1
|
Roth L, Dogan S, Tuna BG, Aranyi T, Benitez S, Borrell-Pages M, Bozaykut P, De Meyer GRY, Duca L, Durmus N, Fonseca D, Fraenkel E, Gillery P, Giudici A, Jaisson S, Johansson M, Julve J, Lucas-Herald AK, Martinet W, Maurice P, McDonnell BJ, Ozbek EN, Pucci G, Pugh CJA, Rochfort KD, Roks AJM, Rotllan N, Shadiow J, Sohrabi Y, Spronck B, Szeri F, Terentes-Printzios D, Tunc Aydin E, Tura-Ceide O, Ucar E, Yetik-Anacak G. Pharmacological modulation of vascular ageing: A review from VascAgeNet. Ageing Res Rev 2023; 92:102122. [PMID: 37956927 DOI: 10.1016/j.arr.2023.102122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/27/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
Vascular ageing, characterized by structural and functional changes in blood vessels of which arterial stiffness and endothelial dysfunction are key components, is associated with increased risk of cardiovascular and other age-related diseases. As the global population continues to age, understanding the underlying mechanisms and developing effective therapeutic interventions to mitigate vascular ageing becomes crucial for improving cardiovascular health outcomes. Therefore, this review provides an overview of the current knowledge on pharmacological modulation of vascular ageing, highlighting key strategies and promising therapeutic targets. Several molecular pathways have been identified as central players in vascular ageing, including oxidative stress and inflammation, the renin-angiotensin-aldosterone system, cellular senescence, macroautophagy, extracellular matrix remodelling, calcification, and gasotransmitter-related signalling. Pharmacological and dietary interventions targeting these pathways have shown potential in ameliorating age-related vascular changes. Nevertheless, the development and application of drugs targeting vascular ageing is complicated by various inherent challenges and limitations, such as certain preclinical methodological considerations, interactions with exercise training and sex/gender-related differences, which should be taken into account. Overall, pharmacological modulation of endothelial dysfunction and arterial stiffness as hallmarks of vascular ageing, holds great promise for improving cardiovascular health in the ageing population. Nonetheless, further research is needed to fully elucidate the underlying mechanisms and optimize the efficacy and safety of these interventions for clinical translation.
Collapse
Affiliation(s)
- Lynn Roth
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.
| | - Soner Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Bilge Guvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Tamas Aranyi
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary; Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Sonia Benitez
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Cardiovascular Biochemistry, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Maria Borrell-Pages
- Cardiovascular Program ICCC, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBER-CV), Instituto de Salud Carlos III, Madrid, Spain
| | - Perinur Bozaykut
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkiye
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Nergiz Durmus
- Department of Pharmacology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkiye
| | - Diogo Fonseca
- Laboratory of Pharmacology and Pharmaceutical Care, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Emil Fraenkel
- 1st Department of Internal Medicine, University Hospital, Pavol Jozef Šafárik University of Košice, Košice, Slovakia
| | - Philippe Gillery
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France; Laboratoire de Biochimie-Pharmacologie-Toxicologie, Centre Hospitalier et Universitaire de Reims, Reims, France
| | - Alessandro Giudici
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands; GROW School for Oncology and Reproduction, Maastricht University, the Netherlands
| | - Stéphane Jaisson
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France; Laboratoire de Biochimie-Pharmacologie-Toxicologie, Centre Hospitalier et Universitaire de Reims, Reims, France
| | | | - Josep Julve
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Endocrinology, Diabetes and Nutrition group, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | | | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Pascal Maurice
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2 "Matrix Aging and Vascular Remodelling", Université de Reims Champagne Ardenne (URCA), Reims, France
| | - Barry J McDonnell
- Centre for Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, UK
| | - Emine Nur Ozbek
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkiye
| | - Giacomo Pucci
- Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Christopher J A Pugh
- Centre for Cardiovascular Health and Ageing, Cardiff Metropolitan University, Cardiff, UK
| | - Keith D Rochfort
- School of Nursing, Psychotherapy, and Community Health, Dublin City University, Dublin, Ireland
| | - Anton J M Roks
