1
|
Fernandez-Gonzalez A, Mukhia A, Nadkarni J, Willis GR, Reis M, Zhumka K, Vitali S, Liu X, Galls A, Mitsialis SA, Kourembanas S. Immunoregulatory Macrophages Modify Local Pulmonary Immunity and Ameliorate Hypoxic Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2024; 44:e288-e303. [PMID: 39387119 DOI: 10.1161/atvbaha.124.321264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Macrophages play a significant role in the onset and progression of vascular disease in pulmonary hypertension, and cell-based immunotherapies aimed at treating vascular remodeling are lacking. We aimed to evaluate the effect of pulmonary administration of macrophages modified to have an anti-inflammatory/proresolving phenotype in attenuating early pulmonary inflammation and progression of experimentally induced pulmonary hypertension. METHODS Mouse bone marrow-derived macrophages were polarized in vitro to a regulatory (M2reg) phenotype. M2reg profile and anti-inflammatory capacity were assessed in vitro upon lipopolysaccharide/IFNγ (interferon-γ) restimulation, before their administration to 8- to 12-week-old mice. M2reg protective effect was evaluated at early (2-4 days) and late (4 weeks) time points during hypoxia (8.5% O2) exposure. Levels of inflammatory markers were quantified in alveolar macrophages and whole lung, while pulmonary hypertension development was ascertained by right ventricular systolic pressure (RVSP) and right ventricular hypertrophy measurements. Bronchoalveolar lavage from M2reg-transplanted hypoxic mice was collected and its inflammatory potential evaluated on naive bone marrow-derived macrophages. RESULTS M2reg macrophages expressing Tgfβ, Il10, and Cd206 demonstrated a stable anti-inflammatory phenotype in vitro, by downregulating the induction of proinflammatory cytokines and surface molecules (Cd86, Il6, and Tnfα) upon a subsequent proinflammatory stimulus. A single dose of M2regs attenuated hypoxic monocytic recruitment and perivascular inflammation. Early hypoxic lung and alveolar macrophage inflammation leading to pulmonary hypertension development was significantly reduced, and, importantly, M2regs attenuated right ventricular hypertrophy, right ventricular systolic pressure, and vascular remodeling at 4 weeks post-treatment. CONCLUSIONS Adoptive transfer of M2regs halts the recruitment of monocytes and modifies the hypoxic lung microenvironment, potentially changing the immunoreactivity of recruited macrophages and restoring normal immune functionality of the lung. These findings provide new mechanistic insights into the diverse role of macrophage phenotype on lung vascular homeostasis that can be explored as novel therapeutic targets.
Collapse
MESH Headings
- Animals
- Hypoxia/complications
- Hypoxia/metabolism
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/physiopathology
- Hypertension, Pulmonary/immunology
- Hypertension, Pulmonary/etiology
- Disease Models, Animal
- Mice, Inbred C57BL
- Phenotype
- Macrophages, Alveolar/metabolism
- Macrophages, Alveolar/immunology
- Lung/immunology
- Lung/metabolism
- Lung/physiopathology
- Mice
- Male
- Cells, Cultured
- Hypertrophy, Right Ventricular/metabolism
- Hypertrophy, Right Ventricular/physiopathology
- Hypertrophy, Right Ventricular/etiology
- Hypertrophy, Right Ventricular/prevention & control
- Vascular Remodeling
- Inflammation Mediators/metabolism
- Macrophages/metabolism
- Macrophages/immunology
- Cytokines/metabolism
Collapse
Affiliation(s)
- Angeles Fernandez-Gonzalez
- Division of Newborn Medicine (A.F.-G., A.M., J.N., G.R.W., M.R., K.Z., S.V., X.L., A.G., S.A.M., S.K.), Boston Children's Hospital, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA (A.F.-G., A.M., J.N., G.R.W., M.R., K.Z., X.L., A.G., S.A.M., S.K.)
| | - Amit Mukhia
- Division of Newborn Medicine (A.F.-G., A.M., J.N., G.R.W., M.R., K.Z., S.V., X.L., A.G., S.A.M., S.K.), Boston Children's Hospital, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA (A.F.-G., A.M., J.N., G.R.W., M.R., K.Z., X.L., A.G., S.A.M., S.K.)
| | - Janhavi Nadkarni
- Division of Newborn Medicine (A.F.-G., A.M., J.N., G.R.W., M.R., K.Z., S.V., X.L., A.G., S.A.M., S.K.), Boston Children's Hospital, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA (A.F.-G., A.M., J.N., G.R.W., M.R., K.Z., X.L., A.G., S.A.M., S.K.)
| | - Gareth R Willis
- Division of Newborn Medicine (A.F.-G., A.M., J.N., G.R.W., M.R., K.Z., S.V., X.L., A.G., S.A.M., S.K.), Boston Children's Hospital, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA (A.F.-G., A.M., J.N., G.R.W., M.R., K.Z., X.L., A.G., S.A.M., S.K.)
| | - Monica Reis
- Division of Newborn Medicine (A.F.-G., A.M., J.N., G.R.W., M.R., K.Z., S.V., X.L., A.G., S.A.M., S.K.), Boston Children's Hospital, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA (A.F.-G., A.M., J.N., G.R.W., M.R., K.Z., X.L., A.G., S.A.M., S.K.)
| | - Kristjan Zhumka
- Division of Newborn Medicine (A.F.-G., A.M., J.N., G.R.W., M.R., K.Z., S.V., X.L., A.G., S.A.M., S.K.), Boston Children's Hospital, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA (A.F.-G., A.M., J.N., G.R.W., M.R., K.Z., X.L., A.G., S.A.M., S.K.)
| | - Sally Vitali
- Division of Newborn Medicine (A.F.-G., A.M., J.N., G.R.W., M.R., K.Z., S.V., X.L., A.G., S.A.M., S.K.), Boston Children's Hospital, MA
- Division of Critical Care Medicine, Department of Anesthesia, Perioperative, and Pain Medicine (S.V.), Boston Children's Hospital, MA
| | - Xianlan Liu
- Division of Newborn Medicine (A.F.-G., A.M., J.N., G.R.W., M.R., K.Z., S.V., X.L., A.G., S.A.M., S.K.), Boston Children's Hospital, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA (A.F.-G., A.M., J.N., G.R.W., M.R., K.Z., X.L., A.G., S.A.M., S.K.)
| | - Alexandra Galls
- Division of Newborn Medicine (A.F.-G., A.M., J.N., G.R.W., M.R., K.Z., S.V., X.L., A.G., S.A.M., S.K.), Boston Children's Hospital, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA (A.F.-G., A.M., J.N., G.R.W., M.R., K.Z., X.L., A.G., S.A.M., S.K.)
| | - S Alex Mitsialis
- Division of Newborn Medicine (A.F.-G., A.M., J.N., G.R.W., M.R., K.Z., S.V., X.L., A.G., S.A.M., S.K.), Boston Children's Hospital, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA (A.F.-G., A.M., J.N., G.R.W., M.R., K.Z., X.L., A.G., S.A.M., S.K.)
| | - Stella Kourembanas
- Division of Newborn Medicine (A.F.-G., A.M., J.N., G.R.W., M.R., K.Z., S.V., X.L., A.G., S.A.M., S.K.), Boston Children's Hospital, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA (A.F.-G., A.M., J.N., G.R.W., M.R., K.Z., X.L., A.G., S.A.M., S.K.)
| |
Collapse
|
2
|
Chen X, Yan Z, Pan Q, Zhang C, Chen Y, Liang X, Li S, Wang L. Bibliometric analysis of T-cells immunity in pulmonary hypertension from 1992 to 2022. Immun Inflamm Dis 2024; 12:e1280. [PMID: 38967362 PMCID: PMC11225084 DOI: 10.1002/iid3.1280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Adaptive immunity is an important disease mediator of pulmonary vascular remodeling during pulmonary hypertension (PH) development, especially T-cells lymphocytes. However, data for bibliometric analysis of T cell immunity in PH is currently vacant. This aimed to provide a comprehensive and visualized view of T-cells research in PH pathogenesis and to lay a solid foundation for further studies. METHODS The data was acquired from the Web of Science Core Collection database. Web of Science analytic tool was used to analysis the publication years, authors, journals, countries, and organizations. CiteSpace 6.2.R3, VOSviewer 1.6.16, and Scimago Graphica 1.0.35.0 were applied to conduct a visualization bibliometric analysis about authors, countries, institutions, journals, references, and keywords. RESULTS Nine hundred and eight publications from 1992 to 2022 were included in the analysis. The results showed that Humbert Marc was the most prolific author. American Journal of Physiology Lung Cellular and Molecular Physiology had the most related articles. The institution with the most articles was Udice French Research University. The United States was far ahead in the article output. Keywords analysis showed that "Pulmonary hypertension" was the most usually appeared keyword in the relevant literature, and included "T-cells", "Regulatory T cells", and "Activated T cell." "miRNA" of reference co-citation clustering analysis demonstrated the possible T-cell immunity activation mechanisms in PH. The most cited literature was published in the European Heart Journal by Galie N in 2016. The strongest citation burst of keyword is "gene expression" and terms such as "vascular remodeling," "growth," "proliferation," and "fibrosis" are among the list, indicating that T-cells interact with stromal vascular cells to induce pulmonary vascular remodeling. The strongest burst of cited reference is "Galie N, 2016." CONCLUSIONS T-cell immunity is an important pathogenesis mechanism for PH development, which may have interaction with miRNAs and stromal vascular cells, but the possible T-cell immunity activation mechanisms in PH need to be investigated further.
Collapse
Affiliation(s)
- Xian Chen
- Department of NephrologySecond Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Zhe Yan
- Department of NephrologySecond Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Qing Pan
- Department of NephrologySecond Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Chunxia Zhang
- Department of NephrologySecond Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Yakun Chen
- Department of NephrologySecond Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Xuzhi Liang
- Department of NephrologySecond Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Shaomei Li
- Department of NephrologySecond Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Lei Wang
- Department of Pulmonary and Critical Care MedicineSecond Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
3
|
Bahi M, Li C, Wang G, Korman BD. Systemic Sclerosis-Associated Pulmonary Arterial Hypertension: From Bedside to Bench and Back Again. Int J Mol Sci 2024; 25:4728. [PMID: 38731946 PMCID: PMC11084945 DOI: 10.3390/ijms25094728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024] Open
Abstract
Systemic sclerosis (SSc) is a heterogeneous disease characterized by autoimmunity, vasculopathy, and fibrosis which affects the skin and internal organs. One key aspect of SSc vasculopathy is pulmonary arterial hypertension (SSc-PAH) which represents a leading cause of morbidity and mortality in patients with SSc. The pathogenesis of pulmonary hypertension is complex, with multiple vascular cell types, inflammation, and intracellular signaling pathways contributing to vascular pathology and remodeling. In this review, we focus on shared molecular features of pulmonary hypertension and those which make SSc-PAH a unique entity. We highlight advances in the understanding of the clinical and translational science pertinent to this disease. We first review clinical presentations and phenotypes, pathology, and novel biomarkers, and then highlight relevant animal models, key cellular and molecular pathways in pathogenesis, and explore emerging treatment strategies in SSc-PAH.
Collapse
Affiliation(s)
| | | | | | - Benjamin D. Korman
- Division of Allergy, Immunology, and Rheumatology, University of Rochester Medical Center, 601 Elmwood Ave, Box 695, Rochester, NY 14642, USA; (M.B.)
| |
Collapse
|
4
|
Farha S, Aldred MA. Regulating the Regulators: Epigenetic Modulation of Regulatory T Cells in Pulmonary Hypertension. Am J Respir Crit Care Med 2023; 208:834-836. [PMID: 37682657 PMCID: PMC10586243 DOI: 10.1164/rccm.202308-1456ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 09/08/2023] [Indexed: 09/10/2023] Open
Affiliation(s)
- Samar Farha
- Respiratory Institute Cleveland Clinic Cleveland, Ohio
| | - Micheala A Aldred
- Department of Medicine Indiana University School of Medicine Indianapolis, Indiana
| |
Collapse
|
5
|
Chen CN, Hajji N, Yeh FC, Rahman S, Ali S, Wharton J, Baxan N, Zhao L, Xie CY, Chen YG, Frid MG, Chelladurai P, Pullamsetti SS, Stenmark KR, Wilkins MR, Zhao L. Restoration of Foxp3 + Regulatory T Cells by HDAC-Dependent Epigenetic Modulation Plays a Pivotal Role in Resolving Pulmonary Arterial Hypertension Pathology. Am J Respir Crit Care Med 2023; 208:879-895. [PMID: 37676930 DOI: 10.1164/rccm.202301-0181oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 09/07/2023] [Indexed: 09/09/2023] Open
Abstract
Rationale: Immune dysregulation is a common feature of pulmonary arterial hypertension (PAH). Histone deacetylase (HDAC)-dependent transcriptional reprogramming epigenetically modulates immune homeostasis and is a novel disease-oriented approach in modern times. Objectives: To identify a novel functional link between HDAC and regulatory T cells (Tregs) in PAH, aiming to establish disease-modified biomarkers and therapeutic targets. Methods: Peripheral blood mononuclear cells were isolated from patients with idiopathic PAH (IPAH) and rodent models of pulmonary hypertension (PH): monocrotaline rats, Sugen5416-hypoxia rats, and Treg-depleted mice. HDAC inhibitor vorinostat (suberoylanilide hydroxamic acid, SAHA) was used to examine the immune modulatory effects in vivo, ex vivo, and in vitro. Measurements and Main Results: Increased HDAC expression was associated with reduced Foxp3+ Tregs and increased PD-1 (programmed cell death-1) signaling in peripheral blood mononuclear cells from patients with IPAH. SAHA differentially modified a cluster of epigenetic-sensitive genes and induced Foxp3+ Treg conversion in IPAH T cells. Rodent models recapitulated these epigenetic aberrations and T-cell dysfunction. SAHA attenuated PH phenotypes and restored FOXP3 transcription and Tregs in PH rats; interestingly, the effects were more profound in female rats. Selective depletion of CD25+ Tregs in Sugen5416-hypoxia mice neutralized the effects of SAHA. Furthermore, SAHA inhibited endothelial cytokine/chemokine release upon stimulation and subsequent immune chemotaxis. Conclusions: Our results indicated HDAC aberration was associated with Foxp3+ Treg deficiency and demonstrated an epigenetic-mediated mechanism underlying immune dysfunction in PAH. Restoration of Foxp3+ Tregs by HDAC inhibitors is a promising approach to resolve pulmonary vascular pathology, highlighting the potential benefit of developing epigenetic therapies for PAH.
