1
|
Farzam SA, Darabi S, Haghdoost-Yazdi H, Zaferani Y. Dexmedetomidine, an alpha-2 adrenoceptors agonist, provides a neuroprotective effect for dopaminergic neurons in the substantia nigra and attenuates glucose imbalance in the 6-hydroxydopamine animal model of Parkinson's disease. Neurol Res 2024; 46:763-771. [PMID: 38740025 DOI: 10.1080/01616412.2024.2354084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION Studies have shown that dexmedetomidine (DEX, an a2-adrenoceptors agonist) provides a neuroprotective effect and influences blood glucose levels. Here, we evaluated the effect of prolonged treatment with low doses of DEX on the survival rate of dopaminergic (DAergic) neurons in the substantia nigra and also serum glucose levels in 6-hydroxydopamine (6-OHDA) - induced Parkinson's disease (PD) in the rat. MATERIAL AND METHODS The neurotoxin of 6-OHDA was injected into the medial forebrain bundle by stereotaxic surgery. DEX (25 and 50 µg/kg, i.p) and yohimbine, an a2-adrenoceptor antagonist (1 mg/kg, i.p) were administered before the surgery to the 13 weeks afterward. Apomorphine-induced rotational tests and blood sampling were carried out before the surgery and multiple weeks after that. Thirteen weeks after the surgery, the rats' brain was transcardially perfused to assess the survival rate of DAergic neurons using the tyrosine hydroxylase (TH) immunohistochemistry. RESULTS DEX remarkably attenuated the severity of rotational behavior and reversed the progress of the PD. It also increased the number of TH-labeled neurons by up to 60%. The serum glucose levels in 6-OHDA-received rats did not change in the third and seventh weeks after the surgery but decreased significantly in the thirteenth week. Treatment with DEX prevented this decrement in glucose levels. On the other hand, Treatment with yohimbine did not affect PD symptoms and glucose levels. CONCLUSION Our data indicate that DEX through neuroprotective activity attenuates the severity of 6-OHDA-induced PD in rats. DEX might also prevent hypoglycemia during the progress of the PD.
Collapse
Affiliation(s)
- Seyed Amir Farzam
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Shahram Darabi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hashem Haghdoost-Yazdi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Yasamin Zaferani
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
2
|
Sternberg Z. Neurodegenerative Etiology of Aromatic L-Amino Acid Decarboxylase Deficiency: a Novel Concept for Expanding Treatment Strategies. Mol Neurobiol 2024; 61:2996-3018. [PMID: 37953352 DOI: 10.1007/s12035-023-03684-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/29/2023] [Indexed: 11/14/2023]
Abstract
Aromatic l-amino acid decarboxylase deficiency (AADC-DY) is caused by one or more mutations in the DDC gene, resulting in the deficit in catecholamines and serotonin neurotransmitters. The disease has limited therapeutic options with relatively poor clinical outcomes. Accumulated evidence suggests the involvement of neurodegenerative mechanisms in the etiology of AADC-DY. In the absence of neurotransmitters' neuroprotective effects, the accumulation and the chronic presence of several neurotoxic metabolites including 4-dihydroxy-L-phenylalanine, 3-methyldopa, and homocysteine, in the brain of subjects with AADC-DY, promote oxidative stress and reduce the cellular antioxidant and methylation capacities, leading to glial activation and mitochondrial dysfunction, culminating to neuronal injury and death. These pathophysiological processes have the potential to hinder the clinical efficacy of treatments aimed at increasing neurotransmitters' synthesis and or function. This review describes in detail the mechanisms involved in AADC-DY neurodegenerative etiology, highlighting the close similarities with those involved in other neurodegenerative diseases. We then offer novel strategies for the treatment of the disease with the objective to either reduce the level of the metabolites or counteract their prooxidant and neurotoxic effects. These treatment modalities used singly or in combination, early in the course of the disease, will minimize neuronal injury, preserving the functional integrity of neurons, hence improving the clinical outcomes of both conventional and unconventional interventions in AADC-DY. These modalities may not be limited to AADC-DY but also to other metabolic disorders where a specific mutation leads to the accumulation of prooxidant and neurotoxic metabolites.
Collapse
Affiliation(s)
- Zohi Sternberg
- Jacobs School of Medicine and Biomedical Sciences, Buffalo Medical Center, Buffalo, NY, 14203, USA.
| |
Collapse
|
3
|
Zhang Y, Tsai TH, Ezrokhi M, Stoelzel C, Cincotta AH. Tyrosine Hydroxylase Knockdown at the Hypothalamic Supramammillary Nucleus Area Induces Obesity and Glucose Intolerance. Neuroendocrinology 2023; 114:483-510. [PMID: 38128505 PMCID: PMC11098027 DOI: 10.1159/000535944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION The supramammillary nucleus (SuMN) exerts influences on a wide range of brain functions including feeding and feeding-independent fuel metabolism. However, which specific neuronal type(s) within the SuMN manifest this influence has not been delineated. This study investigated the effect of SuMN tyrosine hydroxylase (TH) (rate-limiting enzyme in dopamine synthesis) knockdown (THx) on peripheral fuel metabolism. METHODS SuMN-THx was accomplished using a virus-mediated shRNA to locally knockdown TH gene expression at the SuMN. The impact of SuMN-THx was examined over 35-72 days in rats least prone to developing metabolic syndrome (MS) - female Sprague-Dawley rats resistant to the obesogenic effect of high fat diet (HFDr) and fed regular chow (RC) - upon body weight/fat, feeding, glucose tolerance, and insulin sensitivity. The influence of HFD, gender, and long-term response of SuMN-THx was subsequently investigated in female HFDr rats fed HFD, male HFDr rats fed RC, and female HFD-sensitive rats fed RC over 1 year, respectively. RESULTS SuMN-THx induced obesity and glucose intolerance, elevated plasma leptin and triglycerides, increased hepatic mRNA levels of gluconeogenic, lipogenic, and pro-inflammatory genes, reduced white adipose fatty acid oxidation rate, and altered plasma corticosterone level and hepatic circadian gene expression. Moreover, SuMN-THx increased feeding during the natural resting/fasting period and altered ghrelin feeding response suggesting ghrelin resistance. This MS-inducing effect was enhanced by HFD feeding, similarly observed in male rats and persisted over 1 year. DISCUSSION/CONCLUSION SuMN-THx induced long-term, gender-nonspecific, multiple pathophysiological changes leading to MS suggesting SuMN dopaminergic circuits communicating with other brain metabolism and behavior control centers modulate peripheral fuel metabolism.
Collapse
|
4
|
Dereje B, Nardos A. Dopamine 2 agonists for the management of type 2 diabetes: a systematic review and meta-analysis. J Diabetes Metab Disord 2023; 22:931-943. [PMID: 37975084 PMCID: PMC10638275 DOI: 10.1007/s40200-023-01230-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/28/2023] [Indexed: 11/16/2023]
Abstract
Background The Dopamine-2 receptor agonists, Bromocriptine and Cabergoline, were originally introduced for prolactinomas, pituitary tumors, and parkinson's disease but have glucose-lowering effects. This paper systematically reviewed the significance of their effects on lowering blood glucose level and conducted a comprehensive systematic search to identify relevant clinical trials of dopamine 2 agonists on glycated hemoglobin (HbA1c) and fasting blood sugar (FBS). Method We conducted a systematic review search in the databases (PubMed, Google Scholar, Cochrane Library, Registers, and Citations) until November 30, 2022, using the PRISMA 2020 statement. The Oxford quality score (Jadad score) was used to assess the study's quality. The present study protocol was registered on the PROSPERO database with ID: CRD42023389582. The study included studies with full abstracts, predefined doses, clear interventions, and blood glucose measurements. Result Data were synthesized from 23 clinical studies that recruited 6125 study subjects. The pooled effect analysis of the clinical trials revealed that dopamine 2 agonists improved HbA1c [SMD = -1.26; 95% CI (-1.60, -0.93), P < .00001], and FBS [SMD = -1.84; 95% CI (-2.61, -1.07), P < .00001]. Each drug's pooled effect analysis indicates bromocriptine significantly improved HbA1c [SMD = -1.25; 95% CI (-1.64, -0.87), P < .00001] and FBS [SMD = -1.90; 95% CI (-2.79, -1.01), P < .00001] and similarly, cabergoline significantly improved HbA1c [SMD = -1.29; 95% CI (-1.96, -0.62), P < .00001] and FBS [SMD = -1.62; 95% CI (-2.82, -0.41), P < .00001]. The pooled and individual analyses demonstrated that dopamine 2 agonists have a significant ability to lower blood glucose levels in clinical studies. Conclusion This study shows that dopamine 2 agonists significantly lowered FBS and HbA1c levels without causing severe negative effects. Even though the results are promising, additional research is necessary to establish the appropriate antihyperglycemic dosage, frequency of daily use, side effects, and potential product interactions when employing dopamine 2 receptor agonists for their antihyperglycemic effect.
Collapse
Affiliation(s)
- Beyene Dereje
- Department of Pharmacology, School of Medicine, College of Medicine and Health Sciences, Dire Dawa University, Dire Dawa, Ethiopia
| | - Aschalew Nardos
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, Hawassa University, Hawassa, Ethiopia
| |
Collapse
|
5
|
Cincotta AH. Brain Dopamine-Clock Interactions Regulate Cardiometabolic Physiology: Mechanisms of the Observed Cardioprotective Effects of Circadian-Timed Bromocriptine-QR Therapy in Type 2 Diabetes Subjects. Int J Mol Sci 2023; 24:13255. [PMID: 37686060 PMCID: PMC10487918 DOI: 10.3390/ijms241713255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 09/10/2023] Open
Abstract
Despite enormous global efforts within clinical research and medical practice to reduce cardiovascular disease(s) (CVD), it still remains the leading cause of death worldwide. While genetic factors clearly contribute to CVD etiology, the preponderance of epidemiological data indicate that a major common denominator among diverse ethnic populations from around the world contributing to CVD is the composite of Western lifestyle cofactors, particularly Western diets (high saturated fat/simple sugar [particularly high fructose and sucrose and to a lesser extent glucose] diets), psychosocial stress, depression, and altered sleep/wake architecture. Such Western lifestyle cofactors are potent drivers for the increased risk of metabolic syndrome and its attendant downstream CVD. The central nervous system (CNS) evolved to respond to and anticipate changes in the external (and internal) environment to adapt survival mechanisms to perceived stresses (challenges to normal biological function), including the aforementioned Western lifestyle cofactors. Within the CNS of vertebrates in the wild, the biological clock circuitry surveils the environment and has evolved mechanisms for the induction of the obese, insulin-resistant state as a survival mechanism against an anticipated ensuing season of low/no food availability. The peripheral tissues utilize fat as an energy source under muscle insulin resistance, while increased hepatic insulin resistance more readily supplies glucose to the brain. This neural clock function also orchestrates the reversal of the obese, insulin-resistant condition when the low food availability season ends. The circadian neural network that produces these seasonal shifts in metabolism is also responsive to Western lifestyle stressors that drive the CNS clock into survival mode. A major component of this natural or Western lifestyle stressor-induced CNS clock neurophysiological shift potentiating the obese, insulin-resistant state is a diminution of the circadian peak of dopaminergic input activity to the pacemaker clock center, suprachiasmatic nucleus. Pharmacologically preventing this loss of circadian peak dopaminergic activity both prevents and reverses existing metabolic syndrome in a wide variety of animal models of the disorder, including high fat-fed animals. Clinically, across a variety of different study designs, circadian-timed bromocriptine-QR (quick release) (a unique formulation of micronized bromocriptine-a dopamine D2 receptor agonist) therapy of type 2 diabetes subjects improved hyperglycemia, hyperlipidemia, hypertension, immune sterile inflammation, and/or adverse cardiovascular event rate. The present review details the seminal circadian science investigations delineating important roles for CNS circadian peak dopaminergic activity in the regulation of peripheral fuel metabolism and cardiovascular biology and also summarizes the clinical study findings of bromocriptine-QR therapy on cardiometabolic outcomes in type 2 diabetes subjects.
