1
|
Huang QF, Wang GF, Zhang YM, Zhang C, Ran YQ, He JZ, Wang G, Xu XE, Wang SH, Wu JY, Li EM, Xu LY. Lympho-myeloid aggregate-infiltrating CD20 + B cells display a double-negative phenotype and correlate with poor prognosis in esophageal squamous cell carcinoma. Transl Res 2025; 275:48-61. [PMID: 39536938 DOI: 10.1016/j.trsl.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/19/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
According to morphological features, tumor-infiltrating B cells (TIL-Bs) can be classified as lympho-myeloid aggregates (LMAs) and tertiary lymphoid structures (TLSs). As a disease with high incidence and mortality, research on esophageal squamous cell carcinoma (ESCC) TIL-Bs is still unclear. Thus, we aimed to investigate the prognostic value and functional involvement of TIL-Bs in ESCC. Based on CD20 immunohistochemical staining of 147 ESCC samples, the TIL-Bs at different anatomic subregions (intra-tumor (T), invasive margin (IM) and peri-tumor (P)) were quantified and correlated with survival by Kaplan-Meier analyses. We found that LMAs were widely distributed throughout the whole section and were associated with poor prognosis, especially those located in the T subregion, which was contrary to the positive clinical significance of TLSs. Based on the number of LMAs and TLSs, a four-level immune type was constructed as an independent predictor for survival. Using multiplexed immunofluorescence (mIF) staining, we found that the main phenotype of infiltrating B cells in LMAs was CD20+IgD-CD27- double-negative (DN) B cells. DN B cells were abundant in ESCC tumor tissue, and their high expression was related to shortened overall survival time. Subsequently, we demonstrate a close relationship between DN B cells and regulatory T cells (Tregs) using single cell RNA-seq data, bulk RNA-seq data and flow cytometry, and verified the spatial proximity of DN B cells and Tregs by mIF staining. Trajectory analysis and flow cytometry revealed that DN B cells highly expressed genes involved in the antigen processing and presentation pathway, such as HLA-DR. The abundance of DN B cells and LMAs in ESCC provides novel potential targets for optimal immunotherapy against ESCC.
Collapse
Affiliation(s)
- Qing-Feng Huang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Ge-Fei Wang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Yi-Meng Zhang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Cong Zhang
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Ying-Qi Ran
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Jian-Zhong He
- Department of Pathology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai 519000, Guangdong Province, PR China
| | - Geng Wang
- Department of Thoracic Surgery, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Xiu-E Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - Shao-Hong Wang
- Departments of Pathology, Shantou Central Hospital, Shantou 515041, Guangdong, PR China
| | - Jian-Yi Wu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China
| | - En-Min Li
- Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Shantou Academy Medical Sciences, Shantou 515041, Guangdong, PR China; Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Cancer Research Center, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| | - Li-Yan Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, PR China; Guangdong Esophageal Cancer Research Institute, Shantou Sub-center, Cancer Research Center, Shantou University Medical College, Shantou 515041, Guangdong, PR China.
| |
Collapse
|
2
|
Yan W, Cao Y, Xu S, Li Y, Wu T, Yuan W, Yin Q, Li Y. Personalized Multi-Epitope Nanovaccine Unlocks B Cell-Mediated Multiple Pathways of Antitumor Immunity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411361. [PMID: 39711226 DOI: 10.1002/adma.202411361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/13/2024] [Indexed: 12/24/2024]
Abstract
B lymphocytes have emerged as an important immune-regulating target. Inoculation with tumor cell membrane-derived vaccines is a promising strategy to activate B cells, yet their efficiency is limited due to lack of costimulatory molecules. To amplify B cell responses against tumor, herein, a spatiotemporally-synchronized antigen-adjuvant integrated nanovaccine, termed as CM-CpG-aCD40, is constructed by conjugating the immune stimulative CpG oligonucleotide and the anti-CD40 antibody (aCD40) onto the membrane vesicles derived from triple negative breast cancer cells. CM-CpG-aCD40 actively accumulates in lymph nodes and is effectively captured by antigen-presenting cells via the recognition of CD40 by aCD40. Tumor antigens on CM-CpG-aCD40 bind to B cell receptors, providing the first stimulation signal for B cells. Meanwhile, the interaction between CpG/Toll like receptor and aCD40/CD40 provides superposed co-stimulation signals, improving the antibody-secreting and antigen-presenting abilities of B cells. The nanovaccine also stimulates dendritic cells to activate CD8+ T cells, and reprograms tumor associated macrophages. CM-CpG-aCD40 activating humoral, cellular, and innate antitumor immunity achieves a tumor inhibition rate of 89.3%, which is further improved to 95.4% when combined with the anti-programmed death ligand 1 (PD-L1) antibody. CM-CpG-aCD40, as a personalized multi-epitope nanovaccine, paves the way for ushering the era of B cell-based immunotherapy.
Collapse
Affiliation(s)
- Wenlu Yan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Cao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Shanshan Xu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ting Wu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing, 211116, China
| | - Wenhui Yuan
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Yin
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, 100049, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Yantai, 264000, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264000, China
| |
Collapse
|
3
|
Tang S, Tang R, Chen G, Zhang D, Lin K, Yang H, Fu J, Guo Y, Lin F, Dong X, Huang T, Kong J, Yin X, Ge A, Lin Q, Wu M, Liu X, Zeng Y, Cai Z. Personalized neoantigen hydrogel vaccine combined with PD-1 and CTLA-4 double blockade elicits antitumor response in liver metastases by activating intratumoral CD8 +CD69 + T cells. J Immunother Cancer 2024; 12:e009543. [PMID: 39694701 DOI: 10.1136/jitc-2024-009543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Liver metastasis is highly aggressive and immune tolerant, and lacks effective treatment strategies. This study aimed to develop a neoantigen hydrogel vaccine (NPT-gels) with high clinical feasibility and further investigate its efficacy and antitumor molecular mechanisms in combination with immune checkpoint inhibitors (ICIs) for the treatment of liver metastases. METHODS The effects of liver metastasis on survival and intratumor T-cell subpopulation infiltration in patients with advanced tumors were investigated using the Surveillance, Epidemiology, and End Results Program (SEER) database and immunofluorescence staining, respectively. NPT-gels were prepared using hyaluronic acid, screened neoantigen peptides, and dual clinical adjuvants [Poly(I:C) and thymosin α-1]. Then, the efficacy and corresponding antitumor molecular mechanisms of NPT-gels combined with programmed death receptor 1 and cytotoxic T-lymphocyte-associated protein 4 double blockade (PCDB) for the treatment of liver metastases were investigated using various preclinical liver metastasis models. RESULTS Liver metastases are associated with poorer 5-year overall survival, characterized by low infiltration of cytotoxic CD8+ T cells and high infiltration of regulatory T cells (Tregs). NPT-gels overcame the challenges faced by conventional neoantigen peptide vaccines by sustaining a durable, high-intensity immune response with a single injection and significantly improving the infiltration of neoantigen-specific T-cell subpopulations in different mice subcutaneous tumor models. Importantly, NPT-gels further combined with PCDB could enhance neoantigen-specific T-cell infiltration and effectively unlock the immunosuppressive microenvironment of liver metastases, showing superior antitumor efficacy and inducing long-term immune memory in various preclinical liver metastasis models without obvious toxicity. Mechanistically, the combined strategy can inhibit Tregs, induce the production and infiltration of neoantigen-specific CD8+CD69+ T cells to enhance the immune response, and potentially elicit antigen-presenting effects in Naïve B_Ighd+ cells and M1-type macrophages. CONCLUSIONS This study demonstrated that NPT-gels combined with PCDB could exert a durable and powerful antitumor immunity by enhancing the recruitment and activation of CD8+CD69+ T cells, which supports the rationale and clinical translation of this combination strategy and provides important evidence for further improving the immunotherapy efficacy of liver metastases in the future.
Collapse
Affiliation(s)
- Shichuan Tang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The First Clinical Medical College of Fujian Medical University, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Ruijing Tang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Geng Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Kongying Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Huan Yang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Jun Fu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Yutong Guo
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Fangzhou Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Xiuqing Dong
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Tingfeng Huang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The First Clinical Medical College of Fujian Medical University, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Jie Kong
- Department of Hepatobiliary, Heze Municipal Hospital, Heze, Shandong, P. R. China
| | - Xiaowei Yin
- Department of Pathology, Shanxian Central Hospital, Heze, Shandong, P. R. China
| | - Aimin Ge
- Department of Pathology, Heze Municipal Hospital, Heze, Shandong, P. R. China
| | - Qizhu Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The First Clinical Medical College of Fujian Medical University, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, P. R. China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, Fujian, P. R. China
| |
Collapse
|
4
|
Shi X, Cheng X, Jiang A, Shi W, Zhu L, Mou W, Glaviano A, Liu Z, Cheng Q, Lin A, Wang L, Luo P. Immune Checkpoints in B Cells: Unlocking New Potentials in Cancer Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403423. [PMID: 39509319 DOI: 10.1002/advs.202403423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/26/2024] [Indexed: 11/15/2024]
Abstract
B cells are crucial component of humoral immunity, and their role in the tumor immune microenvironment (TME) has garnered significant attention in recent years. These cells hold great potential and application prospects in the field of tumor immunotherapy. Research has demonstrated that the TME can remodel various B cell functions, including proliferation, differentiation, antigen presentation, and antibody production, thereby invalidating the anti-tumor effects of B cells. Concurrently, numerous immune checkpoints (ICs) on the surface of B cells are upregulated. Aberrant B-cell IC signals not only impair the function of B cells themselves, but also modulate the tumor-killing effects of other immune cells, ultimately fostering an immunosuppressive TME and facilitating tumor immune escape. Blocking ICs on B cells is beneficial for reversing the immunosuppressive TME and restoring anti-tumor immune responses. In this paper, the intricate connection between B-cell ICs and the TME is delved into, emphasizing the critical role of targeting B-cell ICs in anti-tumor immunity, which may provide valuable insights for the future development of tumor immunotherapy based on B cells.
Collapse
Affiliation(s)
- Xiaoye Shi
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Xiangshu Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, 157 Baojian Road. Nangang District, Harbin, Heilongiiang, 150076, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Wenjie Shi
- Molecular and Experimental Surgery, University Clinic for General-, Visceral-, Vascular- and Trans-Plantation Surgery, Medical Faculty University Hospital Magdeburg, Otto-von Guericke University, 39120, Magdeburg, Germany
| | - Lingxuan Zhu
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Weiming Mou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, 90123, Italy
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Linhui Wang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200433, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| |
Collapse
|
5
|
Fang J, Huang J, Zhang J, Chen L, Deng J. Comprehensive Analysis of Tertiary Lymphoid Structures in Pancreatic Cancer: Molecular Characteristics and Prognostic Implications. CURR PROTEOMICS 2024; 21:230-250. [DOI: 10.2174/0115701646317271240821071544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/16/2024] [Accepted: 07/23/2024] [Indexed: 01/07/2025]
Abstract
Purpose:
The molecular properties of TLSs in pancreatic cancer are still not well comprehended.
This research delved into the molecular properties of intratumoral TLSs in pancreatic
cancer through the exploration of multi-omics data.
Methods:
Seven key genes were identified through Cox regression analysis and random survival
forest analysis from a total of 5908 genes related to TLSs. These genes were utilized to construct a
prognosis model, which was subsequently validated in two independent cohorts. Additionally, the
study investigated the molecular features of different populations of TLSs from multiple perspectives.
The model’ s forecasting accuracy was verified by analyzing nomogram and decision curves,
taking into account the patients’ clinical traits.
Results:
The analysis of immune cell infiltration showed a notably greater presence of Macrophage
M0 cells in the group at high risk than in the low-risk group. The pathway enrichment analysis
demonstrated the activation among common cancer-related pathways, including ECM receptor interaction,
pathways in cancer, and focal adhesion, in the high-risk group. Additionally, the methylation
study revealed notable disparities in DNA methylation between two TLS groups across four
regions: TSS200, 5’ UTR, 1stExon, and Body. A variety of notably distinct sites were linked with
PVT1. Furthermore, by constructing a competing endogenous RNA network, several mRNAs and
lncRNAs were identified that compete for the binding of hsa-mir-221.
Conclusion:
Overall, this research sheds light on the molecular properties of TLSs across various
pancreatic cancer stages and suggests possible focal points for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Jiana Fang
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, 510642, China
| | - Jingru Huang
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, 510642, China
| | - Jiazhong Zhang
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, 510642, China
| | - Lin Chen
- Department of General Practice, Sun Yat-Sen Memorial Hospital, Guangzhou,
510120, China
| | - Jin Deng
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, 510642, China
- Pazhou
Lab, Guangzhou, 510330, China
| |
Collapse
|
6
|
Ellsworth SG, Ross A, Shiue KRY, Murthy P, Byrne-Steel ML, Patel R, Zellars RC, Kong FMS, Miller A, Russ KA, Lotze MT. Survey of Changes in Absolute Lymphocyte Counts and Peripheral Immune Repertoire Diversity after External Beam Radiotherapy. Radiat Res 2024; 202:837-846. [PMID: 39472998 DOI: 10.1667/rade-24-00010.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 10/16/2024] [Indexed: 12/07/2024]
Abstract
Radiation-induced lymphopenia (RIL) is associated with worse outcomes in patients with multiple solid tumors. Hypofractionated radiation therapy (HFRT) reduces RIL compared with conventionally fractionated radiation therapy (CFRT). However, fractionation effects on immune repertoire (IR) diversity are unknown. RNA-based T- and B-cell receptor sequencing was performed on peripheral lymphocytes collected prospectively before radiation therapy and <4 weeks after the final radiation fraction. Patients received CFRT (≤3 Gy/day × ≥10 days ± chemotherapy, n = 13) or HFRT (≥5 Gy/day × ≤5 days, n = 10), per institutional standards of care. Immune repertoire diversity parameters analyzed were number of unique CDR3 receptors (uCDR3), Shannon entropy, and sample clonality (percentage of all receptors represented by the top 10 clones). RIL was severe with concurrent chemotherapy (median %Δ ALC -58.8%, -12.5%, and -28.6% in patients treated with CFRT and chemo, CFRT alone, and HFRT, respectively). CFRT and concurrent chemotherapy was associated with more severe diversity restriction in all examined parameters than either HFRT or CFRT alone. Increased immune repertoire diversity despite decreased ALC was more common in patients treated with HFRT than CFRT and significantly less common in patients treated with concurrent chemotherapy (P < 0.001). Radiation-induced changes in immune repertoire diversity are variably reflected in the peripheral ALC. Both HFRT and CFRT caused RIL, but HFRT was associated with improved immune repertoire diversity despite RIL. The addition of chemotherapy may potentiate radiation-induced restriction in immune repertoire diversity. As immune repertoire diversity is associated with response to immunotherapy, these findings may have implications for radiation therapy/chemotherapy/immunotherapy combinations. Further studies are required to understand the relationship between radiation, circulating lymphocyte populations, immune repertoire diversity and response to treatment.
