1
|
Hasin N, Riggs LM, Shekhtman T, Ashworth J, Lease R, Oshone RT, Humphries EM, Badner JA, Thomson PA, Glahn DC, Craig DW, Edenberg HJ, Gershon ES, McMahon FJ, Nurnberger JI, Zandi PP, Kelsoe JR, Roach JC, Gould TD, Ament SA. Rare variants implicate NMDA receptor signaling and cerebellar gene networks in risk for bipolar disorder. Mol Psychiatry 2022; 27:3842-3856. [PMID: 35546635 DOI: 10.1038/s41380-022-01609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023]
Abstract
Bipolar disorder is an often-severe mental health condition characterized by alternation between extreme mood states of mania and depression. Despite strong heritability and the recent identification of 64 common variant risk loci of small effect, pathophysiological mechanisms remain unknown. Here, we analyzed genome sequences from 41 multiply-affected pedigrees and identified variants in 741 genes with nominally significant linkage or association with bipolar disorder. These 741 genes overlapped known risk genes for neurodevelopmental disorders and clustered within gene networks enriched for synaptic and nuclear functions. The top variant in this analysis - prioritized by statistical association, predicted deleteriousness, and network centrality - was a missense variant in the gene encoding D-amino acid oxidase (DAOG131V). Heterologous expression of DAOG131V in human cells resulted in decreased DAO protein abundance and enzymatic activity. In a knock-in mouse model of DAOG131, DaoG130V/+, we similarly found decreased DAO protein abundance in hindbrain regions, as well as enhanced stress susceptibility and blunted behavioral responses to pharmacological inhibition of N-methyl-D-aspartate receptors (NMDARs). RNA sequencing of cerebellar tissue revealed that DaoG130V resulted in decreased expression of two gene networks that are enriched for synaptic functions and for genes expressed, respectively, in Purkinje neurons or granule neurons. These gene networks were also down-regulated in the cerebellum of patients with bipolar disorder compared to healthy controls and were enriched for additional rare variants associated with bipolar disorder risk. These findings implicate dysregulation of NMDAR signaling and of gene expression in cerebellar neurons in bipolar disorder pathophysiology and provide insight into its genetic architecture.
Collapse
Affiliation(s)
- Naushaba Hasin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lace M Riggs
- Program in Neuroscience and Training Program in Integrative Membrane Biology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tatyana Shekhtman
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Robert Lease
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rediet T Oshone
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elizabeth M Humphries
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Molecular Epidemiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Judith A Badner
- Department of Psychiatry, Rush University Medical College, Chicago, IL, USA
| | - Pippa A Thomson
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, UK
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David W Craig
- Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA
| | - Howard J Edenberg
- Departments of Biochemistry and Molecular Biology and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elliot S Gershon
- Departments of Psychiatry and Human Genetics, University of Chicago, Chicago, IL, USA
| | - Francis J McMahon
- Intramural Research Program, National Institute of Mental Health, Bethesda, MD, USA
| | - John I Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Peter P Zandi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - John R Kelsoe
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Departments of Pharmacology and Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Veterans Affairs Maryland Health Care System, Baltimore, MD, USA
| | - Seth A Ament
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Association between a TCF4 Polymorphism and Susceptibility to Schizophrenia. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1216303. [PMID: 32280673 PMCID: PMC7115149 DOI: 10.1155/2020/1216303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/09/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022]
Abstract
The basic helix-loop-helix (bHLH) transcription factor 4 (TCF4) had been identified as a susceptibility gene associated with schizophrenia (SCZ) by GWAS, but inconsistent results have been found in other studies. To validate these findings and to reveal the effects of different inheritance models, rs2958182, rs1261085, rs8766, and rs12966547 of the TCF4 gene were genotyped in the Northwest Han Chinese population (448 cases and 628 controls) via a multiplex polymerase chain reaction SNPscan assay. Single SNP, genotype, and association analyses with three different models were performed. We observed genotype and allele distributions of four SNPs that showed nonsignificant associations in the Northwest Han Chinese population. However, published datasets (51,892 cases and 68,498 controls) were collected and combined with our experimental results to ascertain the association of the TCF4 gene SNPs and SCZ, which demonstrated that rs2958182 (P=0.003) was a significant signal based on a systematic meta-analysis. To clarify the biological role of rs2958182, it is important to improve the understanding of the pathophysiology of SCZ.
Collapse
|
3
|
Cheng Z, Zhou H, Sherva R, Farrer LA, Kranzler HR, Gelernter J. Genome-wide Association Study Identifies a Regulatory Variant of RGMA Associated With Opioid Dependence in European Americans. Biol Psychiatry 2018; 84:762-770. [PMID: 29478698 PMCID: PMC6041180 DOI: 10.1016/j.biopsych.2017.12.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/22/2017] [Accepted: 12/30/2017] [Indexed: 01/07/2023]
Abstract
BACKGROUND Opioid dependence (OD) is at epidemic levels in the United States. Genetic studies can provide insight into its biology. METHODS We completed an OD genome-wide association study in 3058 opioid-exposed European Americans, 1290 of whom met criteria for a DSM-IV diagnosis of OD. Analysis used DSM-IV criterion count. RESULTS By meta-analysis of four cohorts, Yale-Penn 1 (n = 1388), Yale-Penn 2 (n = 996), Yale-Penn 3 (n = 98), and SAGE (Study of Addiction: Genetics and Environment) (n = 576), we identified a variant on chromosome 15, rs12442183, near RGMA, associated with OD (p = 1.3 × 10-8). The association was also genome-wide significant in Yale-Penn 1 taken individually and nominally significant in two of the other three samples. The finding was further supported in a meta-analysis of all available opioid-exposed African Americans (n = 2014 [1106 meeting DSM-IV OD criteria]; p = 3.0 × 10-3) from three cohorts; there was nominal significance in two of these samples. Thus, of seven subsamples examined in two populations, one was genome-wide significant, and four of six were nominally (or nearly) significant. RGMA encodes repulsive guidance molecule A, which is a central nervous system axon guidance protein. Risk allele rs12442183*T was correlated with higher expression of a specific RGMA transcript variant in frontal cortex (p = 2 × 10-3). After chronic morphine injection, the homologous mouse gene (Rgma) was upregulated in C57BL/6J striatum. Coexpression analysis of 1301 brain samples revealed that RGMA messenger RNA expression was associated with that of four genes implicated in other psychiatric disorders, including GRIN1. CONCLUSIONS This is the first study to demonstrate an association of RGMA with OD. It provides a new lead into our understanding of OD pathophysiology.
