinical tumor models. Life Sci Alliance 2022; 5:5/11/e202201481. [PMID: 36271507 PMCID: PMC9458754 DOI: 10.26508/lsa.202201481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
CD3 bispecific antibodies (bsAbs) show great promise as anticancer therapeutics. Here, we show in-depth mechanistic studies of a CD3 bsAb in solid cancer, using DuoBody-CD3x5T4. Cross-linking T cells with tumor cells expressing the oncofetal antigen 5T4 was required to induce cytotoxicity. Naive and memory CD4+ and CD8+ T cells were equally effective at mediating cytotoxicity, and DuoBody-CD3x5T4 induced partial differentiation of naive T-cell subsets into memory-like cells. Tumor cell kill was associated with T-cell activation, proliferation, and production of cytokines, granzyme B, and perforin. Genetic knockout of FAS or IFNGR1 in 5T4+ tumor cells abrogated tumor cell kill. In the presence of 5T4+ tumor cells, bystander kill of 5T4− but not of 5T4−IFNGR1− tumor cells was observed. In humanized xenograft models, DuoBody-CD3x5T4 antitumor activity was associated with intratumoral and peripheral blood T-cell activation. Lastly, in dissociated patient-derived tumor samples, DuoBody-CD3x5T4 activated tumor-infiltrating lymphocytes and induced tumor-cell cytotoxicity, even when most tumor-infiltrating lymphocytes expressed PD-1. These data provide an in-depth view on the mechanism of action of a CD3 bsAb in preclinical models of solid cancer.
Collapse
|
28
|
Fortis SP, Goulielmaki M, Aubert N, Batsaki P, Ouzounis S, Cavouras D, Marodon G, Stokidis S, Gritzapis AD, Baxevanis CN. Radiotherapy-Related Gene Signature in Prostate Cancer. Cancers (Basel) 2022; 14:cancers14205032. [PMID: 36291815 PMCID: PMC9599894 DOI: 10.3390/cancers14205032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Radiation therapy (RT) is an established therapeutic regimen for prostate cancer patients which aims for the direct elimination of tumor cells in the prostate gland and occasionally at distant anatomic sites. In this study, we performed next-generation sequencing-based gene expression analysis in peripheral blood from prostate cancer patients obtained pre- and post-radiotherapy and found six independently down-regulated genes including CCR7, FCGR2B, BTLA, CD6, CD3D, and CD3E. The analysis of the expression of the 6-genes as a signature also revealed significantly lower levels post- vs. pre-radiotherapy. Data extracted from the PRAD (PRostate ADenocarcinomas) dataset linked low levels of the 6-gene signature to better survival. More importantly, this 6-gene signature strongly correlated with a favorable prognosis regardless of poor standard clinicopathological parameters (i.e., Gleason score ≥ 8 and T3), thus highlighting its potential predictive value. Abstract Radiotherapy for localized prostate cancer has increased the cure and survival rates of patients. Besides its local tumoricidal effects, ionizing radiation has been linked to mechanisms leading to systemic immune activation, a phenomenon called the abscopal effect. In this study, we performed gene expression analysis on peripheral blood from prostate cancer patients obtained post- radiotherapy and showed that 6 genes, including CCR7, FCGR2B, BTLA, CD6, CD3D, and CD3E, were down-regulated by a range of 1.5–2.5-fold as compared to pre-radiotherapy samples. The expression of the signature consisting of these six genes was also significantly lower post- vs. pre-radiotherapy. These genes are involved in various tumor-promoting immune pathways and their down-regulation post-radiotherapy could be considered beneficial for patients. This is supported by the fact that low mRNA expression levels for the 6-gene signature in the prostate tumor tissue was linked to better survival. Importantly, we report that this 6-gene signature strongly correlated with a favorable prognosis regardless of poor standard clinicopathological parameters (i.e., Gleason score ≥ 8 and T3 (including T3a and T3b). Our pioneering data open the possibility that the 6-gene signature identified herein may have a predictive value, but this requires further long-term studies.
Collapse
Affiliation(s)
- Sotirios P. Fortis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Maria Goulielmaki
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Nicolas Aubert
- Centre d’Immunologie et Maladies Infectieuses-Paris, CIMI-PARIS, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Panagiota Batsaki
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Sotirios Ouzounis
- Department of Biomedical Engineering, University of West Attica, 12243 Athens, Greece
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Dionisis Cavouras
- Department of Biomedical Engineering, University of West Attica, 12243 Athens, Greece
| | - Gilles Marodon
- Centre d’Immunologie et Maladies Infectieuses-Paris, CIMI-PARIS, Sorbonne Université, INSERM, CNRS, 75013 Paris, France
| | - Savvas Stokidis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Angelos D. Gritzapis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
| | - Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, Cancer Research Center, Saint Savas Cancer Hospital, 11522 Athens, Greece
- Correspondence: ; Tel.: +30-21-0640-9380
| |
Collapse
|
29
|
Corrales L, Hipp S, Martin K, Sabarth N, Tirapu I, Fuchs K, Thaler B, Walterskirchen C, Bauer K, Fabits M, Bergmann M, Binder C, Chetta PML, Vogt AB, Adam PJ. LY6G6D is a selectively expressed colorectal cancer antigen that can be used for targeting a therapeutic T-cell response by a T-cell engager. Front Immunol 2022; 13:1008764. [PMID: 36159851 PMCID: PMC9493073 DOI: 10.3389/fimmu.2022.1008764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide and demands more effective treatments. We sought to identify tumor selective CRC antigens and their therapeutic potential for cytotoxic T-cell targeting by transcriptomic and immunohistochemical analysis. LY6G6D was identified as a tumor selectively expressed CRC antigen, mainly in the microsatellite stable (MSS) subtype. A specific anti LY6G6D/CD3 T cell engager (TcE) was generated and demonstrated potent tumor cell killing and T cell activation in vitro. Ex vivo treatment of primary patient-derived CRC tumor slice cultures with the LY6G6D/CD3 TcE led to IFNγ secretion in LY6G6D positive tumor samples. In vivo, LY6G6D/CD3 TcE monotherapy demonstrated tumor regressions in pre-clinical mouse models of engrafted human CRC tumor cells and PBMCs. Lastly, 2D and 3D cocultures of LY6G6D positive and negative cells were used to explore the bystander killing of LY6G6D negative cells after specific activation of T cells by LY6G6D positive cells. LY6G6D/CD3 TcE treatment was shown to lyse target negative cells in the vicinity of target positive cells through a combined effect of IFNγ, TNFα and Fas/FasL. In summary, LY6G6D was identified as a selectively expressed CRC antigen that can be utilized to potently re-direct and activate cytotoxic T-cells to lyse LY6G6D expressing CRC using a TcE. This effect can be spread to target negative neighboring tumor cells, potentially leading to improved therapeutic efficacy.