Collapse
Affiliation(s)
- Susannah G Ellsworth
- Department of Radiation Oncology, University of Pittsburgh Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Alison Ross
- Department of Radiation Oncology, University of Pittsburgh Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Kevin R Y Shiue
- Department of Radiation Oncology, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Pranav Murthy
- Department of Radiation Oncology, University of Pittsburgh Hillman Cancer Center, Pittsburgh, Pennsylvania
| | | | - Ravi Patel
- Department of Radiation Oncology, University of Pittsburgh Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Richard C Zellars
- Department of Radiation Oncology, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Feng-Ming Spring Kong
- Department of Clinical Oncology, Hong Kong University School of Clinical Medicine, Pokfulam Hong Kong SAR, China
| | - Amy Miller
- Department of Radiation Oncology, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Kristen A Russ
- Department of Radiation Oncology, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, Indiana
| | - Michael T Lotze
- Department of Radiation Oncology, University of Pittsburgh Hillman Cancer Center, Pittsburgh, Pennsylvania
- Departments of Surgery, Immunology and Bioengineering; University of Pittsburgh; Pittsburgh, Pennsylvania
| |
Collapse
|
7
|
Lv J, Zhang X, Zhou M, Yan J, Chao G, Zhang S. Tertiary lymphoid structures in colorectal cancer. Ann Med 2024; 56:2400314. [PMID: 39575712 PMCID: PMC11616745 DOI: 10.1080/07853890.2024.2400314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Tertiary lymphoid structures (TLS) are ectopic clusters of immune cells found in non-lymphoid tissues, particularly within the tumor microenvironment (TME). These structures resemble secondary lymphoid organs and have been identified in various solid tumors, including colorectal cancer (CRC), where they are associated with favorable prognosis. The role of TLS in modulating the immune response within the TME and their impact on cancer prognosis has garnered increasing attention in recent years. OBJECTIVE This review aims to summarize the current understanding of TLS in CRC, focusing on their formation, function, and potential as prognostic markers and therapeutic targets. We explore the mechanisms by which TLS influence the immune response within the TME and their correlation with clinical outcomes in CRC patients. METHODS We conducted a comprehensive review of recent studies that investigated the presence and role of TLS in CRC. The review includes data from histopathological analyses, immunohistochemical studies, and clinical trials, examining the association between TLS density, composition, and CRC prognosis. Additionally, we explored emerging therapeutic strategies targeting TLS formation and function within the TME. RESULTS The presence of TLS in CRC is generally associated with an improved prognosis, particularly in early-stage disease. TLS formation is driven by chronic inflammation and is characterized by the organization of B and T cell zones, high endothelial venules (HEVs), and follicular dendritic cells (FDCs). The density and maturity of TLS are linked to better patient outcomes, including reduced recurrence rates and increased survival. Furthermore, the interplay between TLS and immune checkpoint inhibitors (ICIs) suggests potential therapeutic implications for enhancing anti-tumor immunity in CRC. CONCLUSIONS TLS represent a significant prognostic marker in CRC, with their presence correlating with favorable clinical outcomes. Ongoing research is required to fully understand the mechanisms by which TLS modulate the immune response within the TME and to develop effective therapies that harness their potential. The integration of TLS-focused strategies in CRC treatment could lead to improved patient management and outcomes.
Collapse
Affiliation(s)
- Jianyu Lv
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| | - Xiuyu Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| | - Mi Zhou
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| | - Junbin Yan
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| | - Guanqun Chao
- Department of General Practice, Sir Run Run Shaw Hospital, Zhejiang University, China
| | - Shuo Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang Chinese Medical University, Zhejiang, China
| |
Collapse
|
8
|
Wang Y, Ju X, Hua R, Chen J, Dai X, Liu L, Wang G, Bai Y, Hu H, Li X. Deep learning analysis of histopathological images predicts immunotherapy prognosis and reveals tumour microenvironment features in non-small cell lung cancer. Br J Cancer 2024; 131:1833-1845. [PMID: 39455880 PMCID: PMC11589918 DOI: 10.1038/s41416-024-02856-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is one of the leading causes of cancer mortality worldwide. Immune checkpoint inhibitors (ICIs) have emerged as a crucial treatment option for patients with advanced NSCLC. However, only a subset of patients experience clinical benefit from ICIs. Therefore, identifying biomarkers that can predict response to ICIs is imperative for optimising patient selection. METHODS Hematoxylin and eosin (H&E) images of NSCLC patients were obtained from the local cohort (n = 106) and The Cancer Genome Atlas (TCGA) (n = 899). We developed an ICI-related pathological prognostic signature (ir-PPS) based on H&E stained histopathology images to predict prognosis in NSCLC patients treated with ICIs using deep learning. To accomplish this, we employed a modified ResNet model (ResNet18-PG), a widely-used deep learning architecture well-known for its effectiveness in handling complex image recognition tasks. Our modifications include a progressive growing strategy to improve the stability of model training and the use of the AdamW optimiser, which enhances the optimisation process by adjusting the learning rate based on training dynamics. RESULTS The deep learning model, ResNet18-PG, achieved an area under the receiver operating characteristic curve (AUC) of 0.918 and a recall of 0.995 on the local cohort. The ir-PPS effectively risk-stratified NSCLC patients. Patients in the low-risk group (n = 40) had significantly improved progression-free survival (PFS) after ICI treatment compared to those in the high-risk group (n = 66, log-rank P = 0.004, hazard ratio (HR) = 3.65, 95%CI: 1.75-7.60). The ir-PPS demonstrated good discriminatory power for predicting 6-month PFS (AUC = 0.750), 12-month PFS (AUC = 0.677), and 18-month PFS (AUC = 0.662). The low-risk group exhibited increased expression of immune checkpoint molecules, cytotoxicity-related genes, an elevated abundance of tumour-infiltrating lymphocytes, and enhanced activity in immune stimulatory pathways. CONCLUSIONS The ir-PPS signature derived from H&E images using deep learning could predict ICIs prognosis in NSCLC patients. The ir-PPS provides a novel imaging biomarker that may help select optimal candidates for ICIs therapy in NSCLC.
Collapse
Affiliation(s)
- Youyu Wang
- Department of Thoracic Surgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xueming Ju
- Department of Ultrasound, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Rong Hua
- Department of Respiratory and Critical Care Medicine, Sixth People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Ji Chen
- Department of Medical Oncology, The Seventh People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Xiaoqin Dai
- Department of Traditional Chinese Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Lunxu Liu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Guifang Wang
- Department of Respiratory and Critical Care Medicine, Sixth People's Hospital of Chengdu, Chengdu, Sichuan, China.
| | - Yifeng Bai
- Department of Oncology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Honglin Hu
- Department of Oncology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| | - Xiaohua Li
- Department of Respiratory and Critical Care Medicine, Sixth People's Hospital of Chengdu, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Yang H, Zhang Z, Li J, Wang K, Zhu W, Zeng Y. The Dual Role of B Cells in the Tumor Microenvironment: Implications for Cancer Immunology and Therapy. Int J Mol Sci 2024; 25:11825. [PMID: 39519376 PMCID: PMC11546796 DOI: 10.3390/ijms252111825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The tumor microenvironment (TME) is a complex and heterogeneous tissue composed of various cell types, including tumor cells, stromal cells, and immune cells, as well as non-cellular elements. Given their pivotal role in humoral immunity, B cells have emerged as promising targets for anti-tumor therapies. The dual nature of B cells, exhibiting both tumor-suppressive and tumor-promoting functions, has garnered significant attention. Understanding the distinct effects of various B cell subsets on different tumors could pave the way for novel targeted tumor therapies. This review provides a comprehensive overview of the heterogeneous B cell subsets and their multifaceted roles in tumorigenesis, as well as the therapeutic potential of targeting B cells in cancer treatment. To develop more effective cancer immunotherapies, it is essential to decipher the heterogeneity of B cells and their roles in shaping the TME.
Collapse
Affiliation(s)
| | | | | | | | | | - Yingyue Zeng
- School of Life Science, Liaoning University, Shenyang 110036, China; (H.Y.); (Z.Z.); (J.L.); (K.W.); (W.Z.)
| |
Collapse
|
10
|
Räuber S, Schulte-Mecklenbeck A, Willison A, Hagler R, Jonas M, Pul D, Masanneck L, Schroeter CB, Golombeck KS, Lichtenberg S, Strippel C, Gallus M, Dik A, Kerkhoff R, Barman S, Weber KJ, Kovac S, Korsen M, Pawlitzki M, Goebels N, Ruck T, Gross CC, Paulus W, Reifenberger G, Hanke M, Grauer O, Rapp M, Sabel M, Wiendl H, Meuth SG, Melzer N. Flow cytometry identifies changes in peripheral and intrathecal lymphocyte patterns in CNS autoimmune disorders and primary CNS malignancies. J Neuroinflammation 2024; 21:286. [PMID: 39497174 PMCID: PMC11536547 DOI: 10.1186/s12974-024-03269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/20/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Immune dysregulation is a hallmark of autoimmune diseases of the central nervous system (CNS), characterized by an excessive immune response, and primary CNS tumors (pCNS-tumors) showing a highly immunosuppressive parenchymal microenvironment. METHODS Aiming to provide novel insights into the pathogenesis of CNS autoimmunity and cerebral tumor immunity, we analyzed the peripheral blood (PB) and cerebrospinal fluid (CSF) of 81 autoimmune limbic encephalitis (ALE), 148 relapsing-remitting multiple sclerosis (RRMS), 33 IDH-wildtype glioma, 9 primary diffuse large B cell lymphoma of the CNS (CNS-DLBCL), and 110 controls by flow cytometry (FC). Additionally, an in-depth immunophenotyping of the PB from an independent cohort of 20 RRMS and 18 IDH-wildtype glioblastoma patients compared to 19 controls was performed by FC combined with unsupervised computational approaches. RESULTS We identified alterations in peripheral and intrathecal adaptive immunity, mainly affecting the T cell (Tc) but also the B cell (Bc) compartment in ALE, RRMS, and pCNS-tumors compared to controls. ALE, RRMS, and pCNS-tumors featured higher expression of the T cell activation marker HLA-DR, which was even more pronounced in pCNS-tumors than in ALE or RRMS. Glioblastoma patients showed signs of T cell exhaustion that were not visible in RRMS patients. In-depth characterization of the PB revealed differences mainly in the T effector and memory compartment between RRMS and glioblastoma patients and similar alterations in the Bc compartment, including atypical Bc, CD19+CD20- double negative Bc, and plasma cells. PB and CSF mFC together with CSF routine parameters could reliably differentiate ALE and RRMS from pCNS-tumors facilitating early diagnosis and treatment. CONCLUSIONS ALE, RRMS, and pCNS-tumors show distinct but partially overlapping changes mainly in HLA-DR+ Tc, memory Tc, exhausted Tc, and Bc subsets providing insights into disease pathogenesis. Moreover, mFC shows diagnostic potential facilitating early diagnosis and treatment.
Collapse
Affiliation(s)
- Saskia Räuber
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | | | - Alice Willison
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Ramona Hagler
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Marius Jonas
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Duygu Pul
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Lars Masanneck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Christina B Schroeter
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Kristin S Golombeck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Stefanie Lichtenberg
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Christine Strippel
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Marco Gallus
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Andre Dik
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Ruth Kerkhoff
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Sumanta Barman
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Katharina J Weber
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Neurological Institute (Edinger Institute), University Hospital, Goethe University, Frankfurt/Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt/Main, Germany
| | - Stjepana Kovac
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Melanie Korsen
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Marc Pawlitzki
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Norbert Goebels
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Werner Paulus
- Institute of Neuropathology, University of Münster, Münster, Germany
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Hanke
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Oliver Grauer
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Marion Rapp
- Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Sabel
- Department of Neurosurgery, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany
| | - Nico Melzer
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
- Department of Neurology with Institute of Translational Neurology, University of Münster, Münster, Germany.
| |
Collapse
|
11
|
Ye C, Li P, Chen B, Mo Y, Huang Q, Li Q, Hou Q, Mo L, Yan J. Pan-cancer analysis and experimental validation of FPR3 as a prognostic and immune infiltration-related biomarker for glioma. Front Genet 2024; 15:1466617. [PMID: 39445161 PMCID: PMC11496095 DOI: 10.3389/fgene.2024.1466617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Formyl peptide receptor 3 (FPR3) is known to have implications in the progression of various cancer types. Despite this, its biological significance within pan-cancer datasets has yet to be investigated. In this investigation, we scrutinized FPR3's expression profiles, genetic alterations, prognostic significance, immune-related characteristics, methylation status, tumor mutation burden (TMB), and microsatellite instability (MSI) across different types of cancer. We utilized TISCH's single-cell data to identify immune cells closely associated with FPR3. The predictive significance of FPR3 was evaluated independently in gliomas using data from TCGA and CGGA datasets, leading to the development of a prognostic nomogram. Immunohistochemistry and Western blot analysis confirmed FPR3 expression in gliomas. Lastly, the CCK-8 and wound-healing assays were employed to assess the impact of FPR3 on the proliferation and metastasis of GBM cell lines. In numerous cancer types, heightened FPR3 expression correlated with adverse outcomes, immune cell infiltration, immune checkpoints, TMB, and MSI. In glioma, FPR3 emerged as a notable risk factor, with the prognostic model effectively forecasting patient results. The potential biological relevance of FPR3 was confirmed in glioma, and it was shown to have significant involvement in the processes of glioma growth, immune infiltration, and metastasis. Our results imply a potential association of FPR3 with tumor immunity, indicating its viability as a prognostic indicator in glioma.
Collapse
Affiliation(s)
- Chenglin Ye
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Peng Li
- Department of Neurosurgery, Institute of Brain Diseases, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Boxu Chen
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yong Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qianrong Huang
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qiuyun Li
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Qinhan Hou
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ligen Mo
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jun Yan
- Department of Neurosurgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
12
|
Sarathkumara YD, Van Bibber NW, Liu Z, Heslop HE, Rouce RH, Coghill AE, Rooney CM, Proietti C, Doolan DL. Differential EBV protein-specific antibody response between responders and non-responders to EBVSTs immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607997. [PMID: 39211169 PMCID: PMC11361067 DOI: 10.1101/2024.08.14.607997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Epstein-Barr virus (EBV) is associated with a diverse range of lymphomas. EBV-specific T-cell (EBVST) immunotherapies have shown promise in safety and clinical effectiveness in treating EBV-associated lymphomas, but not all patients respond to treatment. To identify the set of EBV-directed antibody responses associated with clinical response in patients with EBV-associated lymphomas, we comprehensively characterized the immune response to the complete EBV proteome using a custom protein microarray in 56 EBV-associated lymphoma patients who were treated with EBVST infusions enrolled in Phase I clinical trials. Significant differences in antibody profiles between responders and non-responders emerged at 3 months post-EBVST infusion. Twenty-five IgG antibodies were present at significantly higher levels in non-responders compared to responders at 3 months post-EBVST infusion, and 10 of these IgG antibody associations remained after adjustment for sex, age, and cancer diagnosis type. Random forest prediction analysis further confirmed that these 10 antibodies were important for predicting clinical response. Differential IgG antibody responses were directed against LMP2A (four fragments), BGRF1/BDRF1 (two fragments), LMP1, BKRF2, BKRF4, and BALF5. Paired analyses using blood samples collected at both pre-infusion and 3 months post-EBVST infusion indicated an increase in the mean antibody level for six other anti-EBV antibodies (IgG: BGLF2, LF1, BGLF3; IgA: BGLF3, BALF2, BBLF2/3) in non-responders. Overall, our results indicate that EBV-directed antibodies can be biomarkers for predicting the clinical response of individuals with EBV-associated lymphomas treated with EBVST infusions.
