1
|
Goluch Z, Wierzbicka-Rucińska A, Książek E. Nutrition in Gilbert's Syndrome-A Systematic Review of Clinical Trials According to the PRISMA Statement. Nutrients 2024; 16:2247. [PMID: 39064690 PMCID: PMC11280271 DOI: 10.3390/nu16142247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Gilbert syndrome is the most common hyperbilirubinemia, associated with a mutation in the UGT1A1 bilirubin gene, which produces an enzyme that conjugates bilirubin with glucuronic acid. Episodes of jaundice occurring in GS negatively affect patients' quality of life. This systematic review aimed to analyze clinical studies regarding nutrition in people with GS. The study followed the PRISMA guidelines and utilized the Ebsco, Embase, Cochrane, PubMed, Scopus, and Web of Science databases to search clinical trials focused on diet/nutrition in GS (1963-2023 years). The methodological quality of selected studies was assessed using the Jadad scale. As a result, 19 studies met the inclusion criteria. The research mainly focused on the impact of caloric restriction, consumption of various diet variants, and vegetables and fruits on hyperbilirubinemia and metabolic health. A nutritional intervention consisting of not applying excessive calorie restrictions and consuming fats and biologically active compounds in vegetables and fruits (Cruciferae, Apiaceous, Rutaceae) may prevent the occurrence of jaundice episodes. It is justified to conduct further research on detecting such compounds in food, which, by influencing the expression of the UGT liver enzyme gene, could contribute to regulating bilirubin concentration in the blood of people with GS.
Collapse
Affiliation(s)
- Zuzanna Goluch
- Department of Food Technology and Nutrition, Wroclaw University of Economics and Business, Komandorska 118/120, 53-345 Wrocław, Poland
| | - Aldona Wierzbicka-Rucińska
- Department of Clinical Biochemistry, Radioimmunology and Experimental Medicine, Children’s Memorial Health Institute, 04-730 Warsaw, Poland
| | - Ewelina Książek
- Department of Agricultural Engineering and Quality Analysis, Wrocław University of Economics and Business, Komandorska 118/120, 53-345 Wrocław, Poland;
| |
Collapse
|
2
|
van Steenwijk HP, Winter E, Knaven E, Brouwers JF, van Baardwijk M, van Dalum JB, Luijendijk TJC, van Osch FHM, Troost FJ, Bast A, Semen KO, de Boer A. The beneficial effect of sulforaphane on platelet responsiveness during caloric load: a single-intake, double-blind, placebo-controlled, crossover trial in healthy participants. Front Nutr 2023; 10:1204561. [PMID: 37485383 PMCID: PMC10359317 DOI: 10.3389/fnut.2023.1204561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/15/2023] [Indexed: 07/25/2023] Open
Abstract
Background and aims As our understanding of platelet activation in response to infections and/or inflammatory conditions is growing, it is becoming clearer that safe, yet efficacious, platelet-targeted phytochemicals could improve public health beyond the field of cardiovascular diseases. The phytonutrient sulforaphane shows promise for clinical use due to its effect on inflammatory pathways, favorable pharmacokinetic profile, and high bioavailability. The potential of sulforaphane to improve platelet functionality in impaired metabolic processes has however hardly been studied in humans. This study investigated the effects of broccoli sprout consumption, as a source of sulforaphane, on urinary 11-dehydro-thromboxane B2 (TXB2), a stable thromboxane metabolite used to monitor eicosanoid biosynthesis and response to antithrombotic therapy, in healthy participants exposed to caloric overload. Methods In this double-blind, placebo-controlled, crossover trial 12 healthy participants were administered 16g of broccoli sprouts, or pea sprouts (placebo) followed by the standardized high-caloric drink PhenFlex given to challenge healthy homeostasis. Urine samples were collected during the study visits and analyzed for 11-dehydro-TXB2, sulforaphane and its metabolites. Genotyping was performed using Illumina GSA v3.0 DTCBooster. Results Administration of broccoli sprouts before the caloric load reduced urinary 11-dehydro-TXB2 levels by 50% (p = 0.018). The amount of sulforaphane excreted in the urine during the study visits correlated negatively with 11-dehydro-TXB2 (rs = -0.377, p = 0.025). Participants carrying the polymorphic variant NAD(P)H dehydrogenase quinone 1 (NQO1*2) showed decreased excretion of sulforaphane (p = 0.035). Conclusion Sulforaphane was shown to be effective in targeting platelet responsiveness after a single intake. Our results indicate an inverse causal relationship between sulforaphane and 11-dehydro-TXB2, which is unaffected by the concomitant intake of the metabolic challenge. 11-Dehydro-TXB2 shows promise as a non-invasive, sensitive, and suitable biomarker to investigate the effects of phytonutrients on platelet aggregation within hours. Clinical trial registration [https://clinicaltrials.gov/], identifier [NCT05146804].
Collapse
Affiliation(s)
- Hidde P. van Steenwijk
- Food Claims Centre Venlo, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
| | - Evi Winter
- Food Claims Centre Venlo, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
| | - Edward Knaven
- Research Group Analysis Techniques in the Life Sciences, Avans University of Applied Sciences, Breda, Netherlands
| | - Jos F. Brouwers
- Research Group Analysis Techniques in the Life Sciences, Avans University of Applied Sciences, Breda, Netherlands
| | - Myrthe van Baardwijk
- Omnigen B.V., Delft, Netherlands
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | | | | | - Frits H. M. van Osch
- Department of Clinical Epidemiology, VieCuri Medical Center, Venlo, Netherlands
- Department of Epidemiology, NUTRIM, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Freddy J. Troost
- Division of Gastroenterology-Hepatology, Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, Netherlands
- Food Innovation and Health, Centre for Healthy Eating and Food Innovation, Maastricht University, Maastricht, Netherlands
| | - Aalt Bast
- University College Venlo, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
- Department of Pharmacology and Toxicology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Khrystyna O. Semen
- University College Venlo, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
| | - Alie de Boer
- Food Claims Centre Venlo, Faculty of Science and Engineering, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
3
|
Vermillion Maier ML, Siddens LK, Pennington JM, Uesugi SL, Tilton SC, Vertel EA, Anderson KA, Tidwell LG, Ognibene TJ, Turteltaub KW, Smith JN, Williams DE. Benzo[a]pyrene toxicokinetics in humans following dietary supplementation with 3,3'-diindolylmethane (DIM) or Brussels sprouts. Toxicol Appl Pharmacol 2023; 460:116377. [PMID: 36642108 PMCID: PMC9946811 DOI: 10.1016/j.taap.2023.116377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Utilizing the atto-zeptomole sensitivity of UPLC-accelerator mass spectrometry (UPLC-AMS), we previously demonstrated significant first-pass metabolism following escalating (25-250 ng) oral micro-dosing in humans of [14C]-benzo[a]pyrene ([14C]-BaP). The present study examines the potential for supplementation with Brussels sprouts (BS) or 3,3'-diindolylmethane (DIM) to alter plasma levels of [14C]-BaP and metabolites over a 48-h period following micro-dosing with 50 ng (5.4 nCi) [14C]-BaP. Volunteers were dosed with [14C]-BaP following fourteen days on a cruciferous vegetable restricted diet, or the same diet supplemented for seven days with 50 g of BS or 300 mg of BR-DIM® prior to dosing. BS or DIM reduced total [14C] recovered from plasma by 56-67% relative to non-intervention. Dietary supplementation with DIM markedly increased Tmax and reduced Cmax for [14C]-BaP indicative of slower absorption. Both dietary treatments significantly reduced Cmax values of four downstream BaP metabolites, consistent with delaying BaP absorption. Dietary treatments also appeared to reduce the T1/2 and the plasma AUC(0,∞) for Unknown Metabolite C, indicating some effect in accelerating clearance of this metabolite. Toxicokinetic constants for other metabolites followed the pattern for [14C]-BaP (metabolite profiles remained relatively consistent) and non-compartmental analysis did not indicate other significant alterations. Significant amounts of metabolites in plasma were at the bay region of [14C]-BaP irrespective of treatment. Although the number of subjects and large interindividual variation are limitations of this study, it represents the first human trial showing dietary intervention altering toxicokinetics of a defined dose of a known human carcinogen.
Collapse
Affiliation(s)
- Monica L Vermillion Maier
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; Department of Environmental and Molecular Toxicology, ALS 1007, Oregon State University, Corvallis, OR 97331, USA.
| | - Lisbeth K Siddens
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| | - Jamie M Pennington
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| | - Sandra L Uesugi
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA.
| | - Susan C Tilton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; NIEHS Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA.
| | - Emily A Vertel
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| | - Kim A Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; NIEHS Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA.
| | - Lane G Tidwell
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA.
| | - Ted J Ognibene
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Kenneth W Turteltaub
- Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; Biology and Biotechnology Research Division, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Jordan N Smith
- NIEHS Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA; Chemical Biology and Exposure Science, Pacific Northwest National Laboratory, Richland, WA 99354, USA.
| | - David E Williams
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA; NIEHS Superfund Research Program, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
4
|
Aronica L, Ordovas JM, Volkov A, Lamb JJ, Stone PM, Minich D, Leary M, Class M, Metti D, Larson IA, Contractor N, Eck B, Bland JS. Genetic Biomarkers of Metabolic Detoxification for Personalized Lifestyle Medicine. Nutrients 2022; 14:nu14040768. [PMID: 35215417 PMCID: PMC8876337 DOI: 10.3390/nu14040768] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/19/2023] Open
Abstract
Metabolic detoxification (detox)—or biotransformation—is a physiological function that removes toxic substances from our body. Genetic variability and dietary factors may affect the function of detox enzymes, thus impacting the body’s sensitivity to toxic substances of endogenous and exogenous origin. From a genetic perspective, most of the current knowledge relies on observational studies in humans or experimental models in vivo and in vitro, with very limited proof of causality and clinical value. This review provides health practitioners with a list of single nucleotide polymorphisms (SNPs) located within genes involved in Phase I and Phase II detoxification reactions, for which evidence of clinical utility does exist. We have selected these SNPs based on their association with interindividual variability of detox metabolism in response to certain nutrients in the context of human clinical trials. In order to facilitate clinical interpretation and usage of these SNPs, we provide, for each of them, a strength of evidence score based on recent guidelines for genotype-based dietary advice. We also present the association of these SNPs with functional biomarkers of detox metabolism in a pragmatic clinical trial, the LIFEHOUSE study.
Collapse
Affiliation(s)
- Lucia Aronica
- Department of Nutrition Science, Metagenics, Inc., Aliso Viejo, CA 92656, USA; (I.A.L.); (B.E.)