Collapse
Affiliation(s)
- Leticia Corrales
- Boehringer Ingelheim Regional Center Vienna (RCV), GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
- *Correspondence: Leticia Corrales,
| | - Susanne Hipp
- Boehringer Ingelheim Regional Center Vienna (RCV), GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
- Boehringer Ingelheim Pharmaceuticals, Inc., Translational Medicine and Clinical Pharmacology, Ridgefield, CT, United States
| | - Katharina Martin
- Boehringer Ingelheim Regional Center Vienna (RCV), GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| | - Nicolas Sabarth
- Boehringer Ingelheim Regional Center Vienna (RCV) GmbH & Co KG., Biotherapeutics Discovery, Vienna, Austria
| | - Iñigo Tirapu
- Boehringer Ingelheim Regional Center Vienna (RCV), GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| | - Klaus Fuchs
- Boehringer Ingelheim Pharma, GmbH & Co KG, Biotherapeutics Discovery, Biberach, Germany
| | - Barbara Thaler
- Boehringer Ingelheim Regional Center Vienna (RCV), GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| | - Christian Walterskirchen
- Boehringer Ingelheim Regional Center Vienna (RCV), GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| | - Kathrin Bauer
- Boehringer Ingelheim Regional Center Vienna (RCV), GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| | - Markus Fabits
- Division of Visceral Surgery, Department of General Surgery and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Michael Bergmann
- Division of Visceral Surgery, Department of General Surgery and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Carina Binder
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Paolo ML. Chetta
- Boehringer Ingelheim RCV, GmbH & Co KG., Oncology Translational Science, Vienna, Austria
| | - Anne B. Vogt
- Boehringer Ingelheim Regional Center Vienna (RCV), GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| | - Paul J. Adam
- Boehringer Ingelheim Regional Center Vienna (RCV), GmbH & Co KG., Cancer Immunology & Immune Modulation, Vienna, Austria
| |
Collapse
|
30
|
Moore C, Bae J, Liu L, Li H, Fu YX, Qiao J. Exogenous signaling repairs defective T cell signaling inside the tumor microenvironment for better immunity. JCI Insight 2022; 7:e159479. [PMID: 36073543 PMCID: PMC9536281 DOI: 10.1172/jci.insight.159479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 07/28/2022] [Indexed: 11/17/2022] Open
Abstract
It is known that tumor-reactive T cells are initially activated in the draining lymph node, but it is not well known whether and how tumor-infiltrating lymphocytes (TILs) are reactivated in the tumor microenvironment (TME). We hypothesize that defective T cell receptor (TCR) signaling and cosignals in the TME limit T cell reactivation. To address this, we designed a mesenchymal stromal cell-based delivery of local membrane-bound anti-CD3 and/or cosignals to explore their contribution to reactivate T cells inside the TME. Combined anti-CD3 and CD40L rather than CD80 led to superior antitumor efficacy compared with either alone. Mechanistically, TCR activation of preexisting CD8+ T cells synergized with CD40L activation of DCs inside the TME for optimum tumor control. Exogenous TCR signals could better reactivate TILs that then exited to attack distal tumors. This study supplies further evidence that TCR signaling for T cell reactivation in the TME is defective but can be rescued by proper exogenous signals.
Collapse
Affiliation(s)
- Casey Moore
- Department of Immunology
- Department of Pathology, and
| | | | | | - Huiyu Li
- Hamon Center for Therapeutic Oncology Research, University of Texas (UT) Southwestern Medical Center, Dallas, Texas, USA
| | - Yang-Xin Fu
- Department of Immunology
- Department of Pathology, and
| | | |
Collapse
|
31
|
Zhang B, Zeng J, Zhang H, Zhu S, Wang H, He J, Yang L, Zhou N, Zu L, Xu X, Song Z, Xu S. Characteristics of the immune microenvironment and their clinical significance in non-small cell lung cancer patients with ALK-rearranged mutation. Front Immunol 2022; 13:974581. [PMID: 36159860 PMCID: PMC9494286 DOI: 10.3389/fimmu.2022.974581] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/10/2022] [Indexed: 12/03/2022] Open
Abstract
Background Although immune checkpoint inhibitors (ICIs) are one of the most important treatments for advanced-stage non-small-cell lung cancer (NSCLC), NSCLC patients with ALK-rearranged usually don’t obtain a clinical benefit. The reason may be related to the unique tumor microenvironment (TME). We evaluated the characteristics of immune biomarkers of the TME and their prognostic value in ALK-rearranged NSCLC. Methods Tumor samples from patients with ALK-rearranged (N = 39) and EGFR- (N = 40)/KRAS- (N = 30) mutated NSCLC were collected. Immunohistochemistry (IHC) was used to assess the expression of 9 tumor immune markers as well as 6 immune markers of tumor-infiltrating cells. To research the TME of ALK-rearranged NSCLC, EGFR/KRAS-positive patients were used as controls. Furthermore, the correlation between the efficacy and prognosis of patients with advanced-stage (IIIC-IV) ALK rearrangements treated with targeted drugs was analyzed in terms of the TME. Results The proportion of PD-L1+ tumors was lower in ALK-positive NSCLC than in KRAS-positive NSCLC. Besides, the proportion of T cells expressing TIM-3-CD8+ (15.38%), CTLA4-CD8+ (12.82%), LAG3-CD8+ (33.33%) and PD-1-CD8+ (2.56%) in ALK-positive NSCLC was lower than that in EGFR/KRAS-positive NSCLC. The expression of CD3, CD8 T cells and CD20 B cells was lower in ALK-positive NSCLC than in KRAS-positive NSCLC (p < 0.0001, < 0.005, and < 0.001, respectively). Nevertheless, the level of CD4 helper T cells was higher in ALK-positive NSCLC than in EGFR/KRAS-positive NSCLC (p < 0.0001 and p < 0.05, respectively). The repression of TIM3 was higher in ALK-positive NSCLC than in KRAS-positive NSCLC (p < 0.001). In addition, our data showed that high expression of PD-L1 (HR = 0.177, 95% CI 0.038–0.852, p = 0.027) and CTLA4 (HR = 0.196, 95% CI 0.041–0.947, p = 0.043) was related to lower OS in advanced-stage ALK- rearranged NSCLC patients treated with ALK tyrosine kinase inhibitors (TKIs). Conclusions Immunosuppressive status was characteristic of the TME in patients with ALK-positive NSCLC compared with EGFR/KRAS-positive NSCLC. High expression of PD-L1 and CTLA4 was an adverse prognostic factor in advanced-stage ALK-rearranged NSCLC patients treated with ALK-TKIs. Immunotherapy for ALK-rearranged patients requires further exploration and validation by clinical trials.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingtong Zeng
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Shuai Zhu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hanqing Wang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinling He
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingqi Yang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ning Zhou
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Lingling Zu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaohong Xu
- Colleges of Nursing, Tianjin Medical University, Tianjin, China
| | - Zuoqing Song
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Song Xu, ; Zuoqing Song,
| | - Song Xu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
- *Correspondence: Song Xu, ; Zuoqing Song,
| |
Collapse
|
32
|
Molony RD, Funk T, Trabucco G, Corcoran E, Ruddy D, Varadarajan M, Elliot G, Piquet M, Lam J, Meyer MJ, Wang HQ, Kurtulus S, Lu H. CRISPR screening identifies T cell-intrinsic regulators of CD3-bispecific antibody responses. Front Immunol 2022; 13:909979. [PMID: 35990699 PMCID: PMC9388929 DOI: 10.3389/fimmu.2022.909979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
CD3-engaging bispecific antibodies (BsAbs) enable the formation of an immune synapse between T cells and tumor cells, resulting in robust target cell killing not dependent on a preexisting tumor specific T cell receptor. While recent studies have shed light on tumor cell-specific factors that modulate BsAb sensitivity, the T cell-intrinsic determinants of BsAb efficacy and response durability are poorly understood. To better clarify the genes that shape BsAb-induced T cell responses, we conducted targeted analyses and a large-scale unbiased in vitro CRISPR/Cas9-based screen to identify negative regulators of BsAb-induced T cell proliferation. These analyses revealed that CD8+ T cells are dependent on CD4+ T cell-derived signaling factors in order to achieve sustained killing in vitro. Moreover, the mammalian target of rapamycin (mTOR) pathway and several other candidate genes were identified as intrinsic regulators of BsAb-induced T cell proliferation and/or activation, highlighting promising approaches to enhancing the utility of these potent therapeutics.
Collapse
|
33
|
Ordóñez-Reyes C, Garcia-Robledo JE, Chamorro DF, Mosquera A, Sussmann L, Ruiz-Patiño A, Arrieta O, Zatarain-Barrón L, Rojas L, Russo A, de Miguel-Perez D, Rolfo C, Cardona AF. Bispecific Antibodies in Cancer Immunotherapy: A Novel Response to an Old Question. Pharmaceutics 2022; 14:pharmaceutics14061243. [PMID: 35745815 PMCID: PMC9229626 DOI: 10.3390/pharmaceutics14061243] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 01/14/2023] Open
Abstract
Immunotherapy has redefined the treatment of cancer patients and it is constantly generating new advances and approaches. Among the multiple options of immunotherapy, bispecific antibodies (bsAbs) represent a novel thoughtful approach. These drugs integrate the action of the immune system in a strategy to redirect the activation of innate and adaptive immunity toward specific antigens and specific tumor locations. Here we discussed some basic aspects of the design and function of bsAbs, their main challenges and the state-of-the-art of these molecules in the treatment of hematological and solid malignancies and future perspectives.
