1
|
Chen JL, Wang B, Lu Y, Antoun E, Bird O, Drennan PG, Yin Z, Liu G, Yao X, Pidoux M, Bates A, Jayathilaka D, Wang J, Angus B, Beer S, Espinosa A, Baillie JK, Semple MG, Rostron T, Waugh C, Sopp P, Knight JC, Fullerton JN, Coles M, Smith GL, Mentzer AJ, Peng Y, Dong T. T cell memory response to MPXV infection exhibits greater effector function and migratory potential compared to MVA-BN vaccination. Nat Commun 2025; 16:4362. [PMID: 40348752 PMCID: PMC12065855 DOI: 10.1038/s41467-025-59370-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 04/22/2025] [Indexed: 05/14/2025] Open
Abstract
In 2022, a global mpox outbreak occurred, and remains a concern today. The T cell memory response to MPXV (monkeypox virus) infection has not been fully investigated. In this study, we evaluate this response in convalescent and MVA-BN (Modified Vaccinia Ankara - Bavarian Nordic) vaccinated individuals using VACV-infected cells. Strong CD8+ and CD4+ T cell responses are observed, and T cell responses are biased towards viral early expressed proteins. We identify seven immunodominant HLA-A*02:01 restricted MPXV-specific epitopes and focus our detailed phenotypic and scRNAseq analysis on the immunodominant HLA-A*02:01-G5R18-26-specific CD8+ T cell response. While tetramer+CD8+ T cells share similar differentiation and activation phenotypes, T cells from convalescent individuals show greater cytotoxicity, migratory potential to site of infection and TCR clonal expansion. Our data suggest that effective functional profiles of MPXV-specific memory T cells induced by Mpox infection may have an implication on the long-term protective responses to future infection.
Collapse
Affiliation(s)
- Ji-Li Chen
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Beibei Wang
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Yongxu Lu
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Elie Antoun
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Olivia Bird
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Philip G Drennan
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Medicine, University of Oxford, Oxford, UK
| | - Zixi Yin
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Guihai Liu
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Xuan Yao
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
| | - Maya Pidoux
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Adam Bates
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Deshni Jayathilaka
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Junyuan Wang
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Brian Angus
- NDM Centre for Global Health Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sally Beer
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Alexis Espinosa
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - J Kenneth Baillie
- Baillie Gifford Pandemic Science Hub, Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
- Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
- Intensive Care Unit, Royal Infirmary Edinburgh, Edinburgh, UK
| | - Malcolm G Semple
- NIHR Health Protection Research Unit, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Timothy Rostron
- Sequencing Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Craig Waugh
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Paul Sopp
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Julian C Knight
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James N Fullerton
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Medicine, University of Oxford, Oxford, UK
| | - Mark Coles
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Medicine, University of Oxford, Oxford, UK
| | - Geoffrey L Smith
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Alexander J Mentzer
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yanchun Peng
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Tao Dong
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
2
|
Fisher JG, Bartlett LG, Kashyap T, Walker CJ, Khakoo SI, Blunt MD. Modulation of anti-tumour immunity by XPO1 inhibitors. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2025; 6:1002310. [PMID: 40291981 PMCID: PMC12022495 DOI: 10.37349/etat.2025.1002310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/24/2025] [Indexed: 04/30/2025] Open
Abstract
Exportin-1 (XPO1) is a nuclear export protein that, when overexpressed, can facilitate cancer cell proliferation and survival and is frequently overexpressed or mutated in cancer patients. As such, selective inhibitors of XPO1 (XPO1i) function have been developed to inhibit cancer cell proliferation and induce apoptosis. This review outlines the evidence for the immunomodulatory properties of XPO1 inhibition and discusses the potential for combining and sequencing XPO1i with immunotherapy to improve the treatment of patients with cancer. Selinexor is a first-in-class XPO1i that is FDA-approved for the treatment of patients with relapsed and refractory (RR) multiple myeloma and RR diffuse large B cell lymphoma. In addition to the cancer cell intrinsic pro-apoptotic activity, increasing evidence suggests that XPO1 inhibition has immunomodulatory properties. In this review, we describe how XPO1i can lead to a skewing of macrophage polarisation, inhibition of neutrophil extracellular traps, modulation of immune checkpoint expression, blockade of myeloid-derived suppressor cells (MDSCs) and sensitisation of cancer cells to T cell and NK (natural killer) cell immunosurveillance. As such, there is an opportunity for selinexor to enhance immunotherapy efficacy and thus a need for clinical trials assessing selinexor in combination with immunotherapies such as immune checkpoint inhibitors, direct targeting monoclonal antibodies, chimeric antigen receptor (CAR)-T cells and cereblon E3 ligase modulators (CELMoDs).
Collapse
Affiliation(s)
- Jack G. Fisher
- Clinical and Experimental Sciences, University of Southampton, SO16 7YD Southampton, UK
| | - Laura G. Bartlett
- Clinical and Experimental Sciences, University of Southampton, SO16 7YD Southampton, UK
| | | | | | - Salim I. Khakoo
- Clinical and Experimental Sciences, University of Southampton, SO16 7YD Southampton, UK
| | - Matthew D. Blunt
- Clinical and Experimental Sciences, University of Southampton, SO16 7YD Southampton, UK
| |
Collapse
|
3
|
Song Y, Lei L, Cai X, Wei H, Yu CY. Immunomodulatory Peptides for Tumor Treatment. Adv Healthc Mater 2025; 14:e2400512. [PMID: 38657003 DOI: 10.1002/adhm.202400512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/07/2024] [Indexed: 04/26/2024]
Abstract
Peptides exhibit various biological activities, including biorecognition, cell targeting, and tumor penetration, and can stimulate immune cells to elicit immune responses for tumor immunotherapy. Peptide self-assemblies and peptide-functionalized nanocarriers can reduce the effect of various biological barriers and the degradation by peptidases, enhancing the efficiency of peptide delivery and improving antitumor immune responses. To date, the design and development of peptides with various functionalities have been extensively reviewed for enhanced chemotherapy; however, peptide-mediated tumor immunotherapy using peptides acting on different immune cells, to the knowledge, has not yet been summarized. Thus, this work provides a review of this emerging subject of research, focusing on immunomodulatory anticancer peptides. This review introduces the role of peptides in the immunomodulation of innate and adaptive immune cells, followed by a link between peptides in the innate and adaptive immune systems. The peptides are discussed in detail, following a classification according to their effects on different innate and adaptive immune cells, as well as immune checkpoints. Subsequently, two delivery strategies for peptides as drugs are presented: peptide self-assemblies and peptide-functionalized nanocarriers. The concluding remarks regarding the challenges and potential solutions of peptides for tumor immunotherapy are presented.
Collapse
Affiliation(s)
- Yang Song
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Longtianyang Lei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xingyu Cai
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Affiliated Hospital of Hunan Academy of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, 410013, China
| |
Collapse
|
4
|
Xu SJ, Luo YF, Huang J, Tu JH, Chen C, Shen YM, Sun ZM, Chen SC. Prognostic value of immunosuppression scores in patients with esophageal squamous cell carcinoma: a multicenter study. Front Immunol 2025; 15:1517968. [PMID: 39845968 PMCID: PMC11752912 DOI: 10.3389/fimmu.2024.1517968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 12/13/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction The prognostic impact of human leukocyte antigen-E (HLA-E) expression and the proportion of natural killer (NK) cells in esophageal squamous cell carcinoma (ESCC) was investigated. Methods This study retrospectively evaluated 397 ESCC patients across two centers. The cumulative incidence of recurrence (CIR) and the incidence of tumor-related death (CID) were analyzed in various groups. An immunosuppression score (ISS) was developed based on HLA-E expression and NK cell proportion. Differences between groups were adjusted using inverse probability treatment weighting (IPTW). The factors influencing cancer-specific survival (CSS) and recurrence-free survival (RFS) were also examined. Results Patients with low HLA-E expression had significantly higher five-year CIR and CID compared to those with high expression (CIR: 20.7% vs. 45.1%, CID: 19.3% vs. 40.1%; p< 0.001). Similarly, NK cell-positive patients had significantly better five-year CIR and CID than NK cell-negative patients (CIR: 16.3% vs. 59.6%, CID: 13.9% vs. 53.7%; p < 0.001). The Sankey diagram indicated that the low ISS group had a lower recurrence and tumor-related mortality rate (p < 0.05). After IPTW adjustment, the low ISS group showed improved five-year RFS (80.1% vs. 35.4%, p < 0.001) and five-year CSS (82.3% vs. 42.5%, p < 0.001) compared to the high ISS group. Conclusions ESCC with different ISS statuses represents two distinct biological subtypes, underscoring the need for personalized treatment strategies tailored to varying tumor behaviors.
Collapse
Affiliation(s)
- Shao-jun Xu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical
University, Fuzhou, Fujian, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Yun-fan Luo
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical
University, Fuzhou, Fujian, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Jin Huang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical
University, Fuzhou, Fujian, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Jia-hua Tu
- Department of Thoracic Surgery, The First Hospital of Putian, Putian, Fujian, China
| | - Chao Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical
University, Fuzhou, Fujian, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Yan-ming Shen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical
University, Fuzhou, Fujian, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Zhao-min Sun
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical
University, Fuzhou, Fujian, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Shu-chen Chen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical
University, Fuzhou, Fujian, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| |
Collapse
|
5
|
Arafat Hossain M. A comprehensive review of immune checkpoint inhibitors for cancer treatment. Int Immunopharmacol 2024; 143:113365. [PMID: 39447408 DOI: 10.1016/j.intimp.2024.113365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/28/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Immunology-based therapies are emerging as an effective cancer treatment, using the body's immune system to target tumors. Immune checkpoints, which regulate immune responses to prevent tissue damage and autoimmunity, are often exploited by cancer cells to avoid destruction. The discovery of checkpoint proteins like PD-1/PD-L1 and CTLA-4 was pivotal in developing cancer immunotherapy. Immune checkpoint inhibitors (ICIs) have shown great success, with FDA-approved drugs like PD-1 inhibitors (Nivolumab, Pembrolizumab, Cemiplimab), PD-L1 inhibitors (Atezolizumab, Durvalumab, Avelumab), and CTLA-4 inhibitors (Ipilimumab, Tremelimumab), alongside LAG-3 inhibitor Relatlimab. Research continues on new checkpoints like TIM-3, VISTA, B7-H3, BTLA, and TIGIT. Biomarkers like PDL-1 expression, tumor mutation burden, interferon-γ presence, microbiome composition, and extracellular matrix characteristics play a crucial role in predicting responses to immunotherapy with checkpoint inhibitors. Despite their effectiveness, not all patients experience the same level of benefit, and organ-specific immune-related adverse events (irAEs) such as rash or itching, colitis, diarrhea, hyperthyroidism, and hypothyroidism may occur. Given the rapid advancements in this field and the variability in patient outcomes, there is an urgent need for a comprehensive review that consolidates the latest findings on immune checkpoint inhibitors, covering their clinical status, biomarkers, resistance mechanisms, strategies to overcome resistance, and associated adverse effects. This review aims to fill this gap by providing an analysis of the current clinical status of ICIs, emerging biomarkers, mechanisms of resistance, strategies to enhance therapeutic efficacy, and assessment of adverse effects. This review is crucial to furthering our understanding of ICIs and optimizing their application in cancer therapy.
Collapse
Affiliation(s)
- Md Arafat Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| |
Collapse
|
6
|
Cui C, Zhang H, Yang C, Yin M, Teng X, Yang M, Kong D, Zhang J, Peng W, Chu Z, Wang J, Sun Y, Kang L, Lyu B, Gao Q, Wu M, Wang Y, Li Y. Inhibition of JNK Signaling Overcomes Cancer-Associated Fibroblast-Mediated Immunosuppression and Enhances the Efficacy of Immunotherapy in Bladder Cancer. Cancer Res 2024; 84:4199-4213. [PMID: 39292817 DOI: 10.1158/0008-5472.can-24-0940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/15/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Currently, only 20% to 40% of patients with cancer benefit from immune checkpoint inhibitors. Understanding the mechanisms underlying the immunosuppressive tumor microenvironment (TME) and characterizing dynamic changes in the immunologic landscape during treatment are critical for improving responsiveness to immunotherapy. In this study, we identified JNK signaling in cancer-associated fibroblasts (CAF) as a regulator of the immunosuppressive TME. Single-cell RNA sequencing of bladder cancer samples treated with a JNK inhibitor revealed enhanced cytotoxicity and effector functions of CD8+ T cells. In untreated tumors, CAFs interacted frequently with CD8+ T cells and mediated their exhaustion. JNK inhibition abrogated the immunosuppression function of CAFs by downregulating the expression of thymic stromal lymphopoietin (TSLP), thereby restoring CD8+ T-cell cytotoxicity. In addition, blockade of CAF-derived TSLP in combination with anti-PD-1 treatment promoted tumor elimination by CD8+ T cells in vivo. Collectively, these results indicate that JNK signaling plays an important immunosuppressive role in the TME by promoting expression of TSLP in CAFs and suggest that inhibiting JNK signaling could be a promising immunotherapeutic strategy for cancer treatment. Significance: JNK signaling promotes the secretion of TSLP by bladder cancer-associated fibroblasts to impede CD8+ T-cell activity, which can be circumvented by combination treatment targeting JNK signaling and PD-1.