- Stanford Prevention Research Center, Department of Medicine, Stanford University, California, CA 94305, USA
- Correspondence:
| | - Jose M. Ordovas
- Nutrition and Genomics Laboratory, Jean Mayer USDA Human Nutrition Center on Aging, Tufts University, Boston, MA 02111, USA;
- Nutritional Genomics and Epigenomics Group, IMDEA-Food, 28049 Madrid, Spain
- University Camilo José Cela, Villafranca del Castillo, 28692 Madrid, Spain
| | | | - Joseph J. Lamb
- Personalized Lifestyle Medicine Center, Gig Harbor, WA 98332, USA; (J.J.L.); (P.M.S.); (D.M.)
| | - Peter Michael Stone
- Personalized Lifestyle Medicine Center, Gig Harbor, WA 98332, USA; (J.J.L.); (P.M.S.); (D.M.)
- Institute for Functional Medicine Federal Way, Washington, DC 98003, USA; (D.M.); (M.C.)
- Ashland Comprehensive Family Medicine-Stone Medical, Ashland, OR 97520, USA
- Office of Personalized Health and Well-Being, Medical College of Georgia, AU/UGA Medical Partnership, Athens, GA 30606, USA
| | - Deanna Minich
- Institute for Functional Medicine Federal Way, Washington, DC 98003, USA; (D.M.); (M.C.)
- Human Nutrition and Functional Medicine, University of Western States, Portland, OR 97213, USA
| | | | - Monique Class
- Institute for Functional Medicine Federal Way, Washington, DC 98003, USA; (D.M.); (M.C.)
- The Center for Functional Medicine, Stamford, CT 06905, USA
| | - Dina Metti
- Personalized Lifestyle Medicine Center, Gig Harbor, WA 98332, USA; (J.J.L.); (P.M.S.); (D.M.)
| | - Ilona A. Larson
- Department of Nutrition Science, Metagenics, Inc., Aliso Viejo, CA 92656, USA; (I.A.L.); (B.E.)
| | | | - Brent Eck
- Department of Nutrition Science, Metagenics, Inc., Aliso Viejo, CA 92656, USA; (I.A.L.); (B.E.)
| | - Jeffrey S. Bland
- Personalized Lifestyle Medicine Institute, Bainbridge Island, WA 98110, USA;
| |
Collapse
|
5
|
Glucosinolates, Ca, Se Contents, and Bioaccessibility in Brassica rapa Vegetables Obtained by Organic and Conventional Cropping Systems. Foods 2022; 11:foods11030350. [PMID: 35159500 PMCID: PMC8834489 DOI: 10.3390/foods11030350] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/09/2022] [Accepted: 01/18/2022] [Indexed: 11/17/2022] Open
Abstract
In northwest Spain and Portugal, there is a long tradition of cultivating B. rapa subsp. rapa to obtain turnip greens and turnip tops. Brassica rapa L. subsp. rapa (turnip greens and turnip tops) were grown under conventional and organic conditions in two Farms in southern Spain. Glucosinolatescontents were higher in Brassicas grown under conventional conditions than those grown under organic ones. Average Ca total and bioaccessible contents ranged between 14.6–23.4 mg/g; 8.9–12.0 mg/g for turnip greens and 6.4–8.9 mg/g; 4.3–4.8 mg/g for turnip tops. According to these concentrations, an intake of 100–200 g (fresh weight) of the studied Brassica rapa fulfills Ca dietary reference intakes (DRI) (considering the total content data) and complies with 72–100% Ca DRI percentage (considering the bioaccessible data). Se concentrations ranged between 0.061–0.073 µg/g and 0.039–0.053 µg/g for turnip greens and turnip tops respectively. Se bioaccessibility values were high, with percentages of around 90%. Finally, the total glucosinolate content ranged between 13.23–21.28 µmol/g for turnip greens and 13.36–20.20 µmol/g for turnip tops. In general, the bioaccessibility of the total glucosinolates analyzed in this study was high, with mean values of around 73% and 66% for turnip greens and turnip tops, respectively. Brassica rapa vegetables grown under both organic and conventional conditions in southern Spain are an excellent dietary source of Ca, Se, and glucosinolates with a high bioaccessibility.
Collapse
|
6
|
Vermillion Maier ML, Siddens LK, Uesugi SL, Choi J, Leonard SW, Pennington JM, Tilton SC, Smith JN, Ho E, Chow HHS, Nguyen BD, Kolluri SK, Williams DE. 3,3'-Diindolylmethane Exhibits Significant Metabolism after Oral Dosing in Humans. Drug Metab Dispos 2021; 49:694-705. [PMID: 34035125 PMCID: PMC8407664 DOI: 10.1124/dmd.120.000346] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/07/2021] [Indexed: 01/07/2023] Open
Abstract
3,3'-Diindolylmethane (DIM), a major phytochemical derived from ingestion of cruciferous vegetables, is also a dietary supplement. In preclinical models, DIM is an effective cancer chemopreventive agent and has been studied in a number of clinical trials. Previous pharmacokinetic studies in preclinical and clinical models have not reported DIM metabolites in plasma or urine after oral dosing, and the pharmacological actions of DIM on target tissues is assumed to be solely via the parent compound. Seven subjects (6 males and 1 female) ranging from 26-65 years of age, on a cruciferous vegetable-restricted diet prior to and during the study, took 2 BioResponse DIM 150-mg capsules (45.3 mg DIM/capsule) every evening for one week with a final dose the morning of the first blood draw. A complete time course was performed with plasma and urine collected over 48 hours and analyzed by UPLC-MS/MS. In addition to parent DIM, two monohydroxylated metabolites and 1 dihydroxylated metabolite, along with their sulfate and glucuronide conjugates, were present in both plasma and urine. Results reported here are indicative of significant phase 1 and phase 2 metabolism and differ from previous pharmacokinetic studies in rodents and humans, which reported only parent DIM present after oral administration. 3-((1H-indole-3-yl)methyl)indolin-2-one, identified as one of the monohydroxylated products, exhibited greater potency and efficacy as an aryl hydrocarbon receptor agonist when tested in a xenobiotic response element-luciferase reporter assay using Hepa1 cells. In addition to competitive phytochemical-drug adverse reactions, additional metabolites may exhibit pharmacological activity highlighting the importance of further characterization of DIM metabolism in humans. SIGNIFICANCE STATEMENT: 3,3'-Diindolylmethane (DIM), derived from indole-3-carbinol in cruciferous vegetables, is an effective cancer chemopreventive agent in preclinical models and a popular dietary supplement currently in clinical trials. Pharmacokinetic studies to date have found little or no metabolites of DIM in plasma or urine. In marked contrast, we demonstrate rapid appearance of mono- and dihydroxylated metabolites in human plasma and urine as well as their sulfate and glucuronide conjugates. The 3-((1H-indole-3-yl)methyl)indolin-2-one metabolite exhibited significant aryl hydrocarbon receptor agonist activity, emphasizing the need for further characterization of the pharmacological properties of DIM metabolites.
Collapse
Affiliation(s)
- Monica L Vermillion Maier
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Lisbeth K Siddens
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Sandra L Uesugi
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Jaewoo Choi
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Scott W Leonard
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Jamie M Pennington
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Susan C Tilton
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Jordan N Smith
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Emily Ho
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - H H Sherry Chow
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Bach D Nguyen
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - Siva K Kolluri
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| | - David E Williams
- Department of Environmental and Molecular Toxicology (M.L.V.M., L.K.S., S.C.T., B.D.N., S.K.K., D.E.W.), the Linus Pauling Institute (M.L.V.M., S.L.U., J.C., S.W.L., J.M.P., E.H., D.E.W.), School of Biological and Population Health Sciences (E.H.), Oregon State University, Corvallis, OR; Systems Toxicology & Exposure Science, Pacific Northwest National Laboratory, Richland, WA (J.N.S.); and Cancer Center, University of Arizona, Tucson, AZ (H.H.S.C.)
| |
Collapse
|
7
|
Jung SJ, Kim WL, Park BH, Lee SO, Chae SW. Effect of toxic trace element detoxification, body fat reduction following four-week intake of the Wellnessup diet: a three-arm, randomized clinical trial. Nutr Metab (Lond) 2020; 17:47. [PMID: 32582363 PMCID: PMC7310262 DOI: 10.1186/s12986-020-00465-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022] Open
Abstract
Background Detox diet are known as a popular dieting strategies that helps toxins elimination and weight manage but there is very little clinical evidence. The Wellnessup diet (WD) used in the present study designed as a healthy meals based on organic plant based diets including various vegetables, fruits, whole grains, nuts and phytonutrients. Methods To evaluate the effects of 4 week intake of the WD on toxic trace element detoxification, body fat reduction, and safety parameters. Forty-five women with body mass index (BMI) of 23.5-30 kg/m2 were recruited. Thirty of them were assigned 1:1 to the test group (WD, 15 subjects) and control group 1 (calorie-restricted diet, CRD, 15 subjects) in a single blind and randomized, and the remaining 15 subjects were assigned to control group 2 (maintaining regular diet, MRD). The primary outcome were toxic trace element levels in hair (29 types of heavy metals), and the secondary outcomes were changes in anthropometric and urinary organic acids. Results The levels of four toxic trace elements in hair decreased in the WD group after the diet compared to before the diet. Ni, Rh, Sn, and Ga were significantly lower in the WD group than in the CRD or MRD group (p < 0.05). At the end of the trial, both WD and CRD groups had lower BMI, Waist Circumference(WC), Hip Circumference(HC) and WHR compared to the baseline values (p < 0.05). Compared to the WD group, the CRD group had a greater mean change (p < 0.05) from the baseline for weight loss (- 3.22 ± 0.48 kg vs - 1.88 ± 0.95 kg vs) and fat free mass (- 2.08 kg vs - 1.09 kg). The weight, BMI, body fat mass, fat free mass, WC, and HC of the CRD group were significantly decreased compared to the MRD (p < 0.05). No significant changes in any safety parameter were observed. Conclusions Use of WD might have several beneficial effects and safety such as body fat reduction and improving some the element detoxification through caloric restriction but did not reducing body fat mass more than calorie-restricted diet. Trial registration This study was registered at Clinical Research Information Service (CRIS) of Republic of Korea (KCT0003002).