Collapse
Affiliation(s)
- Camila Ordóñez-Reyes
- Foundation for Clinical and Applied Cancer Research—FICMAC, Bogotá 110111, Colombia; (C.O.-R.); (J.E.G.-R.); (D.F.C.); (A.M.); (A.R.-P.); (L.R.)
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá 110121, Colombia
| | - Juan Esteban Garcia-Robledo
- Foundation for Clinical and Applied Cancer Research—FICMAC, Bogotá 110111, Colombia; (C.O.-R.); (J.E.G.-R.); (D.F.C.); (A.M.); (A.R.-P.); (L.R.)
- Division of Hematology/Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Diego F. Chamorro
- Foundation for Clinical and Applied Cancer Research—FICMAC, Bogotá 110111, Colombia; (C.O.-R.); (J.E.G.-R.); (D.F.C.); (A.M.); (A.R.-P.); (L.R.)
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá 110121, Colombia
| | - Andrés Mosquera
- Foundation for Clinical and Applied Cancer Research—FICMAC, Bogotá 110111, Colombia; (C.O.-R.); (J.E.G.-R.); (D.F.C.); (A.M.); (A.R.-P.); (L.R.)
| | - Liliana Sussmann
- Department of Neurology, Fundación Universitaria de Ciencias de la Salud, Bogotá 111221, Colombia;
| | - Alejandro Ruiz-Patiño
- Foundation for Clinical and Applied Cancer Research—FICMAC, Bogotá 110111, Colombia; (C.O.-R.); (J.E.G.-R.); (D.F.C.); (A.M.); (A.R.-P.); (L.R.)
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá 110121, Colombia
| | - Oscar Arrieta
- Thoracic Oncology Unit and Personalized Oncology Laboratory, National Cancer Institute (INCan), Mexico City 14080, Mexico; (O.A.); (L.Z.-B.)
| | - Lucia Zatarain-Barrón
- Thoracic Oncology Unit and Personalized Oncology Laboratory, National Cancer Institute (INCan), Mexico City 14080, Mexico; (O.A.); (L.Z.-B.)
| | - Leonardo Rojas
- Foundation for Clinical and Applied Cancer Research—FICMAC, Bogotá 110111, Colombia; (C.O.-R.); (J.E.G.-R.); (D.F.C.); (A.M.); (A.R.-P.); (L.R.)
| | | | - Diego de Miguel-Perez
- Center for Thoracic Oncology, Tisch Cancer Institute and Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (D.d.M.-P.); (C.R.)
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute and Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (D.d.M.-P.); (C.R.)
| | - Andrés F. Cardona
- Foundation for Clinical and Applied Cancer Research—FICMAC, Bogotá 110111, Colombia; (C.O.-R.); (J.E.G.-R.); (D.F.C.); (A.M.); (A.R.-P.); (L.R.)
- Molecular Oncology and Biology Systems Research Group (Fox-G), Universidad el Bosque, Bogotá 110121, Colombia
- Direction of Research, Science and Education, Luis Carlos Sarmiento Angulo Cancer Treatment and Research Center (CTIC), Bogotá 110131, Colombia
- Correspondence: ; Tel.: +57-(1)-6190052; Fax: +57-(1)-6190053
| |
Collapse
|
34
|
You R, Artichoker J, Ray A, Gonzalez Velozo H, Rock DA, Conner KP, Krummel MF. Visualizing Spatial and Stoichiometric Barriers to Bispecific T-cell Engager Efficacy. Cancer Immunol Res 2022; 10:698-712. [PMID: 35413104 DOI: 10.1158/2326-6066.cir-21-0594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/09/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022]
Abstract
Bispecific T-cell engager (BiTE) molecules are biologic T cell-directing immunotherapies. Blinatumomab is approved for treatment of B-cell malignancies, but BiTE molecule development in solid tumors has been more challenging. Here, we employed intravital imaging to characterize exposure and pharmacodynamic response of an anti-muCD3/anti-huEGFRvIII mouse surrogate BiTE molecule in epidermal growth factor receptor variant III (EGFRvIII)-positive breast tumors implanted within immunocompetent mice. Our study revealed heterogeneous temporal and spatial dynamics of BiTE molecule extravasation into solid tumors, highlighting physical barriers to BiTE molecule function. We also discovered that high, homogeneous EGFRvIII expression on cancer cells was necessary for a BiTE molecule to efficiently clear tumors. Additionally, we found that resident tumor-infiltrating lymphocytes (TILs) were sufficient for optimal tumor killing only at high BiTE molecule dosage, whereas inclusion of peripheral T-cell recruitment was synergistic at moderate to low dosages. We report that deletion of stimulatory conventional type I DCs (cDC1) diminished BiTE molecule-induced T-cell activation and tumor clearance, suggesting that in situ antigen-presenting cell (APC) engagements modulate the extent of BiTE molecule efficacy. In summary, our work identified multiple requirements for optimal BiTE molecule efficacy in solid tumors, providing insights that could be harnessed for solid cancer immunotherapy development.
Collapse
Affiliation(s)
- Ran You
- Department of Pathology, University of California San Francisco, San Francisco, California
- ImmunoX Initiative, University of California San Francisco, San Francisco, California
| | - Jordan Artichoker
- ImmunoX Initiative, University of California San Francisco, San Francisco, California
- Biological Imaging Development CoLab, University of California San Francisco, San Francisco, California
| | - Arja Ray
- Department of Pathology, University of California San Francisco, San Francisco, California
- ImmunoX Initiative, University of California San Francisco, San Francisco, California
| | - Hugo Gonzalez Velozo
- Department of Anatomy, University of California San Francisco, San Francisco, California
| | - Dan A Rock
- Department of Pharmacokinetics and Drug Metabolism, Amgen, South San Francisco, California
| | - Kip P Conner
- Department of Pharmacokinetics and Drug Metabolism, Amgen, South San Francisco, California
| | - Matthew F Krummel
- Department of Pathology, University of California San Francisco, San Francisco, California
- ImmunoX Initiative, University of California San Francisco, San Francisco, California
- Biological Imaging Development CoLab, University of California San Francisco, San Francisco, California
| |
Collapse
|
35
|
Arvedson T, Bailis JM, Britten CD, Klinger M, Nagorsen D, Coxon A, Egen JG, Martin F. Targeting Solid Tumors with Bispecific T Cell Engager Immune Therapy. ANNUAL REVIEW OF CANCER BIOLOGY 2022. [DOI: 10.1146/annurev-cancerbio-070620-104325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
T cell engagers (TCEs) are targeted immunotherapies that have emerged as a promising treatment to redirect effector T cells for tumor cell killing. The strong therapeutic value of TCEs, established by the approval of blinatumomab for the treatment of B cell precursor acute lymphoblastic leukemia, has expanded to include other hematologic malignancies, as well as some solid tumors. Successful clinical development of TCEs in solid tumors has proven challenging, as it requires additional considerations such as the selectivity of target expression, tumor accessibility, and the impact of the immunosuppressive tumor microenvironment. In this review, we provide a brief history of blinatumomab, summarize learnings from TCEs in hematologic malignancies, and highlight results from recent TCE trials in solid tumors. Additionally, we examine approaches to improve the efficacy and safety of TCEs in solid tumors, including therapeutic combinations to increase the depth and durability of response.
