1
|
D’Adamo CR, Nelson JL, Miller SN, Rickert Hong M, Lambert E, Tallman Ruhm H. Reversal of Autism Symptoms among Dizygotic Twins through a Personalized Lifestyle and Environmental Modification Approach: A Case Report and Review of the Literature. J Pers Med 2024; 14:641. [PMID: 38929862 PMCID: PMC11205016 DOI: 10.3390/jpm14060641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of autism has been increasing at an alarming rate. Even accounting for the expansion of autism spectrum disorder diagnostic (ASD) criteria throughout the 1990's, there has been an over 300% increase in ASD prevalence since the year 2000. The often debilitating personal, familial, and societal sequelae of autism are generally believed to be lifelong. However, there have been several encouraging case reports demonstrating the reversal of autism diagnoses, with a therapeutic focus on addressing the environmental and modifiable lifestyle factors believed to be largely underlying the condition. This case report describes the reversal of autism symptoms among dizygotic, female twin toddlers and provides a review of related literature describing associations between modifiable lifestyle factors, environmental exposures, and various clinical approaches to treating autism. The twins were diagnosed with Level 3 severity ASD "requiring very substantial support" at approximately 20 months of age following concerns of limited verbal and non-verbal communication, repetitive behaviors, rigidity around transitions, and extensive gastrointestinal symptoms, among other common symptoms. A parent-driven, multidisciplinary, therapeutic intervention involving a variety of licensed clinicians focusing primarily on addressing environmental and modifiable lifestyle factors was personalized to each of the twin's symptoms, labs, and other outcome measures. Dramatic improvements were noted within several months in most domains of the twins' symptoms, which manifested in reductions of Autism Treatment Evaluation Checklist (ATEC) scores from 76 to 32 in one of the twins and from 43 to 4 in the other twin. The improvement in symptoms and ATEC scores has remained relatively stable for six months at last assessment. While prospective studies are required, this case offers further encouraging evidence of ASD reversal through a personalized, multidisciplinary approach focusing predominantly on addressing modifiable environmental and lifestyle risk factors.
Collapse
Affiliation(s)
- Christopher R. D’Adamo
- Department of Family and Community Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Documenting Hope, Windsor, CT 06095, USA; (J.L.N.); (M.R.H.); (E.L.); (H.T.R.)
| | - Josephine L. Nelson
- Documenting Hope, Windsor, CT 06095, USA; (J.L.N.); (M.R.H.); (E.L.); (H.T.R.)
| | - Sara N. Miller
- Department of Family and Community Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Maria Rickert Hong
- Documenting Hope, Windsor, CT 06095, USA; (J.L.N.); (M.R.H.); (E.L.); (H.T.R.)
| | - Elizabeth Lambert
- Documenting Hope, Windsor, CT 06095, USA; (J.L.N.); (M.R.H.); (E.L.); (H.T.R.)
| | | |
Collapse
|
2
|
Cai Y, Deng W, Yang Q, Pan G, Liang Z, Yang X, Li S, Xiao X. High-fat diet-induced obesity causes intestinal Th17/Treg imbalance that impairs the intestinal barrier and aggravates anxiety-like behavior in mice. Int Immunopharmacol 2024; 130:111783. [PMID: 38514921 DOI: 10.1016/j.intimp.2024.111783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
The prevalence of autism spectrum disorders (ASD) has been steadily increasing, and growing evidence suggests a link between high-fat diet (HFD), obesity, and ASD; however, the mechanism underlying this association remains elusive. Herein, BTBR T + tf/J (BTBR) inbred mice (a mouse ASD model) and C57Bl/6J (C57) mice were fed an HFD and normal diet (ND) for 8 weeks (groups: C57 + ND, C57 + HFD, BTBR + ND, and BTBR + HFD). Subsequently, mice underwent behavioral assessments, followed by intestinal tissues harvesting to detect expression of intestinal barrier proteins and inflammatory factors and immune cell numbers, and a correlation analysis. HFD-fed BTBR mice developed obesity, elevated blood sugar, significantly aggravated anxiety-like behaviors, impaired intestinal barrier function, intestinal inflammation with elevated CD4+IL17+ T (Th17) cells and reduced CD4+Foxp3+ T (Treg) cells, exhibiting reduced expression of proteins related to AMPK regulatory pathway (AMPK, p-AMPK, SIRT1). Correlation analysis revealed that the degree of behavioral anxiety, the degree of intestinal barrier damage, the severity of intestinal inflammation, and the degree of immune cell imbalance positively correlated with each other. Accordingly, HFD-induced obesity may cause intestinal Th17/Treg imbalance via the AMPK-SIRT1 pathway, leading to an inflammatory environment in the intestine, impairing intestinal barrier function, and ultimately aggravating anxiety-like behaviors in mice.
Collapse
Affiliation(s)
- Yao Cai
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510530, China
| | - Wenlin Deng
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510530, China
| | - Qiuping Yang
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510530, China
| | - Guixian Pan
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510530, China
| | - Zao Liang
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510530, China
| | - Ximei Yang
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510530, China
| | - Sitao Li
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510530, China.
| | - Xin Xiao
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510530, China.
| |
Collapse
|
3
|
Matthews JS, Adams JB. Ratings of the Effectiveness of 13 Therapeutic Diets for Autism Spectrum Disorder: Results of a National Survey. J Pers Med 2023; 13:1448. [PMID: 37888059 PMCID: PMC10608557 DOI: 10.3390/jpm13101448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
This study presents the results of the effectiveness of 13 therapeutic diets for autism spectrum disorder from 818 participants of a national survey, including benefits, adverse effects, and symptom improvements. The average Overall Benefit of diets was 2.36 (0 = no benefit, 4 = great benefit), which was substantially higher than for nutraceuticals (1.59/4.0) and psychiatric/seizure medications (1.39/4.0), p < 0.001. The average Overall Adverse Effects of diets was significantly lower than psychiatric/seizure medications (0.10 vs. 0.93, p < 0.001) and similar to nutraceuticals (0.16). Autism severity decreased slightly over time in participants who used diet vs. increasing slightly in those that did not (p < 0.001). Healthy and Feingold diets were the two top-rated diets by Overall Benefit; the ketogenic diet was the highest for nine symptoms (though had fewer respondents); and the gluten-free/casein-free diet was among the top for overall symptom improvements. Different diets were reported to affect different symptoms, suggesting that an individual's symptoms could be used to guide which diet(s) may be the most effective. The results suggest that therapeutic diets can be safe and effective interventions for improving some ASD-related symptoms with few adverse effects. We recommend therapeutic diets that include healthy foods and exclude problematic foods. Therapeutic diets are inexpensive treatments that we recommend for consideration by most people with ASD.
Collapse
Affiliation(s)
- Julie S. Matthews
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA;
| | - James B. Adams
- School of Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
4
|
Aldossari AA, Ansari MA, Nadeem A, Attia SM, Bakheet SA, Al-Ayadhi LY, Alanazi MM, Shahid M, Alwetaid MY, Hussein MH, Ahmad SF. Upregulation of Inflammatory Mediators in Peripheral Blood CD40 + Cells in Children with Autism Spectrum Disorder. Int J Mol Sci 2023; 24:ijms24087475. [PMID: 37108638 PMCID: PMC10138695 DOI: 10.3390/ijms24087475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is a common and severe neurodevelopmental disorder in early childhood, defined as social and communication deficits and repetitive and stereotypic behaviours. The aetiology is unknown in most cases. However, several studies have identified immune dysregulation as potentially promoting ASD. Among the numerous immunological findings in ASD, reports of increased pro-inflammatory markers remain the most consistently observed. C-C chemokine receptor type 1 (CCR1) activation is pro-inflammatory in several neurological disorders. Previous evidence has implied that the expression of chemokine receptors, inflammatory mediators, and transcription factors play a pivotal role in several neuroinflammatory disorders. There have also been reports on the association between increased levels of proinflammatory cytokines and ASD. In this study, we aimed to investigate the possible involvement of CCR1, inflammatory mediators, and transcription factor expression in CD40+ cells in ASD compared to typically developing controls (TDC). Flow cytometry analysis was used to determine the levels of CCR1-, IFN-γ-, T-box transcription factor (T-bet-), IL-17A-, retinoid-related orphan receptor gamma t (RORγt-), IL-22- and TNF-α-expressing CD40 cells in PBMCs in children with ASD and the TDC group. We further examined the mRNA and protein expression levels of CCR1 using real-time PCR and western blot analysis. Our results revealed that children with ASD had significantly increased numbers of CD40+CCR1+, CD40+IFN-γ+, CD40+T-bet+, CD40+IL-17A+, CD40+RORγt+, CD4+IL-22+, and CD40+TNF-α+ cells compared with the TDC group. Furthermore, children with ASD had higher CCR1 mRNA and protein expression levels than those in the TDC group. These results indicate that CCR1, inflammatory mediators, and transcription factors expressed in CD40 cells play vital roles in disease progression.
Collapse
Affiliation(s)
- Abdullah A Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Laila Y Al-Ayadhi
- Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mudassar Shahid
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Y Alwetaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Marwa H Hussein
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Ashwood P. Preliminary Findings of Elevated Inflammatory Plasma Cytokines in Children with Autism Who Have Co-Morbid Gastrointestinal Symptoms. Biomedicines 2023; 11:436. [PMID: 36830973 PMCID: PMC9952966 DOI: 10.3390/biomedicines11020436] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Autism spectrum disorder (AU) is present in approximately 2% of the population and is often associated with co-morbidities that can impact quality of life. One of the most common co-morbidities in autism is the presence of gastrointestinal (GI) symptoms consisting of irregular bowel habits such as constipation, diarrhea, or alternating bowel habit. Evidence of immune infiltration and immune activation has been shown in the ileum and colon of children with AU with GI symptoms. Moreover, immune dysfunction is a contributing factor in many GI diseases, and we hypothesize that it would be more apparent in children with AU that exhibit GI symptoms than those who do not present with GI symptoms. The aim of this preliminary study was to determine whether there are altered cytokine levels in plasma in children with AU with GI symptoms compared with children with AU without GI symptoms, typically developing (TD) children with GI symptoms and TD children without GI symptoms, from the same population-based cohort. Plasma cytokine levels were assessed by multiplex assays. No differences in plasma cytokines were observed in TD controls with or without GI symptoms; however, many innate (IL-1α, TNFα, GM-CSF, IFNα) and adaptive cytokines (IL-4, IL-13, IL-12p70) were increased in AU children with GI symptoms compared with children with AU with no GI symptoms. The mucosal relevant cytokine IL-15 was increased in AU with GI symptoms compared with all groups. In contrast, the regulatory cytokine IL-10, was reduced in AU with GI symptoms and may suggest an imbalance in pro-inflammatory/regulatory signals. These data suggest that children with AU and GI symptoms have an imbalance in their immune response that is evident in their circulating plasma cytokine levels. A finding that could point to potential therapeutic and/or monitoring strategies for GI issues in AU.
Collapse
Affiliation(s)
- Paul Ashwood
- Department of Medical Microbiology and Immunology, School of Medicine, MIND Institute, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
6
|
Lin TL, Lu CC, Chen TW, Huang CW, Lu JJ, Lai WF, Wu TS, Lai CH, Lai HC, Chen YL. Amelioration of Maternal Immune Activation-Induced Autism Relevant Behaviors by Gut Commensal Parabacteroides goldsteinii. Int J Mol Sci 2022; 23:13070. [PMID: 36361859 PMCID: PMC9657948 DOI: 10.3390/ijms232113070] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 11/26/2022] Open
Abstract
Autism spectrum disorder (ASD) is characterized by cognitive inflexibility and social deficits. Probiotics have been demonstrated to play a promising role in managing the severity of ASD. However, there are no effective probiotics for clinical use. Identifying new probiotic strains for ameliorating ASD is therefore essential. Using the maternal immune activation (MIA)-based offspring ASD-like mouse model, a probiotic-based intervention strategy was examined in female mice. The gut commensal microbe Parabacteroides goldsteinii MTS01, which was previously demonstrated to exert multiple beneficial effects on chronic inflammation-related-diseases, was evaluated. Prenatal lipopolysaccharide (LPS) exposure induced leaky gut-related inflammatory phenotypes in the colon, increased LPS activity in sera, and induced autistic-like behaviors in offspring mice. By contrast, P. goldsteinii MTS01 treatment significantly reduced intestinal and systemic inflammation and ameliorated disease development. Transcriptomic analyses of MIA offspring indicated that in the intestine, P. goldsteinii MTS01 enhanced neuropeptide-related signaling and suppressed aberrant cell proliferation and inflammatory responses. In the hippocampus, P. goldsteinii MTS01 increased ribosomal/mitochondrial and antioxidant activities and decreased glutamate receptor signaling. Together, significant ameliorative effects of P. goldsteinii MTS01 on ASD relevant behaviors in MIA offspring were identified. Therefore, P. goldsteinii MTS01 could be developed as a next-generation probiotic for ameliorating ASD.