Collapse
Affiliation(s)
- Su-Jin Jung
- Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju, Jeonbuk 54907 South Korea.,Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Jeonbuk 54907 South Korea
| | - Woo-Lim Kim
- Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju, Jeonbuk 54907 South Korea
| | - Byung-Hyun Park
- Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Jeonbuk 54907 South Korea.,Department of Biochemistry and Molecular Biology, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896 South Korea
| | - Seung-Ok Lee
- Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Jeonbuk 54907 South Korea.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896 South Korea
| | - Soo-Wan Chae
- Clinical Trial Center for Functional Foods, Chonbuk National University Hospital, Jeonju, Jeonbuk 54907 South Korea.,Biomedical Research Institute, Chonbuk National University Hospital, Jeonju, Jeonbuk 54907 South Korea.,Department of Pharmacology, Chonbuk National University Medical School, 567 Baekje-daero, Deokjin, Jeonju, Jeonbuk 54896 South Korea
| |
Collapse
|
8
|
Eagles SK, Gross AS, McLachlan AJ. The Effects of Cruciferous Vegetable-Enriched Diets on Drug Metabolism: A Systematic Review and Meta-Analysis of Dietary Intervention Trials in Humans. Clin Pharmacol Ther 2020; 108:212-227. [PMID: 32086800 DOI: 10.1002/cpt.1811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/26/2020] [Indexed: 12/21/2022]
Abstract
Relatively few studies exist in the literature that discuss the effects of diet on drug metabolism and how this can affect interindividual differences in systemic drug exposure. Several studies have investigated the effects of cruciferous vegetables (Cruciferae) or their constituents on drug-metabolizing activity, as these vegetables form an important part of many peoples' diets. In general, the ingestion of cruciferous vegetables is associated with induction of cytochrome P450 (CYP) 1A2 activity in vivo; however, there is contention between reports, and the clinical significance of potential diet-drug interactions remains unclear. This study reports a systematic review, critical appraisal, and meta-analysis of the published literature in this area, and discusses the clinical significance of Cruciferae-enriched diets in the context of diet-drug interactions. Twenty-three dietary intervention trials with drug metabolism end points were identified across Embase, Medline, and the Cochrane Controlled Register of Trials (CENTRAL). Cruciferous vegetables represented in the literature included broccoli, Brussels sprout, cabbage, cauliflower, radish, and watercress. A range of phase I and II drug-metabolizing enzymes and phenotyping metrics were represented in the literature. The meta-analyses performed demonstrated a significant effect on CYP1A2 and glutathione S-transferase-alpha (GST-α), with consumption of Cruciferae increasing the activities of these enzymes by 20-40% and 15-35%, respectively. The results herein suggest that patients undergoing pharmacotherapy with CYP1A2 or GST-α substrates could have altered drug exposure profiles if they regularly eat large or variable amounts of cruciferous vegetables. Recommendations regarding the design of future randomized, controlled trials to test hypotheses in this area are included.
Collapse
Affiliation(s)
- Shane K Eagles
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia.,Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, New South Wales, Australia
| | - Annette S Gross
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia.,Clinical Pharmacology Modelling & Simulation, GlaxoSmithKline R & D, Ermington, New South Wales, Australia
| | - Andrew J McLachlan
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, New South Wales, Australia.,Centre for Education and Research on Ageing, Concord Repatriation General Hospital, Concord, New South Wales, Australia
| |
Collapse
|
9
|
Consumption of baby kale increased cytochrome P450 1A2 (CYP1A2) activity and influenced bilirubin metabolism in a randomized clinical trial. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
10
|
Eker ME, Aaby K, Budic-Leto I, Rimac Brnčić S, El SN, Karakaya S, Simsek S, Manach C, Wiczkowski W, de Pascual-Teresa S. A Review of Factors Affecting Anthocyanin Bioavailability: Possible Implications for the Inter-Individual Variability. Foods 2019; 9:E2. [PMID: 31861362 PMCID: PMC7023094 DOI: 10.3390/foods9010002] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/11/2019] [Accepted: 12/15/2019] [Indexed: 12/11/2022] Open
Abstract
Anthocyanins are dietary bioactive compounds showing a range of beneficial effects against cardiovascular, neurological, and eye conditions. However, there is, as for other bioactive compounds in food, a high inter and intra-individual variation in the response to anthocyanin intake that in many cases leads to contradictory results in human trials. This variability could be caused at two levels, one at the bioavailability level and the other at the effect and mechanisms of action. In this context, we have thoroughly reviewed the scientific literature on anthocyanins variability caused by variation in bioavailability. Based on the literature reviewed, we have concluded that the variability in anthocyanins bioavailability might be produced by the lack of homogeneity introduced at three different levels: food matrix and food processing, enzymes involved in anthocyanin metabolism and transport, and anthocyanin metabolizing gut microbiota. However, it should be noted that the literature on anthocyanins bioavailability considering inter or intra-individual variability is still very scarce, which makes it difficult to reach any firm conclusion on the main metabolizing enzymes or bacteria that would be responsible for the variability in anthocyanin bioavailability.
Collapse
Affiliation(s)
- Merve Eda Eker
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais 10, 28040 Madrid, Spain;
- Department of Food Engineering, Ege University, Izmir 35100, Turkey; (S.N.E.); (S.K.); (S.S.)
| | - Kjersti Aaby
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, N-1430 Ås, Norway;
| | - Irena Budic-Leto
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, 21000 Split, Croatia;
| | - Suzana Rimac Brnčić
- Faculty of food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Sedef Nehir El
- Department of Food Engineering, Ege University, Izmir 35100, Turkey; (S.N.E.); (S.K.); (S.S.)
| | - Sibel Karakaya
- Department of Food Engineering, Ege University, Izmir 35100, Turkey; (S.N.E.); (S.K.); (S.S.)
| | - Sebnem Simsek
- Department of Food Engineering, Ege University, Izmir 35100, Turkey; (S.N.E.); (S.K.); (S.S.)
| | - Claudine Manach
- INRA, Université Clermont-Auvergne, Human Nutrition Unit, CRNH Auvergne, F-63000 Clermont-Ferrand, France;
| | - Wieslaw Wiczkowski
- Institute of Animal Reproduction and Food Research. Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Sonia de Pascual-Teresa
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition (ICTAN-CSIC), Jose Antonio Novais 10, 28040 Madrid, Spain;
| |
Collapse
|
11
|
Minich DM, Brown BI. A Review of Dietary (Phyto)Nutrients for Glutathione Support. Nutrients 2019; 11:E2073. [PMID: 31484368 PMCID: PMC6770193 DOI: 10.3390/nu11092073] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Glutathione is a tripeptide that plays a pivotal role in critical physiological processes resulting in effects relevant to diverse disease pathophysiology such as maintenance of redox balance, reduction of oxidative stress, enhancement of metabolic detoxification, and regulation of immune system function. The diverse roles of glutathione in physiology are relevant to a considerable body of evidence suggesting that glutathione status may be an important biomarker and treatment target in various chronic, age-related diseases. Yet, proper personalized balance in the individual is key as well as a better understanding of antioxidants and redox balance. Optimizing glutathione levels has been proposed as a strategy for health promotion and disease prevention, although clear, causal relationships between glutathione status and disease risk or treatment remain to be clarified. Nonetheless, human clinical research suggests that nutritional interventions, including amino acids, vitamins, minerals, phytochemicals, and foods can have important effects on circulating glutathione which may translate to clinical benefit. Importantly, genetic variation is a modifier of glutathione status and influences response to nutritional factors that impact glutathione levels. This narrative review explores clinical evidence for nutritional strategies that could be used to improve glutathione status.
Collapse
Affiliation(s)
- Deanna M Minich
- Human Nutrition and Functional Medicine Graduate Program, University of Western States, 2900 NE 132nd Ave, Portland, OR 97230, USA.
| | - Benjamin I Brown
- BCNH College of Nutrition and Health, 116-118 Finchley Road, London NW3 5HT, UK
| |
Collapse
|
12
|
Citronberg JS, Curtis KR, White E, Newcomb PA, Newton K, Atkinson C, Song X, Lampe JW, Hullar MA. Association of gut microbial communities with plasma lipopolysaccharide-binding protein (LBP) in premenopausal women. THE ISME JOURNAL 2018; 12:1631-1641. [PMID: 29434315 PMCID: PMC6018759 DOI: 10.1038/s41396-018-0064-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/08/2017] [Accepted: 01/12/2018] [Indexed: 12/12/2022]
Abstract
The mechanisms by which obesity increases cancer risk are unclear, but some lines of evidence suggest that gut microbial communities (GMC) may contribute to chronic inflammation in obese individuals through raised systemic levels of lipopolysaccharides (LPS). We evaluated associations of the GMC in stool with plasma LPS-binding protein (LBP, a measure of LPS) and C-reactive protein (CRP) concentrations in 110 premenopausal women in the United States. Diet was assessed using 3-day food records and GMCs were evaluated using pyrosequencing of the 16S rRNA gene. OTUs were identified at 97% sequence similarity. Taxonomic classification and functional genes were imputed from 16S rRNA genes, and alpha and beta diversity were assessed using the Shannon index and MRPP, respectively. Multivariable linear regression analysis was used to assess the relation between LBP, specific bacterial genera identified with indicator species analysis, and CRP. Dietary fat intake, particularly saturated fat, and CRP were positively associated with increased LBP. GMC beta diversity, but not alpha diversity, was statistically significantly different between groups using unweighted Unifrac. Several taxa, particularly those in the Clostridia class, were more prevalent in women with low LBP, while Bacteroides were more prevalent in those with high LBP. Genes associated with gram-negative cell wall material synthesis were also associated with LBP and CRP. In contrast, Phascolarctobacterium was associated with lower concentrations of LBP and CRP. We found distinct differences between tertiles of LBP regarding the diversity and composition of the microbiome, as well as differences in functional genes that potentially activate LBP.
Collapse
Affiliation(s)
- Jessica S Citronberg
- Department of Epidemiology, University of Washington, Seattle, WA, USA.
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Keith R Curtis
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Emily White
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Polly A Newcomb
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Charlotte Atkinson
- NIHR Bristol Biomedical Research Centre (Nutrition Theme) at the University Hospitals Bristol NHS Foundation Trust and the University of Bristol, Bristol, UK
| | - Xiaoling Song
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Johanna W Lampe
- Department of Epidemiology, University of Washington, Seattle, WA, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Meredith Aj Hullar
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
13
|
Put "gender glasses" on the effects of phenolic compounds on cardiovascular function and diseases. Eur J Nutr 2018; 57:2677-2691. [PMID: 29696400 DOI: 10.1007/s00394-018-1695-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 04/19/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The influence of sex and gender is particularly relevant in cardiovascular diseases (CVD) as well as in several aspects of drug pharmacodynamics and pharmacokinetics. Anatomical and physiological differences between the sexes may influence the activity of many drugs, including the possibility of their interaction with other drugs, bioactive compounds, foods and beverages. Phenolic compounds could interact with our organism at organ, cellular, and molecular levels triggering a preventive action against chronic diseases, including CVD. RESULTS This article will review the role of sex on the activity of these bioactive molecules, considering the existence of sex differences in oxidative stress. It describes the pharmacokinetics of phenolic compounds, their effects on vessels, on cardiovascular system, and during development, including the role of nuclear receptors and microbiota. CONCLUSIONS Although there is a large gap between the knowledge of the sex differences in the phenolic compounds' activity and safety, and the urgent need for more research, available data underlie the possibility that plant-derived phenolic compounds could differently influence the health of male and female subjects.