Collapse
Affiliation(s)
- Tara Arvedson
- Amgen Research, Amgen Inc., South San Francisco, California, USA
| | - Julie M. Bailis
- Amgen Research, Amgen Inc., South San Francisco, California, USA
| | | | | | - Dirk Nagorsen
- Amgen Global Development, Amgen Inc., Thousand Oaks, California, USA
| | - Angela Coxon
- Amgen Research, Amgen Inc., Thousand Oaks, California, USA
| | - Jackson G. Egen
- Amgen Research, Amgen Inc., South San Francisco, California, USA
| | - Flavius Martin
- Amgen Research, Amgen Inc., South San Francisco, California, USA
| |
Collapse
|
36
|
Humanization of a strategic CD3 epitope enables evaluation of clinical T-cell engagers in a fully immunocompetent in vivo model. Sci Rep 2022; 12:3530. [PMID: 35241687 PMCID: PMC8894342 DOI: 10.1038/s41598-022-06953-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/08/2022] [Indexed: 11/08/2022] Open
Abstract
T-cell engagers (TCEs) are a growing class of biotherapeutics being investigated in the clinic for treatment of a variety of hematological and solid tumor indications. However, preclinical evaluation of TCEs in vivo has been mostly limited to xenograft tumor models in human T-cell reconstituted immunodeficient mice, which have a number of limitations. To explore the efficacy of human TCEs in fully immunocompetent hosts, we developed a knock-in mouse model (hCD3E-epi) in which a 5-residue N-terminal fragment of murine CD3-epsilon was replaced with an 11-residue stretch from the human sequence that encodes for a common epitope recognized by anti-human CD3E antibodies in the clinic. T cells from hCD3E-epi mice underwent normal thymic development and could be efficiently activated upon crosslinking of the T-cell receptor with anti-human CD3E antibodies in vitro. Furthermore, a TCE targeting human CD3E and murine CD20 induced robust T-cell redirected killing of murine CD20-positive B cells in ex vivo hCD3E-epi splenocyte cultures, and also depleted nearly 100% of peripheral B cells for up to 7 days following in vivo administration. These results highlight the utility of this novel mouse model for exploring the efficacy of human TCEs in vivo, and suggest a useful tool for evaluating TCEs in combination with immuno-oncology/non-immuno-oncology agents against heme and solid tumor targets in hosts with a fully intact immune system.
Collapse
|
37
|
Gu CL, Zhu HX, Deng L, Meng XQ, Li K, Xu W, Zhao L, Liu YQ, Zhu ZP, Huang HM. Bispecific antibody simultaneously targeting PD1 and HER2 inhibits tumor growth via direct tumor cell killing in combination with PD1/PDL1 blockade and HER2 inhibition. Acta Pharmacol Sin 2022; 43:672-680. [PMID: 33990766 PMCID: PMC8888617 DOI: 10.1038/s41401-021-00683-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/14/2021] [Indexed: 02/03/2023] Open
Abstract
Immune checkpoint blockade has shown significant clinical benefit in multiple cancer indications, but many patients are either refractory or become resistant to the treatment over time. HER2/neu oncogene overexpressed in invasive breast cancer patients associates with more aggressive diseases and poor prognosis. Anti-HER2 mAbs, such as trastuzumab, are currently the standard of care for HER2-overexpressing cancers, but the response rates are below 30% and patients generally suffer relapse within a year. In this study we developed a bispecific antibody (BsAb) simultaneously targeting both PD1 and HER2 in an attempt to combine HER2-targeted therapy with immune checkpoint blockade for treating HER2-positive solid tumors. The BsAb was constructed by fusing scFvs (anti-PD1) with the effector-functional Fc of an IgG (trastuzumab) via a flexible peptide linker. We showed that the BsAb bound to human HER2 and PD1 with high affinities (EC50 values were 0.2 and 0.14 nM, respectively), and exhibited potent antitumor activities in vitro and in vivo. Furthermore, we demonstrated that the BsAb exhibited both HER2 and PD1 blockade activities and was effective in killing HER2-positive tumor cells via antibody-dependent cellular cytotoxicity. In addition, the BsAb could crosslink HER2-positive tumor cells with T cells to form PD1 immunological synapses that directed tumor cell killing without the need of antigen presentation. Thus, the BsAb is a new promising approach for treating late-stage metastatic HER2-positive cancers.
Collapse
Affiliation(s)
- Chang-ling Gu
- Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd., 3SBio Inc. Company, Shanghai, 201203 China
| | - Hai-xia Zhu
- Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd., 3SBio Inc. Company, Shanghai, 201203 China
| | - Lan Deng
- Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd., 3SBio Inc. Company, Shanghai, 201203 China
| | - Xiao-qing Meng
- Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd., 3SBio Inc. Company, Shanghai, 201203 China
| | - Kai Li
- Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd., 3SBio Inc. Company, Shanghai, 201203 China
| | - Wei Xu
- Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd., 3SBio Inc. Company, Shanghai, 201203 China
| | - Le Zhao
- Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd., 3SBio Inc. Company, Shanghai, 201203 China
| | - Yue-qin Liu
- Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd., 3SBio Inc. Company, Shanghai, 201203 China
| | - Zhen-ping Zhu
- Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd., 3SBio Inc. Company, Shanghai, 201203 China
| | - Hao-min Huang
- Sunshine Guojian Pharmaceutical (Shanghai) Co. Ltd., 3SBio Inc. Company, Shanghai, 201203 China
| |
Collapse
|
38
|
Zhang B, Zhong W, Yang B, Li Y, Duan S, Huang J, Mao Y. Gene expression profiling reveals candidate biomarkers and probable molecular mechanisms in chronic stress. Bioengineered 2022; 13:6048-6060. [PMID: 35184642 PMCID: PMC8973686 DOI: 10.1080/21655979.2022.2040872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chronic stress refers to nonspecific systemic reactions under the over-stimulation of different external and internal factors for a long time. Previous studies confirmed that chronic psychological stress had a negative effect on almost all tissues and organs. We intended to further identify potential gene targets related to the pathogenesis of chronic stress-induced consequences involved in different diseases. In our study, mice in the model group lived under the condition of chronic unpredictable mild stress (CUMS) until they expressed behaviors like depression which were supposed to undergo chronic stress. We applied high-throughput RNA sequencing to assess mRNA expression and obtained transcription profiles in lung tissue from CUMS mice and control mice for analysis. In view of the prediction of high-throughput RNA sequences and bioinformatics software, and mRNA regulatory network was constructed. First, we conducted differentially expressed genes (DEGs) and obtained 282 DEGs between CUMS (group A) and the control model (group B). Then, we conducted functional and pathway enrichment analyses. In general, the function of upregulated regulated DEGs is related to immune and inflammatory responses. PPI network identified several essential genes, of which ten hub genes were related to the T cell receptor signaling pathway. qRT-PCR results verified the regulatory network of mRNA. The expressions of CD28, CD3e, and CD247 increased in mice with CUMS compared with that in control. This illustrated immune pathways are related to the pathological molecular mechanism of chronic stress and may provide information for identifying potential biomarkers and early detection of chronic stress.
