1
|
Yao Y, Simes ML, Ying W, Zhao Q, Winkler A, Shukla S, Gray F, Nikolaidis C, Hewett G, Grembecka J, Cierpicki T. Development of PRC1 Inhibitors Employing Fragment-Based Approach and NMR-Guided Optimization. J Med Chem 2025. [PMID: 39746899 DOI: 10.1021/acs.jmedchem.4c01955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Polycomb Repressive Complex 1 (PRC1) is associated with transcriptional silencing, and its dysregulation plays an important role in various cancers. Well-characterized PRC1 inhibitors can facilitate the exploration of PRC1 inhibition as therapeutic agents. By employing an NMR-based fragment screening approach, we have previously identified a very weak millimolar ligand RB-1, which directly binds to RING1B-BMI1. Then, we reported a low-micromolar PRC1 inhibitor, RB-3, which is active in leukemic cells, showing inhibition of H2A ubiquitylation and modulation of target genes. Here, we describe details of the optimization campaign of RB-1 into potent PRC1 inhibitors by guiding the SAR employing two NMR approaches and a probe-based biochemical assay. These efforts, combined with medicinal chemistry optimization, resulted in the development of RB-3 and slightly improved RB-4. We have demonstrated that RB-4 binds to both RING1A and RING1B proteins and inhibits the activity of RING1B-BMI1 and RING1B-PCGF1, representing both canonical and noncanonical PRC1 complexes.
Collapse
Affiliation(s)
- Yiwu Yao
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Miranda L Simes
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Weijiang Ying
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Qingjie Zhao
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alyssa Winkler
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Shirish Shukla
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Felicia Gray
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Caroline Nikolaidis
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Geoff Hewett
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tomasz Cierpicki
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
2
|
Shen Y, Wang J, Liang J, Chen Y, Wu X, Ren Z, Zhou J, Feng L, Shen Y. E3 Ubiquitin Ligase Ring Finger Protein 2 Alleviates Cerebral Ischemia-Reperfusion Injury by Stabilizing Mesencephalic Astrocyte-Derived Neurotrophic Factor Through Monoubiquitination. CNS Neurosci Ther 2024; 30:e70136. [PMID: 39614674 DOI: 10.1111/cns.70136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/18/2024] [Accepted: 11/12/2024] [Indexed: 12/01/2024] Open
Abstract
AIM Cerebral ischemic stroke (IS) is one of the leading causes of morbidity and mortality globally. However, the mechanisms underlying IS injury remain poorly understood. Ring finger protein 2 (RNF2), the member of the polycomb family (PcG), has been implicated in diverse biological and pathological conditions. However, whether RNF2 plays a role in IS progression is not clarified. This study aims to investigate the potential effects of RNF2 on IS. METHODS The effects of RNF2 were studied in human postmortem IS brains, a rat model of IS, tunicamycin (TM)-induced mouse neuroblastoma neuro2a (N2a) cells, and oxygen-glucose deprivation/reperfusion (OGD/R)-induced SH-SY5Y cells. RESULTS Here, we demonstrated that RNF2 was markedly upregulated both in human postmortem IS brains and ischemic rat brains and RNF2 overexpression alleviated brain injury induced by middle cerebral artery occlusion by reducing neuron apoptosis. Mechanistically, we found that RNF2 is an E3 ubiquitin ligase for the mesencephalic astrocyte-derived neurotrophic factor (MANF), which confers protection against brain ischemia. RNF2 interacted with MANF and promoted the monoubiquitination of MANF, consequently facilitating its stability and nuclear localization. CONCLUSION Collectively, RNF2 is identified as a critical inhibitor of IS injury by stabilizing MANF through monoubiquitination, suggesting that RNF2 is a potential therapeutic target for IS.
Collapse
Affiliation(s)
- Yujun Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Jinfeng Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Junxing Liang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Ying Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
| | - Xueyan Wu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Anhui Medical University, Hefei, China
| | - Zhenhua Ren
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Anhui Medical University, Hefei, China
| | - Jiangning Zhou
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Anhui Medical University, Hefei, China
| | - Lijie Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Anhui Medical University, Hefei, China
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory for Brain Bank Construction and Resource Utilization, Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Liu M, Jin S, Agabiti SS, Jensen TB, Yang T, Radda JSD, Ruiz CF, Baldissera G, Rajaei M, Townsend JP, Muzumdar MD, Wang S. Tracing the evolution of single-cell cancer 3D genomes: an atlas for cancer gene discovery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.23.550157. [PMID: 37546882 PMCID: PMC10401964 DOI: 10.1101/2023.07.23.550157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Although three-dimensional (3D) genome structures are altered in cancer cells, little is known about how these changes evolve and diversify during cancer progression. Leveraging genome-wide chromatin tracing to visualize 3D genome folding directly in tissues, we generated 3D genome cancer atlases of murine lung and pancreatic adenocarcinoma. Our data reveal stereotypical, non-monotonic, and stage-specific alterations in 3D genome folding heterogeneity, compaction, and compartmentalization as cancers progress from normal to preinvasive and ultimately to invasive tumors, discovering a potential structural bottleneck in early tumor progression. Remarkably, 3D genome architectures distinguish histologic cancer states in single cells, despite considerable cell-to-cell heterogeneity. Gene-level analyses of evolutionary changes in 3D genome compartmentalization not only showed compartment-associated genes are more homogeneously regulated, but also elucidated prognostic and dependency genes in lung adenocarcinoma and a previously unappreciated role for polycomb-group protein Rnf2 in 3D genome regulation. Our results demonstrate the utility of mapping the single-cell cancer 3D genome in tissues and illuminate its potential to identify new diagnostic, prognostic, and therapeutic biomarkers in cancer.
Collapse
Affiliation(s)
- Miao Liu
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
| | - Shengyan Jin
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
| | - Sherry S. Agabiti
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
- Yale Cancer Biology Institute, Yale University; West Haven, CT 06516, USA
| | - Tyler B. Jensen
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
- M.D.-Ph.D. Program, Yale University; New Haven, CT 06510, USA
| | - Tianqi Yang
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
| | - Jonathan S. D. Radda
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
| | - Christian F. Ruiz
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
- Yale Cancer Biology Institute, Yale University; West Haven, CT 06516, USA
| | - Gabriel Baldissera
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
| | - Moein Rajaei
- Department of Biostatistics, Yale School of Public Health, Yale University; New Haven, CT 06510, USA
| | - Jeffrey P. Townsend
- Department of Biostatistics, Yale School of Public Health, Yale University; New Haven, CT 06510, USA
- Program in Computational Biology and Bioinformatics, Yale University; New Haven, CT 06510, USA
- Program in Genetics, Genomics, and Epigenetics, Yale Cancer Center, Yale University; New Haven, CT 06510, USA
| | - Mandar Deepak Muzumdar
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
- Yale Cancer Biology Institute, Yale University; West Haven, CT 06516, USA
- M.D.-Ph.D. Program, Yale University; New Haven, CT 06510, USA
- Program in Genetics, Genomics, and Epigenetics, Yale Cancer Center, Yale University; New Haven, CT 06510, USA
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
- Yale Combined Program in the Biological and Biomedical Sciences, Yale University; New Haven, CT 06510, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University; New Haven, CT 06510, USA
| | - Siyuan Wang
- Department of Genetics, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
- M.D.-Ph.D. Program, Yale University; New Haven, CT 06510, USA
- Yale Combined Program in the Biological and Biomedical Sciences, Yale University; New Haven, CT 06510, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University; New Haven, CT 06510, USA
- Department of Cell Biology, Yale School of Medicine, Yale University; New Haven, CT 06510, USA
- Biochemistry, Quantitative Biology, Biophysics, and Structural Biology Program, Yale University; New Haven, CT 06510, USA
- Yale Center for RNA Science and Medicine, Yale University School of Medicine; New Haven, CT 06510, USA
- Yale Liver Center, Yale University School of Medicine; New Haven, CT 06510, USA
| |
Collapse
|
4
|
Araujo-Abad S, Rizzuti B, Soto-Conde L, Vidal M, Abian O, Velazquez-Campoy A, Neira JL, de Juan Romero C. Citrullinating enzyme PADI4 and transcriptional repressor RING1B bind in cancer cells. Int J Biol Macromol 2024; 274:133163. [PMID: 38878927 DOI: 10.1016/j.ijbiomac.2024.133163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/26/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Polycomb groups (PcGs) are transcriptional repressors, formed by a complex of several proteins, involved in multicellular development and cancer epigenetics. One of these proteins is the E3 ubiquitin-protein ligase RING1 (or RING1B), associated with the regulation of transcriptional repression and responsible for monoubiquitylation of the histone H2A. On the other hand, PADI4 is one of the human isoforms of a family of enzymes implicated in the conversion of arginine to citrulline, and it is also involved in the development of glioblastoma, among other types of cancers. In this work, we showed the association of PADI4 and RING1B in the nucleus and cytosol in several cancer cell lines by using immunofluorescence and proximity ligation assays. Furthermore, we demonstrated that binding was hampered in the presence of GSK484, an enzymatic PADI4 inhibitor, suggesting that RING1B could bind to the active site of PADI4, as confirmed by protein-protein docking simulations. In vitro and in silico findings showed that binding to PADI4 occurred for the isolated fragments corresponding to both the N-terminal (residues 1-221) and C-terminal (residues 228-336) regions of RING1B. Binding to PADI4 was also hampered by GSK484, as shown by isothermal titration calorimetry (ITC) experiments for the sole N-terminal region, and by both NMR and ITC for the C-terminal one. The dissociation constants between PADI4 and any of the two isolated RING1B fragments were in the low micromolar range (~2-10 μM), as measured by fluorescence and ITC. The interaction between RING1B and PADI4 might imply citrullination of the former, leading to several biological consequences, as well as being of potential therapeutic relevance for improving cancer treatment with the generation of new antigens.
Collapse
Affiliation(s)
- Salome Araujo-Abad
- Cancer Research Group, Faculty of Engineering and Applied Sciences, Universidad de Las Américas, 170124 Quito, Ecuador; IDIBE, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain.
| | - Bruno Rizzuti
- CNR-NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, 87036 Rende, Italy; Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | | | - Miguel Vidal
- Centro de Investigaciones Biológicas Margarita Salas (CSIC), Calle Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | - Olga Abian
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - José L Neira
- IDIBE, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain; Institute of Biocomputation and Physics of Complex Systems (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain.
| | - Camino de Juan Romero
- IDIBE, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain; Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, 03203 Elche (Alicante), Spain.
| |
Collapse
|
5
|
Chen-Xi G, Jin-Fu X, An-Quan H, Xiao Y, Ying-Hui W, Suo-Yuan L, Cong S, Tian-Ming Z, Jun S. Long non-coding RNA PRR7-AS1 promotes osteosarcoma progression via binding RNF2 to transcriptionally suppress MTUS1. Front Oncol 2023; 13:1227789. [PMID: 38033505 PMCID: PMC10687407 DOI: 10.3389/fonc.2023.1227789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction Osteosarcoma is a common bone malignant tumor in adolescents with high mortality and poor prognosis. At present, the progress of osteosarcoma and effective treatment strategies are not clear. This study provides a new potential target for the progression and treatment of osteosarcoma. Methods The relationship between lncRNA PRR7-AS1 and osteosarcoma was analyzed using the osteosarcoma databases and clinical sample testing. Cell function assays and tumor lung metastasis were employed to study the effects of PRR7-AS1 on tumorigenesis in vivo and in vitro. Potential downstream RNF2 of PRR7-AS1 was identified and explored using RNA pulldown and RIP. The GTRD and KnockTF database were used to predict the downstream target gene, MTUS1, and ChIP-qPCR experiments were used to verify the working mechanismy. Rescue experiments were utilized to confirm the role of MTUS1 in the pathway. Results Deep mining of osteosarcoma databases combined with clinical sample testing revealed a positive correlation between lncRNA PRR7-AS1 and osteosarcoma progression. Knockdown of PRR7-AS1 inhibited osteosarcoma cell proliferation and metastasis in vitro and in vivo. Mechanistically, RNA pulldown and RIP revealed that PRR7-AS1 may bind RNF2 to play a cancer-promoting role. ChIP-qPCR experiments were utilized to validate the working mechanism of the downstream target gene MTUS1. RNF2 inhibited the transcription of MTUS1 through histone H2A lysine 119 monoubiquitin. Rescue experiments confirmed MTUS1 as a downstream direct target of PRR7-AS1 and RNF2. Discussion We identified lncRNA PRR7-AS1 as an important oncogene in osteosarcoma progression, indicating that it may be a potential target for diagnosis and prognosis of osteosarcoma.