Collapse
Affiliation(s)
- Chien-Nien Chen
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Nabil Hajji
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Fu-Chiang Yeh
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Sunniyat Rahman
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Department of Haematology, University College London Cancer Institute, University College London, London, United Kingdom
| | - Souad Ali
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - John Wharton
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Nicoleta Baxan
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Lin Zhao
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Chong-Yang Xie
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Yi-Guan Chen
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Maria G Frid
- Division of Critical Care Medicine and Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado, Denver, Colorado
| | - Prakash Chelladurai
- Max-Planck Institute for Heart and Lung Research, Member of German Center for Lung Research, Giessen, Germany; and
| | - Soni Savai Pullamsetti
- Max-Planck Institute for Heart and Lung Research, Member of German Center for Lung Research, Giessen, Germany; and
- Institute of Molecular Biology and Tumor Research, Marburg, Germany
| | - Kurt R Stenmark
- Division of Critical Care Medicine and Cardiovascular Pulmonary Research Laboratories, Department of Pediatrics and Medicine, University of Colorado, Denver, Colorado
| | - Martin R Wilkins
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Lan Zhao
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| |
Collapse
|
6
|
Miller YE, Ghosh M, Merrick DT, Kubala B, Szabo E, Bengtson L, Kocherginsky M, Helenowski IB, Benante K, Schering T, Kim J, Kim H, Ha D, Bergan RC, Khan SA, Keith RL. Phase Ib trial of inhaled iloprost for the prevention of lung cancer with predictive and response biomarker assessment. Front Oncol 2023; 13:1204726. [PMID: 37711198 PMCID: PMC10499515 DOI: 10.3389/fonc.2023.1204726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/26/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Iloprost, a prostacyclin analog, has lung cancerpreventive activity in preclinical models and improved dysplasia in former smokers in a phase IIb trial. Oral iloprost is currently unavailable. We performed a phase Ib trial of inhaled iloprost in former smokers to assess tolerance and compliance. Methods Participants self-administered nebulized iloprost (5ug) or placebo four (QID) or two (BID) times daily. As QID dose was well tolerated and due to expiration of the placebo, the BID dosing and placebo were eliminated early on in the trial. Bronchoscopy with biopsyat six standard sites was performed at treatment initiation and two months post-iloprost, with exploratory histological analysis. Bulk RNA sequencing, single cell RNA sequencing and an in vitro assay of epithelial progenitor cell iloprost response were performed on a subset of biopsies in an exploratory investigation of response mechanisms and predictive biomarkers. Results and discussion Thirty-four of a planned 48 participants were recruited to the trial.Inhaled iloprost was well tolerated with no adverse events > grade 2. Compliance was 67% in the QID group. The trial was not powered to detect histologic response and none was found. Bulk RNA sequencing of biopsies pre/post iloprost suggest that iloprost is immunomodulatory and downregulates cell proliferation pathways. Single cell RNA sequencing showed an increase in CD8-positive T cells with upregulation of genes in interferon γ signaling. In vitro iloprost response by epithelial progenitor cells correlated with histologic response with kappa coefficient of 0.81 (95% CI 0.47, 1.0). Inhaled iloprost was well tolerated with suboptimal compliance. Molecular analysis suggested that iloprosthas immunomodulatory and antiproliferative effects.The progenitor cell iloprost response assay may be a promising avenue to develop predictive biomarkers. Clinical trial registration https://clinicaltrials.gov/study/NCT02237183, identifier NCT02237183.
Collapse
Affiliation(s)
- York E. Miller
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, United States
- Pulmonary and Critical Care Section, RMR VAMC Rocky Mountain Regional Veteran Administration Medical Center, Aurora, CO, United States
| | - Moumita Ghosh
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, United States
| | - Daniel T. Merrick
- Department of Pathology, University of Colorado, Aurora, CO, United States
| | - Brandi Kubala
- Cancer Center Clinical Trial Core, University of Colorado, Aurora, CO, United States
| | - Eva Szabo
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, United States
| | - Lisa Bengtson
- Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, United States
| | - Masha Kocherginsky
- Department of Preventative Medicine, Northwestern University, Evanston, IL, United States
| | - Irene B. Helenowski
- Department of Preventative Medicine, Northwestern University, Evanston, IL, United States
| | - Kelly Benante
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, United States
| | - Tia Schering
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, United States
| | - Jihye Kim
- Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, United States
| | - Hyunmin Kim
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Duc Ha
- Pulmonary and Critical Care Section, RMR VAMC Rocky Mountain Regional Veteran Administration Medical Center, Aurora, CO, United States
| | - Raymond C. Bergan
- Fred and Pamela Buffett Cancer Center, Division of Oncology & Hematology, Genitourinary Oncology, University of Nebraska, Evanston, IL, United States
| | - Seema A. Khan
- Department of Surgery, Northwestern University, Omaha, NE, United States
| | - Robert L. Keith
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado, Aurora, CO, United States
- Pulmonary and Critical Care Section, RMR VAMC Rocky Mountain Regional Veteran Administration Medical Center, Aurora, CO, United States
| |
Collapse
|
7
|
Fernandez-Gonzalez A, Mukhia A, Nadkarni J, Willis GR, Reis M, Zhumka K, Vitali S, Liu X, Galls A, Mitsialis SA, Kourembanas S. Immunoregulatory macrophages modify local pulmonary immunity and ameliorate hypoxic-pulmonary hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551394. [PMID: 37577587 PMCID: PMC10418169 DOI: 10.1101/2023.07.31.551394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Rationale Macrophages play a central role in the onset and progression of vascular disease in pulmonary hypertension (PH) and cell-based immunotherapies aimed at treating vascular remodeling are lacking. Objective To evaluate the effect of pulmonary administration of macrophages modified to have an anti-inflammatory/pro-resolving phenotype in attenuating early pulmonary inflammation and progression of experimentally induced PH. Methods Mouse bone marrow derived macrophages (BMDMs) were polarized in vitro to a regulatory (M2 reg ) phenotype. M2 reg profile and anti-inflammatory capacity were assessed in vitro upon lipopolysaccharide (LPS)/interferon-γ (IFNγ) restimulation, before their administration to 8- to 12-week-old mice. M2 reg protective effect was tested at early (2 to 4 days) and late (4 weeks) time points during hypoxia (8.5% O 2 ) exposure. Levels of inflammatory markers were quantified in alveolar macrophages and whole lung, while PH development was ascertained by right ventricular systolic pressure (RSVP) and right ventricular hypertrophy (RVH) measurements. Bronchoalveolar lavage (BAL) from M2 reg -transplanted hypoxic mice was collected, and its inflammatory potential tested on naïve BMDMs. Results M2 reg macrophages demonstrated a stable anti-inflammatory phenotype upon a subsequent pro-inflammatory stimulus by maintaining the expression of specific anti-inflammatory markers (Tgfß, Il10 and Cd206) and downregulating the induction of proinflammatory cytokines and surface molecules (Cd86, Il6 and Tnfα). A single dose of M2 regs attenuated the hypoxic monocytic recruitment and perivascular inflammation. Early hypoxic lung and alveolar macrophage inflammation leading to PH development was significantly reduced and, importantly, M2 regs attenuated RVH, RVSP and vascular remodeling at 4 weeks post treatment. Conclusions Adoptive transfer of M2 regs halts the recruitment of monocytes and modifies the hypoxic lung microenvironment, potentially changing the immunoreactivity of recruited macrophages and restoring normal immune functionality of the lung. These findings provide new mechanistic insights on the diverse role of macrophage phenotype on lung vascular homeostasis that can be explored as novel therapeutic targets.
Collapse
|
8
|
Zhang H, Li QW, Li YY, Tang X, Gu L, Liu HM. Myeloid-derived suppressor cells and pulmonary hypertension. Front Immunol 2023; 14:1189195. [PMID: 37350962 PMCID: PMC10282836 DOI: 10.3389/fimmu.2023.1189195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/18/2023] [Indexed: 06/24/2023] Open
Abstract
Pulmonary hypertension (PH) is a chronic pulmonary vascular disorder characterized by an increase in pulmonary vascular resistance and pulmonary arterial pressure. The detailed molecular mechanisms remain unclear. In recent decades, increasing evidence shows that altered immune microenvironment, comprised of immune cells, mesenchymal cells, extra-cellular matrix and signaling molecules, might induce the development of PH. Myeloid-derived suppressor cells (MDSCs) have been proposed over 30 years, and the functional importance of MDSCs in the immune system is appreciated recently. MDSCs are a heterogeneous group of cells that expand during cancer, chronic inflammation and infection, which have a remarkable ability to suppress T-cell responses and may exacerbate the development of diseases. Thus, targeting MDSCs has become a novel strategy to overcome immune evasion, especially in tumor immunotherapy. Nowadays, severe PH is accepted as a cancer-like disease, and MDSCs are closely related to the development and prognosis of PH. Here, we review the relationship between MDSCs and PH with respect to immune cells, cytokines, chemokines and metabolism, hoping that the key therapeutic targets of MDSCs can be identified in the treatment of PH, especially in severe PH.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- The Fifth People’s Hospital of Chengdu, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qi-Wei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuan-Yuan Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xue Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ling Gu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Han-Min Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Chronobiology (Sichuan University), National Health Commission of China, Chengdu, China
- The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children’s Health, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
CTLA-4 Expression Is a Promising Biomarker of Idiopathic Pulmonary Arterial Hypertension and Allows Differentiation of the Type of Pulmonary Hypertension. Int J Mol Sci 2022; 23:ijms232415910. [PMID: 36555549 PMCID: PMC9783197 DOI: 10.3390/ijms232415910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is an increasingly frequently diagnosed disease, the molecular mechanisms of which have not been thoroughly investigated. The aim of our study was to investigate subpopulations of lymphocytes to better understand their role in the molecular pathomechanisms of various types of PAH and to find a suitable biomarker that could be useful in the differential diagnosis of PAH. Using flow cytometry, we measured the frequencies of lymphocyte subpopulations CD4+CTLA-4+, CD8+ CTLA-4+ and CD19+ CTLA-4+ in patients with different types of PAH, namely pulmonary arterial hypertension associated with congenital heart disease (CHD-PAH), pulmonary arterial hypertension associated with connective tissue disorders (CTD-PAH), chronic thromboembolic pulmonary hypertension (CTEPH) and idiopathic pulmonary arterial hypertension (iPAH), and in an age- and sex-matched control group in relation to selected clinical parameters. Patients in the iPAH group had the significantly highest percentage of CD4+CTLA-4+ T lymphocytes among all PAH groups, as compared to those in the control group (p < 0.001), patients with CTEPH (p < 0.001), CTD-PAH (p < 0.001) and CHD-PAH (p < 0.01). In iPAH patients, the percentages of CD4+CTLA-4+ T cells correlated strongly positively with the severity of heart failure New York Heart Association (NYHA) Functional Classification (r = 0.7077, p < 0.001). Moreover, the percentage of B CD19+CTLA-4+ cells strongly positively correlated with the concentration of NT-proBNP (r = 0.8498, p < 0.001). We have shown that statistically significantly higher percentages of CD4+CTLA-4+ (p ≤ 0.01) and CD8+ CTLA-4+ (p ≤ 0.001) T cells, measured at the time of iPAH diagnosis, were found in patients who died within 5 years of the diagnosis, which allows us to consider both of the above lymphocyte subpopulations as a negative prognostic/predictive factor in iPAH. CTLA-4 may be a promising biomarker of noninvasive detection of iPAH, but its role in planning the treatment strategy of PAH remains unclear. Further studies on T and B lymphocyte subsets are needed in different types of PAH to ascertain the relationships that exist between them and the disease.
Collapse
|
10
|
Rafikov R, Rischard F, Vasilyev M, Varghese MV, Yuan JXJ, Desai AA, Garcia JGN, Rafikova O. Cytokine profiling in pulmonary arterial hypertension: the role of redox homeostasis and sex. Transl Res 2022; 247:1-18. [PMID: 35405322 PMCID: PMC10062382 DOI: 10.1016/j.trsl.2022.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal disease with a well-established sexual dimorphism. Activated inflammatory response and altered redox homeostasis, both known to manifest in a sex-specific manner, are implicated in the pathogenic mechanisms involved in PAH development. This study aimed to evaluate the impact of sex and plasma redox status on circulating cytokine profiles. Plasma oxidation-reduction potential (ORP), as a substitute measure of redox status, was analyzed in male and female Group 1 PAH and healthy subjects. The profiles of 27 circulating cytokines were compared in 2 PAH groups exhibiting the highest and lowest quartile for plasma ORP, correlated with clinical parameters, and used to predict patient survival. The analysis of the PAH groups with the highest and lowest ORP revealed a correlation between elevated cytokine levels and increased oxidative stress in females. In contrast, in males, cytokine expressions were increased in the lower oxidative environment (except for IL-1b). Correlations of the increased cytokine expressions with PAH severity were highly sex-dependent and corresponded to the increase in PAH severity in males and less severe PAH in females. Machine learning algorithms trained on the combined cytokine and redox profiles allowed the prediction of PAH mortality with 80% accuracy. We conclude that the profile of circulating cytokines in PAH patients is redox- and sex-dependent, suggesting the vital need to stratify the patient cohort subjected to anti-inflammatory therapies. Combined cytokine and/or redox profiling showed promising value for predicting the patients' survival.
Collapse
Affiliation(s)
- Ruslan Rafikov
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Franz Rischard
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Mikhail Vasilyev
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Mathews V Varghese
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Jason X-J Yuan
- Department of Medicine, University of California San Diego, La Jolla, California
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Joe G N Garcia
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona
| | - Olga Rafikova
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona.
| |
Collapse
|
11
|
Cober ND, VandenBroek MM, Ormiston ML, Stewart DJ. Evolving Concepts in Endothelial Pathobiology of Pulmonary Arterial Hypertension. Hypertension 2022; 79:1580-1590. [PMID: 35582968 DOI: 10.1161/hypertensionaha.122.18261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a deadly disease, characterized by increased vascular resistance, pulmonary arteriolar loss, and occlusive arterial remodeling, leading to eventual right heart failure. Evidence increasingly points to the pulmonary endothelium as a central actor in PAH. Endothelial cell apoptosis can result directly in distal lung arteriolar pruning and indirectly in the formation of complex and occlusive arterial lesions, reflecting an imbalance between endothelial injury and repair in the development and progression of PAH. Many of the mutations implicated in PAH are in genes, which are predominantly, or solely, expressed in endothelial cells, and the endothelium is a major target for therapeutic interventions to restore BMP signaling. We explore how arterial pruning can promote the emergence of occlusive arterial remodeling mediated by ongoing endothelial injury secondary to hemodynamic perturbation and pathological increases in luminal shear stress. The emerging role of endothelial cell senescence is discussed in the transition from reversible to irreversible arterial remodeling in advanced PAH, and we review the sometimes conflicting evidence that female sex hormones can both protect or promote vascular changes in disease. Finally, we explore the contribution of the endothelium to metabolic changes and the altered inflammatory and immune state in the PAH lung, focusing on the role of excessive TGFβ signaling. Given the complexity of the endothelial pathobiology of PAH, we anticipate that emerging technologies that allow the study of molecular events at a single cell level will provide answers to many of the questions raised in this review.