Collapse
Affiliation(s)
- Tzu-Lung Lin
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Microbiota Research Center and Emerging Viral Infections Research Center, Chang Gung University, Taoyuan 33302, Taiwan
| | - Cha-Chen Lu
- Microbiota Research Center and Emerging Viral Infections Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Chest Medicine, Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City 24205, Taiwan
- Department of Respiratory Therapy, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Ting-Wen Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center For Intelligent Drug Systems and Smart Bio-Devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chih-Wei Huang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Jang-Jih Lu
- Department of Laboratory Medicine and Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Wei-Fan Lai
- Department of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Ting-Shu Wu
- Department of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Pediatrics, Molecular Infectious Disease Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Department of Microbiology, School of Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Nursing, Asia University, Taichung 41354, Taiwan
| | - Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Microbiota Research Center and Emerging Viral Infections Research Center, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Laboratory Medicine and Internal Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
- Medical Research Center, Xiamen Chang Gung Hospital, Xiamen 361028, China
| | - Ya-Lei Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung 82446, Taiwan
| |
Collapse
|
7
|
Immune Dysregulation in Autism Spectrum Disorder: What Do We Know about It? Int J Mol Sci 2022; 23:ijms23063033. [PMID: 35328471 PMCID: PMC8955336 DOI: 10.3390/ijms23063033] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorder (ASD) is a group of complex multifactorial neurodevelopmental disorders characterized by a wide and variable set of neuropsychiatric symptoms, including deficits in social communication, narrow and restricted interests, and repetitive behavior. The immune hypothesis is considered to be a major factor contributing to autism pathogenesis, as well as a way to explain the differences of the clinical phenotypes and comorbidities influencing disease course and severity. Evidence highlights a link between immune dysfunction and behavioral traits in autism from several types of evidence found in both cerebrospinal fluid and peripheral blood and their utility to identify autistic subgroups with specific immunophenotypes; underlying behavioral symptoms are also shown. This review summarizes current insights into immune dysfunction in ASD, with particular reference to the impact of immunological factors related to the maternal influence of autism development; comorbidities influencing autism disease course and severity; and others factors with particular relevance, including obesity. Finally, we described main elements of similarities between immunopathology overlapping neurodevelopmental and neurodegenerative disorders, taking as examples autism and Parkinson Disease, respectively.
Collapse
|
8
|
Han VX, Jones HF, Patel S, Mohammad SS, Hofer MJ, Alshammery S, Maple-Brown E, Gold W, Brilot F, Dale RC. Emerging evidence of Toll-like receptors as a putative pathway linking maternal inflammation and neurodevelopmental disorders in human offspring: A systematic review. Brain Behav Immun 2022; 99:91-105. [PMID: 34562595 DOI: 10.1016/j.bbi.2021.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/21/2021] [Accepted: 09/18/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammation is increasingly recognised to play a major role in gene-environment interactions in neurodevelopmental disorders (NDDs). The effects of aberrant immune responses to environmental stimuli in the mother and in the child can affect neuroimmune signalling that is central to brain development. Toll-like receptors (TLR) are the best known innate immune pattern and danger recognition sensors to various environmental threats. In animal models, maternal immune activation (MIA), secondary to inflammatory factors including maternal gestational infection, obesity, diabetes, and stress activate the TLR pathway in maternal blood, placenta, and fetal brain, which correlate with offspring neurobehavioral abnormalities. Given the central role of TLR activation in animal MIA models, we systematically reviewed the human evidence for TLR activation and response to stimulation across the maternal-fetal interface. Firstly, we included 59 TLR studies performed in peripheral blood of adults in general population (outside of pregnancy) with six chronic inflammatory factors which have epidemiological evidence for increased risk of offspring NDDs, namely, obesity, diabetes mellitus, depression, low socio-economic status, autoimmune diseases, and asthma. Secondly, eight TLR studies done in human pregnancies with chronic inflammatory factors, involving maternal blood, placenta, and cord blood, were reviewed. Lastly, ten TLR studies performed in peripheral blood of individuals with NDDs were included. Despite these studies, there were no studies which examined TLR function in both the pregnant mother and their offspring. Increased TLR2 and TLR4 mRNA and/or protein levels in peripheral blood were common in obesity, diabetes mellitus, depression, autoimmune thyroid disease, and rheumatoid arthritis. To a lesser degree, TLR 3, 7, 8, and 9 activation were found in peripheral blood of humans with autoimmune diseases and depression. In pregnancy, increased TLR4 mRNA levels were found in the peripheral blood of women with diabetes mellitus and systemic lupus erythematosus. Placental TLR activation was found in mothers with obesity or diabetes. Postnatally, dysregulated TLR response to stimulation was found in peripheral blood of individuals with NDDs. This systematic review found emerging evidence that TLR activation may represent a mechanistic link between maternal inflammation and offspring NDD, however the literature is incomplete and longitudinal outcome studies are lacking. Identification of pathogenic mechanisms in MIA could create preventive and therapeutic opportunities to mitigate NDD prevalence and severity.
Collapse
Affiliation(s)
- Velda X Han
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Khoo-Teck Puat-National University Children's Medical Institute, National University Health System, Singapore; School of Medical Sciences, The University of Sydney, Sydney, Australia
| | - Hannah F Jones
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Department of Neuroservices, Starship Children's Hospital, Auckland, New Zealand
| | - Shrujna Patel
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Shekeeb S Mohammad
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Markus J Hofer
- School of Life and Environmental Sciences and Charles Perkins Centre, The University of Sydney, Sydney, Australia; The Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Sarah Alshammery
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; School of Medical Sciences, The University of Sydney, Sydney, Australia; Molecular Neurobiology Research Laboratory, Kids Research, Children's Hospital at Westmead, and The Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Emma Maple-Brown
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; School of Medical Sciences, The University of Sydney, Sydney, Australia; Molecular Neurobiology Research Laboratory, Kids Research, Children's Hospital at Westmead, and The Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Wendy Gold
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Molecular Neurobiology Research Laboratory, Kids Research, Children's Hospital at Westmead, and The Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Fabienne Brilot
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; School of Medical Sciences, The University of Sydney, Sydney, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Molecular Neurobiology Research Laboratory, Kids Research, Children's Hospital at Westmead, and The Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Russell C Dale
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; The Brain and Mind Centre, The University of Sydney, Sydney, Australia.
| |
Collapse
|
9
|
Zhao L, Li Y, Kou X, Chen B, Cao J, Li J, Zhang J, Wang H, Zhao J, Shi S. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:778-789. [PMID: 35608372 PMCID: PMC9299510 DOI: 10.1093/stcltm/szac028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/01/2022] [Indexed: 11/14/2022] Open
Abstract
Mesenchymal stem cell-based therapy has emerged as a great potential approach to treat individuals with autism spectrum disorders (ASD), a group of developmental disabilities characterized by impairments in social interaction and communication. Stem cells from human exfoliated deciduous teeth (SHED), holding earlier developing characteristics, have immune-modulatory and anti-inflammatory properties. To investigate whether SHED transplantation can rescue autistic-like symptoms in SHANK3 mutant beagle dogs, 12 SHANK3 mutant beagle dogs were randomly assigned into 2 groups according to their behavior evaluated by social interaction tests. Six mutant dogs received 6 intravenous infusions of SHED and were followed up for 3 months by testing social interaction and inflammatory cytokine levels. We found that infusion of SHED significantly improved impaired social novel preference of SHANK3 mutant beagle dogs at 1- and 3-month follow-ups. Social intimacies (following, sniffing, and licking) between mutant beagle dogs and human experimenters were partly improved. Stressed tail posture, indicating social stress, was also significantly alleviated. In addition, we showed that the levels of serum interferon-γ and interleukin-10 were notably increased and decreased, respectively, in SHANK3 mutant beagle dogs. Infusion of SHED was able to rescue altered interferon-γ and interleukin-10 levels. We failed to observe any serious adverse events after infusion of SHED. In summary, SHED transplantation may be a safe and effective therapy for ASD. The correction in the levels of serum interferon-γ and interleukin-10 may serve as an index to predict autistic severity and therapeutic outcomes.
Collapse
Affiliation(s)
- Lu Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yuan Li
- Beijing Sinogene Biotechnology Co. Ltd, Changping District, Beijing, People’s Republic of China
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Benchi Chen
- Beijing Sinogene Biotechnology Co. Ltd, Changping District, Beijing, People’s Republic of China
| | - Jing Cao
- CAR-T (Shanghai) Biotechnology Co. Ltd, Yangpu District, Shanghai, People’s Republic of China
| | - Jun Li
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, People’s Republic of China
| | - Jianqi Zhang
- Beijing Sinogene Biotechnology Co. Ltd, Changping District, Beijing, People’s Republic of China
| | - Heng Wang
- Beijing Sinogene Biotechnology Co. Ltd, Changping District, Beijing, People’s Republic of China
| | - Jianping Zhao
- Beijing Sinogene Biotechnology Co. Ltd, Changping District, Beijing, People’s Republic of China
| | - Songtao Shi
- Corresponding author: Songtao Shi, South China Center of Craniofacial Stem Cell Research, Guanghua School and Hospital of Stomatology, Sun Yat-sen University, 74 Zhongshan 2 Road, Guangzhou, Guangdong 510080, People’s Republic of China. Tel: +86 020 83811509; Fax: +86 020 83811509;
| |
Collapse
|
10
|
Cristino LMF, Chaves Filho AJM, Custódio CS, Vasconcelos SMM, de Sousa FCF, Sanders LLO, de Lucena DF, Macedo DS. Animal Model of Neonatal Immune Challenge by Lipopolysaccharide: A Study of Sex Influence in Behavioral and Immune/Neurotrophic Alterations in Juvenile Mice. Neuroimmunomodulation 2022; 29:391-401. [PMID: 35272296 DOI: 10.1159/000522055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/12/2022] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION The prenatal/perinatal exposure to infections may trigger neurodevelopmental alterations that lead to neuropsychiatric disorders such as autism spectrum disorder (ASD). Previous evidence points to long-term behavioral consequences, such as autistic-like behaviors in rodents induced by lipopolysaccharide (LPS) pre- and postnatal (PN) exposure during critical neurodevelopmental periods. Additionally, sex influences the prevalence and symptoms of ASD. Despite this, the mechanisms underlying this influence are poorly understood. We aim to study sex influences in behavioral and neurotrophic/inflammatory alterations triggered by LPS neonatal exposure in juvenile mice at an approximate age of ASD diagnosis in humans. METHODS Swiss male and female mice on PN days 5 and 7 received a single daily injection of 500 μg/kg LPS from Escherichia coli or sterile saline (control group). We conducted behavioral determinations of locomotor activity, repetitive behavior, anxiety-like behavior, social interaction, and working memory in animals on PN25 (equivalent to 3-5 years old of the human). To determine BDNF levels in the prefrontal cortex and hippocampus, we used animals on PN8 (equivalent to a human term infant) and PN25. In addition, we evaluated iba-1 (microglia marker), TNFα, and parvalbumin expression on PN25. RESULTS Male juvenile mice presented repetitive behavior, anxiety, and working memory deficits. Females showed social impairment and working memory deficits. In the neurochemical analysis, we detected lower BDNF levels in brain areas of female mice that were more evident in juvenile mice. Only LPS-challenged females presented a marked hippocampal expression of the microglial activation marker, iba-1, and increased TNFα levels, accompanied by a lower parvalbumin expression. DISCUSSION/CONCLUSION Male and female mice presented distinct behavioral alterations. However, LPS-challenged juvenile females showed the most prominent neurobiological alterations related to autism, such as increased microglial activation and parvalbumin impairment. Since these sex-sensitive alterations seem to be age-dependent, a better understanding of changes induced by the exposure to specific risk factors throughout life represents essential targets for developing strategies for autism prevention and precision therapy.
Collapse
Affiliation(s)
- Larissa Maria Frota Cristino
- Neuropsychopharmacology Laboratory, Drug Research, and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Adriano José Maia Chaves Filho
- Neuropsychopharmacology Laboratory, Drug Research, and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Charllyany Sabino Custódio
- Neuropsychopharmacology Laboratory, Drug Research, and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Silvânia Maria Mendes Vasconcelos
- Neuropsychopharmacology Laboratory, Drug Research, and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Francisca Cléa F de Sousa
- Neuropsychopharmacology Laboratory, Drug Research, and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Lia Lira O Sanders
- Centro Universitário Christus - Unichristus, Fortaleza, Brazil
- Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - David Freitas de Lucena
- Neuropsychopharmacology Laboratory, Drug Research, and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Danielle S Macedo
- Neuropsychopharmacology Laboratory, Drug Research, and Development Center, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
- National Science and Technology Institute for Translational Medicine (INCT-TM), Houston, Brazil
| |
Collapse
|
11
|
Chanwuyi Lifestyle Medicine Program Alleviates Immunological Deviation and Improves Behaviors in Autism. NEUROSCI 2021. [DOI: 10.3390/neurosci2020015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Given the association between deviated inflammatory chemokines, the pathogenesis of autism spectrum disorders (ASD), and our previous findings of the Chanwuyi Lifestyle Medicine Program regarding improved cognitive and behavioral problems in ASD, the present study aims to explore if this intervention can alter pro-inflammatory chemokines concentration. Thirty-two boys with ASD were assigned to the experimental group receiving the Chanwuyi Lifestyle Medicine Program for 7 months or the control group without a change in their lifestyle. The experimental group, but not the control group, demonstrated significantly reduced CCL2 and CXCL8, a trend of reduction in CCL5, and elevation of CXCL9. The experimental group also demonstrated significantly reduced social communication problems, repetitive/stereotypic behaviors, and hyperactive behaviors. The present findings support the potential efficacy and applicability of the Chanwuyi Lifestyle Medicine Program for reducing both behavioral problems and immunological dysfunction in ASD. Further studies are warranted to verify its treatment effect and its association with brain functions.