Collapse
Affiliation(s)
- Gu Chen-Xi
- Department of Orthopedic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Xu Jin-Fu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Huang An-Quan
- Department of Orthopedic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yu Xiao
- Department of Orthopedic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Wu Ying-Hui
- Department of Orthopedic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Li Suo-Yuan
- Department of Orthopedic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Shen Cong
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Zou Tian-Ming
- Department of Orthopedic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Shen Jun
- Department of Orthopedic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
6
|
Sánchez-Molina S, Figuerola-Bou E, Sánchez-Margalet V, de la Cruz-Merino L, Mora J, de Álava Casado E, García-Domínguez DJ, Hontecillas-Prieto L. Ewing Sarcoma Meets Epigenetics, Immunology and Nanomedicine: Moving Forward into Novel Therapeutic Strategies. Cancers (Basel) 2022; 14:5473. [PMID: 36358891 PMCID: PMC9658520 DOI: 10.3390/cancers14215473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/25/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ewing Sarcoma (EWS) is an aggressive bone and soft tissue tumor that mainly affects children, adolescents, and young adults. The standard therapy, including chemotherapy, surgery, and radiotherapy, has substantially improved the survival of EWS patients with localized disease. Unfortunately, this multimodal treatment remains elusive in clinics for those patients with recurrent or metastatic disease who have an unfavorable prognosis. Consistently, there is an urgent need to find new strategies for patients that fail to respond to standard therapies. In this regard, in the last decade, treatments targeting epigenetic dependencies in tumor cells and the immune system have emerged into the clinical scenario. Additionally, recent advances in nanomedicine provide novel delivery drug systems, which may address challenges such as side effects and toxicity. Therefore, therapeutic strategies stemming from epigenetics, immunology, and nanomedicine yield promising alternatives for treating these patients. In this review, we highlight the most relevant EWS preclinical and clinical studies in epigenetics, immunotherapy, and nanotherapy conducted in the last five years.
Collapse
Affiliation(s)
- Sara Sánchez-Molina
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Elisabet Figuerola-Bou
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Víctor Sánchez-Margalet
- Clinical Laboratory, Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Luis de la Cruz-Merino
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
- Pediatric Cancer Center Barcelona, Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Enrique de Álava Casado
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío/CSIC/University of Seville/CIBERONC, 41013 Seville, Spain
- Pathology Unit, Hospital Universitario Virgen del Rocío/CSIC/University of Seville/CIBERONC, 41013 Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Daniel José García-Domínguez
- Clinical Laboratory, Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Clinical Laboratory, Department of Medical Biochemistry and Molecular Biology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
- Oncology Service, Department of Medicines, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain
| |
Collapse
|
7
|
Critical Roles of Polycomb Repressive Complexes in Transcription and Cancer. Int J Mol Sci 2022; 23:ijms23179574. [PMID: 36076977 PMCID: PMC9455514 DOI: 10.3390/ijms23179574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Polycomp group (PcG) proteins are members of highly conserved multiprotein complexes, recognized as gene transcriptional repressors during development and shown to play a role in various physiological and pathological processes. PcG proteins consist of two Polycomb repressive complexes (PRCs) with different enzymatic activities: Polycomb repressive complexes 1 (PRC1), a ubiquitin ligase, and Polycomb repressive complexes 2 (PRC2), a histone methyltransferase. Traditionally, PRCs have been described to be associated with transcriptional repression of homeotic genes, as well as gene transcription activating effects. Particularly in cancer, PRCs have been found to misregulate gene expression, not only depending on the function of the whole PRCs, but also through their separate subunits. In this review, we focused especially on the recent findings in the transcriptional regulation of PRCs, the oncogenic and tumor-suppressive roles of PcG proteins, and the research progress of inhibitors targeting PRCs.
Collapse
|
8
|
RNF2 mediates pulmonary fibroblasts activation and proliferation by regulating mTOR and p16-CDK4-Rb1 signaling pathway. Inflamm Res 2022; 71:1283-1303. [PMID: 35933565 DOI: 10.1007/s00011-022-01617-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/24/2022] [Accepted: 07/18/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Pulmonary fibrosis (PF) is a chronic, progressive interstitial lung disease with unknown etiology, associated with increasing morbidity and pessimistic prognosis. Pulmonary fibroblasts (PFbs) are the key effector cells of PF, in which abnormal activation and proliferation is an important pathogenesis of PF. Ring finger protein 2 (RNF2), is identified as the catalytic subunit of poly-comb repressive complex 1, which is closely related to occurrence and development of lung cancer, but its function in PF has not been revealed. In this paper, we sought to identify the regulatory role of RNF2 in lung fibrogenesis and its underlying mechanisms. METHODS The expression of RNF2 in lung fibrosis tissue (human and Bleomycin-induced mouse) and cell model (TGF-β1-induced HFL1 cells) was examined by immunoblotting analysis and immunofluorescence. Western blot, qRT-PCR were performed to evaluate the expression of pro-fibrogenic cytokines (including α-SMA, ECM and MMPs/ TIMPs) induced by TGF-β1 in HFL1 cells. Cell proliferation, cycle progression and apoptosis were examined by fow cytometric. Molecular interactions were tested by Co-IP assays. RESULTS RNF2 expression was elevated in PF tissues compared to normal adjacent tissues and in PFbs (HFL1) induced by TGF-β1. Furthermore, knockdown of RNF2 could evidently inhibit the abnormal expression of pro-fibrogenic cytokines (including α-SMA, ECM and MMPs/TIMPs) induced by TGF-β1 in HFL1 cells. Functionally, RNF2 silencing could significantly suppress TGF-β1-induced anomalous proliferation, cell cycle progression, apoptosis and autophagy in HFL1 cells. Mechanistically, RNF2 deficiency could effectively inhibit the abnormal activation of mTOR signaling pathway in TGF-β1-induced HFL1 cells, and mTOR pathway had feedback regulation on the expression of RNF2. Further studies RNF2 could regulate the phosphorylation level of RB1 through interacting with p16 to destroy the binding of p16 and CDK4 competitively. Simultaneously, overexpression of RNF2 could show the opposite results. CONCLUSIONS These results indicated that RNF2 is a potent pro-fibrogenic molecule for PFbs activation and proliferation through mTOR and p16-CDK4-Rb signaling pathways, and RNF2 inhibition will be a potential therapeutic avenue for treating PF.
Collapse
|
9
|
Ohanna M, Biber P, Deckert M. Emerging Role of Deubiquitinating Enzymes (DUBs) in Melanoma Pathogenesis. Cancers (Basel) 2022; 14:3371. [PMID: 35884430 PMCID: PMC9322030 DOI: 10.3390/cancers14143371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Metastatic melanoma is the leading cause of death from skin cancer. Therapies targeting the BRAF oncogenic pathway and immunotherapies show remarkable clinical efficacy. However, these treatments are limited to subgroups of patients and relapse is common. Overall, the majority of patients require additional treatments, justifying the development of new therapeutic strategies. Non-genetic and genetic alterations are considered to be important drivers of cellular adaptation mechanisms to current therapies and disease relapse. Importantly, modification of the overall proteome in response to non-genetic and genetic events supports major cellular changes that are required for the survival, proliferation, and migration of melanoma cells. However, the mechanisms underlying these adaptive responses remain to be investigated. The major contributor to proteome remodeling involves the ubiquitin pathway, ubiquitinating enzymes, and ubiquitin-specific proteases also known as DeUBiquitinases (DUBs). In this review, we summarize the current knowledge regarding the nature and roles of the DUBs recently identified in melanoma progression and therapeutic resistance and discuss their potential as novel sources of vulnerability for melanoma therapy.
Collapse
Affiliation(s)
- Mickael Ohanna
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (P.B.); (M.D.)
- Team MicroCan, Equipe Labellisée Ligue Contre le Cancer, 06204 Nice, France
| | - Pierric Biber
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (P.B.); (M.D.)
- Team MicroCan, Equipe Labellisée Ligue Contre le Cancer, 06204 Nice, France
| | - Marcel Deckert
- Université Côte d’Azur, INSERM, C3M, 06204 Nice, France; (P.B.); (M.D.)
- Team MicroCan, Equipe Labellisée Ligue Contre le Cancer, 06204 Nice, France
| |
Collapse
|
10
|
Parreno V, Martinez AM, Cavalli G. Mechanisms of Polycomb group protein function in cancer. Cell Res 2022; 32:231-253. [PMID: 35046519 PMCID: PMC8888700 DOI: 10.1038/s41422-021-00606-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/10/2021] [Indexed: 02/01/2023] Open
Abstract
Cancer arises from a multitude of disorders resulting in loss of differentiation and a stem cell-like phenotype characterized by uncontrolled growth. Polycomb Group (PcG) proteins are members of multiprotein complexes that are highly conserved throughout evolution. Historically, they have been described as essential for maintaining epigenetic cellular memory by locking homeotic genes in a transcriptionally repressed state. What was initially thought to be a function restricted to a few target genes, subsequently turned out to be of much broader relevance, since the main role of PcG complexes is to ensure a dynamically choregraphed spatio-temporal regulation of their numerous target genes during development. Their ability to modify chromatin landscapes and refine the expression of master genes controlling major switches in cellular decisions under physiological conditions is often misregulated in tumors. Surprisingly, their functional implication in the initiation and progression of cancer may be either dependent on Polycomb complexes, or specific for a subunit that acts independently of other PcG members. In this review, we describe how misregulated Polycomb proteins play a pleiotropic role in cancer by altering a broad spectrum of biological processes such as the proliferation-differentiation balance, metabolism and the immune response, all of which are crucial in tumor progression. We also illustrate how interfering with PcG functions can provide a powerful strategy to counter tumor progression.
Collapse
Affiliation(s)
- Victoria Parreno
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France
| | - Anne-Marie Martinez
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR 9002, CNRS-University of Montpellier, Montpellier, France.
| |
Collapse
|
11
|
Moubarak RS, de Pablos-Aragoneses A, Ortiz-Barahona V, Gong Y, Gowen M, Dolgalev I, Shadaloey SAA, Argibay D, Karz A, Von Itter R, Vega-Sáenz de Miera EC, Sokolova E, Darvishian F, Tsirigos A, Osman I, Hernando E. The histone demethylase PHF8 regulates TGFβ signaling and promotes melanoma metastasis. SCIENCE ADVANCES 2022; 8:eabi7127. [PMID: 35179962 PMCID: PMC8856617 DOI: 10.1126/sciadv.abi7127] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 12/14/2021] [Indexed: 05/17/2023]
Abstract
The contribution of epigenetic dysregulation to metastasis remains understudied. Through a meta-analysis of gene expression datasets followed by a mini-screen, we identified Plant Homeodomain Finger protein 8 (PHF8), a histone demethylase of the Jumonji C protein family, as a previously unidentified prometastatic gene in melanoma. Loss- and gain-of-function approaches demonstrate that PHF8 promotes cell invasion without affecting proliferation in vitro and increases dissemination but not subcutaneous tumor growth in vivo, thus supporting its specific contribution to the acquisition of metastatic potential. PHF8 requires its histone demethylase activity to enhance melanoma cell invasion. Transcriptomic and epigenomic analyses revealed that PHF8 orchestrates a molecular program that directly controls the TGFβ signaling pathway and, as a consequence, melanoma invasion and metastasis. Our findings bring a mechanistic understanding of epigenetic regulation of metastatic fitness in cancer, which may pave the way for improved therapeutic interventions.