Collapse
Affiliation(s)
- Zhongshan Cheng
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, Massachusetts; VA Connecticut Healthcare Center, West Haven, Massachusetts
| | - Hang Zhou
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, Massachusetts; VA Connecticut Healthcare Center, West Haven, Massachusetts
| | - Richard Sherva
- Departments of Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics, Boston University School of Medicine and School Public Health, Boston, Massachusetts
| | - Lindsay A Farrer
- Departments of Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics, Boston University School of Medicine and School Public Health, Boston, Massachusetts
| | - Henry R Kranzler
- Center for Studies of Addiction, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania
| | - Joel Gelernter
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven, Massachusetts; Departments of Genetics and Neuroscience, Yale University School of Medicine, New Haven, Massachusetts; VA Connecticut Healthcare Center, West Haven, Massachusetts.
| |
Collapse
|
4
|
Saini SM, Mancuso SG, Mostaid MS, Liu C, Pantelis C, Everall IP, Bousman CA. Meta-analysis supports GWAS-implicated link between GRM3 and schizophrenia risk. Transl Psychiatry 2017; 7:e1196. [PMID: 28786982 PMCID: PMC5611739 DOI: 10.1038/tp.2017.172] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 06/20/2017] [Indexed: 12/29/2022] Open
Abstract
Genome-wide association study (GWAS) evidence has identified the metabotropic glutamate receptor 3 (GRM3) gene as a potential harbor for schizophrenia risk variants. However, previous meta-analyses have refuted the association between GRM3 single-nucleotide polymorphisms (SNPs) and schizophrenia risk. To reconcile these conflicting findings, we conducted the largest and most comprehensive meta-analysis of 14 SNPs in GRM3 from a total of 11 318 schizophrenia cases, 13 820 controls and 486 parent-proband trios. We found significant associations for three SNPs (rs2237562: odds ratio (OR)=1.06, 95% confidence interval (CI)=1.02-1.11, P=0.017; rs13242038: OR=0.90, 95% CI=0.85-0.96, P=0.016 and rs917071: OR=0.94, 95% CI=0.91-0.97, P=0.003). Two of these SNPs (rs2237562, rs917071) were in strong-to-moderate linkage disequilibrium with the top GRM3 GWAS significant SNP (rs12704290) reported by the Schizophrenia Working Group of the Psychiatric Genomics Consortium. We also found evidence for population stratification related to rs2237562 in that the 'risk' allele was dependent on the population under study. Our findings support the GWAS-implicated link between GRM3 genetic variation and schizophrenia risk as well as the notion that alleles conferring this risk may be population specific.
Collapse
Affiliation(s)
- S M Saini
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia
- Department of Psychiatry, UKM Medical Center, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - S G Mancuso
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia
| | - Md S Mostaid
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia
| | - C Liu
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia
| | - C Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC, Australia
- North Western Mental Health, Melbourne Health, Parkville, VIC, Australia
| | - I P Everall
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC, Australia
- North Western Mental Health, Melbourne Health, Parkville, VIC, Australia
| | - C A Bousman
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Parkville, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
- Department of General Practice, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
5
|
Yang X, Wang G, Wang Y, Yue X. Association of metabotropic glutamate receptor 3 gene polymorphisms with schizophrenia risk: evidence from a meta-analysis. Neuropsychiatr Dis Treat 2015; 11:823-33. [PMID: 25848280 PMCID: PMC4378872 DOI: 10.2147/ndt.s77966] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To date, the role of metabotropic glutamate receptor 3 (GRM3) rs274622, rs1468412, rs917071, rs6465084, and rs2299225 polymorphisms in schizophrenia remains controversial. To provide a clearer picture for the effect of the five most studied GRM3 polymorphisms on risk of schizophrenia, this meta-analysis with eligible data from published studies was performed. Relevant case-control studies were retrieved by literature search and selected according to established inclusion criteria. Odds ratios with 95% confidence intervals were used to assess the strength of association. A total of 33 individual studies were identified and included in our meta-analysis: nine for rs1468412, with 5,314 cases and 6,147 controls; six for rs917071, with 2,660 cases and 3,517 controls; seven for rs274622, with 3,820 cases and 4,015 controls; five for rs2299225, with 3,492 cases and 3,735 controls; and six for rs6465084, with 4,960 cases and 5,613 controls. However, no significant association was found between these GRM3 polymorphisms and schizophrenia in the overall population. With respect to rs1468412 polymorphism, a finding of very borderline statistical significance emerged in dominant comparison model for non-Asian populations, calling for large-scale verification to assess the marginally elevated risk of schizophrenia. In conclusion, these GRM3 polymorphisms have limited effect on the risks of schizophrenia. Further large and well-designed studies are needed to confirm this conclusion.
Collapse
Affiliation(s)
- Xiaoqin Yang
- Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, People's Republic of China
| | - Guiping Wang
- Department of Pharmacy, College of Health Sciences, Guangzhou Medical University, People's Republic of China
| | - Yaodong Wang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| | - Xia Yue
- Department of Forensic Medicine, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
6
|
Orlando R, Borro M, Motolese M, Molinaro G, Scaccianoce S, Caruso A, di Nuzzo L, Caraci F, Matrisciano F, Pittaluga A, Mairesse J, Simmaco M, Nisticò R, Monn JA, Nicoletti F. Levels of the Rab GDP dissociation inhibitor (GDI) are altered in the prenatal restrain stress mouse model of schizophrenia and are differentially regulated by the mGlu2/3 receptor agonists, LY379268 and LY354740. Neuropharmacology 2014; 86:133-44. [PMID: 25063582 DOI: 10.1016/j.neuropharm.2014.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 11/24/2022]
Abstract
LY379268 and LY354740, two agonists of mGlu2/3 metabotropic glutamate receptors, display different potencies in mouse models of schizophrenia. This differential effect of the two drugs remains unexplained. We performed a proteomic analysis in cultured cortical neurons challenged with either LY379268 or LY354740. Among the few proteins that were differentially influenced by the two drugs, Rab GDP dissociation inhibitor-β (Rab GDIβ) was down-regulated by LY379268 and showed a trend to an up-regulation in response to LY354740. In cultured hippocampal neurons, LY379268 selectively down-regulated the α isoform of Rab GDI. Rab GDI inhibits the activity of the synaptic vesicle-associated protein, Rab3A, and is reduced in the brain of schizophrenic patients. We examined the expression of Rab GDI in mice exposed to prenatal stress ("PRS mice"), which have been described as a putative model of schizophrenia. Rab GDIα protein levels were increased in the hippocampus of PRS mice at postnatal days (PND)1 and 21, but not at PND60. At PND21, PRS mice also showed a reduced depolarization-evoked [(3)H]d-aspartate release in hippocampal synaptosomes. The increase in Rab GDIα levels in the hippocampus of PRS mice was reversed by a 7-days treatment with LY379268 (1 or 10 mg/kg, i.p.), but not by treatment with equal doses of LY354740. These data strengthen the validity of PRS mice as a model of schizophrenia, and show for the first time a pharmacodynamic difference between LY379268 and LY354740 which might be taken into account in an attempt to explain the differential effect of the two drugs across mouse models.