Collapse
|
12
|
Kay SIS, Delgado S, Mittal J, Eshraghi RS, Mittal R, Eshraghi AA. Beneficial Effects of Milk Having A2 β-Casein Protein: Myth or Reality? J Nutr 2021; 151:1061-1072. [PMID: 33693747 DOI: 10.1093/jn/nxaa454] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/14/2020] [Accepted: 12/28/2020] [Indexed: 01/03/2023] Open
Abstract
Diet has been shown to play an important role in maintaining normal homeostasis in the human body. Milk and milk products are a major component of the Western diet, but their consumption may predispose sensitive individuals to adverse health outcomes. Current literature about milk products recognizes various bioactive components including lactate, whey protein, and β-casein protein. Specifically, cow milk has 2 major subvariants of its β-casein protein, A1 and A2, due to a single nucleotide difference that changes the codon at position 67. Whereas the A2 polymorphism is unlikely to undergo enzymatic cleavage during digestion, the A1 polymorphism is more likely to undergo enzymatic cleavage resulting in the product peptide β-casomorphin-7, a known μ-opioid receptor agonist. The objective of this article is to review the current understanding of the 2 major β-casein subvariants and their effects on various organ systems that may have an impact on the health of an individual. Synthesis of the current existing literature on this topic is relevant given the increased association of milk consumption with adverse effects in susceptible individuals resulting in a rising interest in consuming milk alternatives. We discuss the influence of the β-casein protein on the gastrointestinal system, endocrine system, nervous system, and cardiovascular system as well as its role in antioxidants and methylation. A1 milk consumption has been associated with enhanced inflammatory markers. It has also been reported to have an opioid-like response that can lead to manifestations of clinical symptoms of neurological disorders such as autism spectrum disorder. On the other hand, A2 milk consumption has been associated with beneficial effects and is easier to digest in sensitive individuals. Further research is warranted to investigate the short- and long-term effects of consumption of A1 β-casein in comparison with milk with A2 β-casein proteins.
Collapse
Affiliation(s)
- Sae-In S Kay
- Dr. Kiran C Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Stefanie Delgado
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jeenu Mittal
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Rebecca S Eshraghi
- Division of Gastroenterology, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Rahul Mittal
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Adrien A Eshraghi
- Hearing Research and Communication Disorders Laboratory, Department of Otolaryngology, Miller School of Medicine, University of Miami, Miami, FL, USA.,Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA.,Department of Pediatrics, Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
13
|
Lyall K, Ames JL, Pearl M, Traglia M, Weiss LA, Windham GC, Kharrazi M, Yoshida CK, Yolken R, Volk HE, Ashwood P, Van de Water J, Croen LA. A profile and review of findings from the Early Markers for Autism study: unique contributions from a population-based case-control study in California. Mol Autism 2021; 12:24. [PMID: 33736683 PMCID: PMC7977191 DOI: 10.1186/s13229-021-00429-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/23/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The Early Markers for Autism (EMA) study is a population-based case-control study designed to learn more about early biologic processes involved in ASD. METHODS Participants were drawn from Southern California births from 2000 to 2003 with archived prenatal and neonatal screening specimens. Across two phases, children with ASD (n = 629) and intellectual disability without ASD (ID, n = 230) were ascertained from the California Department of Developmental Services (DDS), with diagnoses confirmed according to DSM-IV-TR criteria based on expert clinical review of abstracted records. General population controls (GP, n = 599) were randomly sampled from birth certificate files and matched to ASD cases by sex, birth month and year after excluding individuals with DDS records. EMA has published over 20 papers examining immune markers, endogenous hormones, environmental chemicals, and genetic factors in association with ASD and ID. This review summarizes the results across these studies, as well as the EMA study design and future directions. RESULTS EMA enabled several key contributions to the literature, including the examination of biomarker levels in biospecimens prospectively collected during critical windows of neurodevelopment. Key findings from EMA include demonstration of elevated cytokine and chemokine levels in maternal mid-pregnancy serum samples in association with ASD, as well as aberrations in other immune marker levels; suggestions of increased odds of ASD with prenatal exposure to certain endocrine disrupting chemicals, though not in mixture analyses; and demonstration of maternal and fetal genetic influence on prenatal chemical, and maternal and neonatal immune marker and vitamin D levels. We also observed an overall lack of association with ASD and measured maternal and neonatal vitamin D, mercury, and brain-derived neurotrophic factor (BDNF) levels. LIMITATIONS Covariate and outcome data were limited to information in Vital Statistics and DDS records. As a study based in Southern California, generalizability for certain environmental exposures may be reduced. CONCLUSIONS Results across EMA studies support the importance of the prenatal and neonatal periods in ASD etiology, and provide evidence for the role of the maternal immune response during pregnancy. Future directions for EMA, and the field of ASD in general, include interrogation of mechanistic pathways and examination of combined effects of exposures.
Collapse
Affiliation(s)
- Kristen Lyall
- A.J. Drexel Autism Institute, Drexel University, Suite 560, 3020 Market St, Philadelphia, PA, 19104, USA.
| | - Jennifer L Ames
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Michelle Pearl
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, CA, USA
| | - Michela Traglia
- University of California, San Francisco, San Francisco, CA, USA
| | - Lauren A Weiss
- University of California, San Francisco, San Francisco, CA, USA
| | - Gayle C Windham
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, CA, USA
| | - Martin Kharrazi
- Environmental Health Investigations Branch, California Department of Public Health, Richmond, CA, USA
| | - Cathleen K Yoshida
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Robert Yolken
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Heather E Volk
- Department of Mental Health, Johns Hopkins University, Baltimore, MD, USA
| | - Paul Ashwood
- UC Davis MIND Institute, University of California, Davis, Davis, CA, USA
| | - Judy Van de Water
- UC Davis MIND Institute, University of California, Davis, Davis, CA, USA
| | - Lisa A Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| |
Collapse
|
14
|
Hewitson L, Mathews JA, Devlin M, Schutte C, Lee J, German DC. Blood biomarker discovery for autism spectrum disorder: A proteomic analysis. PLoS One 2021; 16:e0246581. [PMID: 33626076 PMCID: PMC7904196 DOI: 10.1371/journal.pone.0246581] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social communication and social interaction and restricted, repetitive patterns of behavior, interests, or activities. Given the lack of specific pharmacological therapy for ASD and the clinical heterogeneity of the disorder, current biomarker research efforts are geared mainly toward identifying markers for determining ASD risk or for assisting with a diagnosis. A wide range of putative biological markers for ASD is currently being investigated. Proteomic analyses indicate that the levels of many proteins in plasma/serum are altered in ASD, suggesting that a panel of proteins may provide a blood biomarker for ASD. Serum samples from 76 boys with ASD and 78 typically developing (TD) boys, 18 months-8 years of age, were analyzed to identify possible early biological markers for ASD. Proteomic analysis of serum was performed using SomaLogic’s SOMAScanTM assay 1.3K platform. A total of 1,125 proteins were analyzed. There were 86 downregulated proteins and 52 upregulated proteins in ASD (FDR < 0.05). Combining three different algorithms, we found a panel of 9 proteins that identified ASD with an area under the curve (AUC) = 0.8599±0.0640, with specificity and sensitivity of 0.8217±0.1178 and 0.835±0.1176, respectively. All 9 proteins were significantly different in ASD compared with TD boys, and were significantly correlated with ASD severity as measured by ADOS total scores. Using machine learning methods, a panel of serum proteins was identified that may be useful as a blood biomarker for ASD in boys. Further verification of the protein biomarker panel with independent test sets is warranted.
Collapse
Affiliation(s)
- Laura Hewitson
- The Johnson Center for Child Health and Development, Austin, TX, United States of America
| | - Jeremy A Mathews
- Departments of Mathematical Sciences and Biological Sciences, Bioinformatics & Computational Biology Program, University of Texas at Dallas, Dallas, TX, United States of America
| | - Morgan Devlin
- The Johnson Center for Child Health and Development, Austin, TX, United States of America
| | - Claire Schutte
- The Johnson Center for Child Health and Development, Austin, TX, United States of America
| | - Jeon Lee
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Dwight C German
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX, United States of America
| |
Collapse
|
15
|
Zoccante L, Ciceri ML, Gozzi LA, Gennaro GD, Zerman N. The "Connectivome Theory": A New Model to Understand Autism Spectrum Disorders. Front Psychiatry 2021; 12:794516. [PMID: 35250650 PMCID: PMC8892379 DOI: 10.3389/fpsyt.2021.794516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/23/2021] [Indexed: 12/20/2022] Open
Abstract
The classical approach to autism spectrum disorders (ASD) is often limited to considering their neuro-functional aspects. However, recent scientific literature has shown that ASDs also affect many body systems and apparatuses such as the immune system, the sensory-motor system, and the gut-brain axis. The connective tissue, a common thread linking all these structures, may have a pathogenetic role in the multisystem involvement of ASD. Depending on its different anatomical sites, the connective tissue performs functions of connection and support; furthermore, it acts as a barrier between the external and internal environments, regulating the interchange between the two and performing immunological surveillance. The connective tissue shares a close relationship with the central nervous system, the musculoskeletal system and the immune system. Alterations in brain connectivity are common to various developmental disorders, including ASD, and for this reason here we put forward the hypothesis that alterations in the physiological activity of microglia could be implicated in the pathogenesis of ASD. Also, muscle hypotonia is likely to clinically correlate with an altered sensoriality and, in fact, discomfort or early muscle fatigue are often reported in ASDs. Furthermore, patients with ASD often suffer from intestinal dysfunctions, malabsorption and leaky gut syndrome, all phenomena that may be linked to reduced intestinal connectivity. In addition, at the cutaneous and subcutaneous levels, ASDs show a greater predisposition to inflammatory events due to the lack of adequate release of anti-inflammatory mediators. Alveolar-capillary dysfunctions have also been observed in ASD, most frequently interstitial inflammations, immune-mediated forms of allergic asthma, and bronchial hyper-reactivity. Therefore, in autism, altered connectivity can result in phenomena of altered sensitivity to environmental stimuli. The following interpretative model, that we define as the "connectivome theory," considers the alterations in connective elements of common mesodermal origin located in the various organs and apparatuses and entails the evaluation and interpretation of ASDs through also highlighting somatic elements. We believe that this broader approach could be helpful for a more accurate analysis, as it is able to enrich clinical evaluation and define more multidisciplinary and personalized interventions.
Collapse
Affiliation(s)
- Leonardo Zoccante
- Child and Adolescent Neuropsychiatry Unit, Maternal-Child Integrated Care Department, Integrated University Hospital Verona, Verona, Italy.,Autism Spectrum Disorders Regional Centre of Verona, Verona, Italy
| | - Marco Luigi Ciceri
- Child and Adolescent Neuropsychiatry Unit, Maternal-Child Integrated Care Department, Integrated University Hospital Verona, Verona, Italy.,Autism Spectrum Disorders Regional Centre of Verona, Verona, Italy
| | - Luigi Alberto Gozzi
- Child and Adolescent Neuropsychiatry Unit, Maternal-Child Integrated Care Department, Integrated University Hospital Verona, Verona, Italy.,Autism Spectrum Disorders Regional Centre of Verona, Verona, Italy
| | - Gianfranco Di Gennaro
- Department of Pathology and Diagnostics, Integrated University Hospital Verona, Verona, Italy
| | - Nicoletta Zerman
- Department of Surgery, Dentistry, Paediatrics and Gynaecology, University of Verona, Verona, Italy
| |
Collapse
|
16
|
Healing autism spectrum disorder with cannabinoids: a neuroinflammatory story. Neurosci Biobehav Rev 2020; 121:128-143. [PMID: 33358985 DOI: 10.1016/j.neubiorev.2020.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/28/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with a multifactorial etiology. Latest researches are raising the hypothesis of a link between the onset of the main behavioral symptoms of ASD and the chronic neuroinflammatory condition of the autistic brain; increasing evidence of this connection is shedding light on new possible players in the pathogenesis of ASD. The endocannabinoid system (ECS) has a key role in neurodevelopment as well as in normal inflammatory responses and it is not surprising that many preclinical and clinical studies account for alterations of the endocannabinoid signaling in ASD. These findings lay the foundation for a better understanding of the neurochemical mechanisms underlying ASD and for new therapeutic attempts aimed at exploiting the renowned anti-inflammatory properties of cannabinoids to treat pathologies encompassed in the autistic spectrum. This review discusses the current preclinical and clinical evidence supporting a key role of the ECS in the neuroinflammatory state that characterizes ASD, providing hints to identify new biomarkers in ASD and promising therapies for the future.