Collapse
Affiliation(s)
- Rana S. Moubarak
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | | | | | - Yixiao Gong
- Applied Bioinformatics Laboratories, NYU School of Medicine, NY 10016, USA
| | - Michael Gowen
- NYU School of Medicine Institute for Computational Medicine, New York, NY 10016, USA
| | - Igor Dolgalev
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Applied Bioinformatics Laboratories, NYU School of Medicine, NY 10016, USA
| | - Sorin A. A. Shadaloey
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
| | - Diana Argibay
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
| | - Alcida Karz
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
| | - Richard Von Itter
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
| | | | - Elena Sokolova
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
| | - Farbod Darvishian
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
| | - Aristotelis Tsirigos
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Applied Bioinformatics Laboratories, NYU School of Medicine, NY 10016, USA
- NYU School of Medicine Institute for Computational Medicine, New York, NY 10016, USA
| | - Iman Osman
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
- Ronald O. Perelman Department of Dermatology, NYU School of Medicine, New York, NY 10016, USA
| | - Eva Hernando
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
- Interdisciplinary Melanoma Cooperative Group, NYU Cancer Institute, New York, NY 10016, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| |
Collapse
|
12
|
Xu H, Wong CC, Li W, Zhou Y, Li Y, Wang L, Liu L, Yu J. RING-finger protein 6 promotes colorectal tumorigenesis by transcriptionally activating SF3B2. Oncogene 2021; 40:6513-6526. [PMID: 34611311 PMCID: PMC8616760 DOI: 10.1038/s41388-021-01872-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/12/2021] [Accepted: 05/26/2021] [Indexed: 01/05/2023]
Abstract
RNF6 is a RING finger protein with oncogenic potential. In this study, we established colon-specific RNF6 transgenic (tg) mice, and demonstrated that RNF6 overexpression accelerated colorectal carcinogenesis compared to wild-type littermates in a chemically induced colorectal cancer (CRC) model. To understand whether transcriptional activity of RNF6 underlies its oncogenic effect, we performed integrated chromatin immunoprecipitation (ChIP)-sequencing and RNA-sequencing analysis to identify splicing factor 3b subunit 2 (SF3B2) as a potential downstream target of RNF6. RNF6 binds to the SF3B2 promoter and the overexpression of RNF6 activates SF3B2 expression in CRC cells, primary CRC organoids, and RNF6 tg mice. SF3B2 knockout abrogated the tumor promoting effect of RNF6 overexpression, whereas the reexpression of SF3B2 recused cell growth and migration/invasion in RNF6 knockout cells, indicating that SF3B2 is a functional downstream target of RNF6 in CRC. Targeting of RNF6-SF3B2 axis with SF3B2 inhibitor with pladienolide B suppressed the growth of CRC cells with RNF6 overexpression in vitro and in vivo. Moreover, the combination of 5-fluorouracil (5-FU) plus pladienolide B exerted synergistic effects in CRC with high RNF6 expression, leading to tumor regression in xenograft models. These findings indicate that tumor promoting effect of RNF6 is achieved mainly via transcriptional upregulation of SF3B2, and that RNF6-SF3B2 axis is a promising target for CRC therapy.
Collapse
Affiliation(s)
- Hui Xu
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Weilin Li
- Department of Genetics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Yunfei Zhou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yan Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Lifu Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Lei Liu
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
13
|
RNF2 ablation reprograms the tumor-immune microenvironment and stimulates durable NK and CD4 + T-cell-dependent antitumor immunity. NATURE CANCER 2021; 2:1018-1038. [PMID: 35121884 PMCID: PMC8809507 DOI: 10.1038/s43018-021-00263-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Expanding the utility of immune-based cancer treatments is a clinical challenge due to tumor-intrinsic factors that suppress the immune response. Here we report the identification of tumoral ring finger protein 2 (RNF2), the core subunit of polycomb repressor complex 1, as a negative regulator of antitumor immunity in various human cancers, including breast cancer. In syngeneic murine models of triple-negative breast cancer, we found that deleting genes encoding the polycomb repressor complex 1 subunits Rnf2, BMI1 proto-oncogene, polycomb ring finger (Bmi1), or the downstream effector of Rnf2, remodeling and spacing factor 1 (Rsf1), was sufficient by itself to induce durable tumor rejection and establish immune memory by enhancing infiltration and activation of natural killer and CD4+ T cells, but not CD8+ T cells, into the tumor and enabled their cooperativity. These findings uncover an epigenetic reprogramming of the tumor-immune microenvironment, which fosters durable antitumor immunity and memory.
Collapse
|
14
|
Terranova CJ, Tang M, Maitituoheti M, Raman AT, Ghosh AK, Schulz J, Amin SB, Orouji E, Tomczak K, Sarkar S, Oba J, Creasy C, Wu CJ, Khan S, Lazcano R, Wani K, Singh A, Barrodia P, Zhao D, Chen K, Haydu LE, Wang WL, Lazar AJ, Woodman SE, Bernatchez C, Rai K. Reprogramming of bivalent chromatin states in NRAS mutant melanoma suggests PRC2 inhibition as a therapeutic strategy. Cell Rep 2021; 36:109410. [PMID: 34289358 PMCID: PMC8369408 DOI: 10.1016/j.celrep.2021.109410] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 05/13/2021] [Accepted: 06/25/2021] [Indexed: 12/27/2022] Open
Abstract
The dynamic evolution of chromatin state patterns during metastasis, their relationship with bona fide genetic drivers, and their therapeutic vulnerabilities are not completely understood. Combinatorial chromatin state profiling of 46 melanoma samples reveals an association of NRAS mutants with bivalent histone H3 lysine 27 trimethylation (H3K27me3) and Polycomb repressive complex 2. Reprogramming of bivalent domains during metastasis occurs on master transcription factors of a mesenchymal phenotype, including ZEB1, TWIST1, and CDH1. Resolution of bivalency using pharmacological inhibition of EZH2 decreases invasive capacity of melanoma cells and markedly reduces tumor burden in vivo, specifically in NRAS mutants. Coincident with bivalent reprogramming, the increased expression of pro-metastatic and melanocyte-specific cell-identity genes is associated with exceptionally wide H3K4me3 domains, suggesting a role for this epigenetic element. Overall, we demonstrate that reprogramming of bivalent and broad domains represents key epigenetic alterations in metastatic melanoma and that EZH2 plus MEK inhibition may provide a promising therapeutic strategy for NRAS mutant melanoma patients.
Collapse
Affiliation(s)
- Christopher J Terranova
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Ming Tang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; FAS informatics, Department of Molecular Biology, Harvard, Cambridge, MA 02138, USA
| | - Mayinuer Maitituoheti
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Ayush T Raman
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Epigenomics Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Graduate Program in Quantitative Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Archit K Ghosh
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jonathan Schulz
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Samir B Amin
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Elias Orouji
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Epigenetics Initiative, Princess Margaret Genomics Centre, Toronto, ON M5G 2C1, Canada
| | - Katarzyna Tomczak
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Sharmistha Sarkar
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Junna Oba
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Caitlin Creasy
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Chang-Jiun Wu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Samia Khan
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Rossana Lazcano
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Khalida Wani
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Anand Singh
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Praveen Barrodia
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Dongyu Zhao
- Houston Methodist Academic Institute, Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Kaifu Chen
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Lauren E Haydu
- Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Wei-Lien Wang
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Alexander J Lazar
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Scott E Woodman
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Chantale Bernatchez
- Department of Melanoma Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Kunal Rai
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
15
|
G-protein-coupled receptor GPR17 inhibits glioma development by increasing polycomb repressive complex 1-mediated ROS production. Cell Death Dis 2021; 12:610. [PMID: 34120140 PMCID: PMC8197764 DOI: 10.1038/s41419-021-03897-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 02/05/2023]
Abstract
Glioma is the most common primary tumor in the central nervous system. However, the development of glioma and effective therapeutic strategies remain elusive. Here, we identify GPR17 as a potential target to treat glioma. Data mining with human LGG and GBM samples reveals that GPR17 is negatively correlated with glioma development. Overexpressing GPR17 inhibits glioma cell proliferation and induces apoptosis by raising ROS levels. GPR17-overexpressing glioma cells are less tumorigenic in the brain than in control cells. Mechanistically, GPR17 inhibits the transcription of RNF2, a key component in the PRC1 complex, through cAMP/PKA/NF-κB signaling, leading to reduced histone H2A monoubiquitination. ChIP-Seq and RNA-Seq analyses reveal KLF9 as a direct target of RNF2. KLF9 mediates the functions of GPR17 and RNF2 in glioma cells. Furthermore, activation of GPR17 by its agonist inhibits glioma formation. Our findings have thus identified GPR17 as a key regulator of glioma development and a potential therapeutic target for gliomas.
Collapse
|
16
|
Polycomb-group proteins in the initiation and progression of cancer. J Genet Genomics 2021; 48:433-443. [PMID: 34266781 DOI: 10.1016/j.jgg.2021.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 12/13/2022]
Abstract
The Polycomb group (PcG) proteins are a family of chromatin regulators and critical for the maintenance of cellular identity. The PcG machinery can be categorized into at least three multi-protein complexes, namely Polycomb Repressive Complex 1 (PRC1), PRC2, and Polycomb Repressive DeUBiquitinase (PR-DUB). Their deregulation has been associated with human cancer initiation and progression. Here we review the updated understanding for PcG proteins in transcription regulation and DNA damage repair and highlight increasing links to the hallmarks in cancer. Accordingly, we discuss some of the recent advances in drug development or strategies against cancers caused by the gain or loss of PcG functions.
Collapse
|
17
|
Piunti A, Shilatifard A. The roles of Polycomb repressive complexes in mammalian development and cancer. Nat Rev Mol Cell Biol 2021; 22:326-345. [PMID: 33723438 DOI: 10.1038/s41580-021-00341-1] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
More than 80 years ago, the first Polycomb-related phenotype was identified in Drosophila melanogaster. Later, a group of diverse genes collectively called Polycomb group (PcG) genes were identified based on common mutant phenotypes. PcG proteins, which are well-conserved in animals, were originally characterized as negative regulators of gene transcription during development and subsequently shown to function in various biological processes; their deregulation is associated with diverse phenotypes in development and in disease, especially cancer. PcG proteins function on chromatin and can form two distinct complexes with different enzymatic activities: Polycomb repressive complex 1 (PRC1) is a histone ubiquitin ligase and PRC2 is a histone methyltransferase. Recent studies have revealed the existence of various mutually exclusive PRC1 and PRC2 variants. In this Review, we discuss new concepts concerning the biochemical and molecular functions of these new PcG complex variants, and how their epigenetic activities are involved in mammalian development and cancer.
Collapse
Affiliation(s)
- Andrea Piunti
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ali Shilatifard
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
18
|
Pan M, Blattner C. Regulation of p53 by E3s. Cancers (Basel) 2021; 13:745. [PMID: 33670160 PMCID: PMC7916862 DOI: 10.3390/cancers13040745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/15/2021] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
More than 40 years of research on p53 have given us tremendous knowledge about this protein. Today we know that p53 plays a role in different biological processes such as proliferation, invasion, pluripotency, metabolism, cell cycle control, ROS (reactive oxygen species) production, apoptosis, inflammation and autophagy. In the nucleus, p53 functions as a bona-fide transcription factor which activates and represses transcription of a number of target genes. In the cytoplasm, p53 can interact with proteins of the apoptotic machinery and by this also induces cell death. Despite being so important for the fate of the cell, expression levels of p53 are kept low in unstressed cells and the protein is largely inactive. The reason for the low expression level is that p53 is efficiently degraded by the ubiquitin-proteasome system and the vast inactivity of the tumor suppressor protein under normal growth conditions is due to the absence of activating and the presence of inactivating posttranslational modifications. E3s are important enzymes for these processes as they decorate p53 with ubiquitin and small ubiquitin-like proteins and by this control p53 degradation, stability and its subcellular localization. In this review, we provide an overview about E3s that target p53 and discuss the connection between p53, E3s and tumorigenesis.
Collapse
Affiliation(s)
| | - Christine Blattner
- Institute of Biological and Chemical Systems—Biological Information Processing, Karlsruhe Institute of Technology, PO-box 3640, 76021 Karlsruhe, Germany;
| |
Collapse
|
19
|
Yan Q, Chen BJ, Hu S, Qi SL, Li LY, Yang JF, Zhou H, Yang CC, Chen LJ, Du J. Emerging role of RNF2 in cancer: From bench to bedside. J Cell Physiol 2021; 236:5453-5465. [PMID: 33400276 DOI: 10.1002/jcp.30260] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/03/2020] [Accepted: 12/22/2020] [Indexed: 01/16/2023]
Abstract
RNF2 (also known as ding, Ring1B or Ring2) is a member of the Ring finger protein family, which functions as E3 ubiquitin ligase for monoubiquitination of histone H2A at lysine 119 (H2AK119ub). RNF2 gene is located at the 1q25.3 site of human chromosome and the coding region is composed of 9 exons, encoding 336 amino acids in total. Many studies have demonstrated that overexpressed RNF2 was involved in the pathological progression of multiple cancers and has an impact on their clinical features. For instance, the upregulated expression level of RNF2 is positively correlated with the occurrence and progression of hepatocellular carcinoma, melanoma, prostate cancer, breast cancer, pancreatic cancer, gastric cancer, and bladder urothelial carcinoma, as well as with the radioresistance of lung cancer and chemoresistance of ovarian cancer. This review provides an up-to-date perspective on the relationship between RNF2 and several cancers and highlights recent studies on RNF2 regulation. In particular, the relevant cellular signaling pathways and potential clinical value of RNF2 in cancers are also discussed, suggesting its potential as an epigenetic biomarker and therapeutic target for these cancers.