Collapse
Affiliation(s)
- Bohan Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, SH, China
| | - Weijie Zhong
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, SH, China
| | - Biao Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, SH, China
| | - Yi Li
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, SH, China
| | - Shuxian Duan
- Department of Neurosurgery, Ninth People Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, SH, China
| | - Junlong Huang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, SH, China
| | - Yanfei Mao
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, SH, China
| |
Collapse
|
39
|
Jin A, Yang Y, Su X, Yang W, Liu T, Chen W, Li T, Ding L, Wang H, Wang B, Pan B, Zhou J, Fan J, Yang X, Guo W. High serum soluble CD155 level predicts poor prognosis and correlates with an immunosuppressive tumor microenvironment in hepatocellular carcinoma. J Clin Lab Anal 2022; 36:e24259. [PMID: 35089611 PMCID: PMC8906055 DOI: 10.1002/jcla.24259] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/03/2022] [Accepted: 01/15/2022] [Indexed: 12/13/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies with poor prognosis. There is no research about the clinical significance of serum soluble CD155 (sCD155) level for HCC. We aim to explore the prognostic and diagnostic value of sCD155 in HCC patients undergoing curative resection. Methods Serum sCD155 level in HCC patients was determined by enzyme‐linked immunosorbent assay. The prognostic significance of sCD155 was evaluated by Cox regression and Kaplan–Meier analyses. CD155 expression and biomarkers of immune cells in HCC tissues were detected by immunohistochemistry staining. The diagnostic significance of sCD155 was evaluated using receiver operating characteristic curve. Results Serum sCD155 level was significantly increased in HCC patients and predicted poor prognosis. The prognostic value of sCD155 remained in low recurrent risk subgroups of HCC. Serum sCD155 level was positively related to CD155 expression in HCC tissues. High serum sCD155 level was associated with decreased numbers of CD8+T cells and CD56+NK cells and increased number of CD163+M2 macrophages. Serum sCD155 level had better performance in distinguishing HCC patients from healthy donors and patients with chronic liver conditions than α‐fetoprotein. Among patients with α‐fetoprotein ≤ 20 ng/ml, serum sCD155 level could differentiate HCC patients from non‐HCC patients. Conclusion Serum sCD155 level represents a promising biomarker for diagnosis and prognosis of HCC. High serum sCD155 level may reflect an immunosuppressive tumor microenvironment in HCC.
Collapse
Affiliation(s)
- An‐Li Jin
- Department of Laboratory Medicine Zhongshan Hospital Fudan University Shanghai China
| | - Yi‐Hui Yang
- Department of Laboratory Medicine Zhongshan Hospital Fudan University Shanghai China
| | - Xi Su
- Department of Laboratory Medicine Zhongshan Hospital Fudan University Shanghai China
| | - Wen‐Jing Yang
- Department of Laboratory Medicine Zhongshan Hospital Fudan University Shanghai China
| | - Te Liu
- Department of Laboratory Medicine Zhongshan Hospital Fudan University Shanghai China
- Shanghai Geriatric Institute of Chinese Medicine Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Wei Chen
- Department of Laboratory Medicine Zhongshan Hospital Fudan University Shanghai China
| | - Tong Li
- Department of Laboratory Medicine Zhongshan Hospital Fudan University Shanghai China
| | - Lin Ding
- Department of Laboratory Medicine Zhongshan Hospital Fudan University Shanghai China
| | - Hao Wang
- Department of Laboratory Medicine Zhongshan Hospital Fudan University Shanghai China
| | - Bei‐Li Wang
- Department of Laboratory Medicine Zhongshan Hospital Fudan University Shanghai China
- Department of Laboratory Medicine Wusong Branch Zhongshan Hospital Fudan University Shanghai China
- Department of Laboratory Medicine Xiamen Branch Zhongshan Hospital Fudan University Xiamen China
| | - Bai‐Shen Pan
- Department of Laboratory Medicine Zhongshan Hospital Fudan University Shanghai China
- Department of Laboratory Medicine Wusong Branch Zhongshan Hospital Fudan University Shanghai China
| | - Jian Zhou
- Department of Liver Surgery & Transplantation Liver Cancer Institute Zhongshan Hospital Fudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education Shanghai China
| | - Jia Fan
- Department of Liver Surgery & Transplantation Liver Cancer Institute Zhongshan Hospital Fudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education Shanghai China
| | - Xin‐Rong Yang
- Department of Liver Surgery & Transplantation Liver Cancer Institute Zhongshan Hospital Fudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education Shanghai China
| | - Wei Guo
- Department of Laboratory Medicine Zhongshan Hospital Fudan University Shanghai China
- Department of Laboratory Medicine Wusong Branch Zhongshan Hospital Fudan University Shanghai China
- Department of Laboratory Medicine Xiamen Branch Zhongshan Hospital Fudan University Xiamen China
- Cancer Center Zhongshan Hospital Fudan University Shanghai China
| |
Collapse
|
40
|
T Cell Bispecific Antibodies: An Antibody-Based Delivery System for Inducing Antitumor Immunity. Pharmaceuticals (Basel) 2021; 14:ph14111172. [PMID: 34832954 PMCID: PMC8619951 DOI: 10.3390/ph14111172] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/13/2021] [Accepted: 11/14/2021] [Indexed: 02/06/2023] Open
Abstract
As a breakthrough immunotherapy, T cell bispecific antibodies (T-BsAbs) are a promising antibody therapy for various kinds of cancer. In general, T-BsAbs have dual-binding specificity to a tumor-associated antigen and a CD3 subunit forming a complex with the TCR. This enables T-BsAbs to crosslink tumor cells and T cells, inducing T cell activation and subsequent tumor cell death. Unlike immune checkpoint inhibitors, which release the brake of the immune system, T-BsAbs serve as an accelerator of T cells by stimulating their immune response via CD3 engagement. Therefore, they can actively redirect host immunity toward tumors, including T cell recruitment from the periphery to the tumor site and immunological synapse formation between tumor cells and T cells. Although the low immunogenicity of solid tumors increases the challenge of cancer immunotherapy, T-BsAbs capable of immune redirection can greatly benefit patients with such tumors. To investigate the detailed relationship between T-BsAbs delivery and their T cell redirection activity, it is necessary to determine how T-BsAbs deliver antitumor immunity to the tumor site and bring about tumor cell death. This review article discusses T-BsAb properties, specifically their pharmacokinetics, redirection of anticancer immunity, and local mechanism of action within tumor tissues, and discuss further challenges to expediting T-BsAb development.
Collapse
|
41
|
Liu L, Chen J, Bae J, Li H, Sun Z, Moore C, Hsu E, Han C, Qiao J, Fu YX. Rejuvenation of tumour-specific T cells through bispecific antibodies targeting PD-L1 on dendritic cells. Nat Biomed Eng 2021; 5:1261-1273. [PMID: 34725504 PMCID: PMC9499378 DOI: 10.1038/s41551-021-00800-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/25/2021] [Indexed: 01/01/2023]
Abstract
Bispecific T-cell engagers (BiTEs) preferentially targeting tumour-associated antigens and stimulating CD3-mediated signalling are being used in patients to treat acute B-cell lymphoblastic leukemia. However, the potency of BiTEs in solid tumours is limited by their short half-life and their severe toxicity at relevant therapeutic doses. Here we report the design and in vivo performance of a bispecific antibody that simultaneously targets the murine T-cell co-receptor CD3ε and the murine immune checkpoint programmed-death ligand 1 (PD-L1). In multiple syngeneic tumour models, the bispecific antibody generated higher antitumour immune responses than conventional BiTEs targeting tumour-associated antigens and CD3ε. We found that the durable antigen-specific T-cell responses resulted from the rejuvenation of CD8 T cells, owing to the blockade of PD-L1 on dendritic cells (but not on tumour cells) and co-stimulation by B7-1&2 (a peripheral membrane protein on dendritic cells). Bispecific T-cell engagers targeting dendritic cells rather than tumour cells may represent a general means of T-cell rejuvenation for durable cancer immunotherapy.