Collapse
|
17
|
Efe A, Neşelioğlu S, Soykan A. An Investigation of the Dynamic Thiol/Disulfide Homeostasis, As a Novel Oxidative Stress Plasma Biomarker, in Children With Autism Spectrum Disorders. Autism Res 2020; 14:473-487. [PMID: 33210838 DOI: 10.1002/aur.2436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/26/2022]
Abstract
We aimed to investigate the role of impaired oxidant-antioxidant homeostasis on the etiopathogenesis of autism with a novel oxidative stress (OS) marker, dynamic thiol/disulfide homeostasis (DTDH), and relationship between the symptom severity and markers. A total of 60 children with ASD aged 3-10 years and 54 unaffected children were investigated for the plasma DTDH parameters. A sociodemographic-data form, K-SADS-PL, Childhood Autism Rating Scale, Abnormal Behavior Checklist, Autism Behavior Checklist, and a developmentally appropriate IQ test were administered to all participants. Distortion of DTDH to the OS-side in the autism group was determined with lower plasma levels of native and total thiol, in contrast to a higher disulfide and thiol oxidation-reduction ratio. However, biomarkers had no correlation with the symptom severity of autism. Cutoff values for each parameter on the ROC curve might be useful to predict ASD and each DTDH biomarker was detected as an independent predictor of ASD. The present study demonstrated a disturbed redox status and absence of an expected compensatory increase in antioxidant response in a pediatric sample of ASD by measuring dynamic oxidation/reduction shifts with a novel, practical and reproducible analytical technique, and contributes to data regarding oxidative hypothesis on autism and raises the question of the place of antioxidants in autism treatment. Our results may suggest predictive usefulness of the plasma DTDH biomarkers in ASD, despite the study being conducted with a modestly small sample size that makes further research with a larger replication sample necessary to substantiate the findings. LAY SUMMARY: Dynamic thiol/disulfide homeostasis is a novel plasma marker used to determine the oxidative stress which is a natural result of disequilibrium between the oxidants and antioxidants in the human body. There is increasing interest regarding a central biological linking role of oxidative stress among the other etiological factors of autism. Our findings on the disturbed plasma dynamic thiol/disulfide homeostasis in children with autism and the absence of an expected antioxidant response against increased oxidative stress supports the data concerning the role of oxidative stress on the etiology of autism and the need of further research on the place of antioxidants in autism treatment.
Collapse
Affiliation(s)
- Ayşegül Efe
- Department of Child and Adolescent Psychiatry, Dr. Sami Ulus Gynecology Obstetrics and Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | - Salim Neşelioğlu
- Department of Medical Biochemistry, Yıldırım Beyazıt University, Ankara Atatürk Training and Research Hospital, Ankara, Turkey
| | - Ayla Soykan
- Department of Child and Adolescent Psychiatry, Ankara University, School of Medicine, Ankara, Turkey
| |
Collapse
|
18
|
Rose DR, Yang H, Careaga M, Angkustsiri K, Van de Water J, Ashwood P. T cell populations in children with autism spectrum disorder and co-morbid gastrointestinal symptoms. Brain Behav Immun Health 2020; 2:100042. [PMID: 34589832 PMCID: PMC8474588 DOI: 10.1016/j.bbih.2020.100042] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 01/09/2023] Open
Abstract
Children with ASD are more likely to experience gastrointestinal (GI) symptoms than typically-developed children. Numerous studies have reported immune abnormalities and inflammatory profiles in the majority of individuals with ASD. Immune dysfunction is often hypothesized as a driving factor in many GI diseases and it has been suggested that it is more apparent in children with ASD that exhibit GI symptoms. In this study we sought to characterize peripheral T cell subsets in children with and without GI symptoms, compared to healthy typically-developing children. Peripheral blood mononuclear cells were isolated from participants, who were categorized into three groups: children with ASD who experience GI symptoms (n = 14), children with ASD who do not experience GI symptoms (n = 10) and typically-developing children who do not experience GI symptoms (n = 15). In order to be included in the GI group, GI symptoms such as diarrhea, constipation, and/or pain while defecating, had to be present in the child regularly for the past 6 months; likewise, in order to be placed in the no GI groups, bowel movements could not include the above symptoms present throughout development. Cells were assessed for surface markers and intracellular cytokines to identify T cell populations. Children with ASD and GI symptoms displayed elevated TH17 populations (0.757% ± 0.313% compared to 0.297% ± 0.197), while children with ASD who did not experience GI symptoms showed increased frequency of TH2 populations (2.02% ± 1.08% compared to 1.01% ± 0.58%). Both ASD groups showed evidence of reduced gut homing regulatory T cell populations compared to typically developing children (ASDGI:1.93% ± 0.75% and ASDNoGI:1.85% ± 0.89 compared to 2.93% ± 1.16%). Children with ASD may have deficits in immune regulation that lead to differential inflammatory T cell subsets that could be linked to associated co-morbidities.
Collapse
Affiliation(s)
- Destanie R. Rose
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
- MIND Institute, University of California Davis, Davis, CA, USA
| | - Houa Yang
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
- MIND Institute, University of California Davis, Davis, CA, USA
| | - Milo Careaga
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
- MIND Institute, University of California Davis, Davis, CA, USA
| | - Kathy Angkustsiri
- MIND Institute, University of California Davis, Davis, CA, USA
- Department of Pediatrics, University of California Davis, CA, USA
- Children’s Center for Environmental Health, University of California Davis, CA, USA
| | - Judy Van de Water
- MIND Institute, University of California Davis, Davis, CA, USA
- Children’s Center for Environmental Health, University of California Davis, CA, USA
- Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, CA, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
- MIND Institute, University of California Davis, Davis, CA, USA
- Public Health Sciences, University of California Davis, CA, USA
| |
Collapse
|
19
|
Hartman RE, Patel D. Dietary Approaches to the Management of Autism Spectrum Disorders. ADVANCES IN NEUROBIOLOGY 2020; 24:547-571. [PMID: 32006373 DOI: 10.1007/978-3-030-30402-7_19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This chapter reviews the literature surrounding autism spectrum disorders (ASD) and their relation to gastrointestinal (GI), behavioral, neurological, and immunological functioning. Individuals with ASD often have poor GI health, including bowel motility issues, autoimmune and/or other adverse responses to certain foods, and lack of necessary nutrient absorption. These issues may be caused or exacerbated by restrictive behavioral patterns (e.g., preference for sweet and salty foods and/or refusal of healthy foods). Those individuals with GI issues tend to demonstrate more behavioral deficits (e.g., irritability, agitation, hyperactivity) and also tend to have an imbalance in overall gut microbiome composition, thus corroborating several studies that have implicated brain-gut pathways as potential mediators of behavioral dysfunction.We examine the literature regarding dietary approaches to managing ASDs, including elimination diets for gluten, casein, or complex carbohydrates, a ketogenic diet, and a low oxalate diet. We also explore the research examining dietary supplements such as fatty acids, pro- and prebiotics, vitamins, minerals, glutathione, phytochemicals, and hormones. The research on dietary approaches to managing ASDs is limited and the results are mixed. However, a few approaches, such as the gluten-free/casein-free diet, fatty acid supplementation, and pre/probiotics have generally demonstrated improved GI and associated behavioral symptoms. Given that GI issues seem to be overrepresented in ASD populations, and that GI issues have been associated with a number behavioral and neurological deficits, dietary manipulation may offer a cheap and easily implemented approach to improve the lives of those with ASD.
Collapse
Affiliation(s)
- Richard E Hartman
- Department of Psychology, Loma Linda University, Loma Linda, CA, USA.
| | - Dhira Patel
- Department of Psychology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
20
|
Jyonouchi H, Geng L. Associations between Monocyte and T Cell Cytokine Profiles in Autism Spectrum Disorders: Effects of Dysregulated Innate Immune Responses on Adaptive Responses to Recall Antigens in a Subset of ASD Children. Int J Mol Sci 2019; 20:ijms20194731. [PMID: 31554204 PMCID: PMC6801811 DOI: 10.3390/ijms20194731] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/19/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
Changes in monocyte cytokine production with toll like receptor (TLR) agonists in subjects with autism spectrum disorders (ASD) were best reflected by the IL-1β/IL-10 ratios in our previous research. The IL-1β/IL-10 based subgrouping (low, normal, and high) of ASD samples revealed marked differences in microRNA expression, and mitochondrial respiration. However, it is unknown whether the IL-1β/IL-10 ratio based subgrouping is associated with changes in T cell cytokine profiles or monocyte cytokine profiles with non-TLR agonists. In ASD (n = 152) and non-ASD (n = 41) subjects, cytokine production by peripheral blood monocytes (PBMo) with TLR agonists and β-glucan, an inflammasome agonist, and T cell cytokine production by peripheral blood mononuclear cells (PBMCs) with recall antigens (Ags) (food and candida Ags) were concurrently measured. Changes in monocyte cytokine profiles were observed with β-glucan in the IL-1β/IL-10 ratio based ASD subgroups, along with changes in T cell cytokine production and ASD subgroup-specific correlations between T cell and monocyte cytokine production. Non-ASD controls revealed considerably less of such correlations. Altered innate immune responses in a subset of ASD children are not restricted to TLR pathways and correlated with changes in T cell cytokine production. Altered trained immunity may play a role in the above described changes.
Collapse
Affiliation(s)
- Harumi Jyonouchi
- Department of Pediatrics, Saint Peter's University Hospital (SPUH), New Brunswick, NJ 08901, USA.
- Department of Pediatrics, Rutgers-Robert Wood Johnson medical school, New Brunswick, NJ 08901, USA.
| | - Lee Geng
- Department of Pediatrics, Saint Peter's University Hospital (SPUH), New Brunswick, NJ 08901, USA.
| |
Collapse
|
21
|
Saghazadeh A, Ataeinia B, Keynejad K, Abdolalizadeh A, Hirbod-Mobarakeh A, Rezaei N. A meta-analysis of pro-inflammatory cytokines in autism spectrum disorders: Effects of age, gender, and latitude. J Psychiatr Res 2019; 115:90-102. [PMID: 31125917 DOI: 10.1016/j.jpsychires.2019.05.019] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Autism spectrum disorders (ASD) occur in 1.5% of the general population worldwide. Studies suggest that ASD might have more costs than diabetes and attention deficit and hyperactivity disorder by 2025. Dysregulation of the cytokine system is well-documented in ASD. We conducted a meta-analysis of studies providing data on circulating concentrations of pro-inflammatory cytokines in people with ASD compared with control subjects without ASD. METHODS We identified potentially eligible studies by systematically searching electronic databases from inception to February 2018. RESULTS Thirty-eight studies with total of 2487 participants (1393 patients with ASD and 1094 control subjects) were included in the meta-analysis; 13 for interferon (IFN)-γ, 17 for interleukin (IL)-1β, 22 for IL-6, 19 for tumor necrosis factor (TNF)-α, 4 for IL-1α, 6 for IL-2, 4 for IL-7, 8 for IL-8, 14 for IL-12, 3 for IL-15, 12 for IL-17, 3 for IL-18, 3 for IL-2 receptor, 3 for TNF-β, and 3 for IL-23. We found medium increases in levels of plasma IFN-γ (standardized mean difference, SMD = 0.53) and serum IL-1β (SMD = 0.56) and small increases in levels of blood IL-1β (SMD = 0.35), serum IL-6 (SMD = 0.30) and serum TNF-α (SMD = 0.31) for patients with ASD. Meta-regression analyses identified latitude as a negative moderator of the effect size (ES) of difference in mean levels of IFN-γ (R2 = 0.26) and TNF-α (R2 = 0.74). Also, difference in the mean age between patients and controls had a negative interaction with the ES of difference in mean levels of IL-1β. In contrast, there was a positive effect of the moderator of difference in the proportion of male subjects between patients and controls on the ES of difference in mean levels of IL-1β. We found no significant alterations in peripheral levels of other pro-inflammatory cytokines including IL-1α, IL-2, IL-2R, IL-3, IL-7, IL-8, IL-12, IL-12p40, IL-12p70, IL-15, IL-17, IL-18, IL-23, TBF-β, and TNFRI/II in patients with ASD. CONCLUSIONS This meta-analysis provides evidence for higher concentration of pro-inflammatory cytokines IFN-γ, IL-1β, IL-6, and TNF-α in autistic patents compared with control subjects. Also, meta-regression analyses point to the interaction of latitude, age, and gender with peripheral alterations of associated pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Amene Saghazadeh
- aResearch Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; MetaCognition Interest Group (MCIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Bahar Ataeinia
- aResearch Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran; Border of Immune Tolerance Education and Research Network (BITERN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kimia Keynejad
- Border of Immune Tolerance Education and Research Network (BITERN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirhussein Abdolalizadeh
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran; MS Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Armin Hirbod-Mobarakeh
- aResearch Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Border of Immune Tolerance Education and Research Network (BITERN), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Molecular Immunology Research Center, Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- aResearch Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Molecular Immunology Research Center, Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Boston, MA, USA.
| |
Collapse
|
22
|
Rose D, Ashwood P. Rapid Communication: Plasma Interleukin-35 in Children with Autism. Brain Sci 2019; 9:E152. [PMID: 31252635 PMCID: PMC6680732 DOI: 10.3390/brainsci9070152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 12/29/2022] Open
Abstract
In autism spectrum disorders (ASD) many individuals have co-morbid immune dysregulation that can lead to inflammation in the brain and periphery. The novel cytokine interleukin (IL)-35 has described anti-inflammatory properties; however, the plasma levels of IL-35 in children with ASD have never been investigated. The plasma levels of IL-35 were measured by an enzyme-linked immunosorbent assay in 30 children with ASD and 39 typically developing (TD) controls. In the current study, we found that plasma IL-35 levels were significantly decreased in children with ASD compared with TD children. Furthermore, lower IL-35 levels were associated with worse behaviors as assessed using the aberrant behavior checklist. These findings are in line with other observations of decreased regulatory cytokines such as transforming growth factor beta and IL-10 in ASD, and associations with severity of behaviors. In conclusion, regulating the expression of IL-35 may provide a new possible target for the treatment of immune issues in ASD to address an imbalance between pro- and anti-inflammatory signals that alter the behavioral phenotype.
