1
|
Yao ZQ, Jiang HH, Wang FF, Fan ZG, Zhang YG, Mou SD, Cao X, Li CT, Jiang LS, Song L, Ji SS, Chen QJ. Differences in Genomic Alterations and Accumulations of Heavy Metals Between Advanced Non-small Cell Lung Cancer Patients with and without Bone Metastasis. J Cancer 2024; 15:4205-4218. [PMID: 38947377 PMCID: PMC11212080 DOI: 10.7150/jca.95191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024] Open
Abstract
Purpose: Bone metastasis (BoM) has been closely associated with increased morbidity and poor survival outcomes in patients with non-small cell lung cancer (NSCLC). Given its significant implications, this study aimed to systematically compare the biological characteristics between advanced NSCLC patients with and without BoM. Methods: In this study, the genomic alterations from the tumor tissue DNA of 42 advanced NSCLC patients without BoM and 67 patients with BoM and were analyzed by a next-generation sequencing (NGS) panel. The serum concentrations of 18 heavy metals were detected by inductively coupled plasma emission spectrometry (ICP-MS). Results: A total of 157 somatic mutations across 18 mutated genes and 105 somatic mutations spanning 16 mutant genes were identified in 61 out of 67 (91.05%) patients with BoM and 37 of 42 (88.10%) patients without BoM, respectively. Among these mutated genes, NTRK1, FGFR1, ERBB4, NTRK3, and FGFR2 stood out exclusively in patients with BoM, whereas BRAF, GNAS, and AKT1 manifested solely in those without BoM. Moreover, both co-occurring sets of genes and mutually exclusive sets of genes in patients with BoM were different from those in patients without BoM. In addition, the serum concentrations of Cu and Sr in patients with BoM were significantly higher than in patients without BoM. One of our aims was to explore how these heavy metals associated with BoM interacted with other heavy metals, and significant positive correlations were observed between Cu and Co, between Cu and Cr, between Sr and Ba, and between Sr and Ni in patients with BoM. Given the significant impacts of molecular characteristics on patients' prognosis, we also observed a noteworthy negative correlation between EGFR mutations and Co, alongside a significant positive correlation between TP53 mutations and Cd. Conclusions: The genomic alterations, somatic interactions, key signaling pathways, functional biological information, and accumulations of serum heavy metals were markedly different between advanced NSCLC patients with and without BoM, and certain heavy metals (e.g., Cu, Sr) might have potentials to identify high-risk patients with BoM.
Collapse
Affiliation(s)
- Zhong-Qiang Yao
- Medical oncology, 3201 Hospital of Xi´an Jiaotong University Health Science Center, Hanzhong 723000, China
| | - Hui-Hui Jiang
- Zhangjiang Center for Translational Medicine, Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai 200135, China
| | - Fei-Fei Wang
- Medical oncology, 3201 Hospital of Xi´an Jiaotong University Health Science Center, Hanzhong 723000, China
| | - Zhi-Gang Fan
- Medical oncology, 3201 Hospital of Xi´an Jiaotong University Health Science Center, Hanzhong 723000, China
| | - Yi-Ge Zhang
- Medical oncology, 3201 Hospital of Xi´an Jiaotong University Health Science Center, Hanzhong 723000, China
| | - Shang-Dong Mou
- Medical oncology, 3201 Hospital of Xi´an Jiaotong University Health Science Center, Hanzhong 723000, China
| | - Xia Cao
- Medical oncology, 3201 Hospital of Xi´an Jiaotong University Health Science Center, Hanzhong 723000, China
| | - Cheng-Tian Li
- Medical oncology, 3201 Hospital of Xi´an Jiaotong University Health Science Center, Hanzhong 723000, China
| | - Li-Sha Jiang
- Zhangjiang Center for Translational Medicine, Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai 200135, China
| | - Li Song
- Zhangjiang Center for Translational Medicine, Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai 200135, China
| | - Shu-Shen Ji
- Zhangjiang Center for Translational Medicine, Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai 200135, China
| | - Qing-Juan Chen
- Medical oncology, 3201 Hospital of Xi´an Jiaotong University Health Science Center, Hanzhong 723000, China
| |
Collapse
|
2
|
Piotrowska A, Nowak JI, Wierzbicka JM, Domżalski P, Górska-Arcisz M, Sądej R, Popiel D, Wieczorek M, Żmijewski MA. Fibroblast Growth Factor Receptor Inhibitors Decrease Proliferation of Melanoma Cell Lines and Their Activity Is Modulated by Vitamin D. Int J Mol Sci 2024; 25:2505. [PMID: 38473753 DOI: 10.3390/ijms25052505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
Regardless of the unprecedented progress in malignant melanoma treatment strategies and clinical outcomes of patients during the last twelve years, this skin cancer remains the most lethal one. We have previously documented that vitamin D and its low-calcaemic analogues enhance the anticancer activity of drugs including a classic chemotherapeutic-dacarbazine-and an antiangiogenic VEGFRs inhibitor-cediranib. In this study, we explored the response of A375 and RPMI7951 melanoma lines to CPL304110 (CPL110), a novel selective inhibitor of fibroblast growth factor receptors (FGFRs), and compared its efficacy with that of AZD4547, the first-generation FGFRs selective inhibitor. We also tested whether 1,25(OH)2D3, the active form of vitamin D, modulates the response of the cells to these drugs. CPL304110 efficiently decreased the viability of melanoma cells in both A375 and RPMI7951 cell lines, with the IC50 value below 1 µM. However, the metastatic RPMI7951 melanoma cells were less sensitive to the tested drug than A375 cells, isolated from primary tumour site. Both tested FGFR inhibitors triggered G0/G1 cell cycle arrest in A375 melanoma cells and increased apoptotic/necrotic SubG1 fraction in RPMI7951 melanoma cells. 1,25(OH)2D3 modulated the efficacy of CPL304110, by decreasing the IC50 value by more than 4-fold in A375 cell line, but not in RPMI7951 cells. Further analysis revealed that both inhibitors impact vitamin D signalling to some extent, and this effect is cell line-specific. On the other hand, 1,25(OH)2D3, have an impact on the expression of FGFR receptors and phosphorylation (FGFR-Tyr653/654). Interestingly, 1,25(OH)2D3 and CPL304110 co-treatment resulted in activation of the ERK1/2 pathway in A375 cells. Our results strongly suggested possible crosstalk between vitamin D-activated pathways and activity of FGFR inhibitors, which should be considered in further clinical studies.
Collapse
Affiliation(s)
- Anna Piotrowska
- Faculty of Medicine, Department of Histology, Medical University of Gdańsk, Dębinki 1a, 80-384 Gdańsk, Poland
| | - Joanna I Nowak
- Faculty of Medicine, Department of Histology, Medical University of Gdańsk, Dębinki 1a, 80-384 Gdańsk, Poland
| | - Justyna M Wierzbicka
- Faculty of Medicine, Department of Histology, Medical University of Gdańsk, Dębinki 1a, 80-384 Gdańsk, Poland
| | - Paweł Domżalski
- Faculty of Medicine, Department of Histology, Medical University of Gdańsk, Dębinki 1a, 80-384 Gdańsk, Poland
| | - Monika Górska-Arcisz
- Laboratory of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1, 80-384 Gdańsk, Poland
| | - Rafał Sądej
- Laboratory of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1, 80-384 Gdańsk, Poland
| | - Delfina Popiel
- Preclinical Development Departament, Celon Pharma S.A., Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Maciej Wieczorek
- Preclinical Development Departament, Celon Pharma S.A., Marymoncka 15, 05-152 Kazuń Nowy, Poland
- Clinical Development Department, Celon Pharma S.A., Marymoncka 15, 05-152 Kazuń Nowy, Poland
| | - Michał A Żmijewski
- Faculty of Medicine, Department of Histology, Medical University of Gdańsk, Dębinki 1a, 80-384 Gdańsk, Poland
| |
Collapse
|
3
|
Liang WW, Lu RJH, Jayasinghe RG, Foltz SM, Porta-Pardo E, Geffen Y, Wendl MC, Lazcano R, Kolodziejczak I, Song Y, Govindan A, Demicco EG, Li X, Li Y, Sethuraman S, Payne SH, Fenyö D, Rodriguez H, Wiznerowicz M, Shen H, Mani DR, Rodland KD, Lazar AJ, Robles AI, Ding L. Integrative multi-omic cancer profiling reveals DNA methylation patterns associated with therapeutic vulnerability and cell-of-origin. Cancer Cell 2023; 41:1567-1585.e7. [PMID: 37582362 PMCID: PMC11613269 DOI: 10.1016/j.ccell.2023.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 05/30/2023] [Accepted: 07/31/2023] [Indexed: 08/17/2023]
Abstract
DNA methylation plays a critical role in establishing and maintaining cellular identity. However, it is frequently dysregulated during tumor development and is closely intertwined with other genetic alterations. Here, we leveraged multi-omic profiling of 687 tumors and matched non-involved adjacent tissues from the kidney, brain, pancreas, lung, head and neck, and endometrium to identify aberrant methylation associated with RNA and protein abundance changes and build a Pan-Cancer catalog. We uncovered lineage-specific epigenetic drivers including hypomethylated FGFR2 in endometrial cancer. We showed that hypermethylated STAT5A is associated with pervasive regulon downregulation and immune cell depletion, suggesting that epigenetic regulation of STAT5A expression constitutes a molecular switch for immunosuppression in squamous tumors. We further demonstrated that methylation subtype-enrichment information can explain cell-of-origin, intra-tumor heterogeneity, and tumor phenotypes. Overall, we identified cis-acting DNA methylation events that drive transcriptional and translational changes, shedding light on the tumor's epigenetic landscape and the role of its cell-of-origin.
Collapse
Affiliation(s)
- Wen-Wei Liang
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Rita Jui-Hsien Lu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Reyka G Jayasinghe
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Steven M Foltz
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Eduard Porta-Pardo
- Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain; Barcelona Supercomputing Center (BSC), 08034 Barcelona, Spain
| | - Yifat Geffen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Michael C Wendl
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Mathematics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Rossana Lazcano
- Departments of Pathology & Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Iga Kolodziejczak
- International Institute for Molecular Oncology, 60-203 Poznań, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Yizhe Song
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Akshay Govindan
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Elizabeth G Demicco
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Xiang Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Yize Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Sunantha Sethuraman
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Samuel H Payne
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - David Fenyö
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Maciej Wiznerowicz
- International Institute for Molecular Oncology, 60-203 Poznań, Poland; Heliodor Swiecicki Clinical Hospital in Poznań, Ul. Przybyszewskiego 49, 60-355 Poznań, Poland; Poznań University of Medical Sciences, 61-701 Poznań, Poland
| | - Hui Shen
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97221, USA
| | - Alexander J Lazar
- Departments of Pathology & Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
4
|
Gao X, Liu H, Wu Q, Wang R, Huang M, Ma Q, Liu Y. miRNA-381-3p Functions as a Tumor Suppressor to Inhibit Gastric Cancer by Targeting Fibroblast Growth Factor Receptor-2. Cancer Biother Radiopharm 2023; 38:396-404. [PMID: 35029520 DOI: 10.1089/cbr.2021.0357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Objectives: MicroRNAs possess essential effects on gastric cancer (GC), whereas the underlying mechanisms have not been fully uncovered. The present work focused on investigating the role of miR-381-3p in GC cellular processes and the possible mechanisms. Materials and Methods: miR-381-3p levels within GC tissues and cells were measured through quantitative real-time polymerase chain reaction (qRT-PCR). This study measured cell proliferation, apoptosis, and metastasis through EdU, colony formation, flow cytometry, and Transwell assays separately. TargetScan was adopted to predict the miR-381-3p targets, whereas luciferase reporter assay was adopted for confirmation. Results: miR-381-3p levels were decreased, whereas fibroblast growth factor receptor-2 (FGFR2) expression was increased in GC. miR-381-3p upregulation inhibited proliferation, migration, and invasion and it promoted the apoptosis of GC cells. Further, FGFR2 overexpression partly reversed the miR-381-3p-mediated impacts on GC cellular processes. Conclusions: This study provides an experimental basis, suggesting the potential of using miR-381-3p as the novel marker for GC. Clinical Trial Registration number: 2020-05.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Basic Medical Sciences, Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China
- Research Center for Qinghai Healthy Development, Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China
- Research Center for High Altitude Medicine, Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China
| | - Huiqi Liu
- Department of Basic Medical Sciences, Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China
- Research Center for Qinghai Healthy Development, Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China
| | - Qiong Wu
- Department of Basic Medical Sciences, Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China
- Research Center for Qinghai Healthy Development, Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China
| | - Rong Wang
- Department of Basic Medical Sciences, Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China
- Research Center for Qinghai Healthy Development, Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China
| | - Mingyu Huang
- Department of Basic Medical Sciences, Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China
- Research Center for Qinghai Healthy Development, Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China
| | - Qiang Ma
- Department of Basic Medical Sciences, Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China
- Research Center for Qinghai Healthy Development, Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China
| | - Yongnian Liu
- Department of Basic Medical Sciences, Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China
- Research Center for Qinghai Healthy Development, Key Laboratory for Application of High Altitude Medicine, Qinghai University, Xining, China
| |
Collapse
|
5
|
Ardizzone A, Bova V, Casili G, Repici A, Lanza M, Giuffrida R, Colarossi C, Mare M, Cuzzocrea S, Esposito E, Paterniti I. Role of Basic Fibroblast Growth Factor in Cancer: Biological Activity, Targeted Therapies, and Prognostic Value. Cells 2023; 12:cells12071002. [PMID: 37048074 PMCID: PMC10093572 DOI: 10.3390/cells12071002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Cancer is the leading cause of death worldwide; thus, it is necessary to find successful strategies. Several growth factors, such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF, FGF2), and transforming growth factor beta (TGF-β), are involved in the main processes that fuel tumor growth, i.e., cell proliferation, angiogenesis, and metastasis, by activating important signaling pathways, including PLC-γ/PI3/Ca2+ signaling, leading to PKC activation. Here, we focused on bFGF, which, when secreted by tumor cells, mediates several signal transductions and plays an influential role in tumor cells and in the development of chemoresistance. The biological mechanism of bFGF is shown by its interaction with its four receptor subtypes: fibroblast growth factor receptor (FGFR) 1, FGFR2, FGFR3, and FGFR4. The bFGF–FGFR interaction stimulates tumor cell proliferation and invasion, resulting in an upregulation of pro-inflammatory and anti-apoptotic tumor cell proteins. Considering the involvement of the bFGF/FGFR axis in oncogenesis, preclinical and clinical studies have been conducted to develop new therapeutic strategies, alone and/or in combination, aimed at intervening on the bFGF/FGFR axis. Therefore, this review aimed to comprehensively examine the biological mechanisms underlying bFGF in the tumor microenvironment, the different anticancer therapies currently available that target the FGFRs, and the prognostic value of bFGF.
