1
|
Abooali M, Schlichtner S, Lei X, Aliu N, Ruggiero S, Loges S, Ziegler M, Hertel F, Volckmar AL, Stenzinger A, Christopoulos P, Thomas M, Klenova E, Meyer NH, Boussios S, Heaton N, Zen Y, Zamalloa A, Chokshi S, Urbani L, Richard S, Kirubendran K, Hussain R, Siligardi G, Cholewa D, Berger SM, Yasinska IM, Fasler-Kan E, Sumbayev VV. Intracellular and extracellular activities of V-domain Ig-containing suppressor of T cell activation (VISTA) modulated by immunosuppressive factors of tumour microenvironment. Cancer Lett 2025:217581. [PMID: 39983894 DOI: 10.1016/j.canlet.2025.217581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/23/2025]
Abstract
V-domain Ig-containing suppressor of T cell activation (VISTA) is a unique immune checkpoint protein, which was reported to display both receptor and ligand activities. However, the mechanisms of regulation of VISTA activity and functions by factors of tumour microenvironment (TME) remain unclear and understanding these processes is required in order to develop successful personalised cancer immunotherapeutic strategies and approaches. Here we report for the very first time that VISTA interacts with another immune checkpoint protein galectin-9 inside the cell most likely facilitating its interaction with TGF-β-activated kinase 1 (TAK1). This process is required for protection of lysosomes, which is crucial for many cell types and tissues. We found that VISTA expression can be differentially controlled by crucial factors present in TME, such as transforming growth factor beta type 1 (TGF-β) and hypoxia as well as other factors activating hypoxic signalling. We confirmed that involvement of these important pathways modulated by TME differentially influences VISTA expression in different cell types. These networks include: TGF-β-Smad3 pathway, TAK1 (TGF-β-activated kinase 1) or apoptosis signal-regulating kinase 1 (ASK1)-induced activation of activating transcription factor 2 (ATF-2) and hypoxic signalling pathway. Based on this work we determined the five critical functions of VISTA and the role of TME factors in controlling (modulating or downregulating) VISTA expression.
Collapse
Affiliation(s)
- Maryam Abooali
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | - Stephanie Schlichtner
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany; Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Xi Lei
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | - Nijas Aliu
- Department of Human Genetics, Children's Hospital, Inselspital, University of Bern, Bern, Switzerland
| | - Sabrina Ruggiero
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Sonia Loges
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany; Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Martin Ziegler
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany; Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Franziska Hertel
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany; Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Personalized Oncology, University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Anna-Lena Volckmar
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center (TLRC) Heidelberg, member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital, Heidelberg, Germany; National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Michael Thomas
- Department of Thoracic Oncology, Thoraxklinik, Heidelberg University Hospital, Heidelberg, Germany; National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC-H), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Elena Klenova
- School of Life Sciences, University of Essex, Colchester, UK
| | - N Helge Meyer
- Department of Human Medicine, University of Oldenburg, Oldenburg, German; Division of General and Visceral Surgery, Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | - Stergios Boussios
- Faculty of Medicine, Health and Social Care, Canterbury Christ Church University, Canterbury CT1 1QU, Kent, UK; Faculty of Life Sciences & Medicine, School of Cancer & Pharmaceutical Sciences, King's College London, Strand, London WC2R 2LS, UK; Kent Medway Medical School, University of Kent, Canterbury CT2 7LX, Kent, UK; Department of Medical Oncology, Medway NHS Foundation Trust, Gillingham ME7 5NY, Kent, UK; AELIA Organization, 9th Km Thessaloniki-Thermi, 57001 Thessaloniki, Greece
| | - Nigel Heaton
- Institute of Liver Studies, King's College Hospital, Denmark Hill, London, United Kingdom
| | - Yoh Zen
- Institute of Liver Studies, King's College Hospital, Denmark Hill, London, United Kingdom
| | - Ane Zamalloa
- Institute of Liver Studies, King's College Hospital, Denmark Hill, London, United Kingdom
| | - Shilpa Chokshi
- Peninsula Medical School, Faculty of Health, University of Plymouth; Roger Williams Institute of Liver Studies, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, Foundation for Liver Research and King's College Hospital, London
| | - Luca Urbani
- Roger Williams Institute of Liver Studies, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, Foundation for Liver Research and King's College Hospital, London
| | - Sophie Richard
- Roger Williams Institute of Liver Studies, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, Foundation for Liver Research and King's College Hospital, London
| | - Kavitha Kirubendran
- Roger Williams Institute of Liver Studies, School of Immunology & Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, Foundation for Liver Research and King's College Hospital, London
| | | | | | - Dietmar Cholewa
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Steffen M Berger
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern and Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Inna M Yasinska
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern and Department of Biomedical Research, University of Bern, Bern, Switzerland.
| | - Vadim V Sumbayev
- Medway School of Pharmacy, Universities of Kent and Greenwich, Chatham Maritime, United Kingdom.
| |
Collapse
|
2
|
Zhu Z, Ding R, Yu W, Liu Y, Zhou Z, Liu CY. YAP/TEAD4/SP1-induced VISTA expression as a tumor cell-intrinsic mechanism of immunosuppression in colorectal cancer. Cell Death Differ 2025:10.1038/s41418-025-01446-2. [PMID: 39875519 DOI: 10.1038/s41418-025-01446-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Hyperactivation of the YAP/TEAD transcriptional complex in cancers facilitates the development of an immunosuppressive tumor microenvironment. Herein, we observed that the transcription factor SP1 physically interacts with and stabilizes the YAP/TEAD complex at regulatory genomic loci in colorectal cancer (CRC). In response to serum stimulation, PKCζ (protein kinase C ζ) was found to phosphorylate SP1 and enhance its interaction with TEAD4. As a result, SP1 enhanced the transcriptional activity of YAP/TEAD and coregulated the expression of a group of YAP/TEAD target genes. The immune checkpoint V-domain Ig suppressor of T-cell activation (VISTA) was identified as a direct target of the SP1-YAP/TEAD4 complex and found to be widely expressed in CRC cells. Importantly, YAP-induced VISTA upregulation in human CRC cells was found to strongly suppress the antitumor function of CD8+ T cells. Consistently, elevated VISTA expression was found to be correlated with hyperactivation of the SP1-YAP/TEAD axis and associated with poor prognosis of CRC patients. In addition, we found by serendipity that enzymatic deglycosylation significantly improved the anti-VISTA antibody signal intensity, resulting in more accurate detection of VISTA in clinical tumor samples. Overall, our study identified SP1 as a positive modulator of YAP/TEAD for the transcriptional regulation of VISTA and developed a protein deglycosylation strategy to better detect VISTA expression in clinical samples. These findings revealed a new tumor cell-intrinsic mechanism of YAP/TAZ-mediated cancer immune evasion.
Collapse
Affiliation(s)
- Zhehui Zhu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
- Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China
| | - Rui Ding
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
- Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China
| | - Wei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yun Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China.
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
| | - Chen-Ying Liu
- Department of Colorectal and Anal Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
- Shanghai Colorectal Cancer Research Center, Shanghai, 200092, China.
| |
Collapse
|
3
|
Lo Tartaro D, Aramini B, Masciale V, Paschalidis N, Lofaro FD, Neroni A, Borella R, Santacroce E, Ciobanu AL, Samarelli AV, Boraldi F, Quaglino D, Dubini A, Gaudio M, Manzotti G, Reggiani F, Torricelli F, Ciarrocchi A, Neri A, Bertolini F, Dominici M, Filosso PL, Stella F, Gibellini L, De Biasi S, Cossarizza A. Metabolically activated and highly polyfunctional intratumoral VISTA + regulatory B cells are associated with tumor recurrence in early-stage NSCLC. Mol Cancer 2025; 24:16. [PMID: 39810191 PMCID: PMC11730485 DOI: 10.1186/s12943-024-02209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025] Open
Abstract
B cells have emerged as central players in the tumor microenvironment (TME) of non-small cell lung cancer (NSCLC). However, although there is clear evidence for their involvement in cancer immunity, scanty data exist on the characterization of B cell phenotypes, bioenergetic profiles and possible interactions with T cells in the context of NSCLC. In this study, using polychromatic flow cytometry, mass cytometry, and spatial transcriptomics we explored the intricate landscape of B cell phenotypes, bioenergetics, and their interaction with T cells in NSCLC. Our analysis revealed that TME contains diverse B cell clusters, including VISTA+ Bregs, with distinct metabolic and functional profiles. Target liquid chromatography-tandem mass spectrometry confirmed the expression of VISTA on B cells. VISTA+ Bregs displayed high metabolic demand and were able to produce different cytokines, including interleukin (IL)-10, transforming growth factor (TGF)-β, IL-6, tumor necrosis factor (TNF), and granulocyte-macrophage colony-stimulating factor (GM-CSF). Spatial analysis showed colocalization of B cells with CD4+/CD8+ T lymphocytes in TME. The computational analysis of intercellular communications that links ligands to target genes, performed by NicheNet, predicted B-T interactions via VISTA-PSGL-1 axis. Colocalization analyses revealed that PSGL-1 T cells and VISTA+ B cells are adjacent in the TME. Notably, tumor infiltrating CD8+ T cells expressing PSGL-1 exhibited enhanced metabolism and cytotoxicity. In NSCLC patients, prediction analysis performed by PENCIL revealed the presence of an association between PSGL-1+CD8+ T cells and VISTA+ Bregs with lung recurrence. Our findings suggest a potential interaction between Bregs and T cells through the VISTA-PSGL-1 axis, that could influence NSCLC recurrence.
Collapse
MESH Headings
- Humans
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/immunology
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/immunology
- Lung Neoplasms/genetics
- Tumor Microenvironment/immunology
- B7 Antigens/metabolism
- B7 Antigens/genetics
- B-Lymphocytes, Regulatory/metabolism
- B-Lymphocytes, Regulatory/immunology
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/metabolism
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/immunology
- Female
- Male
- Neoplasm Staging
- Middle Aged
- Cytokines/metabolism
- Aged
- Biomarkers, Tumor/metabolism
Collapse
Affiliation(s)
- Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences - DIMEC, University of Bologna, G.B. Morgagni -L. Pierantoni Hospital, Forlì, Italy
| | - Valentina Masciale
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | | | | | - Anita Neroni
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Elena Santacroce
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Alin Liviu Ciobanu
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Anna Valeria Samarelli
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Dubini
- Division of Pathology, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Michele Gaudio
- Division of Pathology, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Gloria Manzotti
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Francesca Reggiani
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Antonino Neri
- Laboratory of Translational Research, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Federica Bertolini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
- Division of Oncology and Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
- Division of Oncology and Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Pier Luigi Filosso
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Franco Stella
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences - DIMEC, University of Bologna, G.B. Morgagni -L. Pierantoni Hospital, Forlì, Italy
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy.
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, via Campi, 287, Modena, 41125, Italy.
- National Institute for Cardiovascular Research, Bologna, Italy.
| |
Collapse
|
4
|
Wang Q, Yu M, Zhang S. The characteristics of the tumor immune microenvironment in colorectal cancer with different MSI status and current therapeutic strategies. Front Immunol 2025; 15:1440830. [PMID: 39877377 PMCID: PMC11772360 DOI: 10.3389/fimmu.2024.1440830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025] Open
Abstract
Colorectal cancer (CRC) remains a significant cause of cancer-related mortality worldwide. Despite advancements in surgery, chemotherapy, and radiotherapy, the effectiveness of these conventional treatments is limited, particularly in advanced cases. Therefore, transition to novel treatment is urgently needed. Immunotherapy, especially immune checkpoint inhibitors (ICIs), has shown promise in improving outcomes for CRC patients. Notably, patients with deficient mismatch repair (dMMR) or microsatellite instability-high (MSI-H) tumors often benefit from ICIs, while the majority of CRC cases, which exhibit proficient mismatch repair (pMMR) or microsatellite-stable (MSS) status, generally show resistance to this approach. It is assumed that the MSI phenotype cause some changes in the tumor microenvironment (TME), thus triggering antitumor immunity and leading to response to immunotherapy. Understanding these differences in the TME relative to MSI status is essential for developing more effective therapeutic strategies. This review provides an overview of the TME components in CRC and explores current approaches aimed at enhancing ICI efficacy in MSS CRC.
Collapse
Affiliation(s)
- Qingzhe Wang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Min Yu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuang Zhang
- Department of Targeting Therapy and Immunology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Sun C, Cheng Y, Dong J, Hu L, Zhang Y, Shen H, Zhang G, Jiang B, Adam Youssouf S, Min W, Shen Y, Wang L, Deng H, Xiao Y, Yang P. Novel PD-L1/VISTA Dual Inhibitor as Potential Immunotherapy Agents. J Med Chem 2025; 68:156-173. [PMID: 39731560 DOI: 10.1021/acs.jmedchem.4c01640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2024]
Abstract
Inhibiting the activity of immune checkpoint proteins to reignite the antitumor activity of immune cells has emerged as a pivotal strategy. PD-L1 and VISTA, as critical proteins governing immune regulation, are concurrently upregulated under conditions such as hypoxia. Through a rational drug design process, P17, a dual-target inhibitor for PD-L1 and VISTA is identified. This inhibitor blocks the signaling pathways of both PD-L1 and VISTA at the protein and cellular levels, thereby reactivating the antitumor function of T cells. P17 displays encouraging attributes in terms of druggability and safety assessments. Notably, P17 demonstrates superior antitumor efficacy compared to single-target inhibitors at equivalent doses in in vivo experiments. More crucially, P17 significantly enhances the infiltration of immune cells. This study not only validates the effectiveness of a dual-target inhibitor strategy against PD-L1 and VISTA, but also identifies P17 as a promising candidate molecule with significant therapeutic potential.
Collapse
Affiliation(s)
- Chengliang Sun
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Yao Cheng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jingwen Dong
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lingrong Hu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Yu Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Hao Shen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Guoyu Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Binjian Jiang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Salouoi Adam Youssouf
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Wenjian Min
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Yuxia Shen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Liping Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Hongbin Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
6
|
Perfilyeva YV, Aquino AD, Borodin MA, Kali A, Abdolla N, Ostapchuk YO, Tleulieva R, Perfilyeva AV, Jainakbayev NT, Sharipov KO, Belyaev NN. Can interventions targeting MDSCs improve the outcome of vaccination in vulnerable populations? Int Rev Immunol 2024:1-17. [PMID: 39707917 DOI: 10.1080/08830185.2024.2443423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/26/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Preventive vaccination is a crucial strategy for controlling and preventing infectious diseases, offering both effectiveness and cost-efficiency. However, despite the widespread success of vaccination programs, there are still certain population groups who struggle to mount adequate responses to immunization. These at-risk groups include but are not restricted to the elderly, overweight individuals, individuals with chronic infections and cancer patients. All of these groups are characterized by persistent chronic inflammation. Recent studies have demonstrated that one of the key players in immune regulation and the promotion of chronic inflammation are myeloid-derived suppressor cells (MDSCs). These cells possess a wide range of immunosuppressive mechanisms and are able to dampen immune responses in both antigen-specific and antigen-nonspecific manner, thus contributing to the establishment and maintenance of an inflammatory environment. Given their pivotal role in immune modulation, there is growing interest in understanding how MDSCs may influence the efficacy of vaccines, particularly in vulnerable populations. In this narrative review, we discuss whether MDSCs are able to regulate vaccine-induced immunity and whether their suppression can potentially enhance vaccine efficacy in vulnerable populations.