Collapse
|
14
|
Kim JK, Strapazzon N, Gallaher CM, Stoll DR, Thomas W, Gallaher DD, Trudo SP. Comparison of short- and long-term exposure effects of cruciferous and apiaceous vegetables on carcinogen metabolizing enzymes in Wistar rats. Food Chem Toxicol 2017; 108:194-202. [PMID: 28764905 DOI: 10.1016/j.fct.2017.07.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 05/13/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
Abstract
Cruciferous and apiaceous vegetables may be chemopreventive due to their ability to modulate carcinogen-metabolizing enzymes but whether the effects on such enzymes are sustained over time is unknown. To examine the short- and long-term effects of the vegetables, rats were fed one of four diets for 7, 30, or 60 d: AIN-93G, CRU (21% cruciferous vegetables-fresh broccoli, green cabbage, watercress), API (9% apiaceous vegetables - fresh parsnips, celery), or API + CRU (10.5% CRU + 4.5% API). Although CRU increased activity and protein expression of cytochrome P450 (CYP) 1A1 and CYP1A2 after 7 d, only activity was sustained after 30 and 60 d. There was a trend towards an interaction between the length of feeding period and CRU for CYP1A1 activity; activity increased with greater time of feeding. API increased CYP1A2 activity but decreased sulfotransferase 1A1 activity after 7 d, although not at later times. Altogether, increased CYP1A activity by CRU was maintained with long term feeding while protein amount decreased, suggesting influence by mechanisms other than, or in addition to, transcriptional regulation. Thus, response patterns and interactions with length of feeding may differ, depending upon the types of vegetables and enzymes, requiring caution when interpreting the results of short-term feeding studies.
Collapse
Affiliation(s)
- Jae Kyeom Kim
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | - Noemia Strapazzon
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | - Cynthia M Gallaher
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | - Dwight R Stoll
- Department of Chemistry, Gustavus Adolphus College, Saint Peter, MN 56082, USA
| | - William Thomas
- Division of Biostatistics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel D Gallaher
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | - Sabrina P Trudo
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|
15
|
Pan JH, Abernathy B, Kim YJ, Lee JH, Kim JH, Shin EC, Kim JK. Cruciferous vegetables and colorectal cancer prevention through microRNA regulation: A review. Crit Rev Food Sci Nutr 2017; 58:2026-2038. [DOI: 10.1080/10408398.2017.1300134] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jeong Hoon Pan
- School of Human Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| | - Breann Abernathy
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Jin Hyup Lee
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Jun Ho Kim
- Department of Food and Biotechnology, Korea University, Sejong, Republic of Korea
| | - Eui Cheol Shin
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju, Republic of Korea
| | - Jae Kyeom Kim
- School of Human Environmental Sciences, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
16
|
Cassidy A, Minihane AM. The role of metabolism (and the microbiome) in defining the clinical efficacy of dietary flavonoids. Am J Clin Nutr 2017; 105:10-22. [PMID: 27881391 PMCID: PMC5183723 DOI: 10.3945/ajcn.116.136051] [Citation(s) in RCA: 315] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 10/13/2016] [Indexed: 01/10/2023] Open
Abstract
At a population level, there is growing evidence of the beneficial effects of dietary flavonoids on health. However, there is extensive heterogeneity in the response to increased intake, which is likely mediated via wide interindividual variability in flavonoid absorption and metabolism. Flavonoids are extensively metabolized by phase I and phase II metabolism (which occur predominantly in the gastrointestinal tract and liver) and colonic microbial metabolism. A number of factors, including age, sex, and genotype, may affect these metabolic processes. In addition, food composition and flavonoid source are likely to affect bioavailability, and emerging data suggest a critical role for the microbiome. This review will focus on the current knowledge for the main subclasses of flavonoids, including anthocyanins, flavonols, flavan-3-ols, and flavanones, for which there is growing evidence from prospective studies of beneficial effects on health. The identification of key factors that govern metabolism and an understanding of how the differential capacity to metabolize these bioactive compounds affect health outcomes will help establish how to optimize intakes of flavonoids for health benefits and in specific subgroups. We identify research areas that need to be addressed to further understand important determinants of flavonoid bioavailability and metabolism and to advance the knowledge base that is required to move toward the development of dietary guidelines and recommendations for flavonoids and flavonoid-rich foods.
Collapse
Affiliation(s)
- Aedín Cassidy
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | | |
Collapse
|
17
|
Schooling CM, Houghton LC, Terry MB. Potential Intervention Targets in Utero and Early Life for Prevention of Hormone Related Cancers. Pediatrics 2016; 138:S22-S33. [PMID: 27940974 DOI: 10.1542/peds.2015-4268e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/16/2016] [Indexed: 11/24/2022] Open
Abstract
Hormone-related cancers have long been thought to be sensitive to exposures during key periods of sexual development, as shown by the vulnerability to such cancers of women exposed to diethylstilbestrol in utero. In addition to evidence from human studies, animal studies using new techniques, such as gene knockout models, suggest that an increasing number of cancers may be hormonally related, including liver, lung, and bladder cancer. Greater understanding of sexual development has also revealed the "mini-puberty" of early infancy as a key period when some sex hormones reach levels similar to those at puberty. Factors driving sex hormones in utero and early infancy have not been systematically identified as potential targets of intervention for cancer prevention. On the basis of sex hormone pathways, we identify common potentially modifiable drivers of sex hormones, including but not limited to factors such as obesity, alcohol, and possibly nitric oxide. We review the evidence for effects of modifiable drivers of sex hormones during the prenatal period and early infancy, including measured hormones as well as proxies, such as the second-to-fourth digit length ratio. We summarize the gaps in the evidence needed to identify new potential targets of early life intervention for lifelong cancer prevention.
Collapse
Affiliation(s)
- C Mary Schooling
- CUNY School of Public Health and Hunter College, New York, New York; .,School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, People's Republic of China; and
| | - Lauren C Houghton
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| |
Collapse
|
18
|
Citronberg JS, Wilkens LR, Lim U, Hullar MAJ, White E, Newcomb PA, Le Marchand L, Lampe JW. Reliability of plasma lipopolysaccharide-binding protein (LBP) from repeated measures in healthy adults. Cancer Causes Control 2016; 27:1163-6. [PMID: 27392432 DOI: 10.1007/s10552-016-0783-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/30/2016] [Indexed: 10/21/2022]
Abstract
Plasma lipopolysaccharide-binding protein (LBP), a measure of internal exposure to bacterial lipopolysaccharide, has been associated with several chronic conditions and may be a marker of chronic inflammation; however, no studies have examined the reliability of this biomarker in a healthy population. We examined the temporal reliability of LBP measured in archived samples from participants in two studies. In Study one, 60 healthy participants had blood drawn at two time points: baseline and follow-up (either three, six, or nine months). In Study two, 24 individuals had blood drawn three to four times over a seven-month period. We measured LBP in archived plasma by ELISA. Test-retest reliability was estimated by calculating the intraclass correlation coefficient (ICC). Plasma LBP concentrations showed moderate reliability in Study one (ICC 0.60, 95 % CI 0.43-0.75) and Study two (ICC 0.46, 95 % CI 0.26-0.69). Restricting the follow-up period improved reliability. In Study one, the reliability of LBP over a three-month period was 0.68 (95 % CI: 0.41-0.87). In Study two, the ICC of samples taken ≤seven days apart was 0.61 (95 % CI 0.29-0.86). Plasma LBP concentrations demonstrated moderate test-retest reliability in healthy individuals with reliability improving over a shorter follow-up period.
Collapse
Affiliation(s)
- Jessica S Citronberg
- Department of Epidemiology, University of Washington, Seattle, WA, USA. .,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, M4-B402, PO Box 19024, Seattle, WA, 98109, USA.
| | - Lynne R Wilkens
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Unhee Lim
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Meredith A J Hullar
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, M4-B402, PO Box 19024, Seattle, WA, 98109, USA
| | - Emily White
- Department of Epidemiology, University of Washington, Seattle, WA, USA.,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, M4-B402, PO Box 19024, Seattle, WA, 98109, USA
| | - Polly A Newcomb
- Department of Epidemiology, University of Washington, Seattle, WA, USA.,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, M4-B402, PO Box 19024, Seattle, WA, 98109, USA
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Johanna W Lampe
- Department of Epidemiology, University of Washington, Seattle, WA, USA.,Public Health Sciences Division, Fred Hutchinson Cancer Research Center, M4-B402, PO Box 19024, Seattle, WA, 98109, USA
| |
Collapse
|
19
|
Gammal RS, Court MH, Haidar CE, Iwuchukwu OF, Gaur AH, Alvarellos M, Guillemette C, Lennox JL, Whirl‐Carrillo M, Brummel SS, Ratain MJ, Klein TE, Schackman BR, Caudle KE, Haas DW. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for UGT1A1 and Atazanavir Prescribing. Clin Pharmacol Ther 2016; 99:363-9. [PMID: 26417955 PMCID: PMC4785051 DOI: 10.1002/cpt.269] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/24/2015] [Indexed: 01/09/2023]
Abstract
The antiretroviral protease inhibitor atazanavir inhibits hepatic uridine diphosphate glucuronosyltransferase (UGT) 1A1, thereby preventing the glucuronidation and elimination of bilirubin. Resultant indirect hyperbilirubinemia with jaundice can cause premature discontinuation of atazanavir. Risk for bilirubin-related discontinuation is highest among individuals who carry two UGT1A1 decreased function alleles (UGT1A1*28 or *37). We summarize published literature that supports this association and provide recommendations for atazanavir prescribing when UGT1A1 genotype is known (updates at www.pharmgkb.org).