Collapse
Affiliation(s)
- Nicholas D Cober
- Ottawa Hospital Research Institute, ON, Canada (N.D.C., D.J.S.).,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, ON, Canada (N.D.C., D.J.S.)
| | - M Martin VandenBroek
- Department of Medicine, Queen's University, Kingston, ON, Canada (M.M.V., M.L.O.)
| | - Mark L Ormiston
- Department of Medicine, Queen's University, Kingston, ON, Canada (M.M.V., M.L.O.).,Departments of Surgery, and Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada (M.L.O.)
| | - Duncan J Stewart
- Ottawa Hospital Research Institute, ON, Canada (N.D.C., D.J.S.).,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, ON, Canada (N.D.C., D.J.S.)
| |
Collapse
|
12
|
Immune Cells in Pulmonary Arterial Hypertension. Heart Lung Circ 2022; 31:934-943. [PMID: 35361533 DOI: 10.1016/j.hlc.2022.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/24/2022] [Accepted: 02/13/2022] [Indexed: 12/11/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a complex and serious cardiopulmonary disease; it is characterised by increased pulmonary arterial pressure and pulmonary vascular remodelling accompanied by disordered endothelial and smooth muscle cell proliferation within pulmonary arterioles and arteries. Although recent reports have suggested that dysregulated immunity and inflammation are key players in PAH pathogenesis, their roles in PAH progression remain unclear. Intriguingly, altered host immune cell distribution, number, and polarisation within the lung arterial vasculature have been linked to disease development. This review mainly focusses on the roles of different immune cells in PAH and discusses the underlying mechanisms.
Collapse
|
13
|
Feng J, Wu Y. Interleukin-35 ameliorates cardiovascular disease by suppressing inflammatory responses and regulating immune homeostasis. Int Immunopharmacol 2022; 110:108938. [PMID: 35759811 DOI: 10.1016/j.intimp.2022.108938] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022]
Abstract
The immune response is of great significance in the initiation and progression of a diversity of cardiovascular diseases involving pro-and anti-inflammatory cytokines. Interleukin-35 (IL-35), a cytokine of the interleukin-12 family, is a novel anti-inflammation and immunosuppressive cytokine, maintaining inflammatory suppression and regulating immune homeostasis. The role of IL-35 in cardiovascular diseases (CVDs) has aroused enthusiastic attention, a diversity of experimental or clinical evidence has indicated that IL-35 potentially has a pivot role in protecting against cardiovascular diseases, especially atherosclerosis and myocarditis. In this review, we initiate an overview of the relationship between Interleukin-35 and cardiovascular diseases, including atherosclerosis, acute coronary syndrome, pulmonary hypertension, abdominal aortic aneurysm, heart failure, myocardial ischemia-reperfusion, aortic dissection and myocarditis. Although the specific molecular mechanisms entailing the protective effects of IL-35 remain an unsolved issue, targeted therapies with IL-35 might provide a promising and effective solution to prevent and cure cardiovascular diseases.
Collapse
Affiliation(s)
- Jie Feng
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Yanqing Wu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
14
|
van Uden D, Koudstaal T, van Hulst JAC, Vink M, van Nimwegen M, van den Toorn LM, Chandoesing PP, van den Bosch AE, Kool M, Hendriks RW, Boomars KA. Peripheral Blood T Cells of Patients with IPAH Have a Reduced Cytokine-Producing Capacity. Int J Mol Sci 2022; 23:ijms23126508. [PMID: 35742956 PMCID: PMC9224379 DOI: 10.3390/ijms23126508] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is rare disease that is categorized as idiopathic (IPAH) when no underlying cause can be identified. Lungs of most patients with IPAH contain increased numbers of T cells and dendritic cells (DCs), suggesting involvement of the immune system in its pathophysiology. However, our knowledge on circulating immune cells in IPAH is rather limited. We used flow cytometry to characterize peripheral blood DCs and T cells in treatment-naive IPAH patients, compared with connective-tissue disease-PAH (CTD-PAH) patients and healthy controls (HCs). At diagnosis, T-helper (Th) cells of IPAH patients were less capable of producing TNFα, IFNγ, IL-4 and IL-17 compared to HCs. IPAH patients showed a decreased frequency of Th2 cells and significantly enhanced expression of the CTLA4 checkpoint molecule in naive CD4+ T cells and both naive and memory CD8+ T cells. Frequencies and surface marker expression of circulating DCs and monocytes were essentially comparable between IPAH patients and HCs. Principal component analysis (PCA) separated IPAH patients—but not CTD-PAH patients—from HCs, based on T-cell cytokine profiles. At 1-year follow-up, the frequencies of IL-17+ production by memory CD4+ T cells were increased in IPAH patients and accompanied by increased proportions of Th17 and Tc17 cells, as well as decreased CTLA4 expression. Treatment-naive IPAH patients displayed a unique T-cell phenotype that was different from CTD-PAH patients and was characterized by reduced cytokine-producing capacity. These findings point to involvement of adaptive immune responses in IPAH, which may have an implication for the development of therapeutic interventions.
Collapse
Affiliation(s)
- Denise van Uden
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (M.V.); (M.v.N.); (L.M.v.d.T.); (P.P.C.); (M.K.)
| | - Thomas Koudstaal
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (M.V.); (M.v.N.); (L.M.v.d.T.); (P.P.C.); (M.K.)
| | - Jennifer A. C. van Hulst
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (M.V.); (M.v.N.); (L.M.v.d.T.); (P.P.C.); (M.K.)
| | - Madelief Vink
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (M.V.); (M.v.N.); (L.M.v.d.T.); (P.P.C.); (M.K.)
| | - Menno van Nimwegen
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (M.V.); (M.v.N.); (L.M.v.d.T.); (P.P.C.); (M.K.)
| | - Leon M. van den Toorn
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (M.V.); (M.v.N.); (L.M.v.d.T.); (P.P.C.); (M.K.)
| | - Prewesh P. Chandoesing
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (M.V.); (M.v.N.); (L.M.v.d.T.); (P.P.C.); (M.K.)
| | - Annemien E. van den Bosch
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Mirjam Kool
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (M.V.); (M.v.N.); (L.M.v.d.T.); (P.P.C.); (M.K.)
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (M.V.); (M.v.N.); (L.M.v.d.T.); (P.P.C.); (M.K.)
- Correspondence: (R.W.H.); (K.A.B.)
| | - Karin A. Boomars
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands; (D.v.U.); (T.K.); (J.A.C.v.H.); (M.V.); (M.v.N.); (L.M.v.d.T.); (P.P.C.); (M.K.)
- Correspondence: (R.W.H.); (K.A.B.)
| |
Collapse
|
15
|
Important Functions and Molecular Mechanisms of Mitochondrial Redox Signaling in Pulmonary Hypertension. Antioxidants (Basel) 2022; 11:antiox11030473. [PMID: 35326123 PMCID: PMC8944689 DOI: 10.3390/antiox11030473] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are important organelles that act as a primary site to produce reactive oxygen species (ROS). Additionally, mitochondria play a pivotal role in the regulation of Ca2+ signaling, fatty acid oxidation, and ketone synthesis. Dysfunction of these signaling molecules leads to the development of pulmonary hypertension (PH), atherosclerosis, and other vascular diseases. Features of PH include vasoconstriction and pulmonary artery (PA) remodeling, which can result from abnormal proliferation, apoptosis, and migration of PA smooth muscle cells (PASMCs). These responses are mediated by increased Rieske iron–sulfur protein (RISP)-dependent mitochondrial ROS production and increased mitochondrial Ca2+ levels. Mitochondrial ROS and Ca2+ can both synergistically activate nuclear factor κB (NF-κB) to trigger inflammatory responses leading to PH, right ventricular failure, and death. Evidence suggests that increased mitochondrial ROS and Ca2+ signaling leads to abnormal synthesis of ketones, which play a critical role in the development of PH. In this review, we discuss some of the recent findings on the important interactive role and molecular mechanisms of mitochondrial ROS and Ca2+ in the development and progression of PH. We also address the contributions of NF-κB-dependent inflammatory responses and ketone-mediated oxidative stress due to abnormal regulation of mitochondrial ROS and Ca2+ signaling in PH.
Collapse
|
16
|
Funk-Hilsdorf TC, Behrens F, Grune J, Simmons S. Dysregulated Immunity in Pulmonary Hypertension: From Companion to Composer. Front Physiol 2022; 13:819145. [PMID: 35250621 PMCID: PMC8891568 DOI: 10.3389/fphys.2022.819145] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 01/20/2022] [Indexed: 12/26/2022] Open
Abstract
Pulmonary hypertension (PH) represents a grave condition associated with high morbidity and mortality, emphasizing a desperate need for innovative and targeted therapeutic strategies. Cumulative evidence suggests that inflammation and dysregulated immunity interdependently affect maladaptive organ perfusion and congestion as hemodynamic hallmarks of the pathophysiology of PH. The role of altered cellular and humoral immunity in PH gains increasing attention, especially in pulmonary arterial hypertension (PAH), revealing novel mechanistic insights into the underlying immunopathology. Whether these immunophysiological aspects display a universal character and also hold true for other types of PH (e.g., PH associated with left heart disease, PH-LHD), or whether there are unique immunological signatures depending on the underlying cause of disease are points of consideration and discussion. Inflammatory mediators and cellular immune circuits connect the local inflammatory landscape in the lung and heart through inter-organ communication, involving, e.g., the complement system, sphingosine-1-phosphate (S1P), cytokines and subsets of, e.g., monocytes, macrophages, natural killer (NK) cells, dendritic cells (DCs), and T- and B-lymphocytes with distinct and organ-specific pro- and anti-inflammatory functions in homeostasis and disease. Perivascular macrophage expansion and monocyte recruitment have been proposed as key pathogenic drivers of vascular remodeling, the principal pathological mechanism in PAH, pinpointing toward future directions of anti-inflammatory therapeutic strategies. Moreover, different B- and T-effector cells as well as DCs may play an important role in the pathophysiology of PH as an imbalance of T-helper-17-cells (TH17) activated by monocyte-derived DCs, a potentially protective role of regulatory T-cells (Treg) and autoantibody-producing plasma cells occur in diverse PH animal models and human PH. This article highlights novel aspects of the innate and adaptive immunity and their interaction as disease mediators of PH and its specific subtypes, noticeable inflammatory mediators and summarizes therapeutic targets and strategies arising thereby.
Collapse
Affiliation(s)
- Teresa C. Funk-Hilsdorf
- Junior Research Group “Immunodynamics”, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Laboratory of Lung Vascular Research, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Felix Behrens
- Junior Research Group “Immunodynamics”, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Laboratory of Lung Vascular Research, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Jana Grune
- Laboratory of Lung Vascular Research, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Szandor Simmons
- Junior Research Group “Immunodynamics”, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Laboratory of Lung Vascular Research, Institute of Physiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- *Correspondence: Szandor Simmons,
| |
Collapse
|
17
|
Tobal R, Potjewijd J, van Empel VPM, Ysermans R, Schurgers LJ, Reutelingsperger CP, Damoiseaux JGMC, van Paassen P. Vascular Remodeling in Pulmonary Arterial Hypertension: The Potential Involvement of Innate and Adaptive Immunity. Front Med (Lausanne) 2022; 8:806899. [PMID: 35004784 PMCID: PMC8727487 DOI: 10.3389/fmed.2021.806899] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/02/2021] [Indexed: 11/30/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a severe disease with high morbidity and mortality. Current therapies are mainly focused on vasodilative agents to improve prognosis. However, recent literature has shown the important interaction between immune cells and stromal vascular cells in the pathogenic modifications of the pulmonary vasculature. The immunological pathogenesis of PAH is known as a complex interplay between immune cells and vascular stromal cells, via direct contacts and/or their production of extra-cellular/diffusible factors such as cytokines, chemokines, and growth factors. These include, the B-cell—mast-cell axis, endothelium mediated fibroblast activation and subsequent M2 macrophage polarization, anti-endothelial cell antibodies and the versatile role of IL-6 on vascular cells. This review aims to outline the major pathophysiological changes in vascular cells caused by immunological mechanisms, leading to vascular remodeling, increased pulmonary vascular resistance and eventually PAH. Considering the underlying immunological mechanisms, these mechanisms may be key to halt progression of disease.
Collapse
Affiliation(s)
- Rachid Tobal
- Division of Nephrology and Clinical and Experimental Immunology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Judith Potjewijd
- Division of Nephrology and Clinical and Experimental Immunology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Vanessa P M van Empel
- Department of Cardiology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Renee Ysermans
- Division of Nephrology and Clinical and Experimental Immunology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Leon J Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Chris P Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht, Netherlands
| | - Jan G M C Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, Netherlands
| | - Pieter van Paassen
- Division of Nephrology and Clinical and Experimental Immunology, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
18
|
The role of immune cells in pulmonary hypertension: Focusing on macrophages. Hum Immunol 2021; 83:153-163. [PMID: 34844784 DOI: 10.1016/j.humimm.2021.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 01/06/2023]
Abstract
Pulmonary hypertension (PH) is a life-threatening pathological state with elevated pulmonary arterial pressure, resulting in right ventricular failure and heart functional failure. Analyses of human samples and rodent models of pH support the infiltration of various immune cells, including neutrophils, mast cells, dendritic cells, B-cells, T-cells, and natural killer cells, to the lungs and pulmonary perivascular regions and their involvement in the PH development. There is evidence that macrophages are presented in the pulmonary lesions of pH patients as first-line myeloid leucocytes. Macrophage accumulation and presence, both M1 and M2 phenotypes, is a distinctive hallmark of pH which plays a pivotal role in pulmonary artery remodeling through various cellular and molecular interactions and mechanisms, including CCL2 and CX3CL1 chemokines, adventitial fibroblasts, glucocorticoid-regulated kinase 1 (SGK1), crosstalk with other immune cells, leukotriene B4 (LTB4), bone morphogenetic protein receptor 2 (BMPR2), macrophage migration inhibitory factor (MIF), and thrombospondin-1 (TSP-1). In this paper, we reviewed the molecular mechanisms and the role of immune cells and responses are involved in PH development. We also summarized the polarization of macrophages in response to different stimuli and their pathological role and their infiltration in the lung of pH patients and animal models.