Collapse
|
13
|
Chen Y, Shao Z, Hao Z, Xin Z, Chen X, Huang L, Chen D, Lin M, Liu Q, Xu X, Li J, Wu D, Yan J, Chai Y, Wu P. Epithelium/imcDC2 axis facilitates the resistance of neoadjuvant anti-PD-1 in human NSCLC. J Immunother Cancer 2024; 12:e007854. [PMID: 39134346 PMCID: PMC11332012 DOI: 10.1136/jitc-2023-007854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Therapeutic resistance is a main obstacle to achieve long-term benefits from immune checkpoint inhibitors. The underlying mechanism of neoadjuvant anti-PD-1 resistance remains unclear. METHODS Multi-omics analysis, including mass cytometry, single-cell RNA-seq, bulk RNA-seq, and polychromatic flow cytometry, was conducted using the resected tumor samples in a cohort of non-small cell lung cancer (NSCLC) patients received neoadjuvant anti-PD-1 therapy. Tumor and paired lung samples acquired from treatment-naïve patients were used as a control. In vitro experiments were conducted using primary cells isolated from fresh tissues and lung cancer cell lines. A Lewis-bearing mouse model was used in the in vivo experiment. RESULTS The quantity, differentiation status, and clonal expansion of tissue-resident memory CD8+ T cells (CD8+ TRMs) are positively correlated with therapeutic efficacy of neoadjuvant anti-PD-1 therapy in human NSCLC. In contrast, the quantity of immature CD1c+ classical type 2 dendritic cells (imcDC2) and galectin-9+ cancer cells is negatively correlated with therapeutic efficacy. An epithelium/imDC2 suppressive axis that restrains the antitumor response of CD8+ TRMs via galectin-9/TIM-3 was uncovered. The expression level of CD8+ TRMs and galectin-9+ cancer cell-related genes predict the clinical outcome of anti-PD-1 neoadjuvant therapy in human NSCLC patients. Finally, blockade of TIM-3 and PD-1 could improve the survival of tumor-bearing mouse by promoting the antigen presentation of imcDC2 and CD8+ TRMs-mediated tumor-killing. CONCLUSION Galectin-9 expressing tumor cells sustained the primary resistance of neoadjuvant anti-PD-1 therapy in NSCLC through galectin-9/TIM-3-mediated suppression of imcDC2 and CD8+ TRMs. Supplement of anti-TIM-3 could break the epithelium/imcDC2/CD8+ TRMs suppressive loop to overcome anti-PD-1 resistance. TRIAL REGISTRATION NUMBER NCT03732664.
Collapse
Affiliation(s)
- Yongyuan Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zheyu Shao
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhixing Hao
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhongwei Xin
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated of Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoke Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lijian Huang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Di Chen
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mingjie Lin
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qinyuan Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Xu
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinfan Li
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dang Wu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Yan
- Division of Immunotherapy, The Hiram C. Polk, Jr., Department of Surgery, Immuno-Oncology Program, Brown Cancer Center, University of Louisville, Louisville, Kentucky, USA
| | - Ying Chai
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pin Wu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Zhuang T, Gao C, Zeng W, Zhao W, Yu H, Chen S, Shen J, Ji M. Analysis of key targets for 5-hydroxymethyl-2-furfural-induced lung cancer based on network toxicology, network informatics, and in vitro experiments. Drug Chem Toxicol 2024:1-11. [PMID: 39072491 DOI: 10.1080/01480545.2024.2384442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/22/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
5-hydroxymethyl-2-furfural (5-HMF) is a by-product of Maillard reaction and widely exists in food and environment, which may lead to lung cancer. However, the relevant mechanism is unknown. This study aims to predict the key targets of 5-HMF-induced lung cancer through network toxicology, analyze the relationship between the key targets and lung cancer through network informatics, and further validate them through in vitro experiments. By using ChEMBL, STITCH, GeneCards, and OMIM databases, 51 toxic targets were identified. GO and KEGG enrichment analyses indicated a strong correlation between toxic targets and lung cancer. Through protein-protein interaction (PPI) analysis, MAPK3, MAPK1, and SRC were identified as key targets implicated in 5-HMF-induced lung cancer. The HPA database showed high expression of these three key targets in lung cancer tissues. Kaplan-Meier database demonstrated that the higher expression of these key targets in lung cancer patients was associated with a poorer prognosis. The TIMER database revealed that the high expression of these key targets had a significant impact on the level of immune cell infiltration in lung cancer, particularly impacting CD4+ T cells and macrophages. Finaly, in In vitro experiments demonstrated that prolonged exposure to 5-HMF induced malignant transformation of BEAS-2B cells and the upregulation of key targets. The findings suggest that 5-HMF is a contributing factor in the development of lung cancer, with MAPK3, MAPK1, and SRC potentially playing crucial roles in this process.
Collapse
Affiliation(s)
- Tianchi Zhuang
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Chang Gao
- The Second School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Wei Zeng
- School of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Wenwu Zhao
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Hairong Yu
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Shen Chen
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Jiemiao Shen
- School of Nursing, Nanjing Medical University, Nanjing, China
| | - Minghui Ji
- School of Nursing, Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Yi C, Liu J, Zhao S, Gong D, Xu B, Li A, Bian E, Tian D. Identification of a pro-protein synthesis osteosarcoma subtype for predicting prognosis and treatment. Sci Rep 2024; 14:16475. [PMID: 39014082 PMCID: PMC11252356 DOI: 10.1038/s41598-024-67547-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/12/2024] [Indexed: 07/18/2024] Open
Abstract
Osteosarcoma (OS) is a heterogeneous malignant spindle cell tumor that is aggressive and has a poor prognosis. Although combining surgery and chemotherapy has significantly improved patient outcomes, the prognosis for OS patients with metastatic or recurrent OS has remained unsatisfactory. Therefore, it is imperative to gain a fresh perspective on OS development mechanisms and treatment strategies. After studying single-cell RNA sequencing (scRNA-seq) data in public databases, we identified seven OS subclonal types based on intra-tumor heterogeneity. Subsequently, we constructed a prognostic model based on pro-protein synthesis osteosarcoma (PPS-OS)-associated genes. Correlation analysis showed that the prognostic model performs extremely well in predicting OS patient prognosis. We also demonstrated that the independent risk factors for the prognosis of OS patients were tumor primary site, metastatic status, and risk score. Based on these factors, nomograms were constructed for predicting the 3- and 5-year survival rates. Afterward, the investigation of the tumor immune microenvironment (TIME) revealed the vital roles of γδ T-cell and B-cell activation. Drug sensitivity analysis and immune checkpoint analysis identified drugs that have potential application value in OS. Finally, the jumping translocation breakpoint (JTB) gene was selected for experimental validation. JTB silencing suppressed the proliferation, migration, and invasion of OS cells. Therefore, our research suggests that PPS-OS-related genes facilitate the malignant progression of OS and may be employed as prognostic indicators and therapeutic targets in OS.
Collapse
Affiliation(s)
- Chengfeng Yi
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Shibing Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Deliang Gong
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Bohan Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Ao Li
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Erbao Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| | - Dasheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
16
|
Xu Z, Wang Q, Zhang Y, Li X, Wang M, Zhang Y, Pei Y, Li K, Yang M, Luo L, Wu C, Wang W. Exploiting tertiary lymphoid structures gene signature to evaluate tumor microenvironment infiltration and immunotherapy response in colorectal cancer. Front Oncol 2024; 14:1383096. [PMID: 38846981 PMCID: PMC11153738 DOI: 10.3389/fonc.2024.1383096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Background Tertiary lymphoid structures (TLS) is a particular component of tumor microenvironment (TME). However, its biological mechanisms in colorectal cancer (CRC) have not yet been understood. We desired to reveal the TLS gene signature in CRC and evaluate its role in prognosis and immunotherapy response. Methods The data was sourced from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. Based on TLS-related genes (TRGs), the TLS related subclusters were identified through unsupervised clustering. The TME between subclusters were evaluated by CIBERSORT and xCell. Subsequently, developing a risk model and conducting external validation. Integrating risk score and clinical characteristics to create a comprehensive nomogram. Further analyses were conducted to screen TLS-related hub genes and explore the relationship between hub genes, TME, and biological processes, using random forest analysis, enrichment and variation analysis, and competing endogenous RNA (ceRNA) network analysis. Multiple immunofluorescence (mIF) and immunohistochemistry (IHC) were employed to characterize the existence of TLS and the expression of hub gene. Results Two subclusters that enriched or depleted in TLS were identified. The two subclusters had distinct prognoses, clinical characteristics, and tumor immune infiltration. We established a TLS-related prognostic risk model including 14 genes and validated its predictive power in two external datasets. The model's AUC values for 1-, 3-, and 5-year overall survival (OS) were 0.704, 0.737, and 0.746. The low-risk group had a superior survival rate, more abundant infiltration of immune cells, lower tumor immune dysfunction and exclusion (TIDE) score, and exhibited better immunotherapy efficacy. In addition, we selected the top important features within the model: VSIG4, SELL and PRRX1. Enrichment analysis showed that the hub genes significantly affected signaling pathways related to TLS and tumor progression. The ceRNA network: PRRX1-miRNA (hsa-miR-20a-5p, hsa-miR-485-5p) -lncRNA has been discovered. Finally, IHC and mIF results confirmed that the expression level of PRRX1 was markedly elevated in the TLS- CRC group. Conclusion We conducted a study to thoroughly describe TLS gene signature in CRC. The TLS-related risk model was applicable for prognostic prediction and assessment of immunotherapy efficacy. The TLS-hub gene PRRX1, which had the potential to function as an immunomodulatory factor of TLS, could be a therapeutic target for CRC.
Collapse
Affiliation(s)
- Zhu Xu
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Qin Wang
- Department of Pathology, QuXian People’s Hospital, Dazhou, China
| | - Yiyao Zhang
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaolan Li
- Department of Pathology, QuXian People’s Hospital, Dazhou, China
| | - Mei Wang
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuhong Zhang
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yaxin Pei
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Kezhen Li
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Man Yang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liping Luo
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Chuan Wu
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Weidong Wang
- Department of Oncology, School of Clinical Medicine, Southwest Medical University, Luzhou, China
- Department of Radiation Oncology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
17
|
Ma J, Wu Y, Ma L, Yang X, Zhang T, Song G, Li T, Gao K, Shen X, Lin J, Chen Y, Liu X, Fu Y, Gu X, Chen Z, Jiang S, Rao D, Pan J, Zhang S, Zhou J, Huang C, Shi S, Fan J, Guo G, Zhang X, Gao Q. A blueprint for tumor-infiltrating B cells across human cancers. Science 2024; 384:eadj4857. [PMID: 38696569 DOI: 10.1126/science.adj4857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 03/06/2024] [Indexed: 05/04/2024]
Abstract
B lymphocytes are essential mediators of humoral immunity and play multiple roles in human cancer. To decode the functions of tumor-infiltrating B cells, we generated a B cell blueprint encompassing single-cell transcriptome, B cell-receptor repertoire, and chromatin accessibility data across 20 different cancer types (477 samples, 269 patients). B cells harbored extraordinary heterogeneity and comprised 15 subsets, which could be grouped into two independent developmental paths (extrafollicular versus germinal center). Tumor types grouped into the extrafollicular pathway were linked with worse clinical outcomes and resistance to immunotherapy. The dysfunctional extrafollicular program was associated with glutamine-derived metabolites through epigenetic-metabolic cross-talk, which promoted a T cell-driven immunosuppressive program. These data suggest an intratumor B cell balance between extrafollicular and germinal-center responses and suggest that humoral immunity could possibly be harnessed for B cell-targeting immunotherapy.
Collapse
Affiliation(s)
- Jiaqiang Ma
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yingcheng Wu
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lifeng Ma
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, and Stem Cell Institute, Zhejiang University, Hangzhou 310058, China
| | - Xupeng Yang
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Tiancheng Zhang
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guohe Song
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Teng Li
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ke Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xia Shen
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian Lin
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yamin Chen
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoshan Liu
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yuting Fu
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, and Stem Cell Institute, Zhejiang University, Hangzhou 310058, China
| | - Xixi Gu
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zechuan Chen
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Shan Jiang
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dongning Rao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiaomeng Pan
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shu Zhang
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chen Huang
- Department of Gastrointestinal Surgery, Shanghai General Hospital Affiliated to Shanghai Jiaotong University, Shanghai 200080, China
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Guoji Guo
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, and Stem Cell Institute, Zhejiang University, Hangzhou 310058, China
| | - Xiaoming Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
18
|
Zhang Y, Xu M, Ren Y, Ba Y, Liu S, Zuo A, Xu H, Weng S, Han X, Liu Z. Tertiary lymphoid structural heterogeneity determines tumour immunity and prospects for clinical application. Mol Cancer 2024; 23:75. [PMID: 38582847 PMCID: PMC10998345 DOI: 10.1186/s12943-024-01980-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/05/2024] [Indexed: 04/08/2024] Open
Abstract
Tertiary lymphoid structures (TLS) are clusters of immune cells that resemble and function similarly to secondary lymphoid organs (SLOs). While TLS is generally associated with an anti-tumour immune response in most cancer types, it has also been observed to act as a pro-tumour immune response. The heterogeneity of TLS function is largely determined by the composition of tumour-infiltrating lymphocytes (TILs) and the balance of cell subsets within the tumour-associated TLS (TA-TLS). TA-TLS of varying maturity, density, and location may have opposing effects on tumour immunity. Higher maturity and/or higher density TLS are often associated with favorable clinical outcomes and immunotherapeutic response, mainly due to crosstalk between different proportions of immune cell subpopulations in TA-TLS. Therefore, TLS can be used as a marker to predict the efficacy of immunotherapy in immune checkpoint blockade (ICB). Developing efficient imaging and induction methods to study TA-TLS is crucial for enhancing anti-tumour immunity. The integration of imaging techniques with biological materials, including nanoprobes and hydrogels, alongside artificial intelligence (AI), enables non-invasive in vivo visualization of TLS. In this review, we explore the dynamic interactions among T and B cell subpopulations of varying phenotypes that contribute to the structural and functional diversity of TLS, examining both existing and emerging techniques for TLS imaging and induction, focusing on cancer immunotherapies and biomaterials. We also highlight novel therapeutic approaches of TLS that are being explored with the aim of increasing ICB treatment efficacy and predicting prognosis.
