1
|
Pande P, Madeen EP, Williams DE, Crowell SR, Ognibene TJ, Turteltaub KW, Corley RA, Smith JN. Translating dosimetry of Dibenzo[def,p]chrysene (DBC) and metabolites across dose and species using physiologically based pharmacokinetic (PBPK) modeling. Toxicol Appl Pharmacol 2022; 438:115830. [PMID: 34933053 PMCID: PMC9264404 DOI: 10.1016/j.taap.2021.115830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
Dibenzo[def,p]chrysene (DBC) is an environmental polycyclic aromatic hydrocarbon (PAH) that causes tumors in mice and has been classified as a probable human carcinogen by the International Agency for Research on Cancer. Animal toxicity studies often utilize higher doses than are found in relevant human exposures. Additionally, like many PAHs, DBC requires metabolic bioactivation to form the ultimate toxicant, and species differences in DBC and DBC metabolite metabolism have been observed. To understand the implications of dose and species differences, a physiologically based pharmacokinetic model (PBPK) for DBC and major metabolites was developed in mice and humans. Metabolism parameters used in the model were obtained from experimental in vitro metabolism assays using mice and human hepatic microsomes. PBPK model simulations were evaluated against mice dosed with 15 mg/kg DBC by oral gavage and human volunteers orally microdosed with 29 ng of DBC. DBC and its primary metabolite DBC-11,12-diol were measured in blood of mice and humans, while in urine, the majority of DBC metabolites were obeserved as conjugated DBC-11,12-diol, conjugated DBC tetrols, and unconjugated DBC tetrols. The PBPK model was able to predict the time course concentrations of DBC, DBC-11,12-diol, and other DBC metabolites in blood and urine of human volunteers and mice with reasonable accuracy. Agreement between model simulations and measured pharmacokinetic data in mice and human studies demonstrate the success and versatility of our model for interspecies extrapolation and applicability for different doses. Furthermore, our simulations show that internal dose metrics used for risk assessment do not necessarily scale allometrically, and that PBPK modeling provides a reliable approach to appropriately account for interspecies differences in metabolism and physiology.
Collapse
Affiliation(s)
- Paritosh Pande
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Erin P Madeen
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - David E Williams
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Susan R Crowell
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Ted J Ognibene
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Ken W Turteltaub
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Richard A Corley
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Jordan N Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
2
|
Lim J, Ramesh A, Shioda T, Leon Parada K, Luderer U. Sex Differences in Embryonic Gonad Transcriptomes and Benzo[a]pyrene Metabolite Levels After Transplacental Exposure. Endocrinology 2022; 163:bqab228. [PMID: 34734245 PMCID: PMC8633617 DOI: 10.1210/endocr/bqab228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Indexed: 11/19/2022]
Abstract
Polycyclic aromatic hydrocarbons like benzo[a]pyrene (BaP) are generated during incomplete combustion of organic materials. Prior research has demonstrated that BaP is a prenatal ovarian toxicant and carcinogen. However, the metabolic pathways active in the embryo and its developing gonads and the mechanisms by which prenatal exposure to BaP predisposes to ovarian tumors later in life remain to be fully elucidated. To address these data gaps, we orally dosed pregnant female mice with BaP from embryonic day (E) 6.5 to E11.5 (0, 0.2, or 2 mg/kg/day) for metabolite measurement or E9.5 to E11.5 (0 or 3.33 mg/kg/day) for embryonic gonad RNA sequencing. Embryos were harvested at E13.5 for both experiments. The sum of BaP metabolite concentrations increased significantly with dose in the embryos and placentas, and concentrations were significantly higher in female than male embryos and in embryos than placentas. RNA sequencing revealed that enzymes involved in metabolic activation of BaP are expressed at moderate to high levels in embryonic gonads and that greater transcriptomic changes occurred in the ovaries in response to BaP than in the testes. We identified 490 differentially expressed genes (DEGs) with false discovery rate P-values < 0.05 when comparing BaP-exposed to control ovaries but no statistically significant DEGs between BaP-exposed and control testes. Genes related to monocyte/macrophage recruitment and activity, prolactin family genes, and several keratin genes were among the most upregulated genes in the BaP-exposed ovaries. Results show that developing ovaries are more sensitive than testes to prenatal BaP exposure, which may be related to higher concentrations of BaP metabolites in female embryos.
Collapse
Affiliation(s)
- Jinhwan Lim
- Department of Environmental and Occupational Health, University of California Irvine, Irvine, CA, USA
- Department of Medicine, University of California Irvine, Irvine, CA, USA
| | - Aramandla Ramesh
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, USA
| | - Toshi Shioda
- Massachusetts General Center for Cancer Research and Harvard Medical School, Charlestown, MA, USA
| | - Kathleen Leon Parada
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| | - Ulrike Luderer
- Department of Environmental and Occupational Health, University of California Irvine, Irvine, CA, USA
- Department of Medicine, University of California Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
3
|
Song CY, Singh P, Motiwala M, Shin JS, Lew J, Dutta SR, Gonzalez FJ, Bonventre JV, Malik KU. 2-Methoxyestradiol Ameliorates Angiotensin II-Induced Hypertension by Inhibiting Cytosolic Phospholipase A 2α Activity in Female Mice. Hypertension 2021; 78:1368-1381. [PMID: 34628937 PMCID: PMC8516072 DOI: 10.1161/hypertensionaha.121.18181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. We tested the hypothesis that CYP1B1 (cytochrome P450 1B1)-17β-estradiol metabolite 2-methoxyestradiol protects against Ang II (angiotensin II)–induced hypertension by inhibiting group IV cPLA2α (cytosolic phospholipase A2α) activity and production of prohypertensive eicosanoids in female mice. Ang II (700 ng/kg per minute, SC) increased mean arterial blood pressure (BP), systolic and diastolic BP measured by radiotelemetry, renal fibrosis, and reactive oxygen species production in wild-type mice (cPLA2α+/+/Cyp1b1+/+) that were enhanced by ovariectomy and abolished in intact and ovariectomized-cPLA2α−/−/Cyp1b1+/+ mice. Ang II–induced increase in SBP measured by tail-cuff, renal fibrosis, reactive oxygen species production, and cPLA2α activity measured by its phosphorylation in the kidney, and urinary excretion of prostaglandin E2 and thromboxane A2 metabolites were enhanced in ovariectomized-cPLA2α+/+/Cyp1b1+/+ and intact cPLA2α+/+/Cyp1b1−/− mice. 2-Methoxyestradiol and arachidonic acid metabolism inhibitor 5,8,11,14-eicosatetraynoic acid attenuated the Ang II–induced increase in SBP, renal fibrosis, reactive oxygen species production, and urinary excretion of prostaglandin E2, and thromboxane A2 metabolites in ovariectomized-cPLA2α+/+/Cyp1b1+/+ and intact cPLA2α+/+/Cyp1b1−/− mice. Antagonists of prostaglandin E2 and thromboxane A2 receptors EP1 and EP3 and TP, respectively, inhibited Ang II–induced increases in SBP and reactive oxygen species production and renal fibrosis in ovariectomized-cPLA2α+/+/Cyp1b1+/+ and intact cPLA2α+/+/Cyp1b1−/− mice. These data suggest that CYP1B1-generated metabolite 2-methoxyestradiol mitigates Ang II–induced hypertension and renal fibrosis by inhibiting cPLA2α activity, reducing prostaglandin E2, and thromboxane A2 production and stimulating EP1 and EP3 and TP receptors, respectively. Thus, 2-methoxyestradiol and the drugs that selectively block EP1 and EP3 and TP receptors could be useful in treating hypertension and its pathogenesis in females.