Collapse
Affiliation(s)
- Destanie Rose
- Department of Medical Microbiology and Immunology, and The Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, CA 95817, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, and The Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, CA 95817, USA.
| |
Collapse
|
23
|
Anti-inflammatory cytokines in autism spectrum disorders: A systematic review and meta-analysis. Cytokine 2019; 123:154740. [PMID: 31228728 DOI: 10.1016/j.cyto.2019.154740] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/01/2019] [Accepted: 05/30/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND In the search for the causes of autism spectrum disorders (ASD), inflammatory markers have emerged as potential candidates. The present meta-analysis was performed on studies examining circulating concentrations of anti-inflammatory cytokines in people with ASD compared with control subjects without ASD. METHODS We identified potentially eligible studies by systematically searching electronic databases from inception to February 2018. RESULTS Twenty-five studies with a total of 1754 participants (1022 patients with ASD and 732 control subjects) were included in the mate-analysis; 4 for interferon (IFN)-α, 9 for interleukin (IL)-1 receptor antagonist (Ra), 9 for IL-4, 6 for IL-5, 3 for IL-9, 14 for IL-10, 7 for IL-13, and 6 for transforming growth factor (TGF)-β. We found a moderate decrease in plasma levels of IL-10 (SMD = -0.59) and a small decrease in serum levels of IL-1Ra (SMD = -0.25) in patients with ASD. On the contrary, serum IL-5 levels were slightly increased (SMD = 0.26) in these patients. We conducted meta-regression analyses to investigate the possible effect of moderatos on the effect size (ES) of difference in mean levels of IL-10. Difference in the mean age between patients and controls showed a negative influence on the ES and was able to explain about 0.4 of total between-study variance. In contrast, latitude exerted a positive effect on the ES and explained a lower proportion (0.1) of total between-study variance. CONCLUSIONS This meta-analysis provides evidence for the lower concentration of anti-inflammatory cytokines IL-10 and IL-1Ra in autistic patients compared with control subjects. Also, meta-regression analyses point to the interaction of latitude, age, and gender with peripheral alterations of associated anti-inflammatory cytokines.
Collapse
|
24
|
Barfi S, Narges C, Pouretemad HR, Poortahmasebi V, Norouzi M, Farahmand M, Yahyapour Y, Ghorbani S, Ghalichi L, Ofoghi H, Jazayeri SM. Measurement of serum hepatitis B surface antibody levels in Iranian autistic children and evaluation of immunological memory after booster dose injection in comparison with controls. J Med Virol 2019; 91:1272-1278. [PMID: 30761573 DOI: 10.1002/jmv.25429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/29/2019] [Accepted: 02/07/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Responsiveness to hepatitis B vaccine among patients with autism spectrum disorders (ASD) has not been evaluated worldwide. We aimed to determine the anti-HBs antibody duration in autistic and healthy children few years after primary vaccination and evaluate their immunological memory against hepatitis B virus (HBV) vaccine with booster dose administration. METHODS One hundred seven and 147 HBsAg-negative children from ASD and normal population were recruited, respectively. HBV seromarkers (HBc-Ab, HBsAg, and HBs-Ab) were assessed and subsequently, molecular tests were used on all the subjects. A booster dose of vaccine was injected for those who showed low levels (<10 mIU/mL) of anti-HBs and their antibody levels was measured 4 weeks later. RESULTS The mean ages of ASD and control groups were 7.14 ± 2.42 and 8.68 ± 1.96, respectively. Seven (6.5%) of the ASD group were positive for anti-HBc and one child was positive for occult hepatitis B infection (HBsAg negative, HBV DNA positive). In ASD, 54 (50.4%) and 53 (49.6%) had adequate (>10 mIU/mL) and low anti-HBs levels, respectively. Among control group, 74 (50.4%) and 73 (49.6%) had sufficient and low antibody levels, respectively. After injection of a booster dose for all children with low antibody, 100% of ASD and 92% (59 of 64) of control pupils contained >10 mIU/mL of antibody, respectively. In both the groups, the HBs-Ab titer increased similarly in response to the booster injection (P < 0.05). CONCLUSION Despite previous investigations regarding immune impairment in individuals with autism, the immune system of these individuals was able to manage the hepatitis B vaccine challenge.
Collapse
Affiliation(s)
- Shahram Barfi
- Department of Virology, School of Public Health, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Chimeh Narges
- Rehabilitation Clinic for Children with Special needs (RCCS), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Pouretemad
- Clinical Neurophysiology Section, Department of Psychological Medicine, Institute of Psychiatry, Shahid Beheshti University, Tehran, Iran
| | - Vahdat Poortahmasebi
- Department of Virology, Tehran University of Medical Science, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Norouzi
- Department of Virology, Tehran University of Medical Science, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farahmand
- Department of Virology, Tehran University of Medical Science, Tehran, Iran
| | - Yousef Yahyapour
- Infectious Diseases and Tropical Medicine Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Saeid Ghorbani
- Iran University of Medical Sciences Tehrān, Tehran, Iran
| | - Leila Ghalichi
- Mental Health Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Haleh Ofoghi
- Rehabilitation Clinic for Children with Special needs (RCCS), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Jazayeri
- Department of Virology, Tehran University of Medical Science, Tehran, Iran.,Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Arroyo-López C. Helminth therapy for autism under gut-brain axis- hypothesis. Med Hypotheses 2019; 125:110-118. [PMID: 30902137 DOI: 10.1016/j.mehy.2019.02.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/18/2019] [Indexed: 12/20/2022]
Abstract
Autism is a neurodevelopmental disease included within Autism Syndrome Disorder (ASD) spectrum. ASD has been linked to a series of genes that play a role in immune response function and patients with autism, commonly suffer from immune-related comorbidities. Despite the complex pathophysiology of autism, Gut-brain axis is gaining strength in the understanding of several neurological disorders. In addition, recent publications have shown the correlation between immune dysfunctions, gut microbiota and brain with the behavioral alterations and comorbid symptoms found in autism. Gut-brain axis acts as the "second brain", in a communication network established between neural, endocrine and the immunological systems. On the other hand, Hygiene Hypothesis suggests that the increase in the incidence of autoimmune diseases in the modern world can be attributed to the decrease of exposure to infectious agents, as parasitic nematodes. Helminths induce modulatory and protective effects against several inflammatory disorders, maintaining gastrointestinal homeostasis and modulating brain functions. Helminthic therapy has been previously performed in diseases such as ulcerative colitis, Crohn's disease, diabetes, multiple sclerosis, asthma, rheumatoid arthritis, and food allergies. Considering gut-brain axis, Hygiene Hypothesis, and the modulatory effects of helminths I hypothesized that a treatment with Trichuris suis soluble products represents a feasible holistic treatment for autism, and the key for the development of novel treatments. Preclinical studies are required to test this hypothesis.
Collapse
Affiliation(s)
- Celia Arroyo-López
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine; Institute for Pediatric Regenerative Medicine and Shriners Hospitals for Children of Northern California, United States.
| |
Collapse
|
26
|
Sanctuary MR, Kain JN, Chen SY, Kalanetra K, Lemay DG, Rose DR, Yang HT, Tancredi DJ, German JB, Slupsky CM, Ashwood P, Mills DA, Smilowitz JT, Angkustsiri K. Pilot study of probiotic/colostrum supplementation on gut function in children with autism and gastrointestinal symptoms. PLoS One 2019; 14:e0210064. [PMID: 30625189 PMCID: PMC6326569 DOI: 10.1371/journal.pone.0210064] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 12/16/2018] [Indexed: 12/18/2022] Open
Abstract
Over half of all children with autism spectrum disorders (ASD) have gastrointestinal (GI) co-morbidities including chronic constipation, diarrhea, and irritable bowel syndrome. The severity of these symptoms has been correlated with the degree of GI microbial dysbiosis. The study objective was to assess tolerability of a probiotic (Bifidobacterium infantis) in combination with a bovine colostrum product (BCP) as a source of prebiotic oligosaccharides and to evaluate GI, microbiome and immune factors in children with ASD and GI co-morbidities. This pilot study is a randomized, double blind, controlled trial of combination treatment (BCP + B. infantis) vs. BCP alone in a cross-over study in children ages 2-11 with ASD and GI co-morbidities (n = 8). This 12-week study included 5 weeks of probiotic-prebiotic supplementation, followed by a two-week washout period, and 5 weeks of prebiotic only supplementation. The primary outcome of tolerability was assessed using validated questionnaires of GI function and atypical behaviors, along with side effects. Results suggest that the combination treatment is well-tolerated in this cohort. The most common side effect was mild gassiness. Some participants on both treatments saw a reduction in the frequency of certain GI symptoms, as well as reduced occurrence of particular aberrant behaviors. Improvement may be explained by a reduction in IL-13 and TNF-α production in some participants. Although limited conclusions can be drawn from this small pilot study, the results support the need for further research into the efficacy of these treatments.
Collapse
Affiliation(s)
- Megan R. Sanctuary
- Department of Nutrition, University of California, Davis, California, United States of America
| | - Jennifer N. Kain
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California, United States of America
| | - Shin Yu Chen
- Department of Food Science and Technology, University of California, Davis, California, United States of America
| | - Karen Kalanetra
- Department of Food Science and Technology, University of California, Davis, California, United States of America
| | - Danielle G. Lemay
- USDA ARS Western Human Nutrition Research Center, Davis, California, United States of America
- Genome Center, University of California, Davis, California, United States of America
| | - Destanie R. Rose
- MIND Institute, University of California Davis, Sacramento, California, United States of America
| | - Houa T. Yang
- MIND Institute, University of California Davis, Sacramento, California, United States of America
| | - Daniel J. Tancredi
- Department of Pediatrics, University of California School of Medicine, Sacramento, California, United States of America
| | - J. Bruce German
- Department of Food Science and Technology, University of California, Davis, California, United States of America
- Foods for Health Institute, University of California, Davis, California, United States of America
| | - Carolyn M. Slupsky
- Department of Nutrition, University of California, Davis, California, United States of America
- Department of Food Science and Technology, University of California, Davis, California, United States of America
| | - Paul Ashwood
- MIND Institute, University of California Davis, Sacramento, California, United States of America
| | - David A. Mills
- Department of Food Science and Technology, University of California, Davis, California, United States of America
| | - Jennifer T. Smilowitz
- Department of Food Science and Technology, University of California, Davis, California, United States of America
- Foods for Health Institute, University of California, Davis, California, United States of America
| | - Kathleen Angkustsiri
- MIND Institute, University of California Davis, Sacramento, California, United States of America
- Department of Pediatrics, University of California School of Medicine, Sacramento, California, United States of America
| |
Collapse
|
27
|
Jyonouchi H, Geng L, Rose S, Bennuri SC, Frye RE. Variations in Mitochondrial Respiration Differ in IL-1ß/IL-10 Ratio Based Subgroups in Autism Spectrum Disorders. Front Psychiatry 2019; 10:71. [PMID: 30842746 PMCID: PMC6391925 DOI: 10.3389/fpsyt.2019.00071] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 01/30/2019] [Indexed: 12/31/2022] Open
Abstract
Autism spectrum disorder (ASD)7 is associated with multiple physiological abnormalities, including immune dysregulation, and mitochondrial dysfunction. However, an association between these two commonly reported abnormalities in ASD has not been studied in depth. This study assessed the association between previously identified alterations in cytokine profiles by ASD peripheral blood monocytes (PBMo) and mitochondrial dysfunction. In 112 ASD and 38 non-ASD subjects, cytokine production was assessed by culturing purified PBMo overnight with stimuli of innate immunity. Parameters of mitochondrial respiration including proton-leak respiration (PLR), ATP-linked respiration (ALR), maximal respiratory capacity (MRC), and reserve capacity (RC) were measured in peripheral blood mononuclear cells (PBMCs). The ASD samples were analyzed by subgrouping them into high, normal, and low IL-1ß/IL-10 ratio groups, which was previously shown to be associated with changes in behaviors and PBMo miRNA expression. MRC, RC, and RC/PLR, a marker of electron transport chain (ETC) efficiency, were higher in ASD PBMCs than controls. The expected positive associations between PLR and ALR were found in control non-ASD PBMCs, but not in ASD PBMCs. Higher MRC, RC, RC/PLR in ASD PBMCs were secondary to higher levels of these parameters in the high and normal IL-1ß/IL-10 ratio ASD subgroups than controls. Associations between mitochondrial parameters and monocyte cytokine profiles differed markedly across the IL-1ß/IL-10 ratio based ASD subgroups, rendering such associations less evident when ASD samples as a whole were compared to non-ASD controls. Our results indicate for the first time, an association between PBMC mitochondrial function and PBMo cytokine profiles in ASD subjects. This relationship differs across the IL-1ß/IL-10 ratio based ASD subgroups. Changes in mitochondrial function are likely due to adaptive changes or mitochondrial dysfunction, resulting from chronic oxidative stress. These results may indicate alteration in molecular pathways affecting both the immune system and mitochondrial function in some ASD subjects.