Collapse
Affiliation(s)
- Yuliya V Perfilyeva
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Arthur D Aquino
- Almazov National Medical Research Center, St. Petersburg, Russia
| | - Maxim A Borodin
- Almazov National Medical Research Center, St. Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Aikyn Kali
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | - Nurshat Abdolla
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
- Al-Farabi, Kazakh National University, Almaty, Kazakhstan
| | | | - Raikhan Tleulieva
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | | | | | - Kamalidin O Sharipov
- M.A. Aitkhozhin Institute of Molecular Biology and Biochemistry, Almaty, Kazakhstan
| | | |
Collapse
|
7
|
Duan Y, Ren X, Guo X, Xie J, Liu Z, Li L. VISTA in hematological malignancies: a review of the literature. Front Immunol 2024; 15:1466839. [PMID: 39742253 PMCID: PMC11685136 DOI: 10.3389/fimmu.2024.1466839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/29/2024] [Indexed: 01/03/2025] Open
Abstract
In recent years, tumor immunotherapy has become an active research area, with the emergence of immune checkpoint inhibitors (ICIs) revolutionizing immunotherapy. Clinical evidence indicates that programmed cell death protein 1 (PD-1) monoclonal antibodies and other drugs have remarkable therapeutic effects. V-domain Ig suppressor of T-cell activation (VISTA) is a new type of immune checkpoint receptor that is highly expressed in various tumors. It is co-expressed with PD-1, T-cell immunoglobulin domain, mucin domain-3 (Tim-3), T-cell immunoglobulin, and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT) and is associated with prognosis, which suggests that it may be a target for immunotherapy. As an immune checkpoint receptor with no mature drugs, VISTA is highly expressed in acute myeloid leukemia (AML), multiple myeloma (MM), and other hematological malignancies; however, its pathogenic mechanism should be defined to better guide treatment.
Collapse
Affiliation(s)
- Yuanjia Duan
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, China
- Tianjin Institute of Hematology, Tianjin, China
| | - Xiaotong Ren
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, China
- Tianjin Institute of Hematology, Tianjin, China
| | - Xinyu Guo
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, China
- Tianjin Institute of Hematology, Tianjin, China
| | - Jiayi Xie
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, China
- Tianjin Institute of Hematology, Tianjin, China
| | - Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, China
- Tianjin Institute of Hematology, Tianjin, China
| | - Lijuan Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Key Laboratory of Bone Marrow Failure and Malignant Hemopoietic Clone Control, Tianjin, China
- Tianjin Institute of Hematology, Tianjin, China
| |
Collapse
|
8
|
Peng M, Lu X, Guo J, Yin X, Zhang J, Li X, Zou Y. A pair of promising immune checkpoints PSGL-1 and VISTA from immunotolerance to immunotherapy. Biomark Res 2024; 12:151. [PMID: 39617949 PMCID: PMC11610313 DOI: 10.1186/s40364-024-00693-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/17/2024] [Indexed: 01/25/2025] Open
Abstract
Immune checkpoints are crucial for regulating immune responses and maintaining self-tolerance, as they play a pivotal role in preventing autoimmunity and facilitating tumor immune evasion. This review concentrates on the immune checkpoint molecules PSGL-1 and VISTA. Both molecules are highly expressed in hematopoietic cells, including T cells and myeloid cells. VISTA functions both as a ligand on myeloid cells, where it regulates cytokine production, chemotaxis, and phagocytosis while promoting their differentiation into a tolerogenic phenotype and as a receptor on T cells, where it contributes to T cell quiescence. PSGL-1, which acts as a binding partner for VISTA, further inhibits T-cell activation and fosters tolerance within the acidic tumor microenvironment. Our review provides a comprehensive analysis of the structure, expression, and biological functions of PSGL-1 and VISTA and emphasizes their therapeutic potential in cancer treatment, autoimmune diseases, and transplantation. The dual role of these checkpoints in immune regulation presents novel opportunities for advancing cancer immunotherapy and developing new strategies for managing autoimmune conditions.
Collapse
Affiliation(s)
- Manqing Peng
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, Hunan, 410000, China
| | - Xiaofang Lu
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, Hunan, 410000, China
| | - Junshuang Guo
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, Hunan, 410000, China
| | - Xiangli Yin
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, Hunan, 410000, China
| | - Jing Zhang
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, Hunan, 410000, China
| | - Xin Li
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, Hunan, 410000, China
| | - Yizhou Zou
- Department of Immunology, School of Basic Medicine, Central South University, Changsha, Hunan, 410000, China.
| |
Collapse
|
9
|
Duan H, Ren J, Wei S, Yang Z, Li C, Wang Z, Li M, Wei Z, Liu Y, Wang X, Lan H, Zeng Z, Xie M, Xie Y, Wu S, Hu W, Guo C, Zhang X, Liang L, Yu C, Mou Y, Jiang Y, Li H, Sugarman E, Deek RA, Chen Z, Li T, Chen Y, Yao M, Chen L, Liu L, Zhang G, Mou Y. Integrated analyses of multi-omic data derived from paired primary lung cancer and brain metastasis reveal the metabolic vulnerability as a novel therapeutic target. Genome Med 2024; 16:138. [PMID: 39593114 PMCID: PMC11590298 DOI: 10.1186/s13073-024-01410-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Lung cancer brain metastases (LC-BrMs) are frequently associated with dismal mortality rates in patients with lung cancer; however, standard of care therapies for LC-BrMs are still limited in their efficacy. A deep understanding of molecular mechanisms and tumor microenvironment of LC-BrMs will provide us with new insights into developing novel therapeutics for treating patients with LC-BrMs. METHODS Here, we performed integrated analyses of genomic, transcriptomic, proteomic, metabolomic, and single-cell RNA sequencing data which were derived from a total number of 154 patients with paired and unpaired primary lung cancer and LC-BrM, spanning four published and two newly generated patient cohorts on both bulk and single cell levels. RESULTS We uncovered that LC-BrMs exhibited a significantly greater intra-tumor heterogeneity. We also observed that mutations in a subset of genes were almost always shared by both primary lung cancers and LC-BrM lesions, including TTN, TP53, MUC16, LRP1B, RYR2, and EGFR. In addition, the genome-wide landscape of somatic copy number alterations was similar between primary lung cancers and LC-BrM lesions. Nevertheless, several regions of focal amplification were significantly enriched in LC-BrMs, including 5p15.33 and 20q13.33. Intriguingly, integrated analyses of transcriptomic, proteomic, and metabolomic data revealed mitochondrial-specific metabolism was activated but tumor immune microenvironment was suppressed in LC-BrMs. Subsequently, we validated our results by conducting real-time quantitative reverse transcription PCR experiments, immunohistochemistry, and multiplexed immunofluorescence staining of patients' paired tumor specimens. Therapeutically, targeting oxidative phosphorylation with gamitrinib in patient-derived organoids of LC-BrMs induced apoptosis and inhibited cell proliferation. The combination of gamitrinib plus anti-PD-1 immunotherapy significantly improved survival of mice bearing LC-BrMs. Patients with a higher expression of mitochondrial metabolism genes but a lower expression of immune genes in their LC-BrM lesions tended to have a worse survival outcome. CONCLUSIONS In conclusion, our findings not only provide comprehensive and integrated perspectives of molecular underpinnings of LC-BrMs but also contribute to the development of a potential, rationale-based combinatorial therapeutic strategy with the goal of translating it into clinical trials for patients with LC-BrMs.
Collapse
Affiliation(s)
- Hao Duan
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jianlan Ren
- Department of Computer Science, Ying Wu College of Computing, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Shiyou Wei
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Yang
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuan Li
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenning Wang
- Department of Neurosurgery, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, 523018, China
| | - Meichen Li
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Zhi Wei
- Department of Computer Science, Ying Wu College of Computing, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| | - Yu Liu
- Faculty of Dentistry, Prince Philip Dental Hospital, the University of Hong Kong, Sai Ying Pun, Hong Kong, China
| | - Xiuqi Wang
- Faculty of Dentistry, Prince Philip Dental Hospital, the University of Hong Kong, Sai Ying Pun, Hong Kong, China
| | - Hongbin Lan
- Faculty of Dentistry, Prince Philip Dental Hospital, the University of Hong Kong, Sai Ying Pun, Hong Kong, China
| | - Zhen Zeng
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Maodi Xie
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuan Xie
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Suwen Wu
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Wanming Hu
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Chengcheng Guo
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xiangheng Zhang
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Lun Liang
- Department of Neurosurgery, The First Affiliated Hospital, Guangxi Medical University, Nanning, 530021, China
| | - Chengwei Yu
- Department of Neurosurgery, The Third Affiliated Hospital of Sun Yat-Sen University Lingnan Hospital, Guangzhou, 510530, China
| | - Yanhao Mou
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yu Jiang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Houde Li
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Eric Sugarman
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA, 19131, USA
| | - Rebecca A Deek
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zexin Chen
- Guangdong Research Center of Organoid Engineering and Technology, Guangzhou, 510535, China
| | - Tao Li
- Department of Anesthesiology, Laboratory of Mitochondrial Metabolism and Perioperative Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yaohui Chen
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Maojin Yao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510182, China.
| | - Likun Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Lunxu Liu
- Department of Thoracic Surgery, Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Gao Zhang
- Faculty of Dentistry, Prince Philip Dental Hospital, the University of Hong Kong, Sai Ying Pun, Hong Kong, China.
| | - Yonggao Mou
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
10
|
Zhang RJ, Kim TK. VISTA-mediated immune evasion in cancer. Exp Mol Med 2024; 56:2348-2356. [PMID: 39482534 PMCID: PMC11612309 DOI: 10.1038/s12276-024-01336-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/04/2024] [Accepted: 08/11/2024] [Indexed: 11/03/2024] Open
Abstract
Over the past decade, V-domain immunoglobulin suppressor of T-cell activation (VISTA) has been established as a negative immune checkpoint molecule. Since the role of VISTA in inhibiting T-cell activation was described, studies have demonstrated other diverse regulatory functions in multiple immune cell populations. Furthermore, its relevance has been identified in human cancers. The role of VISTA in cancer immune evasion has been determined, but its mechanisms in the tumor microenvironment remain to be further elucidated. Understanding its contributions to cancer initiation, progression, and resistance to current treatments will be critical to its utility as a target for novel immunotherapies. Here, we summarize the current understanding of VISTA biology in cancer.
Collapse
Affiliation(s)
- Raymond J Zhang
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tae Kon Kim
- Division of Hematology/Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Ingram Cancer Center, Nashville, TN, 37232, USA.
| |
Collapse
|
11
|
Almeida JS, Sousa LM, Couceiro P, Andrade TF, Alves V, Martinho A, Rodrigues J, Fonseca R, Freitas-Tavares P, Santos-Rosa M, Casanova JM, Rodrigues-Santos P. Peripheral immune profiling of soft tissue sarcoma: perspectives for disease monitoring. Front Immunol 2024; 15:1391840. [PMID: 39502689 PMCID: PMC11536262 DOI: 10.3389/fimmu.2024.1391840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Studying the tumor microenvironment and surrounding lymph nodes is the main focus of current immunological research on soft tissue sarcomas (STS). However, due to the restricted opportunity to examine tumor samples, alternative approaches are required to evaluate immune responses in non-surgical patients. Therefore, the purpose of this study was to evaluate the peripheral immune profile of STS patients, characterize patients accordingly and explore the impact of peripheral immunotypes on patient survival. Blood samples were collected from 55 STS patients and age-matched healthy donors (HD) controls. Deep immunophenotyping and gene expression analysis of whole blood was analyzed using multiparametric flow cytometry and real-time RT-qPCR, respectively. Using xMAP technology, proteomic analysis was also carried out on plasma samples. Unsupervised clustering analysis was used to classify patients based on their immune profiles to further analyze the impact of peripheral immunotypes on patient survival. Significant differences were found between STS patients and HD controls. It was found a contraction of B cells and CD4 T cells compartment, along with decreased expression levels of ICOSLG and CD40LG; a major contribution of suppressor factors, as increased frequency of M-MDSC and memory Tregs, increased expression levels of ARG1, and increased plasma levels of IL-10, soluble VISTA and soluble TIMD-4; and a compromised cytotoxic potential associated with NK and CD8 T cells, namely decreased frequency of CD56dim NK cells, and decreased levels of PRF1, GZMB, and KLRK1. In addition, the patients were classified into three peripheral immunotype groups: "immune-high," "immune-intermediate," and "immune-low." Furthermore, it was found a correlation between these immunotypes and patient survival. Patients classified as "immune-high" exhibited higher levels of immune-related factors linked to cytotoxic/effector activity and longer survival times, whereas patients classified as "immune-low" displayed higher levels of immune factors associated with immunosuppression and shorter survival times. In conclusion, it can be suggested that STS patients have a compromised systemic immunity, and the correlation between immunotypes and survival emphasizes the importance of studying peripheral blood samples in STS. Assessing the peripheral immune response holds promise as a useful method for monitoring and forecasting outcomes in STS.