Collapse
Affiliation(s)
- Chi Young Song
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee HSC, Memphis (C.Y.S., P.S., M.M., J.S.S., J.L., S.R.D., K.U.M.)
| | - Purnima Singh
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee HSC, Memphis (C.Y.S., P.S., M.M., J.S.S., J.L., S.R.D., K.U.M.)
| | - Mustafa Motiwala
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee HSC, Memphis (C.Y.S., P.S., M.M., J.S.S., J.L., S.R.D., K.U.M.)
| | - Ji Soo Shin
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee HSC, Memphis (C.Y.S., P.S., M.M., J.S.S., J.L., S.R.D., K.U.M.)
| | - Jessica Lew
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee HSC, Memphis (C.Y.S., P.S., M.M., J.S.S., J.L., S.R.D., K.U.M.)
| | - Shubha R. Dutta
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee HSC, Memphis (C.Y.S., P.S., M.M., J.S.S., J.L., S.R.D., K.U.M.)
| | - Frank J. Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD (F.J.G.)
| | - Joseph V. Bonventre
- Renal Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA (J.V.B.)
| | - Kafait U. Malik
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee HSC, Memphis (C.Y.S., P.S., M.M., J.S.S., J.L., S.R.D., K.U.M.)
| |
Collapse
|
4
|
Fish TJ, Benninghoff AD. DNA methylation in lung tissues of mouse offspring exposed in utero to polycyclic aromatic hydrocarbons. Food Chem Toxicol 2017; 109:703-713. [PMID: 28476633 DOI: 10.1016/j.fct.2017.04.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/29/2017] [Accepted: 04/29/2017] [Indexed: 12/19/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) comprise an important class of environmental pollutants that are known to cause lung cancer in animals and are suspected lung carcinogens in humans. Moreover, evidence from cell-based studies points to PAHs as modulators of the epigenome. The objective of this work was to assess patterns of genome-wide DNA methylation in lung tissues of adult offspring initiated in utero with the transplacental PAH carcinogens dibenzo [def,p]chrysene (DBC) or benzo [a]pyrene (BaP). Genome-wide methylation patterns for normal (not exposed), normal adjacent and lung tumor tissues obtained from adult offspring were determined using methylated DNA immunoprecipitation (MeDIP) with the NimbleGen mouse DNA methylation CpG island array. Lung tumor incidence in 45-week old mice initiated with BaP was 32%, much lower than that of the DBC-exposed offspring at 96%. Also, male offspring appeared more susceptible to BaP as compared to females. Distinct patterns of DNA methylation were associated with non-exposed, normal adjacent and adenocarcinoma lung tissues, as determined by principal components, hierarchical clustering and gene ontology analyses. From these methylation profiles, a set of genes of interest was identified that includes potential important targets for epigenetic modification during the process of lung tumorigenesis in animals exposed to environmental PAHs.
Collapse
Affiliation(s)
- Trevor J Fish
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; School of Veterinary Medicine, Utah State University, Logan, UT 84322, USA.
| |
Collapse
|
5
|
In vitro metabolism of benzo[a]pyrene-7,8-dihydrodiol and dibenzo[def,p]chrysene-11,12 diol in rodent and human hepatic microsomes. Toxicol Lett 2017; 269:23-32. [DOI: 10.1016/j.toxlet.2017.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 01/10/2017] [Accepted: 01/15/2017] [Indexed: 01/07/2023]
|
6
|
Madeen EP, Ognibene TJ, Corley RA, McQuistan TJ, Henderson MC, Baird WM, Bench G, Turteltaub KW, Williams DE. Human Microdosing with Carcinogenic Polycyclic Aromatic Hydrocarbons: In Vivo Pharmacokinetics of Dibenzo[def,p]chrysene and Metabolites by UPLC Accelerator Mass Spectrometry. Chem Res Toxicol 2016; 29:1641-1650. [PMID: 27494294 PMCID: PMC5380438 DOI: 10.1021/acs.chemrestox.6b00169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metabolism is a key health risk factor following exposures to pro-carcinogenic polycyclic aromatic hydrocarbons (PAHs) such as dibenzo[def,p]chrysene (DBC), an IARC classified 2A probable human carcinogen. Human exposure to PAHs occurs primarily from the diet in nonsmokers. However, little data is available on the metabolism and pharmacokinetics in humans of high molecular weight PAHs (≥4 aromatic rings), including DBC. We previously determined the pharmacokinetics of DBC in human volunteers orally administered a microdose (29 ng; 5 nCi) of [14C]-DBC by accelerator mass spectrometry (AMS) analysis of total [14C] in plasma and urine. In the current study, we utilized a novel "moving wire" interface between ultraperformance liquid chromatography (UPLC) and AMS to detect and quantify parent DBC and its major metabolites. The major [14C] product identified in plasma was unmetabolized [14C]-DBC itself (Cmax = 18.5 ±15.9 fg/mL, Tmax= 2.1 ± 1.0 h), whereas the major metabolite was identified as [14C]-(+/-)-DBC-11,12-diol (Cmax= 2.5 ±1.3 fg/mL, Tmax= 1.8 h). Several minor species of [14C]-DBC metabolites were also detected for which no reference standards were available. Free and conjugated metabolites were detected in urine with [14C]-(+/-)-DBC-11,12,13,14-tetraol isomers identified as the major metabolites, 56.3% of which were conjugated (Cmax= 35.8 ± 23.0 pg/pool, Tmax = 6-12 h pool). [14C]-DBC-11,12-diol, of which 97.5% was conjugated, was also identified in urine (Cmax = 29.4 ± 11.6 pg/pool, Tmax = 6-12 h pool). Parent [14C]-DBC was not detected in urine. This is the first data set to assess metabolite profiles and associated pharmacokinetics of a carcinogenic PAH in human volunteers at an environmentally relevant dose, providing the data necessary for translation of high dose animal models to humans for translation of environmental health risk assessment.
Collapse
Affiliation(s)
- Erin P Madeen
- Department of Environmental and Molecular Toxicology, Oregon State University , Corvallis, Oregon 97331, United States
- Superfund Research Program, Oregon State University , Corvallis, Oregon 97331, United States
| | - Ted J Ognibene
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory , Livermore, California 94550, United States
| | - Richard A Corley
- Superfund Research Program, Oregon State University , Corvallis, Oregon 97331, United States
- Systems Toxicology and Exposure Science, Pacific Northwest National Laboratory , Richland, Washington 99354, United States
| | - Tammie J McQuistan
- Superfund Research Program, Oregon State University , Corvallis, Oregon 97331, United States
| | - Marilyn C Henderson
- Department of Environmental and Molecular Toxicology, Oregon State University , Corvallis, Oregon 97331, United States
| | - William M Baird
- Department of Environmental and Molecular Toxicology, Oregon State University , Corvallis, Oregon 97331, United States
- Superfund Research Program, Oregon State University , Corvallis, Oregon 97331, United States
| | - Graham Bench
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory , Livermore, California 94550, United States
| | - Ken W Turteltaub
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory , Livermore, California 94550, United States
- Biology and Biotechnology Research Division, Lawrence Livermore National Laboratory , Livermore, California 94550, United States
| | - David E Williams
- Department of Environmental and Molecular Toxicology, Oregon State University , Corvallis, Oregon 97331, United States
- Superfund Research Program, Oregon State University , Corvallis, Oregon 97331, United States
| |
Collapse
|
7
|
Kosuru R, Rai U, Prakash S, Singh A, Singh S. Promising therapeutic potential of pterostilbene and its mechanistic insight based on preclinical evidence. Eur J Pharmacol 2016; 789:229-243. [PMID: 27475678 DOI: 10.1016/j.ejphar.2016.07.046] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/26/2016] [Accepted: 07/26/2016] [Indexed: 11/30/2022]
Abstract
Pterostilbene (PS) is a well-recognized antioxidant that primarily exists in blueberries, grapevines and heartwood of red sandalwood. Interest in this compound has been renewed in recent years, and studies have found that PS possesses an array of pharmacological properties, including chemopreventive, antiinflammatory, antidiabetic, antidyslipidemic, antiatherosclerotic and neuroprotective effects. However, the greater in vivo bioavailability of PS, as compared to resveratrol, is an added advantage for its efficacy. This review provides a summary regarding the sources, pharmacokinetic aspects and pharmacodynamics of PS, with a focus on the molecular mechanisms underlying its protective effects against cancer, brain injuries and heart disease. Studies regarding the safety profile of PS have also been included. Based on the presently available evidence, we conclude that PS represents an active phytonutrient and a potential drug with pleiotropic health applications.