Collapse
Affiliation(s)
- Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy
| | - Valentina Bova
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy
| | - Alberto Repici
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy
| | | | - Cristina Colarossi
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Marzia Mare
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy
- Correspondence: ; Tel.: +39-090-6765208
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 98166 Messina, Italy
| |
Collapse
|
6
|
Moon S, Kim HJ, Lee Y, Lee YJ, Jung S, Lee JS, Hahn SH, Kim K, Roh JY, Nam S. Oncogenic signaling pathways and hallmarks of cancer in Korean patients with acral melanoma. Comput Biol Med 2023; 154:106602. [PMID: 36716688 DOI: 10.1016/j.compbiomed.2023.106602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/23/2022] [Accepted: 01/22/2023] [Indexed: 01/25/2023]
Abstract
Acral melanoma (AM), a rare subtype of cutaneous melanoma, shows higher incidence in Asians, including Koreans, than in Caucasians. However, the genetic modification associated with AM in Koreans is not well known and has not been comprehensively investigated in terms of oncogenic signaling, and hallmarks of cancer. We performed whole-exome and RNA sequencing for Korean patients with AM and acquired the genetic alterations and gene expression profiles. KIT alterations (previously known to be recurrent alterations in AM) and CDK4/CCND1 copy number amplifications were identified in the patients. Genetic and transcriptomic alterations in patients with AM were functionally converge to the hallmarks of cancer and oncogenic pathways, including 'proliferative signal persistence', 'apoptotic resistance', and 'activation of invasion and metastasis', despite the heterogeneous somatic mutation profiles of Korean patients with AM. This study may provide a molecular understanding for therapeutic strategy for AM.
Collapse
Affiliation(s)
- SeongRyeol Moon
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon, 21999, South Korea
| | - Hee Joo Kim
- Department of Dermatology, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, South Korea
| | - Yeeun Lee
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon, 21999, South Korea
| | - Yu Joo Lee
- Department of Genome Medicine and Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, South Korea
| | - Sungwon Jung
- Department of Genome Medicine and Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, South Korea
| | - Jin Sook Lee
- Department of Genome Medicine and Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, South Korea; Department of Pediatrics, Seoul National University Hospital Child Cancer and Rare Disease Administration, Seoul National University Children's Hospital, Seoul, 03080, South Korea
| | - Si Houn Hahn
- Division of Genetic Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle Children's Hospital, Seattle, WA, 98105, USA
| | | | - Joo Young Roh
- Department of Dermatology, Ewha Womans University College of Medicine, Seoul Hospital, Seoul, 07804, South Korea.
| | - Seungyoon Nam
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health Sciences and Technology, Gachon University, Incheon, 21999, South Korea; Department of Genome Medicine and Science, Gachon Institute of Genome Medicine and Science, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, 21565, South Korea; AI Convergence Center for Medical Science, Gachon University College of Medicine, Incheon, 21565, South Korea.
| |
Collapse
|
7
|
Storandt MH, Jin Z, Mahipal A. Pemigatinib in cholangiocarcinoma with a FGFR2 rearrangement or fusion. Expert Rev Anticancer Ther 2022; 22:1265-1274. [PMID: 36408971 DOI: 10.1080/14737140.2022.2150168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Cholangiocarcinoma (CCA) accounts for approximately 3% of gastrointestinal malignancies and is associated with a high mortality rate. Recent progress in the understanding of cholangiocarcinoma tumorigenesis and molecular markers has led to the development of several targeted therapies applicable to this disease. Fibroblast growth factor receptor 2 (FGFR2) gene fusion or translocation, resulting in constitutive activation of the FGFR tyrosine kinase, has been identified as a driver of oncogenesis in 10-15% of intrahepatic CCA. Pemigatinib is an FGFR inhibitor that has demonstrated survival benefit in the second line setting for treatment of CCA with FGFR2 fusion or rearrangement refractory to chemotherapy. Pemigatinib was the first targeted therapy to be approved by the FDA for treatment of cholangiocarcinoma. AREAS COVERED This article reviews FGFR and its dysregulation in oncogenesis, FGFR inhibitors, especially pemigatinib, utilized in treatment of CCA, common adverse events associated with FGFR inhibitors, and future directions in the field of targeted drug development for CCA. EXPERT OPINION FGFR inhibitors, including pemigatinib, have shown promise in the management of CCA with FGFR2 fusion or rearrangement; however, acquired resistance remains a major barrier in the field of FGFR inhibitors and requires further study.
Collapse
Affiliation(s)
| | - Zhaohui Jin
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Amit Mahipal
- Department of Oncology, Mayo Clinic, Rochester, MN, USA.,Department of Oncology, University Hospitals Seidman Cancer Center and Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
8
|
Taylor AM, Sun JM, Yu A, Voicu H, Shen J, Barkauskas DA, Triche TJ, Gastier-Foster JM, Man TK, Lau CC. Integrated DNA Copy Number and Expression Profiling Identifies IGF1R as a Prognostic Biomarker in Pediatric Osteosarcoma. Int J Mol Sci 2022; 23:ijms23148036. [PMID: 35887382 PMCID: PMC9319262 DOI: 10.3390/ijms23148036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma is a primary malignant bone tumor arising from bone-forming mesenchymal cells in children and adolescents. Despite efforts to understand the biology of the disease and identify novel therapeutics, the survival of osteosarcoma patients remains dismal. We have concurrently profiled the copy number and gene expression of 226 osteosarcoma samples as part of the Strategic Partnering to Evaluate Cancer Signatures (SPECS) initiative. Our results demonstrate the heterogeneous landscape of osteosarcoma in younger populations by showing the presence of genome-wide copy number abnormalities occurring both recurrently among samples and in a high frequency. Insulin growth factor receptor 1 (IGF1R) is a receptor tyrosine kinase which binds IGF1 and IGF2 to activate downstream pathways involved in cell apoptosis and proliferation. We identify prevalent amplification of IGF1R corresponding with increased gene expression in patients with poor survival outcomes. Our results substantiate previously tenuously associated copy number abnormalities identified in smaller datasets (13q34+, 20p13+, 4q35-, 20q13.33-), and indicate the significance of high fibroblast growth factor receptor 2 (FGFR2) expression in distinguishing patients with poor prognosis. FGFR2 is involved in cellular proliferation processes such as division, growth and angiogenesis. In summary, our findings demonstrate the prognostic significance of several genes associated with osteosarcoma pathogenesis.
Collapse
Affiliation(s)
- Aaron M. Taylor
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA;
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
- Program of Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jiayi M. Sun
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
- Program of Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexander Yu
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
| | - Horatiu Voicu
- Dan L. Duncan Cancer Center-Bioinformatics, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Jianhe Shen
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
| | - Donald A. Barkauskas
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Timothy J. Triche
- Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | | | - Tsz-Kwong Man
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
- Dan L. Duncan Cancer Center-Bioinformatics, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Ching C. Lau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA;
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
- Program of Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center-Bioinformatics, Baylor College of Medicine, Houston, TX 77030, USA;
- Cancer and Hematology Center, Texas Children’s Hospital, Houston, TX 77030, USA;
- Correspondence: ; Tel.: +1-207-288-6000
| |
Collapse
|
9
|
Gaudy-Marqueste C, Macagno N, Loundou A, Pellegrino E, Ouafik L, Budden T, Mundra P, Gremel G, Akhras V, Lin L, Cook M, Kumar R, Grob JJ, Nagore E, Marais R, Virós A. Molecular characterization of fast-growing melanomas. J Am Acad Dermatol 2022; 86:312-321. [PMID: 34280484 DOI: 10.1016/j.jaad.2021.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND The rate of growth of primary melanoma is a robust predictor of aggressiveness, but the mutational profile of fast-growing melanomas (FGMM) and the potential to stratify patients at high risk of death has not been comprehensively studied. OBJECTIVE To investigate the epidemiologic, clinical, and mutational profile of primary cutaneous melanomas with a thickness ≥ 1 mm, stratified by rate of growth. METHODS Observational prospective study. Deep-targeted sequencing of 40 melanoma driver genes on formalin fixed, paraffin-embedded primary melanoma samples. Comparison of FGMM (rate of growth > 0.5 mm/month) and nonFGMM (rate of growth ≤ 0.5 mm/month). RESULTS Two hundred patients were enrolled, among wom 70 had FGMM. The relapse-free survival was lower in the FGMM group (P = .014). FGMM had a higher number of predicted deleterious mutations within the 40 genes than nonFGMM (P = .033). Ulceration (P = .032), thickness (P = .006), lower sun exposure (P = .049), and fibroblast growth factor receptor 2 (FGFR2) mutations (P = .037) were significantly associated with fast growth. LIMITATIONS Single-center study, cohort size, potential memory bias, number of investigated genes. CONCLUSION Fast growth is linked to specific tumor biology and environmental factors. Ulceration, thickness, and FGFR2 mutations are associated with fast growth. Screening for FGFR2 mutations might provide an additional tool to better identify FGMM, which are probably good candidates for adjuvant therapies.
Collapse
Affiliation(s)
- Caroline Gaudy-Marqueste
- Aix Marseille University, Assistance Publique des Hopitaux de Marseille, Centre de Recherche en Cancérologie de Marseille Insitut National de la Santé Et de la Recherche Médicale U1068, Centre National de la Recherche Scientifique U7258, Centre Hospitalo-Universitaire Timone, Dermatology and Skin Cancer Department, Marseille, France.
| | - Nicolas Macagno
- Aix Marseille University, Assistance Publique des Hopitaux de Marseille, Insitut National de la Santé Et de la Recherche Médicale, Marseille Medical Genetics, Centre Hospitalo-Universitaire Timone, Department of Pathology, Marseille, France
| | - Anderson Loundou
- Aix Marseille University, Santé Publique et Maladie Chroniques EA3279, Clinical Research Unit, Department of Public Health, Marseille, France
| | - Eric Pellegrino
- Aix Marseille Univ, Assistance Publique des Hopitaux de Marseille, Centre National de la Recherche Scientifique, Institute of NeuroPhysiopathology, Faculté de Médecine Secteur Nord, Service de Transfert d'Oncologie Biologique, Marseille, France
| | - L'houcine Ouafik
- Aix Marseille Univ, Assistance Publique des Hopitaux de Marseille, Centre National de la Recherche Scientifique, Institute of NeuroPhysiopathology, Faculté de Médecine Secteur Nord, Service de Transfert d'Oncologie Biologique, Marseille, France
| | - Timothy Budden
- Skin Cancer and Ageing Lab, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Manchester, United Kingdom
| | - Piyushkumar Mundra
- Molecular Oncology, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Gabriela Gremel
- Molecular Oncology, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Victoria Akhras
- Department of Dermatology, St. George's National Health Service Foundation Trust, London, United Kingdom
| | - Lijing Lin
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Martin Cook
- Molecular Oncology, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Rajiv Kumar
- Division of Functional Genome Analysis, German Cancer Research Center, Heidelberg, Germany
| | - Jean-Jacques Grob
- Aix Marseille University, Assistance Publique des Hopitaux de Marseille, Centre de Recherche en Cancérologie de Marseille Insitut National de la Santé Et de la Recherche Médicale U1068, Centre National de la Recherche Scientifique U7258, Centre Hospitalo-Universitaire Timone, Dermatology and Skin Cancer Department, Marseille, France
| | - Eduardo Nagore
- Department of Dermatology, Instituto Valenciano Oncología, València, Spain
| | - Richard Marais
- Molecular Oncology, Cancer Research UK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Amaya Virós
- Skin Cancer and Ageing Lab, Cancer Research United Kingdom Manchester Institute, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
10
|
Dwivedi M, Laddha NC, Begum R. The Immunogenetics of Vitiligo: An Approach Toward Revealing the Secret of Depigmentation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:61-103. [PMID: 35286692 DOI: 10.1007/978-3-030-92616-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vitiligo is a hypomelanotic skin disease and considered to be of autoimmune origin due to breaching of immunological self-tolerance, resulting in inappropriate immune responses against melanocytes. The development of vitiligo includes a strong heritable component. Different strategies ranging from linkage studies to genome-wide association studies are used to explore the genetic factors responsible for the disease. Several vitiligo loci containing the respective genes have been identified which contribute to vitiligo and genetic variants for some of the genes are still unknown. These genes include mainly the proteins that play a role in immune regulation and a few other genes important for apoptosis and regulation of melanocyte functions. Despite the available data on genetic variants and risk alleles which influence the biological processes, only few immunological pathways have been found responsible for all ranges of severity and clinical manifestations of vitiligo. However, studies have concluded that vitiligo is of autoimmune origin and manifests due to complex interactions in immune components and their inappropriate response toward melanocytes. The genes involved in the immune regulation and processing the melanocytes antigen and its presentation can serve as effective immune-therapeutics that can target specific immunological pathways involved in vitiligo. This chapter highlights those immune-regulatory genes involved in vitiligo susceptibility and loci identified to date and their implications in vitiligo pathogenesis.
Collapse
Affiliation(s)
- Mitesh Dwivedi
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Tarsadi, Surat, 394350, Gujarat, India.
| | - Naresh C Laddha
- In Vitro Specialty Lab Pvt. Ltd, 205-210, Golden Triangle, Navrangpura, Ahmedabad, 380009, Gujarat, India
| | - Rasheedunnisa Begum
- Department of Biochemistry, The Maharaja Sayajirao University of Baroda, Vadodara, 390002, Gujarat, India
| |
Collapse
|
11
|
FGFR Inhibitors in Oncology: Insight on the Management of Toxicities in Clinical Practice. Cancers (Basel) 2021; 13:cancers13122968. [PMID: 34199304 PMCID: PMC8231807 DOI: 10.3390/cancers13122968] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/31/2022] Open
Abstract
Simple Summary FGFR inhibitors evolved as therapeutic options in cholangiocarcinoma and urothelial malignancies. Given the implications of FGFR pathway in various physiological functions, FGFR inhibitors are known to cause unique toxicities. In this review, we summarized the physiology of FGF/FGFR signaling and briefly discussed the possible mechanisms that could lead to FGFR inhibitor resistance and side effects. In addition, we proposed treatment guidelines for the management of FGFR-inhibitor-associated toxicities. Abstract Fibroblast Growth Factor receptor (FGFR) pathway aberrations have been implicated in approximately 7% of the malignancies. As our knowledge of FGFR aberrations in cancer continues to evolve, FGFR inhibitors emerged as potential targeted therapeutic agents. The promising results of pemigatinib and infigratinib in advanced unresectable cholangiocarcinoma harboring FGFR2 fusions or rearrangement, and erdafitinib in metastatic urothelial carcinoma with FGFR2 and FGFR3 genetic aberrations, lead to their accelerated approval by the United States (USA) FDA. Along with these agents, many phase II/III clinical trials are currently evaluating the use of derazantinib, infigratinib, and futibatinib either alone or in combination with immunotherapy. Despite the encouraging results seen with FGFR inhibitors, resistance mechanisms and side effect profile may limit their clinical utility. A better understanding of the unique FGFR-inhibitor-related toxicities would invariably help us in the prevention and effective management of FGFR-inhibitor-induced adverse events thereby enhancing their clinical benefit. Herein, we summarized the physiology of FGF/FGFR signaling and briefly discussed the possible mechanisms that could lead to FGFR inhibitor resistance and side effects. In addition, we proposed treatment guidelines for the management of FGFR-inhibitor-associated toxicities. This work would invariably help practicing oncologists to effectively manage the unique toxicities of FGFR inhibitors.