Collapse
Affiliation(s)
- Harumi Jyonouchi
- Department of Pediatrics, Saint Peter's University Hospital, New Brunswick, NJ, United States.,Robert Wood Johnson Medical School-Rutgers, New Brunswick, NJ, United States
| | - Lee Geng
- Department of Pediatrics, Saint Peter's University Hospital, New Brunswick, NJ, United States
| | - Shannon Rose
- Arkansas Children's Research Institute, Little Rock, AR, United States.,Department of Pediatrics, University of Arkansas of Medical Sciences, Little Rock, AR, United States
| | - Sirish C Bennuri
- Arkansas Children's Research Institute, Little Rock, AR, United States.,Department of Pediatrics, University of Arkansas of Medical Sciences, Little Rock, AR, United States
| | - Richard E Frye
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States.,Barrow Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| |
Collapse
|
28
|
Jyonouchi H, Geng L, Toruner GA, Rose S, Bennuri SC, Frye RE. Serum microRNAs in ASD: Association With Monocyte Cytokine Profiles and Mitochondrial Respiration. Front Psychiatry 2019; 10:614. [PMID: 31551826 PMCID: PMC6748029 DOI: 10.3389/fpsyt.2019.00614] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022] Open
Abstract
Our previous research has shown that purified peripheral blood monocytes (PRMo) from individuals who are diagnosed with autism spectrum disorders (ASDs) and have innate immune abnormalities reveal altered interleukin-1ß (IL-1ß)/IL-10 ratios. We also found, in separate studies, that microRNA (miRNA) expression in PBMo and mitochondrial respiration in peripheral blood mononuclear cells (PBMCs) differed in the IL-1ß/IL-10-based ASD subgroups. This study explored whether serum miRNAs are associated with both altered innate immune responses and changes in mitochondrial respiration as a link of regulatory mechanisms for these two common abnormalities in ASD subjects. Serum miRNA levels were examined by high-throughput deep sequencing in ASD and non-ASD control sera with concurrent measurement of PBMo cytokine production and mitochondrial respiration by PBMCs. ASD samples were examined as a whole group and with respect to the previously defined IL-1ß/IL-10-based ASD subgroups (high, normal, and low groups). Serum miRNA levels differed between the overall ASD sera (N = 116) and non-ASD control sera (N = 35) and also differed across the IL-1ß/IL-10-based ASD subgroups. Specifically, miRNA levels were increased and decreased in eight and nine miRNAs, respectively, in the high-ratio ASD subgroup (N = 48). In contrast, the low- (N = 25) and normal- (N = 43) ratio ASD subgroups only showed decreased miRNAs levels (18 and 10 miRNAs, respectively). Gene targets of the altered miRNAs in the high and/or low IL-1β/IL-10 ratio ASD subgroups were enriched in pathways critical for monocyte functions and metabolic regulation. Gene targets of the altered miRNAs in all the ASD subgroups were enriched in pathways of neuronal development and synaptic plasticity, along with cell proliferation/differentiation. ASD subgroup-specific associations were observed between serum miRNA expression and IL-1ß/IL-10 ratios, mitochondrial respiration, and monocyte cytokine profiles (IL-10, CCL2, and TNF-α). In summary, our results indicate that serum levels of select miRNAs may serve as promising biomarkers for screening and monitoring changes in innate immunity and mitochondrial respiration in ASD.
Collapse
Affiliation(s)
- Harumi Jyonouchi
- Department of Pediatrics, Saint Peter's University Hospital (SPUH), New Brunswick, NJ, United States
| | - Lee Geng
- Department of Pediatrics, Saint Peter's University Hospital (SPUH), New Brunswick, NJ, United States
| | - Gokce A Toruner
- Clinical Cytogenetics, Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, United States
| | - Shannon Rose
- Department of Pediatrics, Arkansas Children's Hospital Research Institute, Little Rock, AR, United States
| | - Sirish C Bennuri
- Department of Pediatrics, Arkansas Children's Hospital Research Institute, Little Rock, AR, United States
| | - Richard E Frye
- Department of Pediatrics, Phoenix Children's Hospital, Phoenix, AZ, United States
| |
Collapse
|
29
|
Azhari A, Azizan F, Esposito G. A systematic review of gut-immune-brain mechanisms in Autism Spectrum Disorder. Dev Psychobiol 2018; 61:752-771. [PMID: 30523646 DOI: 10.1002/dev.21803] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/10/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
Abstract
Despite decades of research, the etiological origins of Autism Spectrum Disorder (ASD) remain elusive. Recently, the mechanisms of ASD have encompassed emerging theories involving the gastrointestinal, immune, and nervous systems. While each of these perspectives presents its own set of supporting evidence, the field requires an integration of these modular concepts and an overarching view of how these subsystems intersect. In this systematic review, we have synthesized relevant evidences from the existing literature, evaluating them in an interdependent manner and in doing so, outlining their possible connections. Specifically, we first discussed gastrointestinal and immuno-inflammation pathways in-depth, exploring the relationships between microbial composition, bacterial metabolites, gut mucosa, and immune system constituents. Accounting for temporal differences in the mechanisms involved in neurodevelopment, prenatal and postnatal phases were further elucidated, where the former focused on maternal immune activation (MIA) and fetal development, while the latter addressed the role of immune dysregulation in contributing to atypical neurodevelopment. As autism remains, foremost, a neurodevelopmental disorder, this review presents an integration of disparate modules into a "Gut-Immune-Brain" paradigm. Existing gaps in the literature have been highlighted, and possible avenues for future research with an integrated physiological perspective underlying ASD have also been suggested.
Collapse
Affiliation(s)
- Atiqah Azhari
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| | - Farouq Azizan
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| | - Gianluca Esposito
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore, Singapore.,Department of Psychology and Cognitive Science, University of Trento, Rovereto, TN, Italy
| |
Collapse
|
30
|
Hughes HK, Mills Ko E, Rose D, Ashwood P. Immune Dysfunction and Autoimmunity as Pathological Mechanisms in Autism Spectrum Disorders. Front Cell Neurosci 2018; 12:405. [PMID: 30483058 PMCID: PMC6242891 DOI: 10.3389/fncel.2018.00405] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/19/2018] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of heterogeneous neurological disorders that are highly variable and are clinically characterized by deficits in social interactions, communication, and stereotypical behaviors. Prevalence has risen from 1 in 10,000 in 1972 to 1 in 59 children in the United States in 2014. This rise in prevalence could be due in part to better diagnoses and awareness, however, these together cannot solely account for such a significant rise. While causative connections have not been proven in the majority of cases, many current studies focus on the combined effects of genetics and environment. Strikingly, a distinct picture of immune dysfunction has emerged and been supported by many independent studies over the past decade. Many players in the immune-ASD puzzle may be mechanistically contributing to pathogenesis of these disorders, including skewed cytokine responses, differences in total numbers and frequencies of immune cells and their subsets, neuroinflammation, and adaptive and innate immune dysfunction, as well as altered levels of immunoglobulin and the presence of autoantibodies which have been found in a substantial number of individuals with ASD. This review summarizes the latest research linking ASD, autoimmunity and immune dysfunction, and discusses evidence of a potential autoimmune component of ASD.
Collapse
Affiliation(s)
- Heather K. Hughes
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| | - Emily Mills Ko
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| | - Destanie Rose
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, United States
- MIND Institute, UC Davis Medical Center, Sacramento, CA, United States
| |
Collapse
|
31
|
Dietary and Micronutrient Treatments for Children with Neurodevelopment Disorders. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2018. [DOI: 10.1007/s40474-018-0150-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
Gładysz D, Krzywdzińska A, Hozyasz KK. Immune Abnormalities in Autism Spectrum Disorder-Could They Hold Promise for Causative Treatment? Mol Neurobiol 2018; 55:6387-6435. [PMID: 29307081 PMCID: PMC6061181 DOI: 10.1007/s12035-017-0822-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/05/2017] [Indexed: 12/15/2022]
Abstract
Autism spectrum disorders (ASD) are characterized by impairments in language and communication development, social behavior, and the occurrence of stereotypic patterns of behavior and interests. Despite substantial speculation about causes of ASD, its exact etiology remains unknown. Recent studies highlight a link between immune dysfunction and behavioral traits. Various immune anomalies, including humoral and cellular immunity along with abnormalities at the molecular level, have been reported. There is evidence of altered immune function both in cerebrospinal fluid and peripheral blood. Several studies hypothesize a role for neuroinflammation in ASD and are supported by brain tissue and cerebrospinal fluid analysis, as well as evidence of microglial activation. It has been shown that immune abnormalities occur in a substantial number of individuals with ASD. Identifying subgroups with immune system dysregulation and linking specific cellular immunophenotypes to different symptoms would be key to defining a group of patients with immune abnormalities as a major etiology underlying behavioral symptoms. These determinations would provide the opportunity to investigate causative treatments for a defined patient group that may specifically benefit from such an approach. This review summarizes recent insights into immune system dysfunction in individuals with ASD and discusses the potential implications for future therapies.
Collapse
Affiliation(s)
- Dominika Gładysz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland
| | | | - Kamil K Hozyasz
- Department of Pediatrics, Institute of Mother and Child, Warsaw, Poland.
| |
Collapse
|
33
|
Dietary interventions for autism spectrum disorder: New perspectives from the gut-brain axis. Physiol Behav 2018; 194:577-582. [PMID: 30036560 DOI: 10.1016/j.physbeh.2018.07.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/12/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023]
Abstract
There is still controversy surrounding the effectiveness of dietary interventions for autism spectrum disorder (ASD), namely the gluten-free/casein free diet and the ketogenic diet. Additionally, as studies mainly investigated their impact on ASD symptoms and behaviors, much remains unknown about their mechanisms of action and physiological effects. Given the recent surge of global interest in the gut-brain axis and its involvement in ASD, we underline the importance of understanding the physiological effects of such restrictive diets that remove certain nutritional items from one's diet. Some evidence has emerged with findings of the gut-microbial, inflammatory, and neuronal effects of these diets. We propose probiotics as a potential alternative that can serve similar biological purposes as these elimination diets and outline different physiological routes whereby probiotics can lead to improvements for individuals with ASD. We hope that future research can delineate the complete physiological effects of these diets. Such knowledge can guide the creation of more informed interventions, which conserve the components resulting in positive behavioral change while being less restrictive and devoid of the harmful effects of limiting certain nutrients.
Collapse
|
34
|
Sanctuary MR, Kain JN, Angkustsiri K, German JB. Dietary Considerations in Autism Spectrum Disorders: The Potential Role of Protein Digestion and Microbial Putrefaction in the Gut-Brain Axis. Front Nutr 2018; 5:40. [PMID: 29868601 PMCID: PMC5968124 DOI: 10.3389/fnut.2018.00040] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/30/2018] [Indexed: 12/13/2022] Open
Abstract
Children with autism spectrum disorders (ASD), characterized by a range of behavioral abnormalities and social deficits, display high incidence of gastrointestinal (GI) co-morbidities including chronic constipation and diarrhea. Research is now increasingly able to characterize the “fragile gut” in these children and understand the role that impairment of specific GI functions plays in the GI symptoms associated with ASD. This mechanistic understanding is extending to the interactions between diet and ASD, including food structure and protein digestive capacity in exacerbating autistic symptoms. Children with ASD and gut co-morbidities exhibit low digestive enzyme activity, impaired gut barrier integrity and the presence of antibodies specific for dietary proteins in the peripheral circulation. These findings support the hypothesis that entry of dietary peptides from the gut lumen into the vasculature are associated with an aberrant immune response. Furthermore, a subset of children with ASD exhibit high concentrations of metabolites originating from microbial activity on proteinaceous substrates. Taken together, the combination of specific protein intakes poor digestion, gut barrier integrity, microbiota composition and function all on a background of ASD represents a phenotypic pattern. A potential consequence of this pattern of conditions is that the fragile gut of some children with ASD is at risk for GI symptoms that may be amenable to improvement with specific dietary changes. There is growing evidence that shows an association between gut dysfunction and dysbiosis and ASD symptoms. It is therefore urgent to perform more experimental and clinical research on the “fragile gut” in children with ASD in order to move toward advancements in clinical practice. Identifying those factors that are of clinical value will provide an evidence-based path to individual management and targeted solutions; from real time sensing to the design of diets with personalized protein source/processing, all to improve GI function in children with ASD.