Collapse
Affiliation(s)
- Qi Yan
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Bang-Jie Chen
- First Clinical Medical College of Anhui Medical university, Hefei, China
| | - Shuang Hu
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Shun-Li Qi
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liang-Yun Li
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun-Fa Yang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Hong Zhou
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Chen-Chen Yang
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Li-Jian Chen
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jian Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
20
|
Sánchez-Molina S, Figuerola-Bou E, Blanco E, Sánchez-Jiménez M, Táboas P, Gómez S, Ballaré C, García-Domínguez DJ, Prada E, Hontecillas-Prieto L, M Carcaboso Á, Tirado ÓM, Hernández-Muñoz I, de Álava E, Lavarino C, Di Croce L, Mora J. RING1B recruits EWSR1-FLI1 and cooperates in the remodeling of chromatin necessary for Ewing sarcoma tumorigenesis. SCIENCE ADVANCES 2020; 6:6/43/eaba3058. [PMID: 33097530 PMCID: PMC7608835 DOI: 10.1126/sciadv.aba3058] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 09/09/2020] [Indexed: 05/04/2023]
Abstract
Ewing sarcoma (EwS) is an aggressive tumor that affects adolescents and young adults. EwS is defined by a chromosomal translocation, EWSR1-FLI1 being the most common, that causes genome reprogramming through remodeling of enhancers. Here, we describe an unexpected function of RING1B, which is highly expressed in EwS. While retaining its repressive activity at Polycomb developmental regulated genes, RING1B colocalizes with EWSR1-FLI1 at active enhancers. We demonstrate that RING1B is necessary for the expression of key EWSR1-FLI1 targets by facilitating oncogene recruitment to their enhancers. Knockdown of RING1B impairs growth of tumor xenografts and expression of genes regulated by EWSR1-FLI1 bound enhancers. Pharmacological inhibition of AURKB with AZD1152 increases H2Aub levels causing down-regulation of RING1B/EWSR1-FLI1 common targets. Our findings demonstrate that RING1B is a critical modulator of EWSR1-FLI1-induced chromatin remodeling, and its inhibition is a potential therapeutic strategy for the treatment of these tumors.
Collapse
Affiliation(s)
- Sara Sánchez-Molina
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain.
| | - Elisabet Figuerola-Bou
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Enrique Blanco
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - María Sánchez-Jiménez
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Pablo Táboas
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Soledad Gómez
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Cecilia Ballaré
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Daniel J García-Domínguez
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla-CIBERONC, Department of Pathology, 41013 Seville, Spain
| | - Estela Prada
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Lourdes Hontecillas-Prieto
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla-CIBERONC, Department of Pathology, 41013 Seville, Spain
| | - Ángel M Carcaboso
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Óscar M Tirado
- Sarcoma Research Group, Laboratori d'Oncologia Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL)-CIBERONC, L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Inmaculada Hernández-Muñoz
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
- Fundació Institut Hospital del Mar d'Investigacions Mèdiques (FIMIM), 08003 Barcelona, Spain
| | - Enrique de Álava
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla-CIBERONC, Department of Pathology, 41013 Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| | - Cinzia Lavarino
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
- Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| | - Luciano Di Croce
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, 08003 Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Pg Lluis Companys 23, 08010 Barcelona, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain.
- Pediatric Cancer Center Barcelona (PCCB), Hospital Sant Joan de Déu, Esplugues de Llobregat, 08950 Barcelona, Spain
| |
Collapse
|
21
|
Mao CG, Jiang SS, Shen C, Long T, Jin H, Tan QY, Deng B. BCAR1 promotes proliferation and cell growth in lung adenocarcinoma via upregulation of POLR2A. Thorac Cancer 2020; 11:3326-3336. [PMID: 33001583 PMCID: PMC7606008 DOI: 10.1111/1759-7714.13676] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND This study was designed to investigate the effects of a novel carcinogenetic molecule, p130cas (breast cancer antiestrogen resistance protein 1 or BCAR1) on proliferation and cell growth in lung adenocarcinoma. The study also aimed to identify the possible underlying signal networks of BCAR1. METHODS First, we evaluated proliferation, cell colony formation, apoptosis, and cell cycle after BCAR1 was knocked out (KO) using CRISPR-Cas9 technology in H1975 and H1299 human lung adenocarcinoma cells. Subsequently, BCAR1 was upregulated in 293T cells and immunoprecipitation-mass spectrometry (IP-MS) was used with bioinformatics analysis to screen for potential networks of BCAR1 interacting proteins. Ultimately, we validated the correlated expressions of BCAR1 and a selected hub gene, RNA polymerase II subunit A (POLR2A), in 54 lung adenocarcinoma tissues, as well as in H1975 and H1299 cells. RESULTS Cell proliferation of H1975 and H1299 was significantly inhibited following BCAR1-KO. Colony formation of H1975 cells was also significantly decreased following BCAR1-KO. IP-MS demonstrated 419 potential proteins that may interact with BCAR1. Among them, 68 genes were significantly positively correlated to BCAR1 expression, as verified by TCGA. Six hub genes were revealed by PPI String. High expression of POLR2A, MAPK3, MOV10, and XAB2 predicted poor prognosis in lung adenocarcinoma, as verified by the K-M plotter database. POLR2A and MAPK3 are involved in both catalytic activity and transferase activity. POLR2A and BCAR1 were significantly increased in lung cancer tissues as compared with matched normal tissues. High expression of POLR2A was significantly positively correlated to BCAR1 overexpression and predicted poor prognosis in 54 lung cancer cases. POLR2A expression was significantly decreased following BCAR1-KO in H1975 and H1299 cells. CONCLUSIONS BCAR1 promotes proliferation and cell growth, probably via upregulation of POLR2A and subsequent enhancement of catalytic and transferase activities. However, additional robust studies are required to elucidate the mechanisms involved.
Collapse
Affiliation(s)
- Chun-Guo Mao
- Thoracic Surgery Department, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Sha-Sha Jiang
- Thoracic Surgery Department, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Cheng Shen
- Thoracic Surgery Department, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Tan Long
- Thoracic Surgery Department, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Hua Jin
- Thoracic Surgery Department, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Qun-You Tan
- Thoracic Surgery Department, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Bo Deng
- Thoracic Surgery Department, Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
22
|
Nuclear P38: Roles in Physiological and Pathological Processes and Regulation of Nuclear Translocation. Int J Mol Sci 2020; 21:ijms21176102. [PMID: 32847129 PMCID: PMC7504396 DOI: 10.3390/ijms21176102] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
The p38 mitogen-activated protein kinase (p38MAPK, termed here p38) cascade is a central signaling pathway that transmits stress and other signals to various intracellular targets in the cytoplasm and nucleus. More than 150 substrates of p38α/β have been identified, and this number is likely to increase. The phosphorylation of these substrates initiates or regulates a large number of cellular processes including transcription, translation, RNA processing and cell cycle progression, as well as degradation and the nuclear translocation of various proteins. Being such a central signaling cascade, its dysregulation is associated with many pathologies, particularly inflammation and cancer. One of the hallmarks of p38α/β signaling is its stimulated nuclear translocation, which occurs shortly after extracellular stimulation. Although p38α/β do not contain nuclear localization or nuclear export signals, they rapidly and robustly translocate to the nucleus, and they are exported back to the cytoplasm within minutes to hours. Here, we describe the physiological and pathological roles of p38α/β phosphorylation, concentrating mainly on the ill-reviewed regulation of p38α/β substrate degradation and nuclear translocation. In addition, we provide information on the p38α/β ’s substrates, concentrating mainly on the nuclear targets and their role in p38α/β functions. Finally, we also provide information on the mechanisms of nuclear p38α/β translocation and its use as a therapeutic target for p38α/β-dependent diseases.
Collapse
|
23
|
Giner-Laguarda N, Vidal M. Functions of Polycomb Proteins on Active Targets. EPIGENOMES 2020; 4:17. [PMID: 34968290 PMCID: PMC8594714 DOI: 10.3390/epigenomes4030017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022] Open
Abstract
Chromatin regulators of the Polycomb group of genes are well-known by their activities as transcriptional repressors. Characteristically, their presence at genomic sites occurs with specific histone modifications and sometimes high-order chromatin structures correlated with silencing of genes involved in cell differentiation. However, evidence gathered in recent years, on flies and mammals, shows that in addition to these sites, Polycomb products bind to a large number of active regulatory regions. Occupied sites include promoters and also intergenic regions, containing enhancers and super-enhancers. Contrasting with occupancies at repressed targets, characteristic histone modifications are low or undetectable. Functions on active targets are dual, restraining gene expression at some targets while promoting activity at others. Our aim here is to summarize the evidence available and discuss the convenience of broadening the scope of research to include Polycomb functions on active targets.
Collapse
Affiliation(s)
| | - Miguel Vidal
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, Ramiro de Maeztu 9, 28040 Madrid, Spain;
| |
Collapse
|
24
|
MHC Class I Downregulation in Cancer: Underlying Mechanisms and Potential Targets for Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12071760. [PMID: 32630675 PMCID: PMC7409324 DOI: 10.3390/cancers12071760] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/18/2022] Open
Abstract
In recent years, major advances have been made in cancer immunotherapy. This has led to significant improvement in prognosis of cancer patients, especially in the hematological setting. Nonetheless, translation of these successes to solid tumors was found difficult. One major mechanism through which solid tumors can avoid anti-tumor immunity is the downregulation of major histocompatibility complex class I (MHC-I), which causes reduced recognition by- and cytotoxicity of CD8+ T-cells. Downregulation of MHC-I has been described in 40-90% of human tumors, often correlating with worse prognosis. Epigenetic and (post-)transcriptional dysregulations relevant in the stabilization of NFkB, IRFs, and NLRC5 are often responsible for MHC-I downregulation in cancer. The intrinsic reversible nature of these dysregulations provides an opportunity to restore MHC-I expression and facilitate adaptive anti-tumor immunity. In this review, we provide an overview of the mechanisms underlying reversible MHC-I downregulation and describe potential strategies to counteract this reduction in MHC-I antigen presentation in cancer.
Collapse
|
25
|
Kyriakou G, Melachrinou M. Cancer stem cells, epigenetics, tumor microenvironment and future therapeutics in cutaneous malignant melanoma: a review. Future Oncol 2020; 16:1549-1567. [PMID: 32484008 DOI: 10.2217/fon-2020-0151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This review provides an overview of the current understanding of the ontogeny and biology of melanoma stem cells in cutaneous malignant melanoma. This article also summarizes and evaluates the current knowledge of the underlying epigenetic mechanisms, the regulation of melanoma progress by the tumor microenvironment as well as the therapeutic implications and applications of these novel insights, in the setting of personalized medicine. Unraveling the complex ecosystem of cutaneous malignant melanoma and the interplay between its components, aims to provide novel insights into the establishment of efficient therapeutic strategies.
Collapse
Affiliation(s)
- Georgia Kyriakou
- Department of Dermatology, University General Hospital of Patras, Rion 265 04, Greece
| | - Maria Melachrinou
- Department of Pathology, University General Hospital of Patras, Rion 265 04, Greece
| |
Collapse
|
26
|
Zhang Y, Chan HL, Garcia-Martinez L, Karl DL, Weich N, Slingerland JM, Verdun RE, Morey L. Estrogen induces dynamic ERα and RING1B recruitment to control gene and enhancer activities in luminal breast cancer. SCIENCE ADVANCES 2020; 6:eaaz7249. [PMID: 32548262 PMCID: PMC7274770 DOI: 10.1126/sciadv.aaz7249] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/02/2020] [Indexed: 05/04/2023]
Abstract
RING1B, a core Polycomb repressive complex 1 subunit, is a histone H2A ubiquitin ligase essential for development. RING1B is overexpressed in patients with luminal breast cancer (BC) and recruited to actively transcribed genes and enhancers co-occupied by the estrogen receptor α (ERα). Whether ERα-induced transcriptional programs are mediated by RING1B is not understood. We show that prolonged estrogen administration induces transcriptional output and chromatin landscape fluctuations. RING1B loss impairs full estrogen-mediated gene expression and chromatin accessibility for key BC transcription factors. These effects were mediated, in part, by RING1B enzymatic activity and nucleosome binding functions. RING1B is recruited in a cyclic manner to ERα, FOXA1, and GRHL2 cobound sites and regulates estrogen-induced enhancers and ERα recruitment. Last, ChIP exo revealed multiple binding events of these factors at single-nucleotide resolution, including RING1B occupancy approximately 10 base pairs around ERα bound sites. We propose RING1B as a key regulator of the dynamic, liganded-ERα transcriptional regulatory circuit in luminal BC.