Collapse
|
12
|
Lv YQ, Dhlamini Q, Chen C, Li X, Bellusci S, Zhang JS. FGF10 and Lipofibroblasts in Lung Homeostasis and Disease: Insights Gained From the Adipocytes. Front Cell Dev Biol 2021; 9:645400. [PMID: 34124037 PMCID: PMC8189177 DOI: 10.3389/fcell.2021.645400] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/28/2021] [Indexed: 12/17/2022] Open
Abstract
Adipocytes not only function as energy depots but also secrete numerous adipokines that regulate multiple metabolic processes, including lipid homeostasis. Dysregulation of lipid homeostasis, which often leads to adipocyte hypertrophy and/or ectopic lipid deposition in non-adipocyte cells such as muscle and liver, is linked to the development of insulin resistance. Similarly, an altered secretion profile of adipokines or imbalance between calorie intake and energy expenditure is associated with obesity, among other related metabolic disorders. In lungs, lipid-laden adipocyte-like cells known as lipofibroblasts share numerous developmental and functional similarities with adipocytes, and similarly influence alveolar lipid homeostasis by facilitating pulmonary surfactant production. Unsurprisingly, disruption in alveolar lipid homeostasis may propagate several chronic inflammatory disorders of the lung. Given the numerous similarities between the two cell types, dissecting the molecular mechanisms underlying adipocyte development and function will offer valuable insights that may be applied to, at least, some aspects of lipofibroblast biology in normal and diseased lungs. FGF10, a major ligand for FGFR2b, is a multifunctional growth factor that is indispensable for several biological processes, including development of various organs and tissues such as the lung and WAT. Moreover, accumulating evidence strongly implicates FGF10 in several key aspects of adipogenesis as well as lipofibroblast formation and maintenance, and as a potential player in adipocyte metabolism. This review summarizes our current understanding of the role of FGF10 in adipocytes, while attempting to derive insights on the existing literature and extrapolate the knowledge to pulmonary lipofibroblasts.
Collapse
Affiliation(s)
- Yu-Qing Lv
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Center for Precision Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qhaweni Dhlamini
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chengshui Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Center for Precision Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Saverio Bellusci
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Center for Precision Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Cardio-Pulmonary Institute, Institute of Lung Health and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Jin-San Zhang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Center for Precision Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,International Collaborative Center on Growth Factor Research, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
13
|
Ferguson HR, Smith MP, Francavilla C. Fibroblast Growth Factor Receptors (FGFRs) and Noncanonical Partners in Cancer Signaling. Cells 2021; 10:1201. [PMID: 34068954 PMCID: PMC8156822 DOI: 10.3390/cells10051201] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence indicates that success of targeted therapies in the treatment of cancer is context-dependent and is influenced by a complex crosstalk between signaling pathways and between cell types in the tumor. The Fibroblast Growth Factor (FGF)/FGF receptor (FGFR) signaling axis highlights the importance of such context-dependent signaling in cancer. Aberrant FGFR signaling has been characterized in almost all cancer types, most commonly non-small cell lung cancer (NSCLC), breast cancer, glioblastoma, prostate cancer and gastrointestinal cancer. This occurs primarily through amplification and over-expression of FGFR1 and FGFR2 resulting in ligand-independent activation. Mutations and translocations of FGFR1-4 are also identified in cancer. Canonical FGF-FGFR signaling is tightly regulated by ligand-receptor combinations as well as direct interactions with the FGFR coreceptors heparan sulfate proteoglycans (HSPGs) and Klotho. Noncanonical FGFR signaling partners have been implicated in differential regulation of FGFR signaling. FGFR directly interacts with cell adhesion molecules (CAMs) and extracellular matrix (ECM) proteins, contributing to invasive and migratory properties of cancer cells, whereas interactions with other receptor tyrosine kinases (RTKs) regulate angiogenic, resistance to therapy, and metastatic potential of cancer cells. The diversity in FGFR signaling partners supports a role for FGFR signaling in cancer, independent of genetic aberration.
Collapse
Affiliation(s)
- Harriet R. Ferguson
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Michael P. Smith
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
| | - Chiara Francavilla
- Division of Molecular and Cellular Function, School of Biological Science, Faculty of Biology Medicine and Health (FBMH), The University of Manchester, Manchester M13 9PT, UK;
- Manchester Breast Centre, Manchester Cancer Research Centre, The University of Manchester, Manchester M20 4GJ, UK
| |
Collapse
|
14
|
Cleary JM, Raghavan S, Wu Q, Li YY, Spurr LF, Gupta HV, Rubinson DA, Fetter IJ, Hornick JL, Nowak JA, Siravegna G, Goyal L, Shi L, Brais LK, Loftus M, Shinagare AB, Abrams TA, Clancy TE, Wang J, Patel AK, Brichory F, Vaslin Chessex A, Sullivan RJ, Keller RB, Denning S, Hill ER, Shapiro GI, Pokorska-Bocci A, Zanna C, Ng K, Schrag D, Janne PA, Hahn WC, Cherniack AD, Corcoran RB, Meyerson M, Daina A, Zoete V, Bardeesy N, Wolpin BM. FGFR2 Extracellular Domain In-Frame Deletions are Therapeutically Targetable Genomic Alterations that Function as Oncogenic Drivers in Cholangiocarcinoma. Cancer Discov 2021; 11:2488-2505. [PMID: 33926920 DOI: 10.1158/2159-8290.cd-20-1669] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/10/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022]
Abstract
We conducted next generation DNA sequencing on 335 biliary tract cancers and characterized the genomic landscape by anatomic site within the biliary tree. In addition to frequent FGFR2 fusions among patients with intrahepatic cholangiocarcinoma (IHCC), we identified FGFR2 extracellular domain in-frame deletions (EIDs) in 5 of 178 (2.8%) patients with IHCC, including two patients with FGFR2 p.H167_N173del. Expression of this FGFR2 EID in NIH3T3 cells resulted in constitutive FGFR2 activation, oncogenic transformation, and sensitivity to FGFR inhibitors. Three patients with FGFR2 EIDs were treated with Debio 1347, an oral FGFR-1/2/3 inhibitor, and all showed partial responses. One patient developed an acquired L618F FGFR2 kinase domain mutation at disease progression and experienced a further partial response for 17 months to an irreversible FGFR2 inhibitor, futibatinib. Together, these findings reveal FGFR2 EIDs as an alternative mechanism of FGFR2 activation in IHCC that predict sensitivity to FGFR inhibitors in the clinic.
Collapse
Affiliation(s)
- James M Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute
| | | | | | - Yvonne Y Li
- Department of Medical Oncology, Dana-Farber Cancer Institute
| | - Liam F Spurr
- Dana-Farber Cancer Institute, Harvard Medical School
| | - Hersh V Gupta
- Department of Medical Oncology, Dana-Farber Cancer Institute
| | | | | | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School
| | | | | | - Lipika Goyal
- Internal Medicine, Massachusetts General Hospital Cancer Center, Harvard Medical School
| | - Lei Shi
- Center for Cancer Research, Massachusetts General Hospital Cancer Center, Harvard Medical School
| | - Lauren K Brais
- Department of Medical Oncology, Dana-Farber Cancer Institute
| | | | - Atul B Shinagare
- Department of Radiology, Brigham and Women's Hospital/ Dana-Farber Cancer Institute
| | | | | | - Jiping Wang
- Department of Surgery, Brigham and Women's Hospital
| | - Anuj K Patel
- Department of Gastrointestinal Oncology, Dana-Farber Cancer Institute
| | | | | | - Ryan J Sullivan
- Center for Melanoma, Massachusetts General Hospital Cancer Center
| | | | | | - Emma R Hill
- Dana-Farber/Brigham and Women's Cancer Center
| | | | | | | | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute
| | | | - Pasi A Janne
- Lowe Center for Thoracic Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute
| | - Andrew D Cherniack
- Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School
| | | | | | | | | | | | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber/Harvard Cancer Center
| |
Collapse
|
15
|
Santolla MF, Maggiolini M. The FGF/FGFR System in Breast Cancer: Oncogenic Features and Therapeutic Perspectives. Cancers (Basel) 2020; 12:E3029. [PMID: 33081025 PMCID: PMC7603197 DOI: 10.3390/cancers12103029] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
One of the major challenges in the treatment of breast cancer is the heterogeneous nature of the disease. With multiple subtypes of breast cancer identified, there is an unmet clinical need for the development of therapies particularly for the less tractable subtypes. Several transduction mechanisms are involved in the progression of breast cancer, therefore making the assessment of the molecular landscape that characterizes each patient intricate. Over the last decade, numerous studies have focused on the development of tyrosine kinase inhibitors (TKIs) to target the main pathways dysregulated in breast cancer, however their effectiveness is often limited either by resistance to treatments or the appearance of adverse effects. In this context, the fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) system represents an emerging transduction pathway and therapeutic target to be fully investigated among the diverse anti-cancer settings in breast cancer. Here, we have recapitulated previous studies dealing with FGFR molecular aberrations, such as the gene amplification, point mutations, and chromosomal translocations that occur in breast cancer. Furthermore, alterations in the FGF/FGFR signaling across the different subtypes of breast cancer have been described. Next, we discussed the functional interplay between the FGF/FGFR axis and important components of the breast tumor microenvironment. Lastly, we pointed out the therapeutic usefulness of FGF/FGFR inhibitors, as revealed by preclinical and clinical models of breast cancer.
Collapse
Affiliation(s)
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| |
Collapse
|
16
|
Braun M, Piasecka D, Tomasik B, Mieczkowski K, Stawiski K, Zielinska A, Kopczynski J, Nejc D, Kordek R, Sadej R, Romanska HM. Hormonal Receptor Status Determines Prognostic Significance of FGFR2 in Invasive Breast Carcinoma. Cancers (Basel) 2020; 12:cancers12092713. [PMID: 32971804 PMCID: PMC7564845 DOI: 10.3390/cancers12092713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/25/2022] Open
Abstract
Simple Summary FGFR2-ER-PR crosstalk leads to hormone-independent progression of breast cancer. In vitro, FGFR2 stimulates PR transcriptional activity and mediates resistance to anti-ER therapies. The postulated poor prognostic effect of FGFR2 overexpression has not been confirmed at clinical level. Our clinical data show that, counterintuitively, low expression of FGFR is linked to poor prognosis in breast cancer and its prognostic value is dependent on the hormonal receptor status, but not PR transcriptional activity. This shows, that the role of FGFR in breast cancer is more complex, which may explain unsatisfactory results of the clinical trials with FGFR inhibitors. Abstract Interaction between fibroblast growth factor receptor 2 (FGFR2) and estrogen/progesterone receptors (ER/PR) affects resistance to anti-ER therapies, however the prognostic value of FGFR2 in breast cancer (BCa) remains largely unexplored. We have recently showed in vitro that FGFR2-mediated signaling alters PR activity and response to anti-ER treatment. Herein, prognostic significance of FGFR2 in BCa was evaluated in relation to both ER/PR protein status and a molecular signature designed to reflect PR transcriptional activity. FGFR2 was examined in 353 BCa cases using immunohistochemistry and Nanostring-based RNA quantification. FGFR2 expression was higher in ER+PR+ and ER+PR- compared to ER−PR− cases (p < 0.001). Low FGFR2 was associated with higher grade (p < 0.001), higher Ki67 proliferation index (p < 0.001), and worse overall and disease-free survival (HR = 2.34 (95% CI: 1.26–4.34), p = 0.007 and HR = 2.22 (95% CI: 1.25–3.93), p = 0.006, respectively). The poor prognostic value of low FGFR2 was apparent in ER+PR+, but not in ER+PR− patients, and it did not depend on the expression level of PR-dependent genes. Despite the functional link between FGFR2 and ER/PR revealed by preclinical studies, the data showed a link between FGFR2 expression and poor prognosis in BCa patients.
Collapse
Affiliation(s)
- Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 92-213 Lodz, Poland; (M.B.); (D.P.); (A.Z.); (R.K.)
| | - Dominika Piasecka
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 92-213 Lodz, Poland; (M.B.); (D.P.); (A.Z.); (R.K.)
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Bartlomiej Tomasik
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (B.T.); (K.S.)
| | - Kamil Mieczkowski
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Konrad Stawiski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, 92-215 Lodz, Poland; (B.T.); (K.S.)
| | - Aleksandra Zielinska
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 92-213 Lodz, Poland; (M.B.); (D.P.); (A.Z.); (R.K.)
| | - Janusz Kopczynski
- Department of Surgical Pathology, Holycross Cancer Centre, 25-734 Kielce, Poland;
| | - Dariusz Nejc
- Department of Surgical Oncology, Medical University of Lodz, 93-513 Lodz, Poland;
| | - Radzislaw Kordek
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 92-213 Lodz, Poland; (M.B.); (D.P.); (A.Z.); (R.K.)
| | - Rafal Sadej
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, 80-211 Gdansk, Poland;
- Correspondence: (R.S.); (H.M.R.); Tel.: +48-58-349-1469 (R.S.); +48-42-272-5605 (H.M.R.)
| | - Hanna M. Romanska
- Department of Pathology, Chair of Oncology, Medical University of Lodz, 92-213 Lodz, Poland; (M.B.); (D.P.); (A.Z.); (R.K.)