Collapse
Affiliation(s)
- Jani Sofia Almeida
- Center for Neurosciences and Cell Biology (CNC), Laboratory of Immunology and Oncology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine (FMUC), Institute of Immunology, University of Coimbra, Coimbra, Portugal
- Center for Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Luana Madalena Sousa
- Center for Neurosciences and Cell Biology (CNC), Laboratory of Immunology and Oncology, University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Patrícia Couceiro
- Center for Neurosciences and Cell Biology (CNC), Laboratory of Immunology and Oncology, University of Coimbra, Coimbra, Portugal
- Center for Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - Tânia Fortes Andrade
- Center for Neurosciences and Cell Biology (CNC), Laboratory of Immunology and Oncology, University of Coimbra, Coimbra, Portugal
| | - Vera Alves
- Faculty of Medicine (FMUC), Institute of Immunology, University of Coimbra, Coimbra, Portugal
- Center for Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - António Martinho
- Portuguese Institute for Blood and Transplantation (IPST), Blood and Transplantation Center of Coimbra, Coimbra, Portugal
| | - Joana Rodrigues
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Tumor Unit of the Locomotor Apparatus, University Clinic of Orthopedics, Orthopedics Oncology Service, Coimbra Hospital and Universitary Centre (CHUC), Coimbra, Portugal
| | - Ruben Fonseca
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Tumor Unit of the Locomotor Apparatus, University Clinic of Orthopedics, Orthopedics Oncology Service, Coimbra Hospital and Universitary Centre (CHUC), Coimbra, Portugal
| | - Paulo Freitas-Tavares
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Tumor Unit of the Locomotor Apparatus, University Clinic of Orthopedics, Orthopedics Oncology Service, Coimbra Hospital and Universitary Centre (CHUC), Coimbra, Portugal
| | - Manuel Santos-Rosa
- Faculty of Medicine (FMUC), Institute of Immunology, University of Coimbra, Coimbra, Portugal
- Center for Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| | - José Manuel Casanova
- Center for Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
- Tumor Unit of the Locomotor Apparatus, University Clinic of Orthopedics, Orthopedics Oncology Service, Coimbra Hospital and Universitary Centre (CHUC), Coimbra, Portugal
| | - Paulo Rodrigues-Santos
- Center for Neurosciences and Cell Biology (CNC), Laboratory of Immunology and Oncology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine (FMUC), Institute of Immunology, University of Coimbra, Coimbra, Portugal
- Center for Investigation in Environment, Genetics and Oncobiology (CIMAGO), University of Coimbra, Coimbra, Portugal
- Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, Coimbra, Portugal
- Center for Innovation in Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Clinical and Academic Centre of Coimbra (CACC), Coimbra, Portugal
| |
Collapse
|
12
|
Hansen SB, Unal B, Kuzu OF, Saatcioglu F. Immunological facets of prostate cancer and the potential of immune checkpoint inhibition in disease management. Theranostics 2024; 14:6913-6934. [PMID: 39629128 PMCID: PMC11610136 DOI: 10.7150/thno.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/27/2024] [Indexed: 12/06/2024] Open
Abstract
Prostate cancer (PCa) is the most common non-cutaneous cancer in men and a major cause of cancer-related deaths. Whereas localized PCa can be cured by surgery and radiotherapy, metastatic disease can be treated, but is not curable. Inhibition of androgen signaling remains the main therapeutic intervention for treatment of metastatic PCa, in addition to chemotherapy, radionuclide therapy and emerging targeted therapies. Although initial responses are favorable, resistance to these therapies invariably arise with development of castration resistant PCa (CRPC) and lethal phenotypes. Recent findings have implicated the crosstalk between PCa cells and the tumor microenvironment (TME) as a key factor for disease progression and metastasis, and the immune system is becoming an increasingly attractive target for therapy. Given the striking success of immune checkpoint inhibitors (ICIs) in various cancer types, preclinical and clinical studies have begun to explore their potential in PCa. It has become clear that the PCa TME is largely immunosuppressive, and ICI therapy does not have efficacy for PCa. Intense effort is therefore being made in the field to understand the mechanisms of suppression and to turn the immunosuppressive TME into an immune active one that would enable ICI efficacy. Herein we examine this recent body of knowledge and how the mutational landscape of PCa integrates with an immunosuppressive TME to circumvent ICI-mediated T-cell activity and tumor killing. We then review the emerging potential success of combinatorial ICI approaches, utility of careful patient selection, and potential novel strategies to improve the efficacy of ICI for PCa therapy.
Collapse
Affiliation(s)
| | - Bilal Unal
- Department of Biosciences, University of Oslo, Oslo, Norway
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Omer Faruk Kuzu
- Department of Biosciences, University of Oslo, Oslo, Norway
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| | - Fahri Saatcioglu
- Department of Biosciences, University of Oslo, Oslo, Norway
- Institute for Cancer Genetics and Informatics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
13
|
Mashhouri S, Rahmati A, Azimi A, Fava RA, Ismail IH, Walker J, Elahi S. Targeting Dectin-1 and or VISTA enhances anti-tumor immunity in melanoma but not colorectal cancer model. Cell Oncol (Dordr) 2024; 47:1735-1756. [PMID: 38668817 PMCID: PMC11467025 DOI: 10.1007/s13402-024-00950-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2024] [Indexed: 06/27/2024] Open
Abstract
PURPOSE Acquired resistance to immune checkpoint blockers (ICBs) is a major barrier in cancer treatment, emphasizing the need for innovative strategies. Dectin-1 (gene Clec7a) is a C-type lectin receptor best known for its ability to recognize β-glucan-rich structures in fungal cell walls. While Dectin-1 is expressed in myeloid cells and tumor cells, its significance in cancer remains the subject of controversy. METHODS Using Celc7a-/- mice and curdlan administration to stimulate Dectin-1 signaling, we explored its impact. VISTA KO mice were employed to assess VISTA's role, and bulk RNAseq analyzed curdlan effects on neutrophils. RESULTS Our findings reveal myeloid cells as primary Dectin-1 expressing cells in the tumor microenvironment (TME), displaying an activated phenotype. Strong Dectin-1 co-expression/co-localization with VISTA and PD-L1 in TME myeloid cells was observed. While Dectin-1 deletion lacked protective effects, curdlan stimulation significantly curtailed B16-F10 tumor progression. RNAseq and pathway analyses supported curdlan's role in triggering a cascade of events leading to increased production of pro-inflammatory mediators, potentially resulting in the recruitment and activation of immune cells. Moreover, we identified a heterogeneous subset of Dectin-1+ effector T cells in the TME. Similar to mice, human myeloid cells are the prominent cells expressing Dectin-1 in cancer patients. CONCLUSION Our study proposes Dectin-1 as a potential adjunctive target with ICBs, orchestrating a comprehensive engagement of innate and adaptive immune responses in melanoma. This innovative approach holds promise for overcoming acquired resistance to ICBs in cancer treatment, offering avenues for further exploration and development.
Collapse
Affiliation(s)
- Siavash Mashhouri
- Department of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Amirhossein Rahmati
- Department of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Ako Azimi
- Department of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Roy A Fava
- Department of Veterans Affairs Medical Center, Research Service, White River Junction, VT, USA
- Department of Medicine, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Ismail Hassan Ismail
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Biophysics Department, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - John Walker
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Shokrollah Elahi
- Department of Dentistry, Division of Foundational Sciences, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
14
|
Emaldi M, Alamillo-Maeso P, Rey-Iborra E, Mosteiro L, Lecumberri D, Pulido R, López JI, Nunes-Xavier CE. A functional role for glycosylated B7-H5/VISTA immune checkpoint protein in metastatic clear cell renal cell carcinoma. iScience 2024; 27:110587. [PMID: 39262813 PMCID: PMC11388181 DOI: 10.1016/j.isci.2024.110587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/13/2024] [Accepted: 07/23/2024] [Indexed: 09/13/2024] Open
Abstract
Increased expression of the B7 family of immune checkpoint proteins hinders tumor elimination by the immune system. Expression levels of the B7-H5 protein were found to be upregulated in clear cell renal cell carcinomas (ccRCC). We here report the molecular, functional, and clinical characterization of B7-H5 from renal cancer cells and metastatic ccRCC tumors. B7-H5 was highly glycosylated and mainly expressed in the cell membrane. Mutagenic studies on B7-H5 identified the residues targeted by N-glycosylation and revealed an impact of B7-H5 glycosylation on protein expression levels and localization. B7-H5 knockdown decreased the cell proliferation and viability of renal cancer cells. We analyzed B7-H5 expression on tumor cells and tumor-infiltrated leukocytes (TILs) in samples from metastatic ccRCC patients and found that B7-H5 expression on TILs correlated with syncronous metastases and poor outcomes. These results provide insights into the molecular properties and clinical impact of B7-H5 and support B7-H5 as a new immunotherapeutic target in metastatic ccRCC.
Collapse
Affiliation(s)
- Maite Emaldi
- Department of Cancer, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
- CIBERER, ISCIII, 28029 Madrid, Spain
| | - Paula Alamillo-Maeso
- Department of Cancer, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Esther Rey-Iborra
- Department of Cancer, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
- CIBERER, ISCIII, 28029 Madrid, Spain
| | - Lorena Mosteiro
- Department of Cancer, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
- CIBERER, ISCIII, 28029 Madrid, Spain
- Department of Pathology, Cruces University Hospital, 48903 Barakaldo Bizkaia, Spain
| | - David Lecumberri
- Department of Cancer, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
- Service of Urology, Hospital de Urduliz, 48610 Urduliz, Spain
| | - Rafael Pulido
- Department of Cancer, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
- CIBERER, ISCIII, 28029 Madrid, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - José I López
- Department of Cancer, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Caroline E Nunes-Xavier
- Department of Cancer, Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
- CIBERER, ISCIII, 28029 Madrid, Spain
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0424 Oslo, Norway
| |
Collapse
|
15
|
Deng Y, Shi M, Yi L, Naveed Khan M, Xia Z, Li X. Eliminating a barrier: Aiming at VISTA, reversing MDSC-mediated T cell suppression in the tumor microenvironment. Heliyon 2024; 10:e37060. [PMID: 39286218 PMCID: PMC11402941 DOI: 10.1016/j.heliyon.2024.e37060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/10/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer treatment by producing remarkable clinical outcomes for patients with various cancer types. However, only a subset of patients benefits from immunotherapeutic interventions due to the primary and acquired resistance to ICIs. Myeloid-derived suppressor cells (MDSCs) play a crucial role in creating an immunosuppressive tumor microenvironment (TME) and contribute to resistance to immunotherapy. V-domain Ig suppressor of T cell activation (VISTA), a negative immune checkpoint protein highly expressed on MDSCs, presents a promising target for overcoming resistance to current ICIs. This article provides an overview of the evidence supporting VISTA's role in regulating MDSCs in shaping the TME, thus offering insights into how to overcome immunotherapy resistance.
Collapse
Affiliation(s)
- Yayuan Deng
- The First College of Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Mengjia Shi
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lin Yi
- The First College of Clinical Medicine, Chongqing Medical University, Chongqing, China
| | - Muhammad Naveed Khan
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, 81377, Germany
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Western(Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing National Biomedicine Industry Park, No. 28 Gaoxin Avenue, High-tech Zone, Chongqing, 401329, China
| |
Collapse
|
16
|
Liu S, Ji F, Ding Y, Ding B, Feng S, Brennick C, Lin H, Zhang T, Shen Y. VISTA: A promising target for overcoming immune evasion in gynecologic cancers. Int Immunopharmacol 2024; 138:112655. [PMID: 38986302 DOI: 10.1016/j.intimp.2024.112655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/28/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Immune checkpoint blockade (ICB) therapy has revolutionized cancer treatment but has shown limited efficacy in gynecologic cancers. VISTA (V-domain Ig suppressor of T-cell activation), a member of the B7 family, is emerging as another checkpoint that regulates the anti-tumor immune responses within the tumor microenvironment. This paper reviews the structure, expression, and mechanism of action of VISTA. Furthermore, it highlights recent advances in VISTA-blocking therapies and their potential in improving outcomes for patients with gynecologic cancers. By understanding the role of VISTA in mediating the immune evasion of gynecologic tumors, we can develop more effective combinatory treatment strategies that could overcome resistance to current ICB therapies.
Collapse
Affiliation(s)
- Sicong Liu
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210003, China
| | - Feng Ji
- Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yue Ding
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210003, China
| | - Bo Ding
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210003, China
| | - Songwei Feng
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210003, China
| | - Cory Brennick
- Department of Immunobiology, Yale University, New Haven, CT 06511, USA
| | - Hao Lin
- Department of Clinical Science and Research, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.
| | - Tianxiang Zhang
- Department of Immunobiology, Yale University, New Haven, CT 06511, USA.
| | - Yang Shen
- Department of Obstetrics and Gynecology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210003, China.
| |
Collapse
|
17
|
Zhang TQ, Lv QY, Jin WL. The cellular-centered view of hypoxia tumor microenvironment: Molecular mechanisms and therapeutic interventions. Biochim Biophys Acta Rev Cancer 2024; 1879:189137. [PMID: 38880161 DOI: 10.1016/j.bbcan.2024.189137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Cancer is a profoundly dynamic, heterogeneous and aggressive systemic ailment, with a coordinated evolution of various types of tumor niches. Hypoxia plays an indispensable role in the tumor micro-ecosystem, drastically enhancing the plasticity of cancer cells, fibroblasts and immune cells and orchestrating intercellular communication. Hypoxia-induced signals, particularly hypoxia-inducible factor-1α (HIF-1α), drive the reprogramming of genetic, transcriptional, and proteomic profiles. This leads to a spectrum of interconnected processes, including augmented survival of cancer cells, evasion of immune surveillance, metabolic reprogramming, remodeling of the extracellular matrix, and the development of resistance to conventional therapeutic modalities like radiotherapy and chemotherapy. Here, we summarize the latest research on the multifaceted effects of hypoxia, where a multitude of cellular and non-cellular elements crosstalk with each other and co-evolve in a synergistic manner. Additionally, we investigate therapeutic approaches targeting hypoxic niche, encompassing hypoxia-activated prodrugs, HIF inhibitors, nanomedicines, and combination therapies. Finally, we discuss some of the issues to be addressed and highlight the potential of emerging technologies in the treatment of cancer.
Collapse
Affiliation(s)
- Tian-Qi Zhang
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; The Second Hospital of Jilin University, Changchun 130041, China
| | - Qian-Yu Lv
- The Second Hospital of Jilin University, Changchun 130041, China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
18
|
Vilela T, Valente S, Correia J, Ferreira F. Advances in immunotherapy for breast cancer and feline mammary carcinoma: From molecular basis to novel therapeutic targets. Biochim Biophys Acta Rev Cancer 2024; 1879:189144. [PMID: 38914239 DOI: 10.1016/j.bbcan.2024.189144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
The role of inflammation in cancer is a topic that has been investigated for many years. As established, inflammation emerges as a defining characteristic of cancer, presenting itself as a compelling target for therapeutic interventions in the realm of oncology. Controlling the tumor microenvironment (TME) has gained paramount significance, modifying not only the effectiveness of immunotherapy but also modulating the outcomes and prognoses of standard chemotherapy and other anticancer treatments. Immunotherapy has surfaced as a central focus within the domain of tumor treatments, using immune checkpoint inhibitors as cancer therapy. Immune checkpoints and their influence on the tumor microenvironment dynamic are presently under investigation, aiming to ascertain their viability as therapeutic interventions across several cancer types. Cancer presents a significant challenge in humans and cats, where female breast cancer ranks as the most prevalent malignancy and feline mammary carcinoma stands as the third most frequent. This review seeks to summarize the data about the immune checkpoints cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), lymphocyte activation gene-3 (LAG-3), programmed cell death protein-1 (PD-1), V-domain Ig suppressor of T cell activation (VISTA), and T-cell immunoglobulin and mucin domain 3 (TIM-3) respective ongoing investigations as prospective targets for therapy for human breast cancer, while also outlining findings from studies reported on feline mammary carcinoma (FMC), strengthening the rationale for employing FMC as a representative model in the exploration of human breast cancer.