Collapse
Affiliation(s)
- Ramoji Kosuru
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Uddipak Rai
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Swati Prakash
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Abhishank Singh
- Faculty of Pharmacy, Pharmaceutical Medicine, Jamia Hamdard, New Delhi, India
| | - Sanjay Singh
- Department of Pharmaceutics, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India.
| |
Collapse
|
8
|
Cytochrome P450 1B1 Contributes to the Development of Angiotensin II-Induced Aortic Aneurysm in Male Apoe(-/-) Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2204-2219. [PMID: 27301358 DOI: 10.1016/j.ajpath.2016.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/31/2016] [Accepted: 04/15/2016] [Indexed: 02/07/2023]
Abstract
Cytochrome P450 (CYP) 1B1 is implicated in vascular smooth muscle cell migration, proliferation, and hypertension. We assessed the contribution of CYP1B1 to angiotensin (Ang) II-induced abdominal aortic aneurysm (AAA). Male Apoe(-/-)/Cyp1b1(+/+) and Apoe(-/-)/Cyp1b1(-/-) mice were infused with Ang II or its vehicle for 4 weeks; another group of Apoe(-/-)/Cyp1b1(+/+) mice was coadministered the CYP1B1 inhibitor 2,3',4,5'-tetramethoxystilbene (TMS) every third day for 4 weeks. On day 28 of Ang II infusion, AAAs were analyzed by ultrasound and ex vivo by Vernier calipers, mice were euthanized, and tissues were harvested. Ang II produced AAAs in Apoe(-/-)/Cyp1b1(+/+) mice; mice treated with TMS or Apoe(-/-)/Cyp1b1(-/-) mice had reduced AAAs. Ang II enhanced infiltration of macrophages, T cells, and platelets and increased platelet-derived growth factor D, Pdgfrb, Itga2, and matrix metalloproteinases 2 and 9 expression in aortic lesions; these changes were inhibited in mice treated with TMS and in Apoe(-/-)/Cyp1b1(-/-) mice. Oxidative stress resulted in cyclooxygenase-2 expression in aortic lesions. These effects were minimized in Apoe(-/-)/Cyp1b1(+/+) mice treated with TMS and in Apoe(-/-)/Cyp1b1(-/-) mice and by concurrent treatment with the superoxide scavenger 4-hydroxyl-2,2,6,6-tetramethylpiperidine-1-oxyl. CYP1B1 contributed to the development of Ang II-induced AAA and associated pathogenic events in mice, likely by enhancing oxidative stress and associated signaling events. Thus, CYP1B1 may serve as a target for therapeutic agents for AAA in males.
Collapse
|
9
|
Madeen EP, Löhr CV, You H, Siddens LK, Krueger SK, Dashwood RH, Gonzalez FJ, Baird WM, Ho E, Bramer L, Waters KM, Williams DE. Dibenzo[def,p]chrysene transplacental carcinogenesis in wild-type, Cyp1b1 knockout, and CYP1B1 humanized mice. Mol Carcinog 2016; 56:163-171. [PMID: 26990437 DOI: 10.1002/mc.22480] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/08/2016] [Accepted: 03/01/2016] [Indexed: 11/11/2022]
Abstract
The cytochrome P450 (CYP) 1 family is active toward numerous environmental pollutants, including polycyclic aromatic hydrocarbons (PAHs). Utilizing a mouse model, null for Cyp1b1 and expressing human CYP1B1, we tested the hypothesis that hCYP1B1 is important for dibenzo[def,p]chrysene (DBC) transplacental carcinogenesis. Wild-type mCyp1b1, transgenic hCYP1B1 (mCyp1b1 null background), and mCyp1b1 null mice were assessed. Each litter had an equal number of siblings with Ahrb-1/d and Ahrd/d alleles. Pregnant mice were dosed (gavage) on gestation day 17 with 6.5 or 12 mg/kg of DBC or corn oil. At 10 months of age, mortality, general health, lymphoid disease and lung tumor incidence, and multiplicity were assessed. hCYP1B1 genotype did not impact lung tumor multiplicity, but tended to enhance incidence compared to Cyp1b1 wild-type mice (P = 0.07). As with Cyp1b1 in wild-type mice, constitutive hCYP1B1 protein is non-detectable in liver but was induced with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Wild-type mice were 59% more likely to succumb to T-cell Acute Lymphoblastic Leukemia (T-ALL). Unlike an earlier examination of the Ahr genotype in this model (Yu et al., Cancer Res, 2006;66:755-762), but in agreement with a more recent study (Shorey et al., Toxicol Appl Pharmacol, 2013;270:60-69), this genotype was not associated with lung tumor incidence, multiplicity, or mortality. Sex was not significant with respect to lung tumor incidence or mortality but males exhibited significantly greater multiplicity. Lung tumor incidence was greater in mCyp1b1 nulls compared to wild-type mice. To our knowledge, this is the first application of a humanized mouse model in transplacental carcinogenesis. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Erin P Madeen
- Department of Molecular and Environmental Toxicology, Oregon State University, Corvallis, Oregon.,Cancer Prevention and Intervention Program, Linus Pauling Institute, Oregon State University, Corvallis, Oregon.,Superfund Research Program, Oregon State University, Corvallis, Oregon
| | - Christiane V Löhr
- Cancer Prevention and Intervention Program, Linus Pauling Institute, Oregon State University, Corvallis, Oregon.,Superfund Research Program, Oregon State University, Corvallis, Oregon.,College of Veterinary Medicine, Oregon State University, Corvallis, Oregon
| | - Hannah You
- Cancer Prevention and Intervention Program, Linus Pauling Institute, Oregon State University, Corvallis, Oregon
| | - Lisbeth K Siddens
- Department of Molecular and Environmental Toxicology, Oregon State University, Corvallis, Oregon.,Cancer Prevention and Intervention Program, Linus Pauling Institute, Oregon State University, Corvallis, Oregon
| | - Sharon K Krueger
- Cancer Prevention and Intervention Program, Linus Pauling Institute, Oregon State University, Corvallis, Oregon.,Superfund Research Program, Oregon State University, Corvallis, Oregon
| | - Roderick H Dashwood
- Center for Epigenetics and Disease Prevention, M.D. Anderson Cancer Center, Houston, Texas
| | - Frank J Gonzalez
- Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - William M Baird
- Department of Molecular and Environmental Toxicology, Oregon State University, Corvallis, Oregon.,Superfund Research Program, Oregon State University, Corvallis, Oregon
| | - Emily Ho
- Cancer Prevention and Intervention Program, Linus Pauling Institute, Oregon State University, Corvallis, Oregon.,Department of Nutrition and Exercise Science, Oregon State University, Corvallis, Oregon
| | - Lisa Bramer
- Superfund Research Program, Oregon State University, Corvallis, Oregon.,Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Katrina M Waters
- Superfund Research Program, Oregon State University, Corvallis, Oregon.,Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington
| | - David E Williams
- Department of Molecular and Environmental Toxicology, Oregon State University, Corvallis, Oregon.,Cancer Prevention and Intervention Program, Linus Pauling Institute, Oregon State University, Corvallis, Oregon.,Superfund Research Program, Oregon State University, Corvallis, Oregon
| |
Collapse
|
10
|
Siddens LK, Bunde KL, Harper TA, McQuistan TJ, Löhr CV, Bramer LM, Waters KM, Tilton SC, Krueger SK, Williams DE, Baird WM. Cytochrome P450 1b1 in polycyclic aromatic hydrocarbon (PAH)-induced skin carcinogenesis: Tumorigenicity of individual PAHs and coal-tar extract, DNA adduction and expression of select genes in the Cyp1b1 knockout mouse. Toxicol Appl Pharmacol 2015; 287:149-160. [PMID: 26049101 DOI: 10.1016/j.taap.2015.05.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/12/2015] [Accepted: 05/29/2015] [Indexed: 01/05/2023]
Abstract
FVB/N mice wild-type, heterozygous or null for Cyp 1b1 were used in a two-stage skin tumor study comparing PAH, benzo[a]pyrene (BaP), dibenzo[def,p]chrysene (DBC), and coal tar extract (CTE, SRM 1597a). Following 20 weeks of promotion with TPA the Cyp 1b1 null mice, initiated with DBC, exhibited reductions in incidence, multiplicity, and progression. None of these effects were observed with BaP or CTE. The mechanism of Cyp 1b1-dependent alteration of DBC skin carcinogenesis was further investigated by determining expression of select genes in skin from DBC-treated mice 2, 4 and 8h post-initiation. A significant reduction in levels of Cyp 1a1, Nqo1 at 8h and Akr 1c14 mRNA was observed in Cyp 1b1 null (but not wt or het) mice, whereas no impact was observed in Gst a1, Nqo 1 at 2 and 4h or Akr 1c19 at any time point. Cyp 1b1 mRNA was not elevated by DBC. The major covalent DNA adducts, dibenzo[def,p]chrysene-(±)-11,12-dihydrodiol-cis and trans-13,14-epoxide-deoxyadenosine (DBCDE-dA) were quantified by UHPLC-MS/MS 8h post-initiation. Loss of Cyp1 b1 expression reduced DBCDE-dA adducts in the skin but not to a statistically significant degree. The ratio of cis- to trans-DBCDE-dA adducts was higher in the skin than other target tissues such as the spleen, lung and liver (oral dosing). These results document that Cyp 1b1 plays a significant role in bioactivation and carcinogenesis of DBC in a two-stage mouse skin tumor model and that loss of Cyp 1b1 has little impact on tumor response with BaP or CTE as initiators.