Collapse
|
6
|
Schäfer M, Browne LP, Truong U, Bjornstad P, Tell S, Snell-Bergeon J, Baumgartner A, Hunter KS, Reusch JEB, Barker AJ, Nadeau KJ, Schauer IE. Bromocriptine Improves Central Aortic Stiffness in Adolescents With Type 1 Diabetes: Arterial Health Results From the BCQR-T1D Study. Hypertension 2023; 80:482-491. [PMID: 36472197 PMCID: PMC9852005 DOI: 10.1161/hypertensionaha.122.19547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/09/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The presence of vascular dysfunction is a well-recognized feature in youth with type 1 diabetes (T1D), accentuating their lifetime risk of cardiovascular events. Therapeutic strategies to mitigate vascular dysfunction are a high clinical priority. In the bromocriptine quick release T1D study (BCQR-T1D), we tested the hypothesis that BCQR would improve vascular health in youth with T1D. METHODS BCQR-T1D was a placebo-controlled, random-order, double-blinded, cross-over study investigating the cardiovascular and metabolic impact of BCQR in T1D. Adolescents in the BCQR-T1D study were randomized 1:1 to phase-1: 4 weeks of BCQR or placebo after which blood pressure and central aortic stiffness measurements by pulse wave velocity, relative area change, and distensibility from phase-contrast magnetic resonance imaging were performed. Following a 4-week washout period, phase 2 was performed in identical fashion with the alternate treatment. RESULTS Thirty-four adolescents (mean age 15.9±2.6 years, hemoglobin A1c 8.6±1.1%, body mass index percentile 71.4±26.1, median T1D duration 5.8 years) with T1D were enrolled and had magnetic resonance imaging data available. Compared with placebo, BCQR therapy decreased systolic (∆=-5 mmHg [95% CI, -3 to -7]; P<0.001) and diastolic blood pressure (∆=-2 mmHg [95% CI, -4 to 0]; P=0.039). BCQR reduced ascending aortic pulse wave velocity (∆=-0.4 m/s; P=0.018) and increased relative area change (∆=-2.6%, P=0.083) and distensibility (∆=0.08%/mmHg; P=0.017). In the thoraco-abdominal aorta, BCQR decreased pulse wave velocity (∆=-0.2 m/s; P=0.007) and increased distensibility (∆=0.05 %/mmHg; P=0.013). CONCLUSIONS BCQR improved blood pressure and central and peripheral aortic stiffness and pressure hemodynamics in adolescents with T1D over 4 weeks versus placebo. BCQR may improve aortic stiffness in youth with T1D, supporting future longer-term studies.
Collapse
Affiliation(s)
- Michal Schäfer
- Division of Pediatric Cardiology, Department of Pediatrics, University of Colorado – School of Medicine, Aurora, CO
| | - Lorna P. Browne
- Department of Radiology, University of Colorado – School of Medicine, Aurora, CO
| | - Uyen Truong
- Department of Cardiology, Children’s Hospital of Richmond at Virginia Commonwealth University
| | - Petter Bjornstad
- Section of Pediatric Endocrinology, Department of Pediatrics, University of Colorado – School of Medicine, Aurora, CO
| | - Shoshana Tell
- Section of Pediatric Endocrinology, Department of Pediatrics, University of Colorado – School of Medicine, Aurora, CO
| | - Janet Snell-Bergeon
- Barbara Davis Center, Department of Medicine, University of Colorado – School of Medicine, Aurora, CO
| | - Amy Baumgartner
- Section of Pediatric Endocrinology, Department of Pediatrics, University of Colorado – School of Medicine, Aurora, CO
| | - Kendall S. Hunter
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, CO
| | - Jane E. B. Reusch
- Section of Endocrinology, Rocky Mountain Regional VAMC, Aurora, CO
- Division of Endocrinology, Department of Medicine, University of Colorado – School of Medicine, Aurora, CO
- Center for Women’s Health Research, University of Colorado – School of Medicine, Aurora, CO
| | - Alex J. Barker
- Department of Radiology, University of Colorado – School of Medicine, Aurora, CO
- Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, CO
| | - Kristen J. Nadeau
- Section of Pediatric Endocrinology, Department of Pediatrics, University of Colorado – School of Medicine, Aurora, CO
| | - Irene E. Schauer
- Section of Endocrinology, Rocky Mountain Regional VAMC, Aurora, CO
- Division of Endocrinology, Department of Medicine, University of Colorado – School of Medicine, Aurora, CO
- Center for Women’s Health Research, University of Colorado – School of Medicine, Aurora, CO
| |
Collapse
|
7
|
Miceli DD, García JD, Pompili GA, Rey Amunategui JP, Ferraris S, Pignataro OP, Guitelman M. Cabergoline treatment in cats with diabetes mellitus and hypersomatotropism. J Feline Med Surg 2022; 24:1238-1244. [PMID: 35133181 PMCID: PMC10812327 DOI: 10.1177/1098612x221074924] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the safety and efficacy of cabergoline to control hypersomatotropism (HST) and diabetes mellitus (DM) in cats. METHODS This was a prospective cohort study. Twenty-three cats with HST and concurrent DM were enrolled. Cats received a dose of 10 μg/kg cabergoline q48h PO for 6 months. Serum insulin-like growth factor 1 (IGF-1) and fructosamine concentrations, insulin dose and Insulin Resistance Index (IRI) were measured at the time of diagnosis of HST and at the start of cabergoline treatment (t0), and 3 months (t1) and 6 months (t2) during cabergoline treatment. RESULTS A decrease and normalization of serum IGF-1 concentration was observed in 35% and 26% of cats, respectively. Median IGF-1 (t0: 1350 ng/ml [range 832-1501]; t1: 1284 ng/ml [range 365-1501]; t2: 1240 ng/ml [range 263-1501]; P = 0.016) decreased significantly. Twelve cats underwent diagnostic imaging of the pituitary area. The median pituitary height at t0 of cats that experienced an IGF-1 reduction (n = 5/12) was significantly lower compared with those that did not experience an IGF-1 reduction (n = 7/12) (3.2 mm [range 3.1-3.7] vs 6 mm [range 3.5-9.5]; P = 0.011). Median fructosamine (t0: 628 µmol/l [range 400-963]; t1: 404 µmol/l [range 249-780]; t2: 400 µmol/l [range 260-815]; P <0.0001), insulin dose (t0: 1.3 IU/kg [range 0.5-4.6]; t0: 0.5 IU/kg [range 0-2.3]; t2: 0.4 IU/kg [range 0-2.1]; P <0.0001) and IRI (t0: 800 µmolIU/kgl [range 257-2700]; t1: 300 µmolIU/kgl [range 0-1498]; t2: 250 µmolIU/kgl [range 0-1498]; P <0.0001) decreased significantly during cabergoline treatment. Eight cats achieved diabetic remission between months 1 and 6 of cabergoline treatment (median time to achieve remission: 3 months [range 1-6]). Three cats experienced asymptomatic hypoglycemia. CONCLUSIONS AND RELEVANCE Cabergoline was effective in normalizing IGF-1 concentration in 26% of cats. Cabergoline improved diabetes control and was associated with remission of DM in 35% of cases. Cabergoline could be a treatment option for cats with HST and DM, especially in those cases with a relatively small pituitary tumor.
Collapse
Affiliation(s)
- Diego D Miceli
- Hospital School of Veterinary Medicine, University of Buenos Aires, Faculty of Veterinary Sciences, Buenos Aires, Argentina
- Veterinary Science Center, Maimonides University, Buenos Aires, Argentina
| | - Jorge D García
- Hospital School of Veterinary Medicine, University of Buenos Aires, Faculty of Veterinary Sciences, Buenos Aires, Argentina
| | - Gustavo A Pompili
- Hospital School of Veterinary Medicine, University of Buenos Aires, Faculty of Veterinary Sciences, Buenos Aires, Argentina
| | | | - Sergio Ferraris
- Veterinary Science Center, Maimonides University, Buenos Aires, Argentina
| | - Omar P Pignataro
- Laboratory of Molecular Endocrinology and Signal Transduction, Institute of Experimental Biology and Medicine - CONICET, Buenos Aires, Argentina
| | - Mirtha Guitelman
- Endocrinology Unit, Hospital Carlos G Durand, Buenos Aires, Argentina
| |
Collapse
|
8
|
Kabir MT, Ferdous Mitu J, Akter R, Akhtar MF, Saleem A, Al-Harrasi A, Bhatia S, Rahman MS, Damiri F, Berrada M, Rahman MH. Therapeutic potential of dopamine agonists in the treatment of type 2 diabetes mellitus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46385-46404. [PMID: 35486279 DOI: 10.1007/s11356-022-20445-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Diabetes is a global health concern that has affected almost 415 million people globally. Bromocriptine is a dopamine D2 agonist, which is a Food and Drug Administration (FDA)-approved drug to treat type 2 diabetes mellitus (T2DM) patients. However, it is considered that a novel treatment therapy is required which can be used in the treatment of diabetes with or without other antidiabetic agents. Dopamine agonists are usually used in neurological disorders like Parkinson's disease (PD), restless leg syndrome, and hyperprolactinemia. However, dopamine agonists including bromocriptine and cabergoline are also effective in reducing the glycemic level in T2DM patients. Bromocriptine was formerly used for the treatment of PD, hyperprolactinemia, and restless leg syndrome, but now it is used for improving glycemic levels as well as reducing free fatty acids and triglycerides. In addition, cabergoline has been found to be effective in glycemic control, but this drug is yet to be approved by the FDA due to its limitations and lack of study. Findings of the clinical trials of bromocriptine have suggested that it reduces almost 0.4-0.8% glycated hemoglobin and cardiovascular risk by 40% in insulin-resistant patients. Moreover, the safe use of bromocriptine in obese T2DM patients makes it a more attractive option as it causes weight loss. Indeed, bromocriptine is a novel therapy for T2DM patients, as its mechanism of action is unique in T2DM patients with minimal adverse effects. This review summarizes the potential of dopamine agonists in the treatment of T2DM.
Collapse
Affiliation(s)
- Md Tanvir Kabir
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka, 1212, Bangladesh
| | | | - Raushanara Akter
- Department of Pharmacy, Brac University, 66 Mohakhali, Dhaka, 1212, Bangladesh
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore Campus, Lahore, Pakistan
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, P.O. Box 33, Nizwa, Oman
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, 616 Birkat Al Mauz, P.O. Box 33, Nizwa, Oman
- School of Health Science, University of Petroleum and Energy Studies, Prem Nagar, Dehradun, Uttarakhand, 248007, India
| | - Md Sohanur Rahman
- Department of Biochemistry and Molecular Biology, Trust University, Barishal, Ruiya, Nobogram Road, Barishal, 8200, Bangladesh
| | - Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassan II of Casablanca, Casablanca, Morocco
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassan II of Casablanca, Casablanca, Morocco
| | - Md Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka, 1213, Bangladesh.
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju, 26426, Gangwon-do, Korea.
| |
Collapse
|
9
|
Sarbazi-Golezari A, Haghdoost-Yazdi H. Chronic and progressive dopaminergic neuronal death in substantia nigra associates with a decrease in serum levels of glucose and free fatty acids, the role of interlokin-1 beta. Metab Brain Dis 2022; 37:373-381. [PMID: 34767157 DOI: 10.1007/s11011-021-00868-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/31/2021] [Indexed: 11/24/2022]
Abstract
Human studies indicate that Parkinson's disease (PD) associates with disruption in metabolism of glucose and free fatty acids (FFA). Studies have shown that interlukin-1beta (IL-1β) causes hypoglycemia through insulin- independent mechanisms. Here, we investigated association between dopaminergic neuronal death, as the main pathophysiological mechanism underlying PD, and serum levels of glucose, FFA and IL-1β in 6-hydroxydopamine (6-OHDA) animal model of PD. Neurotoxin of 6-OHDA was injected into medial forebrain bundle and multiple behavioral testes were carried out during eight weeks thereafter. Blood was collected before the toxin and in second and eight weeks thereafter. Then, brain of the animals was perfused to assess survival of dopaminergic (DAergic) neurons in substantia nigra by tyrosine hydroxylase (TH) immunohistochemistry. Glucose, FFA and IL-1β levels were determined using calorimetric method and specific ELISA kits. In compare to control, 6-OHDA- treated rats had less glucose and FFA levels in the eight week and higher IL-1β level in the both second and eight weeks. Based on severity of behavioral symptoms, 6-OHDA- treated rats were divided into two subgroups of severe and mild. Number of TH- positive cells in these subgroups was 83 and 45% less than that in control. Also, both subgroups showed less weight gain, lower glucose and FFA and higher IL-1β in eight week. Our data indicate that moderate to severe progressive DAergic neuronal death in substantia nigra associates with a decrease in serum levels of glucose and FFA. Increase in IL-1β production following neuronal death possibly mediated this decrease.