Collapse
Affiliation(s)
- Chengying Cui
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Haojie Zhang
- Department of Urology, Huadong Hospital, Fudan University, Shanghai, China
| | - Congcong Yang
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Mingwei Yin
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xinkun Teng
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Miaomiao Yang
- The First Affiliated Hospital of Anhui Medical University, Pathology Center, Hefei, China
- Anhui Public Health Clinical Center, Pathology Center, Hefei, China
| | - Dejie Kong
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Jinzhi Zhang
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Weidong Peng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Zhimin Chu
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Jingjing Wang
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Yating Sun
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Liping Kang
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Bin Lyu
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Qian Gao
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Mingqing Wu
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
| | - Yongqiang Wang
- Department of Urology, South China Hospital, Medical School, Shenzhen University, Shenzhen, China
| | - Yang Li
- Department of Genetics, School of Life Science, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Urological and Andrological Diseases Research and Medical Transformation, Anhui Medical University, Hefei, China
| |
Collapse
|
7
|
Tsao HW, Anderson S, Finn KJ, Perera JJ, Pass LF, Schneider EM, Jiang A, Fetterman R, Chuong CL, Kozuma K, Stickler MM, Creixell M, Klaeger S, Phulphagar KM, Rachimi S, Verzani EK, Olsson N, Dubrot J, Pech MF, Silkworth W, Lane-Reticker SK, Allen PM, Ibrahim K, Knudsen NH, Cheng AY, Long AH, Ebrahimi-Nik H, Kim SY, Du PP, Iracheta-Vellve A, Robitschek EJ, Suermondt JSMT, Davis TGR, Wolfe CH, Atluri T, Olander KE, Rush JS, Sundberg TB, McAllister FE, Abelin JG, Firestone A, Stokoe D, Carr SA, Harding FA, Yates KB, Manguso RT. Targeting the aminopeptidase ERAP enhances antitumor immunity by disrupting the NKG2A-HLA-E inhibitory checkpoint. Immunity 2024; 57:2863-2878.e12. [PMID: 39561763 DOI: 10.1016/j.immuni.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/12/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024]
Abstract
The aminopeptidase, endoplasmic reticulum aminopeptidase 1 (ERAP1), trims peptides for loading into major histocompatibility complex class I (MHC class I), and loss of this activity has broad effects on the MHC class I peptidome. Here, we investigated the impact of targeting ERAP1 in immune checkpoint blockade (ICB), as MHC class I interactions mediate both activating and inhibitory functions in antitumor immunity. Loss of ERAP sensitized mouse tumor models to ICB, and this sensitivity depended on CD8+ T cells and natural killer (NK) cells. In vivo suppression screens revealed that Erap1 deletion inactivated the inhibitory NKG2A-HLA-E checkpoint, which requires presentation of a restricted set of invariant epitopes (VL9) on HLA-E. Loss of ERAP altered the HLA-E peptidome, preventing NKG2A engagement. In humans, ERAP1 and ERAP2 showed functional redundancy for the processing and presentation of VL9, and loss of both inactivated the NKG2A checkpoint in cancer cells. Thus, loss of ERAP phenocopies the inhibition of the NKG2A-HLA-E pathway and represents an attractive approach to inhibit this critical checkpoint.
Collapse
Affiliation(s)
- Hsiao-Wei Tsao
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Seth Anderson
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | | | - Jonathan J Perera
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Lomax F Pass
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Emily M Schneider
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Aiping Jiang
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Rachel Fetterman
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Cun Lan Chuong
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Kaiya Kozuma
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Susan Klaeger
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | | | - Suzanna Rachimi
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Eva K Verzani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | | | - Juan Dubrot
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Sarah Kate Lane-Reticker
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Peter M Allen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Kyrellos Ibrahim
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Nelson H Knudsen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Andrew Y Cheng
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Adrienne H Long
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Hakimeh Ebrahimi-Nik
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Sarah Y Kim
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Peter P Du
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Arvin Iracheta-Vellve
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Emily J Robitschek
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Juliette S M T Suermondt
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Thomas G R Davis
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Clara H Wolfe
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Trisha Atluri
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Kira E Olander
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Jason S Rush
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Thomas B Sundberg
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | | | - Jennifer G Abelin
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | | | - David Stokoe
- Calico Life Sciences, South San Francisco, CA, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | | | - Kathleen B Yates
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| | - Robert T Manguso
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA; Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
8
|
Feng X, Lai X, Zhou M, Bie J, Li T, Wang D, Chen S, Hu X, Wang C, Xu P. Targeting HLA-E in Lung Cancer: The Therapeutic Potential of IRF5-Engineered M1-Macrophage-Derived Exosomes. THE CLINICAL RESPIRATORY JOURNAL 2024; 18:e70035. [PMID: 39623605 PMCID: PMC11611755 DOI: 10.1111/crj.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024]
Abstract
Immunotherapy is a pivotal approach in the treatment of lung cancer. Although HLA-E is a potential target for tumor immunotherapy, its role in lung cancer remains unclear. Previous studies have identified the transcription factor IRF5 as a characteristic gene of M1-like macrophages, highlighting its crucial role in promoting antitumor immune responses. In this study, we developed an engineered M1-like macrophage exosomes expressing IRF5 (IRF5 M1-exos) and demonstrated their ability to inhibit proliferation, migration, and invasion of lung cancer cells. Moreover, our experiments using a nude mouse model revealed that IRF5 M1-exos exerted potent therapeutic effects by effectively suppressing tumor growth. Notably, the mechanism by which IRF5 exerts its antitumor function through HLA-E regulation in lung cancer has not been fully elucidated. Here, we identified HLA-E as a downstream target gene of IRF5 and demonstrated that the overexpression of HLA-E can counteract the tumor-promoting effects induced by si-IRF5 M1-exos. These results suggest that M1 macrophage-derived exosomes, enriched with the transcription factor IRF5, exhibit potent antitumor activity by up-regulating HLA-E in lung cancer cells. Therefore, IRF5 M1-exos represent an attractive therapeutic strategy for lung cancer.
Collapse
Affiliation(s)
- Xuqin Feng
- Department of OncologyBeijing Anzhen Nanchong Hospital, Capital Medical University (Nanchong Central Hospital), The Second Clinical Medical College of North Sichuan Medical CollegeNanchongSichuanChina
| | - Xiangyu Lai
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer HospitalChongqing Cancer InstituteChongqingChina
| | - Mingming Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer HospitalChongqing Cancer InstituteChongqingChina
| | - Jun Bie
- Department of OncologyBeijing Anzhen Nanchong Hospital, Capital Medical University (Nanchong Central Hospital), The Second Clinical Medical College of North Sichuan Medical CollegeNanchongSichuanChina
| | - Tingting Li
- Department of OncologyBeijing Anzhen Nanchong Hospital, Capital Medical University (Nanchong Central Hospital), The Second Clinical Medical College of North Sichuan Medical CollegeNanchongSichuanChina
| | - Dan Wang
- Department of OncologyBeijing Anzhen Nanchong Hospital, Capital Medical University (Nanchong Central Hospital), The Second Clinical Medical College of North Sichuan Medical CollegeNanchongSichuanChina
| | - Silin Chen
- Department of OncologyBeijing Anzhen Nanchong Hospital, Capital Medical University (Nanchong Central Hospital), The Second Clinical Medical College of North Sichuan Medical CollegeNanchongSichuanChina
| | - Xin Hu
- Department of OncologyBeijing Anzhen Nanchong Hospital, Capital Medical University (Nanchong Central Hospital), The Second Clinical Medical College of North Sichuan Medical CollegeNanchongSichuanChina
| | - Chunyu Wang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing Cancer HospitalChongqing Cancer InstituteChongqingChina
| | - Peng Xu
- Department of Clinical LaboratoryBeibei Traditional Chinese Medical HospitalChongqingChina
| |
Collapse
|
9
|
Murugesan G, Paterson RL, Kulkarni R, Ilkow V, Suckling RJ, Connolly MM, Karuppiah V, Pengelly R, Jadhav A, Donoso J, Heunis T, Bunjobpol W, Philips G, Ololade K, Kay D, Sarkar A, Barber C, Raj R, Perot C, Grant T, Treveil A, Walker A, Dembek M, Gibbs-Howe D, Hock M, Carreira RJ, Atkin KE, Dorrell L, Knox A, Leonard S, Salio M, Godinho LF. Viral sequence determines HLA-E-restricted T cell recognition of hepatitis B surface antigen. Nat Commun 2024; 15:10126. [PMID: 39578466 PMCID: PMC11584656 DOI: 10.1038/s41467-024-54378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
The non-polymorphic HLA-E molecule offers opportunities for new universal immunotherapeutic approaches to chronic infectious diseases. Chronic Hepatitis B virus (HBV) infection is driven in part by T cell dysfunction due to elevated levels of the HBV envelope (Env) protein hepatitis B surface antigen (HBsAg). Here we report the characterization of three genotypic variants of an HLA-E-binding HBsAg peptide, Env371-379, identified through bioinformatic predictions and verified by biochemical and cellular assays. Using a soluble affinity-enhanced T cell receptor (TCR) (a09b08)-anti-CD3 bispecific molecule to probe HLA-E presentation of the Env371-379 peptides, we demonstrate that only the most stable Env371-379 variant, L6I, elicits functional responses to a09b08-anti-CD3-redirected polyclonal T cells co-cultured with targets expressing endogenous HBsAg. Furthermore, HLA-E-Env371-379 L6I-specific CD8+ T cells are detectable in HBV-naïve donors and people with chronic HBV after in vitro priming. In conclusion, we provide evidence for HLA-E-mediated HBV Env peptide presentation, and highlight the effect of viral mutations on the stability and targetability of pHLA-E molecules.
Collapse
Affiliation(s)
| | | | - Rakesh Kulkarni
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Veronica Ilkow
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | | | - Mary M Connolly
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | | | - Robert Pengelly
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Archana Jadhav
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Jose Donoso
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Tiaan Heunis
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | | | - Gwilym Philips
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Kafayat Ololade
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Daniel Kay
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Anshuk Sarkar
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Claire Barber
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Ritu Raj
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Carole Perot
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Tressan Grant
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Agatha Treveil
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Andrew Walker
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Marcin Dembek
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Dawn Gibbs-Howe
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Miriam Hock
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | | | - Kate E Atkin
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Lucy Dorrell
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Andrew Knox
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Sarah Leonard
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Mariolina Salio
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK
| | - Luis F Godinho
- Immunocore Ltd, 92 Park Drive, Abingdon, Oxfordshire, OX14 4RY, UK.
| |
Collapse
|
10
|
Zhou Y, Wang Y, Liang J, Qian J, Wu Z, Gao Z, Qi J, Zhu S, Li N, Chen Y, Chen G, Nie L, Guo T, Wang H. Generation, Characterization, and Preclinical Studies of a Novel NKG2A-Targeted Antibody BRY805 for Cancer Immunotherapy. Antibodies (Basel) 2024; 13:93. [PMID: 39584993 PMCID: PMC11587108 DOI: 10.3390/antib13040093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 11/26/2024] Open
Abstract
Immuno-oncology has revolutionized cancer treatment, with NKG2A emerging as a novel target for immunotherapy. The blockade of NKG2A using the immune checkpoint inhibitor (ICI) monalizumab has been shown to enhance the responses of both NK cells and CD8+ T cells. However, monalizumab has demonstrated limited efficacy in in vitro cytotoxic assays and clinical trials. In our study, we discovered and characterized a novel anti-NKG2A antibody, BRY805, which exhibits high specificity for the human CD94/NKG2A heterodimer complex and does not bind to the activating NKG2C receptor. In vitro cytotoxicity assays demonstrated that BRY805 effectively activated NK92 cells and primary NK cells, thereby enhancing the cytotoxic activity of effector cells against cancer cells overexpressing HLA-E, with significantly greater efficacy compared to monalizumab. Furthermore, BRY805 exhibited synergistic antitumor activity when combined with PD-L1 monoclonal antibodies. In a mouse xenograft model, BRY805 showed superior tumor control relative to monalizumab and demonstrated a favorable safety profile in non-human primate studies.
Collapse
Affiliation(s)
- Yaqiong Zhou
- BioRay Pharmaceutical Co., Ltd., Taizhou 318000, China
- BioRay Pharmaceutical (Hangzhou) Co., Ltd., Hangzhou 311404, China
| | - Yiru Wang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jinfeng Liang
- Zhejiang Center for Drug and Cosmetic Evaluation, Zhejiang Medical Products Administration, Hangzhou 310012, China
| | - Jing Qian
- Zhejiang Center for Drug and Cosmetic Evaluation, Zhejiang Medical Products Administration, Hangzhou 310012, China
| | - Zhenhua Wu
- BioRay Pharmaceutical Co., Ltd., Taizhou 318000, China
- BioRay Pharmaceutical (Hangzhou) Co., Ltd., Hangzhou 311404, China
| | - Zhangzhao Gao
- BioRay Pharmaceutical Co., Ltd., Taizhou 318000, China
- BioRay Pharmaceutical (Hangzhou) Co., Ltd., Hangzhou 311404, China
| | - Jian Qi
- BioRay Pharmaceutical Co., Ltd., Taizhou 318000, China
- BioRay Pharmaceutical (Hangzhou) Co., Ltd., Hangzhou 311404, China
| | - Shanshan Zhu
- BioRay Pharmaceutical Co., Ltd., Taizhou 318000, China
- BioRay Pharmaceutical (Hangzhou) Co., Ltd., Hangzhou 311404, China
| | - Na Li
- BioRay Pharmaceutical Co., Ltd., Taizhou 318000, China
- BioRay Pharmaceutical (Hangzhou) Co., Ltd., Hangzhou 311404, China
| | - Yao Chen
- BioRay Pharmaceutical Co., Ltd., Taizhou 318000, China
- BioRay Pharmaceutical (Hangzhou) Co., Ltd., Hangzhou 311404, China
| | - Gang Chen
- BioRay Pharmaceutical Corp., San Diego, CA 92121, USA
| | - Lei Nie
- BioRay Pharmaceutical Co., Ltd., Taizhou 318000, China
- BioRay Pharmaceutical (Hangzhou) Co., Ltd., Hangzhou 311404, China
| | - Tingting Guo
- BioRay Pharmaceutical Co., Ltd., Taizhou 318000, China
- BioRay Pharmaceutical (Hangzhou) Co., Ltd., Hangzhou 311404, China
| | - Haibin Wang
- BioRay Pharmaceutical Co., Ltd., Taizhou 318000, China
- BioRay Pharmaceutical (Hangzhou) Co., Ltd., Hangzhou 311404, China
| |
Collapse
|
11
|
Li Y, Li Z, Tang Y, Zhuang X, Feng W, Boor PPC, Buschow S, Sprengers D, Zhou G. Unlocking the therapeutic potential of the NKG2A-HLA-E immune checkpoint pathway in T cells and NK cells for cancer immunotherapy. J Immunother Cancer 2024; 12:e009934. [PMID: 39486805 PMCID: PMC11529472 DOI: 10.1136/jitc-2024-009934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/29/2024] [Indexed: 11/04/2024] Open
Abstract
Immune checkpoint blockade, which enhances the reactivity of T cells to eliminate cancer cells, has emerged as a potent strategy in cancer therapy. Besides T cells, natural killer (NK) cells also play an indispensable role in tumor surveillance and destruction. NK Group 2 family of receptor A (NKG2A), an emerging co-inhibitory immune checkpoint expressed on both NK cells and T cells, mediates inhibitory signal via interaction with its ligand human leukocyte antigen-E (HLA-E), thereby attenuating the effector and cytotoxic functions of NK cells and T cells. Developing antibodies to block NKG2A, holds promise in restoring the antitumor cytotoxicity of NK cells and T cells. In this review, we delve into the expression and functional significance of NKG2A and HLA-E, elucidating how the NKG2A-HLA-E axis contributes to tumor immune escape via signal transduction mechanisms. Furthermore, we provide an overview of clinical trials investigating NKG2A blockade, either as monotherapy or in combination with other therapeutic antibodies, highlighting the responses of the immune system and the clinical benefits for patients. We pay special attention to additional immune co-signaling molecules that serve as potential targets on both NK cells and T cells, aiming to evoke more robust immune responses against cancer. This review offers an in-depth exploration of the NKG2A-HLA-E pathway as a pivotal checkpoint in the anti-tumor responses, paving the way for new immunotherapeutic strategies to improve cancer patient outcomes.