Collapse
Affiliation(s)
- Yusheng Zhang
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Ho Lam Chan
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Liliana Garcia-Martinez
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
| | - Daniel L. Karl
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Natalia Weich
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Joyce M. Slingerland
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Braman Family Breast Cancer Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ramiro E. Verdun
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
- Division of Hematology, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA
- Corresponding author.
| |
Collapse
|
27
|
Merrill NM, Lachacz EJ, Vandecan NM, Ulintz PJ, Bao L, Lloyd JP, Yates JA, Morikawa A, Merajver SD, Soellner MB. Molecular determinants of drug response in TNBC cell lines. Breast Cancer Res Treat 2020; 179:337-347. [PMID: 31655920 PMCID: PMC7323911 DOI: 10.1007/s10549-019-05473-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 10/10/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE There is a need for biomarkers of drug efficacy for targeted therapies in triple-negative breast cancer (TNBC). As a step toward this, we identify multi-omic molecular determinants of anti-TNBC efficacy in cell lines for a panel of oncology drugs. METHODS Using 23 TNBC cell lines, drug sensitivity scores (DSS3) were determined using a panel of investigational drugs and drugs approved for other indications. Molecular readouts were generated for each cell line using RNA sequencing, RNA targeted panels, DNA sequencing, and functional proteomics. DSS3 values were correlated with molecular readouts using a FDR-corrected significance cutoff of p* < 0.05 and yielded molecular determinant panels that predict anti-TNBC efficacy. RESULTS Six molecular determinant panels were obtained from 12 drugs we prioritized based on their efficacy. Determinant panels were largely devoid of DNA mutations of the targeted pathway. Molecular determinants were obtained by correlating DSS3 with molecular readouts. We found that co-inhibiting molecular correlate pathways leads to robust synergy across many cell lines. CONCLUSIONS These findings demonstrate an integrated method to identify biomarkers of drug efficacy in TNBC where DNA predictions correlate poorly with drug response. Our work outlines a framework for the identification of novel molecular determinants and optimal companion drugs for combination therapy based on these correlates.
Collapse
Affiliation(s)
- Nathan M Merrill
- Department of Internal Medicine, University of Michigan, 1500 Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Eric J Lachacz
- Department of Internal Medicine, University of Michigan, 1500 Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Nathalie M Vandecan
- Department of Internal Medicine, University of Michigan, 1500 Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Peter J Ulintz
- Department of Internal Medicine, University of Michigan, 1500 Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Liwei Bao
- Department of Internal Medicine, University of Michigan, 1500 Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - John P Lloyd
- Department of Internal Medicine, University of Michigan, 1500 Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Joel A Yates
- Department of Internal Medicine, University of Michigan, 1500 Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Aki Morikawa
- Department of Internal Medicine, University of Michigan, 1500 Medical Center Dr, Ann Arbor, MI, 48109, USA
| | - Sofia D Merajver
- Department of Internal Medicine, University of Michigan, 1500 Medical Center Dr, Ann Arbor, MI, 48109, USA.
| | - Matthew B Soellner
- Department of Internal Medicine, University of Michigan, 1500 Medical Center Dr, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
28
|
Sun J, Hu X, Gao Y, Tang Q, Zhao Z, Xi W, Yang F, Zhang W, Song Y, Song B, Wang T, Wang H. MYSM1-AR complex-mediated repression of Akt/c-Raf/GSK-3β signaling impedes castration-resistant prostate cancer growth. Aging (Albany NY) 2019; 11:10644-10663. [PMID: 31761786 PMCID: PMC6914400 DOI: 10.18632/aging.102482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022]
Abstract
Epigenetic alterations that lead to dysregulated gene expression in the progression of castration-resistant prostate cancer (CRPC) remain elusive. Here, we investigated the role of histone deubiquitinase MYSM1 in the pathogenesis of prostate cancer (PCa). Tissues and public datasets of PCa were evaluated for MYSM1 levels. We explored the effects of MYSM1 on cell proliferation, senescence and viability both in vitro and in vivo. Integrative database analyses and co-immunoprecipitation assays were performed to elucidate genomic association of MYSM1 and MYSM1-involved biological interaction network in PCa. We observed that MYSM1 were downregulated in CRPC compared to localized prostate tumors. Knockdown of MYSM1 promoted cell proliferation and suppressed senescence of CRPC cells under condition of androgen ablation. MYSM1 downregulation enhanced the tumorigenic ability in nude mice. Integrative bioinformatic analyses of the significantly associated genes with MYSM1 revealed MYSM1-correlated pathways, providing substantial clues as to the role of MYSM1 in PCa. MYSM1 was able to bind to androgen receptor instead of increasing its expression and knockdown of MYSM1 resulted in activation of Akt/c-Raf/GSK-3β signaling. Together, our findings indicate that MYSM1 is pivotal in CRPC pathogenesis and may be established as a potential target for future treatment.
Collapse
Affiliation(s)
- Jinbo Sun
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Xiangnan Hu
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Yongheng Gao
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Qisheng Tang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Zhining Zhao
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China.,Clinical Laboratory, 451 Hospital of Chinese People's Liberation Army, Xi'an, Shaanxi 710054, China
| | - Wenjin Xi
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Fan Yang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Wei Zhang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Yue Song
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Bin Song
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Tao Wang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China.,Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - He Wang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| |
Collapse
|
29
|
Li Q, Li S, Yang X, Zhang X, Song C, Zhu S. Association between RNF2+P-AKT expression in pretreatment biopsy specimens, and poor survival following radiotherapy in patients with esophageal squamous cell carcinoma. Oncol Lett 2019; 18:3734-3742. [PMID: 31516586 PMCID: PMC6732994 DOI: 10.3892/ol.2019.10727] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
The protein expression levels of Ring finger protein 2 (RNF2) and phosphor-protein kinase B (P-AKT) were determined in esophageal squamous cell carcinoma (ESCC) tissues, and the association between patient clinicopathological characteristics and survival time following definitive intensity-modulated radiotherapy was assessed. Cancerous biopsy tissues were collected from patients with ESCC at The Fourth Affiliated Hospital of Hebei Medical University between January 2010 and December 2013. Of these 99 cases, 83 were used to analyze the protein expression level of RNF2 (89.2% positive), 85 for P-AKT (65.9% positive) and 80 for RNF2+P-AKT protein expression levels (62.5% both positive). The expression levels of RNF2 protein in ESCC were associated with tumor volume (P=0.024), whilst those of P-AKT and RNF2+PAKT were associated with sex (P=0.041 and P=0.003, respectively). There were no significant differences in overall survival (OS) or progression-free survival (PFS) rate between the RNF2- and the RNF2+-+++ groups (P=0.134 and P=0.366, respectively), or between the P-AKT- group and P-AKT+-+++ group (P=0.468; P=0.580, respectively). The 1-, 3- and 5-year OS rates were 68.0, 28.0, and 20.0%, and 86.7, 53.3, and 31.1%, in the RNF2/P-AKT+ group and Other group, respectively (χ2=4.205; P=0.040). Multivariate analysis revealed that age, T stage and RNF2+P-AKT expression were independent prognostic factors for ESCC (P=0.010, P=0.008 and P=0.010, respectively). The expression of RNF2+P-AKT combined was an independent prognostic factor affecting survival rate, and therefore presents a potential prognostic indicator for patients with ESCC, treated with definitive radiotherapy.
Collapse
Affiliation(s)
- Qiaofang Li
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China.,Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei 050051, P.R. China
| | - Shuguang Li
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xingxiao Yang
- Department of Infectious Disease, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xueyuan Zhang
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Chunyang Song
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Shuchai Zhu
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
30
|
Wu J, Wang H, Li Q, Guo QY, Tao SQ, Shen YX, Wu ZS. The oncogenic impact of RNF2 on cell proliferation, invasion and migration through EMT on mammary carcinoma. Pathol Res Pract 2019; 215:152523. [DOI: 10.1016/j.prp.2019.152523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/06/2019] [Accepted: 06/27/2019] [Indexed: 11/16/2022]
|
31
|
Qi H, Xiao Z, Wang Y. Long non-coding RNA LINC00665 gastric cancer tumorigenesis by regulation miR-149-3p/RNF2 axis. Onco Targets Ther 2019; 12:6981-6990. [PMID: 31695413 PMCID: PMC6717843 DOI: 10.2147/ott.s214588] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/30/2019] [Indexed: 12/16/2022] Open
Abstract
Background Recently, LINC00665 has been reported to be a pivotal regulator in kinds of malignancy, such as lung cancer and liver cancer. However, the functions and underlying mechanisms of LINC00665 in gastric cancer (GC) remain unclear. Materials and methods We recruited 49 paired GC tissue to explore LINC00665 expression by qRT-PCR. In vitro function assays were used to explore the roles of LINC00665 in GC progression. Moreover, the interaction among LINC00665, miR-149-3p and RNF2 was explored by bioinformatics analysis and luciferase reporter assay. Results In the present study, we found that LINC00665 expression was significantly elevated in GC tissues and cell lines. High LINC00665 expression was associated with TNM stage, histological grade, and poor prognosis of GC patients. Function assays showed that LINC00665 suppression significantly reduced GC cells viability and invasion ability in vitro. Mechanistic analysis showed that LINC00665 might serve as a ceRNA for miR-149-3p to regulate the expression of RNF2. Conclusion Our current study revealed the LINC00665/miR-149-3p/RNF2 axis was involved in GC progression, providing novel insights into the treatment for GC.
Collapse
Affiliation(s)
- Hongyang Qi
- Department of Gastroenterology, The Central Hospital of Xinxiang, Xinxiang, Henan 453000, People's Republic of China
| | - Zhanyu Xiao
- Department of Gastroenterology, The Central Hospital of Xinxiang, Xinxiang, Henan 453000, People's Republic of China
| | - Yunxi Wang
- Department of Gastroenterology, The Central Hospital of Xinxiang, Xinxiang, Henan 453000, People's Republic of China
| |
Collapse
|
32
|
Su W, Han HH, Wang Y, Zhang B, Zhou B, Cheng Y, Rumandla A, Gurrapu S, Chakraborty G, Su J, Yang G, Liang X, Wang G, Rosen N, Scher HI, Ouerfelli O, Giancotti FG. The Polycomb Repressor Complex 1 Drives Double-Negative Prostate Cancer Metastasis by Coordinating Stemness and Immune Suppression. Cancer Cell 2019; 36:139-155.e10. [PMID: 31327655 PMCID: PMC7210785 DOI: 10.1016/j.ccell.2019.06.009] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 04/28/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022]
Abstract
The mechanisms that enable immune evasion at metastatic sites are poorly understood. We show that the Polycomb Repressor Complex 1 (PRC1) drives colonization of the bones and visceral organs in double-negative prostate cancer (DNPC). In vivo genetic screening identifies CCL2 as the top prometastatic gene induced by PRC1. CCL2 governs self-renewal and induces the recruitment of M2-like tumor-associated macrophages and regulatory T cells, thus coordinating metastasis initiation with immune suppression and neoangiogenesis. A catalytic inhibitor of PRC1 cooperates with immune checkpoint therapy to reverse these processes and suppress metastasis in genetically engineered mouse transplantation models of DNPC. These results reveal that PRC1 coordinates stemness with immune evasion and neoangiogenesis and point to the potential clinical utility of targeting PRC1 in DNPC.
Collapse
MESH Headings
- Adenocarcinoma/drug therapy
- Adenocarcinoma/immunology
- Adenocarcinoma/metabolism
- Adenocarcinoma/secondary
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Cell Movement/drug effects
- Cell Self Renewal/drug effects
- Chemokine CCL2/genetics
- Chemokine CCL2/metabolism
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Macrophages/immunology
- Macrophages/metabolism
- Male
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Inbred NOD
- Mice, Knockout
- Mice, Nude
- Mice, SCID
- Neoplasm Metastasis
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- PC-3 Cells
- Polycomb Repressive Complex 1/antagonists & inhibitors
- Polycomb Repressive Complex 1/genetics
- Polycomb Repressive Complex 1/metabolism
- Prostatic Neoplasms/drug therapy
- Prostatic Neoplasms/immunology
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Receptors, Androgen/deficiency
- Receptors, Androgen/genetics
- Receptors, CCR4/genetics
- Receptors, CCR4/metabolism
- Signal Transduction
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Tumor Escape/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Wenjing Su
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Hyun Ho Han
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Unit 1906, PO Box 301429, Houston, TX 77054/77030-1429, USA; Department of Urology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Yan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Unit 1906, PO Box 301429, Houston, TX 77054/77030-1429, USA
| | - Boyu Zhang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Unit 1906, PO Box 301429, Houston, TX 77054/77030-1429, USA
| | - Bing Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanming Cheng
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Alekya Rumandla
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Unit 1906, PO Box 301429, Houston, TX 77054/77030-1429, USA
| | - Sreeharsha Gurrapu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Unit 1906, PO Box 301429, Houston, TX 77054/77030-1429, USA
| | - Goutam Chakraborty
- Department of Medicine, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Jie Su
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Guangli Yang
- Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Xin Liang
- Department of Genitourinary Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Guocan Wang
- Department of Genitourinary Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Neal Rosen
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Howard I Scher
- Genitourinary Oncology Service, Department of Medicine, MSKCC, Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Ouathek Ouerfelli
- Organic Synthesis Core Facility, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Filippo G Giancotti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Unit 1906, PO Box 301429, Houston, TX 77054/77030-1429, USA; Department of Genitourinary Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
33
|
Vidal M. Polycomb Assemblies Multitask to Regulate Transcription. EPIGENOMES 2019; 3:12. [PMID: 34968234 PMCID: PMC8594731 DOI: 10.3390/epigenomes3020012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/14/2019] [Accepted: 06/16/2019] [Indexed: 02/06/2023] Open
Abstract
The Polycomb system is made of an evolutionary ancient group of proteins, present throughout plants and animals. Known initially from developmental studies with the fly Drosophila melanogaster, they were associated with stable sustainment of gene repression and maintenance of cell identity. Acting as multiprotein assemblies with an ability to modify chromatin, through chemical additions to histones and organization of topological domains, they have been involved subsequently in control of developmental transitions and in cell homeostasis. Recent work has unveiled an association of Polycomb components with transcriptionally active loci and the promotion of gene expression, in clear contrast with conventional recognition as repressors. Focusing on mammalian models, I review here advances concerning roles in transcriptional control. Among new findings highlighted is the regulation of their catalytic properties, recruiting to targets, and activities in chromatin organization and compartmentalization. The need for a more integrated approach to the study of the Polycomb system, given its fundamental complexity and its adaptation to cell context, is discussed.
