1
|
Ostrycharz-Jasek E, Fitzner A, Siennicka A, Budkowska M, Hukowska-Szematowicz B. MicroRNAs Regulate the Expression of Genes Related to the Innate Immune and Inflammatory Response in Rabbits Infected with Lagovirus europaeus GI.1 and GI.2 Genotypes. Int J Mol Sci 2024; 25:9531. [PMID: 39273479 PMCID: PMC11394960 DOI: 10.3390/ijms25179531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/23/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
MicroRNAs (miR) are a group of small, non-coding RNAs of 17-25 nucleotides that regulate gene expression at the post-transcriptional level. Dysregulation of miRNA expression or function may contribute to abnormal gene expression and signaling pathways, leading to disease pathology. Lagovirus europaeus (L. europaeus) causes severe disease in rabbits called rabbit hemorrhagic disease (RHD). The symptoms of liver, lung, kidney, and spleen degeneration observed during RHD are similar to those of acute liver failure (ALF) and multi-organ failure (MOF) in humans. In this study, we assessed the expression of miRs and their target genes involved in the innate immune and inflammatory response. Also, we assessed their potential impact on pathways in L. europaeus infection-two genotypes (GI.1 and GI.2)-in the liver, lungs, kidneys, and spleen. The expression of miRs and target genes was determined using quantitative real-time PCR (qPCR). We assessed the expression of miR-155 (MyD88, TAB2, p65, NLRP3), miR-146a (IRAK1, TRAF6), miR-223 (TLR4, IKKα, NLRP3), and miR-125b (MyD88). We also examined biomarkers of inflammation: IL-1β, IL-6, TNF-α, and IL-18 in four tissues at the mRNA level. Our study shows that the main regulators of the innate immune and inflammatory response in L. europaeus/GI.1 and GI.2 infection, as well as RHD, are miR-155, miR-223, and miR-146a. During infection with L. europaeus/RHD, miR-155 has both pro- and anti-inflammatory effects in the liver and anti-inflammatory effects in the kidneys and spleen; miR-146a has anti-inflammatory effects in the liver, lungs and kidneys; miR-223 has anti-inflammatory effects in all tissues; however, miR-125b has anti-inflammatory effects only in the liver. In each case, such an effect may be a determinant of the pathogenesis of RHD. Our research shows that miRs may regulate three innate immune and inflammatory response pathways in L. europaeus infection. However, the result of this regulation may be influenced by the tissue microenvironment. Our research shows that infection of rabbits with L. europaeus/GI.1 and GI.2 genotypes causes an overexpression of two critical acute phase cytokines: IL-6 in all examined tissues and TNF-α (in the liver, lungs, and spleen). IL-1β was highly expressed only in the lungs after L. europaeus infection. These facts indicate a strong and rapid involvement of the local innate immune and inflammatory response in L. europaeus infection-two genotypes (GI.1 and GI.2)-and in the pathogenesis of RHD. Profile of biomarkers of inflammation in rabbits infected with L. europaeus/GI.1 and GI.2 genotypes are similar regarding the nature of changes but are different for individual tissues. Therefore, we propose three inflammation profiles for L. europaeus infection for both GI.1 and GI.2 genotypes (pulmonary, renal, liver, and spleen).
Collapse
Affiliation(s)
- Ewa Ostrycharz-Jasek
- Institute of Biology, University of Szczecin, St. Z. Felczaka 3c, 71-412 Szczecin, Poland
- Doctoral School, University of Szczecin, St. A. Mickiewicz 16, 71-412 Szczecin, Poland
- Molecular Biology and Biotechnology Center, University of Szczecin, St. Wąska 13, 71-412 Szczecin, Poland
| | - Andrzej Fitzner
- Department of Foot and Mouth Disease, National Veterinary Research Institute-State Research Institute, St. Wodna 7, 98-220 Zduńska Wola, Poland
- National Reference Laboratory for Rabbit Hemorrhagic Disease (RHD), St. Wodna 7, 98-220 Zduńska Wola, Poland
| | - Aldona Siennicka
- Department of Laboratory Diagnostics, Pomeraniam Medical University, St. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Marta Budkowska
- Department of Laboratory Diagnostics, Pomeraniam Medical University, St. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Beata Hukowska-Szematowicz
- Institute of Biology, University of Szczecin, St. Z. Felczaka 3c, 71-412 Szczecin, Poland
- Molecular Biology and Biotechnology Center, University of Szczecin, St. Wąska 13, 71-412 Szczecin, Poland
| |
Collapse
|
2
|
Lim YJ, Park SA, Wang D, Jin W, Ku WL, Zhang D, Xu J, Patiño LC, Liu N, Chen W, Kazmi R, Zhao K, Zhang YE, Sun L, Chen W. MicroRNA-19b exacerbates systemic sclerosis through promoting Th9 cells. Cell Rep 2024; 43:114565. [PMID: 39083380 PMCID: PMC11440512 DOI: 10.1016/j.celrep.2024.114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024] Open
Abstract
Systemic sclerosis (SSc) is a chronic autoimmune disease characterized by fibrosis of the skin and multiple vital organs, but the immunological pathogenesis of SSc remains unclear. We show here that miR-19b promotes Th9 cells that exacerbate SSc. Specifically, miR-19b and interleukin (IL)-9 increase in CD4+ T cells in experimental SSc in mice induced with bleomycin. Inhibiting miR-19b reduces Th9 cells and ameliorates the disease. Mechanistically, transforming growth factor beta (TGF-β) plus IL-4 activates pSmad3-Ser213 and TRAF6-K63 ubiquitination by suppressing NLRC3. Activated TRAF6 sequentially promotes TGF-β-activated kinase 1 (TAK1) and nuclear factor κB (NF-κB) p65 phosphorylation, leading to the upregulation of miR-19b. Notably, miR-19b activated Il9 gene expression by directly suppressing atypical E2F family member E2f8. In patients with SSc, higher levels of IL9 and MIR-19B correlate with worse disease progression. Our findings reveal miR-19b as a key factor in Th9 cell-mediated SSc pathogenesis and should have clinical implications for patients with SSc.
Collapse
Affiliation(s)
- Yun-Ji Lim
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Sang-A Park
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Dandan Wang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Wenwen Jin
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Wai Lim Ku
- Systemic Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 31 Center Drive, Bethesda, MD 20892, USA
| | - Dunfang Zhang
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Junji Xu
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Liliana C Patiño
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Na Liu
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Weiwei Chen
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Rida Kazmi
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Keji Zhao
- Systemic Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 31 Center Drive, Bethesda, MD 20892, USA
| | - Ying E Zhang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, MD 20892, USA
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - WanJun Chen
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Role of microRNA in Endocrine Disruptor-Induced Immunomodulation of Metabolic Health. Metabolites 2022; 12:metabo12111034. [DOI: 10.3390/metabo12111034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
The prevalence of poor metabolic health is growing exponentially worldwide. This condition is associated with complex comorbidities that lead to a compromised quality of life. One of the contributing factors recently gaining attention is exposure to environmental chemicals, such as endocrine-disrupting chemicals (EDCs). Considerable evidence suggests that EDCs can alter the endocrine system through immunomodulation. More concerning, EDC exposure during the fetal development stage has prominent adverse effects later in life, which may pass on to subsequent generations. Although the mechanism of action for this phenomenon is mostly unexplored, recent reports implicate that non-coding RNAs, such as microRNAs (miRs), may play a vital role in this scenario. MiRs are significant contributors in post-transcriptional regulation of gene expression. Studies demonstrating the immunomodulation of EDCs via miRs in metabolic health or towards the Developmental Origins of Health and Disease (DOHaD) Hypothesis are still deficient. The aim of the current review was to focus on studies that demonstrate the impact of EDCs primarily on innate immunity and the potential role of miRs in metabolic health.
Collapse
|
4
|
Gudgeon J, Marín-Rubio JL, Trost M. The role of macrophage scavenger receptor 1 (MSR1) in inflammatory disorders and cancer. Front Immunol 2022; 13:1012002. [PMID: 36325338 PMCID: PMC9618966 DOI: 10.3389/fimmu.2022.1012002] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/28/2022] [Indexed: 08/27/2023] Open
Abstract
Macrophage scavenger receptor 1 (MSR1), also named CD204, holds key inflammatory roles in multiple pathophysiologic processes. Present primarily on the surface of various types of macrophage, this receptor variably affects processes such as atherosclerosis, innate and adaptive immunity, lung and liver disease, and more recently, cancer. As highlighted throughout this review, the role of MSR1 is often dichotomous, being either host protective or detrimental to the pathogenesis of disease. We will discuss the role of MSR1 in health and disease with a focus on the molecular mechanisms influencing MSR1 expression, how altered expression affects disease process and macrophage function, the limited cell signalling pathways discovered thus far, the emerging role of MSR1 in tumour associated macrophages as well as the therapeutic potential of targeting MSR1.
Collapse
Affiliation(s)
| | - José Luis Marín-Rubio
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Matthias Trost
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
5
|
MicroRNA-155 expression is associated with pulpitis progression by targeting SHIP1. Mol Biol Rep 2022; 49:8575-8586. [PMID: 35834034 DOI: 10.1007/s11033-022-07690-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/08/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Pulpitis is a commonly seen oral inflammation condition in clinical practice, it can cause much pain for the patient and may induce infections in other systems. Much is still unknown for the pathogenic mechanism of pulpitis. In this work, we discovered that the expression of miR-155 was associated with dental pulpal inflammation both in vivo and in vitro. METHODS AND RESULTS Our experiments of LPS stimulated odontoblast cell line MDPC-23 showed miR-155 could act as a positive regulator by increasing the production of pro-inflammatory cytokines IL-1β and IL-6 during inflammatory responses, whereas knockdown of miR-155 can reverse the effects. Bioinformatics analysis demonstrated that SHIP1 is a direct target of miR-155 in odontoblasts, this result was further verified at both mRNA and protein level. Inhibition of miR-155 resulted in the downregulation of inflammation factors, while co-transfection of si-SHIP1 and miR-155 inhibitor promoted the inflammatory responses. Treatment with miR-155 mimic or si-SHIP1 up-regulated the protein level of p-PI3K and p-AKT. By contrast, miR-155 inhibitor exerted the opposite effects. miR-155 mimics could upregulate the gene expression of IL-1β and IL-6. Co-transfection of LY294002 and miR-155 mimic attenuated the inflammatory responses. Consistent with in vitro results, miR-155-/- mice could alleviate inflammatory response, as well as decrease the activation of p-PI3K and p-AKT, whereas increase the activation of SHIP1. CONCLUSIONS Our data revealed a novel role for miR-155 in regulation of dental pulpal inflammatory response by targeting SHIP1 through PI3K/AKT signaling pathway.