Collapse
Affiliation(s)
- Rosamaria Orlando
- IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy
| | - Marina Borro
- NESMOS Department, Advanced Molecular Diagnostic Unit, Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | | | | | - Sergio Scaccianoce
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| | - Alessandra Caruso
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| | - Luigi di Nuzzo
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| | - Filippo Caraci
- IRCCS Associazione Oasi Maria S.S., Institute for Research on Mental Retardation and Brain Aging, Troina, Enna, Italy; Department of Educational Sciences, University of Catania, Catania, Italy
| | | | - Anna Pittaluga
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | - Jerome Mairesse
- Neural Plasticity Team, Université Lille 1, International Associated Laboratory (LIA), France
| | - Maurizio Simmaco
- NESMOS Department, Advanced Molecular Diagnostic Unit, Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Robert Nisticò
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| | - James A Monn
- Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, Italy; Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy.
| |
Collapse
|
7
|
Tan J, Lin Y, Su L, Yan Y, Chen Q, Jiang H, Wei Q, Gu L. Association between DAOA gene polymorphisms and the risk of schizophrenia, bipolar disorder and depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2014; 51:89-98. [PMID: 24447945 DOI: 10.1016/j.pnpbp.2014.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 01/09/2014] [Accepted: 01/10/2014] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Schizophrenia (SCZ), bipolar disorder (BD) and depressive disorder (DD) are common psychiatric disorders, which show common genetic vulnerability. Previous gene-disease association studies have reported correlations between d-amino acid oxidase activator (DAOA) gene polymorphisms and the three psychiatric disorders. However, the findings were contradictory. A meta-analysis was therefore conducted to provide more robust investigations into DAOA polymorphisms and the risk of SCZ, BD and DD. METHODS This meta-analysis recruited 46 published studies up to July 2013, including 17,515 cases and 25,189 controls. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to evaluate the association between three specific DAOA SNPs and SCZ, BD and DD. Publication bias was tested by Begg's test and funnel plot, and heterogeneity was assessed by the Cochran's chi-square-based Q statistic and the inconsistency index (I(2)). Moreover, the robustness of the findings was estimated by cumulative meta-analysis. RESULTS DAOA genetic polymorphisms (M15, M18 and M23) were not found to confer a statistically significant increased risk of SCZ, BD or DD in the overall sample, or in Caucasians and Asians following subgroup analysis. CONCLUSION The current study indicated that M15, M18 and M23 might not be the risk factor for SCZ, BD or DD. However, further studies are required to provide robust evidence to estimate the association between DAOA polymorphisms and psychiatric disorders.
Collapse
Affiliation(s)
- Jinjing Tan
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, 89-9 Dongge Road, Nanning, Guangxi, China
| | - Yu Lin
- School of Preclinical Medicine of Guangxi Medical University, Nanning, Guangxi, China
| | - Li Su
- School of Public Health of Guangxi Medical University, Nanning, Guangxi, China
| | - Yan Yan
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, 89-9 Dongge Road, Nanning, Guangxi, China
| | - Qing Chen
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, 89-9 Dongge Road, Nanning, Guangxi, China
| | - Haiyun Jiang
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, 89-9 Dongge Road, Nanning, Guangxi, China
| | - Qiugui Wei
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, 89-9 Dongge Road, Nanning, Guangxi, China
| | - Lian Gu
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, 89-9 Dongge Road, Nanning, Guangxi, China.
| |
Collapse
|
8
|
Ozomaro U, Wahlestedt C, Nemeroff CB. Personalized medicine in psychiatry: problems and promises. BMC Med 2013; 11:132. [PMID: 23680237 PMCID: PMC3668172 DOI: 10.1186/1741-7015-11-132] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 04/19/2013] [Indexed: 01/29/2023] Open
Abstract
The central theme of personalized medicine is the premise that an individual's unique physiologic characteristics play a significant role in both disease vulnerability and in response to specific therapies. The major goals of personalized medicine are therefore to predict an individual's susceptibility to developing an illness, achieve accurate diagnosis, and optimize the most efficient and favorable response to treatment. The goal of achieving personalized medicine in psychiatry is a laudable one, because its attainment should be associated with a marked reduction in morbidity and mortality. In this review, we summarize an illustrative selection of studies that are laying the foundation towards personalizing medicine in major depressive disorder, bipolar disorder, and schizophrenia. In addition, we present emerging applications that are likely to advance personalized medicine in psychiatry, with an emphasis on novel biomarkers and neuroimaging.
Collapse
Affiliation(s)
- Uzoezi Ozomaro
- University of Miami, Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Claes Wahlestedt
- University of Miami, Leonard M. Miller School of Medicine, Miami, FL, USA
- Center for Therapeutic Innovation, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Charles B Nemeroff
- University of Miami, Leonard M. Miller School of Medicine, Miami, FL, USA
- Center for Therapeutic Innovation, Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Leonard M. Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
9
|
Deng C, Pan B, Engel M, Huang XF. Neuregulin-1 signalling and antipsychotic treatment: potential therapeutic targets in a schizophrenia candidate signalling pathway. Psychopharmacology (Berl) 2013; 226:201-15. [PMID: 23389757 DOI: 10.1007/s00213-013-3003-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2012] [Accepted: 01/22/2013] [Indexed: 02/08/2023]
Abstract
Identifying the signalling pathways underlying the pathophysiology of schizophrenia is an essential step in the rational development of new antipsychotic drugs for this devastating disease. Evidence from genetic, transgenic and post-mortem studies have strongly supported neuregulin-1 (NRG1)-ErbB4 signalling as a schizophrenia susceptibility pathway. NRG1-ErbB4 signalling plays crucial roles in regulating neurodevelopment and neurotransmission, with implications for the pathophysiology of schizophrenia. Post-mortem studies have demonstrated altered NRG1-ErbB4 signalling in the brain of schizophrenia patients. Antipsychotic drugs have different effects on NRG1-ErbB4 signalling depending on treatment duration. Abnormal behaviours relevant to certain features of schizophrenia are displayed in NRG1/ErbB4 knockout mice or those with NRG1/ErbB4 over-expression, some of these abnormalities can be improved by antipsychotic treatment. NRG1-ErbB4 signalling has extensive interactions with the GABAergic, glutamatergic and dopaminergic neurotransmission systems that are involved in the pathophysiology of schizophrenia. These interactions provide a number of targets for the development of new antipsychotic drugs. Furthermore, the key interaction points between NRG1-ErbB4 signalling and other schizophrenia susceptibility genes may also potentially provide specific targets for new antipsychotic drugs. In general, identification of these targets in NRG1-ErbB4 signalling and interacting pathways will provide unique opportunities for the development of new generation antipsychotics with specific efficacy and fewer side effects.