Collapse
|
19
|
Shu T, Xing Y, Wang J. Autoimmunity in Pulmonary Arterial Hypertension: Evidence for Local Immunoglobulin Production. Front Cardiovasc Med 2021; 8:680109. [PMID: 34621794 PMCID: PMC8490641 DOI: 10.3389/fcvm.2021.680109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive life-threatening disease. The notion that autoimmunity is associated with PAH is widely recognized by the observations that patients with connective tissue diseases or virus infections are more susceptible to PAH. However, growing evidence supports that the patients with idiopathic PAH (IPAH) with no autoimmune diseases also have auto-antibodies. Anti-inflammatory therapy shows less help in decreasing auto-antibodies, therefore, elucidating the process of immunoglobulin production is in great need. Maladaptive immune response in lung tissues is considered implicating in the local auto-antibodies production in patients with IPAH. In this review, we will discuss the specific cell types involved in the lung in situ immune response, the potential auto-antigens, and the contribution of local immunoglobulin production in PAH development, providing a theoretical basis for drug development and precise treatment in patients with PAH.
Collapse
Affiliation(s)
- Ting Shu
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yanjiang Xing
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
Tian W, Jiang SY, Jiang X, Tamosiuniene R, Kim D, Guan T, Arsalane S, Pasupneti S, Voelkel NF, Tang Q, Nicolls MR. The Role of Regulatory T Cells in Pulmonary Arterial Hypertension. Front Immunol 2021; 12:684657. [PMID: 34489935 PMCID: PMC8418274 DOI: 10.3389/fimmu.2021.684657] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/04/2021] [Indexed: 01/10/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic, incurable condition characterized by pulmonary vascular remodeling, perivascular inflammation, and right heart failure. Regulatory T cells (Tregs) stave off autoimmunity, and there is increasing evidence for their compromised activity in the inflammatory milieu of PAH. Abnormal Treg function is strongly correlated with a predisposition to PAH in animals and patients. Athymic Treg-depleted rats treated with SU5416, an agent causing pulmonary vascular injury, develop PAH, which is prevented by infusing missing CD4+CD25highFOXP3+ Tregs. Abnormal Treg activity may also explain why PAH disproportionately affects women more than men. This mini review focuses on the role of Tregs in PAH with a special view to sexual dimorphism and the future promise of Treg therapy.
Collapse
Affiliation(s)
- Wen Tian
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Shirley Y Jiang
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Xinguo Jiang
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Rasa Tamosiuniene
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States
| | - Dongeon Kim
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Torrey Guan
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States
| | - Siham Arsalane
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Shravani Pasupneti
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Norbert F Voelkel
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Qizhi Tang
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Mark R Nicolls
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
21
|
Mansueto G, Di Napoli M, Campobasso CP, Slevin M. Pulmonary arterial hypertension (PAH) from autopsy study: T-cells, B-cells and mastocytes detection as morphological evidence of immunologically mediated pathogenesis. Pathol Res Pract 2021; 225:153552. [PMID: 34352438 DOI: 10.1016/j.prp.2021.153552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 02/09/2023]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is characterized by severe vascular remodelling, resulting in increased pulmonary vascular resistance with cardiac hypertrophy and heart failure. However, the diagnosis of PAH is often inaccurate. Many cases of PAH are incorrectly diagnosed or missed, and they are often associated with death. The aim of this study was to verify the morphological and histological criteria of fatal cases of PAH and evaluate the lymphocytic populations associated to lesions with reactive neo-angiogenesis. METHODS Pulmonary lung sections from 10 cases of sudden unexpected death (SUD) in the absence of previously diagnosed diseases and in an apparent state of well-being, with final histological post autopsy diagnosis of PAH were collected. The pathological findings were compared using ten controls from non-pathological lung from deaths from other causes. The autopsies included 4 males (40%) and 6 females (60%) with an average age of 52.1 ± 10.1 years. Sections stained with hematoxylin and eosin (H&E) were revised for a morphological diagnosis. Subsequently, serial sections were performed and stained with immunohistochemistry for anti-CD20 (B-lymphocytes), anti-CD3 (T-lymphocytes), anti-CD4 (T-helper lumphocytes), anti-CD8 (T-cytotoxic lymphocytes) and anti-CD117/C-Kit (mast cells/MCs) to detect inflammatory infiltrate and different ratios of cell-type. Statistical analysis was conducted using a paired t-test looking at 100 cells in 3 different tissue samples representative of vascular lesion and 3 different random normal lung parenchyma fields without lesion (from 10 normal control lungs), to identify specific lymphocyte subpopulations in inflammatory infiltrates. RESULTS There was a significant percentage increase of CD20 (p < 0.001), CD8 (p = 0.002), CD4 (p < 0.001), and CD117/C-Kit positive (C-Kit+; p < 0.001) cells mainly detected around wall vessels; while increased MCs positivity and C-Kit+ were observed especially in alveolar septa. In addition, reactive angiomatosis was observed. CONCLUSIONS The inflammatory infiltrate should be included for a correct diagnosis of PAH besides the vascular remodelling. The inflammatory infiltrate seems to be implicated as a main factor in the pathogenesis. This finding is important to rule out secondary pulmonary hypertension, to identify SUDs of unknown causes and to add new elements to the literature that can explain the immunologically related pathogenesis of PAH.
Collapse
Affiliation(s)
- Gelsomina Mansueto
- Department of Advanced Medical and SurgicalSciences, University of Campania "Luigi Vanvitelli"; Clinical Department of Laboratory Services and Public Health, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; Clinical Department of Laboratory Services and Public Health, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Mario Di Napoli
- Neurological Service, SS Annunziata Hospital, Viale Mazzini 100 Sulmona, 67039 L'Aquila, Italy.
| | - Carlo Pietro Campobasso
- Clinical Department of Laboratory Services and Public Health, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy; Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", 80138 Naples, Italy.
| | - Mark Slevin
- Departmentof Life Sciences Manchester Metropolitan University, Chester Street, Manchester M1 5GD, United Kingdom; University of Medicine and Pharmacy, Scienceand Technology, W1G 7ET Târgu Mures, Romania.
| |
Collapse
|
22
|
Sweatt AJ, Reddy R, Rahaghi FN, Al-Naamani N. What's new in pulmonary hypertension clinical research: lessons from the best abstracts at the 2020 American Thoracic Society International Conference. Pulm Circ 2021; 11:20458940211040713. [PMID: 34471517 PMCID: PMC8404658 DOI: 10.1177/20458940211040713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/26/2021] [Indexed: 12/23/2022] Open
Abstract
In this conference paper, we review the 2020 American Thoracic Society International Conference session titled, "What's New in Pulmonary Hypertension Clinical Research: Lessons from the Best Abstracts". This virtual mini-symposium took place on 21 October 2020, in lieu of the annual in-person ATS International Conference which was cancelled due to the COVID-19 pandemic. Seven clinical research abstracts were selected for presentation in the session, which encompassed five major themes: (1) standardizing diagnosis and management of pulmonary hypertension, (2) improving risk assessment in pulmonary arterial hypertension, (3) evaluating biomarkers of disease activity, (4) understanding metabolic dysregulation across the spectrum of pulmonary hypertension, and (5) advancing knowledge in chronic thromboembolic pulmonary hypertension. Focusing on these five thematic contexts, we review the current state of knowledge, summarize presented research abstracts, appraise their significance and limitations, and then discuss relevant future directions in pulmonary hypertension clinical research.
Collapse
Affiliation(s)
- Andrew J. Sweatt
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
| | - Raju Reddy
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Farbod N. Rahaghi
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Nadine Al-Naamani
- Division of Pulmonary and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - on behalf of the American Thoracic Society Pulmonary Circulation Assembly Early Career Working Group
- Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
23
|
Mathot E, Liberman K, Cao Dinh H, Njemini R, Bautmans I. Systematic review on the effects of physical exercise on cellular immunosenescence-related markers - An update. Exp Gerontol 2021; 149:111318. [PMID: 33794319 DOI: 10.1016/j.exger.2021.111318] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/25/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022]
Abstract
Immunosenescence is a remodeling of the immune system occurring with aging that leads to an increased susceptibility to auto-immunity, infections and reduced vaccination response. A growing consensus supports the view that physical exercise may counteract immunosenescence and improve the immune response. Unfortunately, evidence regarding the effects of exercise on markers of cellular immunosenescence lacked uniformity at the time of an extensive literature review in 2016. Moreover, exercise-induced effects in older adults were underrepresented compared to young adults or completely lacking, such as for senescent T-cells and apoptosis of T-lymphocytes. The aim of this systematic literature study was to collect and appraise newly available data regarding exercise-induced changes on immunosenescence-related markers of immune cells and compare this against data that was already available in 2016. Systematic reviewing of newly available data in the field of exercise immunology provides additional evidence for the effect of exercise on immunosenescence-related cellular markers. Importantly, this review provides evidence for the effect of long-term exercise on senescent T-lymphocytes in older adults. Additionally, newly retrieved evidence shows an acute exercise-induced mobilization of naïve and memory cells in older adults. In general, data regarding long-term exercise-induced effects in older adults remain scarce. Noteworthy was the high number of articles describing exercise-induced effects on regulatory T-cells. However exercise-induced effects on this cell type are still inconclusive as some articles reported an exercise-induced up- or downregulation, while others reported no effects at all. Numerous studies on Natural Killer cell counts did not provide uniformity among data that was already available. Recent data regarding dendritic cells mostly described an increase after exercise. Overall, our literature update highlights the major influence of the type and intensity of exercise on immunosenescence-related markers, especially in older adults.
Collapse
Affiliation(s)
- Emelyn Mathot
- Frailty in Ageing Research group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Keliane Liberman
- Frailty in Ageing Research group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Hung Cao Dinh
- Frailty in Ageing Research group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Internal Medicine Department, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Rose Njemini
- Frailty in Ageing Research group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ivan Bautmans
- Frailty in Ageing Research group, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Gerontology Department, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium; Geriatrics Department, Universitair Ziekenhuis Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| |
Collapse
|
24
|
Xu T, Zhou F, Xu C, Chen A, Huang S, Zhou H. The relationship between brachial-ankle pulse wave velocity and peripheral blood lymphocyte subsets in hypertensives: a cross-sectional study. J Hum Hypertens 2021; 36:651-658. [PMID: 34117347 DOI: 10.1038/s41371-021-00553-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 05/01/2021] [Accepted: 05/14/2021] [Indexed: 11/09/2022]
Abstract
Arteriosclerosis is the common pathological basis of hypertension-related target organ damage, and pulse wave velocity (PWV) is commonly used to assess the degree of arterial stiffness. Previous studies have reported the correlation between peripheral blood inflammatory indicators and PWV in hypertensives, but few studies examined the role of immune cells in arteriosclerosis in the context of human hypertension. In order to enrich the understanding of this topic, we conducted a cross-sectional study on hospitalized hypertensives in Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology from January 2015 to February 2017 to investigate the relationship between brachial-ankle pulse wave velocity (baPWV) and peripheral blood lymphocyte subsets. Sixty-four eligible patients were enrolled in our study. The patients' blood pressure, height, body weight, and baPWV were collected, along with the lab results of their peripheral complete blood count, blood chemistry, and lymphocyte subsets. We studied the Spearman correlation between baPWV and lymphocyte subsets and other variables. We further used multivariable stepwise linear regression analysis and the results showed that baPWV was significantly correlated with age, height, systolic blood pressure, and the level of T lymphocytes (CD3+CD45+) in hypertensive patients (β = 8.77, P = 0.006; β = -17.50, P = 0.001; β = 6.70, P = 0.002, and β = -7.093, P = 0.024, respectively). According to our findings, baPWV was independently and negatively correlated with the level of peripheral blood T lymphocytes in hypertensives, and infiltration of T lymphocytes into the vessels wall may be a key part of the immune mechanism of arteriosclerosis in hypertension.
Collapse
Affiliation(s)
- Ting Xu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangwen Zhou
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Chang Xu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Benxi Central Hospital, Benxi, China
| | - Ailin Chen
- School of Information Systems & Technology Management, Business School, University of New South Wales, Sydney, NSW, Australia
| | - Shuaiwen Huang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Honglian Zhou
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
25
|
Wan N, Rong W, Zhu W, Jia D, Bai P, Liu G, Wan Q, Lyu A. Tregs-derived interleukin 35 attenuates endothelial proliferation through STAT1 in pulmonary hypertension. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:926. [PMID: 34350241 PMCID: PMC8263866 DOI: 10.21037/atm-21-1952] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022]
Abstract
Background To explore the source, the role and the specific mechanism of IL-35 and its downstream molecules in the development of pulmonary hypertension. Methods 8–10 weeks male mice were undergoing hypoxia combined with SU5416 (HySu) to establish a pulmonary hypertension (PH) model. The phenotype of PH mice was measured by immunohistochemistry and immunofluorescence staining. The levels of two subunits (EBI3 and p35 subunits) in lung tissue were measured by real-time PCR and western blotting. EBI3 monoclonal antibody was administrated as IL-35 neutralization to offset systemic IL-35 expression. Fludarabine, an inhibitor of STAT1 (signal transducer and activator of transcription 1) was used to clarify the role of STAT1 under IL-35 treatment. Results After pulmonary hypertension, the expression of IL-35 and its two subunits (EBI3 and p35 subunits) in lung tissue were significantly increased. And the two subunits of IL-35 are highly expressed in Treg cells. Compared with the controlled PH mice, the IL-35 neutralization PH mice showed aggravated pulmonary hypertension phenotype. The specific manifestations are the increase of right ventricular systolic pressure (RVSP), the growing proportion of right heart [RV/(LV+S)], and the remodeling of pulmonary blood vessels increases. The expression of pulmonary vascular endothelium (CD31) in PH mice increased, and the proliferation ability of vascular endothelium enhanced after IL-35 was inhibited. IL-35 phosphorylates STAT1 through the receptor GP130 on pulmonary vascular endothelial cells, which in turn inhibits endothelial cell proliferation. IL-35 recombinant protein can reduce the expression of CD31 in lung tissues of PH mice. But the administration of STAT1 inhibitor made it invalid from the IL-35 effect of reversing pulmonary hypertension. Conclusions Tregs-derived IL-35 can reverse the remodeling of pulmonary blood vessels and alleviate the progression of pulmonary hypertension by reducing the proliferation of endothelial cells.