Collapse
Affiliation(s)
- Ali Sarbazi-Golezari
- Cellular and Molecular Research Center, Research Institute for Prevention of Non- Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hashem Haghdoost-Yazdi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non- Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
10
|
Miceli DD, Vidal PN, Pompili GA, Castillo VA, Soler Arias EA, Niessen SJ. Diabetes mellitus remission in three cats with hypersomatotropism after cabergoline treatment. JFMS Open Rep 2021; 7:20551169211018991. [PMID: 34158968 PMCID: PMC8186120 DOI: 10.1177/20551169211018991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Case summary Three diabetic cats presented with polyuria, polydipsia, polyphagia and poor glycemic control. Cat 1 displayed prognathia inferior and had a body condition score (BCS) of 4/5; cat 2 had a BCS of 5/5; and cat 3 had broad facial features. Serum insulin-like growth factor 1 concentrations were compatible with hypersomatotropism in cat 1 and cat 2 (>1500 ng/ml and 1200 ng/ml, respectively) and just below the cut-off of 1000 ng/ml (947 ng/ml) in cat 3; in this last cat diagnosis was further supported by the presence of pituitary enlargement on MRI. Oral cabergoline (10 μg/kg q48h) was initiated. Insulin requirements progressively reduced, as evidenced by daily blood glucose monitoring and weekly blood glucose curves. Diabetic remission occurred in all three cats between the second and third months of cabergoline treatment. At the time of writing, remission has persisted thus far (cat 1: 23 months; cat 2: 14 months; cat 3: 38 months). Relevance and novel information To our knowledge, these are the first reported cases of diabetic remission in cats with hypersomatotropism after cabergoline treatment, despite previous reports of this being an ineffective treatment. Further work is indicated to determine why some cats do, and others do not, respond to this treatment.
Collapse
Affiliation(s)
- Diego D Miceli
- Endocrinology Unit, Hospital School of Veterinary Medicine, University of Buenos Aires, Buenos Aires, Argentina.,Laboratory of Molecular Endocrinology and Signal Transduction, Institute of Experimental Biology and Medicine - CONICET, Buenos Aires, Argentina
| | - Patricia N Vidal
- Endocrinology Unit, Hospital School of Veterinary Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Gustavo A Pompili
- Cardiology Unit, Hospital School of Veterinary Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Víctor A Castillo
- Endocrinology Unit, Hospital School of Veterinary Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Elber A Soler Arias
- Endocrinology Unit, Hospital School of Veterinary Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | - Stijn Jm Niessen
- Department of Clinical Science and Services, The Royal Veterinary Collage, Hatfield, UK.,Veterinary Specialist Consultations, Hilversum, The Netherlands
| |
Collapse
|
11
|
Luo S, Ezrokhi M, Cominos N, Tsai TH, Stoelzel CR, Trubitsyna Y, Cincotta AH. Experimental dopaminergic neuron lesion at the area of the biological clock pacemaker, suprachiasmatic nuclei (SCN) induces metabolic syndrome in rats. Diabetol Metab Syndr 2021; 13:11. [PMID: 33485386 PMCID: PMC7825247 DOI: 10.1186/s13098-021-00630-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/13/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The daily peak in dopaminergic neuronal activity at the area of the biological clock (hypothalamic suprachiasmatic nuclei [SCN]) is diminished in obese/insulin resistant vs lean/insulin sensitive animals. The impact of targeted lesioning of dopamine (DA) neurons specifically at the area surrounding (and that communicate with) the SCN (but not within the SCN itself) upon glucose metabolism, adipose and liver lipid gene expression, and cardiovascular biology in normal laboratory animals has not been investigated and was the focus of this study. METHODS Female Sprague-Dawley rats received either DA neuron neurotoxic lesion by bilateral intra-cannula injection of 6-hydroxydopamine (2-4 μg/side) or vehicle treatment at the area surrounding the SCN at 20 min post protriptyline ip injection (20 mg/kg) to protect against damage to noradrenergic and serotonergic neurons. RESULTS At 16 weeks post-lesion relative to vehicle treatment, peri-SCN area DA neuron lesioning increased weight gain (34.8%, P < 0.005), parametrial and retroperitoneal fat weight (45% and 90% respectively, P < 0.05), fasting plasma insulin, leptin and norepinephrine levels (180%, 71%, and 40% respectively, P < 0.05), glucose tolerance test area under the curve (AUC) insulin (112.5%, P < 0.05), and insulin resistance (44%-Matsuda Index, P < 0.05) without altering food consumption during the test period. Such lesion also induced the expression of several lipid synthesis genes in adipose and liver and the adipose lipolytic gene, hormone sensitive lipase in adipose (P < 0.05 for all). Liver monocyte chemoattractant protein 1 (a proinflammatory protein associated with metabolic syndrome) gene expression was also significantly elevated in peri-SCN area dopaminergic lesioned rats. Peri-SCN area dopaminergic neuron lesioned rats were also hypertensive (systolic BP rose from 157 ± 5 to 175 ± 5 mmHg, P < 0.01; diastolic BP rose from 109 ± 4 to 120 ± 3 mmHg, P < 0.05 and heart rate increase from 368 ± 12 to 406 ± 12 BPM, P < 0.05) and had elevated plasma norepinephrine levels (40% increased, P < 0.05) relative to controls. CONCLUSIONS These findings indicate that reduced dopaminergic neuronal activity in neurons at the area of and communicating with the SCN contributes significantly to increased sympathetic tone and the development of metabolic syndrome, without effect on feeding.
Collapse
Affiliation(s)
- Shuqin Luo
- VeroScience LLC, 1334 Main Road, Tiverton, RI, 02878, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Andersen IB, Andreassen M, Krogh J. The effect of dopamine agonists on metabolic variables in adults with type 2 diabetes: A systematic review with meta analysis and trial sequential analysis of randomized clinical trials. Diabetes Obes Metab 2021; 23:58-67. [PMID: 32869474 DOI: 10.1111/dom.14183] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/08/2020] [Accepted: 08/23/2020] [Indexed: 01/07/2023]
Abstract
AIM To assess the metabolic effects of dopamine agonists compared with placebo in randomized controlled trials (RCTs) including adults with type 2 diabetes. MATERIALS AND METHODS Eligible trials were identified by searching PubMed, Embase and CENTRAL. The primary outcomes were HbA1c and serious adverse events (SAEs) assessed at longest available follow-up. Secondary outcomes were fasting plasma glucose, adverse events, body weight, hypoglycaemia and triglycerides. We assessed risk of bias and evaluated the certainty of the evidence with the Grading of Recommendations Assessment, Development and Evaluation (GRADE). RESULTS Nine RCTs enrolling 3456 participants were included, six of which assessed the effect of bromocriptine, and the other three the effect of cabergoline. Dopamine agonists reduced HbA1c with 0.69 standardized mean difference (95% CI = 0.28 to 1.09; P = .0008; I2 = 80%; GRADE: low) compared with placebo. There was no difference in the effect between bromocriptine and cabergoline. Heterogeneity was partly explained by dosage and study duration, both of which were inversely associated with effect size. Only one large trial reported SAEs and no difference was reported for the risk of an SAE (RR = 0.89; 95% CI = 0.70 to 1.12; P = .32) between active intervention and placebo. Secondary outcomes suggested a decrease in fasting plasma glucose and triglycerides and no effect on the remaining outcomes. CONCLUSION Dopamine agonists reduce HbA1c as well as fasting plasma glucose and triglycerides in patients with type 2 diabetes without causing SAEs. These data are based on moderate to low quality evidence thus our confidence in the effect estimates is limited.
Collapse
Affiliation(s)
- Ida Brandt Andersen
- Department of Endocrinology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Mikkel Andreassen
- Department of Endocrinology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Krogh
- Department of Endocrinology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Moore MC, Smith MS, Swift LL, Cincotta AH, Ezrokhi M, Cominos N, Zhang Y, Farmer B, Cherrington AD. Bromocriptine mesylate improves glucose tolerance and disposal in a high-fat-fed canine model. Am J Physiol Endocrinol Metab 2020; 319:E133-E145. [PMID: 32459527 PMCID: PMC7468784 DOI: 10.1152/ajpendo.00479.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bromocriptine mesylate treatment was examined in dogs fed a high fat diet (HFD) for 8 wk. After 4 wk on HFD, daily bromocriptine (Bromo; n = 6) or vehicle (CTR; n = 5) injections were administered. Oral glucose tolerance tests were performed before beginning HFD (OGTT1), 4 wk after HFD began (Bromo only), and after 7.5 wk on HFD (OGTT3). After 8 wk on HFD, clamp studies were performed, with infusion of somatostatin and intraportal replacement of insulin (4× basal) and glucagon (basal). From 0 to 90 min (P1), glucose was infused via peripheral vein to double the hepatic glucose load; and from 90 to 180 min (P2), glucose was infused via the hepatic portal vein at 4 mg·kg-1·min-1, with the HGL maintained at 2× basal. Bromo decreased the OGTT glucose ΔAUC0-30 and ΔAUC0-120 by 62 and 27%, respectively, P < 0.05 for both) without significantly altering the insulin response. Bromo dogs exhibited enhanced net hepatic glucose uptake (NHGU) compared with CTR (~33 and 21% greater, P1 and P2, respectively, P < 0.05). Nonhepatic glucose uptake (non-HGU) was increased ~38% in Bromo in P2 (P < 0.05). Bromo vs. CTR had higher (P < 0.05) rates of glucose infusion (36 and 30%) and non-HGU (~40 and 27%) than CTR during P1 and P2, respectively. In Bromo vs. CTR, hepatic 18:0/16:0 and 16:1/16:0 ratios tended to be elevated in triglycerides and were higher (P < 0.05) in phospholipids, consistent with a beneficial effect of bromocriptine on liver fat accumulation. Thus, bromocriptine treatment improved glucose disposal in a glucose-intolerant model, enhancing both NHGU and non-HGU.
Collapse
Affiliation(s)
- Mary Courtney Moore
- Department of Metabolic Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Marta S Smith
- Department of Metabolic Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Larry L Swift
- Vanderbilt Diabetes Research and Training Center, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | | | | | | | - Ben Farmer
- Department of Metabolic Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
- Vanderbilt Diabetes Research and Training Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alan D Cherrington
- Department of Metabolic Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
14
|
Stoelzel CR, Zhang Y, Cincotta AH. Circadian-timed dopamine agonist treatment reverses high-fat diet-induced diabetogenic shift in ventromedial hypothalamic glucose sensing. Endocrinol Diabetes Metab 2020; 3:e00139. [PMID: 32704560 PMCID: PMC7375120 DOI: 10.1002/edm2.139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/28/2020] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Within the ventromedial hypothalamus (VMH), glucose inhibitory (GI) neurons sense hypoglycaemia while glucose excitatory (GE) neurons sense hyperglycaemia to initiate counter control mechanisms under normal conditions. However, potential electrophysiological alterations of these two neuronal types in vivo in insulin-resistant states have never been simultaneously fully documented. Further, the anti-diabetic effect of dopamine agonism on this VMH system under insulin resistance has not been studied. METHODS This study examined the impact of a high-fat diet (HFD) on in vivo electrophysiological recordings from VMH GE and GI neurons and the ability of circadian-timed dopamine agonist therapy to reverse any adverse effect of the HFD on such VMH activities and peripheral glucose metabolism. RESULTS HFD significantly inhibited VMH GE neuronal electrophysiological response to local hyperglycaemia (36.3%) and augmented GI neuronal excitation response to local hypoglycaemia (47.0%). Bromocriptine (dopamine agonist) administration at onset of daily activity (but not during the daily sleep phase) completely reversed both VMH GE and GI neuronal aberrations induced by HFD. Such timed treatment also normalized glucose intolerance and insulin resistance. These VMH and peripheral glucose metabolism effects of circadian-timed bromocriptine may involve its known effect to reduce elevated VMH noradrenergic activity in insulin-resistant states as local VMH administration of norepinephrine was observed to significantly inhibit VMH GE neuronal sensing of local hyperglycaemia in insulin-sensitive animals on regular chow diet (52.4%). CONCLUSIONS HFD alters VMH glucose sensing in a manner that potentiates hyperglycaemia and this effect on the VMH can be reversed by appropriately circadian-timed dopamine agonist administration.