Collapse
Affiliation(s)
- Yan Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhu Li
- Department of Dermatology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yisen Tang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaomei Zhuang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wanhua Feng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Patrick P C Boor
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sonja Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Guoying Zhou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Cheng W, Zhu N, Wang J, Yang R. A role of gut microbiota metabolites in HLA-E and NKG2 blockage immunotherapy against tumors: new insights for clinical application. Front Immunol 2024; 15:1331518. [PMID: 39229258 PMCID: PMC11368731 DOI: 10.3389/fimmu.2024.1331518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 07/16/2024] [Indexed: 09/05/2024] Open
Abstract
One of major breakthroughs in immunotherapy against tumor is from blocking immune checkpoint molecules on tumor and reactive T cells. The development of CTLA-4 and PD-1 blockage antibodies has triggered to search for additional effective therapeutic strategies. This causes recent findings that blocking the interaction of checkpoint molecule NKG2A in NK and CD8 T cells with HLA-E in tumors is effective in defensing tumors. Interestingly, gut microbiota also affects this immune checkpoint immunotherapy against tumor. Gut microbiota such as bacteria can contribute to the regulation of host immune response and homeostasis. They not only promote the differentiation and function of immunosuppressive cells but also the inflammatory cells through the metabolites such as tryptophan (Trp) and bile acid (BA) metabolites as well as short chain fatty acids (SCFAs). These gut microbiota metabolites (GMMs) educated immune cells can affect the differentiation and function of effective CD8 and NK cells. Notably, these metabolites also directly affect the activity of CD8 and NK cells. Furthermore, the expression of CD94/NKG2A in the immune cells and/or their ligand HLA-E in the tumor cells is also regulated by gut microbiota associated immune factors. These findings offer new insights for the clinical application of gut microbiota in precise and/or personalized treatments of tumors. In this review, we will discuss the impacts of GMMs and GMM educated immune cells on the activity of effective CD8 and NK cells and the expression of CD94/NKG2A in immune cells and/or their ligand HLA-E in tumor cells.
Collapse
Affiliation(s)
- Wenyue Cheng
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Ningning Zhu
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Juanjuan Wang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
13
|
Wang F, Yue S, Huang Q, Lei T, Li X, Wang C, Yue J, Liu C. Cellular heterogeneity and key subsets of tissue-resident memory T cells in cervical cancer. NPJ Precis Oncol 2024; 8:145. [PMID: 39014148 PMCID: PMC11252146 DOI: 10.1038/s41698-024-00637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
Tissue-resident memory T cells (TRMs) play a critical role in cancer immunity by offering quick and effective immune responses. However, the cellular heterogeneity of TRMs and their significance in cervical cancer (CC) remain unknown. In this study, we generated and analyzed single-cell RNA sequencing data from 12,945 TRMs (ITGAE+ CD3D+) and 25,627 non-TRMs (ITGAE- CD3D+), derived from 11 CC tissues and 5 normal cervical tissues. We found that TRMs were more immunoreactive than non-TRMs, and TRMs in CC tissues were more activated than those in normal cervical tissues. Six CD8+ TRM subclusters and one CD4+ TRM subcluster were identified. Among them, CXCL13+ CD8+ TRMs were more abundant in CC tissues than in normal cervical tissues, had both cytotoxic and inhibitory features, and were enriched in pathways related to defense responses to the virus. Meanwhile, PLAC8+ CD8+ TRMs were less abundant in CC tissues than in normal cervical tissues but had highly cytotoxic features. The signature gene set scores of both cell subclusters were positively correlated with the overall survival and progression-free survival of patients with CC following radiotherapy. Of note, the association between HLA-E and NKG2A, either alone or in a complex with CD94, was enriched in CXCL13+ CD8+ TRMs interacting with epithelial cells at CC tissues. The in-depth characterization of TRMs heterogeneity in the microenvironment of CC could have important implications for advancing treatment and improving the prognosis of patients with CC.
Collapse
Affiliation(s)
- Fuhao Wang
- Department of Radiation Oncology, Peking University First Hospital, 100034, Beijing, China
| | - Shengqin Yue
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qingyu Huang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Tianyu Lei
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaohui Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Cong Wang
- Department of Gynecologic Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Jinbo Yue
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Chao Liu
- Department of Radiation Oncology, Peking University First Hospital, 100034, Beijing, China.
| |
Collapse
|
14
|
Rodriguez-Garcia GJ, Graves DK, Mirza MB, Idrees K, Kim YJ, Korrer MJ, Rathmell JC. Cancer Cell Small Molecule Secretome Induces the Immune Checkpoint NKG2A and Dysfunction of Human CD8+ T Cells. Immunohorizons 2024; 8:464-477. [PMID: 38922288 PMCID: PMC11220743 DOI: 10.4049/immunohorizons.2400046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
PD-1 blockade has been approved for head and neck squamous cell carcinoma (HNSCC) patients. However, many HNSCC patients do not respond to this treatment, and other tumor microenvironmental factors may promote resistance to PD-1 blockade. We previously identified increased expression of the inhibitory receptor NKG2A on CD8+ T cells in HNSCC tumors compared with T cells in matching PBMC samples. Mechanisms that promote NKG2A expression and the role of NKG2A on human T cells in the tumor microenvironment, however, are uncertain. In this study, we show that tumor-conditioned media (TCM) of HNSCC cancer cell lines or ascites fluid from colorectal carcinoma patients is sufficient to induce the expression of NKG2A and other inhibitory receptors on activated CD8+ T cells isolated from PBMCs of healthy donors. Boiling or small molecular mass cutoff filtering did not eliminate the effect of TCM, suggesting that a small molecule promotes NKG2A. T cell activation in TCM decreased the basal and maximal mitochondrial respiration to metabolically restrain CD8+ T cells. Functionally, T cell activation in TCM reduced CD8+ T cell cytotoxicity as shown by lower production of cytokines, granzyme B, and perforin. Furthermore, TCM prevented CD8+ T cells from killing cancer cells in response to an anti-CD19/anti-CD3 bispecific T cell engager. Thus, a small secreted molecule from HNSCC cells can induce NKG2A expression and promote T cell dysfunction. Our findings may lead to targets for novel cancer therapies or biomarkers for NKG2A blockade response and provide a model to study T cell dysfunction and impaired metabolism.
Collapse
Affiliation(s)
| | - Diana K. Graves
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Muhammad B. Mirza
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Kamran Idrees
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
| | - Young J. Kim
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Department of Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN
- Regeneron Pharmaceutical, Tarrytown, NY
| | - Michael J. Korrer
- Department of Otolaryngology—Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
15
|
Iyer RF, Verweij MC, Nair SS, Morrow D, Mansouri M, Chakravarty D, Beechwood T, Meyer C, Uebelhoer L, Lauron EJ, Selseth A, John N, Thin TH, Dzedzik S, Havenar-Daughton C, Axthelm MK, Douglas J, Korman A, Bhardwaj N, Tewari AK, Hansen S, Malouli D, Picker LJ, Früh K. CD8 + T cell targeting of tumor antigens presented by HLA-E. SCIENCE ADVANCES 2024; 10:eadm7515. [PMID: 38728394 PMCID: PMC11086602 DOI: 10.1126/sciadv.adm7515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024]
Abstract
The nonpolymorphic major histocompatibility complex E (MHC-E) molecule is up-regulated on many cancer cells, thus contributing to immune evasion by engaging inhibitory NKG2A/CD94 receptors on NK cells and tumor-infiltrating T cells. To investigate whether MHC-E expression by cancer cells can be targeted for MHC-E-restricted T cell control, we immunized rhesus macaques (RM) with rhesus cytomegalovirus (RhCMV) vectors genetically programmed to elicit MHC-E-restricted CD8+ T cells and to express established tumor-associated antigens (TAAs) including prostatic acidic phosphatase (PAP), Wilms tumor-1 protein, or Mesothelin. T cell responses to all three tumor antigens were comparable to viral antigen-specific responses with respect to frequency, duration, phenotype, epitope density, and MHC restriction. Thus, CMV-vectored cancer vaccines can bypass central tolerance by eliciting T cells to noncanonical epitopes. We further demonstrate that PAP-specific, MHC-E-restricted CD8+ T cells from RhCMV/PAP-immunized RM respond to PAP-expressing HLA-E+ prostate cancer cells, suggesting that the HLA-E/NKG2A immune checkpoint can be exploited for CD8+ T cell-based immunotherapies.
Collapse
Affiliation(s)
- Ravi F. Iyer
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Marieke C. Verweij
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Sujit S. Nair
- Department of Urology and Tisch Cancer Institute, Icahn School of Medicine at Mt Sinai, New York, NY 10029, USA
| | - David Morrow
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Mandana Mansouri
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Dimple Chakravarty
- Department of Urology and Tisch Cancer Institute, Icahn School of Medicine at Mt Sinai, New York, NY 10029, USA
| | - Teresa Beechwood
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | | | - Luke Uebelhoer
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | | | - Andrea Selseth
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Nessy John
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Tin Htwe Thin
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Siarhei Dzedzik
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | | | - Alan Korman
- Vir Biotechnology, San Francisco, CA 14158, USA
| | - Nina Bhardwaj
- Department of Urology and Tisch Cancer Institute, Icahn School of Medicine at Mt Sinai, New York, NY 10029, USA
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ashutosh K. Tewari
- Department of Urology and Tisch Cancer Institute, Icahn School of Medicine at Mt Sinai, New York, NY 10029, USA
| | - Scott Hansen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Daniel Malouli
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Louis J. Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Klaus Früh
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| |
Collapse
|
16
|
Raguz J, Pinto C, Pölzlbauer T, Habbeddine M, Rosskopf S, Strauß J, Just V, Schmidt S, Bidet Huang K, Stemeseder F, Schippers T, Stewart E, Jez J, Berraondo P, Orlinger KK, Lauterbach H. Preclinical evaluation of two phylogenetically distant arenavirus vectors for the development of novel immunotherapeutic combination strategies for cancer treatment. J Immunother Cancer 2024; 12:e008286. [PMID: 38631709 PMCID: PMC11029282 DOI: 10.1136/jitc-2023-008286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Engineered arenavirus vectors have recently been developed to leverage the body's immune system in the fight against chronic viral infections and cancer. Vectors based on Pichinde virus (artPICV) and lymphocytic choriomeningitis virus (artLCMV) encoding a non-oncogenic fusion protein of human papillomavirus (HPV)16 E6 and E7 are currently being tested in patients with HPV16+ cancer, showing a favorable safety and tolerability profile and unprecedented expansion of tumor-specific CD8+ T cells. Although the strong antigen-specific immune response elicited by artLCMV vectors has been demonstrated in several preclinical models, PICV-based vectors are much less characterized. METHODS To advance our understanding of the immunobiology of these two vectors, we analyzed and compared their individual properties in preclinical in vivo and in vitro systems. Immunogenicity and antitumor effect of intratumoral or intravenous administration of both vectors, as well as combination with NKG2A blockade, were evaluated in naïve or TC-1 mouse tumor models. Flow cytometry, Nanostring, and histology analysis were performed to characterize the tumor microenvironment (TME) and T-cell infiltrate following treatment. RESULTS Despite being phylogenetically distant, both vectors shared many properties, including preferential infection and activation of professional antigen-presenting cells, and induction of potent tumor-specific CD8+ T-cell responses. Systemic as well as localized treatment induced a proinflammatory shift in the TME, promoting the infiltration of inducible T cell costimulator (ICOS)+CD8+ T cells capable of mediating tumor regression and prolonging survival in a TC-1 mouse tumor model. Still, there was evidence of immunosuppression built-up over time, and increased expression of H2-T23 (ligand for NKG2A T cell inhibitory receptor) following treatment was identified as a potential contributing factor. NKG2A blockade improved the antitumor efficacy of artARENA vectors, suggesting a promising new combination approach. This demonstrates how detailed characterization of arenavirus vector-induced immune responses and TME modulation can inform novel combination therapies. CONCLUSIONS The artARENA platform represents a strong therapeutic vaccine approach for the treatment of cancer. The induced antitumor immune response builds the backbone for novel combination therapies, which warrant further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Ethan Stewart
- Vienna BioCenter Core Facilities GmbH (VBCF), Vienna, Austria
| | - Jakub Jez
- Vienna BioCenter Core Facilities GmbH (VBCF), Vienna, Austria
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | | | | |
Collapse
|
17
|
Zhang X, Wang J, Wang M, Du M, Chen J, Wang L, Wu J. IFN-β Pretreatment Alleviates Allogeneic Renal Tubular Epithelial Cell-Induced NK Cell Responses via the IRF7/HLA-E/NKG2A Axis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:715-722. [PMID: 38149913 DOI: 10.4049/jimmunol.2200941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 12/06/2023] [Indexed: 12/28/2023]
Abstract
Immune checkpoint molecules are promising targets for suppressing the immune response but have received little attention in immune tolerance induction in organ transplantation. In this study, we found that IFN-β could induce the expression of HLA-E as well as PD-L1 on human renal tubular epithelial cell line HK-2 and renal tissue of the C57BL/6 mouse. The JAK/STAT2 pathway was necessary for this process. Upregulation of both HLA-E and PD-L1 was fully abrogated by the JAK1/2 inhibitor ruxolitinib. Signaling pathway molecules, including STAT1, STAT2, mTOR, Tyk2, and p38 MAPK, were involved in HLA-E and PD-L1 upregulation. IRF7 is the key transcription factor responsible for the activation of HLA-E and PD-L1 promoters. Through screening an epigenetic regulation library, we found a natural compound, bisdemethoxycurcumin, enhanced IFN-β-induced HLA-E and PD-L1 expression in vitro and in vivo. In PBMC-derived CD56+ NK cells, we found that NKG2A but not PD1 was constitutively expressed, indicating HLA-E/NKG2A as a more potent target to induce tolerance to innate immune cells. Pretreating HK-2 cells by IFN-β significantly attenuated the degranulation of their coincubated NK cells and protected cells from NK-mediated lysis. In conclusion, IFN-β pretreatment could activate HLA-E and PD-L1 transcription through the JAK/STAT/IRF7 pathway and then could protect renal tubular epithelial cells from allogeneic immune attack mediated by NK cells.