Collapse
Affiliation(s)
- Tatiana Vilela
- Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Sofia Valente
- Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Jorge Correia
- Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; CIISA-Center of Interdisciplinary Research in Animal Health, 1300-477 Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Fernando Ferreira
- Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal; CIISA-Center of Interdisciplinary Research in Animal Health, 1300-477 Lisbon, Portugal; Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal.
| |
Collapse
|
19
|
Ai K, Chen M, Liang Z, Ding X, Gao Y, Zhang H, Wu S, He Y, Li Y. Inhibition of Tumoral VISTA to Overcome TKI Resistance via Downregulation of the AKT/mTOR and JAK2/STAT5 Pathways in Chronic Myeloid Leukemia. Biomol Ther (Seoul) 2024; 32:582-600. [PMID: 39104205 PMCID: PMC11392669 DOI: 10.4062/biomolther.2024.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/06/2024] [Accepted: 06/10/2024] [Indexed: 08/07/2024] Open
Abstract
Tyrosine kinase inhibitors (TKIs) have revolutionized the treatment landscape for chronic myeloid leukemia (CML). However, TKI resistance poses a significant challenge, leading to treatment failure and disease progression. Resistance mechanisms include both BCR::ABL1-dependent and BCR::ABL1-independent pathways. The mechanisms underlying BCR::ABL1 independence remain incompletely understood, with CML cells potentially activating alternative signaling pathways, including the AKT/mTOR and JAK2/STAT5 pathways, to compensate for the loss of BCR::ABL1 kinase activity. This study explored tumoral VISTA (encoded by VSIR) as a contributing factor to TKI resistance in CML patients and identified elevated tumoral VISTA levels as a marker of resistance and poor survival. Through in vitro and in vivo analyses, we demonstrated that VSIR knockdown and the application of NSC-622608, a novel VISTA inhibitor, significantly impeded CML cell proliferation and induced apoptosis by attenuating the AKT/ mTOR and JAK2/STAT5 pathways, which are crucial for CML cell survival independent of BCR::ABL1 kinase activity. Moreover, VSIR overexpression promoted TKI resistance in CML cells. Importantly, the synergistic effect of NSC-622608 with TKIs offers a potent therapeutic avenue against both imatinib-sensitive and imatinib-resistant CML cells, including those harboring the challenging T315I mutation. Our findings highlight the role of tumoral VISTA in mediating TKI resistance in CML, suggesting that inhibition of VISTA, particularly in combination with TKIs, is an innovative approach to enhancing treatment outcomes in CML patients, irrespective of BCR::ABL1 mutation status. This study not only identified a new pathway contributing to TKI resistance but also revealed the possibility of targeting tumoral VISTA as a means of overcoming this significant clinical challenge.
Collapse
Affiliation(s)
- Kexin Ai
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Mu Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zhao Liang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiangyang Ding
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yang Gao
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Honghao Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Suwan Wu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yanjie He
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510280, China
| |
Collapse
|
20
|
Moon TJ, Ta HM, Bhalotia A, Paulsen KE, Hutchinson DW, Arkema GM, Choi AS, Haynie MG, Ogunnaike L, Dever M, Wang LL, Karathanasis E. Nanoparticles targeting immune checkpoint protein VISTA induce potent antitumor immunity. J Immunother Cancer 2024; 12:e008977. [PMID: 39209454 PMCID: PMC11367342 DOI: 10.1136/jitc-2024-008977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Immune checkpoint protein V-domain immunoglobulin suppressor of T cell activation (VISTA) controls antitumor immunity and is a valuable target for cancer immunotherapy. Previous mechanistic studies have indicated that VISTA impairs the toll-like receptor (TLR)-mediated activation of myeloid antigen-presenting cells, promoting the expansion of myeloid-derived suppressor cells, and suppressing tumor-reactive cytotoxic T cell function. METHODS The aim of this study was to develop a dual-action lipid nanoparticle (dual-LNP) coloaded with VISTA-specific siRNA and TLR9 agonist CpG oligonucleotide. We used three murine preclinical tumor models, melanoma YUMM1.7, melanoma B16F10, and colon carcinoma MC38 to assess the functional synergy of the two cargoes of the dual LNP and therapeutic efficacy. RESULTS The dual-LNP synergistically augmented antitumor immune responses and rejected large established tumors whereas LNPs containing VISTA siRNA or CpG alone were ineffective. In comparison with therapies using the soluble CpG and a VISTA-specific monoclonal antibody, the dual-LNP demonstrated superior therapeutic efficacy yet with reduced systemic inflammatory cytokine production. In three murine models, the dual-LNP treatment achieved a high cure rate. Tumor rejection was associated with influx of immune cells to tumor tissues, augmented dendritic cell activation, production of proinflammatory cytokines, and improved function of cytotoxic T cells. CONCLUSIONS Our studies show the dual-LNP ensured codelivery of its synergistic cargoes to tumor-infiltrating myeloid cells, leading to simultaneous silencing of VISTA and stimulation of TLR9. As a result, the dual-LNP drove a highly potent antitumor immune response that rejected large aggressive tumors, thus may be a promising therapeutic platform for treating immune-cold tumors.
Collapse
Affiliation(s)
- Taylor J Moon
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Hieu Minh Ta
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anubhuti Bhalotia
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Kai E Paulsen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Diarmuid W Hutchinson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Gabrielle M Arkema
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Andrew S Choi
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Michiko G Haynie
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Laolu Ogunnaike
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Margee Dever
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Li Lily Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Efstathios Karathanasis
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| |
Collapse
|
21
|
Chen Y, Che X, Rong Y, Zhu J, Yu Y, Xu H, Sun Y, Chen H, Yan L, Chen L, Xu Y, Zhang J. Immunomodulation in Endometriosis: Investigating the interrelationship between VISTA expression and Escherichia.Shigella-Associated metabolites. Int Immunopharmacol 2024; 137:112366. [PMID: 38852526 DOI: 10.1016/j.intimp.2024.112366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/18/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024]
Abstract
AIMS Endometriosis is characterized by an abnormal immune microenvironment. Despite the extensive use of immune therapies, the application of immune checkpoint inhibitors in endometriosis lacks confidence due to the instability of preclinical research data. This study aims to elucidate the regulation of the immune inhibitory checkpoint VISTA and its effects on T cells from the perspective of microbiota and metabolism. MAIN METHODS We divided endometriosis patients into high and low groups based on the expression levels of VISTA in lesion tissues. We collected peritoneal fluid samples from these two groups and performed 16 s RNA sequencing and metabolomics analysis to investigate microbial diversity and differential metabolites. Through combined analysis, we identified microbial-associated metabolites and validated their correlation with VISTA and CD8 + T cells using ELISA and immunofluorescence. In vitro experiments were conducted to confirm the regulatory relationship among these factors. KEY FINDINGS Our findings revealed a distinct correlation between VISTA expression and the microbial colony Escherichia.Shigella. Moreover, we identified the metabolites LTD4-d5 and 2-n-Propylthiazolidine-4-carboxylic acid as being associated with both Escherichia.Shigella and VISTA expression. In vitro experiments confirmed the inhibitory effects of these metabolites on VISTA expression, while they demonstrated a positive regulation of CD8 + T cell infiltration into endometriotic lesions. SIGNIFICANCE This study reveals the connection between microbial diversity, metabolites, and VISTA expression in the immune microenvironment of endometriosis, providing potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Yichen Chen
- Women and Children's Hospital of Ningbo University, Ningbo, China
| | - Xuan Che
- Jiaxing University Affiliated Women and Children Hospital, Jiaxing, China
| | - Yishen Rong
- Women and Children's Hospital of Ningbo University, Ningbo, China; Ningbo University, Ningbo, China
| | - Jue Zhu
- Women and Children's Hospital of Ningbo University, Ningbo, China
| | - Yayuan Yu
- Jiaxing University Affiliated Women and Children Hospital, Jiaxing, China
| | - Hong Xu
- International Peace Maternity and Child Health Hospital, School of Medicine Shanghai Jiao Tong University, Shanghai, China
| | - Yuhui Sun
- Women and Children's Hospital of Ningbo University, Ningbo, China
| | - Huan Chen
- Women and Children's Hospital of Ningbo University, Ningbo, China; Ningbo University, Ningbo, China
| | - Lifeng Yan
- Women and Children's Hospital of Ningbo University, Ningbo, China
| | - Liang Chen
- Women and Children's Hospital of Ningbo University, Ningbo, China
| | - Yanan Xu
- Women and Children's Hospital of Ningbo University, Ningbo, China
| | - Jing Zhang
- Women and Children's Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
22
|
Bao R, Qu H, Li B, Cheng K, Miao Y, Wang J. The role of metabolic reprogramming in immune escape of triple-negative breast cancer. Front Immunol 2024; 15:1424237. [PMID: 39192979 PMCID: PMC11347331 DOI: 10.3389/fimmu.2024.1424237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Triple-negative breast cancer (TNBC) has become a thorny problem in the treatment of breast cancer because of its high invasiveness, metastasis and recurrence. Although immunotherapy has made important progress in TNBC, immune escape caused by many factors, especially metabolic reprogramming, is still the bottleneck of TNBC immunotherapy. Regrettably, the mechanisms responsible for immune escape remain poorly understood. Exploring the mechanism of TNBC immune escape at the metabolic level provides a target and direction for follow-up targeting or immunotherapy. In this review, we focus on the mechanism that TNBC affects immune cells and interstitial cells through hypoxia, glucose metabolism, lipid metabolism and amino acid metabolism, and changes tumor metabolism and tumor microenvironment. This will help to find new targets and strategies for TNBC immunotherapy.
Collapse
Affiliation(s)
- Ruochen Bao
- Thyroid and Breast Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The 2Medical College of Binzhou Medical University, Yantai, China
| | - Hongtao Qu
- Emergency Department of Yantai Mountain Hospital, Yantai, China
| | - Baifeng Li
- Thyroid and Breast Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The 2Medical College of Binzhou Medical University, Yantai, China
| | - Kai Cheng
- Thyroid and Breast Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The 2Medical College of Binzhou Medical University, Yantai, China
| | - Yandong Miao
- Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The 2 Medical College of Binzhou Medical University, Yantai, China
| | - Jiangtao Wang
- Thyroid and Breast Surgery, Yantai Affiliated Hospital of Binzhou Medical University, The 2Medical College of Binzhou Medical University, Yantai, China
| |
Collapse
|
23
|
Chen H, Molberg K, Carrick K, Niu S, Rivera Colon G, Gwin K, Lewis C, Lea J, Panwar V, Zheng W, Castrillon DH, Lucas E. Expression and Prognostic Significance of LAG-3, TIGIT, VISTA, and IDO1 in Endometrial Serous Carcinoma. Mod Pathol 2024; 37:100532. [PMID: 38848896 DOI: 10.1016/j.modpat.2024.100532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/27/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Endometrial serous carcinoma (ESC) is an uncommon, aggressive type of endometrial cancer. While immune checkpoint blockade has emerged as a promising treatment option for endometrial carcinomas, research on the expression of immune checkpoints that could serve as prospective immunotherapy targets in ESC is limited. We examined the prevalence and prognostic value of lymphocyte-activation gene 3 (LAG-3), T-cell immunoglobulin and ITIM domain (TIGIT), V-domain immunoglobulin (Ig) suppressor of T-cell activation (VISTA), and indoleamine 2,3-dioxygenase 1 (IOD1) in 94 cases of ESC and correlated their expression with CD8+ and FOXP3+ tumor-infiltrating lymphocytes (TILs). We observed a positive correlation among LAG-3, TIGIT, and VISTA expressed on immune cells, and among these markers and CD8+ and FOXP3+ TIL densities. In Kaplan-Meier survival analysis, tumors with high levels of LAG-3 and TIGIT expression had better progression-free survival (PFS) and overall survival (OS) than those with lower levels of expression (LAG-3: PFS, P = .03, OS, P = .04; TIGIT: PFS, P = .01, OS, P = .009). In multivariate analysis, only high TIGIT expression was of independent prognostic value for better OS. VISTA expression in immune or tumor cells, and IDO1 expression in tumor cells, did not show a significant association with survival. Our data indicate that LAG-3, TIGIT, and VISTA immune checkpoints have roles in the microenvironment of ESC, and their expression patterns highlight the complex interactions among the different components of this system. High levels of these markers, together with high CD8+ TIL, suggest the potential immunogenicity of a subset of these tumors. Further studies are needed to elucidate the roles of various immune components in the ESC microenvironment and their association with intrinsic tumor properties.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Female
- Humans
- Middle Aged
- Antigens, CD/metabolism
- B7 Antigens/metabolism
- Biomarkers, Tumor/analysis
- Cystadenocarcinoma, Serous/pathology
- Cystadenocarcinoma, Serous/mortality
- Cystadenocarcinoma, Serous/immunology
- Endometrial Neoplasms/pathology
- Endometrial Neoplasms/immunology
- Endometrial Neoplasms/mortality
- Endometrial Neoplasms/genetics
- Indoleamine-Pyrrole 2,3,-Dioxygenase/biosynthesis
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/analysis
- Lymphocyte Activation Gene 3 Protein
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/pathology
- Prognosis
- Receptors, Immunologic/metabolism
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Hao Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pathology, Parkland Hospital, Dallas, Texas
| | - Kyle Molberg
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pathology, Parkland Hospital, Dallas, Texas
| | - Kelley Carrick
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pathology, Parkland Hospital, Dallas, Texas
| | - Shuang Niu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pathology, Parkland Hospital, Dallas, Texas
| | - Glorimar Rivera Colon
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pathology, Parkland Hospital, Dallas, Texas
| | - Katja Gwin
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pathology, Parkland Hospital, Dallas, Texas
| | - Cheryl Lewis
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jayanthi Lea
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Vandana Panwar
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pathology, Parkland Hospital, Dallas, Texas
| | - Wenxin Zheng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pathology, Parkland Hospital, Dallas, Texas; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Diego H Castrillon
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pathology, Parkland Hospital, Dallas, Texas; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Elena Lucas
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pathology, Parkland Hospital, Dallas, Texas.
| |
Collapse
|
24
|
Jin S, Liu W, He X, Zhang Y, Chen W, Wu Y, Liu J. VISTA deficiency exerts anti-tumor effects in breast cancer through regulating macrophage polarization. Int Immunopharmacol 2024; 136:112365. [PMID: 38820964 DOI: 10.1016/j.intimp.2024.112365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Growing evidence had showed that tumor-associated macrophages (TAMs) have a tumor-promoting M2 phenotype which could drive pathological phenomena. In breast cancer, TAMs are abundantly present and may play an important role in the development of breast cancer. V-domain immunoglobulin suppressor of T cell activation (VISTA) is a novel inhibitory checkpoint and immunotherapy target for tumor through regulating immune response. However, its effects on macrophages have not been investigated, which was also the focus of this study. Here, the scRNA-seq data further revealed that VISTA was highly expressed in multiple macrophage subclusters. In vitro experiments showed that the absence of VISTA enhanced the M1 polarization of macrophages, inhibited the M2 polarization of macrophages and the proliferation and phagocytosis of 4 T1 cells induced by M2-CM. VISTA regulated the activation of STAT1 and STAT6 signaling pathways in the process of macrophage polarization. In vivo experiments demonstrated that VISTA deficient mice exhibited reduced tumor growth, possibly due to the increase of M1 macrophages and the decrease of M2 macrophages. In summary, our study is the first to reveal the effect of VISTA on macrophages in breast cancer, which showed that VISTA affects tumor growth by critically regulating the macrophage polarization through the STAT pathway.