Collapse
|
15
|
Chamarthi B, Vinik A, Ezrokhi M, Cincotta AH. Circadian-timed quick-release bromocriptine lowers elevated resting heart rate in patients with type 2 diabetes mellitus. Endocrinol Diabetes Metab 2020; 3:e00101. [PMID: 31922028 PMCID: PMC6947713 DOI: 10.1002/edm2.101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/09/2019] [Accepted: 10/20/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Sympathetic nervous system (SNS) overactivity is a risk factor for insulin resistance and cardiovascular disease (CVD). We evaluated the impact of bromocriptine-QR, a dopamine-agonist antidiabetes medication, on elevated resting heart rate (RHR) (a marker of SNS overactivity in metabolic syndrome), blood pressure (BP) and the relationship between bromocriptine-QR's effects on RHR and HbA1c in type 2 diabetes subjects. DESIGN AND SUBJECTS RHR and BP changes were evaluated in this post hoc analysis of data from a randomized controlled trial in 1014 type 2 diabetes subjects randomized to bromocriptine-QR vs placebo added to standard therapy (diet ± ≤2 oral antidiabetes medications) for 24 weeks without concomitant antihypertensive or antidiabetes medication changes, stratified by baseline RHR (bRHR). RESULTS In subjects with bRHR ≥70 beats/min, bromocriptine-QR vs placebo reduced RHR by -3.4 beats/min and reduced BP (baseline 130/79; systolic, diastolic, mean arterial BP reductions [mm Hg]: -3.6 [P = .02], -1.9 [P = .05], -2.5 [P = .02]). RHR reductions increased with higher baseline HbA1c (bHbA1c) (-2.7 [P = .03], -5 [P = .002], -6.1 [P = .002] with bHbA1c ≤7, >7, ≥7.5%, respectively] in the bRHR ≥70 group and more so with bRHR ≥80 (-4.5 [P = .07], -7.8 [P = .015], -9.9 [P = .005]). Subjects with bRHR <70 had no significant change in RHR or BP. With bHbA1c ≥7.5%, %HbA1c reductions with bromocriptine-QR vs placebo were -0.50 (P = .04), -0.73 (P = .005) and -1.22 (P = .008) with bRHR <70, ≥70 and ≥80, respectively. With bRHR ≥70, the magnitude of bromocriptine-QR-induced RHR reduction was an independent predictor of bromocriptine-QR's HbA1c lowering effect. CONCLUSION Bromocriptine-QR lowers elevated RHR with concurrent decrease in BP and hyperglycaemia. These findings suggest a potential sympatholytic mechanism contributing to bromocriptine-QR's antidiabetes effect and potentially its previously demonstrated effect to reduce CVD events.
Collapse
Affiliation(s)
| | - Aaron Vinik
- Eastern Virginia Medical School Strelitz Diabetes CenterNorfolkVirginia
| | | | | |
Collapse
|
16
|
Gökçay Canpolat A, Şahin M. Glucose Lowering Treatment Modalities of Type 2 Diabetes Mellitus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1307:7-27. [PMID: 32200500 DOI: 10.1007/5584_2020_516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter gives an overview of present knowledge and clinical aspects of antidiabetic drugs according to the recently available research evidence and clinical expertise.Many agents are acting on eight groups of pathophysiological mechanisms, which is commonly called as "Ominous Octet" by DeFronzo. The muscle, liver and β-cell, the fat cell, gastrointestinal tract, α-cell, kidney, and brain play essential roles in the development of glucose intolerance in type 2 diabetic individuals (Defronzo, Diabetes 58:773-795, 2009).A treatment paradigm shift is seen in the initiation of anti-hyperglycemic agents from old friends (meglitinides or sulphonylürea) to newer agents effecting on GLP-1 RA or SGLT-2 inhibitors. It is mostly about the other protective positive effects of these agents for kidney, heart, etc. Although there are concerns for the long term safety profiles; they are used widely around the World. The delivery of patient-centered care, facilitating medication adherence, the importance of weight loss in obese patients, the importance of co-morbid conditions are the mainstays of selecting the optimal agent.
Collapse
Affiliation(s)
- Asena Gökçay Canpolat
- Department of Endocrinology and Metabolism, Ankara University School of Medicine, Ankara, Turkey
| | - Mustafa Şahin
- Department of Endocrinology and Metabolism, Ankara University School of Medicine, Ankara, Turkey.
| |
Collapse
|
17
|
Analysis of the Relationship between Type II Diabetes Mellitus and Parkinson's Disease: A Systematic Review. PARKINSONS DISEASE 2019; 2019:4951379. [PMID: 31871617 PMCID: PMC6906831 DOI: 10.1155/2019/4951379] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/01/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022]
Abstract
In the early sixties, a discussion started regarding the association between Parkinson's disease (PD) and type II diabetes mellitus (T2DM). Today, this potential relationship is still a matter of debate. This review aims to analyze both diseases concerning causal relationships and treatments. A total of 104 articles were found, and studies on animal and “in vitro” models showed that T2DM causes neurological alterations that may be associated with PD, such as deregulation of the dopaminergic system, a decrease in the expression of peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α), an increase in the expression of phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes 15 (PED/PEA-15), and neuroinflammation, as well as acceleration of the formation of alpha-synuclein amyloid fibrils. In addition, clinical studies described that Parkinson's symptoms were notably worse after the onset of T2DM, and seven deregulated genes were identified in the DNA of T2DM and PD patients. Regarding treatment, the action of antidiabetic drugs, especially incretin mimetic agents, seems to confer certain degree of neuroprotection to PD patients. In conclusion, the available evidence on the interaction between T2DM and PD justifies more robust clinical trials exploring this interaction especially the clinical management of patients with both conditions.
Collapse
|
18
|
Fiory F, Perruolo G, Cimmino I, Cabaro S, Pignalosa FC, Miele C, Beguinot F, Formisano P, Oriente F. The Relevance of Insulin Action in the Dopaminergic System. Front Neurosci 2019; 13:868. [PMID: 31474827 PMCID: PMC6706784 DOI: 10.3389/fnins.2019.00868] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022] Open
Abstract
The advances in medicine, together with lifestyle modifications, led to a rising life expectancy. Unfortunately, however, aging is accompanied by an alarming boost of age-associated chronic pathologies, including neurodegenerative and metabolic diseases. Interestingly, a non-negligible interplay between alterations of glucose homeostasis and brain dysfunction has clearly emerged. In particular, epidemiological studies have pointed out a possible association between Type 2 Diabetes (T2D) and Parkinson’s Disease (PD). Insulin resistance, one of the major hallmark for etiology of T2D, has a detrimental influence on PD, negatively affecting PD phenotype, accelerating its progression and worsening cognitive impairment. This review aims to provide an exhaustive analysis of the most recent evidences supporting the key role of insulin resistance in PD pathogenesis. It will focus on the relevance of insulin in the brain, working as pro-survival neurotrophic factor and as a master regulator of neuronal mitochondrial function and oxidative stress. Insulin action as a modulator of dopamine signaling and of alpha-synuclein degradation will be described in details, too. The intriguing idea that shared deregulated pathogenic pathways represent a link between PD and insulin resistance has clinical and therapeutic implications. Thus, ongoing studies about the promising healing potential of common antidiabetic drugs such as metformin, exenatide, DPP IV inhibitors, thiazolidinediones and bromocriptine, will be summarized and the rationale for their use to decelerate neurodegeneration will be critically assessed.
Collapse
Affiliation(s)
- Francesca Fiory
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Giuseppe Perruolo
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Ilaria Cimmino
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Serena Cabaro
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Francesca Chiara Pignalosa
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Claudia Miele
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Pietro Formisano
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Francesco Oriente
- Department of Translational Medicine, University of Naples Federico II, Naples, Italy.,URT "Genomic of Diabetes," Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| |
Collapse
|
19
|
Lundqvist MH, Almby K, Abrahamsson N, Eriksson JW. Is the Brain a Key Player in Glucose Regulation and Development of Type 2 Diabetes? Front Physiol 2019; 10:457. [PMID: 31133864 PMCID: PMC6524713 DOI: 10.3389/fphys.2019.00457] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/01/2019] [Indexed: 01/08/2023] Open
Abstract
Ever since Claude Bernards discovery in the mid 19th-century that a lesion in the floor of the third ventricle in dogs led to altered systemic glucose levels, a role of the CNS in whole-body glucose regulation has been acknowledged. However, this finding was later overshadowed by the isolation of pancreatic hormones in the 20th century. Since then, the understanding of glucose homeostasis and pathology has primarily evolved around peripheral mechanism. Due to scientific advances over these last few decades, however, increasing attention has been given to the possibility of the brain as a key player in glucose regulation and the pathogenesis of metabolic disorders such as type 2 diabetes. Studies of animals have enabled detailed neuroanatomical mapping of CNS structures involved in glucose regulation and key neuronal circuits and intracellular pathways have been identified. Furthermore, the development of neuroimaging techniques has provided methods to measure changes of activity in specific CNS regions upon diverse metabolic challenges in humans. In this narrative review, we discuss the available evidence on the topic. We conclude that there is much evidence in favor of active CNS involvement in glucose homeostasis but the relative importance of central vs. peripheral mechanisms remains to be elucidated. An increased understanding of this field may lead to new CNS-focusing pharmacologic strategies in the treatment of type 2 diabetes.
Collapse
Affiliation(s)
| | - Kristina Almby
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | | - Jan W Eriksson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Stice E, Burger K. Neural vulnerability factors for obesity. Clin Psychol Rev 2019; 68:38-53. [PMID: 30587407 PMCID: PMC6397091 DOI: 10.1016/j.cpr.2018.12.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 10/05/2018] [Accepted: 12/17/2018] [Indexed: 01/09/2023]
Abstract
Multiple theories identify neural vulnerability factors that may increase risk for overeating and weight gain. Early cross-sectional neuroimaging studies were unable to determine whether aberrant neural responsivity was a risk factor for or a consequence of overeating. More recent obesity risk, prospective, repeated-measures, and experimental neuroimaging studies with humans have advanced knowledge of etiologic processes and neural plasticity resulting from overeating. Herein, we review evidence from these more rigorous human neuroimaging studies, in conjunction with behavioral measures reflecting neural function, as well as experiments with animals that investigated neural vulnerability theories for overeating. Findings provide support for the reward surfeit theory that posits that individuals at risk for obesity initially show hyper-responsivity of reward circuitry to high-calorie food tastes, which theoretically drives elevated intake of such foods. However, findings provide little support for the reward deficit theory that postulates that individuals at risk for obesity show an initial hypo-responsivity of reward circuitry that motives overeating. Further, results provide support for the incentive sensitization and dynamic vulnerability theories that propose that overconsumption of high-calorie foods results in increased reward and attention region responsivity to cues that are associated with hedonic reward from intake of these high-calorie foods via conditioning, as well as a simultaneous decrease in reward region responsivity to high-calorie food tastes. However, there is little evidence that this induced reduction in reward region response to high-calorie food tastes drives an escalation in overeating. Finally, results provide support for the theory that an initial deficit in inhibitory control and a bias for immediate reward contribute to overconsumption of high-calorie foods. Findings imply that interventions that reduce reward and attention region responsivity to food cues and increase inhibitory control should reduce overeating and excessive weight gain, an intervention theory that is receiving support in randomized trials.
Collapse
Affiliation(s)
- Eric Stice
- Oregon Research Institute, Eugene, OR, USA.
| | - Kyle Burger
- University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
21
|
Brain Microdialysate Monoamines in Relation to Circadian Rhythms, Sleep, and Sleep Deprivation - a Systematic Review, Network Meta-analysis, and New Primary Data. J Circadian Rhythms 2019; 17:1. [PMID: 30671123 PMCID: PMC6337052 DOI: 10.5334/jcr.174] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Disruption of the monoaminergic system, e.g. by sleep deprivation (SD), seems to promote certain diseases. Assessment of monoamine levels over the circadian cycle, during different sleep stages and during SD is instrumental to understand the molecular dynamics during and after SD. To provide a complete overview of all available evidence, we performed a systematic review. A comprehensive search was performed for microdialysis and certain monoamines (dopamine, serotonin, noradrenaline, adrenaline), certain monoamine metabolites (3,4-dihydroxyphenylacetic acid (DOPAC), 5-hydroxyindoleacetic acid (5-HIAA)) and a precursor (5-hydroxytryptophan (5-HTP)) in PubMed and EMBASE. After screening of the search results by two independent reviewers, 94 publications were included. All results were tabulated and described qualitatively. Network-meta analyses (NMAs) were performed to compare noradrenaline and serotonin concentrations between sleep stages. We further present experimental monoamine data from the medial prefrontal cortical (mPFC). Monoamine levels varied with brain region and circadian cycle. During sleep, monoamine levels generally decreased compared to wake. These qualitative observations were supported by the NMAs: noradrenaline and serotonin levels decreased from wakefulness to slow wave sleep and decreased further during Rapid Eye Movement sleep. In contrast, monoamine levels generally increased during SD, and sometimes remained high even during subsequent recovery. Decreases during or after SD were only reported for serotonin. In our experiment, SD did not affect any of the mPFC monoamine levels. Concluding, monoamine levels vary over the light-dark cycle and between sleep stages. SD modifies the patterns, with effects sometimes lasting beyond the SD period.