Collapse
Affiliation(s)
- Miguel Vidal
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
34
|
Chan HL, Morey L. Emerging Roles for Polycomb-Group Proteins in Stem Cells and Cancer. Trends Biochem Sci 2019; 44:688-700. [PMID: 31085088 DOI: 10.1016/j.tibs.2019.04.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 02/07/2023]
Abstract
Polycomb-group (PcG) complexes are multiprotein, evolutionarily conserved epigenetic machineries that regulate stem cell fate decisions and development, and are also implicated in cancer and other maladies. The PcG machinery can be divided into two major complexes: Polycomb repressive complex 1 and 2 (PRC1 and PRC2). Traditionally, PcG complexes have been associated with maintenance of gene repression mainly via histone-modifying activities. However, during the last years, increasing evidence indicates that the PcG complexes can also positively regulate gene transcription and modify non-histone substrates in multiple biological processes, cellular stages, and cancers. In this review, we will illustrate recent findings in PcG-mediated gene regulation, with special focus on the recently described non-classical functions of PcG complexes in stem cells and cancer.
Collapse
Affiliation(s)
- Ho Lam Chan
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA; Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL 33136, USA; Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
35
|
High Expression of LTBP2 Contributes to Poor Prognosis in Colorectal Cancer Patients and Correlates with the Mesenchymal Colorectal Cancer Subtype. DISEASE MARKERS 2019; 2019:5231269. [PMID: 30956730 PMCID: PMC6431450 DOI: 10.1155/2019/5231269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 02/07/2019] [Indexed: 01/12/2023]
Abstract
Colorectal cancer (CRC) is a complex and heterogeneous disease with four consensus molecular subtypes (CMS1-4). LTBP2 is a member of the fibrillin/LTBP super family and plays a critical role in tumorigenesis by activating TGF-β in the CMS4 CRC subtype. So far, the expression and prognostic significance of LTBP2 in CRC remains obscure. In this study, we aimed to analyze the mRNA and protein expression levels of LTBP2 in CRC tissues and then estimate their values as a potential prognostic biomarker. We detected the mRNA expression of LTBP2 in 28 cases of fresh CRC tissues and 4 CRC cell lines and the protein expression of LTBP2 in 483 samples of CRC tissues, matched tumor-adjacent tissues, and benign colorectal diseases. LTBP2 protein expression was then correlated to patients' clinical features and overall survival. Both LTBP2 mRNA and protein expression levels in CRC tissues were remarkably superior to those in adjacent normal colorectal tissues (P = 0.0071 and P < 0.001, respectively), according to TCGA dataset of CRC. High LTBP2 protein expression was correlated with TNM stage (P < 0.001), T stage (P < 0.001), N stage (P < 0.001), and M stage (P < 0.001). High LTBP2 protein expression was related to poor overall survival in CRC patients and was an independent prognostic factor for CRC. LTBP2 mRNA expression was especially higher in the CMS4 subtype (P < 0.001), which was confirmed in CRC cell lines. Our data suggested that LTBP2 may act as an oncogene in the development of colorectal cancer and have important significance in predicting CRC prognosis. LTBP2 could be a novel biomarker and potential therapeutic target for mesenchymal colorectal cancer and can improve the outcome of high-risk CRC.
Collapse
|
36
|
Adhikary S, Chakravarti D, Terranova C, Sengupta I, Maitituoheti M, Dasgupta A, Srivastava DK, Ma J, Raman AT, Tarco E, Sahin AA, Bassett R, Yang F, Tapia C, Roy S, Rai K, Das C. Atypical plant homeodomain of UBR7 functions as an H2BK120Ub ligase and breast tumor suppressor. Nat Commun 2019; 10:1398. [PMID: 30923315 PMCID: PMC6438984 DOI: 10.1038/s41467-019-08986-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/09/2019] [Indexed: 12/17/2022] Open
Abstract
The roles of Plant Homeodomain (PHD) fingers in catalysis of histone modifications are unknown. We demonstrated that the PHD finger of Ubiquitin Protein Ligase E3 Component N-Recognin7 (UBR7) harbors E3 ubiquitin ligase activity toward monoubiquitination of histone H2B at lysine120 (H2BK120Ub). Purified PHD finger or full-length UBR7 monoubiquitinated H2BK120 in vitro, and loss of UBR7 drastically reduced H2BK120Ub genome-wide binding sites in MCF10A cells. Low UBR7 expression was correlated with occurrence of triple-negative breast cancer and metastatic tumors. Consistently, UBR7 knockdown enhanced the invasiveness, induced epithelial-to-mesenchymal transition and promoted metastasis. Conversely, ectopic expression of UBR7 restored these cellular phenotypes and reduced tumor growth. Mechanistically, UBR7 loss reduced H2BK120Ub levels on cell adhesion genes, including CDH4, and upregulated the Wnt/β-Catenin signaling pathway. CDH4 overexpression could partially revert UBR7-dependent cellular phenotypes. Collectively, our results established UBR7 as a histone H2B monoubiquitin ligase that suppresses tumorigenesis and metastasis of triple-negative breast cancer.
Collapse
Affiliation(s)
- Santanu Adhikary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata, 700064, India
- Structural Biology and Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Deepavali Chakravarti
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Christopher Terranova
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Isha Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata, 700064, India
| | - Mayinuer Maitituoheti
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Anirban Dasgupta
- Structural Biology and Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Dushyant Kumar Srivastava
- Structural Biology and Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Junsheng Ma
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ayush T Raman
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Emily Tarco
- Department of Translational Molecular Pathology and Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Aysegul A Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Roland Bassett
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fei Yang
- Department of Translational Molecular Pathology and Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Coya Tapia
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Siddhartha Roy
- Structural Biology and Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, 700032, India.
| | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata, 700064, India.
| |
Collapse
|
37
|
Perotti V, Baldassari P, Molla A, Nicolini G, Bersani I, Grazia G, Benigni F, Maurichi A, Santinami M, Anichini A, Mortarini R. An actionable axis linking NFATc2 to EZH2 controls the EMT-like program of melanoma cells. Oncogene 2019; 38:4384-4396. [PMID: 30710146 PMCID: PMC6756060 DOI: 10.1038/s41388-019-0729-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 12/03/2018] [Accepted: 01/21/2019] [Indexed: 01/30/2023]
Abstract
Discovery of new actionable targets and functional networks in melanoma is an urgent need as only a fraction of metastatic patients achieves durable clinical benefit by targeted therapy or immunotherapy approaches. Here we show that NFATc2 expression is associated with an EMT-like transcriptional program and with an invasive melanoma phenotype, as shown by analysis of melanoma cell lines at the mRNA and protein levels, interrogation of the TCGA melanoma dataset and characterization of melanoma lesions by immunohistochemistry. Gene silencing or pharmacological inhibition of NFATc2 downregulated EMT-related genes and AXL, and suppressed c-Myc, FOXM1, and EZH2. Targeting of c-Myc suppressed FOXM1 and EZH2, while targeting of FOXM1 suppressed EZH2. Inhibition of c-Myc, or FOXM1, or EZH2 downregulated EMT-related gene expression, upregulated MITF and suppressed migratory and invasive activity of neoplastic cells. Stable silencing of NFATc2 impaired melanoma cell proliferation in vitro and tumor growth in vivo in SCID mice. In NFATc2+ EZH2+ melanoma cell lines pharmacological co-targeting of NFATc2 and EZH2 exerted strong anti-proliferative and pro-apoptotic activity, irrespective of BRAF or NRAS mutations and of BRAF inhibitor resistance. These results provide preclinical evidence for a role of NFATc2 in shaping the EMT-like melanoma phenotype and reveal a targetable vulnerability associated with NFATc2 and EZH2 expression in melanoma cells belonging to different mutational subsets.
Collapse
Affiliation(s)
- Valentina Perotti
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy
| | - Paola Baldassari
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy
| | - Alessandra Molla
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy
| | | | - Ilaria Bersani
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy
| | - Giulia Grazia
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy
| | - Fabio Benigni
- HuMabs Biomed, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Andrea Maurichi
- Melanoma and Sarcoma Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mario Santinami
- Melanoma and Sarcoma Unit, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea Anichini
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy
| | - Roberta Mortarini
- Department of Research, Human Tumors Immunobiology Unit, Milan, Italy.
| |
Collapse
|
38
|
Orouji E, Utikal J. Tackling malignant melanoma epigenetically: histone lysine methylation. Clin Epigenetics 2018; 10:145. [PMID: 30466474 PMCID: PMC6249913 DOI: 10.1186/s13148-018-0583-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/09/2018] [Indexed: 02/07/2023] Open
Abstract
Post-translational histone modifications such as acetylation and methylation can affect gene expression. Histone acetylation is commonly associated with activation of gene expression whereas histone methylation is linked to either activation or repression of gene expression. Depending on the site of histone modification, several histone marks can be present throughout the genome. A combination of these histone marks can shape global chromatin architecture, and changes in patterns of marks can affect the transcriptomic landscape. Alterations in several histone marks are associated with different types of cancers, and these alterations are distinct from marks found in original normal tissues. Therefore, it is hypothesized that patterns of histone marks can change during the process of tumorigenesis. This review focuses on histone methylation changes (both removal and addition of methyl groups) in malignant melanoma, a deadly skin cancer, and the implications of specific inhibitors of these modifications as a combinatorial therapeutic approach.
Collapse
Affiliation(s)
- Elias Orouji
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, 1901 East Rd. South Campus Research Building 4, Houston, TX, 77054, USA. .,Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| |
Collapse
|
39
|
Hernández-Ruiz E, Toll A, García-Diez I, Andrades E, Ferrandiz-Pulido C, Masferrer E, Yébenes M, Jaka A, Gimeno J, Gimeno R, García-Patos V, Pujol RM, Hernández-Muñoz I. The Polycomb proteins RING1B and EZH2 repress the tumoral pro-inflammatory function in metastasizing primary cutaneous squamous cell carcinoma. Carcinogenesis 2018; 39:503-513. [PMID: 29394319 DOI: 10.1093/carcin/bgy016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/28/2018] [Indexed: 12/22/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common malignancy in humans and approximately 5% metastasize, usually to regional lymph nodes. Epigenetic regulation of gene expression may allow tumoral cells to acquire new functions in order to escape from the primary tumor. The aim of this study was to investigate the expression and function of proteins of the Polycomb family of epigenetic regulators in the metastatic process of cSCC. A higher expression of RING1B and EZH2 was detected by immunohistochemistry in a series of primary cSCC tumors that metastasized (MSCCs) when compared with non-metastasizing cSCCs (non-MSCCs). Stable downregulation of RING1B and EZH2 in cSCC cells results in enhanced expression of inflammatory cytokines and activation of the NF-κB signaling pathway. Accordingly, non-MSCCs display higher levels of membranous pS176-inhibitor of NF-kB kinase, and their stroma is enriched in neutrophils and eosinophils when compared with MSCCs. In vitro, hematopoietic cells exhibit a substantial migratory response to supernatants from Polycomb-depleted cSCC cells. Altogether, these data indicate that RING1B and EZH2 repress the innate inflammatory cSCC function and impair tumor immunosurveillance and suggest that patients with high-risk cSCCs could benefit from clinical therapies addressed to harness the immune response.