- Department of Internal Medicine, Division of Vascular Disease and Pharmacology, Erasmus Medical Center, Erasmus University, Rotterdam, the Netherlands
| | - Noemi Rotllan
- CIBER de Diabetes y enfermedades Metabólicas asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain; Pathophysiology of lipid-related diseases, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - James Shadiow
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Yahya Sohrabi
- Molecular Cardiology, Dept. of Cardiology I - Coronary and Peripheral Vascular Disease, University Hospital Münster, Westfälische Wilhelms-Universität, 48149 Münster, Germany; Department of Medical Genetics, Third Faculty of Medicine, Charles University, 100 00 Prague, Czechia
| | - Bart Spronck
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, the Netherlands; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Australia
| | - Flora Szeri
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Dimitrios Terentes-Printzios
- First Department of Cardiology, Hippokration Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Elif Tunc Aydin
- Department of Cardiology, Hospital of Ataturk Training and Research Hospital, Katip Celebi University, Izmir, Turkiye
| | - Olga Tura-Ceide
- Biomedical Research Institute-IDIBGI, Girona, Spain; Department of Pulmonary Medicine, Hospital Clínic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias, Madrid, Spain
| | - Eda Ucar
- Department of Biophysics, School of Medicine, Yeditepe University, Istanbul, Turkiye
| | - Gunay Yetik-Anacak
- Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkiye; Department of Pharmacology, Faculty of Pharmacy, Acıbadem Mehmet Aydinlar University, Istanbul, Turkiye.
| |
Collapse
|
2
|
Casso AG, VanDongen NS, Gioscia-Ryan RA, Clayton ZS, Greenberg NT, Ziemba BP, Hutton DA, Neilson AP, Davy KP, Seals DR, Brunt VE. Initiation of 3,3-dimethyl-1-butanol at midlife prevents endothelial dysfunction and attenuates in vivo aortic stiffening with ageing in mice. J Physiol 2022; 600:4633-4651. [PMID: 36111692 PMCID: PMC10069444 DOI: 10.1113/jp283581] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/12/2022] [Indexed: 01/05/2023] Open
Abstract
Vascular dysfunction: develops progressively with ageing; increases the risk of cardiovascular diseases (CVD); and is characterized by endothelial dysfunction and arterial stiffening, which are primarily mediated by superoxide-driven oxidative stress and consequently reduced nitric oxide (NO) bioavailability and arterial structural changes. Interventions initiated before vascular dysfunction manifests may have more promise for reducing CVD risk than interventions targeting established dysfunction. Gut microbiome-derived trimethylamine N-oxide (TMAO) induces vascular dysfunction, is associated with higher CV risk, and can be suppressed by 3,3-dimethyl-1-butanol (DMB). We investigated whether DMB supplementation could prevent age-related vascular dysfunction in C57BL/6N mice when initiated prior to development of dysfunction. Mice received drinking water with 1% DMB or normal drinking water (control) from midlife (18 months) until being studied at 21, 24 or 27 months of age, and were compared to young adult (5 month) mice. Endothelial function [carotid artery endothelium-dependent dilatation (EDD) to acetylcholine; pressure myography] progressively declined with age in control mice, which was fully prevented by DMB via higher NO-mediated EDD and lower superoxide-related suppression of EDD (normalization of EDD with the superoxide dismutase mimetic TEMPOL). In vivo aortic stiffness (pulse wave velocity) increased progressively with age in controls, but DMB attenuated stiffening by ∼ 70%, probably due to preservation of endothelial function, as DMB did not affect aortic intrinsic mechanical (structural) stiffness (stress-strain testing) nor adventitial abundance of the arterial structural protein collagen. Our findings indicate that long-term DMB supplementation prevents/attenuates age-related vascular dysfunction, and therefore has potential for translation to humans for reducing CV risk with ageing. KEY POINTS: Vascular dysfunction, characterized by endothelial dysfunction and arterial stiffening, develops progressively with ageing and increases the risk of cardiovascular diseases (CVD). Interventions aimed at preventing the development of CV risk factors have more potential for preventing CVD relative to those aimed at reversing established dysfunction. The gut microbiome-derived metabolite trimethylamine N-oxide (TMAO) induces vascular dysfunction, is associated with higher CV risk and can be suppressed by supplementation with 3,3-dimethyl-1-butanol (DMB). In mice, DMB prevented the development of endothelial dysfunction and delayed and attenuated in vivo arterial stiffening with ageing when supplementation was initiated in midlife, prior to the development of dysfunction. DMB supplementation or other TMAO-suppressing interventions have potential for translation to humans for reducing CV risk with ageing.