Collapse
Affiliation(s)
- Lisbeth K Siddens
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; Superfund Research Center, Oregon State University, Corvallis, OR 97331, USA
| | - Kristi L Bunde
- College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Tod A Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Tammie J McQuistan
- Superfund Research Center, Oregon State University, Corvallis, OR 97331, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Christiane V Löhr
- Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA; College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Lisa M Bramer
- Applied Statistics and Computational Modeling, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Katrina M Waters
- Superfund Research Center, Oregon State University, Corvallis, OR 97331, USA; Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Susan C Tilton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; Superfund Research Center, Oregon State University, Corvallis, OR 97331, USA
| | - Sharon K Krueger
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; Superfund Research Center, Oregon State University, Corvallis, OR 97331, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - David E Williams
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; Superfund Research Center, Oregon State University, Corvallis, OR 97331, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA.
| | - William M Baird
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; Superfund Research Center, Oregon State University, Corvallis, OR 97331, USA; Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
11
|
Jennings BL, Moore JA, Pingili AK, Estes AM, Fang XR, Kanu A, Gonzalez FJ, Malik KU. Disruption of the cytochrome P-450 1B1 gene exacerbates renal dysfunction and damage associated with angiotensin II-induced hypertension in female mice. Am J Physiol Renal Physiol 2015; 308:F981-92. [PMID: 25694484 DOI: 10.1152/ajprenal.00597.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/11/2015] [Indexed: 11/22/2022] Open
Abstract
Recently, we demonstrated in female mice that protection against ANG II-induced hypertension and associated cardiovascular changes depend on cytochrome P-450 (CYP)1B1. The present study was conducted to determine if Cyp1b1 gene disruption ameliorates renal dysfunction and organ damage associated with ANG II-induced hypertension in female mice. ANG II (700 ng·kg(-1)·min(-1)) infused by miniosmotic pumps for 2 wk in female Cyp1b1(+/+) mice did not alter water consumption, urine output, Na(+) excretion, osmolality, or protein excretion. However, in Cyp1b1(-/-) mice, ANG II infusion significantly increased (P < 0.05) water intake (5.50 ± 0.42 ml/24 h with vehicle vs. 8.80 ± 0.60 ml/24 h with ANG II), urine output (1.44 ± 0.37 ml/24 h with vehicle vs. 4.30 ± 0.37 ml/24 h with ANG II), and urinary Na(+) excretion (0.031 ± 0.016 mmol/24 h with vehicle vs. 0.099 ± 0.010 mmol/24 h with ANG II), decreased osmolality (2,630 ± 79 mosM/kg with vehicle vs. 1,280 ± 205 mosM/kg with ANG II), and caused proteinuria (2.60 ± 0.30 mg/24 h with vehicle vs. 6.96 ± 0.55 mg/24 h with ANG II). Infusion of ANG II caused renal fibrosis, as indicated by an accumulation of renal interstitial α-smooth muscle actin, collagen, and transforming growth factor-β in Cyp1b1(-/-) but not Cyp1b1(+/+) mice. ANG II also increased renal production of ROS and urinary excretion of thiobarburic acid-reactive substances and reduced the activity of antioxidants and urinary excretion of nitrite/nitrate and the 17β-estradiol metabolite 2-methoxyestradiol in Cyp1b1(-/-) but not Cyp1b1(+/+) mice. These data suggest that Cyp1b1 plays a critical role in female mice in protecting against renal dysfunction and end-organ damage associated with ANG II-induced hypertension, in preventing oxidative stress, and in increasing activity of antioxidant systems, most likely via generation of 2-methoxyestradiol from 17β-estradiol.
Collapse
Affiliation(s)
- Brett L Jennings
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Joseph A Moore
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Ajeeth K Pingili
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Anne M Estes
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Xiao R Fang
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Alie Kanu
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee; and
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, Maryland
| | - Kafait U Malik
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee;
| |
Collapse
|
12
|
Madeen E, Corley RA, Crowell S, Turteltaub K, Ognibene T, Malfatti M, McQuistan T, Garrard M, Sudakin D, Williams DE. Human in Vivo Pharmacokinetics of [(14)C]Dibenzo[def,p]chrysene by Accelerator Mass Spectrometry Following Oral Microdosing. Chem Res Toxicol 2015; 28:126-34. [PMID: 25418912 PMCID: PMC4303324 DOI: 10.1021/tx5003996] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Indexed: 11/28/2022]
Abstract
Dibenzo(def,p)chrysene (DBC), (also known as dibenzo[a,l]pyrene), is a high molecular weight polycyclic aromatic hydrocarbon (PAH) found in the environment, including food, produced by the incomplete combustion of hydrocarbons. DBC, classified by IARC as a 2A probable human carcinogen, has a relative potency factor (RPF) in animal cancer models 30-fold higher than benzo[a]pyrene. No data are available describing the disposition of high molecular weight (>4 rings) PAHs in humans to compare to animal studies. Pharmacokinetics of DBC was determined in 3 female and 6 male human volunteers following oral microdosing (29 ng, 5 nCi) of [(14)C]-DBC. This study was made possible with highly sensitive accelerator mass spectrometry (AMS), capable of detecting [(14)C]-DBC equivalents in plasma and urine following a dose considered of de minimus risk to human health. Plasma and urine were collected over 72 h. The plasma Cmax was 68.8 ± 44.3 fg·mL(-1) with a Tmax of 2.25 ± 1.04 h. Elimination occurred in two distinct phases: a rapid (α)-phase, with a T1/2 of 5.8 ± 3.4 h and an apparent elimination rate constant (Kel) of 0.17 ± 0.12 fg·h(-1), followed by a slower (β)-phase, with a T1/2 of 41.3 ± 29.8 h and an apparent Kel of 0.03 ± 0.02 fg·h(-1). In spite of the high degree of hydrophobicity (log Kow of 7.4), DBC was eliminated rapidly in humans, as are most PAHs in animals, compared to other hydrophobic persistent organic pollutants such as, DDT, PCBs and TCDD. Preliminary examination utilizing a new UHPLC-AMS interface, suggests the presence of polar metabolites in plasma as early as 45 min following dosing. This is the first in vivo data set describing pharmacokinetics in humans of a high molecular weight PAH and should be a valuable addition to risk assessment paradigms.