Collapse
|
22
|
Athanasoulia-Kaspar AP, Popp KH, Stalla GK. Neuropsychiatric and metabolic aspects of dopaminergic therapy: perspectives from an endocrinologist and a psychiatrist. Endocr Connect 2018; 7:R88-R94. [PMID: 29378769 PMCID: PMC5825922 DOI: 10.1530/ec-18-0030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 01/11/2023]
Abstract
The dopaminergic treatment represents the primary treatment in prolactinomas, which are the most common pituitary adenomas and account for about 40% of all pituitary tumours with an annual incidence of six to ten cases per million population. The dopaminergic treatment includes ergot and non-ergot derivatives with high affinity for the dopamine receptors D1 or/and D2. Through the activation of the dopaminergic pathway on pituitary lactotrophs, the dopamine agonists inhibit the prolactin synthesis and secretion, therefore normalizing the prolactin levels and restoring eugonadism, but they also lead to tumour shrinkage. Treatment with dopamine agonists has been associated - apart from the common side effects such as gastrointestinal symptoms, dizziness and hypotension - with neuropsychiatric side effects such as impulse control disorders (e.g. pathological gambling, compulsive shopping, hypersexuality and binge eating) and also with behavioral changes from low mood, irritability and verbal aggressiveness up to psychotic and manic symptoms and paranoid delusions not only in patients with prolactinomas but also in patients with Parkinson's disease and restless leg syndrome. They usually have de novo onset after initiation of the dopaminergic treatment and have been mainly reported in patients with Parkinson's disease, who are being treated with higher doses of dopamine agonists. Moreover, dopamine and prolactin seem to play an essential role in the metabolic pathway. Patients with hyperprolactinemia tend to have increased body weight and an altered metabolic profile with hyperinsulinemia and increased prevalence of diabetes mellitus in comparison to healthy individuals and patients with non-functioning pituitary adenomas. Treatment with dopamine agonists in these patients in short-term studies seems to lead to weight loss and amelioration of the metabolic changes. Together these observations provide evidence that dopamine and prolactin have a crucial role both in the regard and metabolic system, findings that merit further investigation in long-term studies.
Collapse
Affiliation(s)
| | - Kathrin H Popp
- Max Planck Institute of PsychiatryDepartment of Internal Medicine, Endocrinology and Clinical Chemistry, Munich, Germany
| | - Gunter Karl Stalla
- Max Planck Institute of PsychiatryDepartment of Internal Medicine, Endocrinology and Clinical Chemistry, Munich, Germany
| |
Collapse
|
23
|
Patel SS, Udayabanu M. Effect of natural products on diabetes associated neurological disorders. Rev Neurosci 2018; 28:271-293. [PMID: 28030360 DOI: 10.1515/revneuro-2016-0038] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022]
Abstract
Diabetes mellitus, a metabolic disorder, is associated with neurological complications such as depression, anxiety, hypolocomotion, cognitive dysfunction, phobias, anorexia, stroke, pain, etc. Traditional system of medicine is long known for its efficient management of diabetes. The current review discusses the scope of some common medicinal herbs as well as secondary metabolites with a special focus on diabetes-mediated central nervous system complications. Literatures suggest that natural products reduce diabetes-mediated neurological complications partly by reducing oxidative stress and/or inflammation or apoptosis in certain brain regions. Natural products are known to modulate diabetes-mediated alterations in the level of acetylcholinesterase, choline acetyltransferase, monoamine oxidase, serotonin receptors, muscarinic receptors, insulin receptor, nerve growth factor, brain-derived neurotrophic factor, and neuropeptide in brain. Further, there are several natural products reported to manage diabetic complications with unknown mechanism. In conclusion, medicinal plants or their secondary metabolites have a wide scope and possess therapeutic potential to effectively manage neurological complications associated with chronic diabetes.
Collapse
|
24
|
Luo S, Zhang Y, Ezrokhi M, Li Y, Tsai T, Cincotta AH. Circadian peak dopaminergic activity response at the biological clock pacemaker (suprachiasmatic nucleus) area mediates the metabolic responsiveness to a high-fat diet. J Neuroendocrinol 2018; 30:e12563. [PMID: 29224246 PMCID: PMC5817247 DOI: 10.1111/jne.12563] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 12/24/2022]
Abstract
Among vertebrate species of the major vertebrate classes in the wild, a seasonal rhythm of whole body fuel metabolism, oscillating from a lean to obese condition, is a common biological phenomenon. This annual cycle is driven in part by annual changes in the circadian dopaminergic signalling at the suprachiasmatic nuclei (SCN), with diminution of circadian peak dopaminergic activity at the SCN facilitating development of the seasonal obese insulin-resistant condition. The present study investigated whether such an ancient circadian dopamine-SCN activity system for expression of the seasonal obese, insulin-resistant phenotype may be operative in animals made obese amd insulin resistant by high-fat feeding and, if so, whether reinstatement of the circadian dopaminergic peak at the SCN would be sufficient to reverse the adverse metabolic impact of the high-fat diet without any alteration of caloric intake. First, we identified the supramammillary nucleus as a novel site providing the majority of dopaminergic neuronal input to the SCN. We further identified dopamine D2 receptors within the peri-SCN region as being functional in mediating SCN responsiveness to local dopamine. In lean, insulin-sensitive rats, the peak in the circadian rhythm of dopamine release at the peri-SCN coincided with the daily peak in SCN electrophysiological responsiveness to local dopamine administration. However, in rats made obese and insulin resistant by high-fat diet (HFD) feeding, these coincident circadian peak activities were both markedly attenuated or abolished. Reinstatement of the circadian peak in dopamine level at the peri-SCN by its appropriate circadian-timed daily microinjection to this area (but not outside this circadian time-interval) abrogated the obese, insulin-resistant condition without altering the consumption of the HFD. These findings suggest that the circadian peak of dopaminergic activity at the peri-SCN/SCN is a key modulator of metabolism and the responsiveness to adverse metabolic consequences of HFD consumption.
Collapse
Affiliation(s)
- S. Luo
- VeroScience LLCTivertonRIUSA
| | | | | | - Y. Li
- VeroScience LLCTivertonRIUSA
| | | | | |
Collapse
|
25
|
Barbot M, Ceccato F, Scaroni C. Diabetes Mellitus Secondary to Cushing's Disease. Front Endocrinol (Lausanne) 2018; 9:284. [PMID: 29915558 PMCID: PMC5994748 DOI: 10.3389/fendo.2018.00284] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/14/2018] [Indexed: 01/06/2023] Open
Abstract
Associated with important comorbidities that significantly reduce patients' overall wellbeing and life expectancy, Cushing's disease (CD) is the most common cause of endogenous hypercortisolism. Glucocorticoid excess can lead to diabetes, and although its prevalence is probably underestimated, up to 50% of patients with CD have varying degrees of altered glucose metabolism. Fasting glycemia may nevertheless be normal in some patients in whom glucocorticoid excess leads primarily to higher postprandial glucose levels. An oral glucose tolerance test should thus be performed in all CD patients to identify glucose metabolism abnormalities. Since diabetes mellitus (DM) is a consequence of cortisol excess, treating CD also serves to alleviate impaired glucose metabolism. Although transsphenoidal pituitary surgery remains the first-line treatment for CD, it is not always effective and other treatment strategies may be necessary. This work examines the main features of DM secondary to CD and focuses on antidiabetic drugs and how cortisol-lowering medication affects glucose metabolism.
Collapse
|
26
|
Chamarthi B, Cincotta AH. Effect of bromocriptine-QR therapy on glycemic control in subjects with type 2 diabetes mellitus whose dysglycemia is inadequately controlled on insulin. Postgrad Med 2017; 129:446-455. [DOI: 10.1080/00325481.2017.1315290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Bindu Chamarthi
- VeroScience LLC, Tiverton, RI, USA
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
27
|
Chamarthi B, Ezrokhi M, Rutty D, Cincotta AH. Impact of bromocriptine-QR therapy on cardiovascular outcomes in type 2 diabetes mellitus subjects on metformin. Postgrad Med 2016; 128:761-769. [PMID: 27687032 DOI: 10.1080/00325481.2016.1243003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Type 2 diabetes mellitus (T2DM) is associated with a substantially increased risk of cardiovascular disease (CVD). Bromocriptine-QR (B-QR), a quick release sympatholytic dopamine D2 receptor agonist, is a FDA-approved therapy for T2DM which may provide CVD risk reduction. Metformin is considered to be an agent with a potential cardioprotective benefit. This large placebo controlled clinical study assessed the impact of B-QR addition to existing metformin therapy on CVD outcomes in T2DM subjects. METHODS 1791 subjects (1208 B-QR; 583 placebo) on metformin ± another anti-diabetes therapy at baseline derived from the Cycloset Safety Trial, a 12-month, randomized, multicenter, placebo-controlled, double-blind study in T2DM, were included in this study. The primary CVD endpoint evaluated was treatment impact on CVD event rate, prespecified as a composite of time to first myocardial infarction, stroke, coronary revascularization, or hospitalization for unstable angina/congestive heart failure. Impact on glycemic control was evaluated as a secondary analysis. RESULTS The composite CVD end point occurred in 16/1208 B-QR treated (1.3%) and 18/583 placebo treated (3.1%) subjects resulting in a 55% CVD hazard risk reduction (intention-to-treat, Cox regression analysis; HR: 0.45 [0.23-0.88], p = 0.028). Kaplan-Meier curves demonstrated a significantly lower cumulative incidence rate of the CVD endpoint in the B-QR treatment group (Log-Rank p = 0.017). In subjects with poor glycemic control (HbA1c ≥ 7.5) at baseline, B-QR therapy relative to placebo resulted in a significant mean %HbA1c reduction of -0.59 at week 12 and -0.51 at week 52 respectively (p < 0.001 for both) and a 10 fold higher percent of subjects achieving HbA1c goal of ≤7% by week 52 (B-QR 30%, placebo 3%; p = 0.003). CONCLUSION These findings suggest that in T2DM subjects on metformin, BQR therapy may represent an effective strategy for reducing CVD risk. Cycloset Safety Trial registration: ClinicalTrials.gov Identifier: NCT00377676.
Collapse
Affiliation(s)
- Bindu Chamarthi
- a VeroScience, LLC , Tiverton , RI , USA.,b Division of Endocrinology, Diabetes and Hypertension , Brigham and Women's Hospital , Boston , MA , USA.,c Department of Medicine , Harvard Medical School , Boston , MA , USA
| | | | - Dean Rutty
- d Statistical Operations , Everest Clinical Research Services Inc , Markham , Canada
| | | |
Collapse
|
28
|
Bahar A, Kashi Z, Daneshpour E, Akha O, Ala S. Effects of cabergoline on blood glucose levels in type 2 diabetic patients: A double-blind controlled clinical trial. Medicine (Baltimore) 2016; 95:e4818. [PMID: 27749534 PMCID: PMC5059036 DOI: 10.1097/md.0000000000004818] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 08/02/2016] [Accepted: 08/17/2016] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Cabergoline is a long-acting agonist of dopamine, which has a high affinity to dopamine receptors (type 2). Treatment using a dopaminergic agonist reduces hypothalamic stimulation that increases during liver gluconeogenesis, lipids synthesis, and insulin resistance. Our aim was to evaluate the effects of cabergoline on blood glucose levels in patients with type 2 diabetes mellitus (DM). METHODS This study was a double-blind, controlled clinical trial in patients with type 2 DM. The patients received treatments of a placebo (control group; n = 20) or cabergoline 0.5 mg (cabergoline group; n = 20) using the sequential method, once per week for 3 months, while using previously prescribed glucose-lowering drugs. All tests, such as levels of fasting blood glucose, 2-hour post-prandial glucose, complete lipid profile, prolactin, alanine amino transferase, aspartate amino transferase, creatinine, blood urea nitrogen, and serum insulin, and homeostasis model assessment insulin resistance were measured at baseline and at 3-month follow-up. RESULTS The fasting blood sugar levels were significantly different between placebo and cabergoline groups after 3 months of treatment (P = 0.004). The prolactin levels were significantly different from beginning of the treatment to 6 months later (P = 0.001). In the cabergoline group, there was a significant decrease in glycosylated hemoglobin (HbA1C) levels after 3 months (P = 0.003). Overall, 65%and 45% patients in the cabergoline and control groups, respectively, responded to treatment (HbA1C<7%). CONCLUSION Cabergoline may be useful as a long-acting antidiabetic agent in patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
| | | | | | | | - Shahram Ala
- Department of Clinical Pharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
29
|
Schwartz SS, Zangeneh F. Evidence-based practice use of quick-release bromocriptine across the natural history of type 2 diabetes mellitus. Postgrad Med 2016; 128:828-838. [PMID: 27458683 DOI: 10.1080/00325481.2016.1214059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To provide an evidence-based practice overview on the clinical use of bromocriptine-quick release (QR) across the natural history of type 2 diabetes mellitus (T2DM). METHODS Articles for inclusion were selected after a comprehensive literature search of English-language PubMed articles and identification of other relevant references through other sources. Inclusion criteria were animal studies examining the mechanism of action and efficacy of bromocriptine, and clinical studies examining the safety and efficacy of bromocriptine-QR in patients with T2DM, without a time limitation. RESULTS The brain plays a key role in total body metabolism, in particular ensuring that sufficient levels of glucose are available for proper neural functioning. The hypothalamic suprachiasmatic nucleus (SCN), the body's biological clock, plays a key role in the regulation of seasonal and diurnal variations of insulin sensitivity. A daily surge of dopaminergic activity in the SCN upon waking enables insulin sensitivity throughout the day. When this is disrupted (e.g. by a high fat/sugar diet, stress, altered [diminished] exercise, altered sleep/wake cycle, diabetes), insulin resistance persists throughout the day and overnight. Improving the morning surge in dopaminergic activity with the short-acting dopamine D2 receptor agonist bromocriptine-QR can safely and effectively improve glycemic control, while improving cardiovascular disease risk factors and related adverse events, and reducing sympathetic tone, as demonstrated by 5 reports of the Cycloset Safety Trial and 3 additional clinical studies of bromocriptine-QR. CONCLUSIONS In patients with T2DM, the dopamine D2 receptor agonist bromocriptine-QR has been shown to be well tolerated, efficacious, and a logical treatment option.