Collapse
Affiliation(s)
- Abigail G. Casso
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Nicholas S. VanDongen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Rachel A. Gioscia-Ryan
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Zachary S. Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Nathan T. Greenberg
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Brian P. Ziemba
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - David A. Hutton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Andrew P. Neilson
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - Kevin P. Davy
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, USA
| | - Douglas R. Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Vienna E. Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
3
|
Endogenous Vasoactive Peptides and Vascular Aging-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1534470. [PMID: 36225176 PMCID: PMC9550461 DOI: 10.1155/2022/1534470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/26/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022]
Abstract
Vascular aging is a specific type of organic aging that plays a central role in the morbidity and mortality of cardiovascular and cerebrovascular diseases among the elderly. It is essential to develop novel interventions to prevent/delay age-related vascular pathologies by targeting fundamental cellular and molecular aging processes. Endogenous vasoactive peptides are compounds formed by a group of amino acids connected by peptide chains that exert regulatory roles in intercellular interactions involved in a variety of biological and pathological processes. Emerging evidence suggests that a variety of vasoactive peptides play important roles in the occurrence and development of vascular aging and related diseases such as atherosclerosis, hypertension, vascular calcification, abdominal aortic aneurysms, and stroke. This review will summarize the cumulative roles and mechanisms of several important endogenous vasoactive peptides in vascular aging and vascular aging-related diseases. In addition, we also aim to explore the promising diagnostic function as biomarkers and the potential therapeutic application of endogenous vasoactive peptides in vascular aging-related diseases.
Collapse
|
4
|
Abstract
Aging of the vasculature plays a central role in morbidity and mortality of older people. To develop novel treatments for amelioration of unsuccessful vascular aging and prevention of age-related vascular pathologies, it is essential to understand the cellular and functional changes that occur in the vasculature during aging. In this review, the pathophysiological roles of fundamental cellular and molecular mechanisms of aging, including oxidative stress, mitochondrial dysfunction, impaired resistance to molecular stressors, chronic low-grade inflammation, genomic instability, cellular senescence, epigenetic alterations, loss of protein homeostasis, deregulated nutrient sensing, and stem cell dysfunction in the vascular system are considered in terms of their contribution to the pathogenesis of both microvascular and macrovascular diseases associated with old age. The importance of progeronic and antigeronic circulating factors in relation to development of vascular aging phenotypes are discussed. Finally, future directions and opportunities to develop novel interventions to prevent/delay age-related vascular pathologies by targeting fundamental cellular and molecular aging processes are presented.
Collapse
Affiliation(s)
- Zoltan Ungvari
- From the Vascular Cognitive Impairment Laboratory, Reynolds Oklahoma Center on Aging (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Geriatric Medicine, Translational Geroscience Laboratory (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Medical Physics and Informatics, University of Szeged, Hungary (Z.U., A.C.)
- Department of Pulmonology, Semmelweis University of Medicine, Budapest, Hungary (Z.U.)
| | - Stefano Tarantini
- From the Vascular Cognitive Impairment Laboratory, Reynolds Oklahoma Center on Aging (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Geriatric Medicine, Translational Geroscience Laboratory (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
| | - Anthony J Donato
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City (A.J.D.)
- Veterans Affairs Medical Center-Salt Lake City, Geriatrics Research Education and Clinical Center, UT (A.J.D.)
| | - Veronica Galvan
- Barshop Institute for Longevity and Aging Studies (V.G.), University of Texas Health Science Center at San Antonio
- Department of Physiology (V.G.), University of Texas Health Science Center at San Antonio
| | - Anna Csiszar
- From the Vascular Cognitive Impairment Laboratory, Reynolds Oklahoma Center on Aging (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Geriatric Medicine, Translational Geroscience Laboratory (Z.U., S.T., A.C.), University of Oklahoma Health Sciences Center, Oklahoma City
- Department of Medical Physics and Informatics, University of Szeged, Hungary (Z.U., A.C.)