- Correspondence: (R.S.); (H.M.R.); Tel.: +48-58-349-1469 (R.S.); +48-42-272-5605 (H.M.R.)
| |
Collapse
|
17
|
Li F, Meyer AN, Peiris MN, Nelson KN, Donoghue DJ. Oncogenic fusion protein FGFR2-PPHLN1: Requirements for biological activation, and efficacy of inhibitors. Transl Oncol 2020; 13:100853. [PMID: 32854034 PMCID: PMC7451725 DOI: 10.1016/j.tranon.2020.100853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/24/2020] [Accepted: 08/09/2020] [Indexed: 12/11/2022] Open
Abstract
AIM OF STUDY Chromosomal translocations such as t(10;12)(q26,q12) are associated with intrahepatic cholangiocarcinoma, a universally fatal category of liver cancer. This translocation creates the oncogenic fusion protein of Fibroblast Growth Factor Receptor 2 joined to Periphilin 1. The aims of this study were to identify significant features required for biological activation, analyze the activation of downstream signaling pathways, and examine the efficacy of the TKIs BGJ398 and TAS-120, and of the MEK inhibitor Trametinib. METHODS These studies examined FGFR2-PPHLN1 proteins containing a kinase-dead, kinase-activated, or WT kinase domain in comparison with analogous FGFR2 proteins. Biological activity was assayed using soft agar colony formation in epithelial RIE-1 cells and focus assays in NIH3T3 cells. The MAPK/ERK, JAK/STAT3 and PI3K/AKT signaling pathways were examined for activation. Membrane association was analyzed by indirect immunofluorescence comparing proteins altered by deletion of the signal peptide, or by addition of a myristylation signal. RESULTS Biological activity of FGFR2-PPHLN1 required an active FGFR2-derived tyrosine kinase domain, and a dimerization domain contributed by PPHLN1. Strong activation of canonical MAPK/ERK, JAK/STAT3 and PI3K/AKT signaling pathways was observed. The efficacy of the tyrosine kinase inhibitors BGJ398 and TAS-120 was examined individually and combinatorially with the MEK inhibitor Trametinib; heterogeneous responses were observed in a mutation-specific manner. A requirement for membrane localization of the fusion protein was also demonstrated. CONCLUDING STATEMENT Our study collectively demonstrates the potent transforming potential of FGFR2-PPHLN1 in driving cellular proliferation. We discuss the importance of sequencing-based, mutation-specific personalized therapeutics in treating FGFR2 fusion-positive intrahepatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Fangda Li
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - April N Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Malalage N Peiris
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Katelyn N Nelson
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA; UCSD Moores Cancer Center and Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093-0367, USA.
| |
Collapse
|
18
|
Jun BG, Lee WC, Jang JY, Jeong SW, Chang Y, Lee SH, Kim YD, Kim SG, Cheon GJ, Kim YS, Kim HS, Jin SY. Relation of fibroblast growth factor receptor 2 expression to hepatocellular carcinoma recurrence after liver resection. PLoS One 2020; 15:e0227440. [PMID: 31940413 PMCID: PMC6961981 DOI: 10.1371/journal.pone.0227440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) recurrence after liver resection depends upon the stage and histological grade of the tumor and the expression of certain biomarkers. However, it remains unclear which of these factors has the highest predictive value regarding HCC recurrence after surgical resection. METHODS This study investigated the associations among clinicopathological characteristics, expression of biomarkers, and HCC recurrence after liver resection. Fifty-four patients having undergone liver resection for HCC were enrolled prospectively, and their data were analyzed retrospectively. Evaluated variables were clinical data, laboratory findings, modified Union for International Cancer Control (UICC) stage, vascular invasion, histological differentiation, and immunohistochemical staining for fibroblast growth factor receptor 2 (FGFR2), vascular endothelial growth factor, and tumor-necrosis-factor-related apoptosis-inducing ligand receptors 1 and 2. RESULTS Mean patient age was 58.6 years (range, 30-71), and the mean and SD for follow-up duration were 51.2 ± 34.8 months. Cumulative 1-, 3-, and 5-year recurrence rates were 32.9%, 53.6%, and 68.1%, respectively. In univariate analysis, FGFR2 (p = 0.026) and Edmonson-Steiner grade (E-S grade) (p = 0.030) were associated with recurrence after resection in HCC patients. In multivariate analyses, increased FGFR2 expression (p = 0.017) was the only significant predictor of HCC recurrence. CONCLUSIONS High FGFR2 expression had marginal association with poor E-S grade (p = 0.056). More intensive surveillance of HCC recurrence is warranted in HCC patients with increased FGFR2 expression.
Collapse
Affiliation(s)
- Baek Gyu Jun
- Department of Internal Medicine, University of Ulsan College of Medicine, Gangneung Asan Hospital, Gangneung, South Korea
| | - Woong Cheul Lee
- Institute for Digestive Research, Digestive Disease Center, Department of Internal Medicine, College of Medicine, Soonchunhyang University, Seoul, Korea
| | - Jae Young Jang
- Institute for Digestive Research, Digestive Disease Center, Department of Internal Medicine, College of Medicine, Soonchunhyang University, Seoul, Korea
| | - Soung Won Jeong
- Institute for Digestive Research, Digestive Disease Center, Department of Internal Medicine, College of Medicine, Soonchunhyang University, Seoul, Korea
| | - Young Chang
- Institute for Digestive Research, Digestive Disease Center, Department of Internal Medicine, College of Medicine, Soonchunhyang University, Seoul, Korea
| | - Sae Hwan Lee
- Department of Internal Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - Young don Kim
- Department of Internal Medicine, University of Ulsan College of Medicine, Gangneung Asan Hospital, Gangneung, South Korea
| | - Sang Gyune Kim
- Department of Internal Medicine, College of Medicine, Soonchunhyang University, Bucheon, Korea
| | - Gab Jin Cheon
- Department of Internal Medicine, University of Ulsan College of Medicine, Gangneung Asan Hospital, Gangneung, South Korea
| | - Young Seok Kim
- Department of Internal Medicine, College of Medicine, Soonchunhyang University, Bucheon, Korea
| | - Hong Soo Kim
- Department of Internal Medicine, College of Medicine, Soonchunhyang University, Cheonan, Korea
| | - So Young Jin
- Department of Pathology, College of Medicine, Soonchunhyang University, Seoul, Korea
| |
Collapse
|
19
|
|
20
|
Wang D, Yang L, Yu W, Zhang Y. Investigational fibroblast growth factor receptor 2 antagonists in early phase clinical trials to treat solid tumors. Expert Opin Investig Drugs 2019; 28:903-916. [PMID: 31560229 DOI: 10.1080/13543784.2019.1672655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Fibroblast growth factor receptor 2 (FGFR2) is a highly conserved transmembrane tyrosine kinase receptor. FGFR2 dysregulation occurs in numerous human solid tumors and overexpression is closely associated with tumor progression. FGFR2 has recently been reported as a therapeutic target for cancer. Several targeted therapies are being investigated to disrupt FGFR2 activity; these include multi-target tyrosine kinase inhibitors (TKIs), pan-FGFR targeted TKIs and FGFR2 monoclonal antibodies. Areas: This review examines FGFR2 regulation and function in cancer and its potential as a target for cancer treatment. Expert opinion: Highly specific FGFR2 blockers have not yet been developed and moreover, resistance to FGFR2-targeted therapies is a challenge. More sophisticated patient selection strategies would help improve FGFR2-targeted therapies and combination therapy is considered the most promising approach for cancer patients with FGFR2 alterations.
Collapse
Affiliation(s)
- Dan Wang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P.R. China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P.R. China.,Henan Key Laboratory for Tumor Immunology and Biotherapy , Zhengzhou , Henan , P.R. China
| | - Li Yang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P.R. China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P.R. China.,Henan Key Laboratory for Tumor Immunology and Biotherapy , Zhengzhou , Henan , P.R. China
| | - Weina Yu
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P.R. China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P.R. China.,Henan Key Laboratory for Tumor Immunology and Biotherapy , Zhengzhou , Henan , P.R. China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P.R. China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University , Zhengzhou , Henan , P.R. China.,Henan Key Laboratory for Tumor Immunology and Biotherapy , Zhengzhou , Henan , P.R. China.,School of Life Sciences, Zhengzhou University , Zhengzhou , Henan , P.R. China
| |
Collapse
|
21
|
Fibroblast Growth Factor Receptor Signaling in Skin Cancers. Cells 2019; 8:cells8060540. [PMID: 31167513 PMCID: PMC6628025 DOI: 10.3390/cells8060540] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/19/2022] Open
Abstract
Fibroblast growth factor (FGF)/Fibroblast growth factor receptor (FGFR) signaling regulates various cellular processes during the embryonic development and in the adult organism. In the skin, fibroblasts and keratinocytes control proliferation and survival of melanocytes in a paracrine manner via several signaling molecules, including FGFs. FGF/FGFR signaling contributes to the skin surface expansion in childhood or during wound healing, and skin protection from UV light damage. Aberrant FGF/FGFR signaling has been implicated in many disorders, including cancer. In melanoma cells, the FGFR expression is low, probably because of the strong endogenous mutation-driven constitutive activation of the downstream mitogen-activated protein kinase-extracellular signal-regulated kinase (MAPK-ERK) signaling pathway. FGFR1 is exceptional as it is expressed in the majority of melanomas at a high level. Melanoma cells that acquired the capacity to synthesize FGFs can influence the neighboring cells in the tumor niche, such as endothelial cells, fibroblasts, or other melanoma cells. In this way, FGF/FGFR signaling contributes to intratumoral angiogenesis, melanoma cell survival, and development of resistance to therapeutics. Therefore, inhibitors of aberrant FGF/FGFR signaling are considered as drugs in combination treatment. The ongoing LOGIC-2 phase II clinical trial aims to find out whether targeting the FGF/FGFR signaling pathway with BGJ398 may be a good therapeutic strategy in melanoma patients who develop resistance to v-Raf murine sarcoma viral oncogene homolog B (BRAF)/MEK inhibitors.
Collapse
|
22
|
Li P, Huang T, Zou Q, Liu D, Wang Y, Tan X, Wei Y, Qiu H. FGFR2 Promotes Expression of PD-L1 in Colorectal Cancer via the JAK/STAT3 Signaling Pathway. THE JOURNAL OF IMMUNOLOGY 2019; 202:3065-3075. [PMID: 30979816 DOI: 10.4049/jimmunol.1801199] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/12/2019] [Indexed: 12/15/2022]
Abstract
Although multidisciplinary treatment is widely applied in colorectal cancer (CRC), the prognosis of patients with advanced CRC remains poor. Immunotherapy blocking of programmed cell death ligand 1 (PD-L1) is a promising approach. Binding of the transmembrane protein PD-L1 expressed by tumor cells or tumor microenvironment cells to its receptor programmed cell death 1 (PD-1) induces immunosuppressive signals and reduces the proliferation of T cells, which is an important mechanism of tumor immune escape and a key issue in immunotherapy. However, the regulation of PD-L1 expression is poorly understood in CRC. Fibroblast growth factor (FGF) receptor (FGFR) 2 causes the tyrosine kinase domains to initiate a cascade of intracellular signals by binding to FGFs and dimerization (pairing of receptors), which is involved in tumorigenesis and progression. In this study, we showed that PD-L1 and FGFR2 were frequently overexpressed in CRC, and FGFR2 expression was significantly associated with lymph node metastasis, clinical stage, and poor survival. In the current study, PD-L1 expression was positively correlated with FGFR2 expression in CRC. Tumor-derived-activated FGFR2 induced PD-L1 expression via the JAK/STAT3 signaling pathway in human CRC cells (SW480 and NCI-H716), which induced the apoptosis of Jurkat T cells. FGFR2 also promoted the expression of PD-L1 in a xenograft mouse model of CRC. The results of our study reveal a novel mechanism of PD-L1 expression in CRC, thus providing a theoretical basis for reversing the immune tolerance of FGFR2 overexpression in CRC.
Collapse
Affiliation(s)
- Piao Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Tingting Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Qi Zou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Dian Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom; and
| | - Ximin Tan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Yao Wei
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10641
| | - Hong Qiu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China;
| |
Collapse
|
23
|
Surowy HM, Giesen AK, Otte J, Büttner R, Falkenstein D, Friedl H, Meier F, Petzsch P, Wachtmeister T, Westphal D, Wieczorek D, Wruck W, Adjaye J, Rütten A, Redler S. Gene expression profiling in aggressive digital papillary adenocarcinoma sheds light on the architecture of a rare sweat gland carcinoma. Br J Dermatol 2019; 180:1150-1160. [PMID: 30472730 DOI: 10.1111/bjd.17446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Sweat gland carcinomas are rare cutaneous adnexal malignancies. Aggressive digital papillary adenocarcinoma (ADPA) represents a very rare subentity, thought to arise almost exclusively from the sweat glands of the fingers and toes. The aetiology of sweat gland carcinomas and ADPA is largely unknown. ADPAs are most likely driven by somatic mutations. However, somatic mutation patterns are largely unexplored, creating barriers to the development of effective therapeutic approaches to the treatment of ADPA. OBJECTIVES To investigate the transcriptome profile of ADPA using a sample of eight formalin-fixed, paraffin-embedded tissue samples of ADPA and healthy control tissue. METHODS Transcriptome profiling was performed using the Affymetrix PrimeView Human Gene Expression Microarray and findings were validated via reverse transcription of RNA and real-time quantitative polymerase chain reaction. RESULTS Transcriptome analyses showed increased tumour expression of 2266 genes, with significant involvement of cell cycle, ribosomal and crucial cancer pathways. Our results point to tumour overexpression of FGFR2 (P = 0·001). CONCLUSIONS The results indicate the involvement of crucial oncogenic driver pathways, highlighting cell cycle and ribosomal pathways in the aetiology of ADPA. Suggested tumour overexpression of FGFR2 raises the hope that targeting the fibroblast growth factor (FGF)/FGF receptor axis might be a promising treatment for ADPA and probably for the overall group of sweat gland carcinomas.