Collapse
Affiliation(s)
- Shasha Jin
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Wanmei Liu
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoyu He
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Yuxin Zhang
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Wenting Chen
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Yinhao Wu
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Liu
- New Drug Screening Center, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
25
|
Muñoz Perez N, Pensabene JM, Galbo PM, Sadeghipour N, Xiu J, Moziak K, Yazejian RM, Welch RL, Bell WR, Sengupta S, Aulakh S, Eberhart CG, Loeb DM, Eskandar E, Zheng D, Zang X, Martin AM. VISTA Emerges as a Promising Target against Immune Evasion Mechanisms in Medulloblastoma. Cancers (Basel) 2024; 16:2629. [PMID: 39123357 PMCID: PMC11312086 DOI: 10.3390/cancers16152629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Relapsed medulloblastoma (MB) poses a significant therapeutic challenge due to its highly immunosuppressive tumor microenvironment. Immune checkpoint inhibitors (ICIs) have struggled to mitigate this challenge, largely due to low T-cell infiltration and minimal PD-L1 expression. Identifying the mechanisms driving low T-cell infiltration is crucial for developing more effective immunotherapies. METHODS We utilize a syngeneic mouse model to investigate the tumor immune microenvironment of MB and compare our findings to transcriptomic and proteomic data from human MB. RESULTS Flow cytometry reveals a notable presence of CD45hi/CD11bhi macrophage-like and CD45int/CD11bint microglia-like tumor-associated macrophages (TAMs), alongside regulatory T-cells (Tregs), expressing high levels of the inhibitory checkpoint molecule VISTA. Compared to sham control mice, the CD45hi/CD11bhi compartment significantly expands in tumor-bearing mice and exhibits a myeloid-specific signature composed of VISTA, CD80, PD-L1, CTLA-4, MHCII, CD40, and CD68. These findings are corroborated by proteomic and transcriptomic analyses of human MB samples. Immunohistochemistry highlights an abundance of VISTA-expressing myeloid cells clustering at the tumor-cerebellar border, while T-cells are scarce and express FOXP3. Additionally, tumor cells exhibit immunosuppressive properties, inhibiting CD4 T-cell proliferation in vitro. Identification of VISTA's binding partner, VSIG8, on tumor cells, and its correlation with increased VISTA expression in human transcriptomic analyses suggests a potential therapeutic target. CONCLUSIONS This study underscores the multifaceted mechanisms of immune evasion in MB and highlights the therapeutic potential of targeting the VISTA-VSIG axis to enhance anti-tumor responses.
Collapse
Affiliation(s)
- Natalia Muñoz Perez
- Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; (J.M.P.); (P.M.G.J.); (K.M.); (R.M.Y.); (R.L.W.); (D.M.L.); (E.E.); (D.Z.); (X.Z.)
| | - Juliana M. Pensabene
- Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; (J.M.P.); (P.M.G.J.); (K.M.); (R.M.Y.); (R.L.W.); (D.M.L.); (E.E.); (D.Z.); (X.Z.)
| | - Phillip M. Galbo
- Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; (J.M.P.); (P.M.G.J.); (K.M.); (R.M.Y.); (R.L.W.); (D.M.L.); (E.E.); (D.Z.); (X.Z.)
| | | | - Joanne Xiu
- Caris Life Sciences, Phoenix, AZ 85040, USA; (N.S.); (J.X.)
| | - Kirsten Moziak
- Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; (J.M.P.); (P.M.G.J.); (K.M.); (R.M.Y.); (R.L.W.); (D.M.L.); (E.E.); (D.Z.); (X.Z.)
| | - Rita M. Yazejian
- Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; (J.M.P.); (P.M.G.J.); (K.M.); (R.M.Y.); (R.L.W.); (D.M.L.); (E.E.); (D.Z.); (X.Z.)
| | - Rachel L. Welch
- Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; (J.M.P.); (P.M.G.J.); (K.M.); (R.M.Y.); (R.L.W.); (D.M.L.); (E.E.); (D.Z.); (X.Z.)
| | - W. Robert Bell
- Department of Clinical Pathology & Laboratory Medicine, School of Medicine, Indiana University, 340 West 10th Street Fairbanks Hall, Indianapolis, IN 46202, USA;
| | - Soma Sengupta
- Department of Neurology & Neurosurgery, University of North Carolina at Chapel Hill, 170 Manning Drive, Chapel Hill, NC 27599, USA;
| | - Sonikpreet Aulakh
- Department of Internal Medicine, West Virginia University, 64 Medical Center Drive, Morgantown, WV 26506, USA;
| | - Charles G. Eberhart
- Department of Pathology, Johns Hopkins School of Medicine, 600 N Wolfe St., Baltimore, MD 21287, USA;
| | - David M. Loeb
- Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; (J.M.P.); (P.M.G.J.); (K.M.); (R.M.Y.); (R.L.W.); (D.M.L.); (E.E.); (D.Z.); (X.Z.)
| | - Emad Eskandar
- Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; (J.M.P.); (P.M.G.J.); (K.M.); (R.M.Y.); (R.L.W.); (D.M.L.); (E.E.); (D.Z.); (X.Z.)
| | - Deyou Zheng
- Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; (J.M.P.); (P.M.G.J.); (K.M.); (R.M.Y.); (R.L.W.); (D.M.L.); (E.E.); (D.Z.); (X.Z.)
| | - Xingxing Zang
- Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; (J.M.P.); (P.M.G.J.); (K.M.); (R.M.Y.); (R.L.W.); (D.M.L.); (E.E.); (D.Z.); (X.Z.)
| | - Allison M. Martin
- Department of Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; (J.M.P.); (P.M.G.J.); (K.M.); (R.M.Y.); (R.L.W.); (D.M.L.); (E.E.); (D.Z.); (X.Z.)
| |
Collapse
|
26
|
Gao Y, He Y, Tang Y, Chen ZS, Qu M. VISTA: A Novel Checkpoint for Cancer Immunotherapy. Drug Discov Today 2024; 29:104045. [PMID: 38797321 DOI: 10.1016/j.drudis.2024.104045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/20/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
V-domain Ig suppressor of T cell activation (VISTA) is a recently identified member of the B7 family of immunoregulatory proteins. It is pivotal for maintaining T cell quiescence and exerts a significant regulatory influence on the immune response to tumors. Accumulating clinical evidence suggests that the influence of VISTA on tumor immunity is more nuanced than initially postulated. Although these revelations add layers of complexity to our understanding of the function of VISTA, they also offer novel avenues for scientific inquiry and potential therapeutic targets. In this review, we scrutinize the current literature pertaining to the expression of VISTA in various of malignancies, aiming to elucidate its intricate roles within the tumor microenvironment and in cancer immunotherapy.
Collapse
Affiliation(s)
- Yu Gao
- Translational Medical Center, Weifang Second People's Hospital, Weifang 261041, Shandong, China
| | - Yanting He
- Department of Pathology, The Affiliated Hospital of Qingdao University, Pingdu 266700, Shandong, China
| | - Yuanyuan Tang
- Translational Medical Center, Weifang Second People's Hospital, Weifang 261041, Shandong, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Meihua Qu
- Translational Medical Center, Weifang Second People's Hospital, Weifang 261041, Shandong, China; School of Life Science and Technology, Weifang Medical University, Weifang 261053, Shandon, China.
| |
Collapse
|
27
|
Yang M, Cui M, Sun Y, Liu S, Jiang W. Mechanisms, combination therapy, and biomarkers in cancer immunotherapy resistance. Cell Commun Signal 2024; 22:338. [PMID: 38898505 PMCID: PMC11186190 DOI: 10.1186/s12964-024-01711-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
Anti-programmed death 1/programmed death ligand 1 (anti-PD-1/PD-L1) antibodies exert significant antitumor effects by overcoming tumor cell immune evasion and reversing T-cell exhaustion. However, the emergence of drug resistance causes most patients to respond poorly to these immune checkpoint inhibitors (ICIs). Studies have shown that insufficient T-cell infiltration, lack of PD-1 expression, deficient interferon signaling, loss of tumor antigen presentation, and abnormal lipid metabolism are all considered to be closely associated with immunotherapy resistance. To address drug resistance in tumor immunotherapy, a lot of research has concentrated on developing combination therapy strategies. Currently, ICIs such as anti-PD-1 /PD-L1 antibody combined with chemotherapy and targeted therapy have been approved for clinical treatment. In this review, we analyze the mechanisms of resistance to anti-PD-1/PD-L1 therapy in terms of the tumor microenvironment, gut microbiota, epigenetic regulation, and co-inhibitory immune checkpoint receptors. We also discuss various promising combination therapeutic strategies to address resistance to anti-PD-1/PD-L1 drugs, including combining these therapies with traditional Chinese medicine, non-coding RNAs, targeted therapy, other ICIs, and personalized cancer vaccines. Moreover, we focus on biomarkers that predict resistance to anti-PD-1/PD-L1 therapy as well as combination therapy efficacy. Finally, we suggest ways to further expand the application of immunotherapy through personalized combination strategies using biomarker systems.
Collapse
Affiliation(s)
- Manshi Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Mengying Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Yang Sun
- Department of Orthopaedic, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Shui Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Weibo Jiang
- Department of Orthopaedic, The Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
28
|
Jin L, Zhou S, Zhao S, Long J, Huang Z, Zhou J, Zhang Y. Early short-term hypoxia promotes epidermal cell migration by activating the CCL2-ERK1/2 pathway and epithelial-mesenchymal transition during wound healing. BURNS & TRAUMA 2024; 12:tkae017. [PMID: 38887221 PMCID: PMC11182653 DOI: 10.1093/burnst/tkae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/05/2024] [Indexed: 06/20/2024]
Abstract
Background Due to vasculature injury and increased oxygen consumption, the early wound microenvironment is typically in a hypoxic state. We observed enhanced cell migration ability under early short-term hypoxia. CCL2 belongs to the CC chemokine family and was found to be increased in early hypoxic wounds and enriched in the extracellular signal-regulated kinase (ERK)1/2 pathway in our previous study. However, the underlying mechanism through which the CCL2-ERK1/2 pathway regulates wound healing under early short-term hypoxia remains unclear. Activation of epithelial-mesenchymal transition (EMT) is a key process in cancer cell metastasis, during which epithelial cells acquire the characteristics of mesenchymal cells and enhance cell motility and migration ability. However, the relationship between epithelial cell migration and EMT under early short-term hypoxia has yet to be explored. Methods HaCaT cells were cultured to verify the effect of early short-term hypoxia on migration through cell scratch assays. Lentiviruses with silenced or overexpressed CCL2 were used to explore the relationship between CCL2 and migration under short-term hypoxia. An acute full-thickness cutaneous wound rat model was established with the application of an ERK inhibitor to reveal the hidden role of the ERK1/2 pathway in the early stage of wound healing. The EMT process was verified in all the above experiments through western blotting. Results In our study, we found that short-term hypoxia promoted cell migration. Mechanistically, hypoxia promoted cell migration through mediating CCL2. Overexpression of CCL2 via lentivirus promoted cell migration, while silencing CCL2 via lentivirus inhibited cell migration and the production of related downstream proteins. In addition, we found that CCL2 was enriched in the ERK1/2 pathway, and the application of an ERK inhibitor in vivo and in vitro verified the upstream and downstream relationships between the CCL2 pathway and ERK1/2. Western blot results both in vivo and in vitro demonstrated that early short-term hypoxia promotes epidermal cell migration by activating the CCL2-ERK1/2 pathway and EMT during wound healing. Conclusions Our work demonstrated that hypoxia in the early stage serves as a stimulus for triggering wound healing through activating the CCL2-ERK1/2 pathway and EMT, which promote epidermal cell migration and accelerate wound closure. These findings provide additional detailed insights into the mechanism of wound healing and new targets for clinical treatment.
Collapse
Affiliation(s)
- Linbo Jin
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Shiqi Zhou
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Shihan Zhao
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Junhui Long
- Department of Dermatology, Southwest Hospital Jiangbei Area (The 958th hospital of Chinese People’s Liberation Army), Chongqing, China
| | - Zhidan Huang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Junli Zhou
- Department of Burn and Plastic Surgery, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, China
| | - Yiming Zhang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| |
Collapse
|
29
|
Berland L, Gabr Z, Chang M, Ilié M, Hofman V, Rignol G, Ghiringhelli F, Mograbi B, Rashidian M, Hofman P. Further knowledge and developments in resistance mechanisms to immune checkpoint inhibitors. Front Immunol 2024; 15:1384121. [PMID: 38903504 PMCID: PMC11188684 DOI: 10.3389/fimmu.2024.1384121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
The past decade has witnessed a revolution in cancer treatment, shifting from conventional drugs (chemotherapies) towards targeted molecular therapies and immune-based therapies, in particular immune-checkpoint inhibitors (ICIs). These immunotherapies release the host's immune system against the tumor and have shown unprecedented durable remission for patients with cancers that were thought incurable, such as metastatic melanoma, metastatic renal cell carcinoma (RCC), microsatellite instability (MSI) high colorectal cancer and late stages of non-small cell lung cancer (NSCLC). However, about 80% of the patients fail to respond to these immunotherapies and are therefore left with other less effective and potentially toxic treatments. Identifying and understanding the mechanisms that enable cancerous cells to adapt to and eventually overcome therapy can help circumvent resistance and improve treatment. In this review, we describe the recent discoveries on the onco-immunological processes which govern the tumor microenvironment and their impact on the resistance to PD-1/PD-L1 checkpoint blockade.