| |
Collapse
|
5
|
Peeters LEJ, Kester MP, Feyz L, Van Den Bemt PMLA, Koch BCP, Van Gelder T, Versmissen J. Pharmacokinetic and pharmacodynamic considerations in the treatment of the elderly patient with hypertension. Expert Opin Drug Metab Toxicol 2019; 15:287-297. [PMID: 30880496 DOI: 10.1080/17425255.2019.1588249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Hypertension is an important risk factor for developing cardiovascular diseases. It is more prevalent in the elderly population. Recently updated American and European guidelines recommend treating every elderly patient with hypertension independent of age, starting with a low dose of antihypertensive drugs. However, little information is available on the optimal dosages of antihypertensive drugs to treat the elderly safely. Areas covered: Comorbidities, co-medication and frailty status can alter the clinical outcome of drug treatment and can cause adverse events in the elderly. Also, due to pharmacokinetic and pharmacodynamic changes the interpatient variability when using antihypertensive drugs is considerable. In this review, an overview is given on the extent to which the previously mentioned parameters are changed in elderly patients and what this means for the exposure to antihypertensive medication. Also, recommendations on the starting dose of the most frequently used antihypertensive drugs are given based on literature data. Expert opinion: We believe that recommendations on starting dosages followed by a stepwise increase of dosages will lead to improved blood pressure control and less adverse drug reactions in the elderly patient. This may improve adherence to antihypertensive therapy.
Collapse
Affiliation(s)
- L E J Peeters
- a Department of Hospital Pharmacy , Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands.,b Department of Internal Medicine , Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - M P Kester
- b Department of Internal Medicine , Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - L Feyz
- c Department of Cardiology , Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - P M L A Van Den Bemt
- a Department of Hospital Pharmacy , Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - B C P Koch
- a Department of Hospital Pharmacy , Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - T Van Gelder
- a Department of Hospital Pharmacy , Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands.,b Department of Internal Medicine , Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands
| | - J Versmissen
- b Department of Internal Medicine , Erasmus MC, University Medical Center Rotterdam , Rotterdam , The Netherlands
| |
Collapse
|
6
|
De Luca M. The role of the cell-matrix interface in aging and its interaction with the renin-angiotensin system in the aged vasculature. Mech Ageing Dev 2018; 177:66-73. [PMID: 29626500 DOI: 10.1016/j.mad.2018.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/22/2018] [Accepted: 04/03/2018] [Indexed: 12/11/2022]
Abstract
The extracellular matrix (ECM) is an intricate network that provides structural and anchoring support to cells in order to stabilize cell morphology and tissue architecture. The ECM also controls many aspects of the cell's dynamic behavior and fate through its ongoing, bidirectional interaction with cells. These interactions between the cell and components of the surrounding ECM are implicated in several biological processes, including development and adult tissue repair in response to injury, throughout the lifespan of multiple species. The present review gives an overview of the growing evidence that cell-matrix interactions play a pivotal role in the aging process. The focus of the first part of the article is on recent studies using cell-derived decellularized ECM, which strongly suggest that age-related changes in the ECM induce cellular senescence, a well-recognized hallmark of aging. This is followed by a review of findings from genetic studies indicating that changes in genes involved in cell-ECM adhesion and matrix-mediated intracellular signaling cascades affect longevity. Finally, mention is made of novel data proposing an intricate interplay between cell-matrix interactions and the renin-angiotensin system that may have a significant impact on mammalian arterial stiffness with age.
Collapse
Affiliation(s)
- Maria De Luca
- Department of Nutrition Sciences, University of Alabama at Birmingham, Webb 451-1720 2nd Ave S, Birmingham, AL, 35294-3360, USA.
| |
Collapse
|
7
|
LaRocca TJ, Martens CR, Seals DR. Nutrition and other lifestyle influences on arterial aging. Ageing Res Rev 2017; 39:106-119. [PMID: 27693830 DOI: 10.1016/j.arr.2016.09.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/16/2016] [Accepted: 09/23/2016] [Indexed: 02/07/2023]
Abstract
As our world's population ages, cardiovascular diseases (CVD) will become an increasingly urgent public health problem. A key antecedent to clinical CVD and many other chronic disorders of aging is age-related arterial dysfunction, characterized by increased arterial stiffness and impaired arterial endothelial function. Accumulating evidence demonstrates that diet and nutrition may favorably modulate these arterial functions with aging, but many important questions remain. In this review, we will summarize the available information on dietary patterns and nutritional factors that have been studied for their potential to reduce arterial stiffness and improve endothelial function with age, with an emphasis on: 1) underlying physiological mechanisms, and 2) emerging areas of research on nutrition and arterial aging that may hold promise for preventing age-related CVD.