Collapse
Affiliation(s)
- Chao Deng
- Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522 NSW, Australia.
| | | | | | | |
Collapse
|
10
|
Ekerholm M, Firus Waltersson S, Fagerberg T, Söderman E, Terenius L, Agartz I, Jönsson EG, Nyman H. Neurocognitive function in long-term treated schizophrenia: a five-year follow-up study. Psychiatry Res 2012; 200:144-52. [PMID: 22657952 DOI: 10.1016/j.psychres.2012.05.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 05/05/2012] [Accepted: 05/08/2012] [Indexed: 11/18/2022]
Abstract
Neurocognitive deficits are a core feature of schizophrenia. Deficits covering a wide range of functions have been well documented. However there is still a lack of longitudinal studies regarding the development of neurocognitive impairment. The current study examined the effect of time in long-term treated patients with schizophrenia and healthy controls on cognitive functions. A neurocognitive test-battery was administered to 36 patients and 46 controls on two occasions with approximately 4.5 years interval. Patients performed significantly worse on all measures on both occasions. The only significant decline over time was the ability to shift mental set between different rules or categories (measured by Trail Making Test B). This decline was present in both patients and controls. Improvement on attention (tested by Continuous Performance Test) was found in patients only and improvement on verbal learning (tested by Rey Auditory Verbal Learning Test) was found only in controls. Education was significantly related to outcome in patients and age was related to outcome in controls. We conclude that neurocognitive function is relatively stable over 4.5 years in patients with long-term treated schizophrenia, in line with previous scientific research. The authors discuss the impact of age and education and limitations of the study.
Collapse
Affiliation(s)
- Maria Ekerholm
- Department of Clinical Neuroscience, Karolinska Institutet and Hospital, SE-171 76 Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Nunes EA, MacKenzie EM, Rossolatos D, Perez-Parada J, Baker GB, Dursun SM. D-serine and schizophrenia: an update. Expert Rev Neurother 2012; 12:801-12. [PMID: 22853788 DOI: 10.1586/ern.12.65] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Considering the lengthy history of pharmacological treatment of schizophrenia, the development of novel antipsychotic agents targeting the glutamatergic system is relatively new. A glutamatergic deficit has been proposed to underlie many of the symptoms typically observed in schizophrenia, particularly the negative and cognitive symptoms (which are less likely to respond to current treatments). D-serine is an important coagonist of the glutamate NMDA receptor, and accumulating evidence suggests that D-serine levels and/or activity may be dysfunctional in schizophrenia and that facilitation of D-serine transmission could provide a significant therapeutic breakthrough, especially where conventional treatments have fallen short. A summary of the relevant animal data, as well as genetic studies and clinical trials examining D-serine as an adjunct to standard antipsychotic therapy, is provided in this article. Together, the evidence suggests that research on the next generation of antipsychotic agents should include studies on increasing brain levels of D-serine or mimicking its action on the NMDA receptor.
Collapse
Affiliation(s)
- Emerson A Nunes
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Drews E, Otte DM, Zimmer A. Involvement of the primate specific gene G72 in schizophrenia: From genetic studies to pathomechanisms. Neurosci Biobehav Rev 2012; 37:2410-7. [PMID: 23092656 DOI: 10.1016/j.neubiorev.2012.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 09/03/2012] [Accepted: 10/15/2012] [Indexed: 12/28/2022]
Abstract
Schizophrenia is a human mental disorder that affects an individual's thoughts, perception, affect and behavior, which is caused by a complex interaction of genetic and environmental factors. Genetic studies have implicated the evolutionary novel, anthropoid primate-specific gene locus G72/G30 in the etiology of schizophrenia and other psychiatric disorders. This gene encodes the protein LG72, which has been discussed as a modulator of the peroxisomal enzyme d-amino-acid-oxidase (DAO), or, alternatively as a mitochondrial protein. Recently, G72 transgenic (G72Tg) mice were generated that express the protein throughout the brain. These mice show several behavioral deficits that are related to schizophrenia. Further, G72Tg mice have a reduced activity of mitochondrial complex I, with a concomitantly increased production of reactive oxygen species, as well as deficits in short-term plasticity. Results from these studies demonstrate that expression of the human G72/G30 gene locus in mice produces behavioral phenotypes that are relevant to schizophrenia. They implicate LG72-induced mitochondrial and synaptic defects as a possible pathomechanism of this disease.
Collapse
Affiliation(s)
- Eva Drews
- Institute of Molecular Psychiatry, University of Bonn, Germany.
| | | | | |
Collapse
|
13
|
Yamanaka M, Miyoshi Y, Ohide H, Hamase K, Konno R. d-Amino acids in the brain and mutant rodents lacking d-amino-acid oxidase activity. Amino Acids 2012; 43:1811-21. [DOI: 10.1007/s00726-012-1384-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Accepted: 07/30/2012] [Indexed: 12/27/2022]
|
14
|
Lindholm Carlström E, Saetre P, Rosengren A, Thygesen JH, Djurovic S, Melle I, Andreassen OA, Werge T, Agartz I, Hall H, Terenius L, Jönsson EG. Association between a genetic variant in the serotonin transporter gene (SLC6A4) and suicidal behavior in patients with schizophrenia. Behav Brain Funct 2012; 8:24. [PMID: 22594806 PMCID: PMC3527134 DOI: 10.1186/1744-9081-8-24] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 04/25/2012] [Indexed: 12/13/2022] Open
Abstract
Background The serotonin (5-hydroxytryptamin; 5-HT) system has a central role in the circuitry of cognition and emotions. Multiple lines of evidence suggest that genetic variation in the serotonin transporter gene (SLC6A4; 5-HTT) is associated with schizophrenia and suicidal behavior. In this study, we wanted to elucidate whether SLC6A4 variations is involved in attempted suicide among patients with schizophrenia in a Scandinavian case–control sample. Methods Patients diagnosed with schizophrenia from three Scandinavian samples were assessed for presence or absence of suicide attempts, based on record reviews and interview data. Seven SLC6A4 single nucleotide polymorphisms (SNPs) were genotyped in 837 schizophrenia patients and 1,473 control individuals. Association analyses and statistical evaluations were performed with the program UNPHASED (version 3.0.9). Results We observed an allele association between the SNP rs16965628, located in intron one of SLC6A4, and attempted suicide (adjusted p-value 0.01), among patients with schizophrenia. No association was found to a diagnosis of schizophrenia, when patients were compared to healthy control individuals. Conclusion The gene SLC6A4 appears to be involved in suicidal ideation among patients with schizophrenia. Independent replication is needed before more firm conclusions can be drawn.