Collapse
Affiliation(s)
- Naifu Wan
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wuwei Rong
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wentong Zhu
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Daile Jia
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Peiyuan Bai
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Guizhu Liu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiangyou Wan
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ankang Lyu
- Department of Vascular & Cardiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Mylvaganam R, Avery R, Goldberg I, Makowski C, Kalhan R, Villaflor V, Cuttica MJ. Adverse effects of immune checkpoint inhibitor therapies on right ventricular function and pulmonary arterial dilatation. Pulm Circ 2021; 11:2045894021992236. [PMID: 33623668 PMCID: PMC7878999 DOI: 10.1177/2045894021992236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/13/2021] [Indexed: 11/15/2022] Open
Abstract
Immunologic risk factors contribute to endothelial dysfunction and development of pulmonary vascular disease. Immune checkpoint inhibitors, used as immunotherapies for malignancies, have a wide range of reported immune-related adverse events. We retrospectively describe the impact of immune checkpoint inhibitors on the development of pulmonary vascular injury and right ventricular dysfunction as compared across both computed tomography and transthoracic echocardiography. Twenty-four of 389 patients treated with immune checkpoint inhibitors at a single academic center between 2015 and 2019 were evaluated. Thirteen (54%) patients were treated with anti-programmed cell death receptor 1 (PD-1), 8 (33%) with anti-programmed death receptor ligand 1 (PD-L1) therapy, and 3 (13%) with combination anti-PD-1 and anti-cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) therapy. At a median of 85 days of immune checkpoint inhibitor therapy, RVfwLS significantly increased from –20.6% to –16.7% (p = 0.002). After a median of 59 days of immune checkpoint inhibitor therapy, median pulmonary artery to aorta ratio worsened from 0.83 to 0.89 (p = 0.03). There was an correlation of duration of immune checkpoint inhibitor therapy (β = –0.574, p = 0.003) with percent change in RVfwLS. Patients who received anti-PD-1 therapy (β = –0.796, p = 0.001) showed the greatest correlation of duration of immune checkpoint inhibitor therapy with percent change in RVfwLS. Exposure to immune checkpoint inhibitors are associated with RV dysfunction and vascular changes as measured by strain and computed tomography, respectively.
Collapse
Affiliation(s)
- Ruben Mylvaganam
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Ruben Mylvaganam, Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern McGaw Medical Center, 240 E Huron St, Ste M-300, Chicago, IL 60611, USA.
| | - Ryan Avery
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Isaac Goldberg
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Ravi Kalhan
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Victoria Villaflor
- Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Michael J. Cuttica
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
27
|
Zeng H, Liu X, Zhang Y. Identification of Potential Biomarkers and Immune Infiltration Characteristics in Idiopathic Pulmonary Arterial Hypertension Using Bioinformatics Analysis. Front Cardiovasc Med 2021; 8:624714. [PMID: 33598484 PMCID: PMC7882500 DOI: 10.3389/fcvm.2021.624714] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Objectives: Idiopathic pulmonary arterial hypertension (IPAH) is a rare but severe lung disorder, which may lead to heart failure and early mortality. However, little is known about the etiology of IPAH. Thus, the present study aimed to establish the differentially expressed genes (DEGs) between IPAH and normal tissues, which may serve as potential prognostic markers in IPAH. Furthermore, we utilized a versatile computational method, CIBERSORT to identify immune cell infiltration characteristics in IPAH. Materials and Methods: The GSE117261 and GSE48149 datasets were obtained from the Gene Expression Omnibus database. The GSE117261 dataset was adopted to screen DEGs between IPAH and the control groups with the criterion of |log2 fold change| ≥ 1, adjusted P < 0.05, and to further explore their potential biological functions via Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes Pathway analysis, and Gene Set Enrichment Analysis. Moreover, the support vector machine (SVM)-recursive feature elimination and the least absolute shrinkage and selection operator regression model were performed jointly to identify the best potential biomarkers. Then we built a regression model based on these selected variables. The GSE48149 dataset was used as a validation cohort to appraise the diagnostic efficacy of the SVM classifier by receiver operating characteristic (ROC) analysis. Finally, immune infiltration was explored by CIBERSORT in IPAH. We further analyzed the correlation between potential biomarkers and immune cells. Results: In total, 75 DEGs were identified; 40 were downregulated, and 35 genes were upregulated. Functional enrichment analysis found a significantly enrichment in heme binding, inflammation, chemokines, cytokine activity, and abnormal glycometabolism. HBB, RNASE2, S100A9, and IL1R2 were identified as the best potential biomarkers with an area under the ROC curve (AUC) of 1 (95%CI = 0.937–1.000, specificity = 100%, sensitivity = 100%) in the discovery cohort and 1(95%CI = 0.805–1.000, specificity = 100%, sensitivity = 100%) in the validation cohort. Moreover, immune infiltration analysis by CIBERSORT showed a higher level of CD8+ T cells, resting memory CD4+ T cells, gamma delta T cells, M1 macrophages, resting mast cells, as well as a lower level of naïve CD4+ T cells, monocytes, M0 macrophages, activated mast cells, and neutrophils in IPAH compared with the control group. In addition, HBB, RNASE2, S100A9, and IL1R2 were correlated with immune cells. Conclusion:HBB, RNASE2, S100A9, and IL1R2 were identified as potential biomarkers to discriminate IPAH from the control. There was an obvious difference in immune infiltration between patient with IPAH and normal groups.
Collapse
Affiliation(s)
- Haowei Zeng
- Department of Structural Heart Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoqin Liu
- Department of Structural Heart Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yushun Zhang
- Department of Structural Heart Disease, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
28
|
Klouda T, Yuan K. Inflammation in Pulmonary Arterial Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:351-372. [PMID: 33788202 DOI: 10.1007/978-3-030-63046-1_19] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pulmonary artery hypertension (PAH) is a devastating cardiopulmonary disease characterized by vascular remodeling and obliteration of the precapillary pulmonary arterioles. Alterations in the structure and function of pulmonary vessels result in the resistance of blood flow and can progress to right-sided heart failure, causing significant morbidity and mortality. There are several types of PAH, and the disease can be familial or secondary to an underlying medical condition such as a connective tissue disorder or infection. Regardless of the cause, the exact pathophysiology and cellular interactions responsible for disease development and progression are largely unknown.There is significant evidence to suggest altered immune and vascular cells directly participate in disease progression. Inflammation has long been hypothesized to play a vital role in the development of PAH, as an altered or skewed immune response favoring a proinflammatory environment that can lead to the infiltration of cells such as lymphocytes, macrophages, and neutrophils. Current treatment strategies focus on the dilation of partially occluded vessels; however, such techniques have not resulted in an effective strategy to reverse or prevent vascular remodeling. Therefore, current studies in human and animal models have attempted to understand the underlying pathophysiology of pulmonary hypertension (PH), specifically focusing on the inflammatory cascade predisposing patients to disease so that better therapeutic targets can be developed to potentially reverse or prevent disease progression.The purpose of this chapter is to provide a comprehensive review of the expanding literature on the inflammatory process that participates in PH development while highlighting important and current studies in both animal and human models. While our primary focus will be on cells found in the adaptive and innate immune system, we will review all potential causes of PAH, including cells of the endothelium, pulmonary lymphatics, and genetic mutations predisposing patients. In addition, we will discuss current therapeutic options while highlighting potential future treatments and the questions that still remain unanswered.
Collapse
Affiliation(s)
- Timothy Klouda
- Divisions of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ke Yuan
- Divisions of Pulmonary Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
29
|
Liang S, Desai AA, Black SM, Tang H. Cytokines, Chemokines, and Inflammation in Pulmonary Arterial Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:275-303. [PMID: 33788198 DOI: 10.1007/978-3-030-63046-1_15] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
According to the World Symposium Pulmonary Hypertension (WSPH) classification, pulmonary hypertension (PH) is classified into five categories based on etiology. Among them, Group 1 pulmonary arterial hypertension (PAH) disorders are rare but progressive and often, fatal despite multiple approved treatments. Elevated pulmonary arterial pressure in patients with WSPH Group 1 PAH is mainly caused by increased pulmonary vascular resistance (PVR), due primarily to sustained pulmonary vasoconstriction and excessive obliterative pulmonary vascular remodeling. Growing evidence indicates that inflammation plays a critical role in the development of pulmonary vascular remodeling associated with PAH. While the role of auto-immunity is unclear, infiltration of inflammatory cells in and around vascular lesions, including T- and B-cells, dendritic cells, macrophages, and mast cells have been observed in PAH patients. Serum and plasma levels of chemokines, cytokines, and autoantibodies are also increased in PAH patients; some of these circulating molecules are correlated with disease severity and survival. Preclinical experiments have reported a key role of the inflammation in PAH pathophysiology in vivo. Importantly, anti-inflammatory and immunosuppressive agents have further exhibited therapeutic effects. The present chapter reviews published experimental and clinical evidence highlighting the canonical role of inflammation in the pathogenesis of PAH and as a major target for the development of anti-inflammatory therapies in patients with PAH.
Collapse
Affiliation(s)
- Shuxin Liang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ankit A Desai
- Department of Medicine, Indiana University, Indianapolis, IN, USA
| | - Stephen M Black
- Division of Translational and Regenerative Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Haiyang Tang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China. .,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
30
|
Hemnes A, Rothman AMK, Swift AJ, Zisman LS. Role of biomarkers in evaluation, treatment and clinical studies of pulmonary arterial hypertension. Pulm Circ 2020; 10:2045894020957234. [PMID: 33282185 PMCID: PMC7682212 DOI: 10.1177/2045894020957234] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Pulmonary arterial hypertension is a complex disease resulting from the interplay of myriad biological and environmental processes that lead to remodeling of the pulmonary vasculature with consequent pulmonary hypertension. Despite currently available therapies, there remains significant morbidity and mortality in this disease. There is great interest in identifying and applying biomarkers to help diagnose patients with pulmonary arterial hypertension, inform prognosis, guide therapy, and serve as surrogate endpoints. An extensive literature on potential biomarker candidates is available, but barriers to the implementation of biomarkers for clinical use in pulmonary arterial hypertension are substantial. Various omic strategies have been undertaken to identify key pathways regulated in pulmonary arterial hypertension that could serve as biomarkers including genomic, transcriptomic, proteomic, and metabolomic approaches. Other biologically relevant components such as circulating cells, microRNAs, exosomes, and cell-free DNA have recently been gaining attention. Because of the size of the datasets generated by these omic approaches and their complexity, artificial intelligence methods are being increasingly applied to decipher their meaning. There is growing interest in imaging the lung with various modalities to understand and visualize processes in the lung that lead to pulmonary vascular remodeling including high resolution computed tomography, Xenon magnetic resonance imaging, and positron emission tomography. Such imaging modalities have the potential to demonstrate disease modification resulting from therapeutic interventions. Because right ventricular function is a major determinant of prognosis, imaging of the right ventricle with echocardiography or cardiac magnetic resonance imaging plays an important role in the evaluation of patients and may also be useful in clinical studies of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Anna Hemnes
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Andrew J Swift
- University of Sheffield and Sheffield Teaching Hospitals NHS Trust, Sheffield, UK
| | | |
Collapse
|
31
|
Distinct patterns of soluble leukocyte activation markers are associated with etiology and outcomes in precapillary pulmonary hypertension. Sci Rep 2020; 10:18540. [PMID: 33122779 PMCID: PMC7596076 DOI: 10.1038/s41598-020-75654-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Activation of inflammatory processes has been identified as a major driver of pulmonary vascular remodeling that contributes to the development of precapillary pulmonary hypertension (PH). We hypothesized that circulating markers of leukocyte activation, reflecting monocytes/macrophages (sCD163, sCD14), T-cells (sCD25) and neutrophils (myeloperoxidase [MPO], neutrophil gelatinase-associated lipocalin [NGAL]) activity, could give prognostic information in precapillary PH. Circulating markers of leucocyte activation, sCD163, sCD14, sCD25, MPO and NGAL were measured by enzyme immunoassays in plasma from patients with idiopathic PAH (IPAH; n = 30); patients with PAH related to associated conditions (APAH; n = 44) and patients with chronic thromboembolic PH (CTEPH) (n = 32), and compared with 23 healthy controls. Markers of leucocyte activation were elevated in precapillary PH with particularly high levels in APAH. The elevated levels of monocyte/macrophage marker sCD163 was independently associated with poor long-term prognosis in the group as a whole, and elevated levels of sCD25 was associated with poor prognosis in APAH, while elevated levels of sCD163 and NGAL was associated with poor prognosis in IPAH and CTEPH. Our data show leucocyte activation in precapillary PH with different profiles and impact on prognosis according to etiology. The association of sCD163 with poor outcome in fully adjusted model may be of particular interest.
Collapse
|
32
|
Hu Y, Chi L, Kuebler WM, Goldenberg NM. Perivascular Inflammation in Pulmonary Arterial Hypertension. Cells 2020; 9:cells9112338. [PMID: 33105588 PMCID: PMC7690279 DOI: 10.3390/cells9112338] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
Perivascular inflammation is a prominent pathologic feature in most animal models of pulmonary hypertension (PH) as well as in pulmonary arterial hypertension (PAH) patients. Accumulating evidence suggests a functional role of perivascular inflammation in the initiation and/or progression of PAH and pulmonary vascular remodeling. High levels of cytokines, chemokines, and inflammatory mediators can be detected in PAH patients and correlate with clinical outcome. Similarly, multiple immune cells, including neutrophils, macrophages, dendritic cells, mast cells, T lymphocytes, and B lymphocytes characteristically accumulate around pulmonary vessels in PAH. Concomitantly, vascular and parenchymal cells including endothelial cells, smooth muscle cells, and fibroblasts change their phenotype, resulting in altered sensitivity to inflammatory triggers and their enhanced capacity to stage inflammatory responses themselves, as well as the active secretion of cytokines and chemokines. The growing recognition of the interaction between inflammatory cells, vascular cells, and inflammatory mediators may provide important clues for the development of novel, safe, and effective immunotargeted therapies in PAH.