Collapse
Affiliation(s)
- H M Surowy
- Heinrich-Heine-University, Medical Faculty, Institute of Human Genetics, Düsseldorf, Germany
| | - A K Giesen
- Heinrich-Heine-University, Medical Faculty, Institute of Human Genetics, Düsseldorf, Germany
| | - J Otte
- Institute for Stem Cell Research and Regenerative Medicine, Düsseldorf, Germany
| | - R Büttner
- Pathology, Institute for Pathology, University Hospital Cologne, Cologne, Germany
| | - D Falkenstein
- Heinrich-Heine-University, Medical Faculty, Institute of Human Genetics, Düsseldorf, Germany
| | - H Friedl
- Klinikum Darmstadt, Department of Dermatology, Darmstadt, Germany
| | - F Meier
- Department of Dermatology, Carl Gustav Carus Medical Center, TU Dresden, Dresden, Germany.,National Center for Tumour Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - P Petzsch
- Biological and Medical Research Center (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - T Wachtmeister
- Biological and Medical Research Center (BMFZ), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - D Westphal
- Department of Dermatology, Carl Gustav Carus Medical Center, TU Dresden, Dresden, Germany.,National Center for Tumour Diseases (NCT), Partner Site Dresden, Dresden, Germany
| | - D Wieczorek
- Heinrich-Heine-University, Medical Faculty, Institute of Human Genetics, Düsseldorf, Germany
| | - W Wruck
- Institute for Stem Cell Research and Regenerative Medicine, Düsseldorf, Germany
| | - J Adjaye
- Institute for Stem Cell Research and Regenerative Medicine, Düsseldorf, Germany
| | - A Rütten
- Dermatopathology, Bodensee, Siemensstrasse 6/1, 88048, Friedrichshafen, Germany
| | - S Redler
- Heinrich-Heine-University, Medical Faculty, Institute of Human Genetics, Düsseldorf, Germany
| |
Collapse
|
24
|
Porębska N, Latko M, Kucińska M, Zakrzewska M, Otlewski J, Opaliński Ł. Targeting Cellular Trafficking of Fibroblast Growth Factor Receptors as a Strategy for Selective Cancer Treatment. J Clin Med 2018; 8:jcm8010007. [PMID: 30577533 PMCID: PMC6352210 DOI: 10.3390/jcm8010007] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor receptors (FGFRs) in response to fibroblast growth factors (FGFs) transmit signals across the cell membrane, regulating important cellular processes, like differentiation, division, motility, and death. The aberrant activity of FGFRs is often observed in various diseases, especially in cancer. The uncontrolled FGFRs' function may result from their overproduction, activating mutations, or generation of FGFRs' fusion proteins. Besides their typical subcellular localization on the cell surface, FGFRs are often found inside the cells, in the nucleus and mitochondria. The intracellular pool of FGFRs utilizes different mechanisms to facilitate cancer cell survival and expansion. In this review, we summarize the current stage of knowledge about the role of FGFRs in oncogenic processes. We focused on the mechanisms of FGFRs' cellular trafficking-internalization, nuclear translocation, and mitochondrial targeting, as well as their role in carcinogenesis. The subcellular sorting of FGFRs constitutes an attractive target for anti-cancer therapies. The blocking of FGFRs' nuclear and mitochondrial translocation can lead to the inhibition of cancer invasion. Moreover, the endocytosis of FGFRs can serve as a tool for the efficient and highly selective delivery of drugs into cancer cells overproducing these receptors. Here, we provide up to date examples how the cellular sorting of FGFRs can be hijacked for selective cancer treatment.
Collapse
Affiliation(s)
- Natalia Porębska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Marta Latko
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Marika Kucińska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Małgorzata Zakrzewska
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Jacek Otlewski
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Łukasz Opaliński
- Department of Protein Engineering, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
25
|
Li JJ, Yan S, Pan Y, Liu Z, Liu Y, Deng Q, Tan Q, Woodward ER, Wu N. FGFR genes mutation is an independent prognostic factor and associated with lymph node metastasis in squamous non-small cell lung cancer. Cancer Biol Ther 2018; 19:1108-1116. [PMID: 30403900 DOI: 10.1080/15384047.2018.1480294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Targeting FGFRs is one of the most promising therapeutic strategies in squamous non-small cell lung cancer (SQCC). However, different FGFR genomic aberrations can be associated with distinct biological characteristics that result in different clinical outcomes or therapeutic consequences. Currently, the full spectrum of FGFR gene aberrations and their clinical significance in SQCC have not been comprehensively studied. Here, we used Next-generation sequencing to investigate the presence of FGFR gene mutations in 143 tumors from patients with stage I, II or III SQCC and who had not been treated with chemotherapy or radiotherapy prior to surgery. FGFR gene mutations were identified in 24 cases, resulting in an overall frequency of 16.9%. Among the mutations, 7% (10/143) were somatic mutations, and 9.8% (14/143) germline mutations. FGFR mutations were significantly associated with an increased risk of lymph node metastasis. SQCC patients with a FGFR somatic mutation had shorter OS (overall survival, log rank P = 0.005) and DFS (disease-free survival,log rank P = 0.004) compared with those without an FGFR mutation. The multivariate analysis confirmed that a somatic mutation was an independent poor prognostic factor for OS (HR: 4.26, 95% CI: 1.49-12.16, P = 0.007) and DFS (HR: 3.16, 95% CI: 1.20-8.35, P = 0.020). Our data indicate that FGFR genes mutation is an independent prognostic factor and associated with lymph node metastasis in stage I to III Chinese SQCC patients.
Collapse
Affiliation(s)
- Jing Jing Li
- a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics , Peking University Cancer Hospital & Institute , Beijing , China
| | - Shi Yan
- b Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II , Peking University Cancer Hospital & Institute , Beijing , China
| | - Yaqi Pan
- a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics , Peking University Cancer Hospital & Institute , Beijing , China
| | - Zhen Liu
- a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics , Peking University Cancer Hospital & Institute , Beijing , China
| | - Ying Liu
- a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics , Peking University Cancer Hospital & Institute , Beijing , China
| | - Qiuju Deng
- a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics , Peking University Cancer Hospital & Institute , Beijing , China
| | - Qin Tan
- a Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Genetics , Peking University Cancer Hospital & Institute , Beijing , China
| | - Emma R Woodward
- c Manchester Centre for Genomic Medicine , Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre (MAHSC) , Manchester , UK
| | - Nan Wu
- b Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Thoracic Surgery II , Peking University Cancer Hospital & Institute , Beijing , China
| |
Collapse
|
26
|
Hui Q, Jin Z, Li X, Liu C, Wang X. FGF Family: From Drug Development to Clinical Application. Int J Mol Sci 2018; 19:ijms19071875. [PMID: 29949887 PMCID: PMC6073187 DOI: 10.3390/ijms19071875] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/17/2018] [Accepted: 06/21/2018] [Indexed: 01/13/2023] Open
Abstract
Fibroblast growth factor (FGF) belongs to a large family of growth factors. FGFs use paracrine or endocrine signaling to mediate a myriad of biological and pathophysiological process, including angiogenesis, wound healing, embryonic development, and metabolism regulation. FGF drugs for the treatment of burn and ulcer wounds are now available. The recent discovery of the crucial roles of the endocrine-acting FGF19 subfamily in maintaining homeostasis of bile acid, glucose, and phosphate further extended the activity profile of this family. Here, the applications of recombinant FGFs for the treatment of wounds, diabetes, hypophosphatemia, the development of FGF receptor inhibitors as anti-neoplastic drugs, and the achievements of basic research and applications of FGFs in China are reviewed.
Collapse
Affiliation(s)
- Qi Hui
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China.
| | - Zi Jin
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China.
| | - Xiaokun Li
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China.
- Key Laboratory Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China.
| | - Changxiao Liu
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China.
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, 308 Anshan West Road, Tianjin 300193, China.
| | - Xiaojie Wang
- School of Pharmacy, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China.
- Key Laboratory Biotechnology Pharmaceutical Engineering, Wenzhou Medical University, Chashan University Park, Wenzhou 325035, China.
| |
Collapse
|
27
|
Walker CJ, Rush CM, Dama P, O’Hern MJ, Cosgrove CM, Gillespie JL, Zingarelli RA, Smith B, Stein ME, Mutch DG, Shakya R, Chang CW, Selvendiran K, Song JW, Cohn DE, Goodfellow PJ. MAX Mutations in Endometrial Cancer: Clinicopathologic Associations and Recurrent MAX p.His28Arg Functional Characterization. J Natl Cancer Inst 2018; 110:517-526. [PMID: 29155953 PMCID: PMC6279289 DOI: 10.1093/jnci/djx238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/16/2017] [Accepted: 10/10/2017] [Indexed: 12/30/2022] Open
Abstract
Background Genomic studies have revealed that multiple genes are mutated at varying frequency in endometrial cancer (EC); however, the relevance of many of these mutations is poorly understood. An EC-specific recurrent mutation in the MAX transcription factor p.His28Arg was recently discovered. We sought to assess the functional consequences of this hotspot mutation and determine its association with cancer-relevant phenotypes. Methods MAX was sequenced in 509 endometrioid ECs, and associations between mutation status and clinicopathologic features were assessed. EC cell lines stably expressing MAXH28R were established and used for functional experiments. DNA binding was examined using electrophoretic mobility shift assays and chromatin immunoprecipitation. Transcriptional profiling was performed with microarrays. Murine flank (six to 11 mice per group) and intraperitoneal tumor models were used for in vivo studies. Vascularity of xenografts was assessed by MECA-32 immunohistochemistry. The paracrine pro-angiogenic nature of MAXH28R-expressing EC cells was tested using microfluidic HUVEC sprouting assays and VEGFA enzyme-linked immunosorbent assays. All statistical tests were two-sided. Results Twenty-two of 509 tumors harbored mutations in MAX, including 12 tumors with the p.His28Arg mutation. Patients with a MAX mutation had statistically significantly reduced recurrence-free survival (hazard ratio = 4.00, 95% confidence interval = 1.15 to 13.91, P = .03). MAXH28R increased affinity for canonical E-box sequences, and MAXH28R-expressing EC cells dramatically altered transcriptional profiles. MAXH28R-derived xenografts statistically significantly increased vascular area compared with MAXWT and empty vector tumors (P = .003 and P = .008, respectively). MAXH28R-expressing EC cells secreted nearly double the levels of VEGFA compared with MAXWT cells (P = .03, .005, and .005 at 24, 48, and 72 hours, respectively), and conditioned media from MAXH28R cells increased sprouting when applied to HUVECs. Conclusion These data highlight the importance of MAX mutations in EC and point to increased vascularity as one mechanism contributing to clinical aggressiveness of EC.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Amino Acid Substitution/genetics
- Animals
- Animals, Outbred Strains
- Arginine/genetics
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics
- Carcinoma, Endometrioid/epidemiology
- Carcinoma, Endometrioid/genetics
- Carcinoma, Endometrioid/pathology
- Cells, Cultured
- Codon, Nonsense
- Endometrial Neoplasms/epidemiology
- Endometrial Neoplasms/genetics
- Endometrial Neoplasms/pathology
- Female
- Genetic Association Studies
- Genetic Predisposition to Disease
- HEK293 Cells
- Histidine/genetics
- Humans
- Mice
- Mice, Nude
- Middle Aged
- Neoplasm Invasiveness
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
Collapse
Affiliation(s)
| | - Craig M Rush
- James Comprehensive Cancer Center
- Department of Obstetrics and Gynecology
| | - Paola Dama
- James Comprehensive Cancer Center
- Department of Obstetrics and Gynecology
| | - Matthew J O’Hern
- James Comprehensive Cancer Center
- Department of Obstetrics and Gynecology
| | - Casey M Cosgrove
- James Comprehensive Cancer Center
- Department of Obstetrics and Gynecology
| | | | - Roman A Zingarelli
- James Comprehensive Cancer Center
- Department of Obstetrics and Gynecology
| | - Blair Smith
- James Comprehensive Cancer Center
- Department of Obstetrics and Gynecology
| | - Maggie E Stein
- James Comprehensive Cancer Center
- Department of Obstetrics and Gynecology
| | - David G Mutch
- Siteman Cancer Center and the Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO
| | | | | | | | - Jonathan W Song
- James Comprehensive Cancer Center
- Department of Mechanical and Aerospace Engineering The Ohio State University, Columbus, OH
| | - David E Cohn
- James Comprehensive Cancer Center
- Department of Obstetrics and Gynecology
| | - Paul J Goodfellow
- James Comprehensive Cancer Center
- Department of Obstetrics and Gynecology
| |
Collapse
|
28
|
Li Q, Alsaidan OA, Ma Y, Kim S, Liu J, Albers T, Liu K, Beharry Z, Zhao S, Wang F, Lebedyeva I, Cai H. Pharmacologically targeting the myristoylation of the scaffold protein FRS2α inhibits FGF/FGFR-mediated oncogenic signaling and tumor progression. J Biol Chem 2018. [PMID: 29540482 DOI: 10.1074/jbc.ra117.000940] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Fibroblast growth factor (FGF)/FGF receptor (FGFR) signaling facilitates tumor initiation and progression. Although currently approved inhibitors of FGFR kinase have shown therapeutic benefit in clinical trials, overexpression or mutations of FGFRs eventually confer drug resistance and thereby abrogate the desired activity of kinase inhibitors in many cancer types. In this study, we report that loss of myristoylation of fibroblast growth factor receptor substrate 2 (FRS2α), a scaffold protein essential for FGFR signaling, inhibits FGF/FGFR-mediated oncogenic signaling and FGF10-induced tumorigenesis. Moreover, a previously synthesized myristoyl-CoA analog, B13, which targets the activity of N-myristoyltransferases, suppressed FRS2α myristoylation and decreased the phosphorylation with mild alteration of FRS2α localization at the cell membrane. B13 inhibited oncogenic signaling induced by WT FGFRs or their drug-resistant mutants (FGFRsDRM). B13 alone or in combination with an FGFR inhibitor suppressed FGF-induced WT FGFR- or FGFRDRM-initiated phosphoinositide 3-kinase (PI3K) activity or MAPK signaling, inducing cell cycle arrest and thereby inhibiting cell proliferation and migration in several cancer cell types. Finally, B13 significantly inhibited the growth of xenograft tumors without pathological toxicity to the liver, kidney, or lung in vivo In summary, our study suggests a possible therapeutic approach for inhibiting FGF/FGFR-mediated cancer progression and drug-resistant FGF/FGFR mutants.