Collapse
|
6
|
Gao L, Yang WY, Qi H, Sun CJ, Qin XM, Du GH. Unveiling the anti-senescence effects and senescence-associated secretory phenotype (SASP) inhibitory mechanisms of Scutellaria baicalensis Georgi in low glucose-induced astrocytes based on boolean network. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153990. [PMID: 35202958 DOI: 10.1016/j.phymed.2022.153990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Astrocytes senescence has been demonstrated in the aging brain and Alzheimer's disease (AD). Moreover, lower glucose metabolism has been confirmed in the early stage of AD. However, whether low glucose could induce astrocytes senescence remain ambiguous. Studies have shown that the ethanol extracts of Scutellaria baicalensis Georgi (SGE) exert neuroprotective and anti-aging effects, while whether SGE could delay astrocytes senescence was unclear. PURPOSE This study investigated the anti-senescence effect of SGE in low glucose-induced T98G cells and primary astrocytes, and explored the possible mechanisms based on boolean network. METHODS The neuroprotective effects of SGE in low glucose-induced T98G cells were evaluated by measurement of cell viability, LDH, ROS and ATP. The anti-senescence effects of SGE were investigated by detection of senescence-associated β-galactosidase (SA-β-Gal), senescence-associated secretory phenotype (SASP), cell cycle and senescence-related markers. The possible mechanisms of SGE in delaying astrocytes senescence were discovered through integrating transcriptomics with boolean network, and validation experiments were further performed. RESULTS Our results revealed that low glucose could induce astrocytes senescence, and SGE could delay astrocytes senescence by decreasing the staining rate of SA-β-gal, reducing secretions of SASP factors (IL-6, CXCL1, MMP-1), alleviating cell cycle arrest in G0/G1 phase, decreasing the formation of punctate DNA foci and down-regulating the expression of p16INK4A, p21 and γH2A.X. Transcriptomics and further verification results showed that SGE could markedly inhibit the mRNA expression levels of SASP factors (CXCL10, CXCL2, CCL2, IL-6, CXCR4, CCR7). Moreover, C-X-C motif chemokine 10 (CXCL10) was predicted to be the key SASP factor affecting the network stability by using boolean network. Further experiments validated that SGE could markedly reduce CXCL10 level, decrease the secretion of IL-6 and inhibit cell migration in CXCL10 induced primary astrocytes. CONCLUSION In summary, our research unmasks that the anti-senescence effects of SGE were highly correlated with the suppression of SASP secretions, and CXCL10 mediated the SASP inhibition effect of SGE in low glucose-induced astrocytes. Our study highlights that the delay of astrocytes senescence and the inhibition of SASP might be a new mechanism of SGE for alleviating neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Li Gao
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China.
| | - Wu-Yan Yang
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Hong Qi
- Complex Systems Research Center, Shanxi University, Taiyuan, China
| | - Chang-Jun Sun
- Complex Systems Research Center, Shanxi University, Taiyuan, China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine, the Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China; Key Laboratory of Effective Substances Research and Utilization in TCM of Shanxi Province, Taiyuan, China
| | - Guan-Hua Du
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
7
|
Jankauskas SS, Gambardella J, Sardu C, Lombardi A, Santulli G. Functional Role of miR-155 in the Pathogenesis of Diabetes Mellitus and Its Complications. Noncoding RNA 2021; 7:ncrna7030039. [PMID: 34287359 PMCID: PMC8293470 DOI: 10.3390/ncrna7030039] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/30/2021] [Accepted: 07/03/2021] [Indexed: 12/11/2022] Open
Abstract
Substantial evidence indicates that microRNA-155 (miR-155) plays a crucial role in the pathogenesis of diabetes mellitus (DM) and its complications. A number of clinical studies reported low serum levels of miR-155 in patients with type 2 diabetes (T2D). Preclinical studies revealed that miR-155 partakes in the phenotypic switch of cells within the islets of Langerhans under metabolic stress. Moreover, miR-155 was shown to regulate insulin sensitivity in liver, adipose tissue, and skeletal muscle. Dysregulation of miR-155 expression was also shown to predict the development of nephropathy, neuropathy, and retinopathy in DM. Here, we systematically describe the reports investigating the role of miR-155 in DM and its complications. We also discuss the recent results from in vivo and in vitro models of type 1 diabetes (T1D) and T2D, discussing the differences between clinical and preclinical studies and shedding light on the molecular pathways mediated by miR-155 in different tissues affected by DM.
Collapse
Affiliation(s)
- Stanislovas S. Jankauskas
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; (S.S.J.); (J.G.); (A.L.)
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Jessica Gambardella
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; (S.S.J.); (J.G.); (A.L.)
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- International Translational Research and Medical Education Consortium (ITME), Department of Advanced Biomedical Science, “Federico II” University, 80131 Naples, Italy
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Angela Lombardi
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; (S.S.J.); (J.G.); (A.L.)
| | - Gaetano Santulli
- Department of Medicine, Fleischer Institute for Diabetes and Metabolism (FIDAM), Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, New York, NY 10461, USA; (S.S.J.); (J.G.); (A.L.)
- Department of Molecular Pharmacology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, Albert Einstein College of Medicine, New York, NY 10461, USA
- International Translational Research and Medical Education Consortium (ITME), Department of Advanced Biomedical Science, “Federico II” University, 80131 Naples, Italy
- Correspondence:
| |
Collapse
|
8
|
Todd LA, Bui-Marinos MP, Katzenback BA. Post-transcriptional regulation of frog innate immunity: discovery of frog microRNAs associated with antiviral responses and ranavirus infection using a Xenopus laevis skin epithelial-like cell line. Facets (Ott) 2021. [DOI: 10.1139/facets-2021-0090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Post-transcriptional regulators such as microRNAs are emerging as conserved regulators of innate antiviral immunity in vertebrates, yet their roles in amphibian antiviral responses remain uncharacterized. We profiled changes in microRNA expressions in the Xenopus laevis skin epithelial-like cell line Xela DS2 in response to poly(I:C)—an analogue of viral double-stranded RNA and inducer of type I interferons—or frog virus 3 (FV3), an immunoevasive virus associated with amphibian mortality events. Small RNA libraries generated from untreated, poly(I:C)-treated, and FV3-infected cells were sequenced. We detected 136 known X. laevis microRNAs and discovered 133 novel X. laevis microRNAs. Sixty-five microRNAs were differentially expressed in response to poly(I:C), many of which were predicted to target regulators of antiviral pathways such as cGAS-STING, RIG-I/MDA-5, TLR signaling, and type I interferon signaling, as well as products of these pathways (NF-ĸB-induced and interferon-stimulated genes). In contrast, only 49 microRNAs were altered by FV3 infection, fewer of which were predicted to interact with antiviral pathways. Interestingly, poly(I:C) treatment or FV3 infection downregulated transcripts encoding factors of the host microRNA biogenesis pathway. Our study is the first to suggest that host microRNAs regulate innate antiviral immunity in frogs and sheds light on microRNA-mediated mechanisms of immunoevasion by FV3.
Collapse
Affiliation(s)
- Lauren A. Todd
- Department of Biology, Faculty of Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Maxwell P. Bui-Marinos
- Department of Biology, Faculty of Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| | - Barbara A. Katzenback
- Department of Biology, Faculty of Science, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1 Canada
| |
Collapse
|
9
|
MiR-155/GSK-3β mediates anti-inflammatory effect of Chikusetsusaponin IVa by inhibiting NF-κB signaling pathway in LPS-induced RAW264.7 cell. Sci Rep 2020; 10:18303. [PMID: 33110183 PMCID: PMC7591521 DOI: 10.1038/s41598-020-75358-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
It has been demonstrated that Chikusetsusaponin IVa (CsIVa) possesses abundant biological activities. Herein, using LPS to establish acute inflammation model of mouse liver and cell line inflammation model, we investigated whether miR-155/GSK-3β regulated NF-κB signaling pathway, and CsIVa exerted anti-inflammatory effects by regulating miR-155/GSK-3β signaling pathway. Our results showed that LPS induced high expression of miR-155 and miR-155 promoted macrophage activation through GSK-3β. In addition, CsIVa inhibited inflammatory responses in LPS-induced mouse liver and RAW264.7 cells. Furthermore, we demonstrated that CsIVa improved the inflammatory response in LPS-induced RAW264.7 cells by inhibiting miR-155, increasing GSK-3β expression, and inhibiting NF-κB signaling pathway. In conclusion, our study reveals that CsIVa suppresses LPS-triggered immune response by miR-155/GSK-3β-NF-κB signaling pathway.
Collapse
|
10
|
Wang D, Zhang W, Guo J, Wu Y, Li X, Zhao S, Zhu M. Identification of functional mutations at FOXP3 binding site within BIC gene that alter the expression of miR-155 in pigs. Gene 2020; 744:144631. [PMID: 32234454 DOI: 10.1016/j.gene.2020.144631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 11/15/2022]
Abstract
MiR-155 is an immune microRNA encoded within the BIC gene. Dozens of researches have uncovered the importance of high expression of miR-155 in promoting the development of immune organs and strengthening immune response and inflammatory response. Some natural mutations located in the miR-155/BIC region were revealed to disturb the expression level of miR-155 in several mammalian species, and our previous study also identified several mutations occurring near the miR-155/BIC region in pigs. However, the consequences of BIC locus-harbored mutations in pig genome remain unclear. In this study, we used Chinese Meishan and British Large White pigs to identify mutations within the miR-155/BIC region, and explore whether there are effects on expressions of miR-155 and its target genes. Target sequencing identified six potential FOXP3 protein binding sites (AAACA) in the BIC gene, among which there were two A/C mutations (AAACC) at the -108 bp and -305 bp upstream of the miR-155 precursors in Meishan pigs, but not in Large White pigs. A series of experiments confirmed that the FOXP3 protein mainly binds to the -305 bp position, and the binding efficiency of the CC haplotype to FOXP3 protein was higher than that of the wild type, resulting in increased expression of miR-155, and consequentially decreased the expressions of its target genes. Our newly identified mutations are functional, which explain partial reasons for the difference in immunity between Meishan and Large White pigs, and provide potential molecular markers to genetically improve the disease resistance in the pig breeding practice.
Collapse
Affiliation(s)
- Daoyuan Wang
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Zhang
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingying Guo
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Yalan Wu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyun Li
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuhong Zhao
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengjin Zhu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
11
|
Wang H, Zhang Y, Luomei J, Huang P, Zhou R, Peng Y. The miR-155/GATA3/IL37 axis modulates the production of proinflammatory cytokines upon TNF-α stimulation to affect psoriasis development. Exp Dermatol 2020; 29:647-658. [PMID: 32472715 DOI: 10.1111/exd.14117] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 12/14/2022]
Abstract
Psoriasis is a recrudescent chronic immune-mediated inflammatory dermatosis; the production and release of proinflammatory cytokines/chemokines such as TNF-α has been regarded as critical issues during psoriasis pathogenesis. Based on online microarray profiles, the expression of the transcription factor GATA3 was downregulated in psoriasis lesion tissues. In the present study, we searched for miRNAs that might be related to TNF-α and GATA3 to investigate an in-depth understanding of psoriasis pathogenesis. Herein, higher TNF-α and GATA3 protein levels were observed in psoriasis lesion tissues and that GATA3 overexpression significantly reverses TNF-α-induced increases within the production of IL-6 and CXCL8 in keratinocytes. TNF-α stimulation increases miR-155 expression dose-independently, and the miR-155 inhibitor significantly reverses TNF-α-induced suppression of GATA3 protein levels and increases IL-6 and CXCL8 production. miR-155 could suppress the expression of GATA3 by targeting its 3'UTR, while GATA3 could activate the transcription of IL37 by targeting its promoter region. miR-155 overexpression reduces IL37 protein and increases CXCL8 production; GATA3 overexpression might significantly attenuate the effects of miR-155 overexpression. In contrast to GATA3, miR-155 expression is significantly upregulated in psoriasis lesion tissue and is negatively correlated with GATA3 and IL37. In summary, the miR-155/GATA3/IL37 axis modulates the production of IL-6 and CXCL8 upon TNF-α stimulation to affect psoriasis development. Thus, miR-155/GATA3/IL37 may be potent targets for psoriasis treatment, which needs further in vivo and clinical investigation.