Collapse
Affiliation(s)
- Xing Zhang
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Junni Wang
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mowang Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengbao Du
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Limengmeng Wang
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianyong Wu
- Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, Hangzhou, China
- Institute of Nephrology, Zhejiang University, Hangzhou, China
- Zhejiang Clinical Research Center of Kidney and Urinary System Disease, Hangzhou, China
| |
Collapse
|
18
|
Middelburg J, Ghaffari S, Schoufour TAW, Sluijter M, Schaap G, Göynük B, Sala BM, Al-Tamimi L, Scheeren F, Franken KLMC, Akkermans JJLL, Cabukusta B, Joosten SA, Derksen I, Neefjes J, van der Burg SH, Achour A, Wijdeven RHM, Weidanz J, van Hall T. The MHC-E peptide ligands for checkpoint CD94/NKG2A are governed by inflammatory signals, whereas LILRB1/2 receptors are peptide indifferent. Cell Rep 2023; 42:113516. [PMID: 38048225 DOI: 10.1016/j.celrep.2023.113516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/23/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023] Open
Abstract
The immune checkpoint NKG2A/CD94 is a promising target for cancer immunotherapy, and its ligand major histocompatibility complex E (MHC-E) is frequently upregulated in cancer. NKG2A/CD94-mediated inhibition of lymphocytes depends on the presence of specific leader peptides in MHC-E, but when and where they are presented in situ is unknown. We apply a nanobody specific for the Qdm/Qa-1b complex, the NKG2A/CD94 ligand in mouse, and find that presentation of Qdm peptide depends on every member of the endoplasmic reticulum-resident peptide loading complex. With a turnover rate of 30 min, the Qdm peptide reflects antigen processing capacity in real time. Remarkably, Qdm/Qa-1b complexes require inflammatory signals for surface expression in situ, despite the broad presence of Qa-1b molecules in homeostasis. Furthermore, we identify LILRB1 as a functional inhibition receptor for MHC-E in steady state. These data provide a molecular understanding of NKG2A blockade in immunotherapy and assign MHC-E as a convergent ligand for multiple immune checkpoints.
Collapse
Affiliation(s)
- Jim Middelburg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Soroush Ghaffari
- Department of Biology, College of Science, The University of Texas at Arlington, Arlington, TX, USA
| | - Tom A W Schoufour
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Marjolein Sluijter
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Gaby Schaap
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Büsra Göynük
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Benedetta M Sala
- Science for Life Laboratory, Department of Medicine, Karolinska Institute & Division of Infectious Diseases, Karolinska University Hospital, 171 65 Solna, Sweden
| | - Lejla Al-Tamimi
- Science for Life Laboratory, Department of Medicine, Karolinska Institute & Division of Infectious Diseases, Karolinska University Hospital, 171 65 Solna, Sweden
| | - Ferenc Scheeren
- Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Kees L M C Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Jimmy J L L Akkermans
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Birol Cabukusta
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Simone A Joosten
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Ian Derksen
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine, Karolinska Institute & Division of Infectious Diseases, Karolinska University Hospital, 171 65 Solna, Sweden
| | - Ruud H M Wijdeven
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Jon Weidanz
- Abexxa Biologics, Inc., Arlington, TX, USA; College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, USA
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
19
|
Wu X, Li T, Jiang R, Yang X, Guo H, Yang R. Targeting MHC-I molecules for cancer: function, mechanism, and therapeutic prospects. Mol Cancer 2023; 22:194. [PMID: 38041084 PMCID: PMC10693139 DOI: 10.1186/s12943-023-01899-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/12/2023] [Indexed: 12/03/2023] Open
Abstract
The molecules of Major histocompatibility class I (MHC-I) load peptides and present them on the cell surface, which provided the immune system with the signal to detect and eliminate the infected or cancerous cells. In the context of cancer, owing to the crucial immune-regulatory roles played by MHC-I molecules, the abnormal modulation of MHC-I expression and function could be hijacked by tumor cells to escape the immune surveillance and attack, thereby promoting tumoral progression and impairing the efficacy of cancer immunotherapy. Here we reviewed and discussed the recent studies and discoveries related to the MHC-I molecules and their multidirectional functions in the development of cancer, mainly focusing on the interactions between MHC-I and the multiple participators in the tumor microenvironment and highlighting the significance of targeting MHC-I for optimizing the efficacy of cancer immunotherapy and a deeper understanding of the dynamic nature and functioning mechanism of MHC-I in cancer.
Collapse
Affiliation(s)
- Xiangyu Wu
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tianhang Li
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
- Surgical Research Center, Institute of Urology, Southeast University Medical School, Nanjing, China
| | - Rui Jiang
- The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xin Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hongqian Guo
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Rong Yang
- Department of Urology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
20
|
Yousuf S, Qiu M, Voith von Voithenberg L, Hulkkonen J, Macinkovic I, Schulz AR, Hartmann D, Mueller F, Mijatovic M, Ibberson D, AlHalabi KT, Hetzer J, Anders S, Brüne B, Mei HE, Imbusch CD, Brors B, Heikenwälder M, Gaida MM, Büchler MW, Weigert A, Hackert T, Roth S. Spatially Resolved Multi-Omics Single-Cell Analyses Inform Mechanisms of Immune Dysfunction in Pancreatic Cancer. Gastroenterology 2023; 165:891-908.e14. [PMID: 37263303 DOI: 10.1053/j.gastro.2023.05.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND & AIMS As pancreatic ductal adenocarcinoma (PDAC) continues to be recalcitrant to therapeutic interventions, including poor response to immunotherapy, albeit effective in other solid malignancies, a more nuanced understanding of the immune microenvironment in PDAC is urgently needed. We aimed to unveil a detailed view of the immune micromilieu in PDAC using a spatially resolved multimodal single-cell approach. METHODS We applied single-cell RNA sequencing, spatial transcriptomics, multiplex immunohistochemistry, and mass cytometry to profile the immune compartment in treatment-naïve PDAC tumors and matched adjacent normal pancreatic tissue, as well as in the systemic circulation. We determined prognostic associations of immune signatures and performed a meta-analysis of the immune microenvironment in PDAC and lung adenocarcinoma on single-cell level. RESULTS We provided a spatially resolved fine map of the immune landscape in PDAC. We substantiated the exhausted phenotype of CD8 T cells and immunosuppressive features of myeloid cells, and highlighted immune subsets with potentially underappreciated roles in PDAC that diverged from immune populations within adjacent normal areas, particularly CD4 T cell subsets and natural killer T cells that are terminally exhausted and acquire a regulatory phenotype. Differential analysis of immune phenotypes in PDAC and lung adenocarcinoma revealed the presence of extraordinarily immunosuppressive subtypes in PDAC, along with a distinctive immune checkpoint composition. CONCLUSIONS Our study sheds light on the multilayered immune dysfunction in PDAC and presents a holistic view of the immune landscape in PDAC and lung adenocarcinoma, providing a comprehensive resource for functional studies and the exploration of therapeutically actionable targets in PDAC.
Collapse
Affiliation(s)
- Suhail Yousuf
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Mengjie Qiu
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Johannes Hulkkonen
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Igor Macinkovic
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | | | - Domenic Hartmann
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian Mueller
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Margarete Mijatovic
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - David Ibberson
- Deep Sequencing Core Facility, BioQuant, Heidelberg University, Heidelberg, Germany
| | - Karam T AlHalabi
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Jenny Hetzer
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Simon Anders
- BioQuant Center, Heidelberg University, Heidelberg, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany; Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany; German Cancer Consortium, Partner Site Frankfurt, Germany
| | - Henrik E Mei
- German Rheumatism Research Center, Berlin, Germany
| | - Charles D Imbusch
- Division of Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center, Heidelberg, Germany
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Matthias M Gaida
- Institute of Pathology, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany; Research Center for Immunotherapy, University Medical Center Mainz, Johannes Gutenberg University, Mainz, Germany; Joint Unit Immunopathology, Institute of Pathology, University Medical Center, Johannes Gutenberg University and Translational Oncology, University Medical Center Mainz, Mainz, Germany
| | - Markus W Büchler
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Weigert
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany; Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany; German Cancer Consortium, Partner Site Frankfurt, Germany
| | - Thilo Hackert
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Susanne Roth
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
21
|
Martín Almazán N, Sala BM, Sandalova T, Sun Y, Resink T, Cichocki F, Söderberg-Nauclér C, Miller JS, Achour A, Sarhan D. Non-classical HLA-E restricted CMV 15-mer peptides are recognized by adaptive NK cells and induce memory responses. Front Immunol 2023; 14:1230718. [PMID: 37809084 PMCID: PMC10552778 DOI: 10.3389/fimmu.2023.1230718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Human cytomegalovirus (HCMV) reactivation causes complications in immunocompromised patients after hematopoietic stem cell transplantation (HSCT), significantly increasing morbidity and mortality. Adaptive Natural Killer (aNK) cells undergo a persistent reconfiguration in response to HCMV reactivation; however, the exact role of aNK cell memory in HCMV surveillance remains elusive. Methods We employed mass spectrometry and computational prediction approaches to identify HLA-E-restricted HCMV peptides that can elucidate aNK cell responses. We also used the K562 cell line transfected with HLA-E0*0103 for specific peptide binding and blocking assays. Subsequently, NK cells were cocultured with dendritic cells (DCs) loaded with each of the identified peptides to examine aNK and conventional (c)NK cell responses. Results Here, we discovered three unconventional HLA-E-restricted 15-mer peptides (SEVENVSVNVHNPTG, TSGSDSDEELVTTER, and DSDEELVTTERKTPR) derived from the HCMV pp65-protein that elicit aNK cell memory responses restricted to HCMV. aNK cells displayed memory responses towards HMCV-infected cells and HCMV-seropositive individuals when primed by DCs loaded with each of these peptides and predicted 9-mer versions. Blocking the interaction between HLA-E and the activation NKG2C receptor but not the inhibitory NKG2A receptor abolished these specific recall responses. Interestingly, compared to the HLA-E complex with the leader peptide VMAPRTLIL, HLA-E complexes formed with each of the three identified peptides significantly changed the surface electrostatic potential to highly negative. Furthermore, these peptides do not comprise the classical HLA-E-restriction motifs. Discussion These findings suggest a differential binding to NKG2C compared to HLA-E complexes with classical leader peptides that may result in the specific activation of aNK cells. We then designed six nonameric peptides based on the three discovered peptides that could elicit aNK cell memory responses to HCMV necessary for therapeutic inventions. The results provide novel insights into HLA-E-mediated signaling networks that mediate aNK cell recall responses and maximize their reactivity.
Collapse
Affiliation(s)
- Nerea Martín Almazán
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, Stockholm, Sweden
| | - Benedetta Maria Sala
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Tatyana Sandalova
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Yizhe Sun
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, Stockholm, Sweden
| | - Tom Resink
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Frank Cichocki
- Division of Hematology, Oncology and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis, MN, United States
| | - Cecilia Söderberg-Nauclér
- Department of Medicine, Microbial Pathogenesis Unit, Karolinska Institute, Stockholm, Sweden
- Division of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Institute of Biomedicine, Unit for Infection and immunology, MediCity Research Laboratory, InFLAMES Flagship, University of Turku, Turku, Finland
| | - Jeffrey S Miller
- Division of Hematology, Oncology and Transplantation, University of Minnesota Masonic Cancer Center, Minneapolis, MN, United States
| | - Adnane Achour
- Science for Life Laboratory, Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Dhifaf Sarhan
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
22
|
Sun Q, Hong Z, Zhang C, Wang L, Han Z, Ma D. Immune checkpoint therapy for solid tumours: clinical dilemmas and future trends. Signal Transduct Target Ther 2023; 8:320. [PMID: 37635168 PMCID: PMC10460796 DOI: 10.1038/s41392-023-01522-4] [Citation(s) in RCA: 211] [Impact Index Per Article: 105.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/11/2023] [Accepted: 05/28/2023] [Indexed: 08/29/2023] Open
Abstract
Immune-checkpoint inhibitors (ICBs), in addition to targeting CTLA-4, PD-1, and PD-L1, novel targeting LAG-3 drugs have also been approved in clinical application. With the widespread use of the drug, we must deeply analyze the dilemma of the agents and seek a breakthrough in the treatment prospect. Over the past decades, these agents have demonstrated dramatic efficacy, especially in patients with melanoma and non-small cell lung cancer (NSCLC). Nonetheless, in the field of a broad concept of solid tumours, non-specific indications, inseparable immune response and side effects, unconfirmed progressive disease, and complex regulatory networks of immune resistance are four barriers that limit its widespread application. Fortunately, the successful clinical trials of novel ICB agents and combination therapies, the advent of the era of oncolytic virus gene editing, and the breakthrough of the technical barriers of mRNA vaccines and nano-delivery systems have made remarkable breakthroughs currently. In this review, we enumerate the mechanisms of each immune checkpoint targets, associations between ICB with tumour mutation burden, key immune regulatory or resistance signalling pathways, the specific clinical evidence of the efficacy of classical targets and new targets among different tumour types and put forward dialectical thoughts on drug safety. Finally, we discuss the importance of accurate triage of ICB based on recent advances in predictive biomarkers and diagnostic testing techniques.