Collapse
Affiliation(s)
- Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Mengjun Xu
- Medical School of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuhao Ba
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shutong Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Anning Zuo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan, 450052, China.
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
19
|
Sun XY, Wang CQ, Mao Y, Zhang ZQ, Cui J, Dong XN, Wang HB. Prognostic value and distribution pattern of tumor infiltrating lymphocytes and their subsets in distant metastases of advanced breast cancer. Clin Breast Cancer 2024; 24:e167-e176. [PMID: 38212189 DOI: 10.1016/j.clbc.2023.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/09/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND There are significant correlations between the levels of tumor infiltrating lymphocytes (TILs) and the prognosis of primary breast cancer. While little is known about immunological mechanisms in the distant metastasis of advanced breast cancer. PATIENTS AND METHODS A total of 106 patients with advanced metastatic breast cancer were enrolled in this study between 2016 and 2022. Hematoxylin and eosin staining and immunohistochemistry were used to assess the densities of stromal TILs (sTILs), intratumoral TILs (iTILs) and invasive marginal TILs (imTILs) and CD4+, CD8+, CD20+, FOXP3+ TILs in the primary tumor and metastasis (bone, lung, liver, and distant lymph node) of advanced breast cancer. RESULTS Higher levels of sTILs at metastatic sites were associated with better progression-free survival (PFS), postmetastasis survival (PMS) and overall survival (OS) (p = .026, .001 and .005, respectively). The levels of iTILs were significantly lower than those of sTILs and imTILs in both primary tumor (p< .001, both) and metastasis (p< .001, both). The level of CD4+ T cells was higher than those of CD8+ T cells and CD20+ B cells in both primary tumor (p < .001) and metastasis (p < .001). The levels of sTILs (p=0. 001) and imTILs (p< .001) in the primary tumor were generally higher than those in the metastasis. CONCLUSION The levels of TILs and their subsets can predict the survival and prognosis of patients with advanced breast cancer. The distributions of TILs and their subsets are similar between the primary tumor and metastasis. The metastases have a lower degree of lymphocytes infiltration than its corresponding primary tumor.
Collapse
Affiliation(s)
- Xin-Yi Sun
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, PR China
| | - Cheng-Qin Wang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, PR China
| | - Yan Mao
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, PR China
| | - Zhen-Qi Zhang
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, PR China
| | - Jian Cui
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, PR China
| | - Xian-Ning Dong
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, PR China
| | - Hai-Bo Wang
- Department of Breast Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, PR China.
| |
Collapse
|
20
|
Bryushkova EA, Mushenkova NV, Turchaninova MA, Lukyanov DK, Chudakov DM, Serebrovskaya EO. B cell clonality in cancer. Semin Immunol 2024; 72:101874. [PMID: 38508089 DOI: 10.1016/j.smim.2024.101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 03/22/2024]
Abstract
Carcinogenesis in the process of long-term co-evolution of tumor cells and immune environment essentially becomes possible due to incorrect decisions made, remembered, and reproduced by the immune system at the level of clonal populations of antigen-specific T- and B-lymphocytes. Tumor-immunity interaction determines the nature of such errors and, consequently, delineates the possible ways of successful immunotherapeutic intervention. It is generally recognized that tumor-infiltrating B cells (TIL-B) can play both pro-tumor and anti-tumor roles. However, the exact mechanisms that determine the contribution of clonal B cell lineages with different specificities and functions remain largely unclear. This is due to the variability of cancer types, the molecular heterogeneity of tumor cells, and, to a large extent, the individual pattern of each immune response. Further progress requires detailed investigation of the functional properties and phenotypes of clonally heterogeneous B cells in relation to their antigenic specificities, which determine the functionality of both effector B lymphocytes and immunoglobulins produced in the tumor environment. Based on a real understanding of the role of clonal antigen-specific populations of B lymphocytes in the tumor microenvironment, we need to learn how to develop new methods of targeted immunotherapy, as well as adapt existing treatment options to the specific needs of different patients and patient subgroups. In this review, we will cover B cells functional diversity and their multifaceted roles in the tumor environment.
Collapse
Affiliation(s)
- E A Bryushkova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia; Department of Molecular Biology, Lomonosov Moscow State University, Moscow, Russia
| | - N V Mushenkova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Unicorn Capital Partners, Moscow, Russia
| | - M A Turchaninova
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| | - D K Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia; Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - D M Chudakov
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia; Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia; Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| | - E O Serebrovskaya
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia; Current position: Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| |
Collapse
|
21
|
Chandnani N, Gupta I, Mandal A, Sarkar K. Participation of B cell in immunotherapy of cancer. Pathol Res Pract 2024; 255:155169. [PMID: 38330617 DOI: 10.1016/j.prp.2024.155169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Even though their effector roles extend beyond conventional humoral immunity, B and plasma cells may exhibit antitumor effects through antibody-dependent cell cytotoxicity (ADCC) and activation of the complement cascade. Depending on whether they are positioned in immature or mature compartments termed tertiary lymphoid structures (TLS), which include T cells, B cells are believed to play numerous functions in modulating the immune system's capacity to destroy cancer cells. These formations represent a process of lymphoid neogenesis that takes place in peripheral tissues in response to prolonged exposure to inflammatory signals. Activated in the germinal centres of tertiary lymphoid structures, B cells may directly present tumor-associated antigens to T cells, make antibodies that enhance antigen presentation to T cells, or kill tumour cells, resulting in a favourable therapeutic effect. Immune complexes may also enhance inflammation, angiogenesis, and immunosuppression via the activation of macrophages and complement, resulting in detrimental effects. The functional variety of B-cell subsets includes professional antigen-presenting cells, regulatory cells, memory populations, and plasma cells that produce antibodies. Importantly, antibodies may independently generate innate immune responses and the cancer immunity cycle. B cells and B-cell-mediated antibody responses constitute the largely underestimated second arm of the adaptive immune system and unquestionably need more consideration in cancer. This article reviews the known roles of B lymphocytes in the tumour microenvironment, their contribution to anticancer activity of immunotherapies, and their significance in overall survival of cancer patients. In addition to producing antibodies, B cells regulate the immune system and serve as effective antigen-presenting cells.
Collapse
Affiliation(s)
- Nikhil Chandnani
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ishika Gupta
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ayush Mandal
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
22
|
Zhang H, Wen H, Zhu Q, Zhang Y, Xu F, Ma T, Guo Y, Lu C, Zhao X, Ji Y, Wang Z, Chu Y, Ge D, Gu J, Liu R. Genomic profiling and associated B cell lineages delineate the efficacy of neoadjuvant anti-PD-1-based therapy in oesophageal squamous cell carcinoma. EBioMedicine 2024; 100:104971. [PMID: 38244291 PMCID: PMC10831182 DOI: 10.1016/j.ebiom.2024.104971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Neoadjuvant chemoimmunotherapy has offered novel therapeutic options for patients with locally advanced oesophageal squamous cell carcinoma (ESCC). Depicting the landscape of genomic and immune profiles is critical in predicting therapeutic responses. METHODS We integrated whole-exome sequencing, single-cell RNA sequencing, and immunofluorescence data of ESCC samples from 24 patients who received neoadjuvant treatment with PD-1 inhibitors plus paclitaxel and platinum-based chemotherapy to identify correlations with therapeutic responses. FINDINGS An elevation of small insertions and deletions was observed in responders. DNA mismatch repair (MMR) pathway alternations were highly frequent in patients with optimal responses and correlated with tumour infiltrating lymphocytes (TILs). Among the TILs in ESCC, dichotomous developing trajectories of B cells were identified, with one lineage differentiating towards LMO2+ germinal centre B cells and another lineage differentiating towards CD55+ memory B cells. While LMO2+ germinal centre B cells were enriched in responding tumours, CD55+ memory B cells were found to correlate with inferior responses to combination therapy, exhibiting immune-regulating features and impeding the cytotoxicity of CD8+ T cells. The comprehensive evaluation of transcriptomic B cell lineage features was validated to predict responses to immunotherapy in patients with cancer. INTERPRETATION This comprehensive evaluation of tumour MMR pathway alternations and intra-tumoural B cell features will help to improve the selection and management of patients with ESCC to receive neoadjuvant chemoimmunotherapy. FUNDING National Science Foundation of China (82373371, 82330053), Eastern Scholar Program at Shanghai Institutions of Higher Learning, National Science and Technology Major Project of China (2023YFA1800204, 2020YFC2008402), and Science and Technology Commission of Shanghai Municipality (22ZR1410700, 20ZR1410800).
Collapse
Affiliation(s)
- Hongyu Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Haoyu Wen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qiaoliang Zhu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuchen Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fengkai Xu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Teng Ma
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yifan Guo
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chunlai Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xuelian Zhao
- Department of Pathology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, 200032, Shanghai, China
| | - Zhiqiang Wang
- Department of Immunology, School of Basic Medical Sciences, Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Jie Gu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Ronghua Liu
- Fifth People's Hospital and Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
23
|
Yao P, Liang S, Liu Z, Xu C. A review of natural products targeting tumor immune microenvironments for the treatment of lung cancer. Front Immunol 2024; 15:1343316. [PMID: 38361933 PMCID: PMC10867126 DOI: 10.3389/fimmu.2024.1343316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Lung cancer (LC) produces some of the most malignant tumors in the world, with high morbidity and mortality. Tumor immune microenvironment (TIME), a component of the tumor microenvironment (TME), are critical in tumor development, immune escape, and drug resistance. The TIME is composed of various immune cells, immune cytokines, etc, which are important biological characteristics and determinants of tumor progression and outcomes. In this paper, we reviewed the recently published literature and discussed the potential uses of natural products in regulating TIME. We observed that a total of 37 natural compounds have been reported to exert anti-cancer effects by targeting the TIME. In different classes of natural products, terpenoids are the most frequently mentioned compounds. TAMs are one of the most investigated immune cells about therapies with natural products in TIME, with 9 natural products acting through it. 17 natural products exhibit anti-cancer properties in LC by modulating PD-1 and PD-L1 protein activity. These natural products have been extensively evaluated in animal and cellular LC models, but their clinical trials in LC patients are lacking. Based on the current review, we have revealed that the mechanisms of LC can be treated with natural products through TIME intervention, resulting in a new perspective and potential therapeutic drugs.
Collapse
Affiliation(s)
- Pengyu Yao
- Department of Traditional Chinese Medicine, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Su Liang
- Department of Traditional Chinese Medicine, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhenying Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cuiping Xu
- Department of Nursing, The First Affiliated Hospital of Shandong First Medical University (Shandong Provincial Qianfoshan Hospital), Jinan, China
| |
Collapse
|
24
|
Belderbos RA, Corneth OBJ, Dumoulin D, Hendriks RW, Aerts JGJV, Willemsen M. Atypical B cells (CD21-CD27-IgD-) correlate with lack of response to checkpoint inhibitor therapy in NSCLC. Eur J Cancer 2024; 196:113428. [PMID: 38039777 DOI: 10.1016/j.ejca.2023.113428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 12/03/2023]
Abstract
INTRODUCTION Checkpoint inhibitor (CI) therapy has revolutionized treatment for non-small cell lung cancer (NSCLC). However, a proportion of patients do not respond to CI therapy for unknown reasons. Although the current paradigm in anti-tumor immunity evolves around T cells, the presence of tertiary lymphoid structures and memory B cells has been positively correlated with response to CI therapy in NSCLC. In addition, double negative (DN) (CD27- IgD-) B cells have been shown to be abundant in NSCLC compared to healthy lung tissue and inversely correlate with the intratumoral presence of memory B cells. Nonetheless, no study has correlated DN B cells to survival in NSCLC. METHODS In this study, we evaluated the presence and phenotype of B cells in peripheral blood with flow cytometry of patients with NSCLC and mesothelioma before receiving CI therapy and correlated these with clinical outcome. RESULTS Non-responding patients showed decreased frequencies of B cells, yet increased frequencies of antigen-experienced CD21- DN (Atypical) B cells compared to responding patients and HC, which was confirmed in patients with mesothelioma treated with CI therapy. CONCLUSIONS These data show that the frequency of CD21- DN B cells correlates with lack of response to CI therapy in thoracic malignancies. The mechanism by which CD21- DN B cells hamper CI therapy remains unknown. Our findings support the hypothesis that CD21- DN B cells resemble phenotypically identical exhausted B cells that are seen in chronic infection or function as antigen presenting cells that induce regulatory T cells.
Collapse
Affiliation(s)
- R A Belderbos
- Department of Pulmonary Medicine, the Netherlands; Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, the Netherlands.
| | | | - D Dumoulin
- Department of Pulmonary Medicine, the Netherlands; Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, the Netherlands
| | - R W Hendriks
- Department of Pulmonary Medicine, the Netherlands
| | - J G J V Aerts
- Department of Pulmonary Medicine, the Netherlands; Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, the Netherlands.
| | - M Willemsen
- Department of Pulmonary Medicine, the Netherlands; Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, the Netherlands
| |
Collapse
|
25
|
Aluksanasuwan S, Somsuan K, Ngoenkam J, Chutipongtanate S, Pongcharoen S. Potential association of HSPD1 with dysregulations in ribosome biogenesis and immune cell infiltration in lung adenocarcinoma: An integrated bioinformatic approach. Cancer Biomark 2024; 39:155-170. [PMID: 37694354 PMCID: PMC11091585 DOI: 10.3233/cbm-220442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 07/03/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is a major histological subtype of lung cancer with a high mortality rate worldwide. Heat shock protein family D member 1 (HSPD1, also known as HSP60) is reported to be increased in tumor tissues of lung cancer patients compared with healthy control tissues. OBJECTIVE We aimed to investigate the roles of HSPD1 in prognosis, carcinogenesis, and immune infiltration in LUAD using an integrative bioinformatic analysis. METHODS HSPD1 expression in LUAD was investigated in several transcriptome-based and protein databases. Survival analysis was performed using the KM plotter and OSluca databases, while prognostic significance was independently confirmed through univariate and multivariate analyses. Integrative gene interaction network and enrichment analyses of HSPD1-correlated genes were performed to investigate the roles of HSPD1 in LUAD carcinogenesis. TIMER and TISIDB were used to analyze correlation between HSPD1 expression and immune cell infiltration. RESULTS The mRNA and protein expressions of HSPD1 were higher in LUAD compared with normal tissues. High HSPD1 expression was associated with male gender and LUAD with advanced stages. High HSPD1 expression was an independent prognostic factor associated with poor survival in LUAD patients. HSPD1-correlated genes with prognostic impact were mainly involved in aberrant ribosome biogenesis, while LUAD patients with high HSPD1 expression had low tumor infiltrations of activated and immature B cells and CD4+ T cells. CONCLUSIONS HSPD1 may play a role in the regulation of ribosome biogenesis and B cell-mediated immunity in LUAD. It could serve as a predictive biomarker for prognosis and immunotherapy response in LUAD.