Collapse
Affiliation(s)
- Haizhen Wang
- Department of Dermatology, The Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Yujin Zhang
- Department of Dermatology, The Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Junzi Luomei
- Department of Dermatology, The Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Pan Huang
- Department of Dermatology, The Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Rong Zhou
- Department of Dermatology, The Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Youhua Peng
- Department of Dermatology, The Second Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
12
|
Denzer L, Schroten H, Schwerk C. From Gene to Protein-How Bacterial Virulence Factors Manipulate Host Gene Expression During Infection. Int J Mol Sci 2020; 21:ijms21103730. [PMID: 32466312 PMCID: PMC7279228 DOI: 10.3390/ijms21103730] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Bacteria evolved many strategies to survive and persist within host cells. Secretion of bacterial effectors enables bacteria not only to enter the host cell but also to manipulate host gene expression to circumvent clearance by the host immune response. Some effectors were also shown to evade the nucleus to manipulate epigenetic processes as well as transcription and mRNA procession and are therefore classified as nucleomodulins. Others were shown to interfere downstream with gene expression at the level of mRNA stability, favoring either mRNA stabilization or mRNA degradation, translation or protein stability, including mechanisms of protein activation and degradation. Finally, manipulation of innate immune signaling and nutrient supply creates a replicative niche that enables bacterial intracellular persistence and survival. In this review, we want to highlight the divergent strategies applied by intracellular bacteria to evade host immune responses through subversion of host gene expression via bacterial effectors. Since these virulence proteins mimic host cell enzymes or own novel enzymatic functions, characterizing their properties could help to understand the complex interactions between host and pathogen during infections. Additionally, these insights could propose potential targets for medical therapy.
Collapse
|
13
|
Vaccaria n-Butanol Extract Lower the Production of Proinflammatory Cytokines and the Infection Risk of T. spiralis In Vivo. Acta Parasitol 2019; 64:520-527. [PMID: 31087260 DOI: 10.2478/s11686-019-00064-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/02/2019] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Trichinellosis is a severe zoonosis involving the activation of inflammatory cells, accompanied by the prominent expressions of proinflammatory cytokines in the host. Semen vaccariae, the seeds of Vaccaria segetalis (Neck.) Garcke. ex Asch. (Caryophyllaceae), is a famous traditional herb that is rich in vaccaria n-butanol extract (VNE). Vaccarin is one major active component of VNE, and it is reported in the treatment of stranguria disease. Hypaphorine is another main active component of VNE and has good anti-inflammatory effect, whereas the potential bioactivity of VNE in trichinellosis treatment is still unknown. MATERIALS AND METHODS This study was designed to evaluate the potential anthelmintic and anti-inflammatory activity of VNE toward T. spiralis infection. ICR mice were used to assess the effect of VNE on repression larvae and adult worms in vivo. Immunohistochemistry analysis was performed to evaluate the expression levels of IL-1β, IL-6, TNF-α, and COX-2. RESULTS Our results showed that VNE could effectively depress the expressions of proinflammatory cytokines, including IL-1β, IL-6, TNF-α, and COX-2. The adult worms were decreased by 79.53%, while the muscle larvae were diminished by 77.70% as compared to the control. CONCLUSION These results demonstrated that VNE may be a promising therapeutic agent against the inflammation and diseases caused by T. spiralis infection.
Collapse
|
14
|
Analyses of miRNA in the ileum of diarrheic piglets caused by Clostridium perfringens type C. Microb Pathog 2019; 136:103699. [PMID: 31472261 DOI: 10.1016/j.micpath.2019.103699] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/28/2019] [Accepted: 08/27/2019] [Indexed: 12/26/2022]
Abstract
Clostridium perfringens (C. perfringens) type C is one of major pathogenic causing diarrhea and other intestinal inflammatory diseases in piglets, which seriously affects the healthy development of the swine industries. Studies have found that miRNAs play important roles in regulating piglet diarrhea challenged by pathogenic E. coli and Salmonella. However, little is known miRNAs in the ileum of diarrheic piglets caused by C. perfringens type C. Therefore, we studied the expression profiles of the ileum miRNAs of 7-day-old piglets infected with C. perfringens type C using small RNA-Seq, including control (IC), susceptible (IS) and resistant (IR) groups. As a result, 53 differentially expressed miRNAs were found. KEGG pathway analysis for target genes revealed that these miRNAs were involved in ErbB signaling pathway, MAPK signaling pathway, Jak-STAT signaling pathway and Wnt signaling pathway. The expression correlation analysis between miRNAs and target genes revealed that the expression of miR-7134-5p had negative correlation with target NFATC4, miR-500 had negative correlation with target ELK1, HSPA2 and IL7R, and miR-92b-3p had negative correlation with target CLCF1 in ileum of IR vs IS group, suggesting that miR-7134-5p targeting to NFATC4, miR-500 targeting to ELK1, HSPA2 and IL7R, and miR-92b-3p targeting to CLCF1 were probably involved in piglet resisting C. perfringens type C. The results will provide value resources for better understanding of the genetic basis of C. perfringens type C resistance in piglet and lays a new foundation for identifying novel markers of C. perfringens type C resistance.
Collapse
|
15
|
Zhang F, Sun X, Zhu Y, Qin W. Downregulation of miR-146a inhibits influenza A virus replication by enhancing the type I interferon response in vitro and in vivo. Biomed Pharmacother 2019; 111:740-750. [PMID: 30611999 DOI: 10.1016/j.biopha.2018.12.103] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 12/17/2018] [Accepted: 12/23/2018] [Indexed: 12/13/2022] Open
Abstract
Albeit microRNAs (miRNAs) have become increasingly appreciated for their essential roles in innate immune responses to viral infections; however, it is unknown how host miRNAs regulate influenza A virus (IAV)-induced inflammation. The aim of our study was to investigate the role of miR-146a in IAV replication in vitro and in vivo. In vitro, we found miR-146a was significantly upregulated in A549 cells with IAV infection. Overexpression of miR-146a promoted IAV replication, while downregulation of miR-146a repressed replication. We found that miR-146a diminished type I interferon (IFN) responses by decreasing IFN-β production and IFN-stimulated gene (ISG) expression. Furthermore, we found the IFNs level and IAV replication regulated by miR-146a inhibitor was partially reversed by depletion of interferon receptor (IFNAR) 1 or 2. In addition, we found that miR-146a directly targets tumor necrosis factor receptor association factor 6 (TRAF6), which is involved in the production of type I IFN, and TRAF6 overexpression reversed the replication-promoting effect of miR-146a on IAV. In vivo, inhibition of miR-146a alleviated IAV-induced mice lung injury and promoted survival rates by promoting type I antiviral activities. It is, therefore, concluded that downregulation of miR-146a inhibits IAV replication by enhancing type I IFN response through its target gene TRAF6 in vitro and in vivo, suggesting miR-146a antagomir might be a potential therapeutic target during IAV infection.
Collapse
Affiliation(s)
- Fuming Zhang
- Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Xiaofang Sun
- Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Ya Zhu
- Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Wangsen Qin
- Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China.
| |
Collapse
|
16
|
Kuo PT, Zeng Z, Salim N, Mattarollo S, Wells JW, Leggatt GR. The Role of CXCR3 and Its Chemokine Ligands in Skin Disease and Cancer. Front Med (Lausanne) 2018; 5:271. [PMID: 30320116 PMCID: PMC6167486 DOI: 10.3389/fmed.2018.00271] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022] Open
Abstract
Chemokines and their receptors play an important role in the recruitment, activation and differentiation of immune cells. The chemokine receptor, CXCR3, and its ligands, CXCL9, CXCL10, and CXCL11 are key immune chemoattractants during interferon-induced inflammatory responses. Inflammation of the skin resulting from infections or autoimmune disease drives expression of CXCL9/10/11 and the subsequent recruitment of effector, CXCR3+ T cells from the circulation. The relative contributions of the different CXCR3 chemokines and the three variant isoforms of CXCR3 (CXCR3A, CXCR3B, CXCR3alt) to the inflammatory process in human skin requires further investigation. In skin cancers, the CXCR3 receptor can play a dual role whereby expression on tumor cells can lead to cancer metastasis to systemic sites while receptor expression on immune cells can frequently promote anti-tumor immune responses. This review will discuss the biology of CXCR3 and its associated ligands with particular emphasis on the skin during inflammation and carcinogenesis.
Collapse
Affiliation(s)
- Paula T Kuo
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Zhen Zeng
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Nazhifah Salim
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Stephen Mattarollo
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - James W Wells
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| | - Graham R Leggatt
- Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
17
|
Masalha M, Sidi Y, Avni D. The contribution of feedback loops between miRNAs, cytokines and growth factors to the pathogenesis of psoriasis. Exp Dermatol 2018; 27:603-610. [DOI: 10.1111/exd.13520] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Moamen Masalha
- Laboratory of Molecular Cell Biology; Center for Cancer Research and Department of Medicine C; Sheba Medical Center; Tel Hashomer Israel
- Faculty of Medicine; Sackler School of Medicine; Tel Aviv University; Tel Aviv Israel
| | - Yechezkel Sidi
- Laboratory of Molecular Cell Biology; Center for Cancer Research and Department of Medicine C; Sheba Medical Center; Tel Hashomer Israel
- Faculty of Medicine; Sackler School of Medicine; Tel Aviv University; Tel Aviv Israel
| | - Dror Avni
- Laboratory of Molecular Cell Biology; Center for Cancer Research and Department of Medicine C; Sheba Medical Center; Tel Hashomer Israel
| |
Collapse
|
18
|
Quintanilha BJ, Reis BZ, Duarte GBS, Cozzolino SMF, Rogero MM. Nutrimiromics: Role of microRNAs and Nutrition in Modulating Inflammation and Chronic Diseases. Nutrients 2017; 9:nu9111168. [PMID: 29077020 PMCID: PMC5707640 DOI: 10.3390/nu9111168] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022] Open
Abstract
Nutrimiromics studies the influence of the diet on the modification of gene expression due to epigenetic processes related to microRNAs (miRNAs), which may affect the risk for the development of chronic diseases. miRNAs are a class of non-coding endogenous RNA molecules that are usually involved in post-transcriptional gene silencing by inducing mRNA degradation or translational repression by binding to a target messenger RNA. They can be controlled by environmental and dietary factors, particularly by isolated nutrients or bioactive compounds, indicating that diet manipulation may hold promise as a therapeutic approach in modulating the risk of chronic diseases. This review summarizes the evidence regarding the influence of nutrients and bioactive compounds on the expression of miRNAs related to inflammation and chronic disease in several models (cell culture, animal models, and human trials).
Collapse
Affiliation(s)
- Bruna J Quintanilha
- Nutritional Genomics and Inflammation Laboratory, Department of Nutrition, School of Public Health, University of São Paulo, 01246-904 São Paulo, Brazil.
- Food Research Center (FoRC), 05508-000 São Paulo, Brazil.
| | - Bruna Z Reis
- Nutrition and Minerals Laboratory, Department of Food and Experimental Nutrition, University of São Paulo, 05508-000 São Paulo, Brazil.
| | - Graziela B Silva Duarte
- Nutrition and Minerals Laboratory, Department of Food and Experimental Nutrition, University of São Paulo, 05508-000 São Paulo, Brazil.
| | - Silvia M F Cozzolino
- Nutrition and Minerals Laboratory, Department of Food and Experimental Nutrition, University of São Paulo, 05508-000 São Paulo, Brazil.
| | - Marcelo M Rogero
- Nutritional Genomics and Inflammation Laboratory, Department of Nutrition, School of Public Health, University of São Paulo, 01246-904 São Paulo, Brazil.