Collapse
Affiliation(s)
- Qian Sun
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhenya Hong
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Cong Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Liangliang Wang
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhiqiang Han
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Ding Ma
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
23
|
Wang T, Li P, Qi Q, Zhang S, Xie Y, Wang J, Liu S, Ma S, Li S, Gong T, Xu H, Xiong M, Li G, You C, Luo Z, Li J, Du L, Wang C. A multiplex blood-based assay targeting DNA methylation in PBMCs enables early detection of breast cancer. Nat Commun 2023; 14:4724. [PMID: 37550304 PMCID: PMC10406825 DOI: 10.1038/s41467-023-40389-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 07/21/2023] [Indexed: 08/09/2023] Open
Abstract
The immune system can monitor tumor development, and DNA methylation is involved in the body's immune response to tumors. In this work, we investigate whether DNA methylation alterations in peripheral blood mononuclear cells (PBMCs) could be used as markers for early detection of breast cancer (BC) from the perspective of tumor immune alterations. We identify four BC-specific methylation markers by combining Infinium 850 K BeadChips, pyrosequencing and targeted bisulfite sequencing. Based on the four methylation markers in PBMCs of BC, we develop an efficient and convenient multiplex methylation-specific quantitative PCR assay for the detection of BC and validate its diagnostic performance in a multicenter cohort. This assay was able to distinguish early-stage BC patients from normal controls, with an AUC of 0.940, sensitivity of 93.2%, and specificity of 90.4%. More importantly, this assay outperformed existing clinical diagnostic methods, especially in the detection of early-stage and minimal tumors.
Collapse
Affiliation(s)
- Tiantian Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Peilong Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Qiuchen Qi
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Shujun Zhang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Yan Xie
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Jing Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Shibiao Liu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Suhong Ma
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China
| | - Shijun Li
- Clinical Laboratory, The First Hospital of Dalian Medical University, Dalian, 116011, P. R. China
| | - Tingting Gong
- Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Huiting Xu
- Departmemt of Clinical Laboratory Medicine, Affiliated Tumor Hospital of Nantong University, 226361, Jiangsu, China; Medical School of Nantong University, Nantong, 226001, P. R. China
| | - Mengqiu Xiong
- Clinical Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, P. R. China
| | - Guanghua Li
- Department of clinical laboratory, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, 510000, P. R. China
| | - Chongge You
- Laboratory Medicine Center, Lanzhou University Second Hospital, the Second Clinical Medical College of Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zhaofan Luo
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, P. R. China
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China.
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China.
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Shandong Provincial Key Laboratory of Innovation Technology in Laboratory Medicine, Jinan, 250012, P. R. China.
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, 250033, Shandong, China.
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, 250033, China.
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, 250033, China.
| |
Collapse
|
24
|
Abstract
T cells and natural killer (NK) cells have complementary roles in tumor immunity, and dual T cell and NK cell attack thus offers opportunities to deepen the impact of immunotherapy. Recent work has also shown that NK cells play an important role in recruiting dendritic cells to tumors and thus enhance induction of CD8 T cell responses, while IL-2 secreted by T cells activates NK cells. Targeting of immune evasion mechanisms from the activating NKG2D receptor and its MICA and MICB ligands on tumor cells offers opportunities for therapeutic intervention. Interestingly, T cells and NK cells share several important inhibitory and activating receptors that can be targeted to enhance T cell- and NK cell-mediated immunity. These inhibitory receptor-ligand systems include CD161-CLEC2D, TIGIT-CD155, and NKG2A/CD94-HLA-E. We also discuss emerging therapeutic strategies based on inhibitory and activating cytokines that profoundly impact the function of both lymphocyte populations within tumors.
Collapse
Affiliation(s)
- Oleksandr Kyrysyuk
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
| | - Kai W Wucherpfennig
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Neurology, Brigham & Women's Hospital, Boston, Massachusetts, USA
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
25
|
TRUONG NC, HUYNH NT, PHAM KD, PHAM PV. Roles of cancer stem cells in cancer immune surveillance. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2023. [DOI: 10.23736/s2724-542x.23.02944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
26
|
Fisher JG, Doyle ADP, Graham LV, Khakoo SI, Blunt MD. Disruption of the NKG2A:HLA-E Immune Checkpoint Axis to Enhance NK Cell Activation against Cancer. Vaccines (Basel) 2022; 10:1993. [PMID: 36560403 PMCID: PMC9783329 DOI: 10.3390/vaccines10121993] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/25/2022] Open
Abstract
Ligation of the inhibitory receptor NKG2A by its ligand HLA-E negatively regulates the activation of natural killer (NK) cells, as well as subsets of CD8+ T cells and innate T cell populations. NKG2A has recently become a novel immune checkpoint target for the treatment of cancer and direct antibody mediated blockade of NKG2A function is currently under assessment in two phase 3 clinical trials. In addition to direct targeting, the NKG2A:HLA-E axis can also be disrupted indirectly via multiple different targeted cancer agents that were not previously recognised to possess immunomodulatory properties. Increased understanding of immune cell modulation by targeted cancer therapies will allow for the design of rational and more efficacious drug combination strategies to improve cancer patient outcomes. In this review, we summarise and discuss the various strategies currently in development which either directly or indirectly disrupt the NKG2A:HLA-E interaction to enhance NK cell activation against cancer.
Collapse
Affiliation(s)
| | | | | | | | - Matthew D. Blunt
- School of Clinical and Experimental Sciences, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
27
|
Human Vδ2 T Cells and Their Versatility for Immunotherapeutic Approaches. Cells 2022; 11:cells11223572. [PMID: 36429001 PMCID: PMC9688761 DOI: 10.3390/cells11223572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/06/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Gamma/delta (γδ) T cells are innate-like immune effectors that are a critical component linking innate and adaptive immune responses. They are recognized for their contribution to tumor surveillance and fight against infectious diseases. γδ T cells are excellent candidates for cellular immunotherapy due to their unique properties to recognize and destroy tumors or infected cells. They do not depend on the recognition of a single antigen but rather a broad-spectrum of diverse ligands through expression of various cytotoxic receptors. In this manuscript, we review major characteristics of the most abundant circulating γδ subpopulation, Vδ2 T cells, their immunotherapeutic potential, recent advances in expansion protocols, their preclinical and clinical applications for several infectious diseases and malignancies, and how additional modulation could enhance their therapeutic potential.
Collapse
|
28
|
Xiong A, Zhang J, Chen Y, Zhang Y, Yang F. Integrated single-cell transcriptomic analyses reveal that GPNMB-high macrophages promote PN-MES transition and impede T cell activation in GBM. EBioMedicine 2022; 83:104239. [PMID: 36054938 PMCID: PMC9437813 DOI: 10.1016/j.ebiom.2022.104239] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 10/27/2022] Open
|
29
|
Wang X, Xiong H, Ning Z. Implications of NKG2A in immunity and immune-mediated diseases. Front Immunol 2022; 13:960852. [PMID: 36032104 PMCID: PMC9399941 DOI: 10.3389/fimmu.2022.960852] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/21/2022] [Indexed: 11/22/2022] Open
Abstract
In recent studies, NKG2A is revealed to be a key immune checkpoint for both natural killer (NK) cells and CD8+ T cells. It form heterodimer receptors with CD94, and targets the peptide-presenting human leukocyte antigen-E (HLA-E) molecules. Upon crosslinking, NKG2A/CD94 delivers inhibitory signals for NK cells and CD8+ T cells, while blocking NKG2A can effectively unleash functions of these cytotoxic lymphocytes. The interaction between NKG2A and HLA-E contributes to tumor immune escape, and NKG2A-mediated mechanisms are currently being exploited to develop potential antitumor therapeutic strategies. In addition, growing evidence shows that NKG2A also plays important roles in other immune-related diseases including viral infections, autoimmune diseases, inflammatory diseases, parasite infections and transplant rejection. Therefore, the current work focuses on describing the effect of NKG2A on immune regulation and exploring its potential role in immune-mediated disorders.
Collapse
Affiliation(s)
- Xiaotong Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
- *Correspondence: Zhaochen Ning, ; Huabao Xiong,
| | - Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, China
- *Correspondence: Zhaochen Ning, ; Huabao Xiong,
| |
Collapse
|
30
|
Prašnikar E, Perdih A, Borišek J. What a Difference an Amino Acid Makes: An All-Atom Simulation Study of Nonameric Peptides in Inhibitory HLA-E/NKG2A/CD94 Immune Complexes. Front Pharmacol 2022; 13:925427. [PMID: 35991867 PMCID: PMC9385950 DOI: 10.3389/fphar.2022.925427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
MHC class I antigen E (HLA-E), a ligand for the inhibitory NKG2A/CD94 receptor of the immune system, is responsible for evading the immune surveillance in several settings, including senescent cell accumulation and tumor persistence. The formation of this ligand-receptor interaction promotes the inhibition of the cytolytic action of immune system natural killer (NK) cells and CD8+ T-cells expressing this receptor. The final outcome of the HLA-E/NKG2A/CD94 interaction on target cells is also highly dependent on the identity of the nonameric peptide incorporated into the HLA-E ligand. To better understand the role played by a nonameric peptide in these immune complexes, we performed a series of multi-microsecond all-atom molecular dynamics simulations. We generated natural and alternative variants of the nonameric peptide bound to the HLA-E ligand alone or in the HLA-E/NKG2A/CD94 complexes. A systematic study of molecular recognition between HLA-E and peptides led to the development of new variants that differ at the strategic 6th position (P6) of the peptide and have favorable in silico properties comparable to those of natural binding peptides. Further examination of a selected subset of peptides in full complexes revealed a new variant that, according to our previously derived atomistic model, can interfere with the signal transduction via HLA-E/NKG2A/CD94 and thus prevent the target cell from evading immune clearance by NK and CD8+ T-cells. These simulations provide an atomistic picture of how a small change in amino acid sequence can lead to a profound effect on binding and molecular recognition. Furthermore, our study also provides new data on the peptide interaction motifs as well as the energetic and conformational properties of the binding interface, laying the structure-based foundation for future development of potential therapeutic peptides, peptidomimetics, or even small molecules that would bind to the HLA-E ligand and abrogate NKG2A/CD94 recognition. Such external intervention would be useful in the emerging field of targeting senescent cells in a variety of age-related diseases, as well as in novel cancer immunotherapies.
Collapse
Affiliation(s)
- Eva Prašnikar
- Theory Department, Laboratory for Chemical Informatics, National Institute of Chemistry, Ljubljana, Slovenia
- Faculty of Medicine, Graduate School of Biomedicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andrej Perdih
- Theory Department, Laboratory for Computational Biochemistry and Drug Design, National Institute of Chemistry, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
- *Correspondence: Andrej Perdih, ; Jure Borišek,
| | - Jure Borišek
- Theory Department, Laboratory for Chemical Informatics, National Institute of Chemistry, Ljubljana, Slovenia
- *Correspondence: Andrej Perdih, ; Jure Borišek,
| |
Collapse
|
31
|
Battaglia NG, Murphy JD, Uccello TP, Hughson A, Gavras NW, Caldon JJ, Gerber SA, Lord EM. Combination of NKG2A and PD-1 Blockade Improves Radiotherapy Response in Radioresistant Tumors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:629-640. [PMID: 35840162 PMCID: PMC9339479 DOI: 10.4049/jimmunol.2100044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/26/2022] [Indexed: 12/29/2022]
Abstract
Radiotherapy (RT) is commonly employed to treat solid tumors. Immune checkpoint blockade of programmed cell death protein 1 (PD-1) and CTLA-4 improves survival in RT patients, yet many fail to respond to combination therapy. Natural killer group 2 (NKG2) family receptors, particularly inhibitory NKG2A and activating NKG2D, have emerged as promising therapeutic targets to improve antitumor T cell responses; thus, we examined how these receptors and their ligands (Qa-1b and retinoic acid early inducible 1 [Rae-1], respectively) regulate the RT response in C57BL/6 mice bearing syngeneic B16F10 melanoma and MC38 colorectal adenocarcinoma tumors. RT (15 Gy) transiently reduced B16F10 tumor burden, whereas MC38 tumors exhibited durable response to RT. Intratumoral NK and CD8 T cells expressed NKG2A and NKG2D in both models, which was unaltered by RT. In vitro/in vivo RT increased tumor/stromal cell Qa-1b and Rae-1 expression in both models, especially B16F10 tumors, but IFN-γ stimulation induced both Qa-1b and Rae-1 only in B16F10 tumors. NKG2A/Qa-1b inhibition alone did not improve RT response in either model, but combined RT and NKG2A/PD-1 blockade improved survival in the B16F10 model. Depletion experiments indicate that the triple therapy efficacy is CD8 T cell-dependent with negligible NK cell contribution. RNA sequencing of CD8 T cells from triple therapy-treated B16F10 tumors showed increased proliferative capacity compared with RT and PD-1 blockade alone. Our work demonstrates that RT modulates NKG2A ligand expression, which inhibits RT-induced T cell responses in tumors that fail to respond to combined RT and PD-1 blockade. These results provide a rationale for combining NKG2A blockade with immune checkpoint blockade therapies and RT to improve clinical response.