Collapse
Affiliation(s)
- Eva Lindholm Carlström
- Department of Clinical Neuroscience, HUBIN Project, Karolinska Institutet and Hospital, R5:00, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Matrisciano F, Tueting P, Maccari S, Nicoletti F, Guidotti A. Pharmacological activation of group-II metabotropic glutamate receptors corrects a schizophrenia-like phenotype induced by prenatal stress in mice. Neuropsychopharmacology 2012; 37:929-38. [PMID: 22089319 PMCID: PMC3280642 DOI: 10.1038/npp.2011.274] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prenatal exposure to restraint stress causes long-lasting changes in neuroplasticity that likely reflect pathological modifications triggered by early-life stress. We found that the offspring of dams exposed to repeated episodes of restraint stress during pregnancy (here named 'prenatal restraint stress mice' or 'PRS mice') developed a schizophrenia-like phenotype, characterized by a decreased expression of brain-derived neurotrophic factor and glutamic acid decarboxylase 67, an increased expression of type-1 DNA methyl transferase (DNMT1) in the frontal cortex, and a deficit in social interaction, locomotor activity, and prepulse inhibition. PRS mice also showed a marked decrease in metabotropic glutamate 2 (mGlu2) and mGlu3 receptor mRNA and protein levels in the frontal cortex, which was manifested at birth and persisted in adult life. This decrease was associated with an increased binding of DNMT1 to CpG-rich regions of mGlu2 and mGlu3 receptor promoters and an increased binding of MeCP2 to the mGlu2 receptor promoter. Systemic treatment with the selective mGlu2/3 receptor agonist LY379268 (0.5 mg/kg, i.p., twice daily for 5 days), corrected all the biochemical and behavioral abnormalities shown in PRS mice. Our data show for the first time that PRS induces a schizophrenia-like phenotype in mice, and suggest that epigenetic changes in mGlu2 and mGlu3 receptors lie at the core of the pathological programming induced by early-life stress.
Collapse
Affiliation(s)
- Francesco Matrisciano
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Patricia Tueting
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Stefania Maccari
- Neuroplasticity Team – CNRS UMR 8576/UGSF, North University of Lille1, Lille, France
| | - Ferdinando Nicoletti
- Department of Physiology and Pharmacology, University of Rome ‘Sapienza', Rome, Italy,INM Neuromed, Pozzilli, Italy
| | - Alessandro Guidotti
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
16
|
Andreou D, Saetre P, Werge T, Andreassen OA, Agartz I, Sedvall GC, Hall H, Terenius L, Jönsson EG. D-amino acid oxidase activator gene (DAOA) variation affects cerebrospinal fluid homovanillic acid concentrations in healthy Caucasians. Eur Arch Psychiatry Clin Neurosci 2012; 262:549-56. [PMID: 22454242 PMCID: PMC3464385 DOI: 10.1007/s00406-012-0313-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 03/14/2012] [Indexed: 11/28/2022]
Abstract
The D-amino acid oxidase activator (DAOA) protein regulates the function of D-amino oxidase (DAO), an enzyme that catalyzes the oxidative deamination of D-3,4-dihydroxyphenylalanine (D-DOPA) and D-serine. D-DOPA is converted to L-3,4-DOPA, a precursor of dopamine, whereas D-serine participates in glutamatergic transmission. We hypothesized that DAOA polymorphisms are associated with dopamine, serotonin and noradrenaline turnover in the human brain. Four single-nucleotide polymorphisms, previously reported to be associated with schizophrenia, were genotyped. Cerebrospinal fluid (CSF) samples were drawn by lumbar puncture, and the concentrations of the major dopamine metabolite homovanillic acid (HVA), the major serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) and the major noradrenaline metabolite 3-methoxy-4-hydroxyphenylglycol (MHPG) were measured. Two of the investigated polymorphisms, rs3918342 and rs1421292, were significantly associated with CSF HVA concentrations. Rs3918342 was found to be nominally associated with CSF 5-HIAA concentrations. None of the polymorphisms were significantly associated with MHPG concentrations. Our results indicate that DAOA gene variation affects dopamine turnover in healthy individuals, suggesting that disturbed dopamine turnover is a possible mechanism behind the observed associations between genetic variation in DAOA and behavioral phenotypes in humans.
Collapse
Affiliation(s)
- Dimitrios Andreou
- Department of Clinical Neuroscience, HUBIN Project, Karolinska Institutet and Hospital, Stockholm, Sweden.
| | - Peter Saetre
- Department of Clinical Neuroscience, HUBIN Project, Karolinska Institutet and Hospital, R5:00, 171 76 Stockholm, Sweden
| | - Thomas Werge
- Research Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Copenhagen University Hospital, Roskilde, Denmark
| | - Ole A. Andreassen
- TOP Project, Division of Psychiatry, Ullevål University Hospital, University of Oslo, Oslo, Norway ,TOP Project, Institute of Clinical Medicine, Psychiatry Section Vinderen, University of Oslo, Oslo, Norway
| | - Ingrid Agartz
- Department of Clinical Neuroscience, HUBIN Project, Karolinska Institutet and Hospital, R5:00, 171 76 Stockholm, Sweden ,Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway ,Institute of Psychiatry, University of Oslo, Oslo, Norway
| | - Göran C. Sedvall
- Department of Clinical Neuroscience, HUBIN Project, Karolinska Institutet and Hospital, R5:00, 171 76 Stockholm, Sweden
| | - Håkan Hall
- Department of Clinical Neuroscience, HUBIN Project, Karolinska Institutet and Hospital, R5:00, 171 76 Stockholm, Sweden ,Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Lars Terenius
- Department of Clinical Neuroscience, HUBIN Project, Karolinska Institutet and Hospital, R5:00, 171 76 Stockholm, Sweden
| | - Erik G. Jönsson
- Department of Clinical Neuroscience, HUBIN Project, Karolinska Institutet and Hospital, R5:00, 171 76 Stockholm, Sweden
| |
Collapse
|
17
|
Andreou D, Saetre P, Kähler AK, Werge T, Andreassen OA, Agartz I, Sedvall GC, Hall H, Terenius L, Jönsson EG. Dystrobrevin-binding protein 1 gene (DTNBP1) variants associated with cerebrospinal fluid homovanillic acid and 5-hydroxyindoleacetic acid concentrations in healthy volunteers. Eur Neuropsychopharmacol 2011; 21:700-4. [PMID: 21295953 DOI: 10.1016/j.euroneuro.2010.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 12/09/2010] [Accepted: 12/21/2010] [Indexed: 01/27/2023]
Abstract
The dystrobrevin binding protein-1 (DTNBP1) gene encodes dysbindin-1, a protein involved in neurodevelopmental and neurochemical processes related mainly to the monoamine dopamine. We investigated possible associations between eleven DTNBP1 polymorphisms and cerebrospinal fluid (CSF) concentrations of the major dopamine metabolite homovanillic acid (HVA), the major serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA), and the major noradrenaline metabolite 3-methoxy-4-hydroxyphenylglycol (MHPG) in healthy human subjects (n=132). Two polymorphisms, rs2619538 and rs760666, were nominally associated with CSF HVA and 5-HIAA concentrations, whereas a third polymorphism, rs909706, showed association only with HVA. After correction for multiple testing only the associations between rs2619538 and HVA and 5-HIAA concentrations remained significant. No significant association was found between any of the investigated DTNBP1 polymorphisms and CSF MHPG concentrations. The results suggest that genetic variation in DTNBP1 gene affects the regulation of dopamine and serotonin turnover in the central nervous system of healthy volunteers.