Collapse
Affiliation(s)
- RS Gammal
- Department of Pharmaceutical SciencesSt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - MH Court
- Individualized Medicine Program, Department of Veterinary Clinical SciencesWashington State University College of Veterinary MedicinePullmanWashingtonUSA
| | - CE Haidar
- Department of Pharmaceutical SciencesSt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - OF Iwuchukwu
- Division of Pharmaceutical SciencesFairleigh Dickinson University School of PharmacyFlorham ParkNew JerseyUSA
- Division of Clinical Pharmacology, Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - AH Gaur
- Department of Infectious DiseasesSt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - M Alvarellos
- Department of GeneticsStanford UniversityStanfordCaliforniaUSA
| | - C Guillemette
- Laval University CHU de Québec Research CenterQuebecQuebecCanada
| | - JL Lennox
- Division of Infectious DiseaseEmory University School of MedicineAtlantaGeorgiaUSA
| | | | - SS Brummel
- Center for Biostatistics in AIDS ResearchHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - MJ Ratain
- Center for Personalized Therapeutics, Comprehensive Cancer CenterThe University of ChicagoChicagoIllinoisUSA
| | - TE Klein
- Department of GeneticsStanford UniversityStanfordCaliforniaUSA
| | - BR Schackman
- Department of Healthcare Policy and ResearchWeill Cornell Medical CollegeNew YorkNew YorkUSA
| | - KE Caudle
- Department of Pharmaceutical SciencesSt. Jude Children's Research HospitalMemphisTennesseeUSA
| | - DW Haas
- Departments of Medicine, Pharmacology, Pathology, Microbiology & ImmunologyVanderbilt University School of MedicineNashvilleTennesseeUSA
| |
Collapse
|
20
|
Becker RA, Patlewicz G, Simon TW, Rowlands JC, Budinsky RA. The adverse outcome pathway for rodent liver tumor promotion by sustained activation of the aryl hydrocarbon receptor. Regul Toxicol Pharmacol 2015; 73:172-90. [PMID: 26145830 DOI: 10.1016/j.yrtph.2015.06.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 12/29/2022]
Abstract
An Adverse Outcome Pathway (AOP) represents the existing knowledge of a biological pathway leading from initial molecular interactions of a toxicant and progressing through a series of key events (KEs), culminating with an apical adverse outcome (AO) that has to be of regulatory relevance. An AOP based on the mode of action (MOA) of rodent liver tumor promotion by dioxin-like compounds (DLCs) has been developed and the weight of evidence (WoE) of key event relationships (KERs) evaluated using evolved Bradford Hill considerations. Dioxins and DLCs are potent aryl hydrocarbon receptor (AHR) ligands that cause a range of species-specific adverse outcomes. The occurrence of KEs is necessary for inducing downstream biological responses and KEs may occur at the molecular, cellular, tissue and organ levels. The common convention is that an AOP begins with the toxicant interaction with a biological response element; for this AOP, this initial event is binding of a DLC ligand to the AHR. Data from mechanistic studies, lifetime bioassays and approximately thirty initiation-promotion studies have established dioxin and DLCs as rat liver tumor promoters. Such studies clearly show that sustained AHR activation, weeks or months in duration, is necessary to induce rodent liver tumor promotion--hence, sustained AHR activation is deemed the molecular initiating event (MIE). After this MIE, subsequent KEs are 1) changes in cellular growth homeostasis likely associated with expression changes in a number of genes and observed as development of hepatic foci and decreases in apoptosis within foci; 2) extensive liver toxicity observed as the constellation of effects called toxic hepatopathy; 3) cellular proliferation and hyperplasia in several hepatic cell types. This progression of KEs culminates in the AO, the development of hepatocellular adenomas and carcinomas and cholangiolar carcinomas. A rich data set provides both qualitative and quantitative knowledge of the progression of this AOP through KEs and the KERs. Thus, the WoE for this AOP is judged to be strong. Species-specific effects of dioxins and DLCs are well known--humans are less responsive than rodents and rodent species differ in sensitivity between strains. Consequently, application of this AOP to evaluate potential human health risks must take these differences into account.
Collapse
Affiliation(s)
- Richard A Becker
- Regulatory and Technical Affairs Department, American Chemistry Council (ACC), Washington, DC 20002, USA.
| | - Grace Patlewicz
- DuPont Haskell Global Centers for Health and Environmental Sciences, Newark, DE 19711, USA
| | - Ted W Simon
- Ted Simon LLC, 4184 Johnston Road, Winston, GA 30187, USA
| | - J Craig Rowlands
- The Dow Chemical Company, Toxicology & Environmental Research & Consulting, 1803 Building Washington Street, Midland, MI 48674, USA
| | - Robert A Budinsky
- The Dow Chemical Company, Toxicology & Environmental Research & Consulting, 1803 Building Washington Street, Midland, MI 48674, USA
| |
Collapse
|
21
|
Modulation of Metabolic Detoxification Pathways Using Foods and Food-Derived Components: A Scientific Review with Clinical Application. J Nutr Metab 2015; 2015:760689. [PMID: 26167297 PMCID: PMC4488002 DOI: 10.1155/2015/760689] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/20/2015] [Indexed: 12/16/2022] Open
Abstract
Research into human biotransformation and elimination systems continues to evolve. Various clinical and in vivo studies have been undertaken to evaluate the effects of foods and food-derived components on the activity of detoxification pathways, including phase I cytochrome P450 enzymes, phase II conjugation enzymes, Nrf2 signaling, and metallothionein. This review summarizes the research in this area to date, highlighting the potential for foods and nutrients to support and/or modulate detoxification functions. Clinical applications to alter detoxification pathway activity and improve patient outcomes are considered, drawing on the growing understanding of the relationship between detoxification functions and different disease states, genetic polymorphisms, and drug-nutrient interactions. Some caution is recommended, however, due to the limitations of current research as well as indications that many nutrients exert biphasic, dose-dependent effects and that genetic polymorphisms may alter outcomes. A whole-foods approach may, therefore, be prudent.
Collapse
|
22
|
Kim JK, Gallaher DD, Chen C, Yao D, Trudo SP. Apiaceous vegetable consumption decreases PhIP-induced DNA adducts and increases methylated PhIP metabolites in the urine metabolome in rats. J Nutr 2015; 145:442-51. [PMID: 25733458 PMCID: PMC4336530 DOI: 10.3945/jn.114.202622] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Heterocyclic aromatic amines, such as 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), are carcinogenic compounds produced during heating of protein-containing foods. Apiaceous vegetables inhibit PhIP-activating enzymes, whereas cruciferous vegetables induce both PhIP-activating and -detoxifying enzymes. OBJECTIVE We investigated the effects of these vegetables, either alone or combined, on PhIP metabolism and colonic DNA adduct formation in rats. METHODS Male Wistar rats were fed cruciferous vegetables (21%, wt:wt), apiaceous vegetables (21%, wt:wt), or a combination of both vegetables (10.5% wt:wt of each). Negative and positive control groups were fed an AIN-93G diet. After 6 d, all groups received an intraperitoneal injection of PhIP (10 mg · kg body weight(-1)) except for the negative control group, which received only vehicle. Urine was collected for 24 h after the injection for LC-tandem mass spectrometry metabolomic analyses. On day 7, rats were killed and tissues processed. RESULTS Compared with the positive control, cruciferous vegetables increased the activity of hepatic PhIP-activating enzymes [39.5% and 45.1% for cytochrome P450 (CYP) 1A1 (P = 0.0006) and CYP1A2 (P < 0.0001), respectively] and of uridine 5'-diphospho-glucuronosyltransferase 1A (PhIP-detoxifying) by 24.5% (P = 0.0267). Apiaceous vegetables did not inhibit PhIP-activating enzymes, yet reduced colonic PhIP-DNA adducts by 20.4% (P = 0.0496). Metabolomic analyses indicated that apiaceous vegetables increased the relative abundance of urinary methylated PhIP metabolites. The sum of these methylated metabolites inversely correlated with colonic PhIP-DNA adducts (r = -0.43, P = 0.01). We detected a novel methylated urinary PhIP metabolite and demonstrated that methylated metabolites are produced in the human liver S9 fraction. CONCLUSIONS Apiaceous vegetables did not inhibit the activity of PhIP-activating enzymes in rats, suggesting that the reduction in PhIP-DNA adducts may involve other pathways. Further investigation of the importance of PhIP methylation in carcinogen metabolism is warranted, given the inverse correlation of methylated PhIP metabolites with a biomarker of carcinogenesis and the detection of a novel methylated PhIP metabolite.
Collapse
Affiliation(s)
| | | | | | | | - Sabrina P Trudo
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN
| |
Collapse
|
23
|
Wang J, Huang M, Hu H, Yu L, Zeng S. Pregnane X receptor-mediated transcriptional activation of UDP-glucuronosyltransferase 1A1 by natural constituents from foods and herbs. Food Chem 2014; 164:74-80. [DOI: 10.1016/j.foodchem.2014.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 04/03/2014] [Accepted: 05/04/2014] [Indexed: 12/19/2022]
|
24
|
Navarro SL, Schwarz Y, Song X, Wang CY, Chen C, Trudo SP, Kristal AR, Kratz M, Eaton DL, Lampe JW. Cruciferous vegetables have variable effects on biomarkers of systemic inflammation in a randomized controlled trial in healthy young adults. J Nutr 2014; 144:1850-7. [PMID: 25165394 PMCID: PMC4195422 DOI: 10.3945/jn.114.197434] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Isothiocyanates in cruciferous vegetables modulate signaling pathways critical to carcinogenesis, including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), a central regulator of inflammation. Glutathione S-transferase (GST) M1 and GSTT1 metabolize isothiocyanates; genetic variants may result in differences in biologic response. OBJECTIVE The objective of this study was to test whether consumption of cruciferous or cruciferous plus apiaceous vegetables altered serum concentrations of interleukin (IL)-6, IL-8, C-reactive protein (CRP), tumor necrosis factor (TNF) α, and soluble TNF receptor (sTNFR) I and II, and whether this response was GSTM1/GSTT1 genotype dependent. METHODS In a randomized crossover trial, healthy men (n = 32) and women (n = 31) aged 20-40 y consumed 4 14-d controlled diets: basal (vegetable-free), single-dose cruciferous (1xC) [7 g vegetables/kg body weight (BW)], double-dose cruciferous (2xC) (14 g/kg BW), and cruciferous plus apiaceous (carrot family) (1xC+A) vegetables (7 and 4 g/kg BW, respectively), with a 21-d washout period between each intervention. Urinary isothiocyanate excretion was also evaluated as a marker of systemic isothiocyanate exposure. Fasting morning blood and urine samples were collected on days 0 and 14 and analyzed. RESULTS IL-6 concentrations were significantly lower on day 14 of the 2xC and 1xC+A diets than with the basal diet [-19% (95% CI: -30%, -0.1%) and -20% (95% CI: -31%, -0.7%), respectively]. IL-8 concentrations were higher after the 1xC+A diet (+16%; 95% CI: 4.2%, 35.2%) than after the basal diet. There were no effects of diet on CRP, TNF-α, or sTNFRI or II. There were significant differences between GSTM1-null/GSTT1+ individuals for several biomarkers in response to 1xC+A compared with basal diets (CRP: -37.8%; 95% CI: -58.0%, -7.4%; IL-6: -48.6%; 95% CI: -49.6%, -12.0%; IL-8: 16.3%; 95% CI: 6.7%, 57.7%) and with the 2xC diet compared with the basal diet (IL-8: -33.2%; 95% CI: -43.0%, -1.4%; sTNFRI: -7.5%; 95% CI: -12.7%, -2.3%). There were no significant reductions in biomarker concentrations in response to diet among GSTM1+/GSTT1+ or GSTM1-null/GSTT1-null individuals. Twenty-four-hour urinary isothiocyanate excretion was not associated with any of the inflammation markers overall; however, IL-6 was inversely associated with total isothiocyanate excretion in GSTM1-null/GSTT1-null individuals (β = -0.12; 95% CI: -0.19, -0.05). CONCLUSIONS In this young, healthy population, consumption of cruciferous and apiaceous vegetables reduced circulating IL-6; however, results for other biomarkers of inflammation were not consistent.