Collapse
Affiliation(s)
- Eugenia Hernández-Ruiz
- Department of Dermatology, Hospital del Mar. Parc de Salut Mar.,Department of Dermatology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Agustí Toll
- Department of Dermatology, Hospital del Mar. Parc de Salut Mar.,Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | | | - Evelyn Andrades
- Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Carla Ferrandiz-Pulido
- Department of Dermatology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Emili Masferrer
- Department of Dermatology, Hospital Universitari Mútua de Terrassa, Barcelona, Spain
| | - Mireia Yébenes
- Department of Dermatology, Corporació Sanitària i Universitària Parc Taulí, Sabadell, Spain
| | - Ane Jaka
- Department of Dermatology, Hospital Germans Trias i Pujol, Badalona, Spain
| | - Javier Gimeno
- Department of Pathology, Hospital del Mar. Parc de Salut Mar, Barcelona, Spain
| | - Ramón Gimeno
- Department of Immunology, Hospital del Mar. Parc de Salut Mar, Barcelona, Spain
| | - Vicenç García-Patos
- Department of Dermatology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ramón M Pujol
- Department of Dermatology, Hospital del Mar. Parc de Salut Mar.,Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Inmaculada Hernández-Muñoz
- Group of Inflammatory and Neoplastic Dermatological Diseases, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| |
Collapse
|
40
|
Chan HL, Beckedorff F, Zhang Y, Garcia-Huidobro J, Jiang H, Colaprico A, Bilbao D, Figueroa ME, LaCava J, Shiekhattar R, Morey L. Polycomb complexes associate with enhancers and promote oncogenic transcriptional programs in cancer through multiple mechanisms. Nat Commun 2018; 9:3377. [PMID: 30139998 PMCID: PMC6107513 DOI: 10.1038/s41467-018-05728-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 07/25/2018] [Indexed: 12/16/2022] Open
Abstract
Polycomb repressive complex 1 (PRC1) plays essential roles in cell fate decisions and development. However, its role in cancer is less well understood. Here, we show that RNF2, encoding RING1B, and canonical PRC1 (cPRC1) genes are overexpressed in breast cancer. We find that cPRC1 complexes functionally associate with ERα and its pioneer factor FOXA1 in ER+ breast cancer cells, and with BRD4 in triple-negative breast cancer cells (TNBC). While cPRC1 still exerts its repressive function, it is also recruited to oncogenic active enhancers. RING1B regulates enhancer activity and gene transcription not only by promoting the expression of oncogenes but also by regulating chromatin accessibility. Functionally, RING1B plays a divergent role in ER+ and TNBC metastasis. Finally, we show that concomitant recruitment of RING1B to active enhancers occurs across multiple cancers, highlighting an under-explored function of cPRC1 in regulating oncogenic transcriptional programs in cancer. The role of Polycomb Repressive Complex 1 (PRC1) is well described in development. Here, the authors investigate canonical PRC1’s regulation of transcriptional programs in breast cancer where, in addition to its repressive function, it is also recruited to oncogenic active enhancers to regulate enhancer activity and chromatin accessibility.
Collapse
Affiliation(s)
- Ho Lam Chan
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL, 33136, USA.,Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Felipe Beckedorff
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL, 33136, USA.,Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Yusheng Zhang
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL, 33136, USA.,Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Jenaro Garcia-Huidobro
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL, 33136, USA.,Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.,Centro de Investigaciones Médicas (CIM), Núcleo Científico Multidisciplinario, Escuela de Medicina, Universidad de Talca, Avenida Lircay S/N, Talca, 3460000, Chile
| | - Hua Jiang
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Antonio Colaprico
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL, 33136, USA.,Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL, 33136, USA
| | - Maria E Figueroa
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL, 33136, USA.,Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, 10065, USA.,Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, 10016, USA
| | - Ramin Shiekhattar
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL, 33136, USA.,Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center, Biomedical Research Building, 1501 NW 10th Avenue, Miami, FL, 33136, USA. .,Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
41
|
Gatzka MV. Targeted Tumor Therapy Remixed-An Update on the Use of Small-Molecule Drugs in Combination Therapies. Cancers (Basel) 2018; 10:E155. [PMID: 29794999 PMCID: PMC6025289 DOI: 10.3390/cancers10060155] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 12/28/2022] Open
Abstract
Over the last decade, the treatment of tumor patients has been revolutionized by the highly successful introduction of novel targeted therapies, in particular small-molecule kinase inhibitors and monoclonal antibodies, as well as by immunotherapies. Depending on the mutational status, BRAF and MEK inhibitor combinations or immune checkpoint inhibitors are current first-line treatments for metastatic melanoma. However, despite great improvements of survival rates limitations due to tumor heterogeneity, primary and acquired therapy resistance, immune evasion, and economical considerations will need to be overcome. Accordingly, ongoing clinical trials explore the individualized use of small-molecule drugs in new targeted therapy combinations based on patient parameters and tumor biopsies. With focus on melanoma therapy this review aims at providing a comprehensive overview of such novel alternative and combinational therapy strategies currently emerging from basic research. The molecular principles and drug classes that may hold promise for improved tumor therapy combination regimens including kinase inhibition, induction of apoptosis, DNA-damage response inhibition, epigenetic reprogramming, telomerase inhibition, redox modulation, metabolic reprogramming, proteasome inhibition, cancer stem cell transdifferentiation, immune cell signaling modulation, and others, are explained in brief. In addition, relevant targeted therapy combinations in current clinical trials and individualized treatment strategies are highlighted.
Collapse
Affiliation(s)
- Martina V Gatzka
- Department of Dermatology and Allergic Diseases, University of Ulm, 89081 Ulm, Germany.
| |
Collapse
|
42
|
Chen Y, Cao XY, Li YN, Qiu YY, Li YN, Li W, Wang H. Reversal of cisplatin resistance by microRNA-139-5p-independent RNF2 downregulation and MAPK inhibition in ovarian cancer. Am J Physiol Cell Physiol 2018; 315:C225-C235. [PMID: 29719173 DOI: 10.1152/ajpcell.00283.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Some microRNAs (miRs) are dysregulated in cancers, and aberrant miR expression has been reported to correlate with chemoresistance of cancer cells. Therefore, the present study aims at investigating the effects of microRNA-139-5p (miR-139-5p) on cisplatin resistance of ovarian cancer (OC) with involvement of ring finger protein 2 (RNF2) and the mitogen-activated protein kinase (MAPK) signaling pathway. OC tissues were obtained from 66 primary OC patients. The cisplatin-sensitive A2780 and cisplatin-resistant A2780/DDP cell lines were collected for construction of RNF2 silencing and overexpressed plasmids. Cell vitality and apoptosis were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and annexin V-FITC/propidium iodide double-staining, respectively. Next, expression of RNF2, extracellular signal-related kinase, and p38 was determined by quantitative reverse transcription-quantitative polymerase chain reaction and Western blot analysis. Finally, the volume of xenograft tumors in BALB/c nude mice was detected. RNF2 and miR-139-5p were identified to be involved in OC. In addition, MAPK activation and RNF2 were related to cisplatin resistance of OC. miR-139-5p was downregulated in cisplatin-resistant OC tissues, and miR-139-5p overexpression could inhibit cell vitality, reduce cisplatin resistance, and promote apoptosis of OC cells. Furthermore, miR-139-5p combined with MAPK inhibitors more obviously reduced cisplatin resistance of OC. Taken together, this study demonstrated that miR-139-5p overexpression combined with inactivation of the MAPK signaling pathway can reverse the cisplatin resistance of OC by suppressing RNF2. Thus, miR-139-5p overexpression might be a future therapeutic strategy for OC.
Collapse
Affiliation(s)
- Ying Chen
- Department of Obstetrics and Gynecology, Linyi People's Hospital, Linyi, People's Republic of China
| | - Xiao-Yun Cao
- Medical Insurance Management Office, Economic and Technological Development Zone, People's Hospital of Linyi, Linyi, People's Republic of China
| | - Ying-Ni Li
- Department of Obstetrics and Gynecology, Economic and Technological Development Zone, People's Hospital of Linyi, Linyi, People's Republic of China
| | - Yu-Yan Qiu
- Department of Obstetrics and Gynecology, Economic and Technological Development Zone, People's Hospital of Linyi, Linyi, People's Republic of China
| | - Ying-Na Li
- Department of Obstetrics and Gynecology, Economic and Technological Development Zone, People's Hospital of Linyi, Linyi, People's Republic of China
| | - Wen Li
- Department of Reproductive Medicine, Linyi People's Hospital, Linyi, People's Republic of China
| | - Hui Wang
- Department of Obstetrics and Gynecology, Linyi People's Hospital, Linyi, People's Republic of China
| |
Collapse
|
43
|
Terranova C, Tang M, Orouji E, Maitituoheti M, Raman A, Amin S, Liu Z, Rai K. An Integrated Platform for Genome-wide Mapping of Chromatin States Using High-throughput ChIP-sequencing in Tumor Tissues. J Vis Exp 2018. [PMID: 29683440 DOI: 10.3791/56972] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Histone modifications constitute a major component of the epigenome and play important regulatory roles in determining the transcriptional status of associated loci. In addition, the presence of specific modifications has been used to determine the position and identity non-coding functional elements such as enhancers. In recent years, chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq) has become a powerful tool in determining the genome-wide profiles of individual histone modifications. However, it has become increasingly clear that the combinatorial patterns of chromatin modifications, referred to as Chromatin States, determine the identity and nature of the associated genomic locus. Therefore, workflows consisting of robust high-throughput (HT) methodologies for profiling a number of histone modification marks, as well as computational analyses pipelines capable of handling myriads of ChIP-Seq profiling datasets, are needed for comprehensive determination of epigenomic states in large number of samples. The HT-ChIP-Seq workflow presented here consists of two modules: 1) an experimental protocol for profiling several histone modifications from small amounts of tumor samples and cell lines in a 96-well format; and 2) a computational data analysis pipeline that combines existing tools to compute both individual mark occupancy and combinatorial chromatin state patterns. Together, these two modules facilitate easy processing of hundreds of ChIP-Seq samples in a fast and efficient manner. The workflow presented here is used to derive chromatin state patterns from 6 histone mark profiles in melanoma tumors and cell lines. Overall, we present a comprehensive ChIP-seq workflow that can be applied to dozens of human tumor samples and cancer cell lines to determine epigenomic aberrations in various malignancies.
Collapse
Affiliation(s)
| | - Ming Tang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center
| | - Elias Orouji
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center
| | | | - Ayush Raman
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center
| | | | - Zhiyi Liu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center
| | - Kunal Rai
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center;
| |
Collapse
|
44
|
Kuźbicki Ł, Lange D, Stanek-Widera A, Glińska A, Chwirot BW. Enhanced intratumoral expression of RNF2 is a favorable prognostic factor for patients with cutaneous melanoma? Oncotarget 2018; 9:17656-17663. [PMID: 29707138 PMCID: PMC5915146 DOI: 10.18632/oncotarget.24825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/28/2018] [Indexed: 11/25/2022] Open
Abstract
Recent studies involving melanoma cell lines suggest that enhanced expression of epigenetic regulator RNF2 supports proliferation and promotes metastasis. However, it is not clear to what extent those data apply to disease progression and prognosis for melanoma patients. Therefore the aim of the present study was to assess the prognostic power of RNF2 intratumoral expression by melanoma cells. RNF2 was detected immunohistochemically in standard formalin-fixed paraffin-embedded samples of 9 benign nevi, 60 melanomas and 24 nodal metastases. The lowest percentage of RNF2-positive melanocytes found in nevi was comparable to expression levels in normal skin. The RNF2 expression found in melanomas was significantly higher and it was even more enhanced in metastases. The increased occurrence of RNF2 expressing cells was positively correlated with longer patients’ overall survival. Moreover, a negative correlation was found between intratumoral RNF2 expression and number of generated metastatic lesions. Our data indicate that development of melanoma is associated with significant changes in RNF2 intratumoral expression and imply that at least for some patients the enhancement of the expression levels of RNF2 in both primary and metastatic lesions may be considered a favorable prognostic factor in melanoma.