Collapse
Affiliation(s)
- Dimitrios Andreou
- Department of Clinical Neuroscience, HUBIN project, Karolinska Institutet and Hospital, R5:00, SE-17176 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
The association of schizophrenia risk D-amino acid oxidase polymorphisms with sensorimotor gating, working memory and personality in healthy males. Neuropsychopharmacology 2011; 36:1677-88. [PMID: 21471957 PMCID: PMC3138651 DOI: 10.1038/npp.2011.49] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is evidence supporting a role for the D-amino acid oxidase (DAO) locus in schizophrenia. This study aimed to determine the relationship of five single-nucleotide polymorphisms (SNPs) within the DAO gene identified as promising schizophrenia risk genes (rs4623951, rs2111902, rs3918346, rs3741775, and rs3825251) to acoustic startle, prepulse inhibition (PPI), working memory, and personality dimensions. A highly homogeneous study entry cohort (n = 530) of healthy, young male army conscripts (n = 703) originating from the Greek LOGOS project (Learning On Genetics Of Schizophrenia Spectrum) underwent PPI of the acoustic startle reflex, working memory, and personality assessment. The QTPHASE from the UNPHASED package was used for the association analysis of each SNP or haplotype data, with p-values corrected for multiple testing by running 10,000 permutations of the data. The rs4623951_T-rs3741775_G and rs4623951_T-rs2111902_T diplotypes were associated with reduced PPI and worse performance in working memory tasks and a personality pattern characterized by attenuated anxiety. Median stratification analysis of the risk diplotype group (ie, those individuals homozygous for the T and G alleles (TG+)) showed reduced PPI and working memory performance only in TG+ individuals with high trait anxiety. The rs4623951_T allele, which is the DAO polymorphism most strongly associated with schizophrenia, might tag a haplotype that affects PPI, cognition, and personality traits in general population. Our findings suggest an influence of the gene in the neural substrate mediating sensorimotor gating and working memory, especially when combined with high anxiety and further validate DAO as a candidate gene for schizophrenia and spectrum disorders.
Collapse
|
19
|
Lazar NL, Neufeld RWJ, Cain DP. Contribution of nonprimate animal models in understanding the etiology of schizophrenia. J Psychiatry Neurosci 2011; 36:E5-29. [PMID: 21247514 PMCID: PMC3120891 DOI: 10.1503/jpn.100054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia is a severe psychiatric disorder that is characterized by positive and negative symptoms and cognitive impairments. The etiology of the disorder is complex, and it is thought to follow a multifactorial threshold model of inheritance with genetic and neurodevelop mental contributions to risk. Human studies are particularly useful in capturing the richness of the phenotype, but they are often limited to the use of correlational approaches. By assessing behavioural abnormalities in both humans and rodents, nonprimate animal models of schizophrenia provide unique insight into the etiology and mechanisms of the disorder. This review discusses the phenomenology and etiology of schizophrenia and the contribution of current nonprimate animal models with an emphasis on how research with models of neuro transmitter dysregulation, environmental risk factors, neurodevelopmental disruption and genetic risk factors can complement the literature on schizophrenia in humans.
Collapse
Affiliation(s)
- Noah L Lazar
- Department of Psychology, University of Western Ontario, London, Ont.
| | | | | |
Collapse
|
20
|
Jönsson EG, Saetre P, Vares M, Strålin P, Levander S, Lindström E. Use of antipsychotics - an analysis of lifetime treatment in 66 patients with psychoses. Psychiatry Res 2011; 187:80-8. [PMID: 21095015 DOI: 10.1016/j.psychres.2010.10.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 10/27/2010] [Accepted: 10/27/2010] [Indexed: 10/18/2022]
Abstract
Only a minority of patients treated with antipsychotics in clinical studies continue their treatments throughout a longer study period. Few studies address this issue from a lifetime perspective. In this naturalistic study, we aimed at analysing the prescription pattern of antipsychotic drugs among a sample of Swedish patients with a diagnosis of psychotic illness, from the first contact with psychiatry (typically between 1973 and 1997) until the last written note in the case history documents. A retrospective descriptive analysis was performed of all case history data of 66 patients diagnosed with schizophrenia or related psychotic disorders. Patients with schizophrenia were prescribed antipsychotic medication more than 90% of the time. Each patient generally had been prescribed several (up to 16) different antipsychotic drugs and a quarter of the patients had been prescribed two or more antipsychotics for a third of their prescription time. Patients with psychosis were exposed to a cumulatively growing number of antipsychotics. Various factors, including clinician and patient expectations, and specific strengths and limitations of available antipsychotics may account for frequent medication changes over time.
Collapse
Affiliation(s)
- Erik G Jönsson
- Department of Clinical Neuroscience, Karolinska Institutet and Hospital, SE-171 76 Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
21
|
Holtze M, Saetre P, Erhardt S, Schwieler L, Werge T, Hansen T, Nielsen J, Djurovic S, Melle I, Andreassen OA, Hall H, Terenius L, Agartz I, Engberg G, Jönsson EG, Schalling M. Kynurenine 3-monooxygenase (KMO) polymorphisms in schizophrenia: an association study. Schizophr Res 2011; 127:270-2. [PMID: 21030213 DOI: 10.1016/j.schres.2010.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2009] [Revised: 09/28/2010] [Accepted: 10/01/2010] [Indexed: 11/17/2022]
|
22
|
Müller DJ, Zai CC, Shinkai T, Strauss J, Kennedy JL. Association between the DAOA/G72 gene and bipolar disorder and meta-analyses in bipolar disorder and schizophrenia. Bipolar Disord 2011; 13:198-207. [PMID: 21443574 DOI: 10.1111/j.1399-5618.2011.00905.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE The D-amino acid oxidase activator (DAOA, or G72) is involved in the oxidation of D-serine, an endogenous modulator of N-methyl-D-aspartate receptors and thus represents an important candidate in psychotic disorders. Several studies reported the DAOA/G72 gene to be associated with schizophrenia (SZ) and bipolar disorder (BD); however, the associated polymorphisms varied between SZ and BD. This study attempts to replicate the DAOA/G72 findings in BD and to conduct subgroup analyses based on the presence or absence of psychotic symptoms. METHODS Five polymorphisms of the DAOA/G72 gene (rs1341402, rs1935062, rs2391191, rs947267, and rs778294) were analysed for association with BD in a family-based study design (303 core families including 916 individuals). We also conducted a meta-analysis of DAOA/G72 polymorphisms in BD and SZ. RESULTS Marker rs1935062 was significantly associated with BD diagnosis in our sample (Z-score for C-allele= -2.33, p=0.02, uncorrected for genome-wide multiple comparisons). When we examined the subset of BD patients with psychotic symptoms (157 families), no significant results were obtained. Our meta-analysis yielded negative findings for DAOA/G72 markers in BD and positive findings for marker rs2391191 in SZ in East Asians. However, significant heterogeneity across studies limits interpretation. CONCLUSIONS Our results provide evidence that suggests a possible role of the DAOA/G72 gene in BD and SZ. Marker rs1935062 may be specifically associated with BD, while marker rs2391191 may be associated with SZ but not with BD. Together with previous studies, these findings suggest that the DAOA/G72 gene confers susceptibility to both BD and SZ, but that different polymorphisms may potentially differentiate between these two disorders.