Collapse
Affiliation(s)
- Nicholas G Battaglia
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Joseph D Murphy
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Taylor P Uccello
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
| | - Angela Hughson
- Department of Surgery, University of Rochester Medical Center, Rochester, NY; and
| | - Nicholas W Gavras
- Department of Surgery, University of Rochester Medical Center, Rochester, NY; and
| | | | - Scott A Gerber
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY
- Department of Surgery, University of Rochester Medical Center, Rochester, NY; and
| | - Edith M Lord
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY;
| |
Collapse
|
32
|
Morinaga T, Iwatsuki M, Yamashita K, Matsumoto C, Harada K, Kurashige J, Iwagami S, Baba Y, Yoshida N, Komohara Y, Baba H. Evaluation of HLA-E Expression Combined with Natural Killer Cell Status as a Prognostic Factor for Advanced Gastric Cancer. Ann Surg Oncol 2022; 29:4951-4960. [PMID: 35412205 DOI: 10.1245/s10434-022-11665-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/07/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND The NKG2A/HLA-E pathway functions as an immune checkpoint with potential for inhibition using therapeutic antibodies. Through this pathway, immune cells lose activity, which allows cancers to progress. We aimed to determine whether HLA-E expression combined with NK cell status serves as a prognostic biomarker for gastric cancer (GC). METHODS We enrolled patients (n = 232) with advanced GC who underwent curative gastrectomy. Immunohistochemical analyses of global HLA-E expression, and the expression of CD56 and CD3 to identify NK cells were performed. Survival analysis was performed to evaluate the significance of HLA-E expression and NK status. RESULTS Patients with HLA-E-positive was 104 (41.3%) and had significantly worse prognosis of relapse-free survival (RFS) compared with those with HLA-E-negative. Moreover, patients with NK Low status had worse prognoses for RFS compared with those with NK High status. Statistical analysis of RFS demonstrated that HLA-E expression was a significant independent factor for poor prognosis (HR 1.57, 95% CI 1.04-2.36, P = 0.031). Furthermore, HLA-E-positive patients with low NK low status experienced the shortest RFS, particularly those in the upper GC group. CONCLUSIONS HLA-E served as a prognostic factor after curative resection of GC, and HLA-E expression combined with NK status served as a sensitive prognostic biomarker for advanced GC.
Collapse
Affiliation(s)
- Takeshi Morinaga
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Masaaki Iwatsuki
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| | - Kohei Yamashita
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Chihiro Matsumoto
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuto Harada
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junji Kurashige
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Shiro Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Naoya Yoshida
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
33
|
NK and cells with NK-like activities in cancer immunotherapy-clinical perspectives. Med Oncol 2022; 39:131. [PMID: 35716327 DOI: 10.1007/s12032-022-01735-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/13/2022] [Indexed: 01/10/2023]
Abstract
Natural killer (NK) cells are lymphoid cells of innate immunity that take important roles in immune surveillance. NK cells are considered as a bridge between innate and adaptive immunity, and their infiltration into tumor area is related positively with prolonged patient survival. They are defined as CD16+ CD56+ CD3- cells in clinic. NK cells promote cytolytic effects on target cells and induce their apoptosis. Loss of NK cell cytotoxic activity and reduction in the number of activating receptors are the current issues for application of such cells in cellular immunotherapy, which resulted in the diminished long-term effects. The focus of this review is to discuss about the activity of NK cells and cells with NK-like activity including natural killer T (NKT), cytokine-induced killer (CIK) and lymphokine-activated killer (LAK) cells in immunotherapy of human solid cancers.
Collapse
|
34
|
Ghaffari S, Upchurch-Ange K, Gimlin S, Tripathi T, Sluijter M, Middelburg J, van Hall T, Weidanz J. A Single-Domain TCR-like Antibody Selective for the Qa-1 b/Qdm Peptide Complex Enhances Tumoricidal Activity of NK Cells via Blocking the NKG2A Immune Checkpoint. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2246-2255. [PMID: 35418467 DOI: 10.4049/jimmunol.2100790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
The NKG2A/HLA-E axis is an immune checkpoint that suppresses immune effector activity in the tumor microenvironment. In mice, the ligand for the NKG2A/CD94 inhibitory receptor is the nonclassical MHC molecule Qa-1b, the HLA-E ortholog, which presents the peptide AMAPRTLLL, referred to as Qdm (for Qa-1 determinant modifier). This dominant peptide is derived from the leader sequences of murine classical MHC class I encoded by the H-2D and -L loci. To broaden our understanding of Qa-1b/Qdm peptide complex biology and its tumor protective role, we identified a TCR-like Ab from a single domain VHH library using yeast surface display. The TCR-like Ab (EXX-1) binds only to the Qa-1b/Qdm peptide complex and not to Qa-1b alone or Qa-1b loaded with control peptides. Conversely, currently available Abs to Qa-1b bind independent of peptide loaded. Flow cytometric results revealed that EXX-1 selectively bound to Qa-1b/Qdm-positive B16F10, RMA, and TC-1 mouse tumor cells but only after pretreatment with IFN-γ; no binding was observed following genetic knockdown of Qa-1b or Qdm peptide. Furthermore, EXX-1 Ab blockade promoted NK cell-mediated tumor cell lysis in vitro. Our findings show that EXX-1 has exquisite binding specificity for the Qa-1b/Qdm peptide complex, making it a valuable research tool for further investigation of the Qa-1b/Qdm peptide complex expression and regulation in healthy and diseased cells and for evaluation as an immune checkpoint blocking Ab in syngeneic mouse tumor models.
Collapse
Affiliation(s)
- Soroush Ghaffari
- Department of Biology, College of Science, The University of Texas at Arlington, Arlington, TX
| | | | | | | | - Marjolein Sluijter
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Jim Middelburg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Jon Weidanz
- Abexxa Biologics, Inc., Arlington, TX;
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX
| |
Collapse
|
35
|
Jiang H, Yu D, Yang P, Guo R, Kong M, Gao Y, Yu X, Lu X, Fan X. Revealing the transcriptional heterogeneity of organ-specific metastasis in human gastric cancer using single-cell RNA Sequencing. Clin Transl Med 2022; 12:e730. [PMID: 35184420 PMCID: PMC8858624 DOI: 10.1002/ctm2.730] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Deciphering intra- and inter-tumoural heterogeneity is essential for understanding the biology of gastric cancer (GC) and its metastasis and identifying effective therapeutic targets. However, the characteristics of different organ-tropism metastases of GC are largely unknown. METHODS Ten fresh human tissue samples from six patients, including primary tumour and adjacent non-tumoural samples and six metastases from different organs or tissues (liver, peritoneum, ovary, lymph node) were evaluated using single-cell RNA sequencing. Validation experiments were performed using histological assays and bulk transcriptomic datasets. RESULTS Malignant epithelial subclusters associated with invasion features, intraperitoneal metastasis propensity, epithelial-mesenchymal transition-induced tumour stem cell phenotypes, or dormancy-like characteristics were discovered. High expression of the first three subcluster-associated genes displayed worse overall survival than those with low expression in a GC cohort containing 407 samples. Immune and stromal cells exhibited cellular heterogeneity and created a pro-tumoural and immunosuppressive microenvironment. Furthermore, a 20-gene signature of lymph node-derived exhausted CD8+ T cells was acquired to forecast lymph node metastasis and validated in GC cohorts. Additionally, although anti-NKG2A (KLRC1) antibody have not been used to treat GC patients even in clinical trials, we uncovered not only malignant tumour cells but one endothelial subcluster, mucosal-associated invariant T cells, T cell-like B cells, plasmacytoid dendritic cells, macrophages, monocytes, and neutrophils may contribute to HLA-E-KLRC1/KLRC2 interaction with cytotoxic/exhausted CD8+ T cells and/or natural killer (NK) cells, suggesting novel clinical therapeutic opportunities in GC. Additionally, our findings suggested that PD-1 expression in CD8+ T cells might predict clinical responses to PD-1 blockade therapy in GC. CONCLUSIONS This study provided insights into heterogeneous microenvironment of GC primary tumours and organ-specific metastases and provide support for precise diagnosis and treatment.
Collapse
Affiliation(s)
- Haiping Jiang
- Department of Medical OncologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Dingyi Yu
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Penghui Yang
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Rongfang Guo
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Mei Kong
- Department of PathologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yuan Gao
- Department of Gastro‐Intestinal SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiongfei Yu
- Department of Surgical OncologyThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaoyan Lu
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- State Key Laboratory of Component‐Based Chinese MedicineInnovation Center in Zhejiang UniversityHangzhouChina
| | - Xiaohui Fan
- Pharmaceutical Informatics InstituteCollege of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- State Key Laboratory of Component‐Based Chinese MedicineInnovation Center in Zhejiang UniversityHangzhouChina
- Westlake Laboratory of Life Sciences and BiomedicineHangzhouChina
| |
Collapse
|
36
|
Identification and Verification of Tumor Immune Microenvironment-Related Prognostic Genes in Kidney Renal Clear Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5563668. [PMID: 35127943 PMCID: PMC8813216 DOI: 10.1155/2022/5563668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 12/12/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
Background The tumor immune microenvironment is vital to kidney renal clear cell carcinoma (KIRC) progression, and immunotherapies have been shown to be effective in the management of KIRC. However, the prognostic genes associated with the tumor immune microenvironment in KIRC have not been fully identified. We obtained the KIRC RNA sequencing data and the clinical characteristics from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) database. We screened the gene modules associated with the tumor immune microenvironment based on the ESTIMATE algorithm and weighted gene coexpression network analysis (WGCNA). Univariate Cox analysis and the LASSO method were used to construct a prognostic model. Receiver Operating Characteristic (ROC) curve analysis was performed to evaluate the accuracy of our risk model. TIMER and Single-Sample Gene Set Enrichment Analysis (ssGSEA) were used to explore the correlation between prognostic genes and immune cell infiltration. Results Fifty-four genes in modules were significantly associated with the overall survival (OS) time of patients with KIRC. Furthermore, 12 hub genes were selected to construct the prognostic model. The prognostic model showed superior accuracy in both TCGA and ICGC cohorts using ROC curve analysis. Systematic analysis of immune cell infiltration revealed that nine genes were significantly correlated with levels of tumor-infiltrating immune cells. Conclusions Our findings indicated that the tumor immune microenvironment was an important determinant of KIRC outcomes and revealed potential biomarkers for predicting patient OS and for targeted immunotherapies.
Collapse
|
37
|
Yang K, Shi Y, Luo M, Mao M, Zhang X, Chen C, Liu Y, He Z, Liu Q, Wang W, Luo C, Yin W, Wang C, Niu Q, Zeng H, Bian XW, Ping YF. Identification of a unique tumor cell subset employing myeloid transcriptional circuits to create an immunomodulatory microenvironment in glioblastoma. Oncoimmunology 2022; 11:2030020. [PMID: 35096487 PMCID: PMC8797738 DOI: 10.1080/2162402x.2022.2030020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Kaidi Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, PR China
- Department of Oncology, Chinese Hainan Hospital of PLA General Hospital, Sanya, PR China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Min Luo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Min Mao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Xiaoning Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Cong Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Yuqi Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, PR China
- Department of Oncology, Chinese Hainan Hospital of PLA General Hospital, Sanya, PR China
| | - Zhicheng He
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Qing Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Wenying Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Chunhua Luo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Wen Yin
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Chao Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Qin Niu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Hui Zeng
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, PR China
| | - Yi-Fang Ping
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, PR China
| |
Collapse
|
38
|
Peng Y, Felce SL, Dong D, Penkava F, Mentzer AJ, Yao X, Liu G, Yin Z, Chen JL, Lu Y, Wellington D, Wing PAC, Dominey-Foy DCC, Jin C, Wang W, Hamid MA, Fernandes RA, Wang B, Fries A, Zhuang X, Ashley N, Rostron T, Waugh C, Sopp P, Hublitz P, Beveridge R, Tan TK, Dold C, Kwok AJ, Rich-Griffin C, Dejnirattisa W, Liu C, Kurupati P, Nassiri I, Watson RA, Tong O, Taylor CA, Kumar Sharma P, Sun B, Curion F, Revale S, Garner LC, Jansen K, Ferreira RC, Attar M, Fry JW, Russell RA, Stauss HJ, James W, Townsend A, Ho LP, Klenerman P, Mongkolsapaya J, Screaton GR, Dendrou C, Sansom SN, Bashford-Rogers R, Chain B, Smith GL, McKeating JA, Fairfax BP, Bowness P, McMichael AJ, Ogg G, Knight JC, Dong T. An immunodominant NP 105-113-B*07:02 cytotoxic T cell response controls viral replication and is associated with less severe COVID-19 disease. Nat Immunol 2022; 23:50-61. [PMID: 34853448 PMCID: PMC8709787 DOI: 10.1038/s41590-021-01084-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/26/2021] [Indexed: 11/11/2022]
Abstract
NP105-113-B*07:02-specific CD8+ T cell responses are considered among the most dominant in SARS-CoV-2-infected individuals. We found strong association of this response with mild disease. Analysis of NP105-113-B*07:02-specific T cell clones and single-cell sequencing were performed concurrently, with functional avidity and antiviral efficacy assessed using an in vitro SARS-CoV-2 infection system, and were correlated with T cell receptor usage, transcriptome signature and disease severity (acute n = 77, convalescent n = 52). We demonstrated a beneficial association of NP105-113-B*07:02-specific T cells in COVID-19 disease progression, linked with expansion of T cell precursors, high functional avidity and antiviral effector function. Broad immune memory pools were narrowed postinfection but NP105-113-B*07:02-specific T cells were maintained 6 months after infection with preserved antiviral efficacy to the SARS-CoV-2 Victoria strain, as well as Alpha, Beta, Gamma and Delta variants. Our data show that NP105-113-B*07:02-specific T cell responses associate with mild disease and high antiviral efficacy, pointing to inclusion for future vaccine design.