Collapse
Affiliation(s)
- Yijie Hu
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B1W8, Canada;
- Department of Cardiovascular Surgery, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Leon Chi
- Department of Physiology, University of Toronto, Toronto, ON M5B1W8, Canada;
| | - Wolfgang M. Kuebler
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, ON M5B1W8, Canada;
- Departments of Physiology and Surgery, University of Toronto, Toronto, ON M5B1W8, Canada
- Institute of Physiology, Charité Universitäts Medizin Berlin, 10117 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-528-501
| | - Neil M. Goldenberg
- Departments of Physiology and Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON M5B1W8, Canada;
- Department of Anesthesia and Pain Medicine, Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5B1W8, Canada
| |
Collapse
|
33
|
Rhodes CJ, Otero-Núñez P, Wharton J, Swietlik EM, Kariotis S, Harbaum L, Dunning MJ, Elinoff JM, Errington N, Thompson AAR, Iremonger J, Coghlan JG, Corris PA, Howard LS, Kiely DG, Church C, Pepke-Zaba J, Toshner M, Wort SJ, Desai AA, Humbert M, Nichols WC, Southgate L, Trégouët DA, Trembath RC, Prokopenko I, Gräf S, Morrell NW, Wang D, Lawrie A, Wilkins MR. Whole-Blood RNA Profiles Associated with Pulmonary Arterial Hypertension and Clinical Outcome. Am J Respir Crit Care Med 2020; 202:586-594. [PMID: 32352834 PMCID: PMC7427383 DOI: 10.1164/rccm.202003-0510oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/29/2020] [Indexed: 02/02/2023] Open
Abstract
Rationale: Idiopathic and heritable pulmonary arterial hypertension (PAH) are rare but comprise a genetically heterogeneous patient group. RNA sequencing linked to the underlying genetic architecture can be used to better understand the underlying pathology by identifying key signaling pathways and stratify patients more robustly according to clinical risk.Objectives: To use a three-stage design of RNA discovery, RNA validation and model construction, and model validation to define a set of PAH-associated RNAs and a single summarizing RNA model score. To define genes most likely to be involved in disease development, we performed Mendelian randomization (MR) analysis.Methods: RNA sequencing was performed on whole-blood samples from 359 patients with idiopathic, heritable, and drug-induced PAH and 72 age- and sex-matched healthy volunteers. The score was evaluated against disease severity markers including survival analysis using all-cause mortality from diagnosis. MR used known expression quantitative trait loci and summary statistics from a PAH genome-wide association study.Measurements and Main Results: We identified 507 genes with differential RNA expression in patients with PAH compared with control subjects. A model of 25 RNAs distinguished PAH with 87% accuracy (area under the curve 95% confidence interval: 0.791-0.945) in model validation. The RNA model score was associated with disease severity and long-term survival (P = 4.66 × 10-6) in PAH. MR detected an association between SMAD5 levels and PAH disease susceptibility (odds ratio, 0.317; 95% confidence interval, 0.129-0.776; P = 0.012).Conclusions: A whole-blood RNA signature of PAH, which includes RNAs relevant to disease pathogenesis, associates with disease severity and identifies patients with poor clinical outcomes. Genetic variants associated with lower SMAD5 expression may increase susceptibility to PAH.
Collapse
Affiliation(s)
- Christopher J Rhodes
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Pablo Otero-Núñez
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - John Wharton
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Emilia M Swietlik
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Sokratis Kariotis
- Sheffield Institute for Translational Neuroscience
- Department of Infection, Immunity & Cardiovascular Disease, and
| | - Lars Harbaum
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Mark J Dunning
- Sheffield Bioinformatics Core, The University of Sheffield, Sheffield, United Kingdom
| | - Jason M Elinoff
- Critical Care Medicine Department, NIH Clinical Center, Bethesda, Maryland
| | - Niamh Errington
- Sheffield Institute for Translational Neuroscience
- Department of Infection, Immunity & Cardiovascular Disease, and
| | | | - James Iremonger
- Department of Infection, Immunity & Cardiovascular Disease, and
| | | | - Paul A Corris
- Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Luke S Howard
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - David G Kiely
- Department of Infection, Immunity & Cardiovascular Disease, and
| | | | | | - Mark Toshner
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Royal Papworth Hospital, Cambridge, United Kingdom
| | - Stephen J Wort
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | - Marc Humbert
- Université Paris-Sud, Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
- Service de Pneumologie, Hôpital Bicêtre, Assistance Publique - Hôpitaux de Paris, Le Kremlin-Bicêtre, France
- INSERM UMR_S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France
| | - William C Nichols
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Laura Southgate
- Molecular and Clinical Sciences Research Institute, St. George's University of London, London, United Kingdom
| | - David-Alexandre Trégouët
- INSERM UMR_S 1219, Bordeaux Population Health Research Center, University of Bordeaux, Bordeaux, France
| | - Richard C Trembath
- Division of Genetics and Molecular Medicine, King's College London, London, United Kingdom
| | - Inga Prokopenko
- Department of Clinical and Experimental Medicine, University of Surrey, Guildford, United Kingdom; and
| | - Stefan Gräf
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- NIHR BioResource for Translational Research, Cambridge, United Kingdom
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Dennis Wang
- Sheffield Institute for Translational Neuroscience
- Sheffield Bioinformatics Core, The University of Sheffield, Sheffield, United Kingdom
| | - Allan Lawrie
- Department of Infection, Immunity & Cardiovascular Disease, and
| | - Martin R Wilkins
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
34
|
Tomaszewski M, Grywalska E, Tomaszewski A, Błaszczak P, Kurzyna M, Roliński J, Kopeć G. Overexpression of PD-1 on Peripheral Blood Lymphocytes in Patients with Idiopathic Pulmonary Arterial Hypertension and Its Association with High Viral Loads of Epstein-Barr Virus and Poor Clinical Parameters. J Clin Med 2020; 9:jcm9061966. [PMID: 32599687 PMCID: PMC7355537 DOI: 10.3390/jcm9061966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is a rare but severe disease with the elevated blood pressure in the pulmonary arteries without a known trigger of vascular remodelling. It leads to the right heart failure with reduced survival. Changes in the immunological landscape of the lungs and the periphery are common in IPAH patients, suggesting an immune system dysfunction. A cohort of 25 IPAH patients was enrolled in our study to investigate a link between the patient’s clinical status, immune parameters of the blood, and the Epstein–Barr virus (EBV) infection. We found significant alterations of the patients’ peripheral blood parameters. Therein, T lymphocytes and NK cell counts were decreased in the IPAH patients’ blood, while the proportion of regulatory T cells was increased. Additionally, levels of proinflammatory cytokines interleukin-6 (IL-6), IL-2, and interferon-gamma (IFN-γ) were elevated. We identified a weak correlation between EBV loads and IPAH patients’ clinical state (r = 0.54) and between EBV loads and overexpression of PD-1 on helper T cells (r = 0.56). We speculate that a significant dysregulation of the immune system homeostasis observed in IPAH patients may contribute to increased susceptibility of those patients to EBV infection, yet further longitudinal studies are required to characterize this relation in detail.
Collapse
Affiliation(s)
- Michał Tomaszewski
- Department of Cardiology, Medical University of Lublin, 20-954 Lublin, Poland; (M.T.); (A.T.)
| | - Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland;
- Correspondence: ; Tel.: +48-81448-6420
| | - Andrzej Tomaszewski
- Department of Cardiology, Medical University of Lublin, 20-954 Lublin, Poland; (M.T.); (A.T.)
| | - Piotr Błaszczak
- Department of Cardiology, Cardinal Wyszynski Hospital, 20-718 Lublin, Poland;
| | - Marcin Kurzyna
- Department of Pulmonary Circulation, Thromboembolic Diseases and Cardiology, Centre of Postgraduate Medical Education, Fryderyk Chopin Hospital in European Health Centre Otwock, 05-400 Otwock, Poland;
| | - Jacek Roliński
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Grzegorz Kopeć
- Department of Cardiac and Vascular Diseases, Faculty of Medicine, Jagiellonian University Medical College, Centre for Rare Cardiovascular Diseases, John Paul II Hospital, 31-202 Krakow, Poland;
| |
Collapse
|
35
|
Pullamsetti SS, Nayakanti S, Chelladurai P, Mamazhakypov A, Mansouri S, Savai R, Seeger W. Cancer and pulmonary hypertension: Learning lessons and real-life interplay. Glob Cardiol Sci Pract 2020; 2020:e202010. [PMID: 33150154 PMCID: PMC7590929 DOI: 10.21542/gcsp.2020.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This article reviews the scientific reasons that support the intriguing vision of pulmonary hypertension (PH) as a disease with a cancer-like nature and to understand whether this point of view may have fruitful consequences for the overall management of PH. This review compares cancer and PH in view of Hanahan and Weinberg’s principles (i.e., hallmarks of cancer) with an emphasis on hyperproliferative, metabolic, and immune/inflammatory aspects of the disease. In addition, this review provides a perspective on the role of transcription factors and chromatin and epigenetic aberrations, besides genetics, as “common driving mechanisms” of PH hallmarks and the foreseeable use of transcription factor/epigenome targeting as multitarget approach against the hallmarks of PH. Thus, recognition of the widespread applicability and analogy of these concepts will increasingly affect the development of new means of PH treatment.
Collapse
Affiliation(s)
- Soni Savai Pullamsetti
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany.,Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, 35392, Germany
| | - Sreenath Nayakanti
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
| | - Prakash Chelladurai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
| | - Argen Mamazhakypov
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
| | - Siavash Mansouri
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany.,Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, 35392, Germany.,Institute for Lung Health (ILH), Member of the DZL, Justus Liebig University, Giessen, 35392, Germany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, 61231, Germany.,Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen, 35392, Germany.,Institute for Lung Health (ILH), Member of the DZL, Justus Liebig University, Giessen, 35392, Germany
| |
Collapse
|
36
|
Masenga SK, Elijovich F, Hamooya BM, Nzala S, Kwenda G, Heimburger DC, Mutale W, Munsaka SM, Zhao S, Koethe JR, Kirabo A. Elevated Eosinophils as a Feature of Inflammation Associated With Hypertension in Virally Suppressed People Living With HIV. J Am Heart Assoc 2020; 9:e011450. [PMID: 32064996 PMCID: PMC7070208 DOI: 10.1161/jaha.118.011450] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background People living with HIV (PLWH) are at increased risk of cardiovascular disease, including hypertension, which persists despite effective plasma viral suppression on antiretroviral therapy. HIV infection is characterized by long‐term alterations in immune function, but the contribution of immune factors to hypertension in PLWH is not fully understood. Prior studies have found that both innate and adaptive immune cell activation contributes to hypertension. Methods and Results We hypothesized that chronic inflammation may contribute to hypertension in PLWH. To test this hypothesis, we enrolled a cohort of 70 PLWH (44% hypertensive) on a long‐term single antiretroviral therapy regimen for broad phenotyping of inflammation biomarkers. We found that hypertensive PLWH had higher levels of inflammatory cytokines, including tumor necrosis factor‐α receptor 1, interleukin‐6, interleukin‐17, interleukin‐5, intercellular adhesion molecule 1 and macrophage inflammatory protein‐1α. After adjustment for age, sex, and fat mass index, the circulating eosinophils remained significantly associated with hypertension. On the basis of these results, we assessed the relationship of eosinophils and hypertension in 2 cohorts of 50 and 81 039 similar HIV‐negative people; although eosinophil count was associated with prevalent hypertension, this relationship was abrogated by body mass index. Conclusions These findings may represent a unique linkage between immune status and cardiovascular physiological characteristics in HIV infection, which should be evaluated further.
Collapse
Affiliation(s)
- Sepiso K Masenga
- School of Medicine and Health Sciences Mulungushi University Livingstone Zambia.,Department of Biomedical Sciences School of Health Sciences University of Zambia Lusaka Zambia.,Vanderbilt Institute for Global Health Vanderbilt University Medical Center Nashville TN
| | - Fernando Elijovich
- Division of Clinical Pharmacology Vanderbilt University Medical Center Nashville TN
| | - Benson M Hamooya
- School of Medicine and Health Sciences Mulungushi University Livingstone Zambia.,Department of Epidemiology and Biostatistics School of Public Health University of Zambia Lusaka Zambia
| | - Selestine Nzala
- Department of Medical Education Development University of Zambia Lusaka Zambia
| | - Geoffrey Kwenda
- Department of Biomedical Sciences School of Health Sciences University of Zambia Lusaka Zambia
| | - Douglas C Heimburger
- Vanderbilt Institute for Global Health Vanderbilt University Medical Center Nashville TN
| | - Wilbroad Mutale
- Department of Health Policy and Management School of Public Health University of Zambia Lusaka Zambia
| | - Sody M Munsaka
- Department of Biomedical Sciences School of Health Sciences University of Zambia Lusaka Zambia
| | - Shilin Zhao
- Department of Biostatistics Vanderbilt University Medical Center Nashville TN
| | - John R Koethe
- Division of Infectious Diseases Vanderbilt University Medical Center Nashville TN
| | - Annet Kirabo
- Division of Clinical Pharmacology Vanderbilt University Medical Center Nashville TN.,Department of Molecular Physiology and Biophysics Vanderbilt University Nashville TN
| |
Collapse
|
37
|
Predictive Value of Novel Inflammation-Based Biomarkers for Pulmonary Hypertension in the Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Anal Cell Pathol (Amst) 2019; 2019:5189165. [PMID: 31737467 PMCID: PMC6815641 DOI: 10.1155/2019/5189165] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022] Open
Abstract
Recently, there has been an increasing interest in the potential clinical use of several inflammatory indexes, namely, neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and systemic-immune-inflammation index (SII). This study aimed at assessing whether these markers could be early indicators of pulmonary hypertension (PH) in patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD). A total of 185 patients were enrolled in our retrospective study from January 2017 to January 2019. Receiver operating characteristic curve (ROC) and area under the curve (AUC) were used to evaluate the clinical significance of these biomarkers to predict PH in patients with AECOPD. According to the diagnostic criterion for PH by Doppler echocardiography, the patients were stratified into two groups. The study group consisted of 101 patients complicated with PH, and the control group had 84 patients. The NLR, PLR, and SII values of the PH group were significantly higher than those of the AECOPD one (p < 0.05). The blood biomarker levels were positively correlated with NT-proBNP levels, while they had no significant correlation with the estimated pulmonary arterial systolic pressure (PASP) other than PLR. NLR, PLR, and SII values were all associated with PH (p < 0.05) in the univariate analysis, but not in the multivariate analysis. The AUC of NLR used for predicting PH was 0.701 and was higher than PLR and SII. Using 4.659 as the cut-off value of NLR, the sensitivity was 81.2%, and the specificity was 59.5%. In conclusion, these simple markers may be useful in the prediction of PH in patients with AECOPD.