- Food Research Center (FoRC), 05508-000 São Paulo, Brazil.
| |
Collapse
|
19
|
Duval M, Cossart P, Lebreton A. Mammalian microRNAs and long noncoding RNAs in the host-bacterial pathogen crosstalk. Semin Cell Dev Biol 2017; 65:11-19. [PMID: 27381344 PMCID: PMC7089780 DOI: 10.1016/j.semcdb.2016.06.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 05/30/2016] [Accepted: 06/01/2016] [Indexed: 12/20/2022]
Abstract
Gene expression regulation is a critical question in host-pathogen interactions, and RNAs act as key players in this process. In this review, we focus on the mammalian RNA response to bacterial infection, with a special interest on microRNAs and long non-coding RNAs. We discuss the role of cellular miRNAs in immunity, the implication of circulating miRNAs as well as the influence of the microbiome on the miRNA response. We also review how pathogens counteract the host miRNA expression. Interestingly, bacterial non-coding RNAs regulate host gene expression and conversely eukaryotic miRNAs may regulate bacterial gene expression. Overall, the characterization of RNA regulatory networks represents an emerging theme in the field of host pathogen interactions.
Collapse
Affiliation(s)
- Mélodie Duval
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, 75015 Paris, France; Inserm, U604, 75015 Paris, France; INRA, USC2020, 75015 Paris, France
| | - Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, 75015 Paris, France; Inserm, U604, 75015 Paris, France; INRA, USC2020, 75015 Paris, France.
| | - Alice Lebreton
- École Normale Supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'École Normale Supérieure (IBENS), Équipe Infection et Devenir de l'ARN, 75005 Paris, France; INRA, IBENS, 75005 Paris, France.
| |
Collapse
|
20
|
Jin C, Cheng L, Höxtermann S, Xie T, Lu X, Wu H, Skaletz-Rorowski A, Brockmeyer NH, Wu N. MicroRNA-155 is a biomarker of T-cell activation and immune dysfunction in HIV-1-infected patients. HIV Med 2016; 18:354-362. [PMID: 27981723 DOI: 10.1111/hiv.12470] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2016] [Indexed: 01/07/2023]
Abstract
OBJECTIVES MicroRNA-155 (miR-155) regulates T-cell differentiation and activation. It has also been associated with HIV infection. However, it remains unclear whether miR-155 is related to the T-cell response in HIV-infected individuals (e.g. T-cell activation and exhaustion). METHODS We performed a cross-sectional study involving 121 HIV-1-infected patients on highly active antiretroviral therapy (HAART) and 43 HAART-naïve patients. MiR-155 levels in the peripheral blood were determined by quantitative reverse transcription-polymerase chain reaction (PCR). T-cell immune activation, exhaustion, and homeostasis were measured by determining the expression of CD38, programmed death 1 (PD-1) and CD127 via flow cytometry. RESULTS The levels of miR-155 in total peripheral blood mononuclear cells, CD4 T cells and CD8 T cells from HIV-1-infected patients were increased (P < 0.01). Nonresponders and HAART-naïve patients also exhibited a higher percentage of CD8+ CD38+ T cells and a lower percentage of CD4+ CD127+ and CD8+ CD127+ T cells (P < 0.05). We also found higher levels of PD-1 expression on the CD4+ and CD8+ T cells of HIV-1-infected patients (P < 0.05). CONCLUSIONS Our findings suggest that miR-155 levels in the peripheral blood of HIV-1-infected patients are increased and associated with T-cell activation. Therefore, miR-155 is a potential biomarker of the immune response following HIV-1 infection.
Collapse
Affiliation(s)
- C Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - L Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - S Höxtermann
- Department of Dermatology, Venerology and Allergology, Center for Sexual Health and Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - T Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - X Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - H Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - A Skaletz-Rorowski
- Department of Dermatology, Venerology and Allergology, Center for Sexual Health and Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany.,Competence Network for HIV/AIDS, Ruhr University Bochum, Bochum, Germany
| | - N H Brockmeyer
- Department of Dermatology, Venerology and Allergology, Center for Sexual Health and Medicine, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany.,Competence Network for HIV/AIDS, Ruhr University Bochum, Bochum, Germany
| | - N Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Hu X, Li CP. Role of microRNA-155 in the liver. Shijie Huaren Xiaohua Zazhi 2016; 24:3891-3898. [DOI: 10.11569/wcjd.v24.i27.3891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenous non-coding small RNAs of 22 nucleotides in length that are found in most eukaryotes. Although miRNAs are highly evolutionally conserved, they show temporal and tissue specificity. They transcriptionally and posttranscriptionally regulate gene expression by completely or imperfectly base pairing with the 3' untranslated region (3'-UTR) of target mRNAs and modulate cell proliferation, apoptosis and differentiation. MicroRNA-155 (miR-155) is a typical representative miRNA, and abnormal expression or dysfunction of miR-155 function not only affects the development of inflammation and autoimmune diseases, but also plays an important role in tumor proliferation and apoptosis. In recent years, it has been found that miR-155 plays an important role in the differentiation, morphology and function of the liver, and is associated with the development, diagnosis and treatment of liver diseases.
Collapse
|
22
|
Kalinowski L, Janaszak-Jasiecka A, Siekierzycka A, Bartoszewska S, Woźniak M, Lejnowski D, Collawn JF, Bartoszewski R. Posttranscriptional and transcriptional regulation of endothelial nitric-oxide synthase during hypoxia: the role of microRNAs. Cell Mol Biol Lett 2016; 21:16. [PMID: 28536619 PMCID: PMC5415778 DOI: 10.1186/s11658-016-0017-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/18/2016] [Indexed: 02/07/2023] Open
Abstract
Understanding the cellular pathways that regulate endothelial nitric oxide (eNOS, NOS3) expression and consequently nitric oxide (NO) bioavailability during hypoxia is a necessary aspect in the development of novel treatments for cardiovascular disorders. eNOS expression and eNOS-dependent NO cellular signaling during hypoxia promote an equilibrium of transcriptional and posttranscriptional molecular mechanisms that belong to both proapoptotic and survival pathways. Furthermore, NO bioavailability results not only from eNOS levels, but also relies on the presence of eNOS substrate and cofactors, the phosphorylation status of eNOS, and the presence of reactive oxygen species (ROS) that can inactivate eNOS. Since both NOS3 levels and these signaling pathways can also be a subject of posttranscriptional modulation by microRNAs (miRNAs), this class of short noncoding RNAs contribute another level of regulation for NO bioavailability. As miRNA antagomirs or specific target protectors could be used in therapeutic approaches to regulate NO levels, either by changing NOS3 mRNA stability or through factors governing eNOS activity, it is critical to understand their role in governing eNOS activity during hypoxa. In contrast to a large number of miRNAs reported to the change eNOS expression during hypoxia, only a few miRNAs modulate eNOS activity. Furthermore, impaired miRNA biogenesis leads to NOS3 mRNA stabilization under hypoxia. Here we discuss the recent studies that define miRNAs’ role in maintaining endothelial NO bioavailability emphasizing those miRNAs that directly modulate NOS3 expression or eNOS activity.
Collapse
Affiliation(s)
- Leszek Kalinowski
- Department of Medical Laboratory Diagnostics and Central Bank of Frozen Tissues & Genetic Specimens, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Anna Janaszak-Jasiecka
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - Anna Siekierzycka
- Department of Medical Laboratory Diagnostics and Central Bank of Frozen Tissues & Genetic Specimens, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - Marcin Woźniak
- Department of Medical Laboratory Diagnostics and Central Bank of Frozen Tissues & Genetic Specimens, Medical University of Gdansk, Debinki 7, 80-211 Gdansk, Poland
| | - Dawid Lejnowski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| | - James F Collawn
- Department of Cell Biology, Developmental, and Integrative, University of Alabama at Birmingham, Birmingham, USA
| | - Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Hallera 107, 80-416 Gdansk, Poland
| |
Collapse
|
23
|
Li C, He H, Liu A, Liu H, Huang H, Zhao C, Jing L, Ni J, Yin L, Hu S, Wu H, Li X, Zhao S. Natural Functional SNPs in miR-155 Alter Its Expression Level, Blood Cell Counts, and Immune Responses. Front Immunol 2016; 7:295. [PMID: 27532002 PMCID: PMC4970381 DOI: 10.3389/fimmu.2016.00295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/21/2016] [Indexed: 01/08/2023] Open
Abstract
miR-155 has been confirmed to be a key factor in immune responses in humans and other mammals. Therefore, investigation of variations in miR-155 could be useful for understanding the differences in immunity between individuals. In this study, four SNPs in miR-155 were identified in mice (Mus musculus) and humans (Homo sapiens). In mice, the four SNPs were closely linked and formed two miR-155 haplotypes (A and B). Ten distinct types of blood parameters were associated with miR-155 expression under normal conditions. Additionally, 4 and 14 blood parameters were significantly different between these two genotypes under normal and lipopolysaccharide (LPS) stimulation conditions, respectively. Moreover, the expression levels of miR-155, the inflammatory response to LPS stimulation, and the lethal ratio following Salmonella typhimurium infection were significantly increased in mice harboring the AA genotype. Further, two SNPs, one in the loop region and the other near the 3′ terminal of pre-miR-155, were confirmed to be responsible for the differential expression of miR-155 in mice. Interestingly, two additional SNPs, one in the loop region and the other in the middle of miR-155*, modulated the function of miR-155 in humans. Predictions of secondary RNA structure using RNAfold showed that these SNPs affected the structure of miR-155 in both mice and humans. Our results provide novel evidence of the natural functional SNPs of miR-155 in both mice and humans, which may affect the expression levels of mature miR-155 by modulating its secondary structure. The SNPs of human miR-155 may be considered as causal mutations for some immune-related diseases in the clinic. The two genotypes of mice could be used as natural models for studying the mechanisms of immune diseases caused by abnormal expression of miR-155 in humans.
Collapse
Affiliation(s)
- Congcong Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China; College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Huabin He
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - An Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Huazhen Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Haibo Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Changzhi Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lu Jing
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Juan Ni
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Lilin Yin
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Suqin Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hui Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
24
|
Agustinho DP, de Oliveira MA, Tavares AH, Derengowski L, Stolz V, Guilhelmelli F, Mortari MR, Kuchler K, Silva-Pereira I. Dectin-1 is required for miR155 upregulation in murine macrophages in response to Candida albicans. Virulence 2016; 8:41-52. [PMID: 27294852 DOI: 10.1080/21505594.2016.1200215] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The commensal fungal pathogen Candida albicans is a leading cause of lethal systemic infections in immunocompromised patients. One of the main mechanisms of host immune evasion and virulence by this pathogen is the switch from yeast form to hyphal growth morphologies. Micro RNAs (miRNAs), a small regulatory non-coding RNA, has been identified as an important part of the immune response to a wide variety of pathogens. In general, miRNAs act by modulating the intensity of inflammatory responses. miRNAs act by base-paring binding to specific sequences of target mRNAs, generally causing their silencing through mRNA degradation or translational repression. To study the impact of C. albicans cell morphology upon host miRNA expression, we investigated the differential modulation of 9 different immune response-related miRNAs in primary murine bone marrow-derived macrophages (BMDMs) exposed to either yeasts or hyphal forms of Candida albicans. Here, we show that the different growth morphologies induce distinct miRNA expression patterns in BMDMs. Interestingly, our data suggest that the C-Type lectin receptor Dectin-1 is a major PRR that orchestrates miR155 upregulation in a Syk-dependent manner. Our results suggest that PRR-mediating signaling events are key drivers of miRNA-mediated gene regulation during fungal pathogenesis.