Collapse
Affiliation(s)
- Siripat Aluksanasuwan
- School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand
- Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai, Thailand
| | - Keerakarn Somsuan
- School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand
- Cancer and Immunology Research Unit (CIRU), Mae Fah Luang University, Chiang Rai, Thailand
| | - Jatuporn Ngoenkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Somchai Chutipongtanate
- MILCH and Novel Therapeutics Lab, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Sutatip Pongcharoen
- Division of Immunology, Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
26
|
Xue J, Yan X, Ding Q, Li N, Wu M, Song J. Effect of neoadjuvant chemotherapy on the immune microenvironment of gynaecological tumours. Ann Med 2023; 55:2282181. [PMID: 37983527 PMCID: PMC10836282 DOI: 10.1080/07853890.2023.2282181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
Purpose: To assess the impact of neoadjuvant chemotherapy (NACT) on the tumor immune microenvironment (TIME) in gynaecological tumors, with a focus on understanding the potential for enhanced combination therapies.Methods: We systematically queried the PubMed, Embase, and Cochrane databases, encompassing reviews, clinical trials, and case studies, to undertake a thorough analysis of the impact of NACT on the TIME of gynaecological tumors.Results: NACT induces diverse immune microenvironment changes in gynaecological tumors. In cervical cancer, NACT boosts immune-promoting cells, enhancing tumor clearance. Ovarian cancer studies yield variable outcomes, influenced by patient-specific factors and treatment regimens. Limited research exists on NACT's impact on endometrial cancer's immune microenvironment, warranting further exploration. In summary, NACT-induced immune microenvironment changes display variability. Clinical trials highlight personalized immunotherapy's positive impact on gynaecological tumor prognosis, suggesting potential avenues for future cancer treatments. However, rigorous investigation is needed to determine the exact efficacy and safety of combining NACT with immunotherapy.Conclusion: This review provides a solid foundation for the development of late-stage immunotherapy and highlights the importance of therapeutic strategies targeting immune cells in TIME in anti-tumor therapy.
Collapse
Affiliation(s)
- Jing Xue
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PR China
- Shanxi Medical University, Taiyuan, Shanxi Province, PR China
| | - Xia Yan
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PR China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, Shanxi Province, PR China
| | - Qin Ding
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PR China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, Shanxi Province, PR China
| | - Nan Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PR China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, Shanxi Province, PR China
| | - Menghan Wu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PR China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, Shanxi Province, PR China
| | - Jianbo Song
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, PR China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, Shanxi Province, PR China
| |
Collapse
|
27
|
Zhou X, You L, Xin Z, Su H, Zhou J, Ma Y. Leveraging circulating microbiome signatures to predict tumor immune microenvironment and prognosis of patients with non-small cell lung cancer. J Transl Med 2023; 21:800. [PMID: 37950236 PMCID: PMC10636862 DOI: 10.1186/s12967-023-04582-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/29/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Accumulating evidence supports the significant role of human microbiome in development and therapeutic response of tumors. Circulating microbial DNA is non-invasive and could show a general view of the microbiome of host, making it a promising biomarker for cancers. However, whether circulating microbiome is associated with prognosis of non-small cell lung cancer (NSCLC) and its potential mechanisms on tumor immune microenvironment still remains unknown. METHODS The blood microbiome data and matching tumor RNA-seq data of TCGA NSCLC patients were obtained from Poore's study and UCSC Xena. Univariate and multivariate Cox regression analysis were used to identify circulating microbiome signatures associated with overall survival (OS) and construct the circulating microbial abundance prognostic scoring (MAPS) model. Nomograms integrating clinical characteristics and circulating MAPS scores were established to predict OS rate of NSCLC patients. Joint analysis of blood microbiome data and matching tumor RNA-seq data was used to deciphered the tumor microenvironment landscape of patients in circulating MAPS-high and MAPS-low groups. Finally, the predictive value of circulating MAPS on the efficacy of immunotherapy and chemotherapy were assessed. RESULTS A circulating MAPS prediction model consisting of 14 circulating microbes was constructed and had an independent prognostic value for NSCLC. The integration of circulating MAPS into nomograms may improve the prognosis predictive power. Joint analysis revealed potential interactions between prognostic circulating microbiome and tumor immune microenvironment. Especially, intratumor plasma cells and humoral immune response were enriched in circulating MAPS-low group, while intratumor CD4 + Th2 cells and proliferative related pathways were enriched in MAPS-high group. Finally, drug sensitivity analysis indicated the potential of circulating MAPS as a predictor of chemotherapy efficacy. CONCLUSION A circulating MAPS prediction model was constructed successfully and showed great prognostic value for NSCLC. Our study provides new insights of interactions between microbes, tumors and immunity, and may further contribute to precision medicine for NSCLC.
Collapse
Affiliation(s)
- Xiaohan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Liting You
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Zhaodan Xin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Huiting Su
- Department of Laboratory Medicine, Guang 'an People's Hospital, Guang 'an, 638000, Sichuan, People's Republic of China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Ying Ma
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
28
|
Hu C, You W, Kong D, Huang Y, Lu J, Zhao M, Jin Y, Peng R, Hua D, Kuang DM, Chen Y. Tertiary lymphoid structure-associated B cells enhance CXCL13 +CD103 +CD8 +Trm cell response to PD-1 blockade in gastric cancer. Gastroenterology 2023; 166:S0016-5085(23)05198-3. [PMID: 39491204 DOI: 10.1053/j.gastro.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 03/07/2024]
Abstract
BACKGROUND & AIMS Although the presence of tertiary lymphoid structures (TLS) correlates with positive responses to immunotherapy in many solid malignancies, the mechanism by which TLS enhances anti-tumor immunity is not well understood. The present study aimed to investigate the underlying cross-talk circuits between B cells and tissue-resident memory T (Trm) cells within the TLS and to understand their role in the context of immunotherapy. METHODS Immunostaining and hematoxylin and eosin staining of TLS and CXCL13+CD103+CD8+Trm cells were performed on tumor sections from patients with gastric cancer (GC). The mechanism of communication between B cells and CXCL13+CD103+CD8+Trm cells was determined both in vitro and in vivo. The effect of CXCL13+CD103+CD8+Trm cells in suppressing tumor growth was evaluated through anti-PD-1 therapy. RESULTS The presence of TLS and CXCL13+CD103+CD8+Trm cells in tumor tissues favored a superior response to anti-PD-1 therapy in GC patients. Additionally, our research identified that activated B cells enhanced CXCL13 and granzyme B secretion by CD103+CD8+Trm cells. Mechanistically, B cells facilitated the glycolysis of CD103+CD8+Trm cells through the Lymphotoxin Alpha (LTα)/Tumor necrosis factor receptor 2 (TNFR2) axis, and the mTOR signaling pathway played a critical role in CD103+CD8+Trm cells glycolysis during this process. Moreover, the presence of TLS and CXCL13+CD103+CD8+Trm cells correlated with potent responsiveness to anti-PD-1 therapy in a TNFR2 dependent manner. CONCLUSIONS This study further reveals a crucial role for cellular communication between TLS-associated B cell and CXCL13+CD103+CD8+Trm cells in anti-tumor immunity, providing valuable insights into the potential utilization of the LTα/TNFR2 axis within CXCL13+CD103+CD8+Trm cells for advancing immunotherapy strategies in GC.
Collapse
Affiliation(s)
- Chupeng Hu
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, P. R. China; Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing 210009, China
| | - Wenhua You
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, P. R. China; Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing 210009, China
| | - Deyuan Kong
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, P. R. China; Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing 210009, China
| | - Yedi Huang
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, P. R. China; Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing 210009, China
| | - JinYing Lu
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, P. R. China; Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing 210009, China
| | - Mengya Zhao
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, P. R. China; Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing 210009, China
| | - Yu Jin
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, P. R. China; Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing 210009, China
| | - Rui Peng
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing 210009, China
| | - Dong Hua
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Dong-Ming Kuang
- Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, and Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yun Chen
- Department of Immunology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Department of Central Laboratory, The Affiliated Huai'an No.1 People's Hospital, Nanjing Medical University, Huai'an 223300, P. R. China; Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University Nanjing 210009, China.
| |
Collapse
|
29
|
Wang Z, Wang Q, Tao Y, Chen J, Yuan Z, Wang P. Characterization of immune microenvironment in patients with HPV-positive and negative head and neck cancer. Sci Data 2023; 10:694. [PMID: 37828063 PMCID: PMC10570276 DOI: 10.1038/s41597-023-02611-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/28/2023] [Indexed: 10/14/2023] Open
Abstract
Human papillomavirus (HPV) status strongly predicts positive clinical outcomes in patients with head and neck squamous cell cancer (HNSCC); however, the potential reasons have not been fully elucidated. Here, we characterized the immune context in HPV+ and HPV- HNSCC by integrating scRNA-seq and bulk RNA-seq data. In scRNA-seq data, HPV + HNSCC displayed increased B cells, plasma cells, CD4+ effector T cells, and decreased macrophages and mast cells. This finding was validated using bulk-cell data. Plasma cells predicted improved survival, and macrophages were associated with survival disadvantage. 1403 upregulated and 1877 downregulated differential expressed genes (DEGs) were obtained. Gene Ontology and KEGG enrichment analysis showed these DEGs focused on cytokine-related activity. Transcriptional analysis of B and plasma cells revealed associations between B-cell surface marker FCER2 and improved survival. In vitro assays confirmed the ability of FCER2 to suppress cellular proliferation and migration of HPV + tumors. In conclusion, our analysis revealed a heterogeneous tumor immune environment (TME) for HPV+ and HPV- HNSCC. Further, FCER2+ B cells contribute to antitumor immunity.
Collapse
Affiliation(s)
- Zhongqiu Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, West River District, Tianjin, 300060, China
| | - Qingxin Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, West River District, Tianjin, 300060, China
- School of Precision Instrument and Opto-electronics Engineering, Tianjin University, 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Yuxuan Tao
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, West River District, Tianjin, 300060, China
| | - Jingru Chen
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, West River District, Tianjin, 300060, China
| | - Zhiyong Yuan
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, West River District, Tianjin, 300060, China
| | - Peiguo Wang
- Department of Radiation Oncology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, West Huanhu Road, West River District, Tianjin, 300060, China.
| |
Collapse
|
30
|
Bao J, Betzler AC, Hess J, Brunner C. Exploring the dual role of B cells in solid tumors: implications for head and neck squamous cell carcinoma. Front Immunol 2023; 14:1233085. [PMID: 37868967 PMCID: PMC10586314 DOI: 10.3389/fimmu.2023.1233085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/06/2023] [Indexed: 10/24/2023] Open
Abstract
In the tumor milieu of head and neck squamous cell carcinoma (HNSCC), distinct B cell subpopulations are present, which exert either pro- or anti-tumor activities. Multiple factors, including hypoxia, cytokines, interactions with tumor cells, and other immune infiltrating lymphocytes (TILs), alter the equilibrium between the dual roles of B cells leading to cancerogenesis. Certain B cell subsets in the tumor microenvironment (TME) exhibit immunosuppressive function. These cells are known as regulatory B (Breg) cells. Breg cells suppress immune responses by secreting a series of immunosuppressive cytokines, including IL-10, IL-35, TGF-β, granzyme B, and adenosine or dampen effector TILs by intercellular contacts. Multiple Breg phenotypes have been discovered in human and mouse cancer models. However, when compartmentalized within a tertiary lymphoid structure (TLS), B cells predominantly play anti-tumor effects. A mature TLS contains a CD20+ B cell zone with several important types of B cells, including germinal-center like B cells, antibody-secreting plasma cells, and memory B cells. They kill tumor cells via antibody-dependent cytotoxicity and phagocytosis, and local complement activation effects. TLSs are also privileged sites for local T and B cell coordination and activation. Nonetheless, in some cases, TLSs may serve as a niche for hidden tumor cells and indicate a bad prognosis. Thus, TIL-B cells exhibit bidirectional immune-modulatory activity and are responsive to a variety of immunotherapies. In this review, we discuss the functional distinctions between immunosuppressive Breg cells and immunogenic effector B cells that mature within TLSs with the focus on tumors of HNSCC patients. Additionally, we review contemporary immunotherapies that aim to target TIL-B cells. For the development of innovative therapeutic approaches to complement T-cell-based immunotherapy, a full understanding of either effector B cells or Breg cells is necessary.
Collapse
Affiliation(s)
- Jiantong Bao
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Ulm, Head & Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
- School of Medicine, Southeast University, Nanjing, China
| | - Annika C. Betzler
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Ulm, Head & Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Jochen Hess
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cornelia Brunner
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Ulm, Head & Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| |
Collapse
|
31
|
Khanal S, Wieland A, Gunderson AJ. Mechanisms of tertiary lymphoid structure formation: cooperation between inflammation and antigenicity. Front Immunol 2023; 14:1267654. [PMID: 37809103 PMCID: PMC10551175 DOI: 10.3389/fimmu.2023.1267654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
To mount an effective anti-tumor immune response capable of controlling or eliminating disease, sufficient numbers of lymphocytes must be recruited to malignant tissue and allowed to sustain their effector functions. Indeed, higher infiltration of T and B cells in tumor tissue, often referred to as "hot tumors", is prognostic for patient survival and predictive of response to immunotherapy in almost all cancer types. The organization of tertiary lymphoid structures (TLS) in solid tumors is a unique example of a hot tumor whereby T and B lymphocytes aggregate with antigen presenting cells and high endothelial venules reflecting the cellular organization observed in lymphoid tissue. Many groups have reported that the presence of preexisting TLS in tumors is associated with a superior adaptive immune response, response to immunotherapy, and improved survivorship over those without TLS. Accordingly, there is significant interest into understanding the mechanisms of how and why TLS organize so that they can be elicited therapeutically in patients with few or no TLS. Unfortunately, the most commonly used mouse models of cancer do not spontaneously form TLS, thus significantly restricting our understanding of TLS biology. This brief review will summarize our current state of knowledge of TLS neogenesis and address the current gaps in the field.