Collapse
Affiliation(s)
- Erin Madeen
- Department of Environmental and Molecular Toxicology, Superfund Research
Center, Linus Pauling Institute, and Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon 97331, United States
| | - Richard A. Corley
- Department of Environmental and Molecular Toxicology, Superfund Research
Center, Linus Pauling Institute, and Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon 97331, United States
- Systems
Toxicology & Exposure Science, Pacific
Northwest National Laboratory, Richland, Washington 99354, United States
| | - Susan Crowell
- Department of Environmental and Molecular Toxicology, Superfund Research
Center, Linus Pauling Institute, and Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon 97331, United States
- Systems
Toxicology & Exposure Science, Pacific
Northwest National Laboratory, Richland, Washington 99354, United States
| | - Kenneth Turteltaub
- Biology and
Biotechnology Research Division, and the Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Ted Ognibene
- Biology and
Biotechnology Research Division, and the Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Mike Malfatti
- Biology and
Biotechnology Research Division, and the Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Tammie
J. McQuistan
- Department of Environmental and Molecular Toxicology, Superfund Research
Center, Linus Pauling Institute, and Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon 97331, United States
| | - Mary Garrard
- Department of Environmental and Molecular Toxicology, Superfund Research
Center, Linus Pauling Institute, and Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon 97331, United States
| | - Dan Sudakin
- Department of Environmental and Molecular Toxicology, Superfund Research
Center, Linus Pauling Institute, and Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon 97331, United States
| | - David E. Williams
- Department of Environmental and Molecular Toxicology, Superfund Research
Center, Linus Pauling Institute, and Environmental Health Sciences Center, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
13
|
Crowell SR, Hanson-Drury S, Williams DE, Corley RA. In vitro metabolism of benzo[a]pyrene and dibenzo[def,p]chrysene in rodent and human hepatic microsomes. Toxicol Lett 2014; 228:48-55. [PMID: 24769260 PMCID: PMC4274170 DOI: 10.1016/j.toxlet.2014.04.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous and often carcinogenic contaminants released into the environment during natural and anthropogenic combustion processes. Benzo[a]pyrene (B[a]P) is the prototypical carcinogenic PAH, and dibenzo[def,p]chrysene (DBC) is a less prevalent, but highly potent transplacental carcinogenic PAH. Both are metabolically activated by isoforms of the cytochrome P450 enzyme superfamily to form reactive carcinogenic and cytotoxic metabolites. Metabolism of B[a]P and DBC was studied in hepatic microsomes of male Sprague-Dawley rats, naïve and pregnant female B6129SF1/J mice, and female humans, corresponding to available pharmacokinetic data. Michaelis-Menten saturation kinetic parameters including maximum rates of metabolism (VMAX, nmol/min/mg microsomal protein), affinity constants (KM, μM), and rates of intrinsic clearance (CLINT, ml/min/kg body weight) were calculated from substrate depletion data. CLINT was also estimated from substrate depletion data using the alternative in vitro half-life method. VMAX and CLINT were higher for B[a]P than DBC, regardless of species. Clearance for both B[a]P and DBC was highest in naïve female mice and lowest in female humans. Clearance rates of B[a]P and DBC in male rat were more similar to female human than to female mice. Clearance of DBC in liver microsomes from pregnant mice was reduced compared to naïve mice, consistent with reduced active P450 protein levels and elevated tissue concentrations and residence times for DBC observed in previous in vivo pharmacokinetic studies. These findings suggest that rats are a more appropriate model organism for human PAH metabolism, and that pregnancy's effects on metabolism should be further explored.
Collapse
Affiliation(s)
- S R Crowell
- Systems Toxicology and Exposure Science, Pacific Northwest National Laboratory, Richland, WA, United States.
| | - S Hanson-Drury
- Systems Toxicology and Exposure Science, Pacific Northwest National Laboratory, Richland, WA, United States
| | - D E Williams
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - R A Corley
- Systems Toxicology and Exposure Science, Pacific Northwest National Laboratory, Richland, WA, United States
| |
Collapse
|
14
|
Crowell SR, Sharma AK, Amin S, Soelberg JJ, Sadler NC, Wright AT, Baird WM, Williams DE, Corley RA. Impact of pregnancy on the pharmacokinetics of dibenzo[def,p]chrysene in mice. Toxicol Sci 2013; 135:48-62. [PMID: 23744095 PMCID: PMC3748759 DOI: 10.1093/toxsci/kft124] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 05/24/2013] [Indexed: 11/13/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants generated during combustion. Dibenzo[def,p]chrysene (DBC) is a high molecular weight PAH classified as a 2B carcinogen by the International Agency for Research on Cancer. DBC crosses the placenta in exposed mice, causing carcinogenicity in offspring. We present pharmacokinetic data of DBC in pregnant and nonpregnant mice. Pregnant (gestational day 17) and nonpregnant female B6129SF1/J mice were exposed to 15mg/kg DBC by oral gavage. Subgroups of mice were sacrificed up to 48h postdosing, and blood, excreta, and tissues were analyzed for DBC and its major diol and tetrol metabolites. Elevated maximum concentrations and areas under the curve of DBC and its metabolites were observed in blood and tissues of pregnant animals compared with naïve mice. Using a physiologically based pharmacokinetic (PBPK) model, we found observed differences in pharmacokinetics could not be attributed solely to changes in tissue volumes and blood flows that occur during pregnancy. Measurement of enzyme activity in naïve and pregnant mice by activity-based protein profiling indicated a 2- to 10-fold reduction in activities of many of the enzymes relevant to PAH metabolism. Incorporating this reduction into the PBPK model improved model predictions. Concentrations of DBC in fetuses were one to two orders of magnitude below maternal blood concentrations, whereas metabolite concentrations closely resembled those observed in maternal blood.
Collapse
Affiliation(s)
- Susan Ritger Crowell
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Differential modulation of dibenzo[def,p]chrysene transplacental carcinogenesis: maternal diets rich in indole-3-carbinol versus sulforaphane. Toxicol Appl Pharmacol 2013; 270:60-9. [PMID: 23566957 DOI: 10.1016/j.taap.2013.02.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/15/2013] [Accepted: 02/18/2013] [Indexed: 11/24/2022]
Abstract
Cruciferous vegetable components have been documented to exhibit anticancer properties. Targets of action span multiple mechanisms deregulated during cancer progression, ranging from altered carcinogen metabolism to the restoration of epigenetic machinery. Furthermore, the developing fetus is highly susceptible to changes in nutritional status and to environmental toxicants. Thus, we have exploited a mouse model of transplacental carcinogenesis to assess the impact of maternal dietary supplementation on cancer risk in offspring. In this study, transplacental and lactational exposure to a maternal dose of 15mg/Kg B.W. of dibenzo[def,p]chrysene (DBC) resulted in significant morbidity of offspring due to an aggressive T-cell lymphoblastic lymphoma. As in previous studies, indole-3-carbinol (I3C, feed to the dam at 100, 500 or 1000ppm), derived from cruciferous vegetables, dose-dependently reduced lung tumor multiplicity and also increased offspring survival. Brussels sprout and broccoli sprout powders, selected for their relative abundance of I3C and the bioactive component sulforaphane (SFN), respectively, surprisingly enhanced DBC-induced morbidity and tumorigenesis when incorporated into the maternal diet at 10% wt/wt. Purified SFN, incorporated in the maternal diet at 400ppm, also decreased the latency of DBC-dependent morbidity. Interestingly, I3C abrogated the effect of SFN when the two purified compounds were administered in equimolar combination (500ppm I3C and 600ppm SFN). SFN metabolites measured in the plasma of neonates positively correlated with exposure levels via the maternal diet but not with offspring mortality. These findings provide justification for further study of the safety and bioactivity of cruciferous vegetable phytochemicals at supplemental concentrations during the perinatal period.