Collapse
Affiliation(s)
- Daniel Paiva Agustinho
- a Departamento de Biologia Celular , Laboratório de Biologia Molecular, Universidade de Brasília , Brasília , DF , Brasil
| | - Marco Antônio de Oliveira
- a Departamento de Biologia Celular , Laboratório de Biologia Molecular, Universidade de Brasília , Brasília , DF , Brasil
| | - Aldo Henrique Tavares
- b Departamento de Biologia Celular , Laboratório de Imunologia Aplicada, Instituto de Biologia, Universidade de Brasília , Brasília , DF , Brasil
| | - Lorena Derengowski
- a Departamento de Biologia Celular , Laboratório de Biologia Molecular, Universidade de Brasília , Brasília , DF , Brasil
| | - Valentina Stolz
- c Department of Molecular Genetics , Max F. Perutz Laboratories, Medical University of Vienna , Vienna , Austria
| | - Fernanda Guilhelmelli
- a Departamento de Biologia Celular , Laboratório de Biologia Molecular, Universidade de Brasília , Brasília , DF , Brasil
| | - Márcia Renata Mortari
- d Departamento de Ciências Fisiológicas , Laboratório de Neurofarmacologia, Universidade de Brasília , Brasília , DF , Brasil
| | - Karl Kuchler
- c Department of Molecular Genetics , Max F. Perutz Laboratories, Medical University of Vienna , Vienna , Austria
| | - Ildinete Silva-Pereira
- a Departamento de Biologia Celular , Laboratório de Biologia Molecular, Universidade de Brasília , Brasília , DF , Brasil
| |
Collapse
|
25
|
Nie M, Liu J, Yang Q, Seok HY, Hu X, Deng ZL, Wang DZ. MicroRNA-155 facilitates skeletal muscle regeneration by balancing pro- and anti-inflammatory macrophages. Cell Death Dis 2016; 7:e2261. [PMID: 27277683 PMCID: PMC5143393 DOI: 10.1038/cddis.2016.165] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/26/2016] [Accepted: 05/12/2016] [Indexed: 12/19/2022]
Abstract
Skeletal muscle has remarkable regeneration capacity and regenerates in response to injury. Muscle regeneration largely relies on muscle stem cells called satellite cells. Satellite cells normally remain quiescent, but in response to injury or exercise they become activated and proliferate, migrate, differentiate, and fuse to form multinucleate myofibers. Interestingly, the inflammatory process following injury and the activation of the myogenic program are highly coordinated, with myeloid cells having a central role in modulating satellite cell activation and regeneration. Here, we show that genetic deletion of microRNA-155 (miR-155) in mice substantially delays muscle regeneration. Surprisingly, miR-155 does not appear to directly regulate the proliferation or differentiation of satellite cells. Instead, miR-155 is highly expressed in myeloid cells, is essential for appropriate activation of myeloid cells, and regulates the balance between pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages during skeletal muscle regeneration. Mechanistically, we found that miR-155 suppresses SOCS1, a negative regulator of the JAK-STAT signaling pathway, during the initial inflammatory response upon muscle injury. Our findings thus reveal a novel role of miR-155 in regulating initial immune responses during muscle regeneration and provide a novel miRNA target for improving muscle regeneration in degenerative muscle diseases.
Collapse
Affiliation(s)
- M Nie
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, 76 Linjiang Road, Chongqing, P.R. China
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA, USA
| | - J Liu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA, USA
| | - Q Yang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA, USA
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, Sichuan, P.R. China
| | - H Y Seok
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA, USA
| | - X Hu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA, USA
| | - Z-L Deng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Chongqing Medical University, 76 Linjiang Road, Chongqing, P.R. China
| | - D-Z Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, 320 Longwood Avenue, Boston, MA, USA
| |
Collapse
|
26
|
Expression and Function of miR-155 in Diseases of the Gastrointestinal Tract. Int J Mol Sci 2016; 17:ijms17050709. [PMID: 27187359 PMCID: PMC4881531 DOI: 10.3390/ijms17050709] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 04/25/2016] [Accepted: 05/03/2016] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs) are a type of small noncoding RNA that can regulate the expression of target genes under physiological and pathophysiological conditions. miR-155 is a multifunctional miRNA with inflammation-related and oncogenic roles. In particular, the dysregulation of miR-155 has been strongly implicated in Helicobacter pylori-related gastric disease, inflammatory bowel disease, and colorectal cancer in addition to being involved in molecular changes of important targets and signaling pathways. This review focuses on the expression and function of miR-155 during inflammation and carcinogenesis and its potential use as an effective therapeutic target for certain gastrointestinal diseases.
Collapse
|
27
|
Boosani CS, Agrawal DK. Epigenetic Regulation of Innate Immunity by microRNAs. Antibodies (Basel) 2016; 5:E8. [PMID: 31557989 PMCID: PMC6698855 DOI: 10.3390/antib5020008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/16/2016] [Accepted: 03/16/2016] [Indexed: 12/20/2022] Open
Abstract
The innate immune response, which is usually referred to as the first line of defense, protects the hosts against pathogenic micro-organisms. Some of the biomolecules released from the pathogens, such as proteins, lipoproteins and nucleic acids, which are collectively termed as pathogen-associated molecular patterns (PAMPs), elicit signaling mechanisms that trigger immune responses in the hosts. Pathogen recognition receptors (PRRs) on the host cells recognize these PAMPs and initiate intracellular signaling through toll-like receptors (TLRs), RIG-I-like receptors (RLRs), and other pathways which induce production of pro-inflammatory cytokines and type I interferons. Recently, different members of tripartite motif containing proteins (TRIM) family of proteins were identified to intercept and regulate these cellular pathways. Specific targets of TRIM proteins have been identified and their molecular mechanisms were unraveled and identified unique domains involved in protein-protein interactions. Though innate immunity represents a tight and well conserved immune system in the host, gene expression in innate immunity was identified to be influenced by several epigenetic mechanisms including regulation by microRNAs (miRNAs). In this review, we present critical analysis of the findings on the identification of specific miRNAs that modulate expression of target genes involved in the regulation of innate immunity.
Collapse
Affiliation(s)
- Chandra S Boosani
- Department of Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA.
| | - Devendra K Agrawal
- Department of Clinical & Translational Science, Creighton University School of Medicine, Omaha, NE 68178, USA.
| |
Collapse
|
28
|
Karkeni E, Astier J, Tourniaire F, El Abed M, Romier B, Gouranton E, Wan L, Borel P, Salles J, Walrand S, Ye J, Landrier JF. Obesity-associated Inflammation Induces microRNA-155 Expression in Adipocytes and Adipose Tissue: Outcome on Adipocyte Function. J Clin Endocrinol Metab 2016; 101:1615-26. [PMID: 26829440 PMCID: PMC4880153 DOI: 10.1210/jc.2015-3410] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Obesity alters adipose tissue's metabolic and endocrine functions and causes a chronic local and systemic low-grade inflammatory state to develop, generating obesity-associated complications. In the last decade, many entities contributing to and regulating this inflammatory state have been identified, among which are microRNAs. OBJECTIVE This study aimed to identify microRNA regulated in inflamed adipocytes and adipose tissue, and its effect on adipocyte biology. DESIGN AND RESULTS We screened the expression profile of TNFα-treated adipocytes (a major pro-inflammatory protein expressed in obese adipose tissue), and identified miR-155 as the most responsive microRNA. The involvement of TNFα on the basal miR-155 expression was confirmed in the adipose tissue of Tnfa−/− mice where miR-155 was significantly reduced. Also, mice overexpressing p65 or invalidated for p65 in adipose tissue respectively increased and decreased miR-155 expression, in line with the involvement of the nuclear factor κB (NF-κB) pathway in miR-155 induction. miR-155 expression was higher in obese subjects' adipose tissue than in that of normal-weight subjects, and correlated with TNFα expression and body mass index. Gain and loss of function of miR-155 showed its effect on adipocyte function, probably via its ability to target PPARγ mRNA 3′UTR. Interestingly, miR-155 overexpression also resulted in an increased inflammatory state in adipocytes. CONCLUSION Altogether, these data are evidence of a proinflammatory loop mediated by NF-κB and miR-155 that could participate in the amplification of inflammatory status in adipocytes.
Collapse
Affiliation(s)
- Esma Karkeni
- Institut National de Recherche Agronomique (INRA) (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), UMR 1260, F-13385, Marseille, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1062 (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.F.L.), Nutrition, Obésité et Risque Thrombotique F-13385, Marseille, France; Faculté de Médecine (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), Aix-Marseille Université, F-13385, Marseille, France; Pennington Biomedical Research Center (L.W., J.Y.), Louisiana State University System, Baton Rouge, LA 70808; Laboratory of Transplant Immunology, Regeneration Medicine Research Center, Sichuan University, Sichuan Province, 610041 China; and UMR INRA 1019 Unité de Nutrition Humaine (J.S., S.W.), Centre de Recherches INRA de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France
| | - Julien Astier
- Institut National de Recherche Agronomique (INRA) (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), UMR 1260, F-13385, Marseille, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1062 (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.F.L.), Nutrition, Obésité et Risque Thrombotique F-13385, Marseille, France; Faculté de Médecine (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), Aix-Marseille Université, F-13385, Marseille, France; Pennington Biomedical Research Center (L.W., J.Y.), Louisiana State University System, Baton Rouge, LA 70808; Laboratory of Transplant Immunology, Regeneration Medicine Research Center, Sichuan University, Sichuan Province, 610041 China; and UMR INRA 1019 Unité de Nutrition Humaine (J.S., S.W.), Centre de Recherches INRA de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France
| | - Franck Tourniaire
- Institut National de Recherche Agronomique (INRA) (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), UMR 1260, F-13385, Marseille, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1062 (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.F.L.), Nutrition, Obésité et Risque Thrombotique F-13385, Marseille, France; Faculté de Médecine (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), Aix-Marseille Université, F-13385, Marseille, France; Pennington Biomedical Research Center (L.W., J.Y.), Louisiana State University System, Baton Rouge, LA 70808; Laboratory of Transplant Immunology, Regeneration Medicine Research Center, Sichuan University, Sichuan Province, 610041 China; and UMR INRA 1019 Unité de Nutrition Humaine (J.S., S.W.), Centre de Recherches INRA de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France
| | - Mouna El Abed
- Institut National de Recherche Agronomique (INRA) (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), UMR 1260, F-13385, Marseille, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1062 (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.F.L.), Nutrition, Obésité et Risque Thrombotique F-13385, Marseille, France; Faculté de Médecine (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), Aix-Marseille Université, F-13385, Marseille, France; Pennington Biomedical Research Center (L.W., J.Y.), Louisiana State University System, Baton Rouge, LA 70808; Laboratory of Transplant Immunology, Regeneration Medicine Research Center, Sichuan University, Sichuan Province, 610041 China; and UMR INRA 1019 Unité de Nutrition Humaine (J.S., S.W.), Centre de Recherches INRA de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France
| | - Béatrice Romier