Collapse
Affiliation(s)
- Megan R Sanctuary
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Jennifer N Kain
- Department of Neurobiology, Physiology and Behavior Department, University of California, Davis, Davis, CA, United States
| | - Kathleen Angkustsiri
- School of Medicine, Department of Pediatrics, University of California, Davis, Sacramento, CA, United States.,Department of Pediatrics, UC Davis MIND Institute, Sacramento, CA, United States
| | - J Bruce German
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States.,Foods for Health Institute, University of California, Davis, Davis, CA, United States
| |
Collapse
|
35
|
Comprehensive Nutritional and Dietary Intervention for Autism Spectrum Disorder-A Randomized, Controlled 12-Month Trial. Nutrients 2018; 10:nu10030369. [PMID: 29562612 PMCID: PMC5872787 DOI: 10.3390/nu10030369] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/01/2018] [Accepted: 03/10/2018] [Indexed: 02/06/2023] Open
Abstract
This study involved a randomized, controlled, single-blind 12-month treatment study of a comprehensive nutritional and dietary intervention. Participants were 67 children and adults with autism spectrum disorder (ASD) ages 3–58 years from Arizona and 50 non-sibling neurotypical controls of similar age and gender. Treatment began with a special vitamin/mineral supplement, and additional treatments were added sequentially, including essential fatty acids, Epsom salt baths, carnitine, digestive enzymes, and a healthy gluten-free, casein-free, soy-free (HGCSF) diet. There was a significant improvement in nonverbal intellectual ability in the treatment group compared to the non-treatment group (+6.7 ± 11 IQ points vs. −0.6 ± 11 IQ points, p = 0.009) based on a blinded clinical assessment. Based on semi-blinded assessment, the treatment group, compared to the non-treatment group, had significantly greater improvement in autism symptoms and developmental age. The treatment group had significantly greater increases in EPA, DHA, carnitine, and vitamins A, B2, B5, B6, B12, folic acid, and Coenzyme Q10. The positive results of this study suggest that a comprehensive nutritional and dietary intervention is effective at improving nutritional status, non-verbal IQ, autism symptoms, and other symptoms in most individuals with ASD. Parents reported that the vitamin/mineral supplements, essential fatty acids, and HGCSF diet were the most beneficial.
Collapse
|
36
|
Roberts AL, Lyall K, Weisskopf MG. Maternal Exposure to Childhood Abuse is Associated with Mate Selection: Implications for Autism in Offspring. J Autism Dev Disord 2018; 47:1998-2009. [PMID: 28393290 DOI: 10.1007/s10803-017-3115-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Maternal experience of childhood abuse has been associated with offspring autism. To explore whether familial tendency towards autistic traits-presumably related to genetic predisposition-accounts for this association, we examined whether women who experienced childhood abuse were more likely to select mates with high levels of autistic traits, and whether parental autistic traits accounted for the association of maternal abuse and offspring autism in 209 autism cases and 833 controls. Maternal childhood abuse was strongly associated with high paternal autistic traits (severe abuse, OR = 3.98, 95% CI = 1.26, 8.31). Maternal and paternal autistic traits accounted for 21% of the association between maternal abuse and offspring autism. These results provide evidence that childhood abuse affects mate selection, with implications for offspring health.
Collapse
Affiliation(s)
- Andrea L Roberts
- Department of Society, Human Development and Health, Harvard T. H. Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA.
| | - Kristen Lyall
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA, USA
| | - Marc G Weisskopf
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
37
|
Ashwood P. Differential T Cell Levels of Tumor Necrosis Factor Receptor-II in Children With Autism. Front Psychiatry 2018; 9:543. [PMID: 30524316 PMCID: PMC6256095 DOI: 10.3389/fpsyt.2018.00543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/11/2018] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorders (ASD) are characterized by impairments in verbal and non-verbal communication, in social interactions, and often accompanied by stereotypical interests and behaviors. A role for immune dysfunction has long been implicated in ASD pathophysiology, behavioral severity, and co-morbidities. The pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) has been associated with ASD in some studies but little is known about its receptors. There are two receptors for TNFα, with TNFRI relaying many of the signals from TNFα, especially those that are rapid, whilst TNFRII relays later more long-term effects of TNFα. Proteolytic cleavage can lead to the soluble versions of these receptors which can neutralize the effects of TNFα. Here, we determined levels of TNFα and its receptors in 36 children with a confirmed diagnosis of ASD and 27 confirmed typically developing (TD) controls, 2-5 years-of-age. Children with ASD had higher levels of TNFRII on T cells compared to controls following cell stimulation. Levels of sTNFRII were decreased in cell supernatants following stimulation in ASD. Overall these data corroborate the role of inflammatory events in ASD and align with previous studies that have shown differential changes in cellular adaptive immunity in children with ASD. Future longitudinal analyzes of cellular immune function and downstream signaling from immune receptors will help further delineate the role of inflammation in ASD.
Collapse
Affiliation(s)
- Paul Ashwood
- Department of Medical Microbiology and Immunology, and The Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, CA, United States
| |
Collapse
|
38
|
Jyonouchi H, Geng L, Streck DL, Dermody JJ, Toruner GA. MicroRNA expression changes in association with changes in interleukin-1ß/interleukin10 ratios produced by monocytes in autism spectrum disorders: their association with neuropsychiatric symptoms and comorbid conditions (observational study). J Neuroinflammation 2017; 14:229. [PMID: 29178897 PMCID: PMC5702092 DOI: 10.1186/s12974-017-1003-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) play a major role in regulating immune responses at post-transcriptional levels. Previously, we have reported fluctuating interlukine-1ß (IL-1ß)/IL-10 ratios produced by peripheral blood monocytes (PBMo) in some patients with autism spectrum disorders (ASD). This study examined whether changes in miRNA expression by PBMo are associated with changes in IL-1ß/IL-10 ratios and how such changes are associated with ASD clinical features. METHODS miRNA expression by purified PBMo from ASD subjects (N = 69) and non-ASD controls (N = 27) were determined by high-throughput sequencing. Cytokine production by PBMo in responses to stimuli of innate immunity, and behavioral symptoms [assessed by aberrant behavioral checklist (ABC)] were also evaluated at the same time of sample obtainment. RESULTS As a whole, there was no difference in miRNA expression between ASD and control non-ASD PBMo. However, when ASD cells were subdivided into 3 groups with high, normal, or low IL-1ß/IL-10 ratios as defined in the "Results" section, in comparison with the data obtained from non-ASD controls, we observed marked changes in miRNA expression. Namely, over 3-fold changes in expression of miR-181a, miR-93, miR-223, miR-342, and miR-1248 were observed in ASD PBMo with high or low IL-1ß/IL-10 ratios, but not in ASD PBMo with normal ratios. These miRNAs that had altered in expression are those closely associated with the regulation of key signaling pathways. With changes in IL-1ß/IL-10 ratios, we also observed changes in the production of cytokines (IL-6, TNF-α, and TGF-ß) other than IL-1ß/IL-10 by ASD PBMo. The association between behavioral symptoms and cytokine levels was different when ASD cells exhibit high/low IL-1ß/IL-10 ratios vs. when ASD cells exhibited normal ratios. Non-IgE-mediated food allergy was also observed at higher frequency in ASD subjects with high/low IL-1ß/IL-10 ratios than with normal ratios. CONCLUSIONS Changes in cytokine profiles and miRNA expression by PBMo appear to be associated with changes in ASD behavioral symptoms. miRNAs that are altered in expression in ASD PBMo with high/low IL-1ß/IL-10 ratios are those associated with inflammatory responses. Changes in IL-1ß/IL-10 ratios along with changes in miRNA expression may serve as biomarkers for immune-mediated inflammation in ASD.
Collapse
Affiliation(s)
- Harumi Jyonouchi
- Department of Pediatrics, Saint Peter's University Hospital (SPUH), Rutgers-Robert Wood Johnson Medical School, 254 Easton Ave., New Brunswick, NJ, 08901, USA.
| | - Lee Geng
- Department of Pediatrics, Saint Peter's University Hospital (SPUH), Rutgers-Robert Wood Johnson Medical School, 254 Easton Ave., New Brunswick, NJ, 08901, USA
| | - Deanna L Streck
- Institute of Genomic Medicine, Rutgers-New Jersey Medical School (NJMS), Newark, NJ, USA
| | - James J Dermody
- Institute of Genomic Medicine, Rutgers-New Jersey Medical School (NJMS), Newark, NJ, USA
| | - Gokce A Toruner
- Clinical cytogenetics/Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
39
|
Ly V, Bottelier M, Hoekstra PJ, Arias Vasquez A, Buitelaar JK, Rommelse NN. Elimination diets' efficacy and mechanisms in attention deficit hyperactivity disorder and autism spectrum disorder. Eur Child Adolesc Psychiatry 2017; 26:1067-1079. [PMID: 28190137 PMCID: PMC5591346 DOI: 10.1007/s00787-017-0959-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/31/2017] [Indexed: 12/22/2022]
Abstract
Nutrition plays an important role in neurodevelopment. This insight has led to increasing research into the efficacy of nutrition-related interventions for treating neurodevelopmental disorders. This review discusses an elimination diet as a treatment for attention deficit hyperactivity disorder and autism spectrum disorder, with a focus on the efficacy of the food additives exclusion diet, gluten-free/casein-free diet and oligoantigenic diet. Furthermore, we discuss the potential mechanisms of elimination diets' effects in these neurodevelopmental disorders. The main candidate mechanism is the microbiome-gut-brain axis possibly involving complex interactions between multiple systems, including the metabolic, immune, endocrine, and neural system. We conclude with practical implications and future directions into the investigation of an elimination diet's efficacy in the treatment of attention deficit hyperactivity disorder and autism spectrum disorder.
Collapse
Affiliation(s)
- Verena Ly
- Karakter, Child and Adolescents Psychiatry, Reinier Postlaan 12, 6525 GC, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands.
- Leiden University, Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden, The Netherlands.
| | - Marco Bottelier
- Triversum, Child and Adolescent Psychiatry, Alkmaar, The Netherlands
| | - Pieter J Hoekstra
- Department of Child and Adolescent Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Alejandro Arias Vasquez
- Department of Cognitive Neuroscience and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Psychiatry and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Human Genetics and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jan K Buitelaar
- Karakter, Child and Adolescents Psychiatry, Reinier Postlaan 12, 6525 GC, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Nanda N Rommelse
- Karakter, Child and Adolescents Psychiatry, Reinier Postlaan 12, 6525 GC, Nijmegen, The Netherlands
- Department of Psychiatry and Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
40
|
Xie J, Huang L, Li X, Li H, Zhou Y, Zhu H, Pan T, Kendrick KM, Xu W. Immunological cytokine profiling identifies TNF-α as a key molecule dysregulated in autistic children. Oncotarget 2017; 8:82390-82398. [PMID: 29137272 PMCID: PMC5669898 DOI: 10.18632/oncotarget.19326] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/11/2017] [Indexed: 12/20/2022] Open
Abstract
Recent studies have suggested that the etiology of autism spectrum disorder (ASD) may be caused by immunological factors, particularly abnormalities in the innate immune system. However, it is still unclear which specific cytokines may be of most importance. The current study therefore investigated which cytokines showed altered concentrations in blood in ASD compared with healthy control children and which were also correlated with symptom severity. Our study sample included 32 children diagnosed with ASD and 28 age and sex-matched typically developing children. Autism symptoms were measured using the Autistic Behavior Checklist (ABC) and blood samples were taken from all subjects. We used Milliplex cytokine kits to determine serum concentrations of 11 Th1, Th2 and Th17 related cytokines. Additionally, expression of THRIL (TNFα and hnRNPL related immunoregulatory LincRNA), a long non-coding RNA involved in the regulation of tumor necrosis factor- α (TNF-α), was determined using real–time PCR. Of the 11 cytokines measured only concentrations of TNF-α (p=0.002), IL-1β (p=0.02) and IL-17a (p=0.049) were significantly increased in ASD children compared to typically developing controls, but only TNF-α concentrations were positively correlated with severity of ASD symptoms on all 5 different ABC sub-scales and were predictive of an ASD phenotype (area under the curve = 0.74). Furthermore, THRIL RNA expression was significantly decreased in ASD children. Our results provide further support for altered innate immunity being an important autism pathogenic factor, with autistic children showing increased blood TNF-α concentrations associated with symptom severity, and decreased expression of the THRIL gene involved in regulating TNF-α.
Collapse
Affiliation(s)
- Jiang Xie
- The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiao Tong University Medical School, Chengdu, China.,Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Li Huang
- The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiao Tong University Medical School, Chengdu, China.,Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Xiaohong Li
- National Office for Maternal and Child Health Surveillance of China, Department of Obstetrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Hua Li
- The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiao Tong University Medical School, Chengdu, China
| | - Yongmei Zhou
- The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiao Tong University Medical School, Chengdu, China
| | - Hua Zhu
- The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiao Tong University Medical School, Chengdu, China
| | - Tianying Pan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China
| | - Keith M Kendrick
- Key Laboratory for Neuroinformation, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenming Xu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, China.,Joint Laboratory of Reproductive Medicine, SCU-CUHK, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
41
|
Endocannabinod Signal Dysregulation in Autism Spectrum Disorders: A Correlation Link between Inflammatory State and Neuro-Immune Alterations. Int J Mol Sci 2017; 18:ijms18071425. [PMID: 28671614 PMCID: PMC5535916 DOI: 10.3390/ijms18071425] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/23/2017] [Accepted: 06/23/2017] [Indexed: 12/16/2022] Open
Abstract
Several studies highlight a key involvement of endocannabinoid (EC) system in autism pathophysiology. The EC system is a complex network of lipid signaling pathways comprised of arachidonic acid-derived compounds (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), their G-protein-coupled receptors (cannabinoid receptors CB1 and CB2) and the associated enzymes. In addition to autism, the EC system is also involved in several other psychiatric disorders (i.e., anxiety, major depression, bipolar disorder and schizophrenia). This system is a key regulator of metabolic and cellular pathways involved in autism, such as food intake, energy metabolism and immune system control. Early studies in autism animal models have demonstrated alterations in the brain's EC system. Autism is also characterized by immune system dysregulation. This alteration includes differential monocyte and macrophage responses, and abnormal cytokine and T cell levels. EC system dysfunction in a monocyte and macrophagic cellular model of autism has been demonstrated by showing that the mRNA and protein for CB2 receptor and EC enzymes were significantly dysregulated, further indicating the involvement of the EC system in autism-associated immunological disruptions. Taken together, these new findings offer a novel perspective in autism research and indicate that the EC system could represent a novel target option for autism pharmacotherapy.