Collapse
Affiliation(s)
- Longchao Liu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jiahui Chen
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joonbeom Bae
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huiyu Li
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhichen Sun
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Casey Moore
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eric Hsu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chuanhui Han
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jian Qiao
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
42
|
Belmontes B, Sawant DV, Zhong W, Tan H, Kaul A, Aeffner F, O'Brien SA, Chun M, Noubade R, Eng J, Ma H, Muenz M, Li P, Alba BM, Thomas M, Cook K, Wang X, DeVoss J, Egen JG, Nolan-Stevaux O. Immunotherapy combinations overcome resistance to bispecific T cell engager treatment in T cell-cold solid tumors. Sci Transl Med 2021; 13:13/608/eabd1524. [PMID: 34433637 DOI: 10.1126/scitranslmed.abd1524] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/28/2021] [Indexed: 12/15/2022]
Abstract
Therapeutic approaches are needed to promote T cell-mediated destruction of poorly immunogenic, "cold" tumors typically associated with minimal response to immune checkpoint blockade (ICB) therapy. Bispecific T cell engager (BiTE) molecules induce redirected lysis of cancer cells by polyclonal T cells and have demonstrated promising clinical activity against solid tumors in some patients. However, little is understood about the key factors that govern clinical responses to these therapies. Using an immunocompetent mouse model expressing a humanized CD3ε chain (huCD3e mice) and BiTE molecules directed against mouse CD19, mouse CLDN18.2, or human EPCAM antigens, we investigated the pharmacokinetic and pharmacodynamic parameters and immune correlates associated with BiTE efficacy across multiple syngeneic solid-tumor models. These studies demonstrated that pretreatment tumor-associated T cell density is a critical determinant of response to BiTE therapy, identified CD8+ T cells as important targets and mediators of BiTE activity, and revealed an antagonistic role for CD4+ T cells in BiTE efficacy. We also identified therapeutic combinations, including ICB and 4-1BB agonism, that synergized with BiTE treatment in poorly T cell-infiltrated, immunotherapy-refractory tumors. In these models, BiTE efficacy was dependent on local expansion of tumor-associated CD8+ T cells, rather than their recruitment from circulation. Our findings highlight the relative contributions of baseline T cell infiltration, local T cell proliferation, and peripheral T cell trafficking for BiTE molecule-mediated efficacy, identify combination strategies capable of overcoming resistance to BiTE therapy, and have clinical relevance for the development of BiTE and other T cell engager therapies.
Collapse
Affiliation(s)
- Brian Belmontes
- Amgen Research, Thousand Oaks, CA 91320, USA.,Inflammation and Oncology Therapeutic Area, Amgen, Thousand Oaks, CA 91320, USA
| | - Deepali V Sawant
- Amgen Research, Thousand Oaks, CA 91320, USA.,Inflammation and Oncology Therapeutic Area, Amgen, South San Francisco, CA 94080, USA
| | - Wendy Zhong
- Amgen Research, Thousand Oaks, CA 91320, USA.,Inflammation and Oncology Therapeutic Area, Amgen, South San Francisco, CA 94080, USA
| | - Hong Tan
- Amgen Research, Thousand Oaks, CA 91320, USA.,Inflammation and Oncology Therapeutic Area, Amgen, Thousand Oaks, CA 91320, USA
| | - Anupurna Kaul
- Amgen Research, Thousand Oaks, CA 91320, USA.,Inflammation and Oncology Therapeutic Area, Amgen, South San Francisco, CA 94080, USA
| | - Famke Aeffner
- Amgen Research, Thousand Oaks, CA 91320, USA.,Translational Safety and Bioanalytical Sciences, Amgen, South San Francisco, CA 94080, USA
| | - Sarah A O'Brien
- Amgen Research, Thousand Oaks, CA 91320, USA.,Inflammation and Oncology Therapeutic Area, Amgen, South San Francisco, CA 94080, USA
| | - Matthew Chun
- Amgen Research, Thousand Oaks, CA 91320, USA.,Inflammation and Oncology Therapeutic Area, Amgen, South San Francisco, CA 94080, USA
| | - Rajkumar Noubade
- Amgen Research, Thousand Oaks, CA 91320, USA.,Inflammation and Oncology Therapeutic Area, Amgen, South San Francisco, CA 94080, USA
| | - Jason Eng
- Amgen Research, Thousand Oaks, CA 91320, USA.,Inflammation and Oncology Therapeutic Area, Amgen, South San Francisco, CA 94080, USA
| | - Hayley Ma
- Amgen Research, Thousand Oaks, CA 91320, USA.,Inflammation and Oncology Therapeutic Area, Amgen, Thousand Oaks, CA 91320, USA
| | - Markus Muenz
- Amgen Research, Thousand Oaks, CA 91320, USA.,Amgen Research GmbH, Munich 81477, Germany
| | - Peng Li
- Amgen Research, Thousand Oaks, CA 91320, USA.,Therapeutic Discovery, Amgen, South San Francisco, CA 94080, USA
| | - Benjamin M Alba
- Amgen Research, Thousand Oaks, CA 91320, USA.,Therapeutic Discovery, Amgen, South San Francisco, CA 94080, USA
| | - Melissa Thomas
- Amgen Research, Thousand Oaks, CA 91320, USA.,Therapeutic Discovery, Amgen, South San Francisco, CA 94080, USA
| | - Kevin Cook
- Amgen Research, Thousand Oaks, CA 91320, USA.,Pharmacokinetics and Drug Metabolism, Amgen, South San Francisco, CA 94080, USA
| | - Xiaoting Wang
- Amgen Research, Thousand Oaks, CA 91320, USA.,Translational Safety and Bioanalytical Sciences, Amgen, South San Francisco, CA 94080, USA
| | - Jason DeVoss
- Amgen Research, Thousand Oaks, CA 91320, USA.,Inflammation and Oncology Therapeutic Area, Amgen, South San Francisco, CA 94080, USA
| | - Jackson G Egen
- Amgen Research, Thousand Oaks, CA 91320, USA. .,Inflammation and Oncology Therapeutic Area, Amgen, South San Francisco, CA 94080, USA
| | - Olivier Nolan-Stevaux
- Amgen Research, Thousand Oaks, CA 91320, USA. .,Inflammation and Oncology Therapeutic Area, Amgen, South San Francisco, CA 94080, USA
| |
Collapse
|
43
|
Neural stem cells secreting bispecific T cell engager to induce selective antiglioma activity. Proc Natl Acad Sci U S A 2021; 118:2015800118. [PMID: 33627401 DOI: 10.1073/pnas.2015800118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Glioblastoma (GBM) is the most lethal primary brain tumor in adults. No treatment provides durable relief for the vast majority of GBM patients. In this study, we've tested a bispecific antibody comprised of single-chain variable fragments (scFvs) against T cell CD3ε and GBM cell interleukin 13 receptor alpha 2 (IL13Rα2). We demonstrate that this bispecific T cell engager (BiTE) (BiTELLON) engages peripheral and tumor-infiltrating lymphocytes harvested from patients' tumors and, in so doing, exerts anti-GBM activity ex vivo. The interaction of BiTELLON with T cells and IL13Rα2-expressing GBM cells stimulates T cell proliferation and the production of proinflammatory cytokines interferon γ (IFNγ) and tumor necrosis factor α (TNFα). We have modified neural stem cells (NSCs) to produce and secrete the BiTELLON (NSCLLON). When injected intracranially in mice with a brain tumor, NSCLLON show tropism for tumor, secrete BiTELLON, and remain viable for over 7 d. When injected directly into the tumor, NSCLLON provide a significant survival benefit to mice bearing various IL13Rα2+ GBMs. Our results support further investigation and development of this therapeutic for clinical translation.
Collapse
|
44
|
Teijeira Crespo A, Burnell S, Capitani L, Bayliss R, Moses E, Mason GH, Davies JA, Godkin AJ, Gallimore AM, Parker AL. Pouring petrol on the flames: Using oncolytic virotherapies to enhance tumour immunogenicity. Immunology 2021; 163:389-398. [PMID: 33638871 PMCID: PMC8274202 DOI: 10.1111/imm.13323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/12/2021] [Indexed: 12/12/2022] Open
Abstract
Oncolytic viruses possess the ability to infect, replicate and lyse malignantly transformed tumour cells. This oncolytic activity amplifies the therapeutic advantage and induces a form of immunogenic cell death, characterized by increased CD8 + T-cell infiltration into the tumour microenvironment. This important feature of oncolytic viruses can result in the warming up of immunologically 'cold' tumour types, presenting the enticing possibility that oncolytic virus treatment combined with immunotherapies may enhance efficacy. In this review, we assess some of the most promising candidates that might be used for oncolytic virotherapy: immunotherapy combinations. We assess their potential as separate agents or as agents combined into a single therapy, where the immunotherapy is encoded within the genome of the oncolytic virus. The development of such advanced agents will require increasingly sophisticated model systems for their preclinical assessment and evaluation. In vivo rodent model systems are fraught with limitations in this regard. Oncolytic viruses replicate selectively within human cells and therefore require human xenografts in immune-deficient mice for their evaluation. However, the use of immune-deficient rodent models hinders the ability to study immune responses against any immunomodulatory transgenes engineered within the viral genome and expressed within the tumour microenvironment. There has therefore been a shift towards the use of more sophisticated ex vivo patient-derived model systems based on organoids and explant co-cultures with immune cells, which may be more predictive of efficacy than contrived and artificial animal models. We review the best of those model systems here.