- Institut National de Recherche Agronomique (INRA) (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), UMR 1260, F-13385, Marseille, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1062 (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.F.L.), Nutrition, Obésité et Risque Thrombotique F-13385, Marseille, France; Faculté de Médecine (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), Aix-Marseille Université, F-13385, Marseille, France; Pennington Biomedical Research Center (L.W., J.Y.), Louisiana State University System, Baton Rouge, LA 70808; Laboratory of Transplant Immunology, Regeneration Medicine Research Center, Sichuan University, Sichuan Province, 610041 China; and UMR INRA 1019 Unité de Nutrition Humaine (J.S., S.W.), Centre de Recherches INRA de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France
| | - Erwan Gouranton
- Institut National de Recherche Agronomique (INRA) (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), UMR 1260, F-13385, Marseille, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1062 (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.F.L.), Nutrition, Obésité et Risque Thrombotique F-13385, Marseille, France; Faculté de Médecine (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), Aix-Marseille Université, F-13385, Marseille, France; Pennington Biomedical Research Center (L.W., J.Y.), Louisiana State University System, Baton Rouge, LA 70808; Laboratory of Transplant Immunology, Regeneration Medicine Research Center, Sichuan University, Sichuan Province, 610041 China; and UMR INRA 1019 Unité de Nutrition Humaine (J.S., S.W.), Centre de Recherches INRA de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France
| | - Lin Wan
- Institut National de Recherche Agronomique (INRA) (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), UMR 1260, F-13385, Marseille, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1062 (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.F.L.), Nutrition, Obésité et Risque Thrombotique F-13385, Marseille, France; Faculté de Médecine (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), Aix-Marseille Université, F-13385, Marseille, France; Pennington Biomedical Research Center (L.W., J.Y.), Louisiana State University System, Baton Rouge, LA 70808; Laboratory of Transplant Immunology, Regeneration Medicine Research Center, Sichuan University, Sichuan Province, 610041 China; and UMR INRA 1019 Unité de Nutrition Humaine (J.S., S.W.), Centre de Recherches INRA de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France
| | - Patrick Borel
- Institut National de Recherche Agronomique (INRA) (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), UMR 1260, F-13385, Marseille, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1062 (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.F.L.), Nutrition, Obésité et Risque Thrombotique F-13385, Marseille, France; Faculté de Médecine (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), Aix-Marseille Université, F-13385, Marseille, France; Pennington Biomedical Research Center (L.W., J.Y.), Louisiana State University System, Baton Rouge, LA 70808; Laboratory of Transplant Immunology, Regeneration Medicine Research Center, Sichuan University, Sichuan Province, 610041 China; and UMR INRA 1019 Unité de Nutrition Humaine (J.S., S.W.), Centre de Recherches INRA de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France
| | - Jérôme Salles
- Institut National de Recherche Agronomique (INRA) (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), UMR 1260, F-13385, Marseille, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1062 (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.F.L.), Nutrition, Obésité et Risque Thrombotique F-13385, Marseille, France; Faculté de Médecine (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), Aix-Marseille Université, F-13385, Marseille, France; Pennington Biomedical Research Center (L.W., J.Y.), Louisiana State University System, Baton Rouge, LA 70808; Laboratory of Transplant Immunology, Regeneration Medicine Research Center, Sichuan University, Sichuan Province, 610041 China; and UMR INRA 1019 Unité de Nutrition Humaine (J.S., S.W.), Centre de Recherches INRA de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France
| | - Stéphane Walrand
- Institut National de Recherche Agronomique (INRA) (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), UMR 1260, F-13385, Marseille, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1062 (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.F.L.), Nutrition, Obésité et Risque Thrombotique F-13385, Marseille, France; Faculté de Médecine (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), Aix-Marseille Université, F-13385, Marseille, France; Pennington Biomedical Research Center (L.W., J.Y.), Louisiana State University System, Baton Rouge, LA 70808; Laboratory of Transplant Immunology, Regeneration Medicine Research Center, Sichuan University, Sichuan Province, 610041 China; and UMR INRA 1019 Unité de Nutrition Humaine (J.S., S.W.), Centre de Recherches INRA de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France
| | - Jianping Ye
- Institut National de Recherche Agronomique (INRA) (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), UMR 1260, F-13385, Marseille, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1062 (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.F.L.), Nutrition, Obésité et Risque Thrombotique F-13385, Marseille, France; Faculté de Médecine (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), Aix-Marseille Université, F-13385, Marseille, France; Pennington Biomedical Research Center (L.W., J.Y.), Louisiana State University System, Baton Rouge, LA 70808; Laboratory of Transplant Immunology, Regeneration Medicine Research Center, Sichuan University, Sichuan Province, 610041 China; and UMR INRA 1019 Unité de Nutrition Humaine (J.S., S.W.), Centre de Recherches INRA de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France
| | - Jean-François Landrier
- Institut National de Recherche Agronomique (INRA) (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), UMR 1260, F-13385, Marseille, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 1062 (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.F.L.), Nutrition, Obésité et Risque Thrombotique F-13385, Marseille, France; Faculté de Médecine (E.K., J.A., F.T., M.E.A., B.R., E.G., P.B., J.-F.L.), Aix-Marseille Université, F-13385, Marseille, France; Pennington Biomedical Research Center (L.W., J.Y.), Louisiana State University System, Baton Rouge, LA 70808; Laboratory of Transplant Immunology, Regeneration Medicine Research Center, Sichuan University, Sichuan Province, 610041 China; and UMR INRA 1019 Unité de Nutrition Humaine (J.S., S.W.), Centre de Recherches INRA de Clermont-Ferrand/Theix, 63122 St-Genès-Champanelle, France
| |
Collapse
|
29
|
Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat Immunol 2016; 17:406-13. [PMID: 26950237 DOI: 10.1038/ni.3398] [Citation(s) in RCA: 415] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 01/14/2016] [Indexed: 02/06/2023]
Abstract
The acute phase of sepsis is characterized by a strong inflammatory reaction. At later stages in some patients, immunoparalysis may be encountered, which is associated with a poor outcome. By transcriptional and metabolic profiling of human patients with sepsis, we found that a shift from oxidative phosphorylation to aerobic glycolysis was an important component of initial activation of host defense. Blocking metabolic pathways with metformin diminished cytokine production and increased mortality in systemic fungal infection in mice. In contrast, in leukocytes rendered tolerant by exposure to lipopolysaccharide or after isolation from patients with sepsis and immunoparalysis, a generalized metabolic defect at the level of both glycolysis and oxidative metabolism was apparent, which was restored after recovery of the patients. Finally, the immunometabolic defects in humans were partially restored by therapy with recombinant interferon-γ, which suggested that metabolic processes might represent a therapeutic target in sepsis.
Collapse
|
30
|
Rudnicki M, Perco P, D Haene B, Leierer J, Heinzel A, Mühlberger I, Schweibert N, Sunzenauer J, Regele H, Kronbichler A, Mestdagh P, Vandesompele J, Mayer B, Mayer G. Renal microRNA- and RNA-profiles in progressive chronic kidney disease. Eur J Clin Invest 2016; 46:213-26. [PMID: 26707063 DOI: 10.1111/eci.12585] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 12/20/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) contribute to chronic kidney disease (CKD) progression via regulating mRNAs involved in renal homeostasis. However, their association with clinical outcome remains poorly understood. MATERIALS AND METHODS We performed miRNA and mRNA expression profiling on renal biopsy sections by qPCR (miRNA) and microarrays (mRNA) in a discovery (n = 43) and in a validation (n = 29) cohort. miRNAs differentiating stable and progressive cases were inversely correlated with putative target mRNAs, which were further characterized by pathway analysis using KEGG pathways. RESULTS miR-30d, miR-140-3p, miR-532-3p, miR-194, miR-190, miR-204 and miR-206 were downregulated in progressive cases. These seven miRNAs correlated with upregulated 29 target mRNAs involved in inflammatory response, cell-cell interaction, apoptosis and intra-cellular signalling. In particular, miR-206 and miR-532-3p were associated with distinct biological processes via the expression of their target mRNAs: Reduced expression of miR-206 in progressive disease correlated with the upregulation of target mRNAs participating in inflammatory pathways (CCL19, CXCL1, IFNAR2, NCK2, PTK2B, PTPRC, RASGRP1 and TNFRSF25). Progressive cases also showed a lower expression of miR-532-3p and an increased expression of target transcripts involved in apoptosis pathways (MAP3K14, TNFRSF10B/TRAIL-R2, TRADD and TRAF2). In the validation cohort, we confirmed the decreased expression of miR-206 and miR-532-3p, and the inverse correlation of these miRNAs with the expression of nine of the 12 target genes. The levels of the identified miRNAs and the target mRNAs correlated with clinical parameters and histological damage indices. CONCLUSIONS These results suggest the involvement of specific miRNAs and mRNAs in biological pathways associated with the progression of CKD.
Collapse
Affiliation(s)
- Michael Rudnicki
- Department of Internal Medicine IV - Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | - Paul Perco
- Emergentec Biodevelopment GmbH, Vienna, Austria
| | | | - Johannes Leierer
- Department of Internal Medicine IV - Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | | | | | - Ninella Schweibert
- Department of Internal Medicine IV - Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | - Judith Sunzenauer
- Department of Internal Medicine IV - Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria.,Department of Nephrology, KH Elisabethinen, Linz, Austria
| | - Heinz Regele
- Institute of Pathology, Medical University Vienna, Vienna, Austria
| | - Andreas Kronbichler
- Department of Internal Medicine IV - Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | | | | | - Bernd Mayer
- Emergentec Biodevelopment GmbH, Vienna, Austria
| | - Gert Mayer
- Department of Internal Medicine IV - Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
31
|
Hu JY, Zhang J, Ma JZ, Liang XY, Chen GY, Lu R, Du GF, Zhou G. MicroRNA-155-IFN-γ Feedback Loop in CD4(+)T Cells of Erosive type Oral Lichen Planus. Sci Rep 2015; 5:16935. [PMID: 26594049 PMCID: PMC4655359 DOI: 10.1038/srep16935] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/20/2015] [Indexed: 12/25/2022] Open
Abstract
Oral lichen planus (OLP) is a T cell-mediated immune disorder, and we have indicated a Th1-dominated immune response in OLP. MicroRNA-155 (miR-155) could promote Th1 cells polarization. The present study aims to determine the role of miR-155 in immune response of OLP. The expression of miR-155 and the target mRNA was tested by Real-Time PCR. The serum levels of IL-2, 4, 10 and IFN-γ were examined with ELISA. Furthermore, in vitro study was built to observe the function of miR-155 in erosive-type OLP (EOLP). Finally, we determined the expression and correlation of miR-155 and SOCS1 in EOLP CD4+ T cells. The results showed miR-155 was high related with the disease severities. Besides, serum IFN-γ was specifically increased in EOLP group, while IL-4 was decreased. In vitro studies showed miR-155 could reinforce IFN-γ signal transducer, and the induction of IFN-γ could also promote miR-155 expression in EOLP CD4+ T cells. In addition, miR-155 levels were negatively related with SOCS1 mRNA expression in EOLP CD4+ T cells. Our study revealed a positive miR-155- IFN-γ feedback loop in EOLP CD4+ T cell, which might contribute to the Th1-dominated immune response. Furthermore, miR-155 could be used for the evaluation and treatment of OLP.