Collapse
Affiliation(s)
- Qianjin Li
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, and
| | - Omar Awad Alsaidan
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, and
| | - Yongjie Ma
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, and
| | - Sungjin Kim
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, and
| | - Junchen Liu
- the Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030
| | | | - Kebin Liu
- Biochemistry and Molecular Biology, Augusta University, Augusta, Georgia 30912, and
| | - Zanna Beharry
- the Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, Florida 33965
| | - Shaying Zhao
- the Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Fen Wang
- the Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030
| | | | - Houjian Cai
- From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, and
| |
Collapse
|
29
|
Kim HR, Kang HN, Shim HS, Kim EY, Kim J, Kim DJ, Lee JG, Lee CY, Hong MH, Kim SM, Kim H, Pyo KH, Yun MR, Park HJ, Han JY, Youn HA, Ahn MJ, Paik S, Kim TM, Cho BC. Co-clinical trials demonstrate predictive biomarkers for dovitinib, an FGFR inhibitor, in lung squamous cell carcinoma. Ann Oncol 2018; 28:1250-1259. [PMID: 28460066 DOI: 10.1093/annonc/mdx098] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background We conducted co-clinical trials in patient-derived xenograft (PDX) models to identify predictive biomarkers for the multikinase inhibitor dovitinib in lung squamous cell carcinoma (LSCC). Methods The PDX01-02 were established from LSCC patients enrolled in the phase II trial of dovitinib (NCT01861197) and PDX03-05 were established from LSCC patients receiving surgery. These five PDX tumors were subjected to in vivo test of dovitinib efficacy, whole exome sequencing and gene expression profiling. Results The PDX tumors recapitulate histopathological properties and maintain genomic characteristics of originating tumors. Concordant with clinical outcomes of the trial enrolled-LSCC patients, dovitinib produced substantial tumor regression in PDX-01 and PDX-05, whereas it resulted in tumor progression in PDX-02. PDX-03 and -04 also displayed poor antitumor efficacy to dovitinib. Mutational and genome-wide copy number profiles revealed no correlation between genomic alterations of FGFR1-3 and sensitivity to dovitinib. Of note, gene expression profiles revealed differentially expressed genes including FGF3 and FGF19 between PDX-01 and 05 and PDX-02-04. Pathway analysis identified two FGFR signaling-related gene sets, FGFR ligand binding/activation and SHC-mediated cascade pathway were substantially up-regulated in PDX-01 and 05, compared with PDX-02-04. The comparison of gene expression profiles between dovitinib-sensitive versus -resistant lung cancer cell lines in the Cancer Cell Line Encyclopedia database also found that transcriptional activation of 18 key signaling components in FGFR pathways can predict the sensitivity to dovitinib both in cell lines and PDX tumors. These results highlight FGFR pathway activation as a key molecular determinant for sensitivity to dovitinib. Conclusions FGFR gene expression signatures are predictors for the response to dovitinib in LSCC.
Collapse
Affiliation(s)
- H R Kim
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul
| | - H N Kang
- JE-UK Institute for Cancer Research, JEUK Co, Ltd, Gumi-City, Kyungbuk
| | | | - E Y Kim
- Pulmonology, Yonsei University College of Medicine, Seoul
| | - J Kim
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul
| | - D J Kim
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul
| | - J G Lee
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul
| | - C Y Lee
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, Seoul
| | - M H Hong
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul
| | - S-M Kim
- JE-UK Institute for Cancer Research, JEUK Co, Ltd, Gumi-City, Kyungbuk
| | - H Kim
- JE-UK Institute for Cancer Research, JEUK Co, Ltd, Gumi-City, Kyungbuk
| | - K-H Pyo
- JE-UK Institute for Cancer Research, JEUK Co, Ltd, Gumi-City, Kyungbuk
| | - M R Yun
- JE-UK Institute for Cancer Research, JEUK Co, Ltd, Gumi-City, Kyungbuk
| | - H J Park
- JE-UK Institute for Cancer Research, JEUK Co, Ltd, Gumi-City, Kyungbuk
| | - J Y Han
- JE-UK Institute for Cancer Research, JEUK Co, Ltd, Gumi-City, Kyungbuk
| | - H A Youn
- JE-UK Institute for Cancer Research, JEUK Co, Ltd, Gumi-City, Kyungbuk
| | - M-J Ahn
- Division of Hematology & Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - S Paik
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul
| | - T-M Kim
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - B C Cho
- Division of Medical Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul.,JE-UK Institute for Cancer Research, JEUK Co, Ltd, Gumi-City, Kyungbuk
| |
Collapse
|
30
|
Lei H, Deng CX. Fibroblast Growth Factor Receptor 2 Signaling in Breast Cancer. Int J Biol Sci 2017; 13:1163-1171. [PMID: 29104507 PMCID: PMC5666331 DOI: 10.7150/ijbs.20792] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 05/18/2017] [Indexed: 01/03/2023] Open
Abstract
Fibroblast growth factor receptor 2 (FGFR2) is a membrane-spanning tyrosine kinase that mediates signaling for FGFs. Recent studies detected various point mutations of FGFR2 in multiple types of cancers, including breast cancer, lung cancer, gastric cancer, uterine cancer and ovarian cancer, yet the casual relationship between these mutations and tumorigenesis is unclear. Here we will discuss possible interactions between FGFR2 signaling and several major pathways through which the aberrantly activated FGFR2 signaling may result in breast cancer development. We will also discuss some recent developments in the discovery and application of therapies and strategies for breast cancers by inhibiting FGFR2 activities.
Collapse
Affiliation(s)
- Haipeng Lei
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| | - Chu-Xia Deng
- Faculty of Health Sciences, University of Macau, Macau SAR, China
| |
Collapse
|
31
|
Chae YK, Ranganath K, Hammerman PS, Vaklavas C, Mohindra N, Kalyan A, Matsangou M, Costa R, Carneiro B, Villaflor VM, Cristofanilli M, Giles FJ. Inhibition of the fibroblast growth factor receptor (FGFR) pathway: the current landscape and barriers to clinical application. Oncotarget 2017; 8:16052-16074. [PMID: 28030802 PMCID: PMC5362545 DOI: 10.18632/oncotarget.14109] [Citation(s) in RCA: 231] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022] Open
Abstract
The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) is a tyrosine kinase signaling pathway that has a fundamental role in many biologic processes including embryonic development, tissue regeneration, and angiogenesis. Increasing evidence indicates that this pathway plays a critical role in oncogenesis via gene amplification, activating mutations, or translocation in tumors of various histologies. With multiplex sequencing technology, the detection of FGFR aberrations has become more common and is tied to cancer cell proliferation, resistance to anticancer therapies, and neoangiogenesis. Inhibition of FGFR signaling appears promising in preclinical studies, suggesting a pathway of clinical interest in the development of targeted therapy. Phase I trials have demonstrated a manageable toxicity profile. Currently, there are multiple FGFR inhibitors under study with many non-selective (multi-kinase) inhibitors demonstrating limited clinical responses. As we progress from the first generation of non-selective drugs to the second generation of selective FGFR inhibitors, it is clear that FGFR aberrations do not behave uniformly across cancer types; thus, a deeper understanding of biomarker strategies is undoubtedly warranted. This review aims to consolidate data from recent clinical trials with a focus on selective FGFR inhibitors. As Phase II clinical trials emerge, concentration on patient selection as it pertains to predicting response to therapy, feasible methods for overcoming toxicity, and the likelihood of combination therapies should be utilized. We will also discuss qualities that may be desirable in future generations of FGFR inhibitors, with the hope that overcoming these current barriers will expedite the availability of this novel class of medications.
Collapse
Affiliation(s)
- Young Kwang Chae
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Keerthi Ranganath
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Christos Vaklavas
- Division of Hematology Oncology, University of Alabama Birmingham, Birmingham, AL, USA
| | - Nisha Mohindra
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Aparna Kalyan
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Maria Matsangou
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ricardo Costa
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA
| | - Benedito Carneiro
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Victoria M. Villaflor
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Massimo Cristofanilli
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Francis J. Giles
- Developmental Therapeutics Program of the Division of Hematology Oncology, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
32
|
Dey-Rao R, Sinha AA. Vitiligo blood transcriptomics provides new insights into disease mechanisms and identifies potential novel therapeutic targets. BMC Genomics 2017; 18:109. [PMID: 28129744 PMCID: PMC5273810 DOI: 10.1186/s12864-017-3510-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/19/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Significant gaps remain regarding the pathomechanisms underlying the autoimmune response in vitiligo (VL), where the loss of self-tolerance leads to the targeted killing of melanocytes. Specifically, there is incomplete information regarding alterations in the systemic environment that are relevant to the disease state. METHODS We undertook a genome-wide profiling approach to examine gene expression in the peripheral blood of VL patients and healthy controls in the context of our previously published VL-skin gene expression profile. We used several in silico bioinformatics-based analyses to provide new insights into disease mechanisms and suggest novel targets for future therapy. RESULTS Unsupervised clustering methods of the VL-blood dataset demonstrate a "disease-state"-specific set of co-expressed genes. Ontology enrichment analysis of 99 differentially expressed genes (DEGs) uncovers a down-regulated immune/inflammatory response, B-Cell antigen receptor (BCR) pathways, apoptosis and catabolic processes in VL-blood. There is evidence for both type I and II interferon (IFN) playing a role in VL pathogenesis. We used interactome analysis to identify several key blood associated transcriptional factors (TFs) from within (STAT1, STAT6 and NF-kB), as well as "hidden" (CREB1, MYC, IRF4, IRF1, and TP53) from the dataset that potentially affect disease pathogenesis. The TFs overlap with our reported lesional-skin transcriptional circuitry, underscoring their potential importance to the disease. We also identify a shared VL-blood and -skin transcriptional "hot spot" that maps to chromosome 6, and includes three VL-blood dysregulated genes (PSMB8, PSMB9 and TAP1) described as potential VL-associated genetic susceptibility loci. Finally, we provide bioinformatics-based support for prioritizing dysregulated genes in VL-blood or skin as potential therapeutic targets. CONCLUSIONS We examined the VL-blood transcriptome in context with our (previously published) VL-skin transcriptional profile to address a major gap in knowledge regarding the systemic changes underlying skin-specific manifestation of vitiligo. Several transcriptional "hot spots" observed in both environments offer prioritized targets for identifying disease risk genes. Finally, within the transcriptional framework of VL, we identify five novel molecules (STAT1, PRKCD, PTPN6, MYC and FGFR2) that lend themselves to being targeted by drugs for future potential VL-therapy.
Collapse
Affiliation(s)
- Rama Dey-Rao
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 6078 Clinical and Translational Research Center, 875 Ellicott Street, Buffalo, NY, 14203, USA
| | - Animesh A Sinha
- Department of Dermatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 6078 Clinical and Translational Research Center, 875 Ellicott Street, Buffalo, NY, 14203, USA.
| |
Collapse
|
33
|
Xie X, Wang Z, Chen F, Yuan Y, Wang J, Liu R, Chen Q. Roles of FGFR in oral carcinogenesis. Cell Prolif 2017; 49:261-9. [PMID: 27218663 DOI: 10.1111/cpr.12260] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 03/29/2016] [Indexed: 12/12/2022] Open
Abstract
Fibroblast growth factor receptors (FGFRs) play essential roles in organ development during the embryonic period, and regulate tissue repair in adults. Accumulating evidence suggests that alterations in FGFR signalling are involved in diverse types of cancer. In this review, we focus on aberrant regulation of FGFRs in pathogenesis of oral squamous cell carcinoma (OSCC), including altered expression and subcellular location, aberrant isoform splicing and mutations. We also provide an overview of oncogenic roles of each FGFR and its downstream signalling pathways in regulating OSCC cell proliferation and metastasis. Finally, we discuss potential application of FGFRs as anti-cancer targets in the preclinical environment and in clinical practice.
Collapse
Affiliation(s)
- Xiaoyan Xie
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Wang
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Fangman Chen
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yao Yuan
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiayi Wang
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Rui Liu
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
34
|
Therapeutics Targeting FGF Signaling Network in Human Diseases. Trends Pharmacol Sci 2016; 37:1081-1096. [DOI: 10.1016/j.tips.2016.10.003] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 12/14/2022]
|
35
|
Yarbrough WG, Panaccione A, Chang MT, Ivanov SV. Clinical and molecular insights into adenoid cystic carcinoma: Neural crest-like stemness as a target. Laryngoscope Investig Otolaryngol 2016; 1:60-77. [PMID: 28894804 PMCID: PMC5510248 DOI: 10.1002/lio2.22] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/10/2016] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES This review surveys trialed therapies and molecular defects in adenoid cystic carcinoma (ACC), with an emphasis on neural crest-like stemness characteristics of newly discovered cancer stem cells (CSCs) and therapies that may target these CSCs. DATA SOURCES Articles available on Pubmed or OVID MEDLINE databases and unpublished data. REVIEW METHODS Systematic review of articles pertaining to ACC and neural crest-like stem cells. RESULTS Adenoid cystic carcinoma of the salivary gland is a slowly growing but relentless cancer that is prone to nerve invasion and metastases. A lack of understanding of molecular etiology and absence of targetable drivers has limited therapy for patients with ACC to surgery and radiation. Currently, no curative treatments are available for patients with metastatic disease, which highlights the need for effective new therapies. Research in this area has been inhibited by the lack of validated cell lines and a paucity of clinically useful markers. The ACC research environment has recently improved, thanks to the introduction of novel tools, technologies, approaches, and models. Improved understanding of ACC suggests that neural crest-like stemness is a major target in this rare tumor. New cell culture techniques and patient-derived xenografts provide tools for preclinical testing. CONCLUSION Preclinical research has not identified effective targets in ACC, as confirmed by the large number of failed clinical trials. New molecular data suggest that drivers of neural crest-like stemness may be required for maintenance of ACC; as such, CSCs are a target for therapy of ACC.
Collapse
Affiliation(s)
- Wendell G. Yarbrough
- Section of Otolaryngology, Department of Surgery, Yale School of MedicineNew HavenConnecticutUSA
- Yale Cancer CenterNew HavenConnecticutUSA
| | - Alexander Panaccione
- Department of Cancer BiologyVanderbilt University School of MedicineNashvilleTennesseeU.S.A.
| | - Michael T. Chang
- Section of Otolaryngology, Department of Surgery, Yale School of MedicineNew HavenConnecticutUSA
| | - Sergey V. Ivanov
- Section of Otolaryngology, Department of Surgery, Yale School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
36
|
Helsten T, Schwaederle M, Kurzrock R. Fibroblast growth factor receptor signaling in hereditary and neoplastic disease: biologic and clinical implications. Cancer Metastasis Rev 2016. [PMID: 26224133 PMCID: PMC4573649 DOI: 10.1007/s10555-015-9579-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) are transmembrane growth factor receptors with wide tissue distribution. FGF/FGFR signaling is involved in neoplastic behavior and also development, differentiation, growth, and survival. FGFR germline mutations (activating) can cause skeletal disorders, primarily dwarfism (generally mutations in FGFR3), and craniofacial malformation syndromes (usually mutations in FGFR1 and FGFR2); intriguingly, some of these activating FGFR mutations are also seen in human cancers. FGF/FGFR aberrations reported in cancers are mainly thought to be gain-of-function changes, and several cancers have high frequencies of FGFR alterations, including breast, bladder, or squamous cell carcinomas (lung and head and neck). FGF ligand aberrations (predominantly gene amplifications) are also frequently seen in cancers, in contrast to hereditary syndromes. There are several pharmacologic agents that have been or are being developed for inhibition of FGFR/FGF signaling. These include both highly selective inhibitors as well as multi-kinase inhibitors. Of note, only four agents (ponatinib, pazopanib, regorafenib, and recently lenvatinib) are FDA-approved for use in cancer, although the approval was not based on their activity against FGFR. Perturbations in the FGFR/FGF signaling are present in both inherited and malignant diseases. The development of potent inhibitors targeting FGF/FGFR may provide new tools against disorders caused by FGF/FGFR alterations.