Collapse
Affiliation(s)
- Daniel J Müller
- Neurogenetics Section, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, 250 College Street, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
23
|
Labrie V, Wong AHC, Roder JC. Contributions of the D-serine pathway to schizophrenia. Neuropharmacology 2011; 62:1484-503. [PMID: 21295046 DOI: 10.1016/j.neuropharm.2011.01.030] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2010] [Revised: 01/16/2011] [Accepted: 01/19/2011] [Indexed: 01/30/2023]
Abstract
The glutamate neurotransmitter system is one of the major candidate pathways for the pathophysiology of schizophrenia, and increased understanding of the pharmacology, molecular biology and biochemistry of this system may lead to novel treatments. Glutamatergic hypofunction, particularly at the NMDA receptor, has been hypothesized to underlie many of the symptoms of schizophrenia, including psychosis, negative symptoms and cognitive impairment. This review will focus on D-serine, a co-agonist at the NMDA receptor that in combination with glutamate, is required for full activation of this ion channel receptor. Evidence implicating D-serine, NMDA receptors and related molecules, such as D-amino acid oxidase (DAO), G72 and serine racemase (SRR), in the etiology or pathophysiology of schizophrenia is discussed, including knowledge gained from mouse models with altered D-serine pathway genes and from preliminary clinical trials with D-serine itself or compounds modulating the D-serine pathway. Abnormalities in D-serine availability may underlie glutamatergic dysfunction in schizophrenia, and the development of new treatments acting through the D-serine pathway may significantly improve outcomes for many schizophrenia patients.
Collapse
Affiliation(s)
- Viviane Labrie
- Krembil Family Epigenetics Laboratory, Centre for Addiction and Mental Health, 250 College St, Toronto, ON M5T 1R8, Canada.
| | | | | |
Collapse
|
24
|
Shaikh M, Hall MH, Schulze K, Dutt A, Walshe M, Williams I, Constante M, Picchioni M, Toulopoulou T, Collier D, Rijsdijk F, Powell J, Arranz M, Murray RM, Bramon E. Do COMT, BDNF and NRG1 polymorphisms influence P50 sensory gating in psychosis? Psychol Med 2011; 41:263-276. [PMID: 20102668 DOI: 10.1017/s003329170999239x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Auditory P50 sensory gating deficits correlate with genetic risk for schizophrenia and constitute a plausible endophenotype for the disease. The well-supported role of catechol-O-methyltransferase (COMT), brain-derived neurotrophic factor (BDNF) and neuregulin 1 (NRG1) genes in neurodevelopment and cognition make a strong theoretical case for their influence on the P50 endophenotype. METHOD The possible role of NRG1, COMT Val158Met and BDNF Val66Met gene polymorphisms on the P50 endophenotype was examined in a large sample consisting of psychotic patients, their unaffected relatives and unrelated healthy controls using linear regression analyses. RESULTS Although P50 deficits were present in patients and their unaffected relatives, there was no evidence for an association between NRG1, COMT Val158Met or BDNF Val66Met genotypes and the P50 endophenotype. CONCLUSIONS The evidence from our large study suggests that any such association between P50 indices and NRG1, COMT Val158Met or BDNF Val66Met genotypes, if present, must be very subtle.
Collapse
Affiliation(s)
- M Shaikh
- NIHR Biomedical Research Centre, Institute of Psychiatry, King's College London/South London and Maudsley NHS Foundation Trust, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bishop JR, Miller DD, Ellingrod VL, Holman T. Association between type-three metabotropic glutamate receptor gene (GRM3) variants and symptom presentation in treatment refractory schizophrenia. Hum Psychopharmacol 2011; 26:28-34. [PMID: 21344500 PMCID: PMC3199025 DOI: 10.1002/hup.1163] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Positive associations between polymorphisms in the type-three metabotropic glutamate receptor gene (GRM3) and the pathogenesis of schizophrenia as well as response to antipsychotic treatment have been reported. The objective of this study was to determine whether refractory psychiatric symptoms in antipsychotic non-responders are related to polymorphisms in GRM3. METHODS Ninety-five treatment refractory schizophrenia participants were enrolled. Prior to a medication switch, global psychopathology and negative symptoms were rated. These participants were genotyped for seven markers in GRM3. Genotype associations with symptoms were assessed. RESULTS Two markers in GRM3 (rs1989796 and rs1476455), were associated with the presence of refractory global symptoms as measured by the Brief Psychiatric Rating Scale (BPRS) Total scores. Participants with an rs1476455_CC genotype had significantly higher BPRS scores than A-carriers (55.1±10.4 vs. 48.3±9.2; F=7.6, p=0.0071). Additionally, participants with the rs1989796_CC genotype had significantly higher BPRS scores than T-carriers (50.1±5.7 vs. 55.8±10.5, F=7.1, p=0.0091). No evidence for significant associations with negative symptoms was observed. CONCLUSIONS Polymorphisms in the GRM3 gene may be associated with refractory global psychosis symptoms but not negative symptoms in persons with schizophrenia.