Collapse
Affiliation(s)
- Thomas J LaRocca
- Department of Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO 80309, USA.
| | - Christopher R Martens
- Department of Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO 80309, USA
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, 354 UCB, Boulder, CO 80309, USA
| |
Collapse
|
8
|
Li DJ, Huang F, Ni M, Fu H, Zhang LS, Shen FM. α7 Nicotinic Acetylcholine Receptor Relieves Angiotensin II-Induced Senescence in Vascular Smooth Muscle Cells by Raising Nicotinamide Adenine Dinucleotide-Dependent SIRT1 Activity. Arterioscler Thromb Vasc Biol 2016; 36:1566-76. [PMID: 27339462 DOI: 10.1161/atvbaha.116.307157] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/10/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE α7 nicotinic acetylcholine receptor (α7nAChR) is a subtype of nAChR and has been reported to be involved in hypertension end-organ damage. In this study, we tested the role of α7nAChR in angiotensin II (Ang II)-induced senescence of vascular smooth muscle cells (VSMCs). APPROACH AND RESULTS Expression of α7nAChR was not influenced by Ang II. Ang II induced remarkable senescent phenotypes in rodent and human VSMCs, including increased senescence-associated β-galactosidase activity, phosphorylation of H2A.X(Ser139), phosphorylation of Chk1(Ser317), reduced replication, and downregulation of proliferating cell nuclear antigen. Activation of α7nAChR with a selective agonist PNU-282987 blocked Ang II-induced senescence in cultured VSMCs. Moreover, PNU-282987 treatment attenuated the Ang II infusion-induced VSMC senescence in wild-type but not in α7nAChR(-/-) mice. PNU-282987 reduced the Ang II-enhanced reactive oxygen species, lipid peroxidation, and the expression of NADPH oxidase 1, NADPH oxidase 4, and p22(phox) in cultured VSMCs isolated from wild-type but not in α7nAChR(-/-) mice. Furthermore, PNU-282987 diminished Ang II-induced prosenescence signaling pathways, including p53, acetyl-p53, p21, and p16(INK4a). Finally, although α7nAChR activation by PNU-282987 did not affect the Ang II-induced downregulation of sirtuin 1 (SIRT1), it significantly increased intracellular NAD(+) levels, and thereby enhanced SIRT1 activity in an AMP-dependent protein kinase-independent manner. Depletion of SIRT1 by knockdown or SIRT1 inhibitor EX527 abrogated the antisenescence effect of α7nAChR against Ang II. CONCLUSIONS Our results demonstrate that activation of α7nAChR alleviates Ang II-induced VSMC senescence through promoting NAD(+)-SIRT1 pathway, suggesting that α7nAChR may be a potential therapeutic target for the treatment of Ang II-associated vascular aging disorders.
Collapse
Affiliation(s)
- Dong-Jie Li
- From the Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China (D.-J.L., F.H., M.N., H.F., F.-M.S.); and Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China (L.-S.Z.)
| | - Fang Huang
- From the Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China (D.-J.L., F.H., M.N., H.F., F.-M.S.); and Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China (L.-S.Z.)
| | - Min Ni
- From the Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China (D.-J.L., F.H., M.N., H.F., F.-M.S.); and Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China (L.-S.Z.)
| | - Hui Fu
- From the Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China (D.-J.L., F.H., M.N., H.F., F.-M.S.); and Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China (L.-S.Z.)
| | - Liang-Sheng Zhang
- From the Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China (D.-J.L., F.H., M.N., H.F., F.-M.S.); and Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China (L.-S.Z.)