Collapse
Affiliation(s)
- Yanchun Peng
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| | - Suet Ling Felce
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Danning Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- CAMS Key Laboratory of Tumor Immunology and Radiation Therapy, Xinjiang Tumor Hospital, Xinjiang Medical University, Urumqi, China
| | - Frank Penkava
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Alexander J Mentzer
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xuan Yao
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Guihai Liu
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Beijing You'an Hospital, Capital Medical University, Beijing, China
| | - Zixi Yin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ji-Li Chen
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| | - Yongxu Lu
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Dannielle Wellington
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| | - Peter A C Wing
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Delaney C C Dominey-Foy
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chen Jin
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Wenbo Wang
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Megat Abd Hamid
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ricardo A Fernandes
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Beibei Wang
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Anastasia Fries
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Neil Ashley
- Single Cell Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Timothy Rostron
- Sequencing Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Craig Waugh
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Paul Sopp
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Philip Hublitz
- Genome Engineering Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Ryan Beveridge
- Virus Screening Facility, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tiong Kit Tan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, and NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, UK
| | - Andrew J Kwok
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Wanwisa Dejnirattisa
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chang Liu
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Prathiba Kurupati
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Isar Nassiri
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Department of Oncology, University of Oxford, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Robert A Watson
- Department of Oncology, University of Oxford, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Orion Tong
- Department of Oncology, University of Oxford, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Chelsea A Taylor
- Department of Oncology, University of Oxford, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Piyush Kumar Sharma
- Department of Oncology, University of Oxford, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Bo Sun
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Fabiola Curion
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Helmholtz Center Munich-German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany
| | - Santiago Revale
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Lucy C Garner
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kathrin Jansen
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK
| | | | - Moustafa Attar
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK
| | | | - Rebecca A Russell
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Hans J Stauss
- Institute of Immunity and Transplantation, University College London, London, UK
| | - William James
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Alain Townsend
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| | - Ling-Pei Ho
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Paul Klenerman
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Juthathip Mongkolsapaya
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine, Siriaj Hospital, Mahidol Unviversity, Bangkok, Thailand
| | - Gavin R Screaton
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Calliope Dendrou
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Stephen N Sansom
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, UK
| | | | - Benny Chain
- Division of Infection and Immunity, University College London, London, UK
| | | | - Jane A McKeating
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Benjamin P Fairfax
- Department of Oncology, University of Oxford, Oxford, UK
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Paul Bowness
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Andrew J McMichael
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Graham Ogg
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK
| | - Julian C Knight
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK.
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Tao Dong
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
- Chinese Academy of Medical Science Oxford Institute, University of Oxford, Oxford, UK.
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
39
|
Good CR, Aznar MA, Kuramitsu S, Samareh P, Agarwal S, Donahue G, Ishiyama K, Wellhausen N, Rennels AK, Ma Y, Tian L, Guedan S, Alexander KA, Zhang Z, Rommel PC, Singh N, Glastad KM, Richardson MW, Watanabe K, Tanyi JL, O'Hara MH, Ruella M, Lacey SF, Moon EK, Schuster SJ, Albelda SM, Lanier LL, Young RM, Berger SL, June CH. An NK-like CAR T cell transition in CAR T cell dysfunction. Cell 2021; 184:6081-6100.e26. [PMID: 34861191 DOI: 10.1016/j.cell.2021.11.016] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/13/2021] [Accepted: 11/11/2021] [Indexed: 12/28/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has achieved remarkable success in hematological malignancies but remains ineffective in solid tumors, due in part to CAR T cell exhaustion in the solid tumor microenvironment. To study dysfunction of mesothelin-redirected CAR T cells in pancreatic cancer, we establish a robust model of continuous antigen exposure that recapitulates hallmark features of T cell exhaustion and discover, both in vitro and in CAR T cell patients, that CAR dysregulation is associated with a CD8+ T-to-NK-like T cell transition. Furthermore, we identify a gene signature defining CAR and TCR dysregulation and transcription factors, including SOX4 and ID3 as key regulators of CAR T cell exhaustion. Our findings shed light on the plasticity of human CAR T cells and demonstrate that genetic downmodulation of ID3 and SOX4 expression can improve the efficacy of CAR T cell therapy in solid tumors by preventing or delaying CAR T cell dysfunction.
Collapse
Affiliation(s)
- Charly R Good
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - M Angela Aznar
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shunichiro Kuramitsu
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Parisa Samareh
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sangya Agarwal
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Greg Donahue
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kenichi Ishiyama
- Department of Microbiology and Immunology, University of California San Francisco and the Parker Institute for Cancer Immunotherapy at the University of California San Francisco, San Francisco, California 94143, USA
| | - Nils Wellhausen
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Austin K Rennels
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yujie Ma
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Lifeng Tian
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sonia Guedan
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Katherine A Alexander
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Zhen Zhang
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Philipp C Rommel
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathan Singh
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Karl M Glastad
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Max W Richardson
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keisuke Watanabe
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Janos L Tanyi
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark H O'Hara
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marco Ruella
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simon F Lacey
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edmund K Moon
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Stephen J Schuster
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Steven M Albelda
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California San Francisco and the Parker Institute for Cancer Immunotherapy at the University of California San Francisco, San Francisco, California 94143, USA
| | - Regina M Young
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Shelley L Berger
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
40
|
Du XZ, Wen B, Liu L, Wei YT, Zhao K. Role of immune escape in different digestive tumours. World J Clin Cases 2021; 9:10438-10450. [PMID: 35004976 PMCID: PMC8686128 DOI: 10.12998/wjcc.v9.i34.10438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/15/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
A counterbalance between immune cells and tumour cells is key to fighting tumours, and immune escape is an important mechanism for the survival of tumour cells in the body. Tumor cells and their cytokines impair the activity of T cells, NK cells, macrophages and other immune cells through various ways, and change the expression of their own surface antigens so as to avoid the clearance of the immune system. Changes in major histocompatibility complex molecules, high expression of programmed death-ligand 1, and the presence of immunosuppressive cells in the tumor microenvironment (TME) are main means by which tumors impair the function of immune cells. During the development of tumours of the digestive system, different mechanisms acting on tumour cells, the TME, and immune cells lead to immune escape and promote tumour progression. In this paper, the mechanisms of immune escape in tumour cells of the digestive system are reviewed to provide a theoretical basis for the immunotherapy of gastrointestinal tumours.
Collapse
Affiliation(s)
- Xin-Zhu Du
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Bin Wen
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Lin Liu
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Ying-Ting Wei
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| | - Kui Zhao
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi 563000, Guizhou Province, China
| |
Collapse
|
41
|
Yang Y, Yang M, Shi D, Chen K, Zhao J, He S, Bai Y, Shen P, Ni H. Single-cell RNA Seq reveals cellular landscape-specific characteristics and potential etiologies for adolescent idiopathic scoliosis. JOR Spine 2021; 4:e1184. [PMID: 35005449 PMCID: PMC8717101 DOI: 10.1002/jsp2.1184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUNDS Abnormal vertebral growth and development have been found in adolescent idiopathic scoliosis (AIS) patients, and the proliferation and differentiation of bone development-related cells play important roles in its pathogenesis. However, a comprehensive single-cell-level differentiation roadmap in AIS has not been achieved. METHODS The present study compared the single-cell level cellular landscapes of spinal cancellous bone tissues between AIS patients and healthy subjects using high throughput single-cell RNA sequencing (scRNA-seq), which covers multiple cellular lineages including osteoblast, chondrocyte, osteoclast and related immunocytes. We constructed the differentiation trajectories of bone development-related cell lineages through pseudotime analysis, and the intercellular-communication networks between bone development-related cells and immunocytes were further developed. RESULTS A total of 11 distinct cell clusters were identified according to the genome-wide transcriptome profiles. t-Distributed stochastic neighbor embedding (t-SNE) analysis showed that mesenchymal stem cells (MSC) were classified into three subtypes: MSC-LOXL2, MSC-IGFBP5, and MSC-GJA1. Gene ontology (GO) analysis showed that MSC-GJA1 might possess greater osteoblast differentiation potential than the others. MSC-IGFBP5 was the specific MSC subtype observed only in AIS. There were two distinct gene expression clusters: OB-DPT and OB-OLFML2B, and the counts of osteoblasts derived from AIS was significantly less than that of non-AIS subjects. In AIS patients, MSC-IGFBP5 failed to differentiate into osteoblasts and exhibited negative regulation of cell proliferation and enhanced cell death. CPC-PCNA was found to be the specific chondrocyte progenitor cell (CPC) subtype observed only in AIS patients. The cell counts of OC-BIRC3 in AIS were less than those in controls. Pseudotime analysis suggested two possible distinct osteoclast differentiation patterns in AIS and control subjects. Monocytes in AIS mainly differentiated into OC-CRISP3. CONCLUSIONS Our single-cell analysis first revealed differences existed in the cellular states between AIS patients and healthy subjects and found the differentiation disruption of specific MSC and CPC clusters in AIS. Cell communication analysis provided the possible pathogenesis of osteoblast and chondrocyte differentiation dysfunction in AIS.
Collapse
Affiliation(s)
- Yilin Yang
- Department of Orthopaedic SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
| | - Mingyuan Yang
- Department of OrthopaedicsChanghai Hospital, Navy Medical UniversityShanghaiChina
| | - Dongliang Shi
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center)Tongji University School of MedicineShanghaiChina
| | - Kai Chen
- Department of OrthopaedicsChanghai Hospital, Navy Medical UniversityShanghaiChina
| | - Jian Zhao
- Department of OrthopaedicsChanghai Hospital, Navy Medical UniversityShanghaiChina
| | - Shisheng He
- Department of Orthopaedics, Shanghai 10th People's HospitalTongji UniversityShanghaiChina
| | - Yushu Bai
- Department of OrthopaedicsChanghai Hospital, Navy Medical UniversityShanghaiChina
| | - Pinquan Shen
- Department of Pediatric Orthopaedics, Xinhua HospitalShanghai Jiaotong UniversityShanghaiChina
| | - Haijian Ni
- Department of Orthopaedics, Shanghai 10th People's HospitalTongji UniversityShanghaiChina
| |
Collapse
|
42
|
Borst L, Sluijter M, Sturm G, Charoentong P, Santegoets SJ, van Gulijk M, van Elsas MJ, Groeneveldt C, van Montfoort N, Finotello F, Trajanoski Z, Kiełbasa SM, van der Burg SH, van Hall T. NKG2A is a late immune checkpoint on CD8 T cells and marks repeated stimulation and cell division. Int J Cancer 2021; 150:688-704. [PMID: 34716584 PMCID: PMC9299709 DOI: 10.1002/ijc.33859] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/08/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
The surface inhibitory receptor NKG2A forms heterodimers with the invariant CD94 chain and is expressed on a subset of activated CD8 T cells. As antibodies to block NKG2A are currently tested in several efficacy trials for different tumor indications, it is important to characterize the NKG2A+ CD8 T cell population in the context of other inhibitory receptors. Here we used a well‐controlled culture system to study the kinetics of inhibitory receptor expression. Naïve mouse CD8 T cells were synchronously and repeatedly activated by artificial antigen presenting cells in the presence of the homeostatic cytokine IL‐7. The results revealed NKG2A as a late inhibitory receptor, expressed after repeated cognate antigen stimulations. In contrast, the expression of PD‐1, TIGIT and LAG‐3 was rapidly induced, hours after first contact and subsequently down regulated during each resting phase. This late, but stable expression kinetics of NKG2A was most similar to that of TIM‐3 and CD39. Importantly, single‐cell transcriptomics of human tumor‐infiltrating lymphocytes (TILs) showed indeed that these receptors were often coexpressed by the same CD8 T cell cluster. Furthermore, NKG2A expression was associated with cell division and was promoted by TGF‐β in vitro, although TGF‐β signaling was not necessary in a mouse tumor model in vivo. In summary, our data show that PD‐1 reflects recent TCR triggering, but that NKG2A is induced after repeated antigen stimulations and represents a late inhibitory receptor. Together with TIM‐3 and CD39, NKG2A might thus mark actively dividing tumor‐specific TILs.
Collapse
Affiliation(s)
- Linda Borst
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Marjolein Sluijter
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Gregor Sturm
- Institute of Bioinformatics, Innsbruck Medical University, Innsbruck, Austria
| | - Pornpimol Charoentong
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Applied Tumor Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Saskia J Santegoets
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Mandy van Gulijk
- Department of Pulmonology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marit J van Elsas
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Christianne Groeneveldt
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Nadine van Montfoort
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Francesca Finotello
- Institute of Bioinformatics, Innsbruck Medical University, Innsbruck, Austria
| | - Zlatko Trajanoski
- Institute of Bioinformatics, Innsbruck Medical University, Innsbruck, Austria
| | - Szymon M Kiełbasa
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
43
|
Cazzetta V, Bruni E, Terzoli S, Carenza C, Franzese S, Piazza R, Marzano P, Donadon M, Torzilli G, Cimino M, Simonelli M, Bello L, Villa A, Tan L, Ravens S, Prinz I, Supino D, Colombo FS, Lugli E, Marcenaro E, Vivier E, Della Bella S, Mikulak J, Mavilio D. NKG2A expression identifies a subset of human Vδ2 T cells exerting the highest antitumor effector functions. Cell Rep 2021; 37:109871. [PMID: 34686325 DOI: 10.1016/j.celrep.2021.109871] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/13/2021] [Accepted: 09/29/2021] [Indexed: 01/13/2023] Open
Abstract
Human Vδ2 cells are innate-like γδ T effectors performing potent immune surveillance against tumors. The constitutive expression of NKG2A identifies a subset of Vδ2 T cells licensed with an intrinsic hyper-responsiveness against cancer. Indeed, the transcriptomic profiles of NKG2A+ and NKG2A- cells characterize two distinct "intralineages" of Vδ2 T lymphocytes that appear early during development, keep their phenotypes, and show self-renewal capabilities in adult life. The hyper-responsiveness of NKG2A+ Vδ2 T cells is counterbalanced by the inhibitory signaling delivered by human leukocyte antigen E (HLA-E) expressed on malignant cells as a tumor-escape mechanism. However, either masking or knocking out NKG2A restores the capacity of Vδ2 T cells to exert the highest effector functions even against HLA-E+ tumors. This is highly relevant in the clinic, as the different degrees of engagement of the NKG2A-HLA-E checkpoint in hepatocellular carcinoma, glioblastoma, and non-small cell lung cancer directly impact patients' overall survival. These findings open avenues for developing combined cellular and immunologic anticancer therapies.