Collapse
Affiliation(s)
- Alicia Teijeira Crespo
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| | - Stephanie Burnell
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - Lorenzo Capitani
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - Rebecca Bayliss
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| | - Elise Moses
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| | - Georgina H. Mason
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - James A. Davies
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| | - Andrew J. Godkin
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - Awen M. Gallimore
- Division of Infection and Immunity
Cardiff University School of MedicineCardiff UniversityCardiffUK
| | - Alan L. Parker
- Division of Cancer and
GeneticsCardiff University School of Medicine
Cardiff UniversityCardiffUK
| |
Collapse
|
45
|
Waite JC, Wang B, Haber L, Hermann A, Ullman E, Ye X, Dudgeon D, Slim R, Ajithdoss DK, Godin SJ, Ramos I, Wu Q, Oswald E, Poon P, Golubov J, Grote D, Stella J, Pawashe A, Finney J, Herlihy E, Ahmed H, Kamat V, Dorvilliers A, Navarro E, Xiao J, Kim J, Yang SN, Warsaw J, Lett C, Canova L, Schulenburg T, Foster R, Krueger P, Garnova E, Rafique A, Babb R, Chen G, Stokes Oristian N, Siao CJ, Daly C, Gurer C, Martin J, Macdonald L, MacDonald D, Poueymirou W, Smith E, Lowy I, Thurston G, Olson W, Lin JC, Sleeman MA, Yancopoulos GD, Murphy AJ, Skokos D. Tumor-targeted CD28 bispecific antibodies enhance the antitumor efficacy of PD-1 immunotherapy. Sci Transl Med 2021; 12:12/549/eaba2325. [PMID: 32581132 DOI: 10.1126/scitranslmed.aba2325] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/05/2020] [Indexed: 12/16/2022]
Abstract
Monoclonal antibodies that block the programmed cell death 1 (PD-1) checkpoint have revolutionized cancer immunotherapy. However, many major tumor types remain unresponsive to anti-PD-1 therapy, and even among responsive tumor types, most of the patients do not develop durable antitumor immunity. It has been shown that bispecific antibodies activate T cells by cross-linking the TCR/CD3 complex with a tumor-specific antigen (TSA). The class of TSAxCD3 bispecific antibodies have generated exciting results in early clinical trials. We have recently described another class of "costimulatory bispecifics" that cross-link a TSA to CD28 (TSAxCD28) and cooperate with TSAxCD3 bispecifics. Here, we demonstrate that these TSAxCD28 bispecifics (one specific for prostate cancer and the other for epithelial tumors) can also synergize with the broader anti-PD-1 approach and endow responsiveness-as well as long-term immune memory-against tumors that otherwise do not respond to anti-PD-1 alone. Unlike CD28 superagonists, which broadly activate T cells and induce cytokine storm, TSAxCD28 bispecifics display little or no toxicity when used alone or in combination with a PD-1 blocker in genetically humanized immunocompetent mouse models or in primates and thus may provide a well-tolerated and "off the shelf" combination approach with PD-1 immunotherapy that can markedly enhance antitumor efficacy.
Collapse
Affiliation(s)
- Janelle C Waite
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Bei Wang
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Lauric Haber
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Aynur Hermann
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Erica Ullman
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Xuan Ye
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Drew Dudgeon
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Rabih Slim
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Dharani K Ajithdoss
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Stephen J Godin
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Ilyssa Ramos
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Qi Wu
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Erin Oswald
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Patrick Poon
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Jacquelynn Golubov
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Devon Grote
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Jennifer Stella
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Arpita Pawashe
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Jennifer Finney
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Evan Herlihy
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Hassan Ahmed
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Vishal Kamat
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Amanda Dorvilliers
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Elizabeth Navarro
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Jenny Xiao
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Julie Kim
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Shao Ning Yang
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Jacqueline Warsaw
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Clarissa Lett
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Lauren Canova
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Teresa Schulenburg
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Randi Foster
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Pamela Krueger
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Elena Garnova
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Ashique Rafique
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Robert Babb
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Gang Chen
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | | | - Chia-Jen Siao
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Christopher Daly
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Cagan Gurer
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Joel Martin
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Lynn Macdonald
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Douglas MacDonald
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - William Poueymirou
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Eric Smith
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Israel Lowy
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Gavin Thurston
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - William Olson
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - John C Lin
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Matthew A Sleeman
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - George D Yancopoulos
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Andrew J Murphy
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA.
| | - Dimitris Skokos
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA.
| |
Collapse
|
46
|
A BCMAxCD3 bispecific T cell-engaging antibody demonstrates robust antitumor efficacy similar to that of anti-BCMA CAR T cells. Blood Adv 2021; 5:1291-1304. [PMID: 33651100 DOI: 10.1182/bloodadvances.2020002736] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/12/2021] [Indexed: 12/23/2022] Open
Abstract
CD3-engaging bispecific antibodies (bsAbs) and chimeric antigen receptor (CAR) T cells are potent therapeutic approaches for redirecting patient T cells to recognize and kill tumors. Here we describe a fully human bsAb (REGN5458) that binds to B-cell maturation antigen (BCMA) and CD3, and compare its antitumor activities vs those of anti-BCMA CAR T cells to identify differences in efficacy and mechanism of action. In vitro, BCMAxCD3 bsAb efficiently induced polyclonal T-cell killing of primary human plasma cells and multiple myeloma (MM) cell lines expressing a range of BCMA cell surface densities. In vivo, BCMAxCD3 bsAb suppressed the growth of human MM tumors in murine xenogeneic models and showed potent combinatorial efficacy with programmed cell death protein 1 blockade. BCMAxCD3 bsAb administration to cynomolgus monkeys was well tolerated, resulting in the depletion of BCMA+ cells and mild inflammatory responses characterized by transient increases in C-reactive protein and serum cytokines. The antitumor efficacy of BCMAxCD3 bsAb was compared with BCMA-specific CAR T cells containing a BCMA-binding single-chain variable fragment derived from REGN5458. Both BCMAxCD3 bsAb and anti-BCMA CAR T cells showed similar targeted cytotoxicity of MM cell lines and primary MM cells in vitro. In head-to-head in vivo studies, BCMAxCD3 bsAb rapidly cleared established systemic MM tumors, whereas CAR T cells cleared tumors with slower kinetics. Thus, using the same BCMA-binding domain, these results suggest that BCMAxCD3 bsAb rapidly exerts its therapeutic effects by engaging T cells already in place at the tumor site, whereas anti-BCMA CAR T cells require time to traffic to the tumor site, activate, and numerically expand before exerting antitumor effects.
Collapse
|
47
|
Crawford A, Chiu D. Targeting Solid Tumors Using CD3 Bispecific Antibodies. Mol Cancer Ther 2021; 20:1350-1358. [PMID: 34045228 DOI: 10.1158/1535-7163.mct-21-0073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/06/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022]
Abstract
Immunotherapies to treat cancer have made tremendous progress over the past decade. In particular, T cell-directed therapies have gained considerable attention with CD3 bispecific antibodies and CAR T cells showing potent responses against hematologic tumors. At present, the ability to adapt these therapeutics to treat solid tumors is less established. Herein, we discuss recent advances in T cell-engaging CD3 bispecific antibodies targeting solid tumors, potential mechanisms of resistance, and future prospects. A better understanding of the mechanisms of immune evasion in solid tumors will enable the development of strategies to overcome this resistance and inform choices of therapeutic combinations.