Collapse
Affiliation(s)
- Shrijan Khanal
- Division of Surgical Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Andreas Wieland
- Department of Otolaryngology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Andrew J. Gunderson
- Division of Surgical Oncology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
32
|
Guinn MT, Szuter ES, Yokose T, Ge J, Rosales IA, Chetal K, Sadreyev RI, Cuenca AG, Kreisel D, Sage PT, Russell PS, Madsen JC, Colvin RB, Alessandrini A. Intragraft B cell differentiation during the development of tolerance to kidney allografts is associated with a regulatory B cell signature revealed by single cell transcriptomics. Am J Transplant 2023; 23:1319-1330. [PMID: 37295719 PMCID: PMC11232115 DOI: 10.1016/j.ajt.2023.05.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Mouse kidney allografts are spontaneously accepted in select, fully mismatched donor-recipient strain combinations, like DBA/2J to C57BL/6 (B6), by natural tolerance. We previously showed accepted renal grafts form aggregates containing various immune cells within 2 weeks posttransplant, referred to as regulatory T cell-rich organized lymphoid structures, which are a novel regulatory tertiary lymphoid organ. To characterize the cells within T cell-rich organized lymphoid structures, we performed single-cell RNA sequencing on CD45+ sorted cells from accepted and rejected renal grafts from 1-week to 6-months posttransplant. Analysis of single-cell RNA sequencing data revealed a shifting from a T cell-dominant to a B cell-rich population by 6 months with an increased regulatory B cell signature. Furthermore, B cells were a greater proportion of the early infiltrating cells in accepted vs rejecting grafts. Flow cytometry of B cells at 20 weeks posttransplant revealed T cell, immunoglobulin domain and mucin domain-1+ B cells, potentially implicating a regulatory role in the maintenance of allograft tolerance. Lastly, B cell trajectory analysis revealed intragraft differentiation from precursor B cells to memory B cells in accepted allografts. In summary, we show a shifting T cell- to B cell-rich environment and a differential cellular pattern among accepted vs rejecting kidney allografts, possibly implicating B cells in the maintenance of kidney allograft acceptance.
Collapse
Affiliation(s)
- Michael Tyler Guinn
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas, USA; Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Edward S Szuter
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Takahiro Yokose
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jifu Ge
- Boston's Children Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ivy A Rosales
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kashish Chetal
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ruslan I Sadreyev
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alex G Cuenca
- Boston's Children Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Kreisel
- Departments of Surgery, Pathology, and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Peter T Sage
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul S Russell
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Joren C Madsen
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA; Division of Cardiac Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Robert B Colvin
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alessandro Alessandrini
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
33
|
Satitsuksanoa P, Iwasaki S, Boersma J, Bel Imam M, Schneider SR, Chang I, van de Veen W, Akdis M. B cells: The many facets of B cells in allergic diseases. J Allergy Clin Immunol 2023; 152:567-581. [PMID: 37247640 DOI: 10.1016/j.jaci.2023.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
B cells play a key role in our immune system through their ability to produce antibodies, suppress a proinflammatory state, and contribute to central immune tolerance. We aim to provide an in-depth knowledge of the molecular biology of B cells, including their origin, developmental process, types and subsets, and functions. In allergic diseases, B cells are well known to induce and maintain immune tolerance through the production of suppressor cytokines such as IL-10. Similarly, B cells protect against viral infections such as severe acute respiratory syndrome coronavirus 2 that caused the recent coronavirus disease 2019 pandemic. Considering the unique and multifaceted functions of B cells, we hereby provide a comprehensive overview of the current knowledge of B-cell biology and its clinical applications in allergic diseases, organ transplantation, and cancer.
Collapse
Affiliation(s)
- Pattraporn Satitsuksanoa
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| | - Sayuri Iwasaki
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Jolien Boersma
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Wageningen University & Research, Wageningen, The Netherlands
| | - Manal Bel Imam
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Stephan R Schneider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Iris Chang
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland; Sean N. Parker Centre for Allergy and Asthma Research, Department of Medicine, Stanford University, Palo Alto, Calif
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland.
| |
Collapse
|
34
|
Yiong CS, Lin TP, Lim VY, Toh TB, Yang VS. Biomarkers for immune checkpoint inhibition in sarcomas - are we close to clinical implementation? Biomark Res 2023; 11:75. [PMID: 37612756 PMCID: PMC10463641 DOI: 10.1186/s40364-023-00513-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
Sarcomas are a group of diverse and complex cancers of mesenchymal origin that remains poorly understood. Recent developments in cancer immunotherapy have demonstrated a potential for better outcomes with immune checkpoint inhibition in some sarcomas compared to conventional chemotherapy. Immune checkpoint inhibitors (ICIs) are key agents in cancer immunotherapy, demonstrating improved outcomes in many tumor types. However, most patients with sarcoma do not benefit from treatment, highlighting the need for identification and development of predictive biomarkers for response to ICIs. In this review, we first discuss United States (US) Food and Drug Administration (FDA)-approved and European Medicines Agency (EMA)-approved biomarkers, as well as the limitations of their use in sarcomas. We then review eight potential predictive biomarkers and rationalize their utility in sarcomas. These include gene expression signatures (GES), circulating neutrophil-to-lymphocyte ratio (NLR), indoleamine 2,3-dioxygenase (IDO), lymphocyte activation gene 3 (LAG-3), T cell immunoglobin and mucin domain-containing protein 3 (TIM-3), TP53 mutation status, B cells, and tertiary lymphoid structures (TLS). Finally, we discuss the potential for TLS as both a predictive and prognostic biomarker for ICI response in sarcomas to be implemented in the clinic.
Collapse
Affiliation(s)
- Chin Sern Yiong
- Translational Precision Oncology Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
- Department of Pharmacy, National University of Singapore, Singapore, 117544, Singapore
| | - Tzu Ping Lin
- Translational Precision Oncology Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
- Department of Pharmacy, National University of Singapore, Singapore, 117544, Singapore
| | - Vivian Yujing Lim
- Translational Precision Oncology Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore
| | - Tan Boon Toh
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
- The Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore
| | - Valerie Shiwen Yang
- Translational Precision Oncology Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, 138673, Singapore.
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore, 169610, Singapore.
- Duke-NUS Medical School, Oncology Academic Clinical Program, Singapore, 169857, Singapore.
| |
Collapse
|
35
|
Wang L, Xiao Y, Luo Y, Master RP, Mo J, Kim MC, Liu Y, Patel UM, Li X, Shaffer D, Guertin KR, Moser E, Smalley KS, Zhou D, Zheng G, Zhang W. Unleashing the Power of NR4A1 Degradation as a Novel Strategy for Cancer Immunotherapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552650. [PMID: 37609171 PMCID: PMC10441411 DOI: 10.1101/2023.08.09.552650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
An effective cancer therapy requires both killing cancer cells and targeting tumor-promoting pathways or cell populations within the tumor microenvironment (TME). We purposely search for molecules that are critical for multiple tumor-promoting cell types and identified nuclear receptor subfamily 4 group A member 1 (NR4A1) as one such molecule. NR4A1 has been shown to promote the aggressiveness of cancer cells and maintain the immune suppressive TME. Using genetic and pharmacological approaches, we establish NR4A1 as a valid therapeutic target for cancer therapy. Importantly, we have developed the first-of-its kind proteolysis-targeting chimera (PROTAC, named NR-V04) against NR4A1. NR-V04 effectively degrades NR4A1 within hours of treatment in vitro and sustains for at least 4 days in vivo, exhibiting long-lasting NR4A1-degradation in tumors and an excellent safety profile. NR-V04 leads to robust tumor inhibition and sometimes eradication of established melanoma tumors. At the mechanistic level, we have identified an unexpected novel mechanism via significant induction of tumor-infiltrating (TI) B cells as well as an inhibition of monocytic myeloid derived suppressor cells (m-MDSC), two clinically relevant immune cell populations in human melanomas. Overall, NR-V04-mediated NR4A1 degradation holds promise for enhancing anti-cancer immune responses and offers a new avenue for treating various types of cancer.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Yufeng Xiao
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Yuewan Luo
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Current: Biotech Research and Innovation Centre, Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N DK-2200, Denmark
| | - Rohan P Master
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Current: College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Jiao Mo
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Current: R & D, Thermo Fisher Scientific, Alachua, FL 32615, USA
| | - Myung-Chul Kim
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Veterinary Diagnostic Laboratory Medicine, College of Veterinary Medicine, Jeju National University, Jeju-si, Jeju-do, South Korea 63243
| | - Yi Liu
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| | - Urvi M Patel
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | | - Kevin R Guertin
- Sanofi Integrated Drug Discovery, Sanofi, Cambridge, MA 01890
| | - Emily Moser
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, the College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Keiran S Smalley
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Current: Biotech Research and Innovation Centre, Department of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N DK-2200, Denmark
- Current: College of Medicine, Florida State University, Tallahassee, FL 32306, USA
- Current: R & D, Thermo Fisher Scientific, Alachua, FL 32615, USA
- Veterinary Diagnostic Laboratory Medicine, College of Veterinary Medicine, Jeju National University, Jeju-si, Jeju-do, South Korea 63243
- Sanofi Oncology, Sanofi, Cambridge, MA 01890
- Sanofi Integrated Drug Discovery, Sanofi, Cambridge, MA 01890
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, the College of Medicine, University of Florida, Gainesville, FL 32610, USA
- Department of Cutaneous Oncology, Moffitt Cancer Center & Research Institute, Tampa, FL 12902
- Department of Biochemistry & Structural Biology, Center of innovative Drug Discovery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
- University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Daohong Zhou
- Department of Biochemistry & Structural Biology, Center of innovative Drug Discovery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA
- University of Florida Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
36
|
Wang Q, Sun K, Liu R, Song Y, Lv Y, Bi P, Yang F, Li S, Zhao J, Li X, Chen D, Mei J, Yang R, Chen K, Liu D, Tang S. Single-cell transcriptome sequencing of B-cell heterogeneity and tertiary lymphoid structure predicts breast cancer prognosis and neoadjuvant therapy efficacy. Clin Transl Med 2023; 13:e1346. [PMID: 37525587 PMCID: PMC10390819 DOI: 10.1002/ctm2.1346] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Breast cancer (BC) is a highly heterogeneous disease, and although immunotherapy has recently increased patient survival in a number of solid and hematologic malignancies, most BC subtypes respond poorly to immune checkpoint blockade therapy (ICB). B cells, particularly those that congregate in tertiary lymphoid structures (TLS), play a significant role in antitumour immunity. However, B-cell heterogeneity at single-cell resolution and its clinical significance with TLS in BC need to be explored further. METHODS Primary tumour lesions and surrounding normal tissues were taken from 14 BC patients, totaling 124,587 cells, for single-cell transcriptome sequencing and bioinformatics analysis. RESULTS Based on the usual markers, the single-cell transcriptome profiles were classified into various clusters. A thorough single-cell study was conducted with a focus on tumour-infiltrating B cells (TIL-B) and tumour-associated neutrophils (TAN). TIL-B was divided into five clusters, and unusual cell types, such as follicular B cells, which are strongly related to immunotherapy efficacy, were identified. In BC, TAN and TIL-B infiltration are positively correlated, and at the same time, compared with TLS-high, TAN and TIL-B in TLS-low group are significantly positively correlated. CONCLUSIONS In conclusion, our study highlights the heterogeneity of B cells in BC, explains how B cells and TLS contribute significantly to antitumour immunity at both the single-cell and clinical level, and offers a straightforward marker for TLS called CD23. These results will offer more pertinent information on the applicability and effectiveness of tumour immunotherapy for BC.
Collapse
Affiliation(s)
- Qing Wang
- Department of Breast SurgeryCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Ke Sun
- State Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| | - Rui Liu
- Department of Breast SurgeryCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Ying Song
- Department of Breast SurgeryCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Yafeng Lv
- Department of Breast SurgeryCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Pingping Bi
- Department of Breast SurgeryCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Fuying Yang
- Department of Breast SurgeryCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Sijia Li
- Department of Breast SurgeryCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Jiawen Zhao
- Department of Breast SurgeryCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Xiuqin Li
- Department of Breast SurgeryCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Dong Chen
- Department of UltrasoundCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Jialin Mei
- Department of Cardiothoracic SurgeryBaoshan People's HospitalBaoshanChina
| | - Rirong Yang
- Center for Genomic and Personalized MedicineGuangxi Medical UniversityNanningChina
- Department of ImmunologySchool of Basic Medical SciencesGuangxi Medical UniversityNanningChina
| | - Kai Chen
- State Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| | - Dequan Liu
- Department of Breast SurgeryCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| | - Shichong Tang
- Department of Breast SurgeryCaner Hospital of Yunnan ProvinceThe Third Affiliated Hospital of Kunming Medical UniversityKunmingChina
| |
Collapse
|
37
|
Yuan Y, Xie B, Guo D, Liu C, Jiang G, Lai G, Zhang Y, Hu X, Wu Z, Zheng R, Huang L. Identification of ALG3 as a potential prognostic biomarker in lung adenocarcinoma. Heliyon 2023; 9:e18065. [PMID: 37539167 PMCID: PMC10395363 DOI: 10.1016/j.heliyon.2023.e18065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Background The abnormal expression of Alpha-1,3-mannosyltransferase (ALG3) has been implicated in tumor promotion. However, the clinical significance of ALG3 in Lung Adenocarcinoma (LUAD) remains poorly understood. Therefore, we aimed to assess the prognostic value of ALG3 and its association with immune infiltrates in LUAD. Methods The transcriptional expression profiles of ALG3 were obtained from the Cancer Genome Atlas (TCGA), comparing lung adenocarcinoma tissue with normal tissues. To determine the prognostic significance of AGL3, Kaplan-Meier plotter, and Cox regression analysis were employed. Logistic regression was utilized to analyze the association between ALG3 expression and clinical characteristics. Additionally, a receiver operating characteristic (ROC) curve and a nomogram were constructed. To explore the underlying mechanisms, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and gene set enrichment analysis (GSEA) was conducted. The relationship between AGL3A mRNA expression and immune infiltrates was investigated using the tumor immune estimation resource (TIMER) and tumor-immune system interaction database (TISIDB). Furthermore, an in vitro experiment was performed to assess the impact of ALG3 mRNA on lung cancer stemness abilities and examine key signaling pathway proteins. Results Our results revealed the ALG3 mRNA and protein expression in patients with LUAD was much higher than that in adjacent normal tissues. High expression of ALG3 was significantly associated with N stage (N0, HR = 1.98, P = 0.002), pathological stage (stage I, HR = 2.09, P = 0.003), and the number of pack years (<40, HR = 2.58, P = 0.001). Kaplan-Meier survival analysis showed that high expression of ALG3 was associated with poor overall survival (P < 0.001), disease-free survival (P < 0.001), and progression-free interval (P = 0.007). Through multivariate analysis, it was determined that elevated ALG3 expression independently impacted overall survival (HR = 1.325, P = 0.04). The Tumor Immune Estimation Resource discovered a link between ALG3 expression and tumor-infiltrating immune cells in LUAD. Additionally, ROC analysis proved that ALG3 is a reliable diagnostic marker for LUAD (AUC:0.923). Functional pathways analysis identified that ALG3 is negatively correlated with FAT4. We performed qRT-PCR to assess that knockdown ALG3 expression significantly upregulated FAT4 expression. Spheroid assay and flow cytometry analysis results showed that downregulated of ALG3 inhibited H1975 cell line stemness. Western blot analysis revealed that decreased ALG3 inhibited the YAP/TAZ signal pathway. Conclusion High expression of ALG3 is strongly associated with poor prognosis and immune infiltrates in LUAD.