Collapse
Affiliation(s)
- Stanley S Schwartz
- a Main Line Health System , Wynnewood , PA , USA.,b University of Pennsylvania , Philadelphia , PA , USA
| | - Farhad Zangeneh
- c Endocrine, Diabetes & Osteoporosis Clinic , Sterling , VA , USA
| |
Collapse
|
30
|
Dopaminergic drugs in type 2 diabetes and glucose homeostasis. Pharmacol Res 2016; 109:74-80. [DOI: 10.1016/j.phrs.2015.12.029] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/22/2015] [Accepted: 12/22/2015] [Indexed: 01/01/2023]
|
31
|
Majzoub A, Arafa M, Al-Said S, Dabbous Z, Aboulsoud S, Khalafalla K, Elbardisi H. Premature ejaculation in type II diabetes mellitus patients: association with glycemic control. Transl Androl Urol 2016; 5:248-54. [PMID: 27141454 PMCID: PMC4837318 DOI: 10.21037/tau.2016.03.11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background Premature ejaculation (PE) is a highly prevalent sexual dysfunction among patients with diabetes mellitus (DM). Despite this, the underlying mechanism of this association is poorly understood. In this study, we aimed to investigate the prevalence of PE in a group of patients with DM and explore possible associations linking both conditions together. Methods This was a prospective study of subjects recruited with advertisement pamphlets and whose sexual function was assessed using the international index of erectile function-5 (IIEF-5) and the Arabic index of premature ejaculation (AIPE) questionnaires together with stopwatch measured intravaginal ejaculatory latency time (ELT). Participants were divided into two groups; group A subjects had DM and group B were healthy adult males. Results A total of 488 subjects were recruited. Group A included 199 (40.8%) subjects, while group B included 289 (59.2%). The prevalence of PE and ED was significantly higher in group A subjects (P<0.001). Mean ELT ± standard deviation (SD) was 3.6±2.7 in group A versus 4.3±2.8 in group B (P<0.014). Diabetic patients with erectile dysfunction (ED) showed a significantly higher incidence of PE with significantly shorter ELT. Conclusions PE is more prevalent in diabetic patients. DM is a multi-systemic disorder with complications that could help explain the pathophysiology of PE.
Collapse
Affiliation(s)
- Ahmad Majzoub
- 1 Department of Urology, Hamad Medical Corporation, Doha, Qatar ; 2 Department of Andrology, Cairo University, Cairo, Egypt ; 3 Department of Endocrinology, Hamad Medical Corporation, Doha, Qatar ; 4 Department of Internal Medicine, Cairo University, Cairo, Egypt
| | - Mohamed Arafa
- 1 Department of Urology, Hamad Medical Corporation, Doha, Qatar ; 2 Department of Andrology, Cairo University, Cairo, Egypt ; 3 Department of Endocrinology, Hamad Medical Corporation, Doha, Qatar ; 4 Department of Internal Medicine, Cairo University, Cairo, Egypt
| | - Sami Al-Said
- 1 Department of Urology, Hamad Medical Corporation, Doha, Qatar ; 2 Department of Andrology, Cairo University, Cairo, Egypt ; 3 Department of Endocrinology, Hamad Medical Corporation, Doha, Qatar ; 4 Department of Internal Medicine, Cairo University, Cairo, Egypt
| | - Zeinab Dabbous
- 1 Department of Urology, Hamad Medical Corporation, Doha, Qatar ; 2 Department of Andrology, Cairo University, Cairo, Egypt ; 3 Department of Endocrinology, Hamad Medical Corporation, Doha, Qatar ; 4 Department of Internal Medicine, Cairo University, Cairo, Egypt
| | - Samar Aboulsoud
- 1 Department of Urology, Hamad Medical Corporation, Doha, Qatar ; 2 Department of Andrology, Cairo University, Cairo, Egypt ; 3 Department of Endocrinology, Hamad Medical Corporation, Doha, Qatar ; 4 Department of Internal Medicine, Cairo University, Cairo, Egypt
| | - Kareim Khalafalla
- 1 Department of Urology, Hamad Medical Corporation, Doha, Qatar ; 2 Department of Andrology, Cairo University, Cairo, Egypt ; 3 Department of Endocrinology, Hamad Medical Corporation, Doha, Qatar ; 4 Department of Internal Medicine, Cairo University, Cairo, Egypt
| | - Haitham Elbardisi
- 1 Department of Urology, Hamad Medical Corporation, Doha, Qatar ; 2 Department of Andrology, Cairo University, Cairo, Egypt ; 3 Department of Endocrinology, Hamad Medical Corporation, Doha, Qatar ; 4 Department of Internal Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
32
|
Raskin P, Cincotta AH. Bromocriptine-QR therapy for the management of type 2 diabetes mellitus: developmental basis and therapeutic profile summary. Expert Rev Endocrinol Metab 2016; 11:113-148. [PMID: 30058874 DOI: 10.1586/17446651.2016.1131119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An extended series of studies indicate that endogenous phase shifts in circadian neuronal input signaling to the biological clock system centered within the hypothalamic suprachiasmatic nucleus (SCN) facilitates shifts in metabolic status. In particular, a diminution of the circadian peak in dopaminergic input to the peri-SCN facilitates the onset of fattening, insulin resistance and glucose intolerance while reversal of low circadian peak dopaminergic activity to the peri-SCN via direct timed dopamine administration to this area normalizes the obese, insulin resistant, glucose intolerant state in high fat fed animals. Systemic circadian-timed daily administration of a potent dopamine D2 receptor agonist, bromocriptine, to increase diminished circadian peak dopaminergic hypothalamic activity across a wide variety of animal models of metabolic syndrome and type 2 diabetes mellitus (T2DM) results in improvements in the obese, insulin resistant, glucose intolerant condition by improving hypothalamic fuel sensing and reducing insulin resistance, elevated sympathetic tone, and leptin resistance. A circadian-timed (within 2 hours of waking in the morning) once daily administration of a quick release formulation of bromocriptine (bromocriptine-QR) has been approved for the treatment of T2DM by the U.S. Food and Drug Administration. Clinical studies with such bromocriptine-QR therapy (1.6 to 4.8 mg/day) indicate that it improves glycemic control by reducing postprandial glucose levels without raising plasma insulin. Across studies of various T2DM populations, bromocriptine-QR has been demonstrated to reduce HbA1c by -0.5 to -1.7. The drug has a good safety profile with transient mild to moderate nausea, headache and dizziness as the most frequent adverse events noted with the medication. In a large randomized clinical study of T2DM subjects, bromocriptine-QR exposure was associated with a 42% hazard ratio reduction of a pre-specified adverse cardiovascular endpoint including myocardial infarction, stroke, hospitalization for congestive heart failure, revascularization surgery, or unstable angina. Bromocriptine-QR represents a novel method of treating T2DM that may have benefits for cardiovascular disease as well.
Collapse
Affiliation(s)
- Philip Raskin
- a Southwestern Medical Center , University of Texas , Dallas , TX , USA
| | | |
Collapse
|
33
|
Lamos EM, Levitt DL, Munir KM. A review of dopamine agonist therapy in type 2 diabetes and effects on cardio-metabolic parameters. Prim Care Diabetes 2016; 10:60-65. [PMID: 26670921 DOI: 10.1016/j.pcd.2015.10.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/15/2015] [Accepted: 10/19/2015] [Indexed: 11/21/2022]
Abstract
Dopamine action appears to play a role in changes that are seen in obesity, metabolic syndrome and type 2 diabetes mellitus. Bromocriptine-QR (Quick Release), a dopamine agonist, is approved for use in treatment of type 2 diabetes. It has demonstrated modest improvement in glycemic parameters, cholesterol and weight in certain cohorts. Limited data using cabergoline, a long-acting dopamine agonist, also demonstrate glycemic efficacy. Additionally, bromocriptine-QR appears to have a favorable cardiovascular risk reduction. The direct mechanism by which bromocriptine-QR, or central dopamine agonism, achieves modest glycemic control and favorable cardio-metabolic profile is unclear. This relationship appears to be more complex than the historical explanation of "resetting" the circadian clock and may further be elucidated using data in individuals with hyperprolactinemia and prolactinoma.
Collapse
Affiliation(s)
- E M Lamos
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, 827 Linden Ave, 2nd Floor, Baltimore, MD 21201, USA.
| | - D L Levitt
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, 827 Linden Ave, 2nd Floor, Baltimore, MD 21201, USA.
| | - K M Munir
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, 827 Linden Ave, 2nd Floor, Baltimore, MD 21201, USA.
| |
Collapse
|
34
|
Roe ED, Chamarthi B, Raskin P. Impact of Bromocriptine-QR Therapy on Glycemic Control and Daily Insulin Requirement in Type 2 Diabetes Mellitus Subjects Whose Dysglycemia Is Poorly Controlled on High-Dose Insulin: A Pilot Study. J Diabetes Res 2015; 2015:834903. [PMID: 26060825 PMCID: PMC4427808 DOI: 10.1155/2015/834903] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/28/2015] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The concurrent use of a postprandial insulin sensitizing agent, such as bromocriptine-QR, a quick release formulation of bromocriptine, a dopamine D2 receptor agonist, may offer a strategy to improve glycemic control and limit/reduce insulin requirement in type 2 diabetes (T2DM) patients on high-dose insulin. This open label pilot study evaluated this potential utility of bromocriptine-QR. METHODS Ten T2DM subjects on metformin (1-2 gm/day) and high-dose (TDID ≥ 65 U/day) basal-bolus insulin were enrolled to receive once daily (morning) bromocriptine-QR (1.6-4.8 mg/day) for 24 weeks. Subjects with at least one postbaseline HbA1c measurement (N = 8) were analyzed for change from baseline HbA(1c), TDID, and postprandial glucose area under the curve of a four-hour mixed meal tolerance test (MMTT). RESULTS Compared to the baseline, average HbA1c decreased 1.76% (9.74 ± 0.56 to 7.98 ± 0.36, P = 0.01), average TDID decreased 27% (199 ± 33 to 147 ± 31, P = 0.009), and MMTT AUC(60-240) decreased 32% (P = 0.04) over the treatment period. The decline in HbA(1c) and TDID was observed at 8 weeks and sustained over the remaining 16-week study duration. CONCLUSION In this study, bromocriptine-QR therapy improved glycemic control and meal tolerance while reducing insulin requirement in T2DM subjects poorly controlled on high-dose insulin therapy.