Collapse
Affiliation(s)
- Jing-Yu Hu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) &Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, P.R. China
| | - Jing Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) &Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, P.R. China
| | - Jing-Zhi Ma
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xue-Yi Liang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) &Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guan-Ying Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) &Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, P.R. China
| | - Rui Lu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) &Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, P.R. China
| | - Ge-Fei Du
- Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, P.R. China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) &Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, P.R. China
| |
Collapse
|
32
|
Sun W, Sheng Y, Chen J, Xu D, Gu Y. Down-Regulation of miR-146a Expression Induces Allergic Conjunctivitis in Mice by Increasing TSLP Level. Med Sci Monit 2015; 21:2000-7. [PMID: 26166175 PMCID: PMC4509417 DOI: 10.12659/msm.894563] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background Pollen is the most common aeroallergen to cause conjunctivitis. In this study, we established a short ragweed (SRW)-induced mouse model of allergic conjunctivitis (AC) and aimed to explore the potential role of miR-146a and its downstream molecules in the development of ocular allergic inflammation. Material/Methods The mouse model of challenge pollen was used for in vivo study. The culture model of primary human limbal epithelium (HLE) exposed to lipopolysaccharide (LPS) was performed for in vitro research. The numbers of eosinophils and total inflammatory cells were examined using Giemsa staining. The expression of mRNA and miR-146a was determined by quantitative RT-PCR, and protein production was evaluated by Western blotting. Results In vivo of mice, pollen challenge induced conjunctiva inflammatory response indicated by increased number of eosinophils and total inflammatory cells. Interestingly, pollen significantly attenuated miR-146a expression while it enhanced expression of thymic stromal lymphopoietin (TSLP) and its downstream molecules, including TSLP receptor (TSLPR)/ OX40 ligand (OX40L)/CD11C. In vitro of HCE, downregulation effect of miR-146a expression induced by LPS was reversed by Bay treatment, an inhibitor for nuclear factor kappa B (NF-κB), and LPS-induced cell inflammation is mediated by miR-146a-TSLP/TSLPR/OX40L/CD11C signaling pathway. This was further demonstrated by overexpression of miR-146a in mouse abrogated pollen-triggered conjunctiva inflammatory reaction as well as pollen-induced activity of TSLP/TSLPR/OX40L/CD11C signaling. Conclusions Down-regulation of miR-146a expression induces allergic conjunctivitis in mice by increasing TSLP level.
Collapse
Affiliation(s)
- Wen Sun
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Yan Sheng
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Jie Chen
- Department of Ophthalmology, Navy General Hospital, Beijing, China (mainland)
| | - Dong Xu
- Department of Ophthalmology, Xin Hua Hospital of Zhejiang Province, Hangzhou, Zhejiang, China (mainland)
| | - Yangshun Gu
- Department of Ophthalmology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
33
|
Zeng FR, Tang LJ, He Y, Garcia RC. An update on the role of miRNA-155 in pathogenic microbial infections. Microbes Infect 2015; 17:613-21. [PMID: 26072128 DOI: 10.1016/j.micinf.2015.05.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 04/28/2015] [Accepted: 05/25/2015] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are evolutionarily conserved and naturally abundant molecules of single-stranded, non-coding RNA from ∼17 to 25 nucleotides long. MiRNAs act at post-transcriptional level either to suppress gene translation or to induce mRNA degradation, according to the degree of complementarity with their target sequences. MiR-155 is a typical representative of the miRNA family that plays a crucial role in cell differentiation and organism development. A number of studies have shown that miR-155 can not only regulate cell proliferation, apoptosis and lymphoma progression, but also plays an important part in various other physiological and pathological processes. For instance, it is involved in hematopoietic cell differentiation, cardiovascular disease, inflammation and immune responses. In recent years, the role of miR-155 in infectious diseases has attracted considerable attention. This review will highlight the participation of miR-155 in the responses to infections caused by different pathogens.
Collapse
Affiliation(s)
- Fu-Rong Zeng
- The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410078, Hunan, China
| | - Li-Jun Tang
- The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410078, Hunan, China.
| | - Ye He
- The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410078, Hunan, China
| | - R C Garcia
- International Centre for Genetic Engineering and Biotechnology, Area Science Park, Padriciano 99, 34012 Trieste, Italy
| |
Collapse
|
34
|
Khamaneh AM, Alipour MR, Sheikhzadeh Hesari F, Ghadiri Soufi F. A signature of microRNA-155 in the pathogenesis of diabetic complications. J Physiol Biochem 2015; 71:301-9. [PMID: 25929727 DOI: 10.1007/s13105-015-0413-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 04/21/2015] [Indexed: 11/26/2022]
Abstract
The current study was designed to explore the potential involvement of miR-155 in the pathogenesis of diabetes complications. Male rats were divided into control and diabetic groups (n = 6). Type 2 diabetes was induced by a single-dose injection of nicotinamide (110 mg/kg; intraperitoneal (i.p.)), 15 min before injection of streptozotocin (STZ; 50 mg/kg; i.p.) in 12-h fasted rats. Two months after induction of diabetes, the rats were sacrificed for subsequent measurements. The nuclear factor kappa B (NF-κB) activity was higher in diabetic peripheral blood mononuclear cells (PBMCs), aorta, heart, kidney, liver, and sciatic nerve, than the control counterparts. Also, apoptosis rate was increased in these tissues, except the aorta. NF-κB messenger RNA (mRNA) expression level was higher in the kidney, heart, PBMCs, and sciatic nerve of diabetic rats than their control counterparts. Except the liver, the miR-155 expression level was significantly decreased in diabetic kidney, heart, aorta, PBMCs, and sciatic nerve versus the controls. Moreover, the expression of miR-155 was negatively correlated with NF-κB activity and apoptosis rate. These results suggest that changes in the expression of miR-155 may participate in the pathogenesis of diabetes-related complications, but causal relationship between miR-155 dysregulation and diabetic complications is unknown.
Collapse
Affiliation(s)
- Amir Mahdi Khamaneh
- School of advanced medical sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | |
Collapse
|
35
|
Nahid MA, Satoh M, Chan EKL. Interleukin 1β-Responsive MicroRNA-146a Is Critical for the Cytokine-Induced Tolerance and Cross-Tolerance to Toll-Like Receptor Ligands. J Innate Immun 2015; 7:428-40. [PMID: 25896300 DOI: 10.1159/000371517] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 12/12/2014] [Indexed: 01/07/2023] Open
Abstract
Unwarranted overproduction of cytokines, such as interleukin (IL)-1β, can cause moderate to severe pathological complications, and thus elaborate mechanisms are needed to regulate its onset and termination. One such, well-known, mechanism is endotoxin tolerance, generally described as controlling lipopolysaccharide Toll-like receptor 4 (LPS-TLR4) signaling. Similarly, cytokine-induced tolerance plays an important role in regulating an overactive cytokine response. In this report, the capability of IL-1β to induce tolerance and cross-tolerance to various inflammatory ligands was investigated. IL-1β-stimulated THP-1 monocytes showed a gradual increase of microRNA (miR)-146a, reaching 15-fold expression by 24 h. miR-146a upregulation induced tolerance toward subsequent challenges of IL-1β, LPS, peptidoglycan, Pam and flagellin in THP-1 cells. The induction of tolerance was dependent on the IL-1β priming dose and associated increase of miR-146a expression. Moreover, IL-1β-treated THP-1 cells showed sustained miR-146a upregulation that repressed IRAK1 and TRAF6 adaptor molecules. Transfection of miR-146a alone mimicked IL-1β-induced tolerance in monocytes, while cells transfected with miR-146a inhibitor increased chemokine production. A comparable cytokine response regulated by miR-146a was also detected in lung epithelial A549 cells, purified human monocytes and mouse peritoneal macrophages. Thus, our studies showed that miR-146a was crucial for monocytic cell-based IL-1β tolerance and cross-tolerance, and thus opens the way for future research in the development of therapeutics for inflammatory diseases.
Collapse
Affiliation(s)
- Md A Nahid
- Department of Oral Biology, University of Florida, Gainesville, Fla., USA
| | | | | |
Collapse
|
36
|
Arango D, Diosa-Toro M, Rojas-Hernandez LS, Cooperstone JL, Schwartz SJ, Mo X, Jiang J, Schmittgen TD, Doseff AI. Dietary apigenin reduces LPS-induced expression of miR-155 restoring immune balance during inflammation. Mol Nutr Food Res 2015; 59:763-72. [PMID: 25641956 PMCID: PMC7955240 DOI: 10.1002/mnfr.201400705] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/25/2014] [Accepted: 12/29/2014] [Indexed: 12/25/2022]
Abstract
SCOPE High incidence of inflammatory diseases afflicts the increasing aging-population infringing a great health burden. Dietary flavonoids, including the flavone apigenin, are emerging as important anti-inflammatory nutraceuticals due to their health benefits, lack of adverse effects and reduced costs. MicroRNAs (miRs) play a central role in inflammation by regulating gene expression, yet how dietary ingredients affect miRs is poorly understood. The aim of this study was to identify miRs involved in the anti-inflammatory activity of apigenin and apigenin-rich diets and determine their immune regulatory mechanisms in macrophages and in vivo. METHODS AND RESULTS A high-throughput quantitative reverse transcriptase PCR screen of 312 miRs in macrophages revealed that apigenin reduced LPS-induced miR-155 expression. Analyses of miR-155 precursor and primary transcript indicated that apigenin regulated miR-155 transcriptionally. Apigenin-reduced expression of miR-155 led to the increase of anti-inflammatory regulators forkhead box O3a and smooth-muscle-actin and MAD-related protein 2 in LPS-treated macrophages. In vivo, apigenin or a celery-based apigenin-rich diet reduced LPS-induced expression of miR-155 and decreased tumor necrosis factor α in lungs from LPS-treated mice. CONCLUSION These results demonstrate that apigenin and apigenin-rich diets exert effective anti-inflammatory activity in vivo by reducing LPS-induced expression of miR-155, thereby restoring immune balance.
Collapse
Affiliation(s)
- Daniel Arango
- Department of Internal Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, and The Heart and Lung Research Institute, The Ohio State University. Columbus, OH. USA
- Department of Molecular Genetics, The Ohio State University. Columbus, OH. USA
- Molecular Cellular and Developmental Biology Graduate Program, The Ohio State University. Columbus, OH. USA
| | - Mayra Diosa-Toro
- Department of Internal Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, and The Heart and Lung Research Institute, The Ohio State University. Columbus, OH. USA
- Department of Molecular Genetics, The Ohio State University. Columbus, OH. USA
| | - Laura S. Rojas-Hernandez
- Department of Internal Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, and The Heart and Lung Research Institute, The Ohio State University. Columbus, OH. USA
- Department of Molecular Genetics, The Ohio State University. Columbus, OH. USA
| | | | - Steven J. Schwartz
- Department of Food Science and Technology, The Ohio State University. Columbus, OH. USA
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University. Columbus, OH. USA
| | - Jinmai Jiang
- College of Pharmacy, The Ohio State University. Columbus, OH. USA
| | | | - Andrea I. Doseff
- Department of Internal Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep, and The Heart and Lung Research Institute, The Ohio State University. Columbus, OH. USA
- Department of Molecular Genetics, The Ohio State University. Columbus, OH. USA
| |
Collapse
|
37
|
Zhang W, Zhang C, Chen H, Li L, Tu Y, Liu C, Shi S, Zen K, Liu Z. Evaluation of microRNAs miR-196a, miR-30a-5P, and miR-490 as biomarkers of disease activity among patients with FSGS. Clin J Am Soc Nephrol 2014; 9:1545-52. [PMID: 25107948 DOI: 10.2215/cjn.11561113] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND OBJECTIVES This study aimed to identify urinary microRNAs (miRNAs) as biomarkers for FSGS disease activity. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Candidate urinary miRNAs were identified in pooled urine samples from patients with active FSGS (FSGS-A) and FSGS in remission (FSGS-CR), and were then validated using individual samples. Their levels were compared both under different treatment responses in a prospective study of FSGS and in patients with different membranous nephropathy (MN) and diabetic nephropathy (DN) disease activity. The prediction of these miRNAs for treatment responses was further analyzed in both retrospective and prospective cohorts of patients with FSGS. RESULTS All 54 miRNAs were included as candidate biomarkers, including those with high levels in patients with FSGS-A (n=9) under the TaqMan Low Density Array as well as those with conserved expression in kidneys and involved in immune response. TaqMan probe-based quantitative RT-PCR confirmed the higher levels of four miRNAs in patients with FSGS-A in two independent cohorts (n=18 and n=80). Urinary miR-196a, miR-30a-5p, and miR-490 discriminated FSGS-A from FSGS-CR, with an area under the curve of ≥ 0.80. After steroid treatment, their levels were lower in steroid-responsive patients with FSGS (all P<0.001), but were unchanged in steroid-resistant patients. The levels of miRNAs were similar between active MN and MN in remission as well as active DN and incipient DN (all P>0.05). Urinary miR-30a-5p marginally predicted the response to steroid treatment in patients with FSGS-A, with an area under the curve of 0.63 (P=0.03). CONCLUSIONS The levels of urinary miR-196a, miR-30a-5p, and miR-490 are associated with FSGS disease activity.