Collapse
Affiliation(s)
- Valentina Cazzetta
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Elena Bruni
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Sara Terzoli
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Claudia Carenza
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Sara Franzese
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Paolo Marzano
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Matteo Donadon
- Department of Biomedical Science, Humanitas University, 20090 Pieve Emanuele, Milan, Italy; Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Guido Torzilli
- Department of Biomedical Science, Humanitas University, 20090 Pieve Emanuele, Milan, Italy; Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Matteo Cimino
- Department of Hepatobiliary and General Surgery, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Matteo Simonelli
- Department of Biomedical Science, Humanitas University, 20090 Pieve Emanuele, Milan, Italy; Department of Medical Oncology and Hematology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Lorenzo Bello
- U.O. Neurochirurgia Oncologica, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Anna Villa
- Division of Regenerative, Medicine, Stem Cells and Gene Therapy, San Raffaele Telethon Institute for Gene Therapy, San Raffaele Scientific Institute, Milan, Italy; Institute of Genetic and Biomedical Research, UOS Milan, National Research Council, Rozzano, Milan, Italy
| | - Likai Tan
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Sarina Ravens
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Domenico Supino
- Department of Biomedical Science of Clinical and Experimental Immunology, Humanitas University, 20090 Pieve Emanuele, Milan, Italy
| | - Federico S Colombo
- Humanitas Flow Cytometry Core, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Enrico Lugli
- Humanitas Flow Cytometry Core, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy; Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine, Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Eric Vivier
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France; Research Laboratories, Innate Pharma, Marseille, France; Service d'Immunologie, Hôpital de la Timone, APHM, Marseille-Immunopôle, Marseille, France
| | - Silvia Della Bella
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Joanna Mikulak
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Domenico Mavilio
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy.
| |
Collapse
|
44
|
Tang Y, Zhang AXJ, Chen G, Wu Y, Gu W. Prognostic and therapeutic TILs of cervical cancer-Current advances and future perspectives. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:410-430. [PMID: 34553029 PMCID: PMC8430272 DOI: 10.1016/j.omto.2021.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cervical cancer is a top lethal cancer for women worldwide. Although screening and vaccination programs are available in many countries, resulting in the decline of new cases, this is not true for developing countries where there are many new cases and related deaths. Cancer immunotherapy through adaptive cell therapy (ACT) has been applied in clinics, but now much attention is focused on autogenic tumor-infiltrating lymphocyte (TIL)-based therapy, which has shown more specificity and better ability to inhibit tumor growth. Data from melanoma and cervical cancers confirm that tumor-specific T cells in TILs can be expanded for more specific and effective ACT. Moreover, TILs are derived from individual patients and are ready to home back to kill tumor cells after patient infusion, aligning well with personalized and precision medicine. In addition to therapy, TIL cell types and numbers are good indicators of host immune response to the tumor, and thus they have significant values in prognosis. Because of the special relationship with human papillomavirus (HPV) infection, cervical cancer has some specialties in TIL-based prognosis and therapy. In this review, we summarize the recent advances in the prognostic significance of TILs and TIL-based therapy for cervical cancer and discuss related perspectives.
Collapse
Affiliation(s)
- Ying Tang
- Institute of Tumor, Guangzhou University of Chinese Medicine, Guangzhou, China.,Gillion ITM Research Institute, Guangzhou Hongkeyuan, Guangzhou, China
| | - Anne X J Zhang
- Gillion ITM Research Institute, Guangzhou Hongkeyuan, Guangzhou, China
| | - Guangyu Chen
- Gillion ITM Research Institute, Guangzhou Hongkeyuan, Guangzhou, China
| | - Yanheng Wu
- Gillion ITM Research Institute, Guangzhou Hongkeyuan, Guangzhou, China
| | - Wenyi Gu
- Gillion ITM Research Institute, Guangzhou Hongkeyuan, Guangzhou, China.,Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
45
|
Xu QH, Liu H, Wang LL, Zhu Q, Zhang YJ, Muyayalo KP, Liao AH. Roles of γδT cells in pregnancy and pregnancy-related complications. Am J Reprod Immunol 2021; 86:e13487. [PMID: 34331364 DOI: 10.1111/aji.13487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 12/27/2022] Open
Abstract
A successful pregnancy is a complex and unique process comprised of discrete events, including embryo implantation, placentation, and parturition. To maintain the balance between maternal-fetal immune tolerance and resistance to infections, the maternal immune system must have a high degree of stage-dependent plasticity throughout the period of pregnancy. Innate immunity is the frontline force for the establishment of early anti-infection and tolerance mechanisms in mammals. Belonging to the innate immune system, a subset of T cells called γδT cells (based on γδT cell receptors) are the main participants in immune surveillance and immune defense. Unlike traditional αβT cells, γδT cells are regarded as a bridge between innate immunity and acquired immunity. In this review, we summarize current knowledge on the functional plasticity of γδT cells during pregnancy. Furthermore, we discuss the roles of γδT cells in pathological pregnancies.
Collapse
Affiliation(s)
- Qian-Han Xu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Liu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Ling Wang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Zhu
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Jing Zhang
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kahindo P Muyayalo
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ai-Hua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
Yang Y, Liu Z, Wang H, Zhang G. HLA-E Binding Peptide as a Potential Therapeutic Candidate for High-Risk Multiple Myeloma. Front Oncol 2021; 11:670673. [PMID: 34178656 PMCID: PMC8219970 DOI: 10.3389/fonc.2021.670673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Human leukocyte antigen-E (HLA-E) has been putatively associated with the pathogenesis of multiple myeloma (MM). Our study first showed that HLA-E was differentially expressed on MM and normal plasma cells (39.27 ± 27.01 and 11.28 ± 0.79, respectively). Based on the median value of HLA-E expression, we further stratified MM patients into high and low-expression groups, and then found high expression of HLA-E was correlated with advanced ISS stage (p = 0.025) and high-risk cytogenetics risk stratification (p = 0.000) by the Pearson Chi-square test, suggesting that HLA-E could be considered as a biomarker for high-risk MM. Furthermore, peptide 3 (P3) from our previous study was confirmed to possess a high affinity to HLA-E positive MM cells. Taken together, HLA-E could be considered as a new marker and candidate treatment target for MM, while peptide P3 may act as a potential treatment choice for targeting MM cells.
Collapse
Affiliation(s)
- Ying Yang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhuogang Liu
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongtao Wang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Guojun Zhang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
47
|
Xie Q, Ding J, Chen Y. Role of CD8 + T lymphocyte cells: Interplay with stromal cells in tumor microenvironment. Acta Pharm Sin B 2021; 11:1365-1378. [PMID: 34221857 PMCID: PMC8245853 DOI: 10.1016/j.apsb.2021.03.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
CD8+ T lymphocytes are pivotal cells in the host response to antitumor immunity. Tumor-driven microenvironments provide the conditions necessary for regulating infiltrating CD8+ T cells in favor of tumor survival, including weakening CD8+ T cell activation, driving tumor cells to impair immune attack, and recruiting other cells to reprogram the immune milieu. Also in tumor microenvironment, stromal cells exert immunosuppressive skills to avoid CD8+ T cell cytotoxicity. In this review, we explore the universal function and fate decision of infiltrated CD8+ T cells and highlight their antitumor response within various stromal architectures in the process of confronting neoantigen-specific tumor cells. Thus, this review provides a foundation for the development of antitumor therapy based on CD8+ T lymphocyte manipulation.
Collapse
Affiliation(s)
- Qin Xie
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310012, China
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jian Ding
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Shanghai HaiHe Pharmaceutical Co., Ltd., Shanghai 201203, China
| | - Yi Chen
- Division of Anti-Tumor Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
48
|
Fang H, Wang W, Kadia TM, El Hussein S, Wang SA, Khoury JD. CD94 expression patterns in reactive and neoplastic T-cell and NK-cell proliferations. Leuk Res 2021; 108:106614. [PMID: 33990003 DOI: 10.1016/j.leukres.2021.106614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/24/2021] [Accepted: 05/07/2021] [Indexed: 11/24/2022]
Abstract
Lymphomas and leukemias of T-cell and NK-cell lineages are highly heterogeneous disorders and lack effective therapeutic strategies. Targeted therapies including anti-CD94 agents are currently under clinical investigation, but studies of CD94 expression on mature T/NK-cell neoplasms are limited. In this study, we investigated the landscape of CD94 protein expression in 15 patients with reactive T/NK-cell proliferations and 124 patients with various T/NK cell neoplasms. CD94 expression was detected at a high level in reactive NK-cells, with a lower level of expression in a subset of reactive CD8 + T-cells; reactive CD4 + T-cells were negative for CD94 expression. All NK-cell neoplasms surveyed had high-level CD94 expression, which was significantly higher than that in T cell neoplasms (p = 0.0174). In neoplastic T-cell proliferations, CD94 expression was positive in all 10 hepatosplenic T-cell lymphoma cases tested, with a high mean fluorescence intensity. Fifty-six percent of T-cell large granular lymphocytic leukemia cases were positive for CD94 expression in a subset of neoplastic cells. All T-cell prolymphocytic leukemia and 97 % of peripheral T-cell lymphoma cases showed no CD94 expression. Our findings demonstrate a broad range of CD94 expression among T/NK-cell neoplasms, in some at levels that suggest therapeutic vulnerability to CD94-targeted therapies.
Collapse
Affiliation(s)
- Hong Fang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wei Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siba El Hussein
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sa A Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph D Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
49
|
Wang Y, Yan K, Lin J, Li J, Bi J. Macrophage M2 Co-expression Factors Correlate With the Immune Microenvironment and Predict Outcome of Renal Clear Cell Carcinoma. Front Genet 2021; 12:615655. [PMID: 33692827 PMCID: PMC7938896 DOI: 10.3389/fgene.2021.615655] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/07/2021] [Indexed: 12/21/2022] Open
Abstract
Purpose: In the tumor microenvironment, the functional differences among various tumor-associated macrophages (TAM) are not completely clear. Tumor-associated macrophages are thought to promote the progression of cancer. This article focuses on exploring M2 macrophage-related factors and behaviors of renal clear cell carcinoma. Method: We obtained renal clear cell carcinoma data from TCGA-KIRC-FPKM, GSE8050, GSE12606, GSE14762, and GSE3689. We used the “Cibersort” algorithm to calculate type M2 macrophage proportions among 22 types of immune cells. M2 macrophage-related co-expression module genes were selected using weighted gene co-expression network analysis (WGCNA). A renal clear cell carcinoma prognosis risk score was built based on M2 macrophage-related factors. The ROC curve and Kaplan–Meier analysis were performed to evacuate the risk score in various subgroups. The Pearson test was used to calculate correlations among M2 macrophage-related genes, clinical phenotype, immune phenotype, and tumor mutation burden (TMB). We measured differences in co-expression of genes at the protein level in clear renal cell carcinoma tissues. Results: There were six M2 macrophage co-expressed genes (F13A1, FUCA1, SDCBP, VSIG4, HLA-E, TAP2) related to infiltration of M2 macrophages; these were enriched in neutrophil activation and involved in immune responses, antigen processing, and presentation of exogenous peptide antigen via MHC class I. M2-related factor frequencies were robust biomarkers for predicting the renal clear cell carcinoma patient clinical phenotype and immune microenvironment. The Cox regression model, built based on M2 macrophage-related factors, showed a close prognostic correlation (AUC = 0.78). The M2 macrophage-related prognosis model also performed well in various subgroups. Using western blotting, we found that VSIG4 protein expression levels were higher in clear renal cell carcinoma tissues than in normal tissues. Conclusion: These co-expressed genes were most related to the M2 macrophage phenotype. They correlated with the immune microenvironment and predicted outcomes of renal clear cell carcinoma. These co-expressed genes and the biological processes associated with them might provide the basis for new strategies to intervene via chemotaxis of M2 macrophages.
Collapse
Affiliation(s)
- Yutao Wang
- Department of Urology, The First Hospital of China Medical University, China Medical University, Shenyang, China
| | - Kexin Yan
- Department of Dermatology, The First Hospital of China Medical University, China Medical University, Shenyang, China
| | - Jiaxing Lin
- Department of Urology, The First Hospital of China Medical University, China Medical University, Shenyang, China
| | - Jun Li
- Department of Urology, The First Hospital of China Medical University, China Medical University, Shenyang, China
| | - Jianbin Bi
- Department of Urology, The First Hospital of China Medical University, China Medical University, Shenyang, China
| |
Collapse
|
50
|
Shukla A, Cloutier M, Appiya Santharam M, Ramanathan S, Ilangumaran S. The MHC Class-I Transactivator NLRC5: Implications to Cancer Immunology and Potential Applications to Cancer Immunotherapy. Int J Mol Sci 2021; 22:ijms22041964. [PMID: 33671123 PMCID: PMC7922096 DOI: 10.3390/ijms22041964] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
The immune system constantly monitors the emergence of cancerous cells and eliminates them. CD8+ cytotoxic T lymphocytes (CTLs), which kill tumor cells and provide antitumor immunity, select their targets by recognizing tumor antigenic peptides presented by MHC class-I (MHC-I) molecules. Cancer cells circumvent immune surveillance using diverse strategies. A key mechanism of cancer immune evasion is downregulation of MHC-I and key proteins of the antigen processing and presentation machinery (APM). Even though impaired MHC-I expression in cancers is well-known, reversing the MHC-I defects remains the least advanced area of tumor immunology. The discoveries that NLRC5 is the key transcriptional activator of MHC-I and APM genes, and genetic lesions and epigenetic modifications of NLRC5 are the most common cause of MHC-I defects in cancers, have raised the hopes for restoring MHC-I expression. Here, we provide an overview of cancer immunity mediated by CD8+ T cells and the functions of NLRC5 in MHC-I antigen presentation pathways. We describe the impressive advances made in understanding the regulation of NLRC5 expression, the data supporting the antitumor functions of NLRC5 and a few reports that argue for a pro-tumorigenic role. Finally, we explore the possible avenues of exploiting NLRC5 for cancer immunotherapy.
Collapse
Affiliation(s)
- Akhil Shukla
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Maryse Cloutier
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Madanraj Appiya Santharam
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
- CRCHUS, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
- CRCHUS, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada
- Correspondence: ; Tel.: +1-819-346-1110 (ext. 14834)
| |
Collapse
|