Collapse
|
16
|
Benninghoff AD, Williams DE. The role of estrogen receptor β in transplacental cancer prevention by indole-3-carbinol. Cancer Prev Res (Phila) 2013; 6:339-48. [PMID: 23447562 DOI: 10.1158/1940-6207.capr-12-0311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In the present study, the efficacy of indole-3-carbinol (I3C), a key bioactive component of cruciferous vegetables, for prevention of cancer in offspring exposed in utero to the environmental carcinogen dibenzo[def,p]chrysene (DBC) was evaluated using an estrogen receptor β (ERβ) knockout mouse model. I3C was provided either through the maternal diet coincident with carcinogen exposure during pregnancy or directly to offspring postinitiation with DBC. I3C was effective at reducing T-cell acute lymphoblastic lymphoma/leukemia (T-ALL)-related mortality in offspring only if provided via the maternal diet, although a gender difference in the role of ERβ in mediating this response was evident. In female offspring, chemoprevention of T-ALL by maternal dietary I3C required expression of ERβ; survival in Esr2 wild-type and heterozygous female offspring was more than 90% compared with 66% in Esr2 null females. Alternatively, ERβ status did not significantly impact the transplacental chemoprevention by I3C in males. The possible role of ERβ in mediating lung carcinogenesis or chemoprevention by I3C was similarly complicated. Lung tumor incidence was unaltered by either dietary intervention, whereas lung tumor multiplicity was substantially reduced in Esr2 null females on the control diet and marginally lower in Esr2 null males exposed to I3C via the maternal diet compared with their wild-type and heterozygous counterparts. These findings suggest that I3C may act via ERβ to prevent or suppress DBC-initiated transplacental carcinogenesis but that the involvement of this receptor seems to differ depending on the cancer type and gender of the offspring.
Collapse
Affiliation(s)
- Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, 4815 Old Main Hill, Logan, UT 84322, USA.
| | | |
Collapse
|
17
|
Larkin A, Siddens LK, Krueger SK, Tilton SC, Waters KM, Williams DE, Baird WM. Application of a fuzzy neural network model in predicting polycyclic aromatic hydrocarbon-mediated perturbations of the Cyp1b1 transcriptional regulatory network in mouse skin. Toxicol Appl Pharmacol 2012; 267:192-9. [PMID: 23274566 DOI: 10.1016/j.taap.2012.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 12/10/2012] [Accepted: 12/14/2012] [Indexed: 10/27/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are present in the environment as complex mixtures with components that have diverse carcinogenic potencies and mostly unknown interactive effects. Non-additive PAH interactions have been observed in regulation of cytochrome P450 (CYP) gene expression in the CYP1 family. To better understand and predict biological effects of complex mixtures, such as environmental PAHs, an 11 gene input-1 gene output fuzzy neural network (FNN) was developed for predicting PAH-mediated perturbations of dermal Cyp1b1 transcription in mice. Input values were generalized using fuzzy logic into low, medium, and high fuzzy subsets, and sorted using k-means clustering to create Mamdani logic functions for predicting Cyp1b1 mRNA expression. Model testing was performed with data from microarray analysis of skin samples from FVB/N mice treated with toluene (vehicle control), dibenzo[def,p]chrysene (DBC), benzo[a]pyrene (BaP), or 1 of 3 combinations of diesel particulate extract (DPE), coal tar extract (CTE) and cigarette smoke condensate (CSC) using leave-one-out cross-validation. Predictions were within 1 log(2) fold change unit of microarray data, with the exception of the DBC treatment group, where the unexpected down-regulation of Cyp1b1 expression was predicted but did not reach statistical significance on the microarrays. Adding CTE to DPE was predicted to increase Cyp1b1 expression, whereas adding CSC to CTE and DPE was predicted to have no effect, in agreement with microarray results. The aryl hydrocarbon receptor repressor (Ahrr) was determined to be the most significant input variable for model predictions using back-propagation and normalization of FNN weights.
Collapse
Affiliation(s)
- Andrew Larkin
- Department of Environmental and Molecular Toxicology, Oregon State University, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Siddens LK, Larkin A, Krueger SK, Bradfield CA, Waters KM, Tilton SC, Pereira CB, Löhr CV, Arlt VM, Phillips DH, Williams DE, Baird WM. Polycyclic aromatic hydrocarbons as skin carcinogens: comparison of benzo[a]pyrene, dibenzo[def,p]chrysene and three environmental mixtures in the FVB/N mouse. Toxicol Appl Pharmacol 2012; 264:377-86. [PMID: 22935520 PMCID: PMC3483092 DOI: 10.1016/j.taap.2012.08.014] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/27/2012] [Accepted: 08/15/2012] [Indexed: 02/04/2023]
Abstract
The polycyclic aromatic hydrocarbon (PAH), benzo[a]pyrene (BaP), was compared to dibenzo[def,p]chrysene (DBC) and combinations of three environmental PAH mixtures (coal tar, diesel particulate and cigarette smoke condensate) using a two stage, FVB/N mouse skin tumor model. DBC (4nmol) was most potent, reaching 100% tumor incidence with a shorter latency to tumor formation, less than 20 weeks of 12-O-tetradecanoylphorbol-13-acetate (TPA) promotion compared to all other treatments. Multiplicity was 4 times greater than BaP (400 nmol). Both PAHs produced primarily papillomas followed by squamous cell carcinoma and carcinoma in situ. Diesel particulate extract (1 mg SRM 1650b; mix 1) did not differ from toluene controls and failed to elicit a carcinogenic response. Addition of coal tar extract (1 mg SRM 1597a; mix 2) produced a response similar to BaP. Further addition of 2 mg of cigarette smoke condensate (mix 3) did not alter the response with mix 2. PAH-DNA adducts measured in epidermis 12 h post initiation and analyzed by ³²P post-labeling, did not correlate with tumor incidence. PAH-dependent alteration in transcriptome of skin 12 h post initiation was assessed by microarray. Principal component analysis (sum of all treatments) of the 922 significantly altered genes (p<0.05), showed DBC and BaP to cluster distinct from PAH mixtures and each other. BaP and mixtures up-regulated phase 1 and phase 2 metabolizing enzymes while DBC did not. The carcinogenicity with DBC and two of the mixtures was much greater than would be predicted based on published Relative Potency Factors (RPFs).