Collapse
Affiliation(s)
- Teresa Helsten
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, University of California San Diego, Moores Cancer Center, 3855 Health Sciences Drive, MC #0658, La Jolla, CA, 92093-0658, USA.
| | - Maria Schwaederle
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, University of California San Diego, Moores Cancer Center, 3855 Health Sciences Drive, MC #0658, La Jolla, CA, 92093-0658, USA.
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy and Division of Hematology and Oncology, University of California San Diego, Moores Cancer Center, 3855 Health Sciences Drive, MC #0658, La Jolla, CA, 92093-0658, USA
| |
Collapse
|
37
|
Barnett CP, Nataren NJ, Klingler-Hoffmann M, Schwarz Q, Chong CE, Lee YK, Bruno DL, Lipsett J, McPhee AJ, Schreiber AW, Feng J, Hahn CN, Scott HS. Ectrodactyly and Lethal Pulmonary Acinar Dysplasia Associated with Homozygous FGFR2 Mutations Identified by Exome Sequencing. Hum Mutat 2016; 37:955-63. [PMID: 27323706 DOI: 10.1002/humu.23032] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/31/2016] [Accepted: 06/04/2016] [Indexed: 12/26/2022]
Abstract
Ectrodactyly/split hand-foot malformation is genetically heterogeneous with more than 100 syndromic associations. Acinar dysplasia is a rare congenital lung lesion of unknown etiology, which is frequently lethal postnatally. To date, there have been no reports of combinations of these two phenotypes. Here, we present an infant from a consanguineous union with both ectrodactyly and autopsy confirmed acinar dysplasia. SNP array and whole-exome sequencing analyses of the affected infant identified a novel homozygous Fibroblast Growth Factor Receptor 2 (FGFR2) missense mutation (p.R255Q) in the IgIII domain (D3). Expression studies of Fgfr2 in development show localization to the affected limbs and organs. Molecular modeling and genetic and functional assays support that this mutation is at least a partial loss-of-function mutation, and contributes to ectrodactyly and acinar dysplasia only in homozygosity, unlike previously reported heterozygous activating FGFR2 mutations that cause Crouzon, Apert, and Pfeiffer syndromes. This is the first report of mutations in a human disease with ectrodactyly with pulmonary acinar dysplasia and, as such, homozygous loss-of-function FGFR2 mutations represent a unique syndrome.
Collapse
Affiliation(s)
- Christopher P Barnett
- SA Clinical Genetics, Women's and Children's Hospital/SA Pathology, North Adelaide, SA, Australia.,School of Biological Sciences, University of Adelaide, SA, Australia
| | - Nathalie J Nataren
- School of Biological Sciences, University of Adelaide, SA, Australia.,Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia.,Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, SA, Australia
| | - Manuela Klingler-Hoffmann
- School of Biological Sciences, University of Adelaide, SA, Australia.,Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia.,Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, SA, Australia
| | - Quenten Schwarz
- Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, SA, Australia
| | - Chan-Eng Chong
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
| | - Young K Lee
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
| | - Damien L Bruno
- Cytogenetics Laboratory, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Australia
| | - Jill Lipsett
- Department of Neonatal Medicine, Women's and Children's Hospital, North Adelaide, SA, Australia
| | - Andrew J McPhee
- School of Medicine, University of Adelaide, SA, Australia.,Department of Anatomical Pathology, Women's and Children's Hospital/SA Pathology, North Adelaide, SA, Australia
| | - Andreas W Schreiber
- School of Biological Sciences, University of Adelaide, SA, Australia.,Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, SA, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, SA, Australia
| | - Jinghua Feng
- School of Biological Sciences, University of Adelaide, SA, Australia.,Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, SA, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, SA, Australia
| | - Christopher N Hahn
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia.,Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, SA, Australia.,School of Medicine, University of Adelaide, SA, Australia
| | - Hamish S Scott
- School of Biological Sciences, University of Adelaide, SA, Australia.,Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia.,Centre for Cancer Biology, An Alliance between SA Pathology and the University of South Australia, SA, Australia.,School of Medicine, University of Adelaide, SA, Australia.,ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, SA, Australia
| |
Collapse
|
38
|
Katoh M. FGFR inhibitors: Effects on cancer cells, tumor microenvironment and whole-body homeostasis (Review). Int J Mol Med 2016; 38:3-15. [PMID: 27245147 PMCID: PMC4899036 DOI: 10.3892/ijmm.2016.2620] [Citation(s) in RCA: 303] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/23/2016] [Indexed: 12/13/2022] Open
Abstract
Fibroblast growth factor (FGF)2, FGF4, FGF7 and FGF20 are representative paracrine FGFs binding to heparan-sulfate proteoglycan and fibroblast growth factor receptors (FGFRs), whereas FGF19, FGF21 and FGF23 are endocrine FGFs binding to Klotho and FGFRs. FGFR1 is relatively frequently amplified and overexpressed in breast and lung cancer, and FGFR2 in gastric cancer. BCR-FGFR1, CNTRL-FGFR1, CUX1-FGFR1, FGFR1OP-FGFR1, MYO18A-FGFR1 and ZMYM2-FGFR1 fusions in myeloproliferative neoplasms are non-receptor-type FGFR kinases, whereas FGFR1-TACC1, FGFR2-AFF3, FGFR2-BICC1, FGFR2-PPHLN1, FGFR3-BAIAP2L1 and FGFR3-TACC3 fusions in solid tumors are transmembrane-type FGFRs with C-terminal alterations. AZD4547, BGJ398 (infigratinib), Debio-1347 and dovitinib are FGFR1/2/3 inhibitors; BLU9931 is a selective FGFR4 inhibitor; FIIN-2, JNJ-42756493, LY2874455 and ponatinib are pan-FGFR inhibitors. AZD4547, dovitinib and ponatinib are multi-kinase inhibitors targeting FGFRs, colony stimulating factor 1 receptor (CSF1R), vascular endothelial growth factor (VEGF)R2, and others. The tumor microenvironment consists of cancer cells and stromal/immune cells, such as cancer-associated fibroblasts (CAFs), endothelial cells, M2-type tumor-associating macrophages (M2-TAMs), myeloid-derived suppressor cells (MDSCs) and regulatory T cells. FGFR inhibitors elicit antitumor effects directly on cancer cells, as well as indirectly through the blockade of paracrine signaling. The dual inhibition of FGF and CSF1 or VEGF signaling is expected to enhance the antitumor effects through the targeting of immune evasion and angiogenesis in the tumor microenvironment. Combination therapy using tyrosine kinase inhibitors (FGFR or CSF1R inhibitors) and immune checkpoint blockers (anti-PD-1 or anti-CTLA-4 monoclonal antibodies) may be a promising choice for cancer patients. The inhibition of FGF19-FGFR4 signaling is associated with a risk of liver toxicity, whereas the activation of FGF23-FGFR4 signaling is associated with a risk of heart toxicity. Endocrine FGF signaling affects the pathophysiology of cancer patients who are prescribed FGFR inhibitors. Whole-genome sequencing is necessary for the detection of promoter/enhancer alterations of FGFR genes and rare alterations of other genes causing FGFR overexpression. To sustain the health care system in an aging society, a benefit-cost analysis should be performed with a focus on disease-free survival and the total medical cost before implementing genome-based precision medicine for cancer patients.
Collapse
Affiliation(s)
- Masaru Katoh
- Department of Omics Network, National Cancer Center, Tokyo 104-0045, Japan
| |
Collapse
|
39
|
Zhang J, Li Y. Therapeutic uses of FGFs. Semin Cell Dev Biol 2016; 53:144-54. [DOI: 10.1016/j.semcdb.2015.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/07/2015] [Indexed: 01/23/2023]
|
40
|
Hierro C, Rodon J, Tabernero J. Fibroblast Growth Factor (FGF) Receptor/FGF Inhibitors: Novel Targets and Strategies for Optimization of Response of Solid Tumors. Semin Oncol 2015; 42:801-19. [PMID: 26615127 DOI: 10.1053/j.seminoncol.2015.09.027] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The fibroblast growth factor receptor (FGFR) pathway plays a major role in several biological processes, from organogenesis to metabolism homeostasis and angiogenesis. Several aberrations, including gene amplifications, point mutations, and chromosomal translocations have been described across solid tumors. Most of these molecular alterations promote multiple steps of carcinogenesis in FGFR oncogene-addicted cells, increasing cell proliferation, angiogenesis, and drug resistance. Data suggest that upregulation of FGFR signaling is a common event in many cancer types. The FGFR pathway thus arises as a potential promising target for cancer treatment. Several FGFR inhibitors are currently under development. Initial preclinical results have translated into limited successful clinical responses when first-generation, nonspecific FGFR inhibitors were evaluated in patients. The future development of selective and unselective FGFR inhibitors will rely on a better understanding of the tissue-specific role of FGFR signaling and identification of biomarkers to select those patients who will benefit the most from these drugs. Further studies are warranted to establish the predictive significance of the different FGFR-aberrations and to incorporate them into clinical algorithms, now that second-generation, selective FGFR inhibitors exist.
Collapse
Affiliation(s)
- Cinta Hierro
- Molecular Therapeutics Research Unit, Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jordi Rodon
- Molecular Therapeutics Research Unit, Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Josep Tabernero
- Molecular Therapeutics Research Unit, Medical Oncology Department, Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain.
| |
Collapse
|
41
|
Tanizaki J, Ercan D, Capelletti M, Dodge M, Xu C, Bahcall M, Tricker EM, Butaney M, Calles A, Sholl LM, Hammerman PS, Oxnard GR, Wong KK, Jänne PA. Identification of Oncogenic and Drug-Sensitizing Mutations in the Extracellular Domain of FGFR2. Cancer Res 2015; 75:3139-46. [PMID: 26048680 DOI: 10.1158/0008-5472.can-14-3771] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/28/2015] [Indexed: 11/16/2022]
Abstract
The discovery of oncogenic driver mutations and the subsequent developments in targeted therapies have led to improved outcomes for subsets of lung cancer patients. The identification of additional oncogenic and drug-sensitive alterations may similarly lead to new therapeutic approaches for lung cancer. We identify and characterize novel FGFR2 extracellular domain insertion mutations and demonstrate that they are both oncogenic and sensitive to inhibition by FGFR kinase inhibitors. We demonstrate that the mechanism of FGFR2 activation and subsequent transformation is mediated by ligand-independent dimerization and activation of FGFR2 kinase activity. Both FGFR2-mutant forms are predominantly located in the endoplasmic reticulum and Golgi but nevertheless can activate downstream signaling pathways through their interactions with fibroblast growth factor receptor substrate 2 (FRS2). Our findings provide a rationale for therapeutically targeting this unique subset of FGFR2-mutant cancers as well as insight into their oncogenic mechanisms.
Collapse
Affiliation(s)
- Junko Tanizaki
- Lowe Center for Thoracic Oncology, Boston, Massachusetts. Department of Medical Oncology, Boston, Massachusetts
| | - Dalia Ercan
- Lowe Center for Thoracic Oncology, Boston, Massachusetts. Department of Medical Oncology, Boston, Massachusetts
| | - Marzia Capelletti
- Lowe Center for Thoracic Oncology, Boston, Massachusetts. Department of Medical Oncology, Boston, Massachusetts
| | - Michael Dodge
- Lowe Center for Thoracic Oncology, Boston, Massachusetts. Department of Medical Oncology, Boston, Massachusetts
| | - Chunxiao Xu
- Lowe Center for Thoracic Oncology, Boston, Massachusetts. Department of Medical Oncology, Boston, Massachusetts
| | - Magda Bahcall
- Lowe Center for Thoracic Oncology, Boston, Massachusetts. Department of Medical Oncology, Boston, Massachusetts
| | - Erin M Tricker
- Lowe Center for Thoracic Oncology, Boston, Massachusetts. Department of Medical Oncology, Boston, Massachusetts
| | - Mohit Butaney
- Lowe Center for Thoracic Oncology, Boston, Massachusetts. Department of Medical Oncology, Boston, Massachusetts
| | - Antonio Calles
- Lowe Center for Thoracic Oncology, Boston, Massachusetts. Department of Medical Oncology, Boston, Massachusetts
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Peter S Hammerman
- Department of Medical Oncology, Boston, Massachusetts. The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Geoffrey R Oxnard
- Lowe Center for Thoracic Oncology, Boston, Massachusetts. Department of Medical Oncology, Boston, Massachusetts. Department of Medicine, Boston, Massachusetts
| | - Kwok-Kin Wong
- Lowe Center for Thoracic Oncology, Boston, Massachusetts. Department of Medical Oncology, Boston, Massachusetts. Department of Medicine, Boston, Massachusetts. Belfer Institute for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Boston, Massachusetts. Department of Medical Oncology, Boston, Massachusetts. Department of Medicine, Boston, Massachusetts. Belfer Institute for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
42
|
Villaruz LC, Huang G, Romkes M, Kirkwood JM, Buch SC, Nukui T, Flaherty KT, Lee SJ, Wilson MA, Nathanson KL, Benos PV, Tawbi HA. MicroRNA expression profiling predicts clinical outcome of carboplatin/paclitaxel-based therapy in metastatic melanoma treated on the ECOG-ACRIN trial E2603. Clin Epigenetics 2015; 7:58. [PMID: 26052356 PMCID: PMC4457092 DOI: 10.1186/s13148-015-0092-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/27/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Carboplatin/paclitaxel (CP), with or without sorafenib, result in objective response rates of 18-20 % in unselected chemotherapy-naïve patients. Molecular predictors of survival and response to CP-based chemotherapy in metastatic melanoma (MM) are critical to improving the therapeutic index. Intergroup trial E2603 randomized MM patients to CP with or without sorafenib. Expression data were collected from pre-treatment formalin-fixed paraffin-embedded (FFPE) tumor tissues from 115 of 823 patients enrolled on E2603. The selected patients were balanced across treatment arms, BRAF status, and clinical outcome. We generated data using Nanostring array (microRNA (miRNA) expression) and DNA-mediated annealing, selection, extension and ligation (DASL)/Illumina microarrays (HT12 v4) (mRNA expression) with protocols optimized for FFPE samples. Integrative computational analysis was performed using a novel Tree-guided Recursive Cluster Selection (T-ReCS) [1] algorithm to select the most informative features/genes, followed by TargetScan miRNA target prediction (Human v6.2) and mirConnX [2] for network inference. RESULTS T-ReCS identified PLXNB1 as negatively associated with progression-free survival (PFS) and miR-659-3p as the primary miRNA associated positively with PFS. miR-659-3p was differentially expressed based on PFS but not based on treatment arm, BRAF or NRAS status. Dichotomized by median PFS (less vs greater than 4 months), miR-659-3p expression was significantly different. High miR-659-3p expression distinguished patients with responsive disease (complete or partial response) from patients with stable disease. miR-659-3p predicted gene targets include NFIX, which is a transcription factor known to interact with c-Jun and AP-1 in the context of developmental processes and disease. CONCLUSIONS This novel integrative analysis implicates miR-659-3p as a candidate predictive biomarker for MM patients treated with platinum-based chemotherapy and may serve to improve patient selection.