| | - Fu-Ming Shen
- From the Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China (D.-J.L., F.H., M.N., H.F., F.-M.S.); and Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China (L.-S.Z.).
| |
Collapse
|
9
|
Boesen ME, Singh D, Menon BK, Frayne R. A systematic literature review of the effect of carotid atherosclerosis on local vessel stiffness and elasticity. Atherosclerosis 2015; 243:211-22. [PMID: 26402140 DOI: 10.1016/j.atherosclerosis.2015.09.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/14/2015] [Accepted: 09/02/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE This systematic literature review sought to determine the effects of carotid atherosclerotic plaque on local arterial stiffness. METHODS MedLine, EMBASE, and grey literature were searched with the following term: ("atherosclerosis" or "carotid atherosclerosis" or "carotid artery disease" or "carotid plaque") AND ("distensibility" or "elasticity" or "stiffness" or "compliance") NOT ("pulse wave velocity" or "PWV" or "carotid-ankle" or "ankle-brachial" or "augmentation index" or "cardio-ankle" or "CAVI" or "flow mediated dilation" or "FMD"). Results were restricted to English language articles reporting local arterial stiffness in human subjects with carotid atherosclerosis. RESULTS Of the 1466 search results, 1085 abstracts were screened and 191 full-text articles were reviewed for relevance. The results of the 50 studies that assessed some measure of carotid arterial elasticity or stiffness in patients with carotid plaque were synthesized and reviewed. DISCUSSION A number of different measures of carotid elasticity were found in the literature. Regardless of which metric was used, the majority of studies found increased carotid stiffness (or decreased distensibility) to be associated with carotid plaque presence, the degree of atherosclerosis, and incident stroke. CONCLUSION Carotid artery mechanics are influenced by the presence of atherosclerotic plaque. The clinical applicability of carotid elasticity measures may be limited by the lack of reference values and standardized techniques.
Collapse
Affiliation(s)
- Mari E Boesen
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Canada; Seaman Family Centre, Foothills Medical Centre, Alberta Health Services, Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Canada; Departments of Radiology and Clinical Neurosciences, University of Calgary, Calgary, Canada
| | - Dilip Singh
- Seaman Family Centre, Foothills Medical Centre, Alberta Health Services, Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Canada; Departments of Radiology and Clinical Neurosciences, University of Calgary, Calgary, Canada; Calgary Stroke Program, Foothills Medical Centre, Alberta Health Services, Calgary, Canada
| | - Bijoy K Menon
- Seaman Family Centre, Foothills Medical Centre, Alberta Health Services, Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Canada; Departments of Radiology and Clinical Neurosciences, University of Calgary, Calgary, Canada; Calgary Stroke Program, Foothills Medical Centre, Alberta Health Services, Calgary, Canada; Department of Community Health Sciences, University of Calgary, Calgary, Canada
| | - Richard Frayne
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, Canada; Seaman Family Centre, Foothills Medical Centre, Alberta Health Services, Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Canada; Departments of Radiology and Clinical Neurosciences, University of Calgary, Calgary, Canada.
| |
Collapse
|
10
|
A low-dose combination of fluvastatin and valsartan: a new "drug" and a new approach for decreasing the arterial age. BIOMED RESEARCH INTERNATIONAL 2015; 2015:235709. [PMID: 25821790 PMCID: PMC4363554 DOI: 10.1155/2015/235709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022]
Abstract
We have developed a new “drug” and approach that appear to be effective in reducing arterial age. This “drug” represents a low, subtherapeutic dose of statin and sartan and particularly their low-dose combination. The improvement of arterial wall characteristics, also reflecting in a decrease of arterial age, was achieved after a short period of treatment (one month) with the above-mentioned drugs. In addition, we have also implemented a new, innovative therapeutic approach, consisting of intermittent (cyclic) treatment—alternating short “treatment” periods and much longer “rest” periods (when the beneficial effects are still present but gradually decline). This new “drug” and approach both merit further investigation in order to confirm their antiaging efficacy.