Collapse
Affiliation(s)
- Lisbeth K. Siddens
- Department of Environmental and Molecular Toxicology, Oregon State University, USA
- Superfund Research Center, Oregon State University, USA
| | - Andrew Larkin
- Department of Environmental and Molecular Toxicology, Oregon State University, USA
- Superfund Research Center, Oregon State University, USA
| | - Sharon K. Krueger
- Superfund Research Center, Oregon State University, USA
- The Linus Pauling Institute, Oregon State University, USA
| | | | - Katrina M. Waters
- Superfund Research Center, Oregon State University, USA
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland WA 99352 USA
| | - Susan C. Tilton
- Superfund Research Center, Oregon State University, USA
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, Richland WA 99352 USA
| | - Cliff B. Pereira
- Superfund Research Center, Oregon State University, USA
- Deptartment of Statistics, Oregon State University, Corvallis, OR 97331, USA
- Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Christiane V. Löhr
- Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
- College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Volker M. Arlt
- Analytical and Environmental Sciences Division, MRC-HPA Centre for Environment & Health, King’s College London, London SE1 9NH, U.K
| | - David H. Phillips
- Analytical and Environmental Sciences Division, MRC-HPA Centre for Environment & Health, King’s College London, London SE1 9NH, U.K
| | - David E. Williams
- Department of Environmental and Molecular Toxicology, Oregon State University, USA
- Superfund Research Center, Oregon State University, USA
- The Linus Pauling Institute, Oregon State University, USA
- Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - William M. Baird
- Department of Environmental and Molecular Toxicology, Oregon State University, USA
- Superfund Research Center, Oregon State University, USA
- Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
19
|
Badal S, Gallimore W, Huang G, Tzeng TRJ, Delgoda R. Cytotoxic and potent CYP1 inhibitors from the marine algae Cymopolia barbata. Org Med Chem Lett 2012; 2:21. [PMID: 22686946 PMCID: PMC3541164 DOI: 10.1186/2191-2858-2-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 04/13/2012] [Indexed: 11/13/2022] Open
Abstract
Background Extracts from the marine algae Cymopolia barbata have previously shown promising pharmacological activity including antifungal, antitumor, antimicrobial, and antimutagenic properties. Even though extracts have demonstrated such bioactivity, isolated ingredients responsible for such bioactivity remain unspecified. In this study, we describe chemical characterization and evaluations of biological activity of prenylated bromohydroquinones (PBQ) isolated from the marine algae C. barbata for their cytotoxic and chemopreventive potential. Methods The impact of PBQs on the viability of cell lines (MCF-7, HT29, HepG, and CCD18 Co) was evaluated using the MTS assay. In addition, their inhibitory impact on the activities of heterologously expressed cytochrome P450 (CYP) enzymes (CYP1A1, CYP1A2, CYP1B1, CYP2C19, CYP2D6, and CYP3A4) was evaluated using a fluorescent assay. Results 7-Hydroxycymopochromanone (PBQ1) and 7-hydroxycymopolone (PBQ2) were isolated using liquid and column chromatography, identified using 1 H and 13 C NMR spectra and compared with the spectra of previously isolated PBQs. PBQ2 selectively impacted the viability of HT29, colon cancer cells with similar potency to the known chemotherapeutic drug, fluorouracil (IC50, 19.82 ± 0.46 μM compared to 23.50 ± 1.12 μM, respectively) with impact toward normal colon cells also being comparable (55.65 ± 3.28 compared to 55.51 ± 3.71 μM, respectively), while PBQ1 had no impact on these cells. Both PBQs had potent inhibition against the activities of CYP1A1 and CYP1B1, the latter which is known to be a universal marker for cancer and a target for drug discovery. Inhibitors of CYP1 enzymes by virtue of the prevention of activation of carcinogens such as benzo-a-pyrene have drawn attention as potential chemopreventors. PBQ2 potently inhibited the activity of CYP1B1 (IC50 0.14 ± 0.04 μM), while both PBQ1 and PBQ2 potently inhibited the activity of CYP1A1 (IC50s of 0.39 ± 0.05 μM and 0.93 ± 0.26 μM, respectively). Further characterizations showed partial noncompetitive enzyme kinetics for PBQ2 with CYP1B1 with a Ki of 4.7 × 10–3 ± 5.1 × 10–4 μM and uncompetitive kinetics with CYP1A1 (Ki = 0.84 ± 0.07 μM); while PBQ1 displayed partial non competitive enzyme kinetics with CYP1A1 (Ki of 3.07 ± 0.69 μM), noncompetitive kinetics with CYP1A2 (Ki = 9.16 ± 4.68 μM) and uncompetitive kinetics with CYP1B1 (Ki = 0.26 ± 0.03 μM) . Conclusions We report for the first time, two isolated ingredients from C. barbata, PBQ1 and PBQ2, that show potential as valuable chemotherapeutic compounds. A hydroxyl moiety resident in PBQ2 appears to be critical for selectivity and potency against the cancer colon cells, HT29, in comparison to the three other malignant cell lines studied. PBQs also show potency against the activities of CYP1 enzyme which may be a lead in chemoprevention. This study, the first on isolates from these marine algae, exemplifies the value of searching within nature for unique structural motifs that can display multiple biological activities.
Collapse
Affiliation(s)
- Simone Badal
- Natural Products Institute, Faculty of Pure and Applied Sciences, University of the West Indies, Mona, West Indies, Jamaica.
| | | | | | | | | |
Collapse
|
20
|
G.E. J, Pratap S, Ramesh A, Hood D. In utero exposure to benzo(a)pyrene predisposes offspring to cardiovascular dysfunction in later-life. Toxicology 2012; 295:56-67. [PMID: 22374506 PMCID: PMC3575114 DOI: 10.1016/j.tox.2012.01.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 01/28/2012] [Accepted: 01/30/2012] [Indexed: 02/07/2023]
Abstract
In utero exposure of the fetus to benzo(a)pyrene [B(a)P], a polycyclic aromatic hydrocarbon, is thought to dysregulate cardiovascular development. To investigate the effects of in utero B(a)P exposure on cardiovascular development, timed-pregnant Long Evans Hooded (LEH) rats were exposed to diluent or B(a)P (150, 300, 600 and 1200 μg/kg/BW) by oral gavage on embryonic (E) days E14 (the metamorphosing embryo stage) through E17 (the 1st fetal stage). There were no significant effects of in utero exposure to B(a)P on the number of pups born per litter or in pre-weaning growth curves. Pre-weaning profiles for B(a)P metabolite generation from cardiovascular tissue were shown to be dose-dependent and elimination of these metabolites was shown to be time-dependent in exposed offspring. Systolic blood pressure on postnatal day P53 in the middle and high exposure groups of offspring were significantly elevated as compared to controls. Microarray and quantitative real-time PCR results were directly relevant to a biological process pathway in animal models for "regulation of blood pressure". Microarray and quantitative real-time PCR analysis revealed upregulation of mRNA expression for angiotensin (AngII), angiotensinogen (AGT) and endothelial nitric oxide synthase (eNOS) in exposed offspring. Biological network analysis and gene set enrichment analysis subsequently identified potential signaling mechanisms and molecular pathways that might explain the elevated systolic blood pressures observed in B(a)P-exposed offspring. Our findings suggest that in utero exposure to B(a)P predispose offspring to functional deficits in cardiovascular development that may contribute to cardiovascular dysfunction in later life.
Collapse
Affiliation(s)
- Jules G.E.
- Department of Neuroscience and Pharmacology, Environmental-Health Disparities and Medicine, Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, TN 37208, USA
| | - S. Pratap
- Department of Microbiology & Immunology, Microarray/Bioinformatics Core, Meharry Medical College, Nashville, TN 37208, USA
| | - A. Ramesh
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - D.B. Hood
- Department of Neuroscience and Pharmacology, Environmental-Health Disparities and Medicine, Center for Molecular and Behavioral Neuroscience, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
21
|
Shorey LE, Castro DJ, Baird WM, Siddens LK, Löhr CV, Matzke MM, Waters KM, Corley RA, Williams DE. Transplacental carcinogenesis with dibenzo[def,p]chrysene (DBC): timing of maternal exposures determines target tissue response in offspring. Cancer Lett 2012; 317:49-55. [PMID: 22085489 PMCID: PMC3269513 DOI: 10.1016/j.canlet.2011.11.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 11/04/2011] [Accepted: 11/07/2011] [Indexed: 01/21/2023]
Abstract
Dibenzo[def,p]chrysene (DBC) is a transplacental carcinogen in mice (15mg/kg; gestation day (GD) 17). To mimic residual exposure throughout pregnancy, dams received four smaller doses of DBC (3.75mg/kg) on GD 5, 9, 13 and 17. This regimen alleviated the previously established carcinogenic responses in the thymus, lung, and liver. However, there was a marked increase in ovarian tumors (females) and hyperplastic testes (males). [(14)C]-DBC (GD 17) dosing revealed transplacental distribution to fetal tissues at 10-fold lower concentrations than in paired maternal tissue and residual [(14)C] 3weeks post-dose. This study highlights the importance of developmental stage in susceptibility to environmental carcinogens.
Collapse
Affiliation(s)
- Lyndsey E Shorey
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Crowell SR, Amin SG, Anderson KA, Krishnegowda G, Sharma AK, Soelberg JJ, Williams DE, Corley RA. Preliminary physiologically based pharmacokinetic models for benzo[a]pyrene and dibenzo[def,p]chrysene in rodents. Toxicol Appl Pharmacol 2011; 257:365-76. [PMID: 22001385 DOI: 10.1016/j.taap.2011.09.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/15/2011] [Accepted: 09/21/2011] [Indexed: 11/24/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants generated as byproducts of natural and anthropogenic combustion processes. Despite significant public health concern, physiologically based pharmacokinetic (PBPK) modeling efforts for PAHs have so far been limited to naphthalene, plus simpler PK models for pyrene, nitropyrene, and benzo[a]pyrene (B[a]P). The dearth of published models is due in part to the high lipophilicity, low volatility, and myriad metabolic pathways for PAHs, all of which present analytical and experimental challenges. Our research efforts have focused upon experimental approaches and initial development of PBPK models for the prototypic PAH, B[a]P, and the more potent, albeit less studied transplacental carcinogen, dibenzo[def,p]chrysene (DBC). For both compounds, model compartments included arterial and venous blood, flow limited lung, liver, richly perfused and poorly perfused tissues, diffusion limited fat, and a two compartment theoretical gut (for oral exposures). Hepatic and pulmonary metabolism was described for both compounds, as were fractional binding in blood and fecal clearance. Partition coefficients for parent PAH along with their diol and tetraol metabolites were estimated using published algorithms and verified experimentally for the hydroxylated metabolites. The preliminary PBPK models were able to describe many, but not all, of the available data sets, comprising multiple routes of exposure (oral, intravenous) and nominal doses spanning several orders of magnitude.