Collapse
Affiliation(s)
- Erin D. Roe
- University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Bindu Chamarthi
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
- *Bindu Chamarthi:
| | - Philip Raskin
- University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| |
Collapse
|
35
|
Ezrokhi M, Luo S, Trubitsyna Y, Cincotta AH. Neuroendocrine and metabolic components of dopamine agonist amelioration of metabolic syndrome in SHR rats. Diabetol Metab Syndr 2014; 6:104. [PMID: 25937836 PMCID: PMC4416398 DOI: 10.1186/1758-5996-6-104] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/16/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The hypertensive, pro-inflammatory, obese state is strongly coupled to peripheral and hepatic insulin resistance (in composite termed metabolic syndrome [MS]). Hepatic pro-inflammatory pathways have been demonstrated to initiate or exacerbate hepatic insulin resistance and contribute to fatty liver, a correlate of MS. Previous studies in seasonally obese animals have implicated an important role for circadian phase-dependent increases in hypothalamic dopaminergic tone in the maintenance of the lean, insulin sensitive condition. However, mechanisms driving this dopaminergic effect have not been fully delineated and the impact of such dopaminergic function upon the above mentioned parameters of MS, particularly upon key intra-hepatic regulators of liver inflammation and lipid and glucose metabolism have never been investigated. OBJECTIVE This study therefore investigated the effects of timed daily administration of bromocriptine, a potent dopamine D2 receptor agonist, on a) ventromedial hypothalamic catecholamine activity, b) MS and c) hepatic protein levels of key regulators of liver inflammation and glucose and lipid metabolism in a non-seasonal model of MS - the hypertensive, obese SHR rat. METHODS Sixteen week old SHR rats maintained on 14 hour daily photoperiods were treated daily for 16 days with bromocriptine (10 mg/kg, i.p.) or vehicle at 1 hour before light offset and, subsequent to blood pressure recordings on day 14, were then utilized for in vivo microdialysis of ventromedial hypothalamic catecholamine activity or sacrificed for the analyses of MS factors and regulators of hepatic metabolism. Normal Wistar rats served as wild-type controls for hypothalamic activity, body fat levels, and insulin sensitivity. RESULTS Bromocriptine treatment significantly reduced ventromedial hypothalamic norepinephrine and serotonin levels to the normal range and systolic and diastolic blood pressures, retroperitoneal body fat level, plasma insulin and glucose levels and HOMA-IR relative to vehicle treated SHR controls. Such treatment also reduced plasma levels of C-reactive protein, leptin, and norepinephrine and increased that of plasma adiponectin significantly relative to SHR controls. Finally, bromocriptine treatment significantly reduced hepatic levels of several pro-inflammatory pathway proteins and of the master transcriptional activators of lipogenesis, gluconeogenesis, and free fatty acid oxidation versus control SHR rats. CONCLUSION These findings indicate that in SHR rats, timed daily dopamine agonist treatment improves hypothalamic and neuroendocrine pathologies associated with MS and such neuroendocrine events are coupled to a transformation of liver metabolism potentiating a reduction of elevated lipogenic and gluconeogenic capacity. This liver effect may be driven in part by concurrent reductions in hyperinsulinemia and sympathetic tone as well as by reductions in intra-hepatic inflammation.
Collapse
|
36
|
Vinik AI, Cincotta AH, Scranton RE, Bohannon N, Ezrokhi M, Gaziano JM. Effect of bromocriptine-QR on glycemic control in subjects with uncontrolled hyperglycemia on one or two oral anti-diabetes agents. Endocr Pract 2013. [PMID: 23186965 DOI: 10.4158/ep12187.or] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To investigate the effect of Bromocriptine-QR on glycemic control in patients with type 2 diabetes whose glycemia is poorly controlled on one or two oral anti-diabetes agents. METHODS Five hundred fifteen Type 2 Diabetes Mellitus (T2DM) subjects (ages 18 to 80 and average body mass index [BMI] of 32.7) with baseline HbA1c ≥ 7.5 and on one or two oral anti-diabetes (OAD) medications (metformin, sulfonylurea, and/or thiazolidinediones) were randomized 2:1 to bromocriptine-QR (1.6 to 4.8 mg/day) or placebo for a 24 week treatment period. Study investigators were allowed to adjust, if necessary, subject anti-diabetes medications during the study to attempt to achieve glycemic control in case of glycemic deterioration. The impact of bromocriptine-QR treatment intervention on glycemic control was assessed in subjects on any one or two OADs (ALL treatment category) (N = 515), or on metformin with or without another OAD (Met/OAD treatment category) (N = 356), or on metformin plus a sulfonylurea (Met/SU treatment category) (N = 245) 1) by examining the between group difference in change from baseline a) concomitant OAD medication changes during the study, and b) HbA1c and 2) by determining the odds of reaching HbA1c of ≤ 7.0% on bromocriptine-QR versus placebo. RESULTS Significantly more patients (approximately 1.5 to 2-fold more; P<.05) intensified concomitant anti-diabetes medication therapy during the study in the placebo versus the bromocriptine-QR arm. In subjects that did not change the intensity of the baseline diabetes therapy (72%), and that were on any one or two OADs (ALL), or on metformin with or without another OAD (Met/OAD), or on metformin plus sulfonylurea (Met/SU), the HbA1c change for bromocriptine-QR versus placebo was -0.47 versus +0.22 (between group delta of -0.69, P<.0001), -0.55 versus +0.26 (between group delta of -0.81, P<.0001) and -0.63 versus +0.20 (between group delta of -0.83, P<.0001) respectively, after 24 weeks on therapy. The odds ratio of reaching HbA1c of ≤ 7.0% was 6.50, 12.03 and 11.45 (P<.0002) for these three groups, respectively. CONCLUSION In T2DM subjects whose hyperglycemia is poorly controlled on one or two oral agents, bromocriptine-QR therapy for 24 weeks can provide significant added improvement in glycemic control relative to adding placebo.
Collapse
Affiliation(s)
- Aaron I Vinik
- Strelitz Diabetes Center and Neuroendocrine Unit, Norfolk, Virginia, USA
| | | | | | | | | | | |
Collapse
|
37
|
Jnaneshwari S, Hemshekhar M, Santhosh MS, Sunitha K, Thushara R, Thirunavukkarasu C, Kemparaju K, Girish KS. Crocin, a dietary colorant, mitigates cyclophosphamide-induced organ toxicity by modulating antioxidant status and inflammatory cytokines. J Pharm Pharmacol 2013; 65:604-14. [PMID: 23488790 DOI: 10.1111/jphp.12016] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 11/14/2012] [Indexed: 12/25/2022]
Abstract
OBJECTIVES This study investigated the protective efficacy of crocin against hepatotoxicity induced by cyclophosphamide (CP) in Wistar rats. METHODS The experimental rats were treated with crocin orally at a dose of 10 mg/kg for 6 consecutive days after the administration of a single intraperitoneal dose of CP (150 mg/kg). The ameliorative effect of crocin on organ toxicity was studied by evaluating oxidative stress enzymes, inflammatory cytokines and histological sections. KEY FINDINGS A single intraperitoneal CP injection significantly elevated endogenous reactive oxygen species and oxidation of lipids and proteins, which are the hallmarks of oxidative damage in liver and serum. In consequence, the primary defensive reduced glutathione, total thiol and antioxidant enzymes such as superoxide dismutase, catalase, glutathione-S-transferase and glutathione peroxidase, were significantly reduced. In addition, liver and serum aspartate aminotransferase and alanine aminotransferase along with acid and alkaline phosphatase were considerably increased. Oral administration of crocin significantly rejuvenated all the above altered markers to almost normal state. The protective efficacy of crocin was further supported by the histological assessment and restoration of CP-induced inflammatory cytokines and enzyme levels compared with the control drug. CONCLUSION The results obtained suggest the protective nature of crocin against CP-induced oxidative damage/inflammation and organ toxicity.
Collapse
|
38
|
Mukherjee R, Yun JW. Bromocriptine inhibits adipogenesis and lipogenesis by agonistic action on α2-adrenergic receptor in 3T3-L1 adipocyte cells. Mol Biol Rep 2012; 40:3783-92. [PMID: 23271132 DOI: 10.1007/s11033-012-2455-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 12/18/2012] [Indexed: 01/04/2023]
Abstract
The primary goals of the present study were to investigate the inhibitory effects of bromocriptine (BC) on adipogenesis and lipogenesis in 3T3-L1 adipocyte cells as well as to elucidate its molecular mechanism of action. Adipogenic and lipogenic capacity of BC-treated cells was evaluated by oil red-O staining, triglyceride content assay, real-time RT-PCR and immunoblotting. To determine the mechanism responsible for the anti-obesity effect of BC, we applied two methods. Firstly, we knocked down dopamine D2 receptor (D2R) up to 50% using siRNA. Secondly, we blocked the activity of α2-adrenergic receptor (α2-AR) by yohimbine treatment and monitored its effects on adipogenic and lipogenic events in 3T3-L1 cells. BC decreased the expression levels of adipogenic activators, including Pparα, Pparγ, and Cebpα, as well as major lipogenic target genes, including Me1, Acc1, 6Pgd, Fasn, and Prkaa1. Moreover, BC markedly reduced intracellular nitric oxide formation in a dose-dependent manner and expression of pro-inflammatory genes, Tnfα and Il6, which reflects attenuated pro-inflammatory responses. Further, upon treatment with BC, D2R-deficient cells displayed a significant decrease in lipogenic activity compared to control cells, whereas yohimbine-treated cells exhibited no reduction in lipogenic activity. BC can effectively attenuate adipogenesis and lipogenesis in 3T3-L1 cells by downregulating the expression of lipogenic genes and proteins. Our current experimental data collectively establish that the anti-obesity effects of BC are not D2R-dependent but result from the action of α2-AR in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- Rajib Mukherjee
- Department of Biotechnology, Daegu University, Kyungsan, Kyungbuk 712-714, Republic of Korea
| | | |
Collapse
|
39
|
Stein SA, Lamos EM, Davis SN. A review of the efficacy and safety of oral antidiabetic drugs. Expert Opin Drug Saf 2012; 12:153-75. [PMID: 23241069 DOI: 10.1517/14740338.2013.752813] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Additional oral antidiabetic agents to metformin, sulfonylureas (SU) and thiazolidinediones (TZD) are approved for the treatment of type 2 diabetes. AREAS COVERED The efficacy and safety of metformin, SUs, TZDs, dipeptidyl peptidase-IV (DPP-4) inhibitors, meglitinide analogs, α-glucosidase inhibitors (AGIs), bile-acid sequestrants (BAS) and bromocriptine will be reviewed. EXPERT OPINION Several new oral agents have been approved for type 2 diabetes management in recent years. It is important to understand the efficacy and safety of these medications in addition to the older agents to best maximize oral drug therapy for diabetes. Of the recently introduced oral hypoglycemic/antihyperglycemic agents, the DPP-4 inhibitors are moderately efficacious compared with mainstay treatment with metformin with a low side-effect profile and have good efficacy in combination with other oral agents and insulin. They are a recommended alternative when metformin use is limited by gastrointestinal (GI) side effects or when SU treatment results in significant hypoglycemia or weight gain. Meglitinide analogs are limited by their frequent dosing, expense and hypoglycemia (repaglinide > nateglinide), while AGIs are also limited by their dosing schedule and GI side-effect profile. BAS and bromocriptine have the lowest efficacy with regard to HbA(1c) reduction, also are plagued by GI adverse reactions, but have a low risk of hypoglycemia.
Collapse
Affiliation(s)
- Stephanie Aleskow Stein
- University of Maryland Medical Center, Endocrinology, Diabetes and Metabolism, 22 South Greene St. N3W157, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
40
|
Striatal dopamine receptors modulate the expression of insulin receptor, IGF-1 and GLUT-3 in diabetic rats: effect of pyridoxine treatment. Eur J Pharmacol 2012; 696:54-61. [PMID: 23001013 DOI: 10.1016/j.ejphar.2012.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 08/27/2012] [Accepted: 09/06/2012] [Indexed: 11/22/2022]
Abstract
The incidence of type 2 diabetes mellitus is rising at alarming proportions. Central nervous system plays an important part in orchestrating glucose metabolism, with accumulating evidence linking dysregulated central nervous system circuits to the failure of normal glucoregulatory mechanisms. Pyridoxine is a water soluble vitamin and it has important role in brain function. This study aims to evaluate the role of pyridoxine in striatal glucose regulation through dopaminergic receptor expressions in streptozotocin induced diabetic rats. Radio receptor binding assays for dopamine D(1), D(2) receptors were done using [(3)H] 7-chloro-3-methyl-1-phenyl-1,2,4,5-tetrahydro-3-benzazepin-8-ol and [(3)H] 5-chloro-2-methoxy-4-methylamino-N-[-2-methyl-1-(phenylmethyl)pyrrolidin-3-yl]benzamide. Gene expressions were done using fluorescently labeled Taqman probes of dopamine D(1), D(2) receptor, Insulin receptor, Insulin like growth factor-1(IGF-1) and Glucose transporter-3 (GLUT-3). Bmax of dopamine D(1) receptor is decreased and B(max) of dopamine D(2) was increased in diabetic rats compared to control. Gene expression of dopamine D(1) receptor was down regulated and dopamine D(2) receptor was up regulated in diabetic rats. Our results showed decreased gene expression of Insulin receptor, IGF-1 and increased gene expression of GLUT-3 in diabetic rats compared to control. Pyridoxine treatment restored diabetes induced alterations in dopamine D(1), D(2) receptors, Insulin receptor, IGF-1, GLUT-3 gene expressions in striatum compared to diabetic rats. Insulin treatment reversed dopamine D(1), D(2) receptor, GLUT-3 mRNA expression, D(2) receptor binding parameters in the striatum compared to diabetic group. Our results suggest the potential role of pyridoxine supplementation in ameliorating diabetes mediated dysfunctions in striatal dopaminergic receptor expressions and insulin signaling. Thus pyridoxine has therapeutic significance in diabetes management.