Collapse
|
11
|
Santos-Parker JR, LaRocca TJ, Seals DR. Aerobic exercise and other healthy lifestyle factors that influence vascular aging. ADVANCES IN PHYSIOLOGY EDUCATION 2014; 38:296-307. [PMID: 25434012 PMCID: PMC4315444 DOI: 10.1152/advan.00088.2014] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/08/2014] [Indexed: 05/18/2023]
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of death in the United States and other modern societies. Advancing age is the major risk factor for CVD, primarily due to stiffening of the large elastic arteries and the development of vascular endothelial dysfunction. In contrast, regular aerobic exercise protects against the development of large elastic artery stiffness and vascular endothelial dysfunction with advancing age. Moreover, aerobic exercise interventions reduce arterial stiffness and restore vascular endothelial function in previously sedentary middle-aged/older adults. Aerobic exercise exerts its beneficial effects on arterial function by modulating structural proteins, reducing oxidative stress and inflammation, and restoring nitric oxide bioavailability. Aerobic exercise may also promote "resistance" against factors that reduce vascular function and increase CVD risk with age. Preventing excessive increases in abdominal adiposity, following healthy dietary practices, maintaining a low CVD risk factor profile, and, possibly, selective use of pharmaceuticals and nutraceuticals also play a major role in preserving vascular function with aging.
Collapse
Affiliation(s)
| | - Thomas J LaRocca
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| | - Douglas R Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado
| |
Collapse
|
12
|
Janić M, Lunder M, Sabovič M. A new anti-ageing strategy focused on prevention of arterial ageing in the middle-aged population. Med Hypotheses 2013; 80:837-40. [PMID: 23587479 DOI: 10.1016/j.mehy.2013.03.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 01/09/2013] [Accepted: 03/17/2013] [Indexed: 11/17/2022]
Abstract
Ageing is a progressive process that according to available knowledge cannot be effectively reversed, slowed or stopped. Here we propose a new anti-ageing approach that may lead to the design of effective therapeutic intervention. First, we hypothesize that the "organ system" oriented anti-ageing approach represents a better anti-ageing target than the "whole body" or "cellular ageing" concepts. The arterial system is the most suitable target, as it interconnects all the organs in the body, thus influencing them all. Second, we propose that an anti-ageing approach could be more successful in early than late ageing stages; middle-aged people seem to be the most appropriate candidates. Third, we believe that instead of searching for new medication, we should rely on already established medications with beneficial effects on the arterial wall. Renin-angiotensin system inhibitors and statins fulfill these criteria and are potential cornerstones of the new approach. The fourth hypothesis is based on the concept that in the early stages of arterial ageing only slight injury is present and therefore subtherapeutic, low-dose treatment would be effective. Fifth, we hypothesize that slight initial age-related arterial wall changes are reversible and could be corrected by a short-term (one month) treatment. Sixth, we hypothesize that the effects would be present for a certain period of time even after treatment termination. The listed assumptions combined represent the basis for a new, original anti-ageing approach - a subtherapeutic low-dose combination of a renin-angiotensin system inhibitor and a statin for one month (followed by approximately 6-12 months without treatment) could delay or even reverse the arterial ageing process and consequently decrease the incidence of cardiovascular disorders.
Collapse
Affiliation(s)
- Miodrag Janić
- Department of Vascular Diseases, University of Ljubljana Medical Centre, Zaloška cesta 7, 1000 Ljubljana, Slovenia.
| | | | | |
Collapse
|
13
|
Steppan J, Barodka V, Berkowitz DE, Nyhan D. Vascular stiffness and increased pulse pressure in the aging cardiovascular system. Cardiol Res Pract 2011; 2011:263585. [PMID: 21845218 PMCID: PMC3154449 DOI: 10.4061/2011/263585] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/24/2011] [Accepted: 06/08/2011] [Indexed: 01/09/2023] Open
Abstract
Aging leads to a multitude of changes in the cardiovascular system, including systolic hypertension, increased central vascular stiffness, and increased pulse pressure. In this paper we will review the effects of age-associated increased vascular stiffness on systolic blood pressure, pulse pressure, augmentation index, and cardiac workload. Additionally we will describe pulse wave velocity as a method to measure vascular stiffness and review the impact of increased vascular stiffness as an index of vascular health and as a predictor of adverse cardiovascular outcomes. Furthermore, we will discuss the underlying mechanisms and how these may be modified in order to change the outcomes. A thorough understanding of these concepts is of paramount importance and has therapeutic implications for the increasingly elderly population.