Collapse
Affiliation(s)
- Léa Berland
- Inserm U1081 Institute for Research on Cancer and Aging, Nice (IRCAN) Team 4, Université Côte d’Azur, Institut Hospitalo Universitaire (IHU) RespirERA, Federation Hospitalo Universitaire (FHU) OncoAge, Nice, France
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Zeina Gabr
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States
- School of Life Science, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
| | - Michelle Chang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Marius Ilié
- Inserm U1081 Institute for Research on Cancer and Aging, Nice (IRCAN) Team 4, Université Côte d’Azur, Institut Hospitalo Universitaire (IHU) RespirERA, Federation Hospitalo Universitaire (FHU) OncoAge, Nice, France
- Laboratory of Clinical and Experimental Pathology, Institut Hospitalo Universitaire (IHU) RespirERA, Federation Hospitalo Universitaire (FHU) OncoAge, Pasteur Hospital, Université Côte d’Azur, Nice, France
- Institut Hospitalo Universitaire (IHU) RespirERA, Nice, France
- Hospital-Integrated Biobank (BB-0033–00025), Pasteur Hospital, Nice, France
| | - Véronique Hofman
- Inserm U1081 Institute for Research on Cancer and Aging, Nice (IRCAN) Team 4, Université Côte d’Azur, Institut Hospitalo Universitaire (IHU) RespirERA, Federation Hospitalo Universitaire (FHU) OncoAge, Nice, France
- Laboratory of Clinical and Experimental Pathology, Institut Hospitalo Universitaire (IHU) RespirERA, Federation Hospitalo Universitaire (FHU) OncoAge, Pasteur Hospital, Université Côte d’Azur, Nice, France
- Institut Hospitalo Universitaire (IHU) RespirERA, Nice, France
- Hospital-Integrated Biobank (BB-0033–00025), Pasteur Hospital, Nice, France
| | - Guylène Rignol
- Inserm U1081 Institute for Research on Cancer and Aging, Nice (IRCAN) Team 4, Université Côte d’Azur, Institut Hospitalo Universitaire (IHU) RespirERA, Federation Hospitalo Universitaire (FHU) OncoAge, Nice, France
- Laboratory of Clinical and Experimental Pathology, Institut Hospitalo Universitaire (IHU) RespirERA, Federation Hospitalo Universitaire (FHU) OncoAge, Pasteur Hospital, Université Côte d’Azur, Nice, France
- Institut Hospitalo Universitaire (IHU) RespirERA, Nice, France
| | - François Ghiringhelli
- Institut Hospitalo Universitaire (IHU) RespirERA, Nice, France
- Department of Biology and Pathology of Tumors, Georges-Francois Leclerc Cancer Center-UNICANCER, Dijon, France
| | - Baharia Mograbi
- Inserm U1081 Institute for Research on Cancer and Aging, Nice (IRCAN) Team 4, Université Côte d’Azur, Institut Hospitalo Universitaire (IHU) RespirERA, Federation Hospitalo Universitaire (FHU) OncoAge, Nice, France
- Institut Hospitalo Universitaire (IHU) RespirERA, Nice, France
| | - Mohamad Rashidian
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Paul Hofman
- Inserm U1081 Institute for Research on Cancer and Aging, Nice (IRCAN) Team 4, Université Côte d’Azur, Institut Hospitalo Universitaire (IHU) RespirERA, Federation Hospitalo Universitaire (FHU) OncoAge, Nice, France
- Laboratory of Clinical and Experimental Pathology, Institut Hospitalo Universitaire (IHU) RespirERA, Federation Hospitalo Universitaire (FHU) OncoAge, Pasteur Hospital, Université Côte d’Azur, Nice, France
- Institut Hospitalo Universitaire (IHU) RespirERA, Nice, France
- Hospital-Integrated Biobank (BB-0033–00025), Pasteur Hospital, Nice, France
| |
Collapse
|
30
|
Olbromski M, Mrozowska M, Piotrowska A, Smolarz B, Romanowicz H. The VISTA/VSIG3/PSGL-1 axis: crosstalk between immune effector cells and cancer cells in invasive ductal breast carcinoma. Cancer Immunol Immunother 2024; 73:136. [PMID: 38833004 PMCID: PMC11150347 DOI: 10.1007/s00262-024-03701-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/09/2024] [Indexed: 06/06/2024]
Abstract
A checkpoint protein called the V-domain Ig suppressor of T cell activation (VISTA) is important for controlling immune responses. Immune cells that interact with VISTA have molecules, or receptors, known as VISTA receptors. Immune system activity can be modified by the interaction between VISTA and its receptors. Since targeting VISTA or its receptors may be beneficial in certain conditions, VISTA has been studied in relation to immunotherapy for cancer and autoimmune illnesses. The purpose of this study was to examine the expression levels and interactions between VISTA and its receptors, VSIG3 and PSGL-1, in breast cancer tissues. IHC analysis revealed higher levels of proteins within the VISTA/VSIG3/PSGL-1 axis in cancer tissues than in the reference samples (mastopathies). VISTA was found in breast cancer cells and intratumoral immune cells, with membranous and cytoplasmic staining patterns. VISTA was also linked with pathological grade and VSIG3 and PSGL-1 levels. Furthermore, we discovered that the knockdown of one axis member boosted the expression of the other partners. This highlights the significance of VISTA/VSIG3/PSGL-1 in tumor stroma and microenvironment remodeling. Our findings indicate the importance of the VISTA/VSIG3/PSGL-1 axis in the molecular biology of cancer cells and the immune microenvironment.
Collapse
Affiliation(s)
- Mateusz Olbromski
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chalubinskiego 6a, 50-368, Wroclaw, Poland.
| | - Monika Mrozowska
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chalubinskiego 6a, 50-368, Wroclaw, Poland
| | - Aleksandra Piotrowska
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Chalubinskiego 6a, 50-368, Wroclaw, Poland
| | - Beata Smolarz
- Department of Pathology, Polish Mother's Memorial Hospital Research Institute, 93-338, Lodz, Poland
| | - Hanna Romanowicz
- Department of Pathology, Polish Mother's Memorial Hospital Research Institute, 93-338, Lodz, Poland
| |
Collapse
|
31
|
Chen C, Han P, Qing Y. Metabolic heterogeneity in tumor microenvironment - A novel landmark for immunotherapy. Autoimmun Rev 2024; 23:103579. [PMID: 39004158 DOI: 10.1016/j.autrev.2024.103579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
The surrounding non-cancer cells and tumor cells that make up the tumor microenvironment (TME) have various metabolic rhythms. TME metabolic heterogeneity is influenced by the intricate network of metabolic control within and between cells. DNA, protein, transport, and microbial levels are important regulators of TME metabolic homeostasis. The effectiveness of immunotherapy is also closely correlated with alterations in TME metabolism. The response of a tumor patient to immunotherapy is influenced by a variety of variables, including intracellular metabolic reprogramming, metabolic interaction between cells, ecological changes within and between tumors, and general dietary preferences. Although immunotherapy and targeted therapy have made great strides, their use in the accurate identification and treatment of tumors still has several limitations. The function of TME metabolic heterogeneity in tumor immunotherapy is summarized in this article. It focuses on how metabolic heterogeneity develops and is regulated as a tumor progresses, the precise molecular mechanisms and potential clinical significance of imbalances in intracellular metabolic homeostasis and intercellular metabolic coupling and interaction, as well as the benefits and drawbacks of targeted metabolism used in conjunction with immunotherapy. This offers insightful knowledge and important implications for individualized tumor patient diagnosis and treatment plans in the future.
Collapse
Affiliation(s)
- Chen Chen
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China
| | - Peng Han
- Harbin Medical University Cancer Hospital, Harbin 150081, Heilongjiang, China.
| | - Yanping Qing
- The First Affiliated Hospital of Ningbo University, Ningbo 315211, Zhejiang, China.
| |
Collapse
|
32
|
Yin N, Li X, Zhang X, Xue S, Cao Y, Niedermann G, Lu Y, Xue J. Development of pharmacological immunoregulatory anti-cancer therapeutics: current mechanistic studies and clinical opportunities. Signal Transduct Target Ther 2024; 9:126. [PMID: 38773064 PMCID: PMC11109181 DOI: 10.1038/s41392-024-01826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 05/23/2024] Open
Abstract
Immunotherapy represented by anti-PD-(L)1 and anti-CTLA-4 inhibitors has revolutionized cancer treatment, but challenges related to resistance and toxicity still remain. Due to the advancement of immuno-oncology, an increasing number of novel immunoregulatory targets and mechanisms are being revealed, with relevant therapies promising to improve clinical immunotherapy in the foreseeable future. Therefore, comprehending the larger picture is important. In this review, we analyze and summarize the current landscape of preclinical and translational mechanistic research, drug development, and clinical trials that brought about next-generation pharmacological immunoregulatory anti-cancer agents and drug candidates beyond classical immune checkpoint inhibitors. Along with further clarification of cancer immunobiology and advances in antibody engineering, agents targeting additional inhibitory immune checkpoints, including LAG-3, TIM-3, TIGIT, CD47, and B7 family members are becoming an important part of cancer immunotherapy research and discovery, as are structurally and functionally optimized novel anti-PD-(L)1 and anti-CTLA-4 agents and agonists of co-stimulatory molecules of T cells. Exemplified by bispecific T cell engagers, newly emerging bi-specific and multi-specific antibodies targeting immunoregulatory molecules can provide considerable clinical benefits. Next-generation agents also include immune epigenetic drugs and cytokine-based therapeutics. Cell therapies, cancer vaccines, and oncolytic viruses are not covered in this review. This comprehensive review might aid in further development and the fastest possible clinical adoption of effective immuno-oncology modalities for the benefit of patients.
Collapse
Affiliation(s)
- Nanhao Yin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xintong Li
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Xuanwei Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
| | - Shaolong Xue
- Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610041, Sichuan, PR China
| | - Yu Cao
- Department of Emergency Medicine, Laboratory of Emergency Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China
- Institute of Disaster Medicine & Institute of Emergency Medicine, Sichuan University, No. 17, Gaopeng Avenue, Chengdu, 610041, Sichuan, PR China
| | - Gabriele Niedermann
- Department of Radiation Oncology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) Partner Site DKTK-Freiburg, Robert-Koch-Strasse 3, 79106, Freiburg, Germany.
| | - You Lu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, and The National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Chengdu, 610041, Sichuan, PR China.
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, No. 2222, Xinchuan Road, Chengdu, 610041, Sichuan, PR China.
| |
Collapse
|
33
|
Zhang Y, Guo F, Wang Y. Hypoxic tumor microenvironment: Destroyer of natural killer cell function. Chin J Cancer Res 2024; 36:138-150. [PMID: 38751439 PMCID: PMC11090795 DOI: 10.21147/j.issn.1000-9604.2024.02.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
In recent years, immunotherapy has made remarkable progress in treating certain tumors and hematological malignancies. However, the efficacy of natural killer (NK) cells, which are an important subset of innate lymphocytes used in anticancer immunotherapy, remains limited. Hypoxia, a critical characteristic of the tumor microenvironment (TME), is involved in tumor development and resistance to radiotherapy, chemotherapy, and immunotherapy. Moreover, hypoxia contributes to the impairment of NK cell function and may be a significant factor that limits their therapeutic effects. Targeted hypoxia therapy has emerged as a promising research area for enhancing the efficacy of NK cell therapy. Therefore, understanding how the hypoxic TME influences NK cell function is crucial for improving antitumor treatment outcomes.
Collapse
Affiliation(s)
- Yongfei Zhang
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Feifei Guo
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Yufeng Wang
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
34
|
Mitra A, Kumar A, Amdare NP, Pathak R. Current Landscape of Cancer Immunotherapy: Harnessing the Immune Arsenal to Overcome Immune Evasion. BIOLOGY 2024; 13:307. [PMID: 38785789 PMCID: PMC11118874 DOI: 10.3390/biology13050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Cancer immune evasion represents a leading hallmark of cancer, posing a significant obstacle to the development of successful anticancer therapies. However, the landscape of cancer treatment has significantly evolved, transitioning into the era of immunotherapy from conventional methods such as surgical resection, radiotherapy, chemotherapy, and targeted drug therapy. Immunotherapy has emerged as a pivotal component in cancer treatment, harnessing the body's immune system to combat cancer and offering improved prognostic outcomes for numerous patients. The remarkable success of immunotherapy has spurred significant efforts to enhance the clinical efficacy of existing agents and strategies. Several immunotherapeutic approaches have received approval for targeted cancer treatments, while others are currently in preclinical and clinical trials. This review explores recent progress in unraveling the mechanisms of cancer immune evasion and evaluates the clinical effectiveness of diverse immunotherapy strategies, including cancer vaccines, adoptive cell therapy, and antibody-based treatments. It encompasses both established treatments and those currently under investigation, providing a comprehensive overview of efforts to combat cancer through immunological approaches. Additionally, the article emphasizes the current developments, limitations, and challenges in cancer immunotherapy. Furthermore, by integrating analyses of cancer immunotherapy resistance mechanisms and exploring combination strategies and personalized approaches, it offers valuable insights crucial for the development of novel anticancer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Ankita Mitra
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, Uttar Pradesh, India
| | - Nitin P. Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
35
|
Lu J, Luo Y, Rao D, Wang T, Lei Z, Chen X, Zhang B, Li Y, Liu B, Xia L, Huang W. Myeloid-derived suppressor cells in cancer: therapeutic targets to overcome tumor immune evasion. Exp Hematol Oncol 2024; 13:39. [PMID: 38609997 PMCID: PMC11010322 DOI: 10.1186/s40164-024-00505-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Paradoxically, tumor development and progression can be inhibited and promoted by the immune system. After three stages of immune editing, namely, elimination, homeostasis and escape, tumor cells are no longer restricted by immune surveillance and thus develop into clinical tumors. The mechanisms of immune escape include abnormalities in antitumor-associated immune cells, selection for immune resistance to tumor cells, impaired transport of T cells, and the formation of an immunosuppressive tumor microenvironment. A population of distinct immature myeloid cells, myeloid-derived suppressor cells (MDSCs), mediate immune escape primarily by exerting immunosuppressive effects and participating in the constitution of an immunosuppressive microtumor environment. Clinical trials have found that the levels of MDSCs in the peripheral blood of cancer patients are strongly correlated with tumor stage, metastasis and prognosis. Moreover, animal experiments have confirmed that elimination of MDSCs inhibits tumor growth and metastasis to some extent. Therefore, MDSCs may become the target of immunotherapy for many cancers, and eliminating MDSCs can help improve the response rate to cancer treatment and patient survival. However, a clear definition of MDSCs and the specific mechanism involved in immune escape are lacking. In this paper, we review the role of the MDSCs population in tumor development and the mechanisms involved in immune escape in different tumor contexts. In addition, we discuss the use of these cells as targets for tumor immunotherapy. This review not only contributes to a systematic and comprehensive understanding of the essential role of MDSCs in immune system reactions against tumors but also provides information to guide the development of cancer therapies targeting MDSCs.
Collapse
Affiliation(s)
- Junli Lu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Yiming Luo
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Dean Rao
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Tiantian Wang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Zhen Lei
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
| | - Xiaoping Chen
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Bixiang Zhang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bifeng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| | - Wenjie Huang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, Hubei, China.
- Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, 430030, Hubei, China.
| |
Collapse
|
36
|
Li S, Wang G, Ren Y, Liu X, Wang Y, Li J, Liu H, Yang J, Xing J, Zhang Y, He C, Xu S, Hou X, Li N. Expression and function of VISTA on myeloid cells. Biochem Pharmacol 2024; 222:116100. [PMID: 38428824 DOI: 10.1016/j.bcp.2024.116100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/04/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
V-domain containing Ig Suppressor of T cell Activation (VISTA) is predominantly expressed on myeloid cells and functions as a ligand/receptor/soluble molecule. In inflammatory responses and immune responses, VISTA regulates multiple functions of myeloid cells, such as chemotaxis, phagocytosis, T cell activation. Since inflammation and immune responses are critical in many diseases, VISTA is a promising therapeutic target. In this review, we will describe the expression and function of VISTA on different myeloid cells, including neutrophils, monocytes, macrophages, dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs). In addition, we will discuss whether the functions of VISTA on these cells impact the disease processing.