Collapse
|
42
|
Fortunato JJ, da Rosa N, Martins Laurentino AO, Goulart M, Michalak C, Borges LP, da Cruz Cittadin Soares E, Reis PA, de Castro Faria Neto HC, Petronilho F. Effects of ω-3 fatty acids on stereotypical behavior and social interactions in Wistar rats prenatally exposed to lipopolysaccarides. Nutrition 2017; 35:119-127. [DOI: 10.1016/j.nut.2016.10.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/21/2016] [Accepted: 10/29/2016] [Indexed: 02/07/2023]
|
43
|
Sivanesan S, Tan A, Jeyaraj R, Lam J, Gole M, Hardan A, Ashkan K, Rajadas J. Pharmaceuticals and Stem Cells in Autism Spectrum Disorders: Wishful Thinking? World Neurosurg 2017; 98:659-672. [DOI: 10.1016/j.wneu.2016.09.100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/24/2016] [Accepted: 09/26/2016] [Indexed: 12/21/2022]
|
44
|
Meltzer A, Van de Water J. The Role of the Immune System in Autism Spectrum Disorder. Neuropsychopharmacology 2017; 42:284-298. [PMID: 27534269 PMCID: PMC5143489 DOI: 10.1038/npp.2016.158] [Citation(s) in RCA: 305] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 02/07/2023]
Abstract
Autism is a neurodevelopmental disorder characterized by deficits in communication and social skills as well as repetitive and stereotypical behaviors. While much effort has focused on the identification of genes associated with autism, research emerging within the past two decades suggests that immune dysfunction is a viable risk factor contributing to the neurodevelopmental deficits observed in autism spectrum disorders (ASD). Further, it is the heterogeneity within this disorder that has brought to light much of the current thinking regarding the subphenotypes within ASD and how the immune system is associated with these distinctions. This review will focus on the two main axes of immune involvement in ASD, namely dysfunction in the prenatal and postnatal periods. During gestation, prenatal insults including maternal infection and subsequent immunological activation may increase the risk of autism in the child. Similarly, the presence of maternally derived anti-brain autoantibodies found in ~20% of mothers whose children are at risk for developing autism has defined an additional subphenotype of ASD. The postnatal environment, on the other hand, is characterized by related but distinct profiles of immune dysregulation, inflammation, and endogenous autoantibodies that all persist within the affected individual. Further definition of the role of immune dysregulation in ASD thus necessitates a deeper understanding of the interaction between both maternal and child immune systems, and the role they have in diagnosis and treatment.
Collapse
Affiliation(s)
- Amory Meltzer
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, USA
| | - Judy Van de Water
- Division of Rheumatology/Allergy and Clinical Immunology, Department of Internal Medicine, University of California, Davis, CA, USA
- The M.I.N.D. Institute, University of California, Davis, CA, USA
- NIEHS Center for Children's Environmental Health, University of California, Davis, CA, USA
| |
Collapse
|
45
|
Mintz M. Evolution in the Understanding of Autism Spectrum Disorder: Historical Perspective. Indian J Pediatr 2017; 84:44-52. [PMID: 27053182 DOI: 10.1007/s12098-016-2080-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/24/2016] [Indexed: 01/19/2023]
Abstract
The study of the evolution in the diagnosis and treatment of autism is a lesson in the dangers of medical beliefs or doctrines that are not grounded in medical science. The early descriptions of autism suggested that it was the result of childhood psychoses or psychodynamic disturbances of parent-child relationships. This flawed conceptualization of autism spectrum disorders (ASD) gave way to advances in medical science, which have established ASD as a neurobiological disorder of early brain development. There are many genetic, epigenetic, metabolic, hormonal, immunological, neuroanatomical and neurophysiological etiologies of ASD, as well as an array of gastrointestinal and other systemic co-morbid disorders. Thus, ASD are a biologically heterogeneous population with extensive neurodiversity. Early identification and understanding of ASD is crucial; interventions at younger ages are associated with improved outcomes. The advent of understanding the biological sub-phenotypes of ASD, along with targeted medical therapies, coupled with a multimodal therapeutic approach that encompasses behavioral, educational, social, speech, occupational, creative arts, and other forms of therapies has created a new and exciting era for individuals with ASD and their families: "personalized" and "precision" medical care based upon underlying biological sub-phenotypes and clinical profiles. For many individuals and their families dealing with the scourge of autism, their long and frustrating diagnostic journey is beginning to come to an end, with a hope for improved outcomes and quality of life.
Collapse
Affiliation(s)
- Mark Mintz
- The Center for Neurological and Neurodevelopmental Health, Voorhees, NJ, USA.
| |
Collapse
|
46
|
Greydanus DE, Gregoire-Bottex MM, Merrick J. Gastrointestinal dysfunction and autism: caution with misdiagnoses as many mysteries remain to be unraveled! Int J Adolesc Med Health 2016; 29:/j/ijamh.ahead-of-print/ijamh-2016-0127/ijamh-2016-0127.xml. [PMID: 27977400 DOI: 10.1515/ijamh-2016-0127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
47
|
Kim KC, Gonzales EL, Lázaro MT, Choi CS, Bahn GH, Yoo HJ, Shin CY. Clinical and Neurobiological Relevance of Current Animal Models of Autism Spectrum Disorders. Biomol Ther (Seoul) 2016; 24:207-43. [PMID: 27133257 PMCID: PMC4859786 DOI: 10.4062/biomolther.2016.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/05/2016] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication impairments, as well as repetitive and restrictive behaviors. The phenotypic heterogeneity of ASD has made it overwhelmingly difficult to determine the exact etiology and pathophysiology underlying the core symptoms, which are often accompanied by comorbidities such as hyperactivity, seizures, and sensorimotor abnormalities. To our benefit, the advent of animal models has allowed us to assess and test diverse risk factors of ASD, both genetic and environmental, and measure their contribution to the manifestation of autistic symptoms. At a broader scale, rodent models have helped consolidate molecular pathways and unify the neurophysiological mechanisms underlying each one of the various etiologies. This approach will potentially enable the stratification of ASD into clinical, molecular, and neurophenotypic subgroups, further proving their translational utility. It is henceforth paramount to establish a common ground of mechanistic theories from complementing results in preclinical research. In this review, we cluster the ASD animal models into lesion and genetic models and further classify them based on the corresponding environmental, epigenetic and genetic factors. Finally, we summarize the symptoms and neuropathological highlights for each model and make critical comparisons that elucidate their clinical and neurobiological relevance.
Collapse
Affiliation(s)
- Ki Chan Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.,Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Edson Luck Gonzales
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea.,School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - María T Lázaro
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chang Soon Choi
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea.,School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Geon Ho Bahn
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee Jeong Yoo
- Department of Neuropsychiatry, Seoul National University Bungdang Hospital, Seongnam 13620, Republic of Korea
| | - Chan Young Shin
- Center for Neuroscience Research, SMART Institute of Advanced Biomedical Sciences, Konkuk University, Seoul 05029, Republic of Korea.,School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
48
|
Abstract
Autism Spectrum Disorder (ASD) is characterized by persistent deficits in social communication and restrictive behavior, interests, and activities. Our previous case-control study showed that use of acetaminophen at age 12-18 months is associated with increased likelihood for ASD (OR 8.37, 95% CI 2.08-33.7). In this study, we again show that acetaminophen use is associated with ASD (p = 0.013). Because these children are older than in our first study, the association is reversed; fewer children with ASD vs. non-ASD children use acetaminophen as a "first choice" compared to "never use" (OR 0.165, 95% CI 0.045, 0.599). We found significantly more children with ASD vs. non- ASD children change to the use of ibuprofen when acetaminophen is not effective at reducing fever (p = 0.033) and theorize this change in use is due to endocannabinoid system dysfunction. We also found that children with ASD vs. non-ASD children are significantly more likely to show an increase in sociability when they have a fever (p = 0.037) and theorize that this increase is due to anandamide activation of the endocannabinoid system in ASD children with low endocannabinoid tone from early acetaminophen use. In light of this we recommend that acetaminophen use be reviewed for safety in children.
Collapse
Affiliation(s)
- Stephen T Schultz
- Department of Physiology, School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Georgianna G Gould
- Department of Physiology, School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
49
|
Karakuła-Juchnowicz H, Szachta P, Opolska A, Morylowska-Topolska J, Gałęcka M, Juchnowicz D, Krukow P, Lasik Z. The role of IgG hypersensitivity in the pathogenesis and therapy of depressive disorders. Nutr Neurosci 2016; 20:110-118. [PMID: 25268936 DOI: 10.1179/1476830514y.0000000158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Depressive episodes are associated not only with changes in neurotransmission in the central nervous system, but also may lead to structural changes in the brain through neuroendocrine, inflammatory, and immunological mechanisms. The aim of this article is to present a new hypothesis connecting the inflammatory theory of depression with IgG food hypersensitivity and leaky gut syndrome. This new potential pathway that may mediate the pathogenesis of depression implies the existence of subsequent developmental stages. Overproduction of zonulin triggered, for example, by gliadin through activation of the epidermal growth factor receptor and protease-activated receptor causes loosening of the tight junction barrier and an increase in permeability of the gut wall ('leaky gut'). This results in a process allowing larger molecules that would normally stay in the gut to cross into the bloodstream and in the induction of IgG-dependent food sensitivity. This condition causes an increased immune response and consequently induces the release of proinflammatory cytokines, which in turn may lead to the development of depressive symptoms. It seems advisable to assess the intestinal permeability using as a marker, for example, zonulin and specific IgG concentrations against selected nutritional components in patients with depression. In the case of increased IgG concentrations, the implementation of an elimination-rotation diet may prove to be an effective method of reducing inflammation. This new paradigm in the pathogenesis of depressive disorders linking leaky gut, IgG-dependent food sensitivity, inflammation, and depression is promising, but still needs further studies to confirm this theory.
Collapse
Affiliation(s)
| | | | - Aneta Opolska
- c Department of Dietetics Higher School of Social Sciences , Lublin , Poland
| | | | | | | | - Paweł Krukow
- a Department of Clinical Neuropsychiatry Medical University , Lublin , Poland
| | - Zofia Lasik
- b Institute for Microecology , Poznań , Poland
| |
Collapse
|
50
|
Zaman S, Yazdani U, Deng Y, Li W, Gadad BS, Hynan L, Karp D, Roatch N, Schutte C, Nathan Marti C, Hewitson L, German DC. A Search for Blood Biomarkers for Autism: Peptoids. Sci Rep 2016; 6:19164. [PMID: 26764136 PMCID: PMC4725892 DOI: 10.1038/srep19164] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 11/12/2015] [Indexed: 12/18/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairments in social interaction and communication, and restricted, repetitive patterns of behavior. In order to identify individuals with ASD and initiate interventions at the earliest possible age, biomarkers for the disorder are desirable. Research findings have identified widespread changes in the immune system in children with autism, at both systemic and cellular levels. In an attempt to find candidate antibody biomarkers for ASD, highly complex libraries of peptoids (oligo-N-substituted glycines) were screened for compounds that preferentially bind IgG from boys with ASD over typically developing (TD) boys. Unexpectedly, many peptoids were identified that preferentially bound IgG from TD boys. One of these peptoids was studied further and found to bind significantly higher levels (>2-fold) of the IgG1 subtype in serum from TD boys (n = 60) compared to ASD boys (n = 74), as well as compared to older adult males (n = 53). Together these data suggest that ASD boys have reduced levels (>50%) of an IgG1 antibody, which resembles the level found normally with advanced age. In this discovery study, the ASD1 peptoid was 66% accurate in predicting ASD.
Collapse
Affiliation(s)
- Sayed Zaman
- Department of Psychiatry, UT Southwestern Medical Center, Dallas TX
| | - Umar Yazdani
- Department of Psychiatry, UT Southwestern Medical Center, Dallas TX
| | - Yan Deng
- Department of Psychiatry, UT Southwestern Medical Center, Dallas TX
| | - Wenhao Li
- Department of Psychiatry, UT Southwestern Medical Center, Dallas TX
| | - Bharathi S Gadad
- Department of Psychiatry, UT Southwestern Medical Center, Dallas TX
| | - Linda Hynan
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas TX
| | - David Karp
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas TX
| | - Nichole Roatch
- Johnson Center for Child Health and Development, Austin TX
| | - Claire Schutte
- Johnson Center for Child Health and Development, Austin TX
| | | | - Laura Hewitson
- Department of Psychiatry, UT Southwestern Medical Center, Dallas TX.,Johnson Center for Child Health and Development, Austin TX
| | - Dwight C German
- Department of Psychiatry, UT Southwestern Medical Center, Dallas TX
| |
Collapse
|