Collapse
Affiliation(s)
- Liza C Villaruz
- University of Pittsburgh Cancer Institute, Pittsburgh, PA USA
| | - Grace Huang
- University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Marjorie Romkes
- University of Pittsburgh Cancer Institute, Pittsburgh, PA USA
| | - John M Kirkwood
- University of Pittsburgh Cancer Institute, Pittsburgh, PA USA
| | - Shama C Buch
- University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Tomoko Nukui
- University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Keith T Flaherty
- University of Pennsylvania, Philadelphia, PA USA.,Massachusetts General Hospital, Boston, MA USA
| | | | - Melissa A Wilson
- University of Pennsylvania, Philadelphia, PA USA.,New York University, New York, NY USA
| | | | | | - Hussein A Tawbi
- University of Pittsburgh Cancer Institute, Pittsburgh, PA USA
| |
Collapse
|
43
|
Flippot R, Kone M, Magné N, Vignot S. [FGF/FGFR signalling: Implication in oncogenesis and perspectives]. Bull Cancer 2015; 102:516-26. [PMID: 25986739 DOI: 10.1016/j.bulcan.2015.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/10/2015] [Indexed: 02/02/2023]
Abstract
Deregulation of FGF (fibroblast growth factor)/FGFR (fibroblast growth factor receptor) signalling leads to the promotion of several oncogenic mechanisms: proliferation, epithelial-mesenchymal transition, cytoskeleton modifications, migration and angiogenesis. Deregulation of this pathway is reported in various cancers at early stages, and can therefore be responsible for the emergence of the hallmarks of cancer. It is necessary to precise downstream pathways of FGFR signalling to understand its oncogenic potential. We will then describe its implications in different cancer types. Oncogenic mechanisms will be studied through the example of melanoma, in which deregulation of FGF/FGFR pathway is considered as a driver event and occurs in nearly 90% of cases. The FGF/FGFR signalling pathway is a putative therapeutic target. Numerous agents are in active development, operating through a selective or multi-targeted approach. Recent studies have shown rather disappointing results in non-selected patients, but promising results in patients with FGF/FGFR pathway alterations. A careful screening of patients is the key to a valuable evaluation of these new targeted molecular therapies.
Collapse
Affiliation(s)
- Ronan Flippot
- Gustave-Roussy, département d'innovations thérapeutiques essais précoces, 94800 Villejuif-Grand Paris, France
| | - Moumini Kone
- Hôpital Louis-Pasteur, service d'oncologie-hématologie, 28630 Chartres-Le-Coudray, France
| | - Nicolas Magné
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 42270 Saint-Priest-en-Jarez, France
| | - Stéphane Vignot
- Hôpital Louis-Pasteur, service d'oncologie-hématologie, 28630 Chartres-Le-Coudray, France.
| |
Collapse
|
44
|
Ceccarelli S, Bei R, Vescarelli E, D'Amici S, di Gioia C, Modesti A, Romano F, Redler A, Marchese C, Angeloni A. Potential prognostic and diagnostic application of a novel monoclonal antibody against keratinocyte growth factor receptor. Mol Biotechnol 2015; 56:939-52. [PMID: 24899248 PMCID: PMC4155171 DOI: 10.1007/s12033-014-9773-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
KGFR is involved in the pathogenesis of several human cancers. In this study, we generated and characterized a monoclonal antibody specific to KGFR (SC-101 mAb) and evaluated its potential use in basic research and as a diagnostic and prognostic tool. The specificity and biological activity of the SC-101 mAb were evaluated by Western blotting, immunofluorescence, and immunoprecipitation analyses on various cell lines. KGFR expression in breast, pancreatic, and thyroid carcinoma was assessed by immunohistochemistry (IHC) with SC-101 mAb. KGFR expression levels revealed by SC-101 mAb resulted to increase proportionally with tumor grade in breast and pancreatic cancer. In addition, SC-101 mAb was able to detect KGFR down-modulation in thyroid cancer. SC-101 mAb might represent a useful tool for basic research applications, and it could also contribute to improve the accuracy of diagnosis and prognosis of epithelial tumors.
Collapse
Affiliation(s)
- Simona Ceccarelli
- Department of Experimental Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161, Rome, Italy,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gallo LH, Nelson KN, Meyer AN, Donoghue DJ. Functions of Fibroblast Growth Factor Receptors in cancer defined by novel translocations and mutations. Cytokine Growth Factor Rev 2015; 26:425-49. [PMID: 26003532 DOI: 10.1016/j.cytogfr.2015.03.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 03/25/2015] [Indexed: 11/25/2022]
Abstract
The four receptor tyrosine kinases (RTKs) within the family of Fibroblast Growth Factor Receptors (FGFRs) are critical for normal development but also play an enormous role in oncogenesis. Mutations and/or abnormal expression often lead to constitutive dimerization and kinase activation of FGFRs, and represent the primary mechanism for aberrant signaling. Sequencing of human tumors has revealed a plethora of somatic mutations in FGFRs that are frequently identical to germline mutations in developmental syndromes, and has also identified novel FGFR fusion proteins arising from chromosomal rearrangements that contribute to malignancy. This review details approximately 200 specific point mutations in FGFRs and 40 different fusion proteins created by translocations involving FGFRs that have been identified in human cancer. This review discusses the effects of these genetic alterations on downstream signaling cascades, and the challenge of drug resistance in cancer treatment with antagonists of FGFRs.
Collapse
Affiliation(s)
- Leandro H Gallo
- Department of Chemistry and Biochemistry, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA 92093-0367, United States.
| | - Katelyn N Nelson
- Department of Chemistry and Biochemistry, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA 92093-0367, United States.
| | - April N Meyer
- Department of Chemistry and Biochemistry, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA 92093-0367, United States.
| | - Daniel J Donoghue
- Department of Chemistry and Biochemistry, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA 92093-0367, United States.
| |
Collapse
|
46
|
Abstract
Treatment responses of BRAF mutant melanoma to BRAF inhibitors are often limited by the development of resistance. This case report describes the use of multiplatform molecular profiling in sequential surgical samples of a treatment-resistant tumour site subjected to ongoing treatment with dabrafenib in a patient with metastatic cutaneous BRAF mutant melanoma. Next-generation sequencing showed the presence of the V600E, fibroblast growth factor receptor 2 (FGFR2), phosphatase and tensin homologue (PTEN) and p53 gene mutations. With a continuous presence of the BRAFV600E, FGFR2 and PTEN mutations and appearances of new mutations in the PTEN gene at R137H and T321fs and p53R273C genes during ongoing treatment, this case report indicates intratumoural clonal evolution as a resistance mechanism. Two new mutations, the G542Eexon 12 mutation variant of the FGFR2 gene and the R273C mutation variant of the p53 gene, are reported for the first time in BRAF mutant melanoma.
Collapse
|
47
|
Garay T, Molnár E, Juhász É, László V, Barbai T, Dobos J, Schelch K, Pirker C, Grusch M, Berger W, Tímár J, Hegedűs B. Sensitivity of Melanoma Cells to EGFR and FGFR Activation but Not Inhibition is Influenced by Oncogenic BRAF and NRAS Mutations. Pathol Oncol Res 2015; 21:957-68. [PMID: 25749811 DOI: 10.1007/s12253-015-9916-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/17/2015] [Indexed: 11/28/2022]
Abstract
BRAF and NRAS are the two most frequent oncogenic driver mutations in melanoma and are pivotal components of both the EGF and FGF signaling network. Accordingly, we investigated the effect of BRAF and NRAS oncogenic mutation on the response to the stimulation and inhibition of epidermal and fibroblast growth factor receptors in melanoma cells. In the three BRAF mutant, two NRAS mutant and two double wild-type cell lines growth factor receptor expression had been verified by qRT-PCR. Cell proliferation and migration were determined by the analysis of 3-days-long time-lapse videomicroscopic recordings. Of note, a more profound response was found in motility as compared to proliferation and double wild-type cells displayed a higher sensitivity to EGF and FGF2 treatment when compared to mutant cells. Both baseline and induced activation of the growth factor signaling was assessed by immunoblot analysis of the phosphorylation of the downstream effectors Erk1/2. Low baseline and higher inducibility of the signaling pathway was characteristic in double wild-type cells. In contrast, oncogenic BRAF or NRAS mutation did not influence the response to EGF or FGF receptor inhibitors in vitro. Our findings demonstrate that the oncogenic mutations in melanoma have a profound impact on the motogenic effect of the activation of growth factor receptor signaling. Since emerging molecularly targeted therapies aim at the growth factor receptor signaling, the appropriate mutational analysis of individual melanoma cases is essential in both preclinical studies and in the clinical trials and practice.
Collapse
Affiliation(s)
- Tamás Garay
- 2nd Department of Pathology, Semmelweis University, Üllői út 93, H-1091, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Li CF, He HL, Wang JY, Huang HY, Wu TF, Hsing CH, Lee SW, Lee HH, Fang JL, Huang WT, Chen SH. Fibroblast growth factor receptor 2 overexpression is predictive of poor prognosis in rectal cancer patients receiving neoadjuvant chemoradiotherapy. J Clin Pathol 2014; 67:1056-61. [DOI: 10.1136/jclinpath-2014-202551] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AimsNeoadjuvant concurrent chemoradiotherapy (CCRT) followed by surgery is an increasingly used therapeutic strategy for advanced rectal cancer, but risk stratification and final outcomes remain suboptimal. Recently, the oncogenic role of the fibroblast growth factor/fibroblast growth factor receptor (FGFR) signalling pathway has been recognised; however, its clinical significance in rectal cancer has not been elucidated. In this study, we identify and validate targetable drivers associated with the FGFR signalling pathway in rectal cancer patients treated with CCRT.MethodsUsing a published transcriptome of rectal cancers, we found FGFR2 gene significantly predicted response to CCRT. The expression levels of FGFR2, using immunohistochemistry assays, were further evaluated in 172 rectal cancer specimens that had not received any treatment. Expression levels of FGFR2 were statistically correlated with major clinicopathological features and clinical survival in this valid cohort.ResultsHigh expression of FGFR2 was significantly related to advanced pretreatment tumour (p=0.022) and nodal status (p=0.026), post-treatment tumour (p<0.001) and nodal status (p=0.004), and inferior tumour regression grade (p<0.001). In survival analyses, high expression of FGFR2 was significantly associated with shorter local recurrence-free survival (p=0.0001), metastasis-free survival (MeFS; p=0.0003) and disease-specific survival (DSS; p<0.0001). Notably, high expression of FGFR2 was independently predictive of worse outcomes for MeFS (p=0.002, HR=5.387) and DSS (p=0.004, HR=4.997).ConclusionsHigh expression of FGFR2 is correlated with advanced tumour stage, poor therapeutic response and worse survival in rectal cancer patients receiving neoadjuvant CCRT. These findings indicate that FGFR2 is a prognostic factor for treating rectal cancer.
Collapse
|
49
|
Low Incidence of Oncogenic EGFR, HRAS, and KRAS Mutations in Seborrheic Keratosis. Am J Dermatopathol 2014; 36:635-42. [DOI: 10.1097/dad.0b013e31828c0542] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
50
|
Phosphorylation of RSK2 at Tyr529 by FGFR2-p38 enhances human mammary epithelial cells migration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2461-70. [PMID: 25014166 DOI: 10.1016/j.bbamcr.2014.06.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/29/2014] [Accepted: 06/30/2014] [Indexed: 01/08/2023]
Abstract
The members of p90 ribosomal S6 kinase (RSK) family of Ser/Thr kinases are downstream effectors of MAPK/ERK pathway that regulate diverse cellular processes including cell growth, proliferation and survival. In carcinogenesis, RSKs are thought to modulate cell motility, invasion and metastasis. Herein, we have studied an involvement of RSKs in FGF2/FGFR2-driven behaviours of mammary epithelial and breast cancer cells. We found that both silencing and inhibiting of FGFR2 attenuated phosphorylation of RSKs, whereas FGFR2 overexpression and/or its stimulation with FGF2 enhanced RSKs activity. Moreover, treatment with ERK, Src and p38 inhibitors revealed that p38 kinase acts as an upstream RSK2 regulator. We demonstrate for the first time that in FGF2/FGFR2 signalling, p38 but not MEK/ERK, indirectly activated RSK2 at Tyr529, which facilitated phosphorylation of its other residues (Thr359/Ser363, Thr573 and Ser380). In contrast to FGF2-triggered signalling, inhibition of p38 in the EGF pathway affected only RSK2-Tyr529, without any impact on the remaining RSK phosphorylation sites. p38-mediated phosphorylation of RSK2-Tyr529 was crucial for the transactivation of residues located at kinase C-terminal domain and linker-region, specifically, in the FGF2/FGFR2 signalling pathway. Furthermore, we show that FGF2 promoted anchorage-independent cell proliferation, formation of focal adhesions and cell migration, which was effectively abolished by treatment with RSKs inhibitor (FMK). These indicate that RSK2 activity is indispensable for FGF2/FGFR2-mediated cellular effects. Our findings identified a new FGF2/FGFR2-p38-RSK2 pathway, which may play a significant role in the pathogenesis and progression of breast cancer and, hence, may present a novel therapeutic target in the treatment of FGFR2-expressing tumours.
Collapse
|