Collapse
Affiliation(s)
- Yinjiao Yuan
- The First School of Chinical Medicine, Southern Medical University, Guangzhou, 510510, China
- Department of Oncology, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), Dongguan, 523059, China
| | - BaoCheng Xie
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Dongbo Guo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, China
| | - Caixiang Liu
- Department of Oncology, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), Dongguan, 523059, China
| | - Guanming Jiang
- Department of Oncology, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), Dongguan, 523059, China
| | - Guowei Lai
- Department of General Surgery, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
- General Hospital of Third Division, Xinjiang Production and Construction Corps, Tumushuker, China
| | - Yu Zhang
- The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiarong Hu
- Department of General Surgery, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Zhiming Wu
- Department of General Surgery, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Ruinian Zheng
- Department of Oncology, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), Dongguan, 523059, China
| | - Linxuan Huang
- Department of Oncology, Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, The Tenth Affiliated Hospital of Southern Medical University (Dongguan people's hospital), Dongguan, 523059, China
| |
Collapse
|
38
|
Bod L, Kye YC, Shi J, Torlai Triglia E, Schnell A, Fessler J, Ostrowski SM, Von-Franque MY, Kuchroo JR, Barilla RM, Zaghouani S, Christian E, Delorey TM, Mohib K, Xiao S, Slingerland N, Giuliano CJ, Ashenberg O, Li Z, Rothstein DM, Fisher DE, Rozenblatt-Rosen O, Sharpe AH, Quintana FJ, Apetoh L, Regev A, Kuchroo VK. B-cell-specific checkpoint molecules that regulate anti-tumour immunity. Nature 2023; 619:348-356. [PMID: 37344597 PMCID: PMC10795478 DOI: 10.1038/s41586-023-06231-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/17/2023] [Indexed: 06/23/2023]
Abstract
The role of B cells in anti-tumour immunity is still debated and, accordingly, immunotherapies have focused on targeting T and natural killer cells to inhibit tumour growth1,2. Here, using high-throughput flow cytometry as well as bulk and single-cell RNA-sequencing and B-cell-receptor-sequencing analysis of B cells temporally during B16F10 melanoma growth, we identified a subset of B cells that expands specifically in the draining lymph node over time in tumour-bearing mice. The expanding B cell subset expresses the cell surface molecule T cell immunoglobulin and mucin domain 1 (TIM-1, encoded by Havcr1) and a unique transcriptional signature, including multiple co-inhibitory molecules such as PD-1, TIM-3, TIGIT and LAG-3. Although conditional deletion of these co-inhibitory molecules on B cells had little or no effect on tumour burden, selective deletion of Havcr1 in B cells both substantially inhibited tumour growth and enhanced effector T cell responses. Loss of TIM-1 enhanced the type 1 interferon response in B cells, which augmented B cell activation and increased antigen presentation and co-stimulation, resulting in increased expansion of tumour-specific effector T cells. Our results demonstrate that manipulation of TIM-1-expressing B cells enables engagement of the second arm of adaptive immunity to promote anti-tumour immunity and inhibit tumour growth.
Collapse
Affiliation(s)
- Lloyd Bod
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital Cancer Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yoon-Chul Kye
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jingwen Shi
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- BeiGene, Beijing, China
| | - Elena Torlai Triglia
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexandra Schnell
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Johannes Fessler
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Division of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | | | - Max Y Von-Franque
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA
| | - Juhi R Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Rocky M Barilla
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sarah Zaghouani
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Elena Christian
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Toni Marie Delorey
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kanishka Mohib
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sheng Xiao
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
| | - Nadine Slingerland
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zhaorong Li
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David M Rothstein
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David E Fisher
- Department of Dermatology, Massachusetts General Hospital, Boston, MA, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Department of Biology and Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Arlene H Sharpe
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Francisco J Quintana
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Department of Biology and Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lionel Apetoh
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA
- INSERM, Tours, France
- Faculté de Médecine, Université de Tours, Tours, France
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Department of Biology and Koch Institute of Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Genentech, San Francisco, CA, USA.
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
39
|
Patel AJ, Khan N, Richter A, Naidu B, Drayson MT, Middleton GW. Deep immune B and plasma cell repertoire in non-small cell lung cancer. Front Immunol 2023; 14:1198665. [PMID: 37398676 PMCID: PMC10311499 DOI: 10.3389/fimmu.2023.1198665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction B cells, which have long been thought to be minor players in the development of anti-tumor responses, have been implicated as key players in lung cancer pathogenesis and response to checkpoint blockade in patients with lung cancer. Enrichment of late-stage plasma and memory cells in the tumor microenvironment has been shown in lung cancer, with the plasma cell repertoire existing on a functional spectrum with suppressive phenotypes correlating with outcome. B cell dynamics may be influenced by the inflammatory microenvironment observed in smokers and between LUAD and LUSC. Methods Here, we show through high-dimensional deep phenotyping using mass cytometry (CyTOF), next generation RNA sequencing and multispectral immunofluorescence imaging (VECTRA Polaris) that key differences exist in the B cell repertoire between tumor and circulation in paired specimens from lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC). Results In addition to the current literature, this study provides insight into the in-depth description of the B cell contexture in Non-Small Cell Lung Cancer (NSCLC) with reference to broad clinico-pathological parameters based on our analysis of 56 patients. Our findings reinforce the phenomenon of B-cell trafficking from distant circulatory compartments into the tumour microenvironment (TME). The circulatory repertoire shows a predilection toward plasma and memory phenotypes in LUAD however no major differences exist between LUAD and LUSC at the level of the TME. B cell repertoire, amongst other factors, may be influenced by the inflammatory burden in the TME and circulation, that is, smokers and non-smokers. We have further clearly demonstrated that the plasma cell repertoire exists on a functional spectrum in lung cancer, and that the suppressive regulatory arm of this axis may play a significant role in determining postoperative outcomes as well as following checkpoint blockade. This will require further long-term functional correlation. Conclusion B and Plasma cell repertoire is very diverse and heterogeneous across different tissue compartments in lung cancer. Smoking status associates with key differences in the immune milieu and the consequent inflammatory microenvironment is likely responsible for the functional and phenotypic spectrum we have seen in the plasma cell and B cell repertoire in this condition.
Collapse
Affiliation(s)
- Akshay J. Patel
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Naeem Khan
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alex Richter
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Babu Naidu
- Institute of Inflammation and Ageing (IIA), College of Medical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Mark T. Drayson
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Gary W. Middleton
- Institute of Immunology and Immunotherapy (III), College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
40
|
Wang H, Shi Y, Shi Y, Cao M, Zhang L, Wu Y, Xu Y, Wang K, Weng X. The Prognostic Value and Potential Mechanism of Tumor-Nutrition-Inflammation Index and Genes in Patients with Advanced Lung Cancer. Int J Clin Pract 2023; 2023:8893670. [PMID: 37251954 PMCID: PMC10212685 DOI: 10.1155/2023/8893670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/05/2023] [Accepted: 05/06/2023] [Indexed: 05/31/2023] Open
Abstract
Background Lung cancer (LC) has the highest mortality rate all over the world. It is necessary to search for novel potential biomarkers that are easily accessible and inexpensive in identifying patients with LC at early stage. Methods A total of 195 patients with advanced LC who have received first-line chemotherapy were involved in this study. The optimized cut-off values of AGR and SIRI (AGR = albumin/globulin; SIRI = neutrophil ∗ monocyte/lymphocyte) were determined by survival function analysis based on R software. COX regression analysis was performed to obtain the independent factors for establishing the nomogram model. A nomogram model comprising these independent prognostic parameters was built for the TNI (tumor-nutrition-inflammation index) score calculation. The predictive accuracy was demonstrated through ROC curve and calibration curves after index concordance. Results The optimized cut-off values of AGR and SIRI were 1.22 and 1.60, respectively. It was revealed that liver metastasis, SCC, AGR, and SIRI were independent prognostic factors in advanced lung cancer by Cox analysis. Afterwards, the nomogram model comprised of these independent prognostic parameters was built for TNI scores calculation. Based on the TNI quartile values, patients were divided into four groups. And it was indicated that higher TNI had worse OS (P < 0.05) via Kaplan-Meier analysis and log-rank test. Moreover, the C-index and 1-year AUC area were 0.756 (0.723-0.788) and 75.62, respectively. There was high consistency shown in the calibration curves between predicted and actual survival proportions in the TNI model. In addition, tumor-nutrition-inflammation index and genes play an important role in LC development that might affect some pathways related to tumor development including cell cycle, homologous recombination, and P53 signaling pathway from a molecular level. Conclusion TNI might be an analytical tool which was practical and precise for survival prediction of patients with advanced LC. Tumor-nutrition-inflammation index and genes play an important role in LC development. A preprint has previously been published [1].
Collapse
Affiliation(s)
- Huan Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yuting Shi
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yueli Shi
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Mengqing Cao
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Long Zhang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yuan Wu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yun Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Xianwu Weng
- Department of Cardiothoracic Surgery, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, China
| |
Collapse
|
41
|
Kwok HH, Yang J, Lam DCL. Breaking the Invisible Barriers: Unleashing the Full Potential of Immune Checkpoint Inhibitors in Oncogene-Driven Lung Adenocarcinoma. Cancers (Basel) 2023; 15:2749. [PMID: 37345086 DOI: 10.3390/cancers15102749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 06/23/2023] Open
Abstract
The rapid development of targeted therapy paved the way toward personalized medicine for advanced non-small cell lung cancer (NSCLC). Lung adenocarcinoma (ADC) harboring actionable genetic alternations including epidermal growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK), Kirsten rat sarcoma virus (ALK) and c-ros oncogene 1 (ROS1) treated with tyrosine kinase inhibitors (TKIs) incurred lesser treatment toxicity but better therapeutic responses compared with systemic chemotherapy. Angiogenesis inhibitors targeting vascular endothelial growth factor (VEGF) have also shown an increase in overall survival (OS) for NSCLC patients. However, acquired resistance to these targeted therapies remains a major obstacle to long-term maintenance treatment for lung ADC patients. The emergence of immune checkpoint inhibitors (ICIs) against programmed cell death protein 1 (PD-1) or programmed cell death-ligand 1 (PD-L1) has changed the treatment paradigm for NSCLC tumors without actionable genetic alternations. Clinical studies have suggested, however, that there are no survival benefits with the combination of targeted therapy and ICIs. In this review, we will summarize and discuss the current knowledge on the tumor immune microenvironment and the dynamics of immune phenotypes, which could be crucial in extending the applicability of ICIs for this subpopulation of lung ADC patients.
Collapse
Affiliation(s)
- Hoi-Hin Kwok
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jiashuang Yang
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - David Chi-Leung Lam
- Department of Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
42
|
Gaglia G, Burger ML, Ritch CC, Rammos D, Dai Y, Crossland GE, Tavana SZ, Warchol S, Jaeger AM, Naranjo S, Coy S, Nirmal AJ, Krueger R, Lin JR, Pfister H, Sorger PK, Jacks T, Santagata S. Lymphocyte networks are dynamic cellular communities in the immunoregulatory landscape of lung adenocarcinoma. Cancer Cell 2023; 41:871-886.e10. [PMID: 37059105 PMCID: PMC10193529 DOI: 10.1016/j.ccell.2023.03.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 01/31/2023] [Accepted: 03/22/2023] [Indexed: 04/16/2023]
Abstract
Lymphocytes are key for immune surveillance of tumors, but our understanding of the spatial organization and physical interactions that facilitate lymphocyte anti-cancer functions is limited. We used multiplexed imaging, quantitative spatial analysis, and machine learning to create high-definition maps of lung tumors from a Kras/Trp53-mutant mouse model and human resections. Networks of interacting lymphocytes ("lymphonets") emerged as a distinctive feature of the anti-cancer immune response. Lymphonets nucleated from small T cell clusters and incorporated B cells with increasing size. CXCR3-mediated trafficking modulated lymphonet size and number, but T cell antigen expression directed intratumoral localization. Lymphonets preferentially harbored TCF1+ PD-1+ progenitor CD8+ T cells involved in responses to immune checkpoint blockade (ICB) therapy. Upon treatment of mice with ICB or an antigen-targeted vaccine, lymphonets retained progenitor and gained cytotoxic CD8+ T cell populations, likely via progenitor differentiation. These data show that lymphonets create a spatial environment supportive of CD8+ T cell anti-tumor responses.
Collapse
Affiliation(s)
- Giorgio Gaglia
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Megan L Burger
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97212, USA; School of Medicine, Division of Hematology and Oncology, Oregon Health & Science University, Portland, OR 97212, USA
| | - Cecily C Ritch
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Danae Rammos
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yang Dai
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Grace E Crossland
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sara Z Tavana
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Simon Warchol
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Alex M Jaeger
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Santiago Naranjo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shannon Coy
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ajit J Nirmal
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Robert Krueger
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Jia-Ren Lin
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| | - Hanspeter Pfister
- School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sandro Santagata
- Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
43
|
Zhang H, AbdulJabbar K, Moore DA, Akarca A, Enfield KS, Jamal-Hanjani M, Raza SEA, Veeriah S, Salgado R, McGranahan N, Le Quesne J, Swanton C, Marafioti T, Yuan Y. Spatial Positioning of Immune Hotspots Reflects the Interplay between B and T Cells in Lung Squamous Cell Carcinoma. Cancer Res 2023; 83:1410-1425. [PMID: 36853169 PMCID: PMC10152235 DOI: 10.1158/0008-5472.can-22-2589] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/05/2023] [Accepted: 02/24/2023] [Indexed: 03/01/2023]
Abstract
Beyond tertiary lymphoid structures, a significant number of immune-rich areas without germinal center-like structures are observed in non-small cell lung cancer. Here, we integrated transcriptomic data and digital pathology images to study the prognostic implications, spatial locations, and constitution of immune rich areas (immune hotspots) in a cohort of 935 patients with lung cancer from The Cancer Genome Atlas. A high intratumoral immune hotspot score, which measures the proportion of immune hotspots interfacing with tumor islands, was correlated with poor overall survival in lung squamous cell carcinoma but not in lung adenocarcinoma. Lung squamous cell carcinomas with high intratumoral immune hotspot scores were characterized by consistent upregulation of B-cell signatures. Spatial statistical analyses conducted on serial multiplex IHC slides further revealed that only 4.87% of peritumoral immune hotspots and 0.26% of intratumoral immune hotspots were tertiary lymphoid structures. Significantly lower densities of CD20+CXCR5+ and CD79b+ B cells and less diverse immune cell interactions were found in intratumoral immune hotspots compared with peritumoral immune hotspots. Furthermore, there was a negative correlation between the percentages of CD8+ T cells and T regulatory cells in intratumoral but not in peritumoral immune hotspots, with tertiary lymphoid structures excluded. These findings suggest that the intratumoral immune hotspots reflect an immunosuppressive niche compared with peritumoral immune hotspots, independent of the distribution of tertiary lymphoid structures. A balance toward increased intratumoral immune hotspots is indicative of a compromised antitumor immune response and poor outcome in lung squamous cell carcinoma. SIGNIFICANCE Intratumoral immune hotspots beyond tertiary lymphoid structures reflect an immunosuppressive microenvironment, different from peritumoral immune hotspots, warranting further study in the context of immunotherapies.