Collapse
Affiliation(s)
- Jochen Steppan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| | | | | | | |
Collapse
|
14
|
Ungvari Z, Kaley G, de Cabo R, Sonntag WE, Csiszar A. Mechanisms of vascular aging: new perspectives. J Gerontol A Biol Sci Med Sci 2010; 65:1028-41. [PMID: 20576649 DOI: 10.1093/gerona/glq113] [Citation(s) in RCA: 369] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review focuses on molecular, cellular, and functional changes that occur in the vasculature during aging; explores the links between mitochondrial oxidative stress, inflammation, and development of vascular disease in the elderly patients; and provides a landscape of molecular mechanisms involved in cellular oxidative stress resistance, which could be targeted for the prevention or amelioration of unsuccessful vascular aging. Practical interventions for prevention of age-associated vascular dysfunction and disease in old age are considered here based on emerging knowledge of the effects of anti-inflammatory treatments, regular exercise, dietary interventions, and caloric restriction mimetics.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1303, Oklahoma City, OK 73104, USA.
| | | | | | | | | |
Collapse
|
15
|
Coadministered amlodipine and atorvastatin produces early improvements in arterial wall compliance in hypertensive patients with dyslipidemia. Am J Hypertens 2009; 22:137-44. [PMID: 19057518 DOI: 10.1038/ajh.2008.325] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Combining statins with antihypertensive therapy has been demonstrated to provide an early reduction in cardiovascular events. This nested substudy of the AVALON trial assessed the effects of coadministered amlodipine and atorvastatin vs. either therapy alone or placebo on arterial compliance, to evaluate the vascular benefits of coadministered therapy. METHODS During an initial 8-week, double-blind phase, patients with concomitant hypertension and dyslipidemia were randomized into four treatment groups (placebo, amlodipine 5 mg, atorvastatin 10 mg, or coadministered amlodipine 5 mg and atorvastatin 10 mg). The sustained effect of combined therapy was evaluated during subsequent 8-week, single-blind, and 12-week, open-label periods. In the single-blind phase, all patients were coadministered amlodipine 5 mg and atorvastatin 10 mg, which were then titrated to optimize blood pressure and low-density lipoprotein cholesterol control during the open-label phase. Arterial compliance was assessed every 4 weeks using the HDI/Pulsewave CR-2000. RESULTS Overall, 668 patients (61% male, mean age 55 years) were randomized to treatment. A 19% improvement in small artery compliance (C2) was observed with coadministered amlodipine and atorvastatin from baseline to week 8, which was significantly greater than with either treatment alone or with placebo (P = 0.03 to 0.0001). After 28 weeks, C2 was increased from baseline in all groups, but the overall improvement was greatest in the group receiving coadministered drugs for the entire study period (P < 0.05). CONCLUSIONS Early and sustained improvement in small artery compliance was observed following coadministration of amlodipine and atorvastatin, thus demonstrating a vascular benefit with simultaneous treatment of hypertension and dyslipidemia.
Collapse
|
16
|
|
17
|
Hamilton PK, Lockhart CJ, Quinn CE, McVeigh GE. Arterial stiffness: clinical relevance, measurement and treatment. Clin Sci (Lond) 2007; 113:157-70. [PMID: 17623012 DOI: 10.1042/cs20070080] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most traditional cardiovascular risk factors alter the structure and/or function of arteries. An assessment of arterial wall integrity could therefore allow accurate prediction of cardiovascular risk in individuals. The term 'arterial stiffness' denotes alterations in the mechanical properties of arteries, and much effort has focused on how best to measure this. Pulse pressure, pulse wave velocity, pulse waveform analysis, localized assessment of blood vessel mechanics and other methods have all been used. We review the methodology underlying each of these measures, and present an evidence-based critique of their relative merits and limitations. An overview is also given of the drug therapies that may prove useful in the treatment of patients with altered arterial mechanics.
Collapse
Affiliation(s)
- Paul K Hamilton
- Department of Therapeutics and Pharmacology, Queen's University Belfast, Whitla Medical Building, Belfast, UK.
| | | | | | | |
Collapse
|