Collapse
|
38
|
Kwapiszewska G, Johansen AKZ, Gomez-Arroyo J, Voelkel NF. Role of the Aryl Hydrocarbon Receptor/ARNT/Cytochrome P450 System in Pulmonary Vascular Diseases. Circ Res 2019; 125:356-366. [PMID: 31242807 DOI: 10.1161/circresaha.119.315054] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RATIONALE CYPs (cytochrome p450) are critically involved in the metabolism of xenobiotics and toxins. Given that pulmonary hypertension is strongly associated with environmental exposure, we hypothesize that CYPs play a role in the development and maintenance of pathological vascular remodeling. OBJECTIVE We sought to identify key CYPs that could link drug or hormone metabolism to the development of pulmonary hypertension. METHODS AND RESULTS We searched in Medline (PubMed) database, as well as http://www.clinicaltrials.gov, for CYPs associated with many key aspects of pulmonary arterial hypertension including, but not limited to, severe pulmonary hypertension, estrogen metabolism, inflammation mechanisms, quasi-malignant cell growth, drug susceptibility, and metabolism of the pulmonary arterial hypertension-specific drugs. CONCLUSIONS We postulate a hypothesis where the AhR (aryl hydrocarbon receptor) mediates aberrant cell growth via expression of different CYPs associated with estrogen metabolism and inflammation.
Collapse
Affiliation(s)
- Grazyna Kwapiszewska
- From the Ludwig Boltzmann Institute for Lung Vascular Research, Medical University of Graz, Austria (G.K.)
| | - Anne Katrine Z Johansen
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, OH (A.K.Z.J.)
| | - Jose Gomez-Arroyo
- Division of Pulmonary and Critical Care Medicine, University of Cincinnati College of Medicine, OH (J.G.-A.)
- Division of Pulmonary Biology, Perinatal Institute of Cincinnati Children's Hospital Research Foundation, OH (J.G.-A.)
| | - Norbert F Voelkel
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, the Netherlands (N.F.V.)
| |
Collapse
|
39
|
Chacin-Fernández J, Chacin Fuenmayor M, Piñerua-Shuhaibar L, Suarez-Roca H. Psychological intervention based on psychoneuroimmunology improves clinical evolution, quality of life, and immunity of children with leukemia: A preliminary study. Health Psychol Open 2019; 6:2055102919838902. [PMID: 30967959 PMCID: PMC6444782 DOI: 10.1177/2055102919838902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We conducted a non-randomized, open-label clinical trial to assess whether a
psychoneuroimmunology-based intervention enhanced immunity in children with
acute lymphoblastic leukemia undergoing chemotherapy. In total, 16 children (44%
female) received psychoneuroimmunology-based intervention, whereas 12 (50%
female) received health psychoeducation (controls). The primary outcome was
immunity markers, being clinical conditions the secondary outcome.
Psychoneuroimmunology-based intervention increased immune markers (CD8+ T, B,
and natural killer cells, serum immunoglobulin A, and immunoglobulin M) and
quality of life, whereas it shortens the duration of fever and use of
antipyretics, antibiotics, analgesics, and respiratory therapy. Immunity markers
correlated with clinical conditions. Thus, psychoneuroimmunology-based
intervention could reduce hospital cost and increase patient well-being.
Collapse
Affiliation(s)
| | | | - Lorena Piñerua-Shuhaibar
- Instituto de Investigaciones Clinicas, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela.,Hospital Psiquiátrico de Maracaibo, Venezuela
| | - Heberto Suarez-Roca
- Instituto de Investigaciones Clinicas, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela.,Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
40
|
Pai AV, Maddox T, Sandberg K. T Cells and Hypertension: Solved and Unsolved Mysteries Regarding the Female Rat. Physiology (Bethesda) 2019; 33:254-260. [PMID: 29897303 DOI: 10.1152/physiol.00011.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
T-cell function in female animal models of hypertension is poorly understood since most research is conducted in males. Our findings in Dahl-salt-sensitive and Dahl salt-resistant rats support prior research showing sex-specific T-cell effects in the pathophysiology of hypertension. Further studies are needed to inform clinical studies in both sexes and to provide clues into immune mechanisms underlying susceptibility and resilience to developing hypertension and associated disease.
Collapse
Affiliation(s)
- Amrita V Pai
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University , Washington, DC.,Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University , Washington, DC
| | - Taylor Maddox
- Department of Medicine, Georgetown University , Washington, DC.,Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University , Washington, DC
| | - Kathryn Sandberg
- Department of Biochemistry, Molecular and Cellular Biology, Georgetown University , Washington, DC.,Department of Medicine, Georgetown University , Washington, DC.,Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University , Washington, DC
| |
Collapse
|
41
|
Frantz C, Auffray C, Avouac J, Allanore Y. Regulatory T Cells in Systemic Sclerosis. Front Immunol 2018; 9:2356. [PMID: 30374354 PMCID: PMC6196252 DOI: 10.3389/fimmu.2018.02356] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022] Open
Abstract
In recent years, accumulating evidence suggest that regulatory T cells (Tregs) are of paramount importance for the maintenance of immunological self-tolerance and immune homeostasis, even though they represent only about 5-10% of the peripheral CD4+ T cells in humans. Their key role is indeed supported by the spontaneous development of autoimmune diseases after Tregs depletion in mice. Moreover, there is also a growing literature that investigates possible contribution of Tregs numbers and activity in various autoimmune diseases. The contribution of Tregs in autoimmune disease has opened up a new therapeutic avenue based on restoring a healthy balance between Tregs and effector T-cells, such as Treg-based cellular transfer or low-dose IL-2 modulation. These therapies hold the promise of modulating the immune system without immunosuppression, while several issues regarding efficacy and safety need to be addressed. Systemic sclerosis (SSc) is an orphan connective tissue disease characterized by extensive immune abnormalities but also microvascular injury and fibrosis. Recently, data about the presence and function of Tregs in the pathogenesis of SSc have emerged although they remain scarce so far. First, there is a general agreement in the medical literature with regard to the decreased functional ability of circulating Tregs in SSc. Second the quantification of Tregs in patients have led to contradictory results; although the majority of the studies report reduced frequencies, there are conversely some indications suggesting that in case of disease activity circulating Tregs may increase. This paradoxical situation could be the result of a compensatory, but inefficient, amplification of Tregs in the context of inflammation. Nevertheless, these results must be tempered with regards to the heterogeneity of the studies for the phenotyping of the patients and of the most importance for Tregs definition and activity markers. Therefore, taking into account the appealing developments of Tregs roles in autoimmune diseases, together with preliminary data published in SSc, there is growing interest in deciphering Tregs in SSc, both in humans and mice models, to clarify whether the promises obtained in other autoimmune diseases may also apply to SSc.
Collapse
Affiliation(s)
- Camelia Frantz
- INSERM U1016, UMR8104, Cochin Institute, Paris Descartes University, Paris, France
| | - Cedric Auffray
- INSERM U1016, UMR8104, Cochin Institute, Paris Descartes University, Paris, France
| | - Jerome Avouac
- INSERM U1016, UMR8104, Cochin Institute, Paris Descartes University, Paris, France
| | - Yannick Allanore
- INSERM U1016, UMR8104, Cochin Institute, Paris Descartes University, Paris, France
| |
Collapse
|
42
|
Dewachter L, Dewachter C. Inflammation in Right Ventricular Failure: Does It Matter? Front Physiol 2018; 9:1056. [PMID: 30177883 PMCID: PMC6109764 DOI: 10.3389/fphys.2018.01056] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/16/2018] [Indexed: 01/22/2023] Open
Abstract
Right ventricular (RV) failure is a common consequence of acute and chronic RV overload of pressure, such as after pulmonary embolism and pulmonary hypertension. It has been recently realized that symptomatology and survival of patients with pulmonary hypertension are essentially determined by RV function adaptation to increased afterload. Therefore, improvement of RV function and reversal of RV failure are treatment goals. Currently, the pathophysiology and the pathobiology underlying RV failure remain largely unknown. A better understanding of the pathophysiological processes involved in RV failure is needed, as there is no proven treatment for this disease at the moment. The present review aims to summarize the current understanding of the pathogenesis of RV failure, focusing on inflammation. We attempt to formally emphasize the importance of inflammation and associated representative inflammatory molecules and cells in the primum movens and development of RV failure in humans and in experimental models. We present inflammatory biomarkers and immune mediators involved in RV failure. We focus on inflammatory mediators and cells which seem to correlate with the deterioration of RV function and also explain how all these inflammatory mediators and cells might impact RV function adaptation to increased afterload. Finally, we also discuss the evidence on potential beneficial effects of targeted anti-inflammatory agents in the setting of acute and chronic RV failure.
Collapse
Affiliation(s)
- Laurence Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Céline Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.,Department of Cardiology, Erasmus Academic Hospital, Brussels, Belgium
| |
Collapse
|
43
|
Myeloid-Derived Suppressor Cells and Pulmonary Hypertension. Int J Mol Sci 2018; 19:ijms19082277. [PMID: 30081463 PMCID: PMC6121540 DOI: 10.3390/ijms19082277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 01/04/2023] Open
Abstract
Myeloid–derived suppressor cells (MDSCs) comprised a heterogeneous subset of bone marrow–derived myeloid cells, best studied in cancer research, that are increasingly implicated in the pathogenesis of pulmonary vascular remodeling and the development of pulmonary hypertension. Stem cell transplantation represents one extreme interventional strategy for ablating the myeloid compartment but poses a number of translational challenges. There remains an outstanding need for additional therapeutic targets to impact MDSC function, including the potential to alter interactions with innate and adaptive immune subsets, or alternatively, alter trafficking receptors, metabolic pathways, and transcription factor signaling with readily available and safe drugs. In this review, we summarize the current literature on the role of myeloid cells in the development of pulmonary hypertension, first in pulmonary circulation changes associated with myelodysplastic syndromes, and then by examining intrinsic myeloid cell changes that contribute to disease progression in pulmonary hypertension. We then outline several tractable targets and pathways relevant to pulmonary hypertension via MDSC regulation. Identifying these MDSC-regulated effectors is part of an ongoing effort to impact the field of pulmonary hypertension research through identification of myeloid compartment-specific therapeutic applications in the treatment of pulmonary vasculopathies.
Collapse
|
44
|
Smukowska-Gorynia A, Marcinkowska J, Chmara E, Malaczynska-Rajpold K, Slawek-Szmyt S, Cieslewicz A, Janus M, Araszkiewicz A, Jankiewicz S, Komosa A, Olasinska-Wisniewska A, Tomaszewska I, Mularek-Kubzdela T. Neopterin as a Biomarker in Patients with Pulmonary Arterial Hypertension and Chronic Thromboembolic Pulmonary Hypertension. Respiration 2018; 96:222-230. [PMID: 29909420 DOI: 10.1159/000488908] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/27/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Upregulation of the immune system is regarded to play an important role in the etiopathobiology of pulmonary arterial hypertension (PAH) and inoperable chronic thromboembolic pulmonary hypertension (CTEPH). To the best of our knowledge, neopterin (NP) has never been investigated in patients with PAH and CTEPH. OBJECTIVES The aim of the study was to evaluate the concentration of NP in blood in order to examine its impact on outcome and relationship with disease severity in that population. METHODS Serum concentration of NP was analysed prospectively in 50 patients (36 with PAH and 14 with CTEPH vs. 31 healthy controls) and assessed in relation to clinical parameters and outcome. RESULTS NP concentration in the PAH and CTEPH groups combined was significantly higher than in the control group (8.68, 6.39-15.03 vs. 5.14, 4.16-5.98 nmol/L, p < 0.0000001). During 9 months of follow-up, clinical deterioration occurred in 18 patients (including 8 deaths), and NP concentration in this group was higher when compared to stable patients (15.6, 8.52-25.13 vs. 7.87, 6.18-9.89, p = 0.002). The cutoff value of NP derived from ROC curve analysis was 15.3 nmol/L (p = 0.002, AUC 0.77, p = 0.0004, HR = 4.35, 95% CI 1.43-13.18, log-rank test). On Cox regression analysis, NP predicted clinical deterioration (p = 0.009, 95% CI 1.01-1.06). NP correlated positively with NT-proBNP (p < 0.001), red blood cell distribution width (p < 0.001), and right atrium area (p = 0.002) and inversely with 6-min walking test (p = 0.002) and peak oxygen consumption (p = 0.001). CONCLUSIONS NP concentration is increased in patients with PAH and inoperable CTEPH. Elevated NP concentration is associated with adverse clinical outcomes and correlates with clinical parameters.
Collapse
Affiliation(s)
| | - Justyna Marcinkowska
- Department of Computer Science and Statistics, University of Medical Sciences, Poznan, Poland
| | - Ewa Chmara
- Department of Clinical Pharmacology, University of Medical Sciences, Poznan, Poland
| | | | - Sylwia Slawek-Szmyt
- 1st Department of Cardiology, University of Medical Sciences, Poznan, Poland
| | - Artur Cieslewicz
- Department of Clinical Pharmacology, University of Medical Sciences, Poznan, Poland
| | - Magdalena Janus
- 1st Department of Cardiology, University of Medical Sciences, Poznan, Poland
| | | | | | - Anna Komosa
- 1st Department of Cardiology, University of Medical Sciences, Poznan, Poland
| | | | - Iga Tomaszewska
- 1st Department of Cardiology, University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
45
|
Tamosiuniene R, Manouvakhova O, Mesange P, Saito T, Qian J, Sanyal M, Lin YC, Nguyen LP, Luria A, Tu AB, Sante JM, Rabinovitch M, Fitzgerald DJ, Graham BB, Habtezion A, Voelkel NF, Aurelian L, Nicolls MR. Dominant Role for Regulatory T Cells in Protecting Females Against Pulmonary Hypertension. Circ Res 2018; 122:1689-1702. [PMID: 29545367 DOI: 10.1161/circresaha.117.312058] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/09/2018] [Accepted: 03/13/2018] [Indexed: 12/18/2022]
Abstract
RATIONALE Pulmonary arterial hypertension (PH) is a life-threatening condition associated with immune dysregulation and abnormal regulatory T cell (Treg) activity, but it is currently unknown whether and how abnormal Treg function differentially affects males and females. OBJECTIVE To evaluate whether and how Treg deficiency differentially affects male and female rats in experimental PH. METHODS AND RESULTS Male and female athymic rnu/rnu rats, lacking Tregs, were treated with the VEGFR2 (vascular endothelial growth factor receptor 2) inhibitor SU5416 or chronic hypoxia and evaluated for PH; some animals underwent Treg immune reconstitution before SU5416 administration. Plasma PGI2 (prostacyclin) levels were measured. Lung and right ventricles were assessed for the expression of the vasoprotective proteins COX-2 (cyclooxygenase 2), PTGIS (prostacyclin synthase), PDL-1 (programmed death ligand 1), and HO-1 (heme oxygenase 1). Inhibitors of these pathways were administered to athymic rats undergoing Treg immune reconstitution. Finally, human cardiac microvascular endothelial cells cocultured with Tregs were evaluated for COX-2, PDL-1, HO-1, and ER (estrogen receptor) expression, and culture supernatants were assayed for PGI2 and IL (interleukin)-10. SU5416-treatment and chronic hypoxia produced more severe PH in female than male athymic rats. Females were distinguished by greater pulmonary inflammation, augmented right ventricular fibrosis, lower plasma PGI2 levels, decreased lung COX-2, PTGIS, HO-1, and PDL-1 expression and reduced right ventricular PDL-1 levels. In both sexes, Treg immune reconstitution protected against PH development and raised levels of plasma PGI2 and cardiopulmonary COX-2, PTGIS, PDL-1, and HO-1. Inhibiting COX-2, HO-1, and PD-1 (programmed death 1)/PDL-1 pathways abrogated Treg protection. In vitro, human Tregs directly upregulated endothelial COX-2, PDL-1, HO-1, ERs and increased supernatant levels of PGI2 and IL-10. CONCLUSIONS In 2 animal models of PH based on Treg deficiency, females developed more severe PH than males. The data suggest that females are especially reliant on the normal Treg function to counteract the effects of pulmonary vascular injury leading to PH.