Collapse
Affiliation(s)
- Susan Ritger Crowell
- Biological Monitoring and Modeling Group, Pacific Northwest National Laboratory, Richland, WA 99352, USA.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Badal S, Williams S, Huang G, Francis S, Vendantam P, Dunbar O, Jacobs H, Tzeng T, Gangemi J, Delgoda R. Cytochrome P450 1 enzyme inhibition and anticancer potential of chromene amides from Amyris plumieri. Fitoterapia 2011; 82:230-6. [DOI: 10.1016/j.fitote.2010.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 09/27/2010] [Accepted: 10/05/2010] [Indexed: 11/30/2022]
|
24
|
Swanson HI, Njar VCO, Yu Z, Castro DJ, Gonzalez FJ, Williams DE, Huang Y, Kong ANT, Doloff JC, Ma J, Waxman DJ, Scott EE. Targeting drug-metabolizing enzymes for effective chemoprevention and chemotherapy. Drug Metab Dispos 2010; 38:539-44. [PMID: 20233842 DOI: 10.1124/dmd.109.031351] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The primary focus of chemoprevention research is the prevention of cancer using pharmacological, biological, and nutritional interventions. Chemotherapeutic approaches that have been used successfully for both the prevention and treatment of a number of human malignancies have arisen from the identification of specific agents and appropriate molecular targets. Although drug-metabolizing enzymes have historically been targeted in attempts to block the initial, genotoxic events associated with the carcinogenic process, emerging evidence supports the idea that manipulating drug-metabolizing enzymes may also be an effective strategy to be used for treating tumor progression, invasion, and, perhaps, metastasis. This report summarizes a symposium that presents some recent progress in this area. One area of emphasis is the development of a CYP17 inhibitor for treatment of prostate cancer that may also have androgen-independent anticancer activity at higher concentrations. A second focus is the use of a mouse model to investigate the effects of aryl hydrocarbon receptor and Cyp1b1 status and chemopreventative agents on transplacental cancer. A third area of focus is the phytochemical manipulation of not only cytochrome P450 (P450) enzymes but also phase II inflammatory and antioxidant enzymes via the nuclear factor-erythroid 2-related factor 2 pathway to block tumor progression. A final highlight is the use of prodrugs activated by P450 enzymes to halt tumor growth and considerations of dosing schedule and targeted delivery of the P450 transgene to tumor tissue. In addition to highlighting recent successes in these areas, limitations and areas that should be targeted for further investigation are discussed.
Collapse
Affiliation(s)
- Hollie I Swanson
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Castro DJ, Lohr CV, Fischer KA, Waters KM, Webb-Robertson BJM, Dashwood RH, Bailey GS, Williams DE. Identifying efficacious approaches to chemoprevention with chlorophyllin, purified chlorophylls and freeze-dried spinach in a mouse model of transplacental carcinogenesis. Carcinogenesis 2008; 30:315-20. [DOI: 10.1093/carcin/bgn280] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
26
|
Castro DJ, Löhr CV, Fischer KA, Pereira CB, Williams DE. Lymphoma and lung cancer in offspring born to pregnant mice dosed with dibenzo[a,l]pyrene: the importance of in utero vs. lactational exposure. Toxicol Appl Pharmacol 2008; 233:454-8. [PMID: 18848954 DOI: 10.1016/j.taap.2008.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 08/29/2008] [Accepted: 09/03/2008] [Indexed: 11/25/2022]
Abstract
The fetus and neonate cannot be viewed as "little adults"; they are highly sensitive to toxicity from environmental chemicals. This phenomenon contributes to the fetal basis of adult disease. One example is transplacental carcinogenesis. Animal models demonstrate that environmental chemicals, to which pregnant women are daily exposed, can increase susceptibility of the offspring to cancer. It is uncertain to what degree in utero vs. lactational exposure contributes to cancer, especially for hydrophobic chemicals such as polyhalogenated biphenyls, ethers, dioxins, furans, etc., which can partition into breast milk. We developed a pregnant mouse model in which exposure to the polycyclic aromatic hydrocarbon (PAH), dibenzo[a,l]pyrene (DBP), during late gestation, produces an aggressive T-cell lymphoma in offspring between 3 and 6 months of age. Survivors exhibit multiple lung and liver (males) tumors. Here, we adopt a cross-foster design with litters born to dams treated with DBP exchanged with those born to dams treated with vehicle. Exposure to DBP in utero (about 2 days) produced significantly greater mortality than residual DBP exposure only through breast milk (3 weeks of lactation). As previously observed pups in all groups with an ahr(b-1/d) ("responsive") genotype were more susceptible to lymphoma mortality than ahr(d/d) ("non-responsive") siblings. At termination of the study at 10 months, mice exposed in utero also had greater lung tumor multiplicity than mice exposed only during lactation. Our results demonstrate that short exposure to DBP during late gestation presents a greater risk to offspring than exposure to this very hydrophobic PAH following 3 weeks of nursing.
Collapse
Affiliation(s)
- David J Castro
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331-7301, USA
| | | | | | | | | |
Collapse
|
27
|
Castro DJ, Yu Z, Löhr CV, Pereira CB, Giovanini JN, Fischer KA, Orner GA, Dashwood RH, Williams DE. Chemoprevention of dibenzo[a,l]pyrene transplacental carcinogenesis in mice born to mothers administered green tea: primary role of caffeine. Carcinogenesis 2008; 29:1581-6. [PMID: 18635525 DOI: 10.1093/carcin/bgm237] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Our laboratory recently developed a mouse model of transplacental induction of lymphoma, lung and liver cancer by the polycyclic aromatic hydrocarbon, dibenzo[a,l]pyrene (DBP). Pregnant B6129SF1 females, bred to 129S1/SvIm males, were treated on day 17 of gestation with an oral dose of 15 mg/kg DBP. Beginning on day 0 of gestation, dams were given (ad lib) buffered water, 0.5% green tea, 0.5% decaffeinated green tea, caffeine or epigallocatechin-3-gallate (EGCG) (both at equivalent concentrations found in tea). The concentration of the teas (and corresponding caffeine and EGCG) was increased to 1.0% upon entering the second trimester, 1.5% at onset of the third trimester and continued at 1.5% until pups were weaned at 21 days of age. Offspring were raised with normal drinking water and AIN93G diet. Beginning at 2 months of age, offspring experienced significant mortalities due to an aggressive T-cell lymphoma as seen in our previous studies. Ingestion of caffeinated, but not decaffeinated, green tea provided modest but significant protection (P = 0.03) against mortality. Caffeine provided a more robust (P = 0.006) protection, but EGCG was without effect. Offspring also developed DBP-dependent lung adenomas. All treatments significantly reduced lung tumor multiplicity relative to controls (P < 0.02). EGCG was most effective at decreasing tumor burden (P = 0.005) by on average over 40% compared with controls. Induction of Cytochrome P450 (Cyp)1b1 in maternal liver may reduce bioavailability of DBP to the fetus as a mechanism of chemoprevention. This is the first demonstration that maternal ingestion of green tea, during pregnancy and nursing, provides protection against transplacental carcinogenesis.
Collapse
Affiliation(s)
- David J Castro
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | | | | | | | | | | | |
Collapse
|