Collapse
Affiliation(s)
- Jeffrey R. Bishop
- University of Illinois at Chicago Colleges of Pharmacy and Medicine, Department of Pharmacy Practice and Department of Psychiatry, Center for Cognitive Medicine
| | - Del D. Miller
- University of Iowa Carver College of Medicine Department of Psychiatry
| | - Vicki L. Ellingrod
- University of Michigan College of Pharmacy and College of Medicine, Department of Psychiatry
| | - Timothy Holman
- University of Iowa Carver College of Medicine Department of Psychiatry
| |
Collapse
|
26
|
Nicoletti F, Bockaert J, Collingridge GL, Conn PJ, Ferraguti F, Schoepp DD, Wroblewski JT, Pin JP. Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology 2010; 60:1017-41. [PMID: 21036182 DOI: 10.1016/j.neuropharm.2010.10.022] [Citation(s) in RCA: 483] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/15/2010] [Accepted: 10/21/2010] [Indexed: 12/24/2022]
Abstract
Metabotropic glutamate (mGlu) receptors were discovered in the mid 1980s and originally described as glutamate receptors coupled to polyphosphoinositide hydrolysis. Almost 6500 articles have been published since then, and subtype-selective mGlu receptor ligands are now under clinical development for the treatment of a variety of disorders such as Fragile-X syndrome, schizophrenia, Parkinson's disease and L-DOPA-induced dyskinesias, generalized anxiety disorder, chronic pain, and gastroesophageal reflux disorder. Prof. Erminio Costa was linked to the early times of the mGlu receptor history, when a few research groups challenged the general belief that glutamate could only activate ionotropic receptors and all metabolic responses to glutamate were secondary to calcium entry. This review moves from those nostalgic times to the most recent advances in the physiology and pharmacology of mGlu receptors, and highlights the role of individual mGlu receptor subtypes in the pathophysiology of human disorders. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'.
Collapse
Affiliation(s)
- F Nicoletti
- Department of Physiology and Pharmacology, University of Rome, Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Konno R, Hamase K, Maruyama R, Zaitsu K. Mutant mice and rats lacking D-amino acid oxidase. Chem Biodivers 2010; 7:1450-8. [PMID: 20564563 DOI: 10.1002/cbdv.200900303] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
D-amino acid oxidase (DAO) catalyzes oxidative deamination of D-amino acids. Since D-amino acids are considered to be rare in eukaryotes, physiological function of this enzyme has been enigmatic for a long time. Mutant mice lacking DAO were found, and their strain was established. The urine of the mutant mice contained large amounts of D-amino acids. D-Amino acids were also present in their organs and blood. The origin of these D-amino acids was pursued. The results indicate that one of the physiological functions of DAO is the metabolism of D-amino acids of internal and external origin. A large amount of D-serine is shown to exist in the brain of mammals. It binds to the coagonist-binding site of N-methyl-D-aspartate (NMDA) subtype of glutamate receptors and enhances the neurotransmission. DAO metabolizes this D-serine and, therefore, modulates neurotransmission. Mutant mice displayed phenotypes resulting from the enhanced NMDA receptor function. Recent studies have shown that DAO is associated with schizophrenia. Mutant mice were resistant to the drugs which act on NMDA receptors and elicit schizophrenia-like symptoms. Recently, mutant rats lacking DAO have also been found. They were free from D-serine-induced nephrotoxicity, indicating involvement of DAO in this toxicity. The mutant mice and rats lacking DAO would be useful for the elucidation of the physiological functions of DAO and the etiology of neuronal diseases associated with DAO.
Collapse
Affiliation(s)
- Ryuichi Konno
- Graduate School of Pharmaceutical Sciences, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan.
| | | | | | | |
Collapse
|
28
|
Haukvik UK, Saetre P, McNeil T, Bjerkan PS, Andreassen OA, Werge T, Jönsson EG, Agartz I. An exploratory model for G x E interaction on hippocampal volume in schizophrenia; obstetric complications and hypoxia-related genes. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:1259-65. [PMID: 20638435 DOI: 10.1016/j.pnpbp.2010.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 06/22/2010] [Accepted: 07/04/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Smaller hippocampal volume has repeatedly been reported in schizophrenia patients. Obstetric complications (OCs) and single nucleotide polymorphism (SNP) variation in schizophrenia susceptibility genes have independently been related to hippocampal volume. We investigated putative independent and interaction effects of severe hypoxia-related OCs and variation in four hypoxia-regulated schizophrenia susceptibility genes (BDNF, DTNBP1, GRM3 and NRG1) on hippocampal volume in schizophrenia patients and healthy controls. METHODS Clinical assessment, structural MRI scans, and blood samples for genotyping of 32 SNPs were obtained from 54 schizophrenia patients and 53 control subjects. Information on obstetric complications was collected from original birth records. RESULTS Severe OCs were related to hippocampal volume in both patients with schizophrenia and healthy control subjects. Of the 32 SNPs studied, effects of severe OCs on hippocampal volume were associated with allele variation in GRM3 rs13242038, but the interaction effect was not specific for schizophrenia. SNP variation in any of the four investigated genes alone did not significantly affect hippocampal volume. CONCLUSIONS The findings suggest a gene-environment (G x E) interaction between GRM3 gene variants and severe obstetric complications on hippocampus volume, independent of a diagnosis of schizophrenia. Due to the modest sample size, the results must be considered preliminary and require replication in independent samples.
Collapse
Affiliation(s)
- Unn Kristin Haukvik
- Department of Clinical Medicine, section Vinderen, University of Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ohnuma T, Shibata N, Baba H, Ohi K, Yasuda Y, Nakamura Y, Okochi T, Naitoh H, Hashimoto R, Iwata N, Ozaki N, Takeda M, Arai H. No association between DAO and schizophrenia in a Japanese patient population: a multicenter replication study. Schizophr Res 2010; 118:300-2. [PMID: 20178891 DOI: 10.1016/j.schres.2010.01.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 01/13/2010] [Accepted: 01/29/2010] [Indexed: 11/27/2022]
|
30
|
Abstract
D-amino acid oxidase (DAO) is a flavoenzyme that metabolizes certain D-amino acids, notably the endogenous N-methyl D-aspartate receptor (NMDAR) co-agonist, D-serine. As such, it has the potential to modulate the function of NMDAR and to contribute to the widely hypothesized involvement of NMDAR signalling in schizophrenia. Three lines of evidence now provide support for this possibility: DAO shows genetic associations with the disorder in several, although not all, studies; the expression and activity of DAO are increased in schizophrenia; and DAO inactivation in rodents produces behavioural and biochemical effects, suggestive of potential therapeutic benefits. However, several key issues remain unclear. These include the regional, cellular and subcellular localization of DAO, the physiological importance of DAO and its substrates other than D-serine, as well as the causes and consequences of elevated DAO in schizophrenia. Herein, we critically review the neurobiology of DAO, its involvement in schizophrenia, and the therapeutic value of DAO inhibition. This review also highlights issues that have a broader relevance beyond DAO itself: how should we weigh up convergent and cumulatively impressive, but individually inconclusive, pieces of evidence regarding the role that a given gene may have in the aetiology, pathophysiology and pharmacotherapy of schizophrenia?
Collapse
|