Collapse
Affiliation(s)
- Łukasz Kuźbicki
- Department of Medical Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Dariusz Lange
- Department of Tumor Pathology, Oncology Center - Maria Skłodowska-Curie Institute, Gliwice, Poland
| | - Agata Stanek-Widera
- Department of Tumor Pathology, Oncology Center - Maria Skłodowska-Curie Institute, Gliwice, Poland
| | - Agnieszka Glińska
- Department of Medical Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| | - Barbara W Chwirot
- Department of Medical Biology, Faculty of Biology and Environment Protection, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
45
|
Wei M, Jiao D, Han D, Wu J, Wei F, Zheng G, Guo Z, Xi W, Yang F, Xie P, Zhang L, Yang AG, Wang H, Qin W, Wen W. Knockdown of RNF2 induces cell cycle arrest and apoptosis in prostate cancer cells through the upregulation of TXNIP. Oncotarget 2018; 8:5323-5338. [PMID: 28029659 PMCID: PMC5354911 DOI: 10.18632/oncotarget.14142] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 11/22/2016] [Indexed: 01/02/2023] Open
Abstract
RNF2, also known as RING1b or RING2, is identified as the catalytic subunit of polycomb repressive complex 1 (PRC1), which mediates the mono-ubiquitination of histone H2A. RNF2 has been proved to have oncogenic function in many kinds of cancers, but the function of RNF2 in prostate cancer (PCa) has not been evaluated. Here we show that PCa tissues showed higher RNF2 expression than the benign prostatic hyperplasia (BPH) tissues. Knockdown of RNF2 in PCa cells resulted in cell cycle arrest, increased apoptosis and inhibited cell proliferation, and the growth of RNF2 knockdown PCa xenografts were obviously inhibited in nude mice. Gene microarray analysis was performed and tumor suppressor gene TXNIP was found to be significantly increased in RNF2 knockdown cells. Simultaneously knockdown of RNF2 and TXNIP can partially rescue the arrested cell cycle, increased apoptosis and inhibited cell proliferation in RNF2 single knockdown cells. Furthermore, ChIP assay result showed that RNF2 enriched at the TXNIP promoter, and the enrichment of RNF2 and ubiquitination of H2A in TXNIP promoter was obviously inhibited in RNF2 knockdown cells. In conclusion, our results demonstrate that RNF2 functions as an oncogene in PCa and RNF2 may regulate the progression of PCa through the inhibition of TXNIP.
Collapse
Affiliation(s)
- Ming Wei
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, 710038 Xi'an, China
| | - Dian Jiao
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, 710038 Xi'an, China
| | - Donghui Han
- Department of Urology, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, China
| | - Jieheng Wu
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, 710032 Xi'an, China
| | - Feilong Wei
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, 710032 Xi'an, China
| | - Guoxu Zheng
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, 710032 Xi'an, China
| | - Zhangyan Guo
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, 710032 Xi'an, China
| | - Wenjin Xi
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, 710032 Xi'an, China
| | - Fa Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, China
| | - Pin Xie
- Department of Urology, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, China
| | - Lingling Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, 710032 Xi'an, China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, 710032 Xi'an, China
| | - He Wang
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, 710038 Xi'an, China
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, 710032 Xi'an, China
| | - Weihong Wen
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, 710032 Xi'an, China
| |
Collapse
|
46
|
Han L, Tang MM, Xu X, Jiang B, Huang J, Feng X, Qiang J. LTBP2 is a prognostic marker in head and neck squamous cell carcinoma. Oncotarget 2018; 7:45052-45059. [PMID: 27281608 PMCID: PMC5216705 DOI: 10.18632/oncotarget.8855] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 04/02/2016] [Indexed: 12/15/2022] Open
Abstract
Latent transforming growth factor (TGF)-beta binding protein 2 (LTBP2) belongs to the fibrillin/LTBP extracellular matrix glycoprotein superfamily. It plays vital roles in tumorigenesis through regulating TGFβ activity, elastogenesis and maintenance of the extracellular matrix (ECM) structure. In this study, we determined the expression levels of LTBP2 mRNA and protein in head and neck squamous cell carcinoma (HNSCC) tissues and adjacent normal tissues by quantitative reverse transcription PCR (qRT-PCR) and tissue microarray immunohistochemistry analysis (TMA-IHC) respectively. LTBP2 protein levels in cancer tissues were correlated with HNSCC patients' clinical characteristics and overall survival. Both LTBP2 mRNA and protein levels were significantly higher in HNSCC tissues than in adjacent normal tissues. High LTBP2 protein level was associated with lymph node metastasis and higher pTNM stages. High LTBP2 protein level is an independent prognostic marker in HNSCC. Our data suggest that LTBP2 acts as an oncogene in HNSCC development and progression. Detection of LTBP2 expression could be a useful prognosis marker and targeting LTBP2 may represent a novel strategy for cancer treatment through regulating activities of TGFβ.
Collapse
Affiliation(s)
- Liang Han
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Ming Ming Tang
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Xinjiang Xu
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Bin Jiang
- Department of Head and Neck Surgery, Affiliated Tumor Hospital of Nantong University, Nantong Tumor Hospital, Nantong, Jiangsu, China
| | - Jianfei Huang
- Department of Clinical Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jianfeng Qiang
- Department of Graduate, Medical School of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
47
|
Hernandez-Muñoz I, Figuerola E, Sanchez-Molina S, Rodriguez E, Fernández-Mariño AI, Pardo-Pastor C, Bahamonde MI, Fernández-Fernández JM, García-Domínguez DJ, Hontecillas-Prieto L, Lavarino C, Carcaboso AM, de Torres C, Tirado OM, de Alava E, Mora J. RING1B contributes to Ewing sarcoma development by repressing the NaV1.6 sodium channel and the NF-κB pathway, independently of the fusion oncoprotein. Oncotarget 2018; 7:46283-46300. [PMID: 27317769 PMCID: PMC5216798 DOI: 10.18632/oncotarget.10092] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/28/2016] [Indexed: 11/25/2022] Open
Abstract
Ewing sarcoma (ES) is an aggressive tumor defined by EWSR1 gene fusions that behave as an oncogene. Here we demonstrate that RING1B is highly expressed in primary ES tumors, and its expression is independent of the fusion oncogene. RING1B-depleted ES cells display an expression profile enriched in genes functionally involved in hematological development but RING1B depletion does not induce cellular differentiation. In ES cells, RING1B directly binds the SCN8A sodium channel promoter and its depletion results in enhanced Nav1.6 expression and function. The signaling pathway most significantly modulated by RING1B is NF-κB. RING1B depletion results in enhanced p105/p50 expression, which sensitizes ES cells to apoptosis by FGFR/SHP2/STAT3 blockade. Reduced NaV1.6 function protects ES cells from apoptotic cell death by maintaining low NF-κB levels. Our findings identify RING1B as a trait of the cell-of-origin and provide a potential targetable vulnerability.
Collapse
Affiliation(s)
| | - Elisabeth Figuerola
- Developmental Tumor Biology Laboratory, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950-Barcelona, Spain
| | - Sara Sanchez-Molina
- Developmental Tumor Biology Laboratory, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950-Barcelona, Spain
| | - Eva Rodriguez
- Developmental Tumor Biology Laboratory, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950-Barcelona, Spain
| | - Ana Isabel Fernández-Mariño
- Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003-Barcelona, Spain.,Present Affiliation: Department of Neuroscience and Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison-53705, USA
| | - Carlos Pardo-Pastor
- Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003-Barcelona, Spain
| | - María Isabel Bahamonde
- Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003-Barcelona, Spain
| | - José M Fernández-Fernández
- Laboratori de Fisiologia Molecular, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003-Barcelona, Spain
| | - Daniel J García-Domínguez
- Department of Pediatric Hematology and Oncology, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013-Seville, Spain
| | - Lourdes Hontecillas-Prieto
- Department of Pediatric Hematology and Oncology, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013-Seville, Spain
| | - Cinzia Lavarino
- Developmental Tumor Biology Laboratory, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950-Barcelona, Spain
| | - Angel M Carcaboso
- Developmental Tumor Biology Laboratory, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950-Barcelona, Spain
| | - Carmen de Torres
- Developmental Tumor Biology Laboratory, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950-Barcelona, Spain
| | - Oscar M Tirado
- Sarcoma Research Group, Laboratori d'Oncología Molecular, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, 08908-Barcelona, Spain
| | - Enrique de Alava
- Department of Pediatric Hematology and Oncology, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41013-Seville, Spain
| | - Jaume Mora
- Developmental Tumor Biology Laboratory, Department of Pediatric Hematology and Oncology, Hospital Sant Joan de Déu, 08950-Barcelona, Spain
| |
Collapse
|
48
|
Hall LL, Byron M, Carone DM, Whitfield TW, Pouliot GP, Fischer A, Jones P, Lawrence JB. Demethylated HSATII DNA and HSATII RNA Foci Sequester PRC1 and MeCP2 into Cancer-Specific Nuclear Bodies. Cell Rep 2017; 18:2943-2956. [PMID: 28329686 DOI: 10.1016/j.celrep.2017.02.072] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/03/2017] [Accepted: 02/23/2017] [Indexed: 02/05/2023] Open
Abstract
This study reveals that high-copy satellite II (HSATII) sequences in the human genome can bind and impact distribution of chromatin regulatory proteins and that this goes awry in cancer. In many cancers, master regulatory proteins form two types of cancer-specific nuclear bodies, caused by locus-specific deregulation of HSATII. DNA demethylation at the 1q12 mega-satellite, common in cancer, causes PRC1 aggregation into prominent Cancer-Associated Polycomb (CAP) bodies. These loci remain silent, whereas HSATII loci with reduced PRC1 become derepressed, reflecting imbalanced distribution of UbH2A on these and other PcG-regulated loci. Large nuclear foci of HSATII RNA form and sequester copious MeCP2 into Cancer-Associated Satellite Transcript (CAST) bodies. Hence, HSATII DNA and RNA have an exceptional capacity to act as molecular sponges and sequester chromatin regulatory proteins into abnormal nuclear bodies in cancer. The compartmentalization of regulatory proteins within nuclear structure, triggered by demethylation of "junk" repeats, raises the possibility that this contributes to further compromise of the epigenome and neoplastic progression.
Collapse
Affiliation(s)
- Lisa L Hall
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Meg Byron
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Dawn M Carone
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Troy W Whitfield
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA; Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Gayle P Pouliot
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Andrew Fischer
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Peter Jones
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Jeanne B Lawrence
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
49
|
Liu S, Jiang M, Wang W, Liu W, Song X, Ma Z, Zhang S, Liu L, Liu Y, Cao X. Nuclear RNF2 inhibits interferon function by promoting K33-linked STAT1 disassociation from DNA. Nat Immunol 2017; 19:41-52. [DOI: 10.1038/s41590-017-0003-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 10/12/2017] [Indexed: 12/12/2022]
|
50
|
Wilms C, Kroeger CM, Hainzl AV, Banik I, Bruno C, Krikki I, Farsam V, Wlaschek M, Gatzka MV. MYSM1/2A-DUB is an epigenetic regulator in human melanoma and contributes to tumor cell growth. Oncotarget 2017; 8:67287-67299. [PMID: 28978033 PMCID: PMC5620173 DOI: 10.18632/oncotarget.18617] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 05/31/2017] [Indexed: 01/12/2023] Open
Abstract
Histone modifying enzymes, such as histone deacetylases (HDACs) and polycomb repressive complex (PRC) components, have been implicated in regulating tumor growth, epithelial-mesenchymal transition, tumor stem cell maintenance, or repression of tumor suppressor genes - and may be promising targets for combination therapies of melanoma and other cancers. According to recent findings, the histone H2A deubiquitinase 2A-DUB/Mysm1 interacts with the p53-axis in hematopoiesis and tissue differentiation in mice, in part by modulating DNA-damage responses in stem cell and progenitor compartments. Based on the identification of alterations in skin pigmentation and melanocyte specification in Mysm1-deficient mice, we hypothesized that MYSM1 may be involved in melanoma formation. In human melanoma samples, expression of MYSM1 was increased compared with normal skin melanocytes and nevi and co-localized with melanocyte markers such as Melan-A and c-KIT. Similarly, in melanoma cell lines A375 and SK-MEL-28 and in murine skin, expression of the deubiquitinase was detectable at the mRNA and protein level that was inducible by growth factor signals and UVB exposure, respectively. Upon stable silencing of MYSM1 in A375 and SK-MEL-28 melanoma cells by lentivirally-mediated shRNA expression, survival and proliferation were significantly reduced in five MYSM1 shRNA cell lines analyzed compared with control cells. In addition, MYSM1-silenced melanoma cells proliferated less well in softagar assays. In context with our finding that MYSM1 bound to the c-MET promoter region in close vicinity to PAX3 in melanoma cells, our data indicate that MYSM1 is an epigenetic regulator of melanoma growth and potentially promising new target for tumor therapy.
Collapse
Affiliation(s)
- Christina Wilms
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Carsten M Kroeger
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Adelheid V Hainzl
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Ishani Banik
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany.,ETH, 8092 Zurich, Switzerland
| | - Clara Bruno
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany.,Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Ioanna Krikki
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Vida Farsam
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| | - Martina V Gatzka
- Department of Dermatology and Allergic Diseases, Ulm University, 89081 Ulm, Germany
| |
Collapse
|