Collapse
Affiliation(s)
- Sandi L. Navarro
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA;,To whom correspondence should be addressed. E-mail:
| | - Yvonne Schwarz
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA
| | - Xiaoling Song
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA
| | - Ching-Yun Wang
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA
| | - Chu Chen
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA
| | - Sabrina P. Trudo
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN; and
| | - Alan R. Kristal
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA
| | - Mario Kratz
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA
| | - David L. Eaton
- Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | - Johanna W. Lampe
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA
| |
Collapse
|
25
|
Simon TW, Simons SS, Preston RJ, Boobis AR, Cohen SM, Doerrer NG, Fenner-Crisp PA, McMullin TS, McQueen CA, Rowlands JC. The use of mode of action information in risk assessment: Quantitative key events/dose-response framework for modeling the dose-response for key events. Crit Rev Toxicol 2014; 44 Suppl 3:17-43. [DOI: 10.3109/10408444.2014.931925] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Abdull Razis AF, Mohd Noor N, Konsue N. Induction of epoxide hydrolase, glucuronosyl transferase, and sulfotransferase by phenethyl isothiocyanate in male Wistar albino rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:391528. [PMID: 24592387 PMCID: PMC3921933 DOI: 10.1155/2014/391528] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 11/02/2013] [Accepted: 11/02/2013] [Indexed: 12/01/2022]
Abstract
Phenethyl isothiocyanate (PEITC) is an isothiocyanate found in watercress as the glucosinolate (gluconasturtiin). The isothiocyanate is converted from the glucosinolate by intestinal microflora or when contacted with myrosinase during the chopping and mastication of the vegetable. PEITC manifested protection against chemically-induced cancers in various tissues. A potential mechanism of chemoprevention is by modulating the metabolism of carcinogens so as to promote deactivation. The principal objective of this study was to investigate in rats the effect of PEITC on carcinogen-metabolising enzyme systems such as sulfotransferase (SULT), N-acetyltransferase (NAT), glucuronosyl transferase (UDP), and epoxide hydrolase (EH) following exposure to low doses that simulate human dietary intake. Rats were fed for 2 weeks diets supplemented with PEITC at 0.06 µmol/g (low dose, i.e., dietary intake), 0.6 µmol/g (medium dose), and 6.0 µmol/g (high dose), and the enzymes were monitored in rat liver. At the Low dose, no induction of the SULT, NAT, and EH was noted, whereas UDP level was elevated. At the Medium dose, only SULT level was increased, whereas at the High dose marked increase in EH level was observed. It is concluded that PEITC modulates carcinogen-metabolising enzyme systems at doses reflecting human intake thus elucidating the mechanism of its chemoprevention.
Collapse
Affiliation(s)
- Ahmad Faizal Abdull Razis
- Food Safety Research Centre (FOSREC), Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Noramaliza Mohd Noor
- Department of Imaging, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nattaya Konsue
- School of Agro-Industry, Mae Fah Luang University, 333 Moo1 Thasud Muang, Chiang Rai 57100, Thailand
| |
Collapse
|
27
|
Won CS, Oberlies NH, Paine MF. Mechanisms underlying food-drug interactions: inhibition of intestinal metabolism and transport. Pharmacol Ther 2012; 136:186-201. [PMID: 22884524 DOI: 10.1016/j.pharmthera.2012.08.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 07/23/2012] [Indexed: 12/21/2022]
Abstract
Food-drug interaction studies are critical to evaluate appropriate dosing, timing, and formulation of new drug candidates. These interactions often reflect prandial-associated changes in the extent and/or rate of systemic drug exposure. Physiologic and physicochemical mechanisms underlying food effects on drug disposition are well-characterized. However, biochemical mechanisms involving drug metabolizing enzymes and transport proteins remain underexplored. Several plant-derived beverages have been shown to modulate enzymes and transporters in the intestine, leading to altered pharmacokinetic (PK) and potentially negative pharmacodynamic (PD) outcomes. Commonly consumed fruit juices, teas, and alcoholic drinks contain phytochemicals that inhibit intestinal cytochrome P450 and phase II conjugation enzymes, as well as uptake and efflux transport proteins. Whereas myriad phytochemicals have been shown to inhibit these processes in vitro, translation to the clinic has been deemed insignificant or undetermined. An overlooked prerequisite for elucidating food effects on drug PK is thorough knowledge of causative bioactive ingredients. Substantial variability in bioactive ingredient composition and activity of a given dietary substance poses a challenge in conducting robust food-drug interaction studies. This confounding factor can be addressed by identifying and characterizing specific components, which could be used as marker compounds to improve clinical trial design and quantitatively predict food effects. Interpretation and integration of data from in vitro, in vivo, and in silico studies require collaborative expertise from multiple disciplines, from botany to clinical pharmacology (i.e., plant to patient). Development of more systematic methods and guidelines is needed to address the general lack of information on examining drug-dietary substance interactions prospectively.
Collapse
Affiliation(s)
- Christina S Won
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7569, USA
| | | | | |
Collapse
|
28
|
Navarro SL, Brasky TM, Schwarz Y, Song X, Wang CY, Kristal AR, Kratz M, White E, Lampe JW. Reliability of serum biomarkers of inflammation from repeated measures in healthy individuals. Cancer Epidemiol Biomarkers Prev 2012; 21:1167-70. [PMID: 22564866 DOI: 10.1158/1055-9965.epi-12-0110] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Biomarkers of low-grade systemic inflammation are used to study the associations of inflammation with chronic diseases, including cancer. However, relatively little is known about the intraindividual variability of most of these measures. METHODS Fasting serum samples, collected at baseline and the end of ≥3-week washout periods in a four-diet crossover feeding trial, were used to measure the inflammatory markers high sensitivity C-reactive protein (hsCRP), interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-8, and soluble TNF receptor (sTNFR) I and II. Participants included 62 men and women for analyses of IL-6 and CRP and 56 for analyses of IL-8, TNF-α, and sTNFRs, aged 20 to 40, who were free of factors known to influence inflammation, for example, chronic disease, medication use, heavy alcohol use, smoking, and obesity (body mass index >30 kg/m(2)). Intraclass correlations (ICC) were estimated using random effects ANOVA, across all four time points (~6 weeks apart). RESULTS ICCs for TNF-α and sTNFR I and II were very high: ICC = 0.92 [95% confidence interval (CI), 0.89-0.96], 0.92 (95% CI, 0.88-0.95), and 0.90 (95% CI, 0.85-0.94), respectively. ICCs for IL-8 and hsCRP were 0.73 (95% CI, 0.63-0.83) and 0.62 (95% CI, 0.49-0.75), respectively. The ICC for IL-6 was considerably lower, ICC = 0.48 (95% CI, 0.36-0.62). Three measures of IL-6 would be needed to achieve a reliability coefficient (Cronbach α) of 0.75. CONCLUSIONS With the exception of IL-6, reliability of all inflammatory markers in our panel was high. IMPACT This suggests that a single measure accurately captures the short-term (e.g., 4-6 months) variability within an individual.
Collapse
Affiliation(s)
- Sandi L Navarro
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bock KW. Regulation of bilirubin clearance by ligand-activated transcription factors of the endo- and xenobiotic metabolism system. Front Pharmacol 2011; 2:82. [PMID: 22207850 PMCID: PMC3245901 DOI: 10.3389/fphar.2011.00082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 12/06/2011] [Indexed: 11/13/2022] Open
Affiliation(s)
- Karl Walter Bock
- Department of Toxicology, Institute of Pharmacology and Toxicology, University of Tübingen Tübingen, Germany
| |
Collapse
|
30
|
Navarro SL, Li F, Lampe JW. Mechanisms of action of isothiocyanates in cancer chemoprevention: an update. Food Funct 2011; 2:579-87. [PMID: 21935537 PMCID: PMC3204939 DOI: 10.1039/c1fo10114e] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Isothiocyanates (ITC), derived from glucosinolates, are thought to be responsible for the chemoprotective actions conferred by higher cruciferous vegetable intake. Evidence suggests that isothiocyanates exert their effects through a variety of distinct but interconnected signaling pathways important for inhibiting carcinogenesis, including those involved in detoxification, inflammation, apoptosis, and cell cycle and epigenetic regulation, among others. This article provides an update on the latest research on isothiocyanates and these mechanisms, and points out remaining gaps in our understanding of these events. Given the variety of ITC produced from glucosinolates, and the diverse pathways on which these compounds act, a systems biology approach, in vivo, may help to better characterize their integrated role in cancer prevention. In addition, the effects of dose, duration of exposure, and specificity of different ITC should be considered.
Collapse
Affiliation(s)
- Sandi L. Navarro
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, 98109
- Interdisciplinary Graduate Program in Nutritional Sciences, Department of Epidemiology, University of Washington, Seattle, WA 98195
| | - Fei Li
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, 98109
| | - Johanna W. Lampe
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, 98109
- Interdisciplinary Graduate Program in Nutritional Sciences, Department of Epidemiology, University of Washington, Seattle, WA 98195
| |
Collapse
|
31
|
Traka MH, Mithen RF. Plant science and human nutrition: challenges in assessing health-promoting properties of phytochemicals. THE PLANT CELL 2011; 23:2483-97. [PMID: 21803940 PMCID: PMC3226206 DOI: 10.1105/tpc.111.087916] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/15/2011] [Accepted: 07/15/2011] [Indexed: 05/20/2023]
Abstract
The rise in noncommunicable chronic diseases associated with changing diet and lifestyles throughout the world is a major challenge for society. It is possible that certain dietary components within plants have roles both in reducing the incidence and progression of these diseases. We critically review the types of evidence used to support the health promoting activities of certain phytochemicals and plant-based foods and summarize the major contributions but also the limitations of epidemiological and observational studies and research with the use of cell and animal models. We stress the need for human intervention studies to provide high-quality evidence for health benefits of dietary components derived from plants.