Collapse
Affiliation(s)
- Siyu Li
- Health Science Center, Ningbo University, Ningbo, China.
| | - Geng Wang
- Health Science Center, Ningbo University, Ningbo, China.
| | - Yan Ren
- Health Science Center, Ningbo University, Ningbo, China.
| | - Xinyue Liu
- Health Science Center, Ningbo University, Ningbo, China.
| | - Yixuan Wang
- Health Science Center, Ningbo University, Ningbo, China.
| | - Jianing Li
- Health Science Center, Ningbo University, Ningbo, China.
| | - Hua Liu
- Health Science Center, Ningbo University, Ningbo, China.
| | - Jiaqiang Yang
- Health Science Center, Ningbo University, Ningbo, China.
| | - Jingjun Xing
- Health Science Center, Ningbo University, Ningbo, China.
| | - Yanru Zhang
- Health Science Center, Ningbo University, Ningbo, China.
| | - Canxia He
- Health Science Center, Ningbo University, Ningbo, China.
| | - Suling Xu
- Department of Dermatology, the First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Xin Hou
- Health Science Center, Ningbo University, Ningbo, China.
| | - Na Li
- Health Science Center, Ningbo University, Ningbo, China; Department of Dermatology, the First Affiliated Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
37
|
Lin Y, Choukrani G, Dubbel L, Rockstein L, Freile JA, Qi Y, Wiersma V, Zhang H, Koch KW, Ammatuna E, Schuringa JJ, van Meerten T, Huls G, Bremer E. VISTA drives macrophages towards a pro-tumoral phenotype that promotes cancer cell phagocytosis yet down-regulates T cell responses. Exp Hematol Oncol 2024; 13:35. [PMID: 38553748 PMCID: PMC10979580 DOI: 10.1186/s40164-024-00501-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/13/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND VISTA is a well-known immune checkpoint in T cell biology, but its role in innate immunity is less established. Here, we investigated the role of VISTA on anticancer macrophage immunity, with a focus on phagocytosis, macrophage polarization and concomitant T cell activation. METHODS Macrophages, differentiated from VISTA overexpressed THP-1 cells and cord blood CD34+ cell-derived monocytes, were used in phagocytosis assay using B lymphoma target cells opsonized with Rituximab. PBMC-derived macrophages were used to assess the correlation between phagocytosis and VISTA expression. qRT-PCR, flow cytometry, and enzyme-linked immunosorbent assay were performed to analyze the impact of VISTA on other checkpoints and M1/M2-like macrophage biology. Additionally, flow cytometry was used to assess the frequency of CD14+ monocytes expressing VISTA in PBMCs from 65 lymphoma patients and 37 healthy donors. RESULTS Ectopic expression of VISTA in the monocytic model cell line THP-1 or in primary monocytes triggered differentiation towards the macrophage lineage, with a marked increase in M2-like macrophage-related gene expression and decrease in M1-like macrophage-related gene expression. VISTA expression in THP-1 and monocyte-derived macrophages strongly downregulated expression of SIRPα, a prominent 'don't eat me' signal, and augmented phagocytic activity of macrophages against cancer cells. Intriguingly, expression of VISTA's extracellular domain alone sufficed to trigger phagocytosis in ∼ 50% of cell lines, with those cell lines also directly binding to recombinant human VISTA, indicating ligand-dependent and -independent mechanisms. Endogenous VISTA expression was predominantly higher in M2-like macrophages compared to M0- or M1-like macrophages, with a positive correlation observed between VISTA expression in M2c macrophages and their phagocytic activity. VISTA-expressing macrophages demonstrated a unique cytokine profile, characterized by reduced IL-1β and elevated IL-10 secretion. Furthermore, VISTA interacted with MHC-I and downregulated its surface expression, leading to diminished T cell activation. Notably, VISTA surface expression was identified in monocytes from all lymphoma patients but was less prevalent in healthy donors. CONCLUSIONS Collectively, VISTA expression associates with and drives M2-like activation of macrophages with a high phagocytic capacity yet a decrease in antigen presentation capability to T cells. Therefore, VISTA is a negative immune checkpoint regulator in macrophage-mediated immune suppression.
Collapse
Affiliation(s)
- Yusheng Lin
- Department of Hematology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 EZ, The Netherlands
| | - Ghizlane Choukrani
- Department of Hematology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 EZ, The Netherlands
| | - Lena Dubbel
- Faculty VI, School of Medicine and Health Sciences, Department for human Medicine, Carl von Ossietzky Universität Oldenburg, University Clinic for Gynecology, Oldenburg, Germany
| | - Lena Rockstein
- Faculty VI, School of Medicine and Health Sciences, Department for human Medicine, Carl von Ossietzky Universität Oldenburg, University Clinic for Gynecology, Oldenburg, Germany
| | - Jimena Alvarez Freile
- Department of Hematology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 EZ, The Netherlands
| | - Yuzhu Qi
- Department of Hematology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 EZ, The Netherlands
| | - Valerie Wiersma
- Department of Hematology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 EZ, The Netherlands
| | - Hao Zhang
- Institute of Precision Cancer Medicine and Pathology, Jinan University Medical College, Guangzhou, Guangdong, China
| | - Karl-Wilhelm Koch
- Faculty VI, School of Medicine and Health Sciences, Dept. of Neuroscience, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Emanuele Ammatuna
- Department of Hematology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 EZ, The Netherlands
| | - Jan Jacob Schuringa
- Department of Hematology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 EZ, The Netherlands
| | - Tom van Meerten
- Department of Hematology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 EZ, The Netherlands
| | - Gerwin Huls
- Department of Hematology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 EZ, The Netherlands
| | - Edwin Bremer
- Department of Hematology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 EZ, The Netherlands.
| |
Collapse
|
38
|
Ming‐Kun C, Zi‐Xian C, Mao‐Ping C, Hong C, Zhuang‐Fei C, Shan‐Chao Z. Engineered extracellular vesicles: A new approach for targeted therapy of tumors and overcoming drug resistance. Cancer Commun (Lond) 2024; 44:205-225. [PMID: 38155418 PMCID: PMC10876209 DOI: 10.1002/cac2.12518] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023] Open
Abstract
Targeted delivery of anti-tumor drugs and overcoming drug resistance in malignant tumor cells remain significant clinical challenges. However, there are only few effective methods to address these issues. Extracellular vesicles (EVs), actively secreted by cells, play a crucial role in intercellular information transmission and cargo transportation. Recent studies have demonstrated that engineered EVs can serve as drug delivery carriers and showed promising application prospects. Nevertheless, there is an urgent need for further improvements in the isolation and purification of EVs, surface modification techniques, drug assembly processes, and precise recognition of tumor cells for targeted drug delivery purposes. In this review, we summarize the applications of engineered EVs in cancer treatment and overcoming drug resistance, and current challenges associated with engineered EVs are also discussed. This review aims to provide new insights and potential directions for utilizing engineered EVs as targeted delivery systems for anti-tumor drugs and overcoming drug resistance in the near future.
Collapse
Affiliation(s)
- Chen Ming‐Kun
- Department of UrologyThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouGuangdongP. R. China
- The Third Clinical CollegeSouthern Medical UniversityGuangzhouGuangdongP. R. China
| | - Chen Zi‐Xian
- Department of UrologyThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouGuangdongP. R. China
- The Third Clinical CollegeSouthern Medical UniversityGuangzhouGuangdongP. R. China
| | - Cai Mao‐Ping
- Department of UrologyThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouGuangdongP. R. China
- The Third Clinical CollegeSouthern Medical UniversityGuangzhouGuangdongP. R. China
| | - Chen Hong
- Luoyang Key Laboratory of Organic Functional MoleculesCollege of Food and DrugLuoyang Normal UniversityLuoyangHenanP. R. China
| | - Chen Zhuang‐Fei
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
| | - Zhao Shan‐Chao
- Department of UrologyThe Third Affiliated Hospital of Southern Medical UniversityGuangzhouGuangdongP. R. China
- The Third Clinical CollegeSouthern Medical UniversityGuangzhouGuangdongP. R. China
- Department of UrologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdongP. R. China
| |
Collapse
|
39
|
Zhang K, Zakeri A, Alban T, Dong J, Ta HM, Zalavadia AH, Branicky A, Zhao H, Juric I, Husich H, Parthasarathy PB, Rupani A, Drazba JA, Chakraborty AA, Ching-Cheng Huang S, Chan T, Avril S, Wang LL. VISTA promotes the metabolism and differentiation of myeloid-derived suppressor cells by STAT3 and polyamine-dependent mechanisms. Cell Rep 2024; 43:113661. [PMID: 38175754 PMCID: PMC10851928 DOI: 10.1016/j.celrep.2023.113661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/20/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) impair antitumor immune responses. Identifying regulatory circuits during MDSC development may bring new opportunities for therapeutic interventions. We report that the V-domain suppressor of T cell activation (VISTA) functions as a key enabler of MDSC differentiation. VISTA deficiency reduced STAT3 activation and STAT3-dependent production of polyamines, which causally impaired mitochondrial respiration and MDSC expansion. In both mixed bone marrow (BM) chimera mice and myeloid-specific VISTA conditional knockout mice, VISTA deficiency significantly reduced tumor-associated MDSCs but expanded monocyte-derived dendritic cells (DCs) and enhanced T cell-mediated tumor control. Correlated expression of VISTA and arginase-1 (ARG1), a key enzyme supporting polyamine biosynthesis, was observed in multiple human cancer types. In human endometrial cancer, co-expression of VISTA and ARG1 on tumor-associated myeloid cells is associated with poor survival. Taken together, these findings unveil the VISTA/polyamine axis as a central regulator of MDSC differentiation and warrant therapeutically targeting this axis for cancer immunotherapy.
Collapse
Affiliation(s)
- Keman Zhang
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Amin Zakeri
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Tyler Alban
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Juan Dong
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Hieu M Ta
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Ajay H Zalavadia
- Imaging Core Facility, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Andrelie Branicky
- Imaging Core Facility, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Haoxin Zhao
- Imaging Core Facility, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Ivan Juric
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Hanna Husich
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Prerana B Parthasarathy
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Amit Rupani
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Judy A Drazba
- Imaging Core Facility, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Abhishek A Chakraborty
- Department of Cancer Biology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Stanley Ching-Cheng Huang
- Department of Pathology, University Hospitals Cleveland Medical Center, and Case Western Reserve University School of Medicine, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Timothy Chan
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA
| | - Stefanie Avril
- Department of Pathology, University Hospitals Cleveland Medical Center, and Case Western Reserve University School of Medicine, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Li Lily Wang
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, USA.
| |
Collapse
|
40
|
Liu J, Jiang Y, Chen L, Qian Z, Zhang Y. Associations between HIFs and tumor immune checkpoints: mechanism and therapy. Discov Oncol 2024; 15:2. [PMID: 38165484 PMCID: PMC10761656 DOI: 10.1007/s12672-023-00836-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Hypoxia, which activates a variety of signaling pathways to enhance tumor cell growth and metabolism, is among the primary features of tumor cells. Hypoxia-inducible factors (HIFs) have a substantial impact on a variety of facets of tumor biology, such as epithelial-mesenchymal transition, metabolic reprogramming, angiogenesis, and improved radiation resistance. HIFs induce hypoxia-adaptive responses in tumor cells. Many academics have presented preclinical and clinical research targeting HIFs in tumor therapy, highlighting the potential applicability of targeted HIFs. In recent years, the discovery of numerous pharmacological drugs targeting the regulatory mechanisms of HIFs has garnered substantial attention. Additionally, HIF inhibitors have attained positive results when used in conjunction with traditional oncology radiation and/or chemotherapy, as well as with the very promising addition of tumor immunotherapy. Immune checkpoint inhibitors (CPIs), which are employed in a range of cancer treatments over the past decades, are essential in tumor immunotherapy. Nevertheless, the use of immunotherapy has been severely hampered by tumor resistance and treatment-related toxicity. According to research, HIF inhibitors paired with CPIs may be game changers for multiple malignancies, decreasing malignant cell plasticity and cancer therapy resistance, among other things, and opening up substantial new pathways for immunotherapy drug development. The structure, activation mechanisms, and pharmacological sites of action of the HIF family are briefly reviewed in this work. This review further explores the interactions between HIF inhibitors and other tumor immunotherapy components and covers the potential clinical use of HIF inhibitors in combination with CPIs.
Collapse
Affiliation(s)
- Jiayu Liu
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China
| | - Ying Jiang
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China
| | - Lingyan Chen
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, 214000, Jiangsu, China
| | - Zhiwen Qian
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, 214000, Jiangsu, China
| | - Yan Zhang
- Department of Oncology, Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China.
- Wuxi Maternal and Child Health Hospital, Nanjing Medical University, Nanjing, 214000, Jiangsu, China.
| |
Collapse
|
41
|
Zhao Y, Xing C, Deng Y, Ye C, Peng H. HIF-1α signaling: Essential roles in tumorigenesis and implications in targeted therapies. Genes Dis 2024; 11:234-251. [PMID: 37588219 PMCID: PMC10425810 DOI: 10.1016/j.gendis.2023.02.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/24/2022] [Accepted: 02/12/2023] [Indexed: 08/18/2023] Open
Abstract
The hypoxic microenvironment is an essential characteristic of most malignant tumors. Notably, hypoxia-inducible factor-1 alpha (HIF-1α) is a key regulatory factor of cellular adaptation to hypoxia, and many critical pathways are correlated with the biological activity of organisms via HIF-1α. In the intra-tumoral hypoxic environment, HIF-1α is highly expressed and contributes to the malignant progression of tumors, which in turn results in a poor prognosis in patients. Recently, it has been indicated that HIF-1α involves in various critical processes of life events and tumor development via regulating the expression of HIF-1α target genes, such as cell proliferation and apoptosis, angiogenesis, glucose metabolism, immune response, therapeutic resistance, etc. Apart from solid tumors, accumulating evidence has revealed that HIF-1α is also closely associated with the development and progression of hematological malignancies, such as leukemia, lymphoma, and multiple myeloma. Targeted inhibition of HIF-1α can facilitate an increased sensitivity of patients with malignancies to relevant therapeutic agents. In the review, we elaborated on the basic structure and biological functions of HIF-1α and summarized their current role in various malignancies. It is expected that they will have future potential for targeted therapy.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Cheng Xing
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yating Deng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Can Ye
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
42
|
Fujii Y, Mehla K. Measurement of Metabolic Alteration in Immune Cells Under Hypoxia. Methods Mol Biol 2024; 2755:201-212. [PMID: 38319580 DOI: 10.1007/978-1-0716-3633-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The hypoxic microenvironment in solid tumors affects the metabolism of tumor cells and infiltrating immune cells, which aids in robust tumor growth and expansion. Myeloid-derived suppressor cells (MDSCs) are heterogenous immature myeloid cells in the TME, which play an essential role in immune evasion by subverting T/NK cell-mediated killing. The immunosuppressive function of MDSCs is tightly regulated to the metabolic pathways, in which hypoxia plays a critical role. In this chapter, we describe the isolation of murine MDSCs from bone marrows and the measurement of the transcriptomic changes of essential metabolic enzymes under hypoxic conditions. This method can be applied to study MDSCs function, mimicking the hypoxic environment in vitro. This method can be utilized to investigate the critical metabolic alterations under a given tumor context and help evaluate the efficacy of metabolic-targeted therapies in the long run.
Collapse
Affiliation(s)
- Yuki Fujii
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kamiya Mehla
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
43
|
Ren R, Chang X, Chen C, Yu H, Han L. VISTA as a prospective immune checkpoint in gynecological malignant tumors: A review of the literature. Open Med (Wars) 2023; 18:20230866. [PMID: 38152334 PMCID: PMC10751886 DOI: 10.1515/med-2023-0866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 10/10/2023] [Accepted: 11/16/2023] [Indexed: 12/29/2023] Open
Abstract
V-domain Ig suppressor of T cell activation (VISTA), encoded by the human VSIR gene, is a B7 family checkpoint homologous to the programmed death-Ligand 1 sequence. In gynecologic malignancies, VISTA is abnormally expressed and regulates the tumor immune microenvironment, causing a high upregulation of VISTA expression in T-cells and myeloid cells in the tumor microenvironment and promoting tumor proliferation, progression, and immune tolerance. Here, we review the research progress of VISTA in ovarian, cervical, and endometrial cancers through its structure and immunomodulatory mechanism. The comprehensive study of VISTA is expected to improve the current problem of poor immunotherapeutic effects and provide new ideas for immune therapy in patients with gynecologic tumors.