Collapse
Affiliation(s)
- Wanfen Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China; and
| | - Changming Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China; and
| | - Huimei Chen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China; and
| | - Limin Li
- Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| | - Yuanmao Tu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China; and
| | - Chunbei Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China; and
| | - Shaolin Shi
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China; and
| | - Ke Zen
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China; and Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University School of Life Sciences, Nanjing, China
| | - Zhihong Liu
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China; and
| |
Collapse
|
38
|
Cichon C, Sabharwal H, Rüter C, Schmidt MA. MicroRNAs regulate tight junction proteins and modulate epithelial/endothelial barrier functions. Tissue Barriers 2014; 2:e944446. [PMID: 25610754 PMCID: PMC4292042 DOI: 10.4161/21688362.2014.944446] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/22/2014] [Indexed: 02/06/2023] Open
Abstract
Tightly controlled epithelial and endothelial barriers are a prerequisite for life as these barriers separate multicellular organisms from their environment and serve as first lines of defense. Barriers between neighboring epithelial cells are formed by multiple intercellular junctions including the ‘apical junctional complex—AJC’ with tight junctions (TJ), adherens junctions (AJ), and desmosomes. TJ consist of tetraspan transmembrane proteins like occludin, various claudins that directly control paracellular permeability, and the ‘Junctional Adhesion Molecules’ (JAMs). For establishing tight barriers TJ are essential but at the same time have to allow also selective permeability. For this, TJ need to be tightly regulated and controlled. This is organized by a variety of adaptor molecules, i.e., protein kinases, phosphatases and GTPases, which in turn are regulated and fine-tuned involving microRNAs (miRNAs). In this review we summarize available data on the role and targeting of miRNAs in the maintenance of epithelial and/or endothelial barriers.
Collapse
Affiliation(s)
- Christoph Cichon
- Institute of Infectiology-Center for Molecular Biology of Inflammation (ZMBE); University of Münster ; Münster, Germany
| | - Harshana Sabharwal
- Institute of Infectiology-Center for Molecular Biology of Inflammation (ZMBE); University of Münster ; Münster, Germany
| | - Christian Rüter
- Institute of Infectiology-Center for Molecular Biology of Inflammation (ZMBE); University of Münster ; Münster, Germany
| | - M Alexander Schmidt
- Institute of Infectiology-Center for Molecular Biology of Inflammation (ZMBE); University of Münster ; Münster, Germany
| |
Collapse
|
39
|
Effect of nitric oxide on microRNA-155 expression in human hepatic epithelial cells. Inflamm Res 2014; 63:591-6. [PMID: 24687397 DOI: 10.1007/s00011-014-0730-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 02/04/2014] [Accepted: 03/13/2014] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Nitric oxide (NO) is a signaling molecule and regulator of immunity and inflammation. MicroRNAs (miRNAs) regulate gene transcription and are involved in inflammatory processes and cancer. This study sought to determine if NO activity affects miRNA expression. METHODS Human liver epithelial (HepG2) cells were treated with the NO-releasing S-nitroso-N-acetylpenicillamine (SNAP) 100 μM for 4 h and subjected to microarray analysis. To examine the underlying mechanisms, cells were exposed to cGMP analog 8-bromo-cGMP, protein kinase inhibitor Rp-*-Br-PET-cGMPS (Rp-PET), or nitric synthase inhibitor L-NAME and evaluated with RT-PCR. RESULTS MiR-155 was the only miRNA of the 887 arrayed that showed a change in expression after SNAP treatment. Incubation of the cells with 8-bromo-cGMP increased miR-155 expression 4.0 ± 0.7-fold (p < 0.05); Rp-PET before SNAP had a dual, concentration-dependent effect. SNAP treatment induced a 3.1 ± 0.7-fold change in miRNA-155 expression, Rp-PET 25 μM, a 7.3 ± 2.2-fold change, and Rp-PET 100 μM, a 0.79 ± 0.09-fold change (SNAP vs SNAP + Rp-PET, p < 0.05). In unstimulated cells, Rp-PET or L-NAME treatment increased miR-155 expression by 3.5 ± 0.7-fold and 5.6 ± 2.2-fold, respectively (p < 0.05). CONCLUSION In HepG2 cells, exogenous NO increases miR-155 expression, but endogenous basal NO inhibits it. Both effects are mediated via cGMP/PKG signaling. The upregulation of miR-155 by NO provides a new link between NO, inflammation, and cancer.
Collapse
|
40
|
Tian R, Wang RL, Xie H, Jin W, Yu KL. Overexpressed miRNA-155 dysregulates intestinal epithelial apical junctional complex in severe acute pancreatitis. World J Gastroenterol 2013; 19:8282-8291. [PMID: 24363519 PMCID: PMC3857451 DOI: 10.3748/wjg.v19.i45.8282] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/11/2013] [Accepted: 09/29/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate whether miRNA-155 (miR-155) dysregulates apical junctional complex (AJC) protein expression in experimental severe acute pancreatitis (SAP).
METHODS: Twenty-four male BALB/c mice were randomly assigned to two groups: the SAP group (n = 12) receiving sequential intraperitoneal injection of 50 µg/kg caerulein and 10 mg/kg lipopolysaccharide over 6 h, and the control group (n = 12) receiving intraperitoneal injection of normal saline. Animals were sacrificed 3 h following the last injection for collection of blood samples and pancreas and distal ileal segment specimens. Routine pancreas and intestine histology was used to assess SAP pathology and intestinal epithelial barrier damage. Levels of serum amylase, diamine oxidase (DAO), and tumor necrosis factor (TNF)-α were determined using commercial kits. Total RNA samples were isolated from intestinal epithelial specimens and reversely transcribed into cDNA. miR-155 and RhoA mRNA expression profiles were determined using quantitative real-time polymerase chain reaction. Target genes for miR-155 were predicted using the miRTarBase database, RNA22 and PicTar computational methods. Western blotting was performed to quantitate the protein expression levels of the target gene RhoA, as well as zonula occludens (ZO)-1 and E-cadherin, two AJC component proteins.
RESULTS: Intraperitoneal injection of caerulein and lipopolysaccharide successfully induced experimental acute pancreatic damage (SAP vs control, 10.0 ± 2.0 vs 3.2 ± 1.2, P < 0.01) and intestinal epithelial barrier damage (3.2 ± 0.7 vs 1.4 ± 0.7, P < 0.01). Levels of serum amylase (21.6 ± 5.1 U/mL vs 14.3 ± 4.2 U/mL, P < 0.01), DAO (21.4 ± 4.1 mg/mL vs 2.6 ± 0.8 mg/mL, P < 0.01), and TNF-α (61.0 ± 15.1 ng/mL vs 42.9 ± 13.9 ng/mL, P < 0.01) increased significantly in SAP mice compared to those in control mice. miR-155 was significantly overexpressed in SAP intestinal epithelia (1.94 ± 0.50 fold vs 1.03 ± 0.23 fold, P < 0.01), and RhoA gene containing three miR-155-specific binding sites in the three prime untranslated regions was one of the target genes for miR-155. RhoA (22.7 ± 5.8 folds vs 59.6 ± 11.6 folds, P < 0.01), ZO-1 (46 ± 18 folds vs 68 ± 19 folds, P < 0.01), and E-cadherin proteins (48 ± 15 folds vs 77 ± 18 folds, P < 0.01) were underexpressed in SAP intestinal epithelia although RhoA mRNA expression was not significantly changed in SAP (0.97 ± 0.18 folds vs 1.01 ± 0.17 folds, P > 0.05).
CONCLUSION: TNF-α-regulated miR-155 overexpression inhibits AJC component protein syntheses of ZO-1, and E-cadherin by downregulating post-transcriptional RhoA expression, and disrupts intestinal epithelial barrier in experimental SAP.
Collapse
|
41
|
MicroRNAs implicated in the immunopathogenesis of lupus nephritis. Clin Dev Immunol 2013; 2013:430239. [PMID: 23983769 PMCID: PMC3741610 DOI: 10.1155/2013/430239] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/20/2013] [Accepted: 06/12/2013] [Indexed: 02/06/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the deposition of immune complexes due to widespread loss of immune tolerance to nuclear self-antigens. Deposition in the renal glomeruli results in the development of lupus nephritis (LN), the leading cause of morbidity and mortality in SLE. In addition to the well-recognized genetic susceptibility to SLE, disease pathogenesis is influenced by epigenetic regulators such as microRNAs (miRNAs). miRNAs are small, noncoding RNAs that bind to the 3′ untranslated region of target mRNAs resulting in posttranscriptional gene modulation. miRNAs play an important and dynamic role in the activation of innate immune cells and are critical in regulating the adaptive immune response. Immune stimulation and the resulting cytokine milieu alter miRNA expression while miRNAs themselves modify cellular responses to stimulation. Here we examine dysregulated miRNAs implicated in LN pathogenesis from human SLE patients and murine lupus models. The effects of LN-associated miRNAs in the kidney, peripheral blood mononuclear cells, macrophages, mesangial cells, dendritic cells, and splenocytes are discussed. As the role of miRNAs in immunopathogenesis becomes delineated, it is likely that specific miRNAs may serve as targets for therapeutic intervention in the treatment of LN and other pathologies.
Collapse
|
42
|
Kopp KL, Ralfkiaer U, Gjerdrum LMR, Helvad R, Pedersen IH, Litman T, Jønson L, Hagedorn PH, Krejsgaard T, Gniadecki R, Bonefeld CM, Skov L, Geisler C, Wasik MA, Ralfkiaer E, Ødum N, Woetmann A. STAT5-mediated expression of oncogenic miR-155 in cutaneous T-cell lymphoma. Cell Cycle 2013; 12:1939-47. [PMID: 23676217 DOI: 10.4161/cc.24987] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The pathogenesis of cutaneous T-cell lymphoma (CTCL) remains elusive. Recent discoveries indicate that the oncogenic microRNA miR-155 is overexpressed in affected skin from CTCL patients. Here, we address what drives the expression of miR-155 and investigate its role in the pathogenesis of CTCL. We show that malignant T cells constitutively express high levels of miR-155 and its host gene BIC (B cell integration cluster). Using ChIP-seq, we identify BIC as a target of transcription factor STAT5, which is aberrantly activated in malignant T cells and induced by IL-2/IL-15 in non-malignant T cells. Incubation with JAK inhibitor or siRNA-mediated knockdown of STAT5 decreases BIC/miR-155 expression, whereas IL-2 and IL-15 increase their expression in cell lines and primary cells. In contrast, knockdown of STAT3 has no effect, and BIC is not a transcriptional target of STAT3, indicating that regulation of BIC/miR-155 expression by STAT5 is highly specific. Malignant proliferation is significantly inhibited by an antisense-miR-155 as well as by knockdown of STAT5 and BIC. In conclusion, we provide the first evidence that STAT5 drives expression of oncogenic BIC/miR-155 in cancer. Moreover, our data indicate that the STAT5/BIC/miR-155 pathway promotes proliferation of malignant T cells, and therefore is a putative target for therapy in CTCL.