Collapse
Affiliation(s)
| | - Danica Chiu
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| |
Collapse
|
48
|
Liu Y, Wu Y, Zhang P, Xu C, Liu Z, He C, Liu Y, Kang Z. CXCL12 and CD3E as Indicators for Tumor Microenvironment Modulation in Bladder Cancer and Their Correlations With Immune Infiltration and Molecular Subtypes. Front Oncol 2021; 11:636870. [PMID: 33747959 PMCID: PMC7971116 DOI: 10.3389/fonc.2021.636870] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/18/2021] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BLCA) represents the ninth most common malignant tumor in the world and is characterized by high recurrence risk. Tumor microenvironment (TME) plays an important role in regulating the progression of BLCA. Immunotherapy, including Bacillus Calmette-Guerin (BCG) and programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1), is closely associated with TME and is widely used for treating BLCA. But parts of BLCA patients have no response to these treatment ways, thus a better understanding of the complex TME of BLCA is still needed. We downloaded the gene expression profile and corresponding clinical information of 414 BLCA patients from the TCGA database. Via the ESTIMATE and CIBERSORT algorithm, we identified the two hub genes (CXCL12 and CD3E) and explored their correlations with immune infiltration. We found that BLCA patients with higher expression of CXCL12 and lower expression of CD3E had prolonged survival. Gene set enrichment analysis (GSEA) revealed that both CXCL12 and CD3E were enriched in immune-related pathways. We also discovered that stromal score and the level of CXCL12 were higher in luminal subtype, and immune score and the level of CD3E were higher in the basal subtype. Furtherly, we found that CXCL12 was associated with naive B cells, resting mast cell, M2 macrophages, follicular helper T cells, and dendritic cells. CD8+ T cells, CD4+ T cells, regulatory T cells (Tregs), and macrophages were correlated with CD3E. In conclusions, we found that CXCL12 and CD3E might serve as indicators of TME modulation in BLCA. Therapy targeting CXCL12 and CD3E had the potential as novel therapeutic strategy.
Collapse
Affiliation(s)
- Yi Liu
- Department of Urology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - YuCai Wu
- Department of Urology, Peking University First Hospital, Beijing, China
| | - PeiPei Zhang
- Department of Pediatrics, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - ChaoJie Xu
- Department of Urology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - ZeSen Liu
- Department of General Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - ChaoJie He
- Department of General Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - YiMing Liu
- Department of General Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - ZhengJun Kang
- Department of Urology, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
49
|
Lisby AN, Flickinger JC, Bashir B, Weindorfer M, Shelukar S, Crutcher M, Snook AE, Waldman SA. GUCY2C as a biomarker to target precision therapies for patients with colorectal cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021; 6:117-129. [PMID: 34027103 DOI: 10.1080/23808993.2021.1876518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction Colorectal cancer (CRC) is one of the most-deadly malignancies worldwide. Current therapeutic regimens for CRC patients are relatively generic, based primarily on disease type and stage, with little variation. As the field of molecular oncology advances, so too must therapeutic management of CRC. Understanding molecular heterogeneity has led to a new-found promotion for precision therapy in CRC; underlining the diversity of molecularly targeted therapies based on individual tumor characteristics. Areas covered We review current approaches for the treatment of CRC and discuss the potential of precision therapy in advanced CRC. We highlight the utility of the intestinal protein guanylyl cyclase C (GUCY2C), as a multi-purpose biomarker and unique therapeutic target in CRC. Here, we summarize current GUCY2C-targeted approaches for treatment of CRC. Expert opinion The GUCY2C biomarker has multi-faceted utility in medicine. Developmental investment of GUCY2C as a diagnostic and therapeutic biomarker offers a variety of options taking the molecular characteristics of cancer into account. From GUCY2C-targeted therapies, namely cancer vaccines, CAR-T cells, and monoclonal antibodies, to GUCY2C agonists for chemoprevention in those who are at high risk for developing colorectal cancer, the utility of this protein provides many avenues for exploration with significance in the field of precision medicine.
Collapse
Affiliation(s)
- Amanda N Lisby
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - John C Flickinger
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Babar Bashir
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Megan Weindorfer
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Sanjna Shelukar
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Madison Crutcher
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Adam E Snook
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Scott A Waldman
- Department of Pharmacology and Experimental Therapeutics, Thomas Jefferson University, Philadelphia, PA 19107, United States
| |
Collapse
|
50
|
Wang F, Tsai JC, Davis JH, Chau B, Dong J, West SM, Hogan JM, Wheeler ML, Bee C, Morishige W, Cayton T, David-Brown D, Zhang C, Kozhich A, Sproul T, Dollinger G, Rajpal A, Strop P. Design and characterization of mouse IgG1 and IgG2a bispecific antibodies for use in syngeneic models. MAbs 2021; 12:1685350. [PMID: 31856660 PMCID: PMC6927765 DOI: 10.1080/19420862.2019.1685350] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The development of antibody therapeutics relies on animal models that accurately recapitulate disease biology. Syngeneic mouse models are increasingly used with new molecules to capture the biology of complex cancers and disease states, and to provide insight into the role of the immune system. The establishment of syngeneic mouse models requires the ability to generate surrogate mouse counterparts to antibodies designed for humans. In the field of bispecific antibodies, there remains a dearth of technologies available to generate native IgG-like mouse bispecific antibodies. Thus, we engineered a simple co-expression system for one-step purification of intact mouse IgG1 and IgG2a bispecific antibodies from any antibody pair. We demonstrated proof of concept with CD3/CD20 bispecific antibodies, which highlighted both the quality and efficacy of materials generated by this technology.
Collapse
Affiliation(s)
- Feng Wang
- Protein Therapeutics and Biologics Lead Discovery, Bristol-Myers Squibb, Redwood City, CA, USA
| | - Jordan C Tsai
- Protein Therapeutics and Biologics Lead Discovery, Bristol-Myers Squibb, Redwood City, CA, USA
| | | | - Bryant Chau
- Protein Therapeutics and Biologics Lead Discovery, Bristol-Myers Squibb, Redwood City, CA, USA
| | - Jia Dong
- Protein Therapeutics and Biologics Lead Discovery, Bristol-Myers Squibb, Redwood City, CA, USA
| | - Sean M West
- Protein Therapeutics and Biologics Lead Discovery, Bristol-Myers Squibb, Redwood City, CA, USA
| | - Jason M Hogan
- Protein Therapeutics and Biologics Lead Discovery, Bristol-Myers Squibb, Redwood City, CA, USA
| | - Matthew L Wheeler
- Immuno-Oncology Research, Bristol-Myers Squibb, Redwood City, CA, USA
| | - Christine Bee
- Protein Therapeutics and Biologics Lead Discovery, Bristol-Myers Squibb, Redwood City, CA, USA
| | - Winse Morishige
- Protein Therapeutics and Biologics Lead Discovery, Bristol-Myers Squibb, Redwood City, CA, USA
| | - Thomas Cayton
- Protein Therapeutics and Biologics Lead Discovery, Bristol-Myers Squibb, Redwood City, CA, USA
| | | | - Chengyue Zhang
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb, Redwood City, CA, USA
| | | | - Tim Sproul
- Protein Therapeutics and Biologics Lead Discovery, Bristol-Myers Squibb, Redwood City, CA, USA
| | - Gavin Dollinger
- Protein Therapeutics and Biologics Lead Discovery, Bristol-Myers Squibb, Redwood City, CA, USA
| | - Arvind Rajpal
- Protein Therapeutics and Biologics Lead Discovery, Bristol-Myers Squibb, Redwood City, CA, USA
| | - Pavel Strop
- Protein Therapeutics and Biologics Lead Discovery, Bristol-Myers Squibb, Redwood City, CA, USA
| |
Collapse
|