Collapse
|
32
|
Navarro SL, Chen Y, Li L, Li SS, Chang JL, Schwarz Y, King IB, Potter JD, Bigler J, Lampe JW. UGT1A6 and UGT2B15 polymorphisms and acetaminophen conjugation in response to a randomized, controlled diet of select fruits and vegetables. Drug Metab Dispos 2011; 39:1650-7. [PMID: 21666065 DOI: 10.1124/dmd.111.039149] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Acetaminophen (APAP) glucuronidation is thought to occur mainly by UDP-glucuronosyltransferases (UGT) in the UGT1A family. Interindividual variation in APAP glucuronidation is attributed in part to polymorphisms in UGT1As. However, evidence suggests that UGT2B15 may also be important. We evaluated, in a controlled feeding trial, whether APAP conjugation differed by UGT1A6 and UGT2B15 genotypes and whether supplementation of known dietary inducers of UGT (crucifers, soy, and citrus) modulated APAP glucuronidation compared with a diet devoid of fruits and vegetables (F&V). Healthy adults (n = 66) received 1000 mg of APAP orally on days 7 and 14 of each 2-week feeding period and collected saliva and urine over 12 h. Urinary recovery of the percentage of the APAP dose as free APAP was higher (P = 0.02), and the percentage as APAP glucuronide (APAPG) was lower (P = 0.004) in women. The percentage of APAP was higher among UGT1A6*1/*1 genotypes, relative to *1/*2 and *2/*2 genotypes (P = 0.045). For UGT2B15, the percentage of APAPG decreased (P < 0.0001) and that of APAP sulfate increased (P = 0.002) in an allelic dose-dependent manner across genotypes from *1/*1 to *2/*2. There was a significant diet × UGT2B15 genotype interaction for the APAPG ratio (APAPG/total metabolites × 100) (P = 0.03), with *1/*1 genotypes having an approximately 2-fold higher F&V to basal diet difference in response compared with *1/*2 and *2/*2 genotypes. Salivary APAP maximum concentration (C(max)) was significantly higher in women (P = 0.0003), with F&V (P = 0.003), and among UGT1A6*2/*2 and UGT2B15*1/*2 genotypes (P = 0.02 and 0.002, respectively). APAP half-life was longer in UGT2B15*2/*2 genotypes with F&V (P = 0.009). APAP glucuronidation was significantly influenced by the UGT2B15*2 polymorphism, supporting a role in vivo for UGT2B15 in APAP glucuronidation, whereas the contribution of UGT1A6*2 was modest. Selected F&V known to affect UGT activity led to greater glucuronidation and less sulfation.
Collapse
Affiliation(s)
- Sandi L Navarro
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Navarro SL, Saracino MR, Makar KW, Thomas SS, Li L, Zheng Y, Levy L, Schwarz Y, Bigler J, Potter JD, Lampe JW. Determinants of aspirin metabolism in healthy men and women: effects of dietary inducers of UDP-glucuronosyltransferases. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2011; 4:110-8. [PMID: 21625173 DOI: 10.1159/000327782] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 03/21/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND/AIMS Interindividual variation in aspirin (ASA) metabolism is attributed to concomitant use of drugs or alcohol, urine pH, ethnicity, sex, and genetic variants in UDP-glucuronosyltransferases (UGT). Little is known about the effects of diet. METHODS We evaluated cross-sectionally whether urinary excretion of ASA and its metabolites [salicylic acid (SA), salicyluric acid (SUA) phenolic glucuronide (SUAPG), salicylic acid acyl glucuronide (SAAG) and salicylic acid phenolic glucuronide (SAPG)] differed by UGT1A6 genotype and dietary factors shown to induce UGT. Following oral treatment with 650 mg ASA, urine was collected over 8 h in 264 men and 264 women (21-45 years old). RESULTS There were statistically significant differences in metabolites excreted between sexes and ethnicities. Men excreted more SUA; women more ASA (p = 0.03), SA, SAAG and SAPG (p ≤ 0.001 for all). Compared to Caucasians, Asians excreted more ASA, SA and SAAG, and less SUA and SUAPG (p ≤ 0.03 for all); African-Americans excreted more SAAG and SAPG and less SUA (p ≤ 0.04). There was no effect of UGT1A6 genotypes. Increased ASA and decreased SUAPG excretion was observed with increased servings of vegetables (p = 0.008), specifically crucifers (p = 0.05). CONCLUSION Diet may influence the pharmacokinetics of ASA, but effects may be through modulation of glycine conjugation rather than glucuronidation.
Collapse
Affiliation(s)
- Sandi L Navarro
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Wash., USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Ginsberg G, Guyton K, Johns D, Schimek J, Angle K, Sonawane B. Genetic polymorphism in metabolism and host defense enzymes: implications for human health risk assessment. Crit Rev Toxicol 2011; 40:575-619. [PMID: 20662711 DOI: 10.3109/10408441003742895] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Genetic polymorphisms in xenobiotic metabolizing enzymes can have profound influence on enzyme function, with implications for chemical clearance and internal dose. The effects of polymorphisms have been evaluated for certain therapeutic drugs but there has been relatively little investigation with environmental toxicants. Polymorphisms can also affect the function of host defense mechanisms and thus modify the pharmacodynamic response. This review and analysis explores the feasibility of using polymorphism data in human health risk assessment for four enzymes, two involved in conjugation (uridine diphosphoglucuronosyltransferases [UGTs], sulfotransferases [SULTs]), and two involved in detoxification (microsomal epoxide hydrolase [EPHX1], NADPH quinone oxidoreductase I [NQO1]). This set of evaluations complements our previous analyses with oxidative and conjugating enzymes. Of the numerous UGT and SULT enzymes, the greatest likelihood for polymorphism effect on conjugation function are for SULT1A1 (*2 polymorphism), UGT1A1 (*6, *7, *28 polymorphisms), UGT1A7 (*3 polymorphism), UGT2B15 (*2 polymorphism), and UGT2B17 (null polymorphism). The null polymorphism in NQO1 has the potential to impair host defense. These highlighted polymorphisms are of sufficient frequency to be prioritized for consideration in chemical risk assessments. In contrast, SNPs in EPHX1 are not sufficiently influential or defined for inclusion in risk models. The current analysis is an important first step in bringing the highlighted polymorphisms into a physiologically based pharmacokinetic (PBPK) modeling framework.
Collapse
Affiliation(s)
- Gary Ginsberg
- Connecticut Department of Public Health, Hartford, Connecticut 06106, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Brauer HA, Libby TE, Mitchell BL, Li L, Chen C, Randolph TW, Yasui YY, Lampe JW, Lampe PD. Cruciferous vegetable supplementation in a controlled diet study alters the serum peptidome in a GSTM1-genotype dependent manner. Nutr J 2011; 10:11. [PMID: 21272319 PMCID: PMC3042379 DOI: 10.1186/1475-2891-10-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 01/27/2011] [Indexed: 12/02/2022] Open
Abstract
Background Cruciferous vegetable intake is inversely associated with the risk of several cancers. Isothiocyanates (ITC) are hypothesized to be the major bioactive constituents contributing to these cancer-preventive effects. The polymorphic glutathione-S-transferase (GST) gene family encodes several enzymes which catalyze ITC degradation in vivo. Methods We utilized high throughput proteomics methods to examine how human serum peptides (the "peptidome") change in response to cruciferous vegetable feeding in individuals of different GSTM1 genotypes. In two randomized, crossover, controlled feeding studies (EAT and 2EAT) participants consumed a fruit- and vegetable-free basal diet and the basal diet supplemented with cruciferous vegetables. Serum samples collected at the end of the feeding period were fractionated and matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry spectra were obtained. Peak identification/alignment computer algorithms and mixed effects models were used to analyze the data. Results After analysis of spectra from EAT participants, 24 distinct peaks showed statistically significant differences associated with cruciferous vegetable intake. Twenty of these peaks were driven by their GSTM1 genotype (i.e., GSTM1+ or GSTM1- null). When data from EAT and 2EAT participants were compared by joint processing of spectra to align a common set, 6 peaks showed consistent changes in both studies in a genotype-dependent manner. The peaks at 6700 m/z and 9565 m/z were identified as an isoform of transthyretin (TTR) and a fragment of zinc α2-glycoprotein (ZAG), respectively. Conclusions Cruciferous vegetable intake in GSTM1+ individuals led to changes in circulating levels of several peptides/proteins, including TTR and a fragment of ZAG. TTR is a known marker of nutritional status and ZAG is an adipokine that plays a role in lipid mobilization. The results of this study present evidence that the GSTM1-genotype modulates the physiological response to cruciferous vegetable intake.
Collapse
Affiliation(s)
- Heather Ann Brauer
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abdull Razis AF, Bagatta M, De Nicola GR, Iori R, Ioannides C. Induction of epoxide hydrolase and glucuronosyl transferase by isothiocyanates and intact glucosinolates in precision-cut rat liver slices: importance of side-chain substituent and chirality. Arch Toxicol 2010; 85:919-27. [DOI: 10.1007/s00204-010-0629-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 11/18/2010] [Indexed: 11/25/2022]
|
38
|
Chow HHS, Garland LL, Hsu CH, Vining DR, Chew WM, Miller JA, Perloff M, Crowell JA, Alberts DS. Resveratrol modulates drug- and carcinogen-metabolizing enzymes in a healthy volunteer study. Cancer Prev Res (Phila) 2010; 3:1168-75. [PMID: 20716633 PMCID: PMC2933312 DOI: 10.1158/1940-6207.capr-09-0155] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Resveratrol has been shown to exhibit cancer-preventive activities in preclinical studies. We conducted a clinical study to determine the effect of pharmacologic doses of resveratrol on drug- and carcinogen-metabolizing enzymes. Forty-two healthy volunteers underwent baseline assessment of cytochrome P450 (CYP) and phase II detoxification enzymes. CYP1A2, CYP2D6, CYP2C9, and CYP3A4 enzyme activities were measured by the metabolism of caffeine, dextromethorphan, losartan, and buspirone, respectively. Blood lymphocyte glutathione S-transferase (GST) activity and GST-pi level and serum total and direct bilirubin, a surrogate for UDP-glucuronosyl transferase (UGT) 1A1 activity, were measured to assess phase II enzymes. After the baseline evaluation, study participants took 1 g of resveratrol once daily for 4 weeks. Enzyme assessment was repeated upon intervention completion. Resveratrol intervention was found to inhibit the phenotypic indices of CYP3A4, CYP2D6, and CYP2C9 and to induce the phenotypic index of 1A2. Overall, GST and UGT1A1 activities were minimally affected by the intervention, although an induction of GST-pi level and UGT1A1 activity was observed in individuals with low baseline enzyme level/activity. We conclude that resveratrol can modulate enzyme systems involved in carcinogen activation and detoxification, which may be one mechanism by which resveratrol inhibits carcinogenesis. However, pharmacologic doses of resveratrol could potentially lead to increased adverse drug reactions or altered drug efficacy due to inhibition or induction of certain CYPs. Further clinical development of resveratrol for cancer prevention should consider evaluation of lower doses of resveratrol to minimize adverse metabolic drug interactions.