Collapse
Affiliation(s)
- Hanyun Zhang
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Khalid AbdulJabbar
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - David A. Moore
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Department of Cellular Pathology, University College London Hospitals, London, United Kingdom
| | - Ayse Akarca
- Department of Cellular Pathology, University College London Hospitals, London, United Kingdom
| | - Katey S.S. Enfield
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Department of Oncology, University College London Hospitals, London, United Kingdom
- Cancer Metastasis Lab, University College London Cancer Institute, London, United Kingdom
| | - Shan E. Ahmed Raza
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| | - Selvaraju Veeriah
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | | | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
| | - John Le Quesne
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- NHS Greater Glasgow and Clyde Pathology Department, Queen Elizabeth University Hospital, London, United Kingdom
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, United Kingdom
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Oncology, University College London Hospitals, London, United Kingdom
| | - Teresa Marafioti
- Department of Cellular Pathology, University College London Hospitals, London, United Kingdom
| | - Yinyin Yuan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, United Kingdom
- Division of Molecular Pathology, The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
44
|
Lim JU, Lee E, Lee SY, Cho HJ, Ahn DH, Hwang Y, Choi JY, Yeo CD, Park CK, Kim SJ. Current literature review on the tumor immune micro-environment, its heterogeneity and future perspectives in treatment of advanced non-small cell lung cancer. Transl Lung Cancer Res 2023; 12:857-876. [PMID: 37197639 PMCID: PMC10183402 DOI: 10.21037/tlcr-22-633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/07/2023] [Indexed: 03/21/2023]
Abstract
Background and Objective Immune checkpoint inhibitors (ICI) were a major clinical advancement that provided an opportunity to improve the prognosis of patients with non-small cell lung cancer (NSCLC). However, programmed death-ligand-1 (PD-L1) expression does not sufficiently predict ICI efficacy in NSCLC patients. In recent studies, the tumor immune microenvironment (TIME) was shown to have a central role in lung cancer progression and to affect clinical outcome of patients diagnosed with lung cancer. As development of new therapeutic targets to overcome ICI resistance is a priority, understanding the TIME is important. Recently, a series of studies was conducted to target each component of TIME to improve efficacy of cancer treatment. In this review, important features related to TIME, its heterogeneity and current trends in treatment targeting the component of TIME are discussed. Methods PubMed and PMC were searched from January 1st, 2012 to August 16th, 2022 using the following key words: "NSCLC", "Tumor microenvironment", "Immune", "Metastasis" and "Heterogeneity". Key Content and Findings Heterogeneity in the TIME can be either spatial or temporal. Subsequent to heterogeneous changes in the TIME, treatment of lung cancer can be more challenging because drug resistance is more likely to occur. In terms of the TIME, the main concept for increasing the chance of successful NSCLC treatment is to activate immune responses against tumor cells and inhibit immunosuppressive activities. In addition, relevant research is focused on normalizing an otherwise aberrant TIME in NSCLC patients. Potential therapeutic targets include immune cells, cytokine interactions, and non-immune cells such as fibroblasts or vessels. Conclusions In management of lung cancer, understanding TIME and its heterogeneity is significant to treatment outcomes. Ongoing trials including various treatment modalities such as radiotherapy, cytotoxic chemotherapy, and anti-angiogenic treatment and regimens inhibiting other immunoinhibitory molecules are promising.
Collapse
Affiliation(s)
- Jeong Uk Lim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eunyoung Lee
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang-Yun Lee
- Department of Biomedical Engineering, Gachon University, Seongnam, Republic of Korea
| | - Hyeong Jun Cho
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong Hyuck Ahn
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yongki Hwang
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joon Young Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chang Dong Yeo
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chan Kwon Park
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Joon Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
45
|
Thomas A, Smitha T, Rao K, Priya NS, Sheethal HS, Chitra S. Expression of CD 20 B-Lymphocyte in oral epithelial dysplasia and oral squamous cell carcinoma: A comparative immunohistochemistry study. J Oral Maxillofac Pathol 2023; 27:323-327. [PMID: 37854924 PMCID: PMC10581297 DOI: 10.4103/jomfp.jomfp_2_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/04/2023] [Accepted: 03/15/2023] [Indexed: 10/20/2023] Open
Abstract
Background As the progressive trends in the field of immunotherapy, it is very favourable to reconsider the role played by B lymphocytes in the tumor microenvironment. Both the protumorogenic and antitumorogenic responses have to be evaluated to formulate an effective immunotherapeutic protocol. Aim and objective The study was primarily conducted to assess the qualitative expression of B lymphocytes in pretumorogenic (oral epithelial dysplasia) and tumorogenic environment (oral squamous cell carcinoma). The differential immunohistochemical staining of CD 20 immune marker was assessed in about 60 cases that included 30 cases of oral epithelial dysplasia and 30 cases of oral squamous cell carcinoma. Results The study found significant correlation between CD 20 IHC immune expression and histopathological diagnosis along with significant correlation between the subject's age group and histopathological diagnosis. Conclusion Modulating the immune response in a precancerous state can be highly beneficial in implementing better immunotherapeutic strategies to treat or prevent malignancy at an early stage.
Collapse
Affiliation(s)
- Anela Thomas
- Vokkalgara Sangha Dental College and Hospital, Bangalore, Karnataka, India
| | - T Smitha
- Vokkalgara Sangha Dental College and Hospital, Bangalore, Karnataka, India
| | - Kavita Rao
- Vokkalgara Sangha Dental College and Hospital, Bangalore, Karnataka, India
| | - N S Priya
- Vokkalgara Sangha Dental College and Hospital, Bangalore, Karnataka, India
| | - H S Sheethal
- Vokkalgara Sangha Dental College and Hospital, Bangalore, Karnataka, India
| | - S Chitra
- Vokkalgara Sangha Dental College and Hospital, Bangalore, Karnataka, India
| |
Collapse
|
46
|
Laumont CM, Nelson BH. B cells in the tumor microenvironment: Multi-faceted organizers, regulators, and effectors of anti-tumor immunity. Cancer Cell 2023; 41:466-489. [PMID: 36917951 DOI: 10.1016/j.ccell.2023.02.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 03/14/2023]
Abstract
Our understanding of tumor-infiltrating lymphocytes (TILs) is rapidly expanding beyond T cell-centric perspectives to include B cells and plasma cells, collectively referred to as TIL-Bs. In many cancers, TIL-Bs carry strong prognostic significance and are emerging as key predictors of response to immune checkpoint inhibitors. TIL-Bs can perform multiple functions, including antigen presentation and antibody production, which allow them to focus immune responses on cognate antigen to support both T cell responses and innate mechanisms involving complement, macrophages, and natural killer cells. In the stroma of the most immunologically "hot" tumors, TIL-Bs are prominent components of tertiary lymphoid structures, which resemble lymph nodes structurally and functionally. Additionally, TIL-Bs participate in a variety of other lympho-myeloid aggregates and engage in dynamic interactions with the tumor stroma. Here, we summarize our current understanding of TIL-Bs in human cancer, highlighting the compelling therapeutic opportunities offered by their unique tumor recognition and effector mechanisms.
Collapse
Affiliation(s)
- Céline M Laumont
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Brad H Nelson
- Deeley Research Centre, BC Cancer, Victoria, BC V8R 6V5, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8P 3E6, Canada.
| |
Collapse
|
47
|
Zhang E, Ding C, Li S, Zhou X, Aikemu B, Fan X, Sun J, Zheng M, Yang X. Roles and mechanisms of tumour-infiltrating B cells in human cancer: a new force in immunotherapy. Biomark Res 2023; 11:28. [PMID: 36890557 PMCID: PMC9997025 DOI: 10.1186/s40364-023-00460-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/28/2023] [Indexed: 03/10/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) targeting PD-1 or PD-L1 have emerged as a revolutionary treatment strategy for human cancer patients. However, as the response rate to ICI therapy varies widely among different types of tumours, we are beginning to gain insight into the mechanisms as well as biomarkers of therapeutic response and resistance. Numerous studies have highlighted the dominant role of cytotoxic T cells in determining the treatment response to ICIs. Empowered by recent technical advances, such as single-cell sequencing, tumour-infiltrating B cells have been identified as a key regulator in several solid tumours by affecting tumour progression and the response to ICIs. In the current review, we summarized recent advances regarding the role and underlying mechanisms of B cells in human cancer and therapy. Some studies have shown that B-cell abundance in cancer is positively associated with favourable clinical outcomes, while others have indicated that they are tumour-promoting, implying that the biological function of B cells is a complex landscape. The molecular mechanisms involved multiple aspects of the functions of B cells, including the activation of CD8+ T cells, the secretion of antibodies and cytokines, and the facilitation of the antigen presentation process. In addition, other crucial mechanisms, such as the functions of regulatory B cells (Bregs) and plasma cells, are discussed. Here, by summarizing the advances and dilemmas of recent studies, we depicted the current landscape of B cells in cancers and paved the way for future research in this field.
Collapse
Affiliation(s)
- Enkui Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chengsheng Ding
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuchun Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xueliang Zhou
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Batuer Aikemu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaodong Fan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Department of General Surgery & Carson International Cancer Research Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Shenzhen, 518055, China.
| | - Xiao Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Department of General Surgery & Carson International Cancer Research Center, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy, Shenzhen, 518055, China.
| |
Collapse
|
48
|
Ruffin AT, Li H, Vujanovic L, Zandberg DP, Ferris RL, Bruno TC. Improving head and neck cancer therapies by immunomodulation of the tumour microenvironment. Nat Rev Cancer 2023; 23:173-188. [PMID: 36456755 PMCID: PMC9992112 DOI: 10.1038/s41568-022-00531-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 12/03/2022]
Abstract
Targeted immunotherapy has improved patient survival in head and neck squamous cell carcinoma (HNSCC), but less than 20% of patients produce a durable response to these treatments. Thus, new immunotherapies that consider all key players of the complex HNSCC tumour microenvironment (TME) are necessary to further enhance tumour-specific T cell responses in patients. HNSCC is an ideal tumour type in which to evaluate immune and non-immune cell differences because of two distinct TME aetiologies (human papillomavirus (HPV)-positive and HPV-negative disease), multiple anatomic sites for tumour growth, and clear distinctions between patients with locally advanced disease and those with recurrent and/or metastatic disease. Recent technological and scientific advancements have provided a more complete picture of all cellular constituents within this complex TME and have evaluated the interplay of both immune and non-immune cells within HNSCC. Here, we include a comprehensive analysis of the complete ecosystem of the HNSCC TME, performed utilizing data-rich resources such as The Cancer Genome Atlas, and cutting-edge techniques, such as single-cell RNA sequencing, high-dimensional flow cytometry and spatial multispectral imaging, to generate improved treatment strategies for this diverse disease.
Collapse
Affiliation(s)
- Ayana T Ruffin
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Tumour Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
- Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Housaiyin Li
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Tumour Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Molecular Genetics and Developmental Biology (MGDB) Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lazar Vujanovic
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Tumour Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dan P Zandberg
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Tumour Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Robert L Ferris
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
- Tumour Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Tullia C Bruno
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
- Tumour Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
49
|
Lam BM, Verrill C. Clinical Significance of Tumour-Infiltrating B Lymphocytes (TIL-Bs) in Breast Cancer: A Systematic Literature Review. Cancers (Basel) 2023; 15:cancers15041164. [PMID: 36831506 PMCID: PMC9953777 DOI: 10.3390/cancers15041164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Although T lymphocytes have been considered the major players in the tumour microenvironment to induce tumour regression and contribute to anti-tumour immunity, much less is known about the role of tumour-infiltrating B lymphocytes (TIL-Bs) in solid malignancies, particularly in breast cancer, which has been regarded as heterogeneous and much less immunogenic compared to other common tumours like melanoma, colorectal cancer and non-small cell lung cancer. Such paucity of research could translate to limited opportunities for this most common type of cancer in the UK to join the immunotherapy efforts in this era of precision medicine. Here, we provide a systematic literature review assessing the clinical significance of TIL-Bs in breast cancer. Articles published between January 2000 and April 2022 were retrieved via an electronic search of two databases (PubMed and Embase) and screened against pre-specified eligibility criteria. The majority of studies reported favourable prognostic and predictive roles of TIL-Bs, indicating that they could have a profound impact on the clinical outcome of breast cancer. Further studies are, however, needed to better define the functional role of B cell subpopulations and to discover ways to harness this intrinsic mechanism in the fight against breast cancer.
Collapse
Affiliation(s)
- Brian M. Lam
- Department of Oncology, University of Oxford, Oxford OX3 9DU, UK
- Correspondence:
| | - Clare Verrill
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
50
|
Lee-Chang C, Lesniak MS. Next-generation antigen-presenting cell immune therapeutics for gliomas. J Clin Invest 2023; 133:e163449. [PMID: 36719372 PMCID: PMC9888388 DOI: 10.1172/jci163449] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Antigen presentation machinery and professional antigen-presenting cells (APCs) are fundamental for an efficacious immune response against cancers, especially in the context of T cell-centric immunotherapy. Dendritic cells (DCs), the gold standard APCs, play a crucial role in initiating and maintaining a productive antigen-specific adaptive immunity. In recent decades, ex vivo-differentiated DCs from circulating CD14+ monocytes have become the reference for APC-based immunotherapy. DCs loaded with tumor-associated antigens, synthetic peptides, or RNA activate T cells with antitumor properties. This strategy has paved the way for the development of alternative antigen-presenting vaccination strategies, such as monocytes, B cells, and artificial APCs, that have shown effective therapeutic outcomes in preclinical cancer models. The search for alternative APC platforms was initiated by the overall limited clinical impact of DC vaccines, especially in indications such as gliomas, a primary brain tumor known for resistance to any immune intervention. In this Review, we navigate the APC immune therapeutics' past, present, and future in the context of primary brain tumors.
Collapse
Affiliation(s)
- Catalina Lee-Chang
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Malnati Brain Tumor Institute, Chicago, Illinois, USA
| | - Maciej S. Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Malnati Brain Tumor Institute, Chicago, Illinois, USA
| |
Collapse
|