Collapse
Affiliation(s)
- Ran Ren
- Department of Gynecology, Dalian Women and Children’s Medical Group, Dalian, 116033, China
- Laboratory of Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women in Liaoning Province, Dalian, 116011, China
| | - Xin Chang
- Department of Graduate, Dalian Medical University, Dalian, 116044, China
- Department of Gynecology, Dalian Women and Children’s Medical Group, Dalian, 116033, China
- Laboratory of Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women in Liaoning Province, Dalian, 116011, China
| | - Cong Chen
- Department of Gynecology, Dalian Women and Children’s Medical Group, Dalian, 116033, China
- Laboratory of Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women in Liaoning Province, Dalian, 116011, China
| | - Hao Yu
- Department of Gynecology, Dalian Women and Children’s Medical Group, Dalian, 116033, China
- Laboratory of Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women in Liaoning Province, Dalian, 116011, China
| | - Lu Han
- Department of Gynecology, Dalian Women and Children’s Medical Group, Dalian, 116033, China
- Laboratory of Early Diagnosis and Biotherapy of Malignant Tumors in Children and Women in Liaoning Province, Dalian, 116011, China
| |
Collapse
|
44
|
Chen Y, Sun J, Liu J, Wei Y, Wang X, Fang H, Du H, Huang J, Li Q, Ren G, Wang X, Li H. Aldehyde dehydrogenase 2-mediated aldehyde metabolism promotes tumor immune evasion by regulating the NOD/VISTA axis. J Immunother Cancer 2023; 11:e007487. [PMID: 38088186 PMCID: PMC10711917 DOI: 10.1136/jitc-2023-007487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Aldehyde dehydrogenase 2 (ALDH2) is a crucial enzyme involved in endogenous aldehyde detoxification and has been implicated in tumor progression. However, its role in tumor immune evasion remains unclear. METHODS Here, we analyzed the relationship between ALDH2 expression and antitumor immune features in multiple cancers. ALDH2 knockout tumor cells were then established using CRISPR/Cas9 system. In immunocompetent breast cancer EMT6 and melanoma B16-F10 mouse models, we investigated the impact of ALDH2 blockade on cytotoxic T lymphocyte function and tumor immune microenvironment by flow cytometry, mass cytometry, Luminex liquid suspension chip detection, and immunohistochemistry. Furthermore, RNA sequencing, flow cytometry, western blot, chromatin immunoprecipitation assay, and luciferase reporter assays were employed to explore the detailed mechanism of ALDH2 involved in tumor immune evasion. Lastly, the synergistic therapeutic efficacy of blocking ALDH2 by genetic depletion or its inhibitor disulfiram in combination with immune checkpoint blockade (ICB) was investigated in mouse models. RESULTS In our study, we uncovered a positive correlation between the expression level of ALDH2 and T-cell dysfunction in multiple cancers. Furthermore, blocking ALDH2 significantly suppressed tumor growth by enhancing cytotoxic activity of CD8+ T cells and reshaping the immune landscape and cytokine milieu of tumors in vivo. Mechanistically, inhibiting ALDH2-mediated metabolism of aldehyde downregulated the expression of V-domain Ig suppressor of T-cell activation (VISTA) via inactivating the nucleotide oligomerization domain (NOD)/nuclear factor kappa-B (NF-κB) signaling pathway. As a result, the cytotoxic function of CD8+ T cells was revitalized. Importantly, ALDH2 blockade markedly reinforced the efficacy of ICB treatment. CONCLUSIONS Our data delineate that ALDH2-mediated aldehyde metabolism drives tumor immune evasion by activating the NOD/NF-κB/VISTA axis. Targeting ALDH2 provides an effective combinatorial therapeutic strategy for immunotherapy.
Collapse
Affiliation(s)
- Yuru Chen
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiazheng Sun
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiazhou Liu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuxian Wei
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyu Wang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huiying Fang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Breast Disease, Chongqing University Cancer Hospital, Chongqing, China
| | - Huimin Du
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Huang
- Department of Respiratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Li
- Department of Oncology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyi Wang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongzhong Li
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
45
|
Fan P, Zhang N, Candi E, Agostini M, Piacentini M, Shi Y, Huang Y, Melino G. Alleviating hypoxia to improve cancer immunotherapy. Oncogene 2023; 42:3591-3604. [PMID: 37884747 DOI: 10.1038/s41388-023-02869-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023]
Abstract
Tumor hypoxia resulting from abnormal and dysfunctional tumor vascular network poses a substantial obstacle to immunotherapy. In fact, hypoxia creates an immunosuppressive tumor microenvironment (TME) through promoting angiogenesis, metabolic reprogramming, extracellular matrix remodeling, epithelial-mesenchymal transition (EMT), p53 inactivation, and immune evasion. Vascular normalization, a strategy aimed at restoring the structure and function of tumor blood vessels, has been shown to improve oxygen delivery and reverse hypoxia-induced signaling pathways, thus alleviates hypoxia and potentiates cancer immunotherapy. In this review, we discuss the mechanisms of tumor tissue hypoxia and its impacts on immune cells and cancer immunotherapy, as well as the approaches to induce tumor vascular normalization. We also summarize the evidence supporting the use of vascular normalization in combination with cancer immunotherapy, and highlight the challenges and future directions of this overlooked important field. By targeting the fundamental problem of tumor hypoxia, vascular normalization proposes a promising strategy to enhance the efficacy of cancer immunotherapy and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Peng Fan
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, 215123, Suzhou, China
| | - Naidong Zhang
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, 215123, Suzhou, China
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Mauro Piacentini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, 215123, Suzhou, China.
| | - Yuhui Huang
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, 215123, Suzhou, China.
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
46
|
Liu J, Lin WP, Xiao Y, Yang QC, Bushabu Fidele N, Yu HJ, Sun ZJ. VISTA blockade alleviates immunosuppression of MDSCs in oral squamous cell carcinoma. Int Immunopharmacol 2023; 125:111128. [PMID: 37907049 DOI: 10.1016/j.intimp.2023.111128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/17/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023]
Abstract
V-domain Ig suppressor of T-cell activation (VISTA) is a novel immune checkpoint regulator that can inhibit T cell-mediated antitumor immunity. Although the use of anti-VISTA monoclonal antibody has demonstrated encouraging outcomes in the therapy of various malignancies, its specific impact and underlying mechanisms in oral squamous cell carcinoma (OSCC) remain to be explored. In this work, we analyzed human OSCC tissue microarrays, human peripheral blood mononuclear cells, and immunocompetent transgenic mouse models to investigate the relationship between high VISTA expression and markers of myeloid-derived immunosuppressive cells (MDSCs; CD11b, CD33, Arginase-1), tumor-associated macrophages (CD68, CD163, CD206), and T cell function (CD8, PD-L1, Granzyme B). In OSCC, we discovered that VISTA was highly expressed and stably expressed in MDSCs. Furthermore, we established a mouse OSCC orthotopic xenograft tumor model to investigate the impact of VISTA blockade on the tumor microenvironment. We found that VISTA blockade reduces the immunosuppressive microenvironment and delays tumor growth. This is achieved by suppressing the quantity and function of MDSCs while boosting the function of tumor-infiltrating T cells. Our research indicated that VISTA expressed by MDSCs has a crucial function in the progression of OSCC and that VISTA blockade therapy is a promising immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, PR China
| | - Wen-Ping Lin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, PR China
| | - Yao Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, PR China
| | - Qi-Chao Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, PR China
| | - Nyimi Bushabu Fidele
- The National Key Laboratory of Basic Science of Stomatology of Kinshasa University, School of Dental Medicine, University of Kinshasa, Kinshasa B.P. 834 KIN XI, Democratic Republic of Congo
| | - Hai-Jun Yu
- Department of Radiation and Medical Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan 430071, PR China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430079, PR China; Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
47
|
Wang B, Ou Z, Zhong W, Huang L, Liao W, Sheng Y, Guo Z, Chen J, Yang W, Chen K, Huang X, Yang T, Lin T, Huang J. Effective Antitumor Immunity Can Be Triggered by Targeting VISTA in Combination with a TLR3-Specific Adjuvant. Cancer Immunol Res 2023; 11:1656-1670. [PMID: 37847894 DOI: 10.1158/2326-6066.cir-23-0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/31/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023]
Abstract
Resistance to anti-PD-1/PD-L1 treatment is often associated with accumulation of intratumoral inhibitory macrophages. V-domain immunoglobulin suppressor of T-cell activation (VISTA) is a nonredundant immune checkpoint that can induce both T-cell and myeloid-cell immunosuppression. In this study, we found that high levels of VISTA+ immune cells were associated with advanced stage bladder cancer and predicted poor survival in patients. A combination of high infiltration of VISTA+ immune cells and PD-L1+ immune cells or PD-1+ T cells predicted the worst survival. Flow cytometry and multiplex immunofluorescence analyses confirmed that VISTA expression was higher in macrophages than in T cells or neutrophils, and only VISTA+CD163+ macrophage density predicted poor prognosis in patients with bladder cancer. Toll-like receptor (TLR) agonists are known to trigger the innate immune response in macrophages. We found that the VISTA-specific mAb 13F3 augmented the ability of a TLR3-specific adjuvant to induce macrophage activation in vitro. In the MB49 syngeneic mouse model of bladder cancer, treatment with 13F3 curbed tumor growth and prolonged survival when combined with a TLR3-specific adjuvant. The combination treatment reduced the intratumoral frequency of CD206+ anti-inflammatory macrophages and levels of the immunosuppressive molecule TGFβ1, but it upregulated expression of immunostimulatory molecules (Ifna, Ifnb, and Trail) and increased the CD8+ T cell/regulatory T-cell ratio. These findings indicate that elevated VISTA expression in immune cells, particularly macrophages, is associated with an unfavorable prognosis in patients with bladder cancer and suggest that targeting VISTA in combination with a TLR3-specific adjuvant has translational potential.
Collapse
Affiliation(s)
- Bo Wang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Ziwei Ou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Wenlong Zhong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Wenjian Liao
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Yiyu Sheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Zhixing Guo
- Department of Ultrasound, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, P.R. China
| | - Junyu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Wenjuan Yang
- Department of Hematology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Ke Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Xiaodong Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Tenghao Yang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-sen (Zhongshan) University, Guangzhou, P.R. China
| |
Collapse
|
48
|
Jing C, Fu R, Liu X, Zang G, Zhu X, Wang C, Zhang W. A comprehensive cuproptosis score and associated gene signatures reveal prognostic and immunological features of idiopathic pulmonary fibrosis. Front Immunol 2023; 14:1268141. [PMID: 38035073 PMCID: PMC10682708 DOI: 10.3389/fimmu.2023.1268141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Background Cuproptosis, the most recently identified and regulated cell death, depends on copper ions in vivo. Copper regulates the pathogenesis of Idiopathic pulmonary fibrosis (IPF), but the mechanism of action underlying cuproptosis in IPF remains unclear. Methods We identified three cuproptosis patterns based on ten cuproptosis-related genes using unsupervised consensus clustering. We quantified these patterns using a PCA algorithm to construct a cuproptosis score. ssGSEA and the Cibersort algorithm assessed the immune profile of IPF patients. GSEA and GSVA were used to analyze the functional differences in different molecular patterns. Drug susceptibility prediction based on cuproptosis scores and meaningful gene markers was eventually screened in combination with external public data sets,in vitro experiments and our cases. Results Of the three types of cuproptosis-related clusters identified in the study, patients in the clusterA, geneclusterB, and score-high groups showed improved prognoses. Moreover, each cluster exhibited differential immune characteristics, with the subtype showing a poorer prognosis associated with an immune overreaction. Cuproptosis score can be an independent risk factor for predicting the prognosis of IPF patients. GSEA showed a significant functional correlation between the score and cuproptosis. The genes AKAP9, ANK3, C6orf106, LYRM7, and MBNL1, were identified as prognostic-related signatures in IPF patients. The functional role of immune regulation in IPF was further explored by correlating essential genes with immune factors. Also, the nomogram constructed by cumulative information from gene markers and cuproptosis score showed reliable clinical application. Conclusions Cuproptosis patterns differ significantly in the prognosis and immune characteristics of IPF patients. The cuproptosis score and five gene signatures can provide a reliable reference in the prognosis and diagnosis of IPF.
Collapse
Affiliation(s)
- Chuanqing Jing
- Clinical Department of Integrated Traditional Chinese and Western Medicine, The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rong Fu
- Clinical Department of Integrated Traditional Chinese and Western Medicine, The First Clinical Medical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xue Liu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Guodong Zang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Xue Zhu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Can Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, China
| |
Collapse
|
49
|
Shekari N, Shanehbandi D, Kazemi T, Zarredar H, Baradaran B, Jalali SA. VISTA and its ligands: the next generation of promising therapeutic targets in immunotherapy. Cancer Cell Int 2023; 23:265. [PMID: 37936192 PMCID: PMC10631023 DOI: 10.1186/s12935-023-03116-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
V-domain immunoglobulin suppressor of T cell activation (VISTA) is a novel negative checkpoint receptor (NCR) primarily involved in maintaining immune tolerance. It has a role in the pathogenesis of autoimmune disorders and cancer and has shown promising results as a therapeutic target. However, there is still some ambiguity regarding the ligands of VISTA and their interactions with each other. While V-Set and Immunoglobulin domain containing 3 (VSIG-3) and P-selectin glycoprotein ligand-1(PSGL-1) have been extensively studied as ligands for VISTA, the others have received less attention. It seems that investigating VISTA ligands, reviewing their functions and roles, as well as outcomes related to their interactions, may allow an understanding of their full functionality and effects within the cell or the microenvironment. It could also help discover alternative approaches to target the VISTA pathway without causing related side effects. In this regard, we summarize current evidence about VISTA, its related ligands, their interactions and effects, as well as their preclinical and clinical targeting agents.
Collapse
Affiliation(s)
- Najibeh Shekari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Zarredar
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Seyed Amir Jalali
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
50
|
Roy D, Gilmour C, Patnaik S, Wang LL. Combinatorial blockade for cancer immunotherapy: targeting emerging immune checkpoint receptors. Front Immunol 2023; 14:1264327. [PMID: 37928556 PMCID: PMC10620683 DOI: 10.3389/fimmu.2023.1264327] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
The differentiation, survival, and effector function of tumor-specific CD8+ cytotoxic T cells lie at the center of antitumor immunity. Due to the lack of proper costimulation and the abundant immunosuppressive mechanisms, tumor-specific T cells show a lack of persistence and exhausted and dysfunctional phenotypes. Multiple coinhibitory receptors, such as PD-1, CTLA-4, VISTA, TIGIT, TIM-3, and LAG-3, contribute to dysfunctional CTLs and failed antitumor immunity. These coinhibitory receptors are collectively called immune checkpoint receptors (ICRs). Immune checkpoint inhibitors (ICIs) targeting these ICRs have become the cornerstone for cancer immunotherapy as they have established new clinical paradigms for an expanding range of previously untreatable cancers. Given the nonredundant yet convergent molecular pathways mediated by various ICRs, combinatorial immunotherapies are being tested to bring synergistic benefits to patients. In this review, we summarize the mechanisms of several emerging ICRs, including VISTA, TIGIT, TIM-3, and LAG-3, and the preclinical and clinical data supporting combinatorial strategies to improve existing ICI therapies.
Collapse
Affiliation(s)
- Dia Roy
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Cassandra Gilmour
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH, United States
- Department of Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Sachin Patnaik
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Li Lily Wang
- Department of Translational Hematology and Oncology Research, Cleveland Clinic Foundation, Cleveland, OH, United States
- Department of Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|