Collapse
Affiliation(s)
- Rasa Tamosiuniene
- From the Stanford University School of Medicine, Department of Medicine, CA (R.T., P.M., T.S., J.Q., M.S., L.P.N., A.L., M.R., A.H., L.A., M.R.N.)
| | - Olga Manouvakhova
- VA Palo Alto Health Care System, CA (O.M., Y.-C.L., A.L., A.B.T., J.M.S., M.R.N.)
| | - Paul Mesange
- From the Stanford University School of Medicine, Department of Medicine, CA (R.T., P.M., T.S., J.Q., M.S., L.P.N., A.L., M.R., A.H., L.A., M.R.N.)
| | - Toshie Saito
- From the Stanford University School of Medicine, Department of Medicine, CA (R.T., P.M., T.S., J.Q., M.S., L.P.N., A.L., M.R., A.H., L.A., M.R.N.)
| | - Jin Qian
- From the Stanford University School of Medicine, Department of Medicine, CA (R.T., P.M., T.S., J.Q., M.S., L.P.N., A.L., M.R., A.H., L.A., M.R.N.)
| | - Mrinmoy Sanyal
- From the Stanford University School of Medicine, Department of Medicine, CA (R.T., P.M., T.S., J.Q., M.S., L.P.N., A.L., M.R., A.H., L.A., M.R.N.)
| | - Yu-Chun Lin
- VA Palo Alto Health Care System, CA (O.M., Y.-C.L., A.L., A.B.T., J.M.S., M.R.N.)
| | - Linh P Nguyen
- From the Stanford University School of Medicine, Department of Medicine, CA (R.T., P.M., T.S., J.Q., M.S., L.P.N., A.L., M.R., A.H., L.A., M.R.N.)
| | - Amir Luria
- From the Stanford University School of Medicine, Department of Medicine, CA (R.T., P.M., T.S., J.Q., M.S., L.P.N., A.L., M.R., A.H., L.A., M.R.N.).,VA Palo Alto Health Care System, CA (O.M., Y.-C.L., A.L., A.B.T., J.M.S., M.R.N.)
| | - Allen B Tu
- VA Palo Alto Health Care System, CA (O.M., Y.-C.L., A.L., A.B.T., J.M.S., M.R.N.)
| | - Joshua M Sante
- VA Palo Alto Health Care System, CA (O.M., Y.-C.L., A.L., A.B.T., J.M.S., M.R.N.)
| | - Marlene Rabinovitch
- From the Stanford University School of Medicine, Department of Medicine, CA (R.T., P.M., T.S., J.Q., M.S., L.P.N., A.L., M.R., A.H., L.A., M.R.N.)
| | | | - Brian B Graham
- University of Colorado Denver, School of Medicine, Department of Medicine, Aurora (B.B.G.)
| | - Aida Habtezion
- From the Stanford University School of Medicine, Department of Medicine, CA (R.T., P.M., T.S., J.Q., M.S., L.P.N., A.L., M.R., A.H., L.A., M.R.N.)
| | - Norbert F Voelkel
- Virginia Commonwealth University School of Medicine, Department of Internal Medicine, Richmond (N.F.V.)
| | - Laure Aurelian
- From the Stanford University School of Medicine, Department of Medicine, CA (R.T., P.M., T.S., J.Q., M.S., L.P.N., A.L., M.R., A.H., L.A., M.R.N.).,University of Maryland School of Medicine, Baltimore (L.A.)
| | - Mark R Nicolls
- From the Stanford University School of Medicine, Department of Medicine, CA (R.T., P.M., T.S., J.Q., M.S., L.P.N., A.L., M.R., A.H., L.A., M.R.N.) .,VA Palo Alto Health Care System, CA (O.M., Y.-C.L., A.L., A.B.T., J.M.S., M.R.N.)
| |
Collapse
|
46
|
Li C, Liu P, Song R, Zhang Y, Lei S, Wu S. Immune cells and autoantibodies in pulmonary arterial hypertension. Acta Biochim Biophys Sin (Shanghai) 2017; 49:1047-1057. [PMID: 29036539 DOI: 10.1093/abbs/gmx095] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Indexed: 12/19/2022] Open
Abstract
Analyses of immunity in pulmonary arterial hypertension (PAH) support the notion that maladaptation of the immune response exists. Altered immunity is an increasingly recognized feature of PAH. Indeed, a delicate balance between immunity and tolerance exists and any disturbance may result in chronic inflammation or autoimmunity. This is suggested by infiltration of various immune cells (e.g. macrophages, T and B lymphocytes) in remodeled pulmonary vessels. In addition, several types of autoantibodies directed against antinuclear antigens, endothelial cells (ECs) and fibroblasts have been found in idiopathic and systemic sclerosis-associated PAH. These autoantibodies may play an important role in EC apoptosis and in the expression of cell adhesion molecules. This review article provides an overview of immunity pathways highlighting their potential roles in pulmonary vascular remodeling in PAH and the possibility of future targeted therapy.
Collapse
Affiliation(s)
- Cheng Li
- Department of Respiratory Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Pingping Liu
- Department of Emergency, Hunan Children's Hospital, Changsha, China
| | - Rong Song
- Department of Respiratory Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yiqing Zhang
- Department of Respiratory Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Si Lei
- Department of Respiratory Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Shangjie Wu
- Department of Respiratory Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
47
|
Jafri S, Ormiston ML. Immune regulation of systemic hypertension, pulmonary arterial hypertension, and preeclampsia: shared disease mechanisms and translational opportunities. Am J Physiol Regul Integr Comp Physiol 2017; 313:R693-R705. [PMID: 28978513 DOI: 10.1152/ajpregu.00259.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/11/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022]
Abstract
Systemic hypertension, preeclampsia, and pulmonary arterial hypertension (PAH) are diseases of high blood pressure in the systemic or pulmonary circulation. Beyond the well-defined contribution of more traditional pathophysiological mechanisms, such as changes in the renin-angiotensin-aldosterone system, to the development of these hypertensive disorders, there is substantial clinical evidence supporting an important role for inflammation and immunity in the pathogenesis of each of these three conditions. Over the last decade, work in small animal models, bearing targeted deficiencies in specific cytokines or immune cell subsets, has begun to clarify the immune-mediated mechanisms that drive changes in vascular structure and tone in hypertensive disease. By summarizing the clinical and experimental evidence supporting a contribution of the immune system to systemic hypertension, preeclampsia, and PAH, the current review highlights the cellular and molecular pathways that are common to all three hypertensive disorders. These mechanisms are centered on an imbalance in CD4+ helper T cell populations, defined by excessive Th17 responses and impaired Treg activity, as well as the excessive activation or impairment of additional immune cell types, including macrophages, dendritic cells, CD8+ T cells, B cells, and natural killer cells. The identification of common immune mechanisms in systemic hypertension, preeclampsia, and PAH raises the possibility of new therapeutic strategies that target the immune component of hypertension across multiple disorders.
Collapse
Affiliation(s)
- Salema Jafri
- University of Cambridge, Department of Medicine, Cambridge, United Kingdom; and
| | - Mark L Ormiston
- Queen's University, Departments of Biomedical and Molecular Sciences, Medicine and Surgery, Kingston, Canada
| |
Collapse
|
48
|
Nicolls MR, Voelkel NF. The Roles of Immunity in the Prevention and Evolution of Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2017; 195:1292-1299. [PMID: 27786553 PMCID: PMC5443903 DOI: 10.1164/rccm.201608-1630pp] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 10/21/2016] [Indexed: 12/31/2022] Open
Affiliation(s)
- Mark R. Nicolls
- Division of Pulmonary and Critical Care Medicine, Veterans Affairs Palo Alto/Stanford University, Palo Alto, California; and
| | - Norbert F. Voelkel
- School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
49
|
Breitling S, Hui Z, Zabini D, Hu Y, Hoffmann J, Goldenberg NM, Tabuchi A, Buelow R, Dos Santos C, Kuebler WM. The mast cell–B cell axis in lung vascular remodeling and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2017; 312:L710-L721. [DOI: 10.1152/ajplung.00311.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 01/22/2023] Open
Abstract
Over past years, a critical role for the immune system and, in particular, for mast cells in the pathogenesis of pulmonary hypertension (PH) has emerged. However, the way in which mast cells promote PH is still poorly understood. Here, we investigated the mechanisms by which mast cells may contribute to PH, specifically focusing on the interaction between the innate and adaptive immune response and the role of B cells and autoimmunity. Experiments were performed in Sprague-Dawley rats and B cell-deficient JH-KO rats in the monocrotaline, Sugen/hypoxia, and the aortic banding model of PH. Hemodynamics, cell infiltration, IL-6 expression, and vascular remodeling were analyzed. Gene array analyses revealed constituents of immunoglobulins as most prominently regulated mast cell-dependent genes in the lung in experimental PH. IL-6 was shown to link mast cells to B cells, as 1) IL-6 was upregulated and colocalized with mast cells and was reduced by mast-cell stabilizers and 2) IL-6 or mast cell blockade reduced B cells in lungs of monocrotaline-treated rats. A functional role for B cells in PH was demonstrated in that either blocking B cells by an anti-CD20 antibody or B-cell deficiency in JH-KO rats attenuated right ventricular systolic pressure and vascular remodeling in experimental PH. We here identify a mast cell–B cell axis driven by IL-6 as a critical immune pathway in the pathophysiology of PH. Our results provide novel insights into the role of the immune system in PH, which may be therapeutically exploited by targeted immunotherapy.
Collapse
Affiliation(s)
- Siegfried Breitling
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Zhang Hui
- Institute of Physiology, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Diana Zabini
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Yijie Hu
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Julia Hoffmann
- Institute of Physiology, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Neil M. Goldenberg
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Arata Tabuchi
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Institute of Physiology, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Roland Buelow
- Open Monoclonal Technology, Incorporated, Palo Alto, California
| | - Claudia Dos Santos
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Wolfgang M. Kuebler
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Toronto, Ontario, Canada
- Institute of Physiology, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Departments of Surgery and Physiology, University of Toronto, Toronto, Ontario, Canada; and
- German Heart Institute Berlin, Berlin, Germany
| |
Collapse
|
50
|
Harbaum L, Renk E, Yousef S, Glatzel A, Lüneburg N, Hennigs JK, Oqueka T, Baumann HJ, Atanackovic D, Grünig E, Böger RH, Bokemeyer C, Klose H. Acute effects of exercise on the inflammatory state in patients with idiopathic pulmonary arterial hypertension. BMC Pulm Med 2016; 16:145. [PMID: 27835955 PMCID: PMC5106767 DOI: 10.1186/s12890-016-0301-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/27/2016] [Indexed: 12/18/2022] Open
Abstract
Background Exercise training positively influences exercise tolerance and functional capacity of patients with idiopathic pulmonary arterial hypertension (IPAH). However, the underlying mechanisms are unclear. We hypothesized that exercise modulates the activated inflammatory state found in IPAH patients. Methods Single cardiopulmonary exercise testing was performed in 16 IPAH patients and 10 healthy subjects. Phenotypic characterization of peripheral blood mononuclear cells and circulating cytokines were assessed before, directly after and 1 h after exercise. Results Before exercise testing, IPAH patients showed elevated Th2 lymphocytes, regulatory T lymphocytes, IL-6, and TNF-alpha, whilst Th1/Th17 lymphocytes and IL-4 were reduced. In IPAH patients but not in healthy subject, exercise caused an immediate relative decrease of Th17 lymphocytes and a sustained reduction of IL-1-beta and IL-6. The higher the decrease of IL-6 the higher was the peak oxygen consumption of IPAH patients. Conclusions Exercise seems to be safe from an immune and inflammatory point of view in IPAH patients. Our results demonstrate that exercise does not aggravate the inflammatory state and seems to elicit an immune-modulating effect in IPAH patients.
Collapse
Affiliation(s)
- Lars Harbaum
- Center for Pulmonary Arterial Hypertension, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Section Pneumology, Department of Medicine II, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Emilia Renk
- Center for Pulmonary Arterial Hypertension, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Section Pneumology, Department of Medicine II, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Sara Yousef
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, Salt Lake City, USA.,Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Antonia Glatzel
- Center for Pulmonary Arterial Hypertension, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicole Lüneburg
- Center for Pulmonary Arterial Hypertension, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan K Hennigs
- Section Pneumology, Department of Medicine II, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.,Cardiovascular Institute and Department of Pediatrics, Wall Center for Pulmonary Vascular Diseases, Stanford University School of Medicine, Stanford, USA
| | - Tim Oqueka
- Center for Pulmonary Arterial Hypertension, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Section Pneumology, Department of Medicine II, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Hans J Baumann
- Section Pneumology, Department of Medicine II, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Djordje Atanackovic
- Section Pneumology, Department of Medicine II, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.,Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, Salt Lake City, USA
| | - Ekkehard Grünig
- Center for Pulmonary Hypertension, Thoraxclinic, University Hospital Heidelberg, Heidelberg, Germany
| | - Rainer H Böger
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Section Pneumology, Department of Medicine II, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Hans Klose
- Center for Pulmonary Arterial Hypertension, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Section Pneumology, Department of Medicine II, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|