Collapse
|
41
|
Gibson CD, Karmally W, McMahon DJ, Wardlaw SL, Korner J. Randomized pilot study of cabergoline, a dopamine receptor agonist: effects on body weight and glucose tolerance in obese adults. Diabetes Obes Metab 2012; 14:335-40. [PMID: 22074059 PMCID: PMC3290696 DOI: 10.1111/j.1463-1326.2011.01534.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIM Dopaminergic hypofunction and hyperprolactinaemia have been implicated in the pathogenesis of obesity and glucose intolerance. The aim of this pilot study was to determine the efficacy of cabergoline, a dopamine receptor agonist, on body weight and glucose tolerance in obese non-diabetic persons with normal plasma prolactin levels. METHODS This 16-week double blind, placebo-controlled pilot study randomized non-diabetic obese adults (body mass index 30-42 kg/m(2) ) to placebo or cabergoline (0.25 mg twice weekly for 4 weeks followed by 0.5 mg twice weekly for the next 12 weeks). Of 40 subjects enrolled, 29 completed 16 weeks: 16 randomized to placebo and 13 to cabergoline. All subjects were counselled on a 500 kcal/day calorie deficit diet. A 75-g oral glucose tolerance test was performed at baseline and at 16 weeks. RESULTS As expected, prolactin levels decreased after cabergoline (p < 0.001). Weight loss was similar after placebo compared with cabergoline treatment: 1.0 vs. 1.2% body weight, respectively. Fasting glucose levels did not differ between groups after treatment, however, 90-min postprandial glucose and insulin decreased in the cabergoline group only (p = 0.029). HOMA-IR (homeostasis model of assessment) increased by 40% after placebo and 1.5% after cabergoline treatment. CONCLUSIONS This pilot study suggests that cabergoline therapy may improve glucose tolerance independent of weight loss, however, a larger, longer term study of dopamine receptor agonist therapy in obese individuals is warranted to confirm this finding.
Collapse
Affiliation(s)
- Charlisa D. Gibson
- Department of Medicine, New York Obesity Research Center, St. Luke’s-Roosevelt Hospital Center New York, New York
| | - Wahida Karmally
- Irving Institute for Clinical and Translational Research, Columbia University, New York, New York
| | - Donald J. McMahon
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Sharon L. Wardlaw
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Judith Korner
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| |
Collapse
|
42
|
Keche Y. Bromocriptine mesylate: Food and Drug Administration approved new approach in therapy of non-insulin dependant diabetes mellitus with poor glycemic control. J Pharm Bioallied Sci 2011; 2:148-50. [PMID: 21814451 PMCID: PMC3147101 DOI: 10.4103/0975-7406.67000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 05/01/2010] [Accepted: 06/14/2010] [Indexed: 11/04/2022] Open
Abstract
Food and Drug Administration (FDA) approved bromocriptine mesylate, a quick release formulation, 0.8 mg tablets, as an adjunct to diet and exercise to improve glycemic control in adults with type 2 diabetes mellitus. Bromocriptine products were previously approved by the FDA for the treatment of pituitary tumors and Parkinson's disease. Bromocriptine is thought to act on circadian neuronal activities within the hypothalamus to reset abnormally elevated hypothalamic drive for increased plasma glucose, triglyceride, and free fatty acid levels in fasting and postprandial states in insulin-resistant patients. Adverse events most commonly reported in clinical trials of bromocriptine included nausea, fatigue, vomiting, headache, and dizziness. These events lasted a median of 14 days and were more likely to occur during initial titration of the drug. Due to novel mechanism of action, single daily dose, and lower incidence of stroke, myocardial infarction and vascular events, bromocriptine may act as landmark in treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Yogendra Keche
- Department of Pharmacology, Smt. Kashibai Navale Medical College and Hospital, Narhe, Pune - 411 041, India
| |
Collapse
|
43
|
Abstract
A placebo-controlled prospective safety study of quick-release bromocriptine in patients with type 2 diabetes has shown a 40% reduction in cardiovascular events. Possible explanations for this decrease are that through re-establishing diurnal variation a decrease in insulin resistance and its associated risk factors occurs. In addition, a decrease in the activity of the sympathetic nervous and renin-angiotensin systems and re-establishment of diurnal variations in the pituitary-adrenal axis may play a role. However, the most probable explanation is that because of the lowering of insulin resistance there are decreases in hepatic glucose production and an increased uptake of glucose leading to decreased levels of postprandial glucose, free fatty acids and triglycerides, which cause decreases in inflammation, oxidative stress and accumulation of atheroma.
Collapse
Affiliation(s)
- D S H Bell
- University of Alabama-Birmingham, Southside Endocrinology, Birmingham, AL 35205, USA.
| |
Collapse
|
44
|
Abstract
Bromocriptine mesylate quick-release was approved by the Food and Drug Administration (FDA) in May 2009, for the treatment of type 2 diabetes. Bromocriptine is thought to act on the circadian neuronal activities in the hypothalamus, to reset an abnormally elevated hypothalamic drive for increased plasma glucose, free fatty acids, and triglycerides in insulin-resistant patients. Randomized controlled trials have shown that bromocriptine-QR lowers glycated hemoglobin by 0.4 - 0.8% either as monotherapy or in combination with other anti-diabetes medications. The doses used to treat diabetes (up to 4.8 mg daily) are much lower than those used to treat Parkinson's disease, and apart from nausea, the drug is well-tolerated. The novel mechanism of action, good side effect profile, and its effects to reduce cardiovascular event rates make it an attractive option for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- C. Shivaprasad
- Department of Endocrinology, M. S. Ramaiah Hospital, Bangalore, India
| | - Sanjay Kalra
- Department of Endocrinology, Bharti Hospital and BRIDE, Karnal, Haryana, India
| |
Collapse
|
45
|
Pharmacological modulation of dopamine receptor D2-mediated transmission alters the metabolic phenotype of diet induced obese and diet resistant C57Bl6 mice. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:928523. [PMID: 21603181 PMCID: PMC3096057 DOI: 10.1155/2011/928523] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 02/09/2011] [Indexed: 11/18/2022]
Abstract
High fat feeding induces a variety of obese and lean phenotypes in inbred rodents. Compared to Diet Resistant (DR) rodents, Diet Induced Obese (DIO) rodents are insulin resistant and have a reduced dopamine receptor D2 (DRD2) mediated tone. We hypothesized that this differing dopaminergic tone contributes to the distinct metabolic profiles of these animals.
C57Bl6 mice were classified as DIO or DR based on their weight gain during 10 weeks of high fat feeding. Subsequently DIO mice were treated with the DRD2 agonist bromocriptine and DR mice with the DRD2 antagonist haloperidol for 2 weeks.
Compared to DR mice, the bodyweight of DIO mice was higher and their insulin sensitivity decreased. Haloperidol treatment reduced the voluntary activity and energy expenditure of DR mice and induced insulin resistance in these mice. Conversely, bromocriptine treatment tended to reduce bodyweight and voluntary activity, and reinforce insulin action in DIO mice.
These results show that DRD2 activation partly redirects high fat diet induced metabolic anomalies in obesity-prone mice. Conversely, blocking DRD2 induces an adverse metabolic profile in mice that are inherently resistant to the deleterious effects of high fat food. This suggests that dopaminergic neurotransmission is involved in the control of metabolic phenotype.
Collapse
|
46
|
Affiliation(s)
- Ralph A. DeFronzo
- Diabetes Division, University of Texas Health Science Center, San Antonio, Texas
| |
Collapse
|
47
|
Abstract
Bromocriptine is an ergot alkaloid dopamine D(2) receptor agonist that has been used extensively in the past to treat hyperprolactinaemia, galactorrhoea and Parkinsonism. It is known that hypothalamic hypodopaminergic states and disturbed circadian rhythm are associated with the development of insulin resistance, obesity and diabetes in animals and humans. When administered in the early morning at the start of the light phase, a new quick release (QR) formulation of bromocriptine appears to act centrally to reset circadian rhythms of hypothalamic dopamine and serotonin and improve insulin resistance and other metabolic abnormalities. Phase II and III clinical studies show that QR-bromocriptine lowers glycated haemoglobin by 0.6-1.2% (7-13 mmol/mol) either as monotherapy or in combination with other antidiabetes medications. Apart from nausea, the drug is well tolerated. The doses used to treat diabetes (up to 4.8 mg daily) are much lower than those used to treat Parkinson's disease and have not been associated with retroperitoneal fibrosis or heart valve abnormalities. QR-bromocriptine (Cycloset™) has recently been approved in the USA for the treatment of type 2 diabetes mellitus (T2DM). Thus, a QR formulation of bromocriptine timed for peak delivery in the early morning may provide a novel neurally mediated approach to the control of hyperglycaemia in T2DM.
Collapse
Affiliation(s)
- R I G Holt
- Endocrinology and Metabolism Sub-division, Developmental Origins of Adult Health and Disease Division, University of Southampton School of Medicine, Southampton, UK.
| | | | | |
Collapse
|
48
|
Scranton R, Cincotta A. Bromocriptine--unique formulation of a dopamine agonist for the treatment of type 2 diabetes. Expert Opin Pharmacother 2010; 11:269-79. [PMID: 20030567 DOI: 10.1517/14656560903501544] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
IMPORTANCE TO THE FIELD There is a large unmet need for new therapies to treat type 2 diabetes (T2DM) which reduce fasting and postprandial glucose without increasing insulin levels and which are not associated with weight gain or hypoglycemia. The quick-release formulation of bromocriptine (bromocriptine-QR; Cycloset) represents such a therapy. AREAS COVERED IN THE REVIEW Bromocriptine-QR's proposed mechanism of action, unique formulation and clinical efficacy and safety will be discussed. A Medline search was conducted using the terms: bromocriptine quick-release, circadian rhythms, treatment type 2 diabetes, insulin resistance, beta-cell dysfunction (years 1985 - 2009). WHAT THE READER WILL GAIN The reader will gain an understanding of the importance of the brain as a target for the treatment of type 2 diabetes. In addition the safety, efficacy and indication for use of a first-in-class dopamine agonist as a treatment option for type 2 diabetes are discussed. TAKE HOME MESSAGE Bromocriptine-QR is indicated to be used alone or in conjunction with all available treatments for type 2 diabetes. Although the mechanism of action is not fully understood, bromocriptine-QR's action points to a central target in the brain (hypothalamus) which may explain the observed peripheral improvements in metabolic parameters.
Collapse
|
49
|
Metabolic syndrome: Aggression control mechanisms gone out of control. Med Hypotheses 2010; 74:578-89. [DOI: 10.1016/j.mehy.2009.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 09/07/2009] [Indexed: 01/13/2023]
|
50
|
de Leeuw van Weenen JE, Parlevliet ET, Maechler P, Havekes LM, Romijn JA, Ouwens DM, Pijl H, Guigas B. The dopamine receptor D2 agonist bromocriptine inhibits glucose-stimulated insulin secretion by direct activation of the alpha2-adrenergic receptors in beta cells. Biochem Pharmacol 2010; 79:1827-36. [PMID: 20138024 DOI: 10.1016/j.bcp.2010.01.029] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 01/22/2010] [Accepted: 01/25/2010] [Indexed: 01/30/2023]
Abstract
Treatment with the dopamine receptor D2 (DRD2) agonist bromocriptine improves metabolic features in obese patients with type 2 diabetes by a still unknown mechanism. In the present study, we investigated the acute effect of bromocriptine and its underlying mechanism(s) on insulin secretion both in vivo and in vitro. For this purpose, C57Bl6/J mice were subjected to an intraperitoneal glucose tolerance test (ipGTT) and a hyperglycemic (HG) clamp 60min after a single injection of bromocriptine or placebo. The effects of bromocriptine on glucose-stimulated insulin secretion (GSIS), cell membrane potential and intracellular cAMP levels were also determined in INS-1E beta cells. We report here that bromocriptine increased glucose levels during ipGTT in vivo, an effect associated with a dose-dependent decrease in GSIS. During the HG clamp, bromocriptine reduced both first-phase and second-phase insulin response. This inhibitory effect was also observed in INS-1E beta cells, in which therapeutic concentrations of bromocriptine (0.5-50nM) decreased GSIS. Mechanistically, neither cellular energy state nor cell membrane depolarization was affected by bromocriptine whereas intracellular cAMP levels were significantly reduced, suggesting involvement of G-protein-coupled receptors. Surprisingly, the DRD2 antagonist domperidone did not counteract the effect of bromocriptine on GSIS, whereas yohimbine, an antagonist of the alpha2-adrenergic receptors, completely abolished bromocriptine-induced inhibition of GSIS. In conclusion, acute administration of bromocriptine inhibits GSIS by a DRD2-independent mechanism involving direct activation of the pancreatic alpha2-adrenergic receptors. We suggest that treatment with bromocriptine promotes beta cells rest, thereby preventing long-lasting hypersecretion of insulin and subsequent beta cell failure.
Collapse
Affiliation(s)
- J E de Leeuw van Weenen
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|