Collapse
Affiliation(s)
- H-H Sherry Chow
- Arizona Cancer Center, The University of Arizona, Tucson, AZ 85724, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Śmiechowska A, Bartoszek A, Namieśnik J. Determination of Glucosinolates and Their Decomposition Products—Indoles and Isothiocyanates in Cruciferous Vegetables. Crit Rev Anal Chem 2010. [DOI: 10.1080/10408347.2010.490489] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
40
|
Navarro SL, Chang JL, Peterson S, Chen C, King IB, Schwarz Y, Li SS, Li L, Potter JD, Lampe JW. Modulation of human serum glutathione S-transferase A1/2 concentration by cruciferous vegetables in a controlled feeding study is influenced by GSTM1 and GSTT1 genotypes. Cancer Epidemiol Biomarkers Prev 2010; 18:2974-8. [PMID: 19900941 DOI: 10.1158/1055-9965.epi-09-0701] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Glutathione S-transferases (GST) detoxify a wide range of carcinogens. Isothiocyanates (ITC), from cruciferous vegetables, are substrates for and inducers of GST. GST variants may alter ITC clearance such that response to crucifers varies by genotype. In a randomized cross-over trial, we tested the hypothesis that changes in serum GSTA1/2 concentration in response to cruciferous vegetable feeding depends on GSTM1/GSTT1 genotype. Thirty-three men and 34 women (age 20-40 years) ate four 14-day controlled diets--basal (vegetable-free), basal supplemented with two different doses of crucifers ("single dose" and "double dose"), and single-dose cruciferous-plus-apiaceous vegetables--fed per kilogram of body weight. Fasting bloods from days 0, 7, 11, and 14 of each diet period were analyzed for serum GSTA1/2 by ELISA. GSTA1/2 increased with single- and double-dose cruciferous compared with basal diet (10% and 13%, respectively; P = 0.02 and 0.004), but cruciferous-plus-apiaceous did not differ from basal (P = 0.59). Overall, GSTA1/2 was higher in GSTM1-null/GSTT1-null than GSTM1+/GSTT1+ individuals (4,198 +/- 338 and 3,372 +/- 183 pg/mL; P = 0.03). The formal interaction of genotype-by-diet was not statistically significant, but the GSTA1/2 increase during the single-dose cruciferous diet was among GSTM1-null/GSTT1-null individuals (by 28%; P = 0.008), largely explained by GSTM1-null/GSTT1-null men (by 41%; P = 0.01). GSTA1/2 increased during the double-dose cruciferous diet in both GSTM1-null/GSTT1-null men (by 35%; P = 0.04) and GSTM1+/GSTT1+ men (by 26%; P = 0.01) but not in women. In summary, cruciferous vegetable supplementation increased GSTA1/2, but the effect was most marked in GSTM1-null/GSTT1-null men.
Collapse
Affiliation(s)
- Sandi L Navarro
- Cancer Prevention Program, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Peterson S, Schwarz Y, Li SS, Li L, King IB, Chen C, Eaton DL, Potter JD, Lampe JW. CYP1A2, GSTM1, and GSTT1 polymorphisms and diet effects on CYP1A2 activity in a crossover feeding trial. Cancer Epidemiol Biomarkers Prev 2009; 18:3118-25. [PMID: 19843669 DOI: 10.1158/1055-9965.epi-09-0589] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cytochrome P-450 1A2 (CYP1A2) is a biotransformation enzyme that activates several procarcinogens. CYP1A2 is induced by cruciferous and inhibited by apiaceous vegetable intake. Using a randomized, crossover feeding trial in humans, we investigated the dose effects of cruciferous vegetables and the effects of any interaction between cruciferous and apiaceous vegetables on CYP1A2 activity. We also investigated whether response varied by CYP1A2*1F, GSTM1, and GSTT1 genotypes (glutathione S-transferases that metabolize crucifer constituents) and whether CYP1A2 activity rebounds after apiaceous vegetables are removed from the diet. Participants (N = 73), recruited based on genotypes, consumed four diets for two weeks each: low-phytochemical diet (basal), basal plus single dose of cruciferous (1C), basal plus double dose of cruciferous (2C), and basal plus single dose of cruciferous and apiaceous vegetables (1C+A). CYP1A2 activity was determined by urine caffeine tests administered at baseline and the end of each feeding period. Compared with basal diet, the 1C diet increased CYP1A2 activity (P < 0.0001) and the 2C diet resulted in further increases (P < 0.0001), with men experiencing greater dose-response than women. The 1C+A diet decreased CYP1A2 activity compared with the 1C and 2C diets (P < 0.0001 for both). Although there was no overall effect of CYP1A2*1F or GSTM1-null/GSTT1-null genotypes or genotype-by-diet interactions, there were significant diet response differences within each genotype. Additionally, CYP1A2 activity recovered modestly one day after the removal of apiaceous vegetables. These results suggest complex interactions among dietary patterns, genetic variation, and modulation of biotransformation that may not be apparent in observational studies.
Collapse
Affiliation(s)
- Sabrina Peterson
- 1Department of Food Science and Nutrition, University of Minnesota, St Paul, Minnesota, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Li F, Hullar MAJ, Schwarz Y, Lampe JW. Human gut bacterial communities are altered by addition of cruciferous vegetables to a controlled fruit- and vegetable-free diet. J Nutr 2009; 139:1685-91. [PMID: 19640972 PMCID: PMC2728691 DOI: 10.3945/jn.109.108191] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the human gut, commensal bacteria metabolize food components that typically serve as energy sources. These components have the potential to influence gut bacterial community composition. Cruciferous vegetables, such as broccoli and cabbage, contain distinctive compounds that can be utilized by gut bacteria. For example, glucosinolates can be hydrolyzed by certain bacteria, and dietary fibers can be fermented by a range of species. We hypothesized that cruciferous vegetable consumption would alter growth of certain bacteria, thereby altering bacterial community composition. We tested this hypothesis in a randomized, crossover, controlled feeding study. Fecal samples were collected from 17 participants at the end of 2 14-d intake periods: a low-phytochemical, low-fiber basal diet (i.e. refined grains without fruits or vegetables) and a high ("double") cruciferous vegetable diet [basal diet + 14 g cruciferous vegetables/(kg body weightd)]. Fecal bacterial composition was analyzed by the terminal restriction fragment length polymorphism (tRFLP) method using the bacterial 16S ribosomal RNA gene and nucleotide sequencing. Using blocked multi-response permutation procedures analysis, we found that overall bacterial community composition differed between the 2 consumption periods (delta = 0.603; P = 0.011). The bacterial community response to cruciferous vegetables was individual-specific, as revealed by nonmetric multidimensional scaling ordination analysis. Specific tRFLP fragments that characterized each of the diets were identified using indicator species analysis. Putative species corresponding to these fragments were identified through gene sequencing as Eubacterium hallii, Phascolarctobacterium faecium, Burkholderiales spp., Alistipes putredinis, and Eggerthella spp. In conclusion, human gut bacterial community composition was altered by cruciferous vegetable consumption, which could ultimately influence gut metabolism of bioactive food components and host exposure to these compounds.
Collapse
Affiliation(s)
- Fei Li
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109 and Interdisplinary Graduate Program in Nutritional Sciences, University of Washington, Seattle, WA 98195
| | - Meredith A. J. Hullar
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109 and Interdisplinary Graduate Program in Nutritional Sciences, University of Washington, Seattle, WA 98195
| | - Yvonne Schwarz
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109 and Interdisplinary Graduate Program in Nutritional Sciences, University of Washington, Seattle, WA 98195
| | - Johanna W. Lampe
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109 and Interdisplinary Graduate Program in Nutritional Sciences, University of Washington, Seattle, WA 98195
| |
Collapse
|
43
|
Maruichi T, Fukami T, Nakajima M, Yokoi T. Transcriptional regulation of human carboxylesterase 1A1 by nuclear factor-erythroid 2 related factor 2 (Nrf2). Biochem Pharmacol 2009; 79:288-95. [PMID: 19715681 DOI: 10.1016/j.bcp.2009.08.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2009] [Revised: 08/18/2009] [Accepted: 08/19/2009] [Indexed: 12/30/2022]
Abstract
Human carboxylesterase (CES) 1A, which is predominantly expressed in liver and lung, plays an important role in the hydrolysis of endogenous compounds and xenobiotics. CES1A is reported to be induced in human hepatocytes by butylated hydroxyanisole, ticlopidine and diclofenac, and the induction is assumed to be caused by oxidative stress. However, the molecular mechanism remains to be determined. In this study, we sought to investigate whether CES1A is regulated by nuclear factor-erythroid 2 related factor 2 (Nrf2), which is a transcriptional factor activated by oxidative stress, and clarify the molecular mechanism. Real-time reverse transcription-PCR assays revealed that CES1A1 mRNA was significantly induced by tert-butylhydroquinone (tBHQ) and sulforaphane (SFN), which are representative activators of Nrf2 in HepG2, Caco-2 and HeLa cells. The induction was completely suppressed with small interfering RNA for Nrf2. In HepG2 cells, the CES1A protein level and imidapril hydrolase activity, which is specifically catalyzed by CES1A, were also significantly induced by tBHQ and SFN. Luciferase assays revealed that the antioxidant response element (ARE) at -2025 in the CES1A1 gene was responsible for the transactivation by Nrf2. In addition, electrophoretic mobility shift assays and chromatin immunoprecipitation assays revealed that Nrf2 binds to the ARE in the CES1A1 gene. These findings clearly demonstrated that human CES1A1 is induced by Nrf2. This is the first study to demonstrate the molecular mechanism of the inducible regulation of human CES1A1.
Collapse
Affiliation(s)
- Taiga Maruichi
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | |
Collapse
|
44
|
Ambrosone CB, Tang L. Cruciferous vegetable intake and cancer prevention: role of nutrigenetics. Cancer Prev Res (Phila) 2009; 2:298-300. [PMID: 19336722 DOI: 10.1158/1940-6207.capr-09-0037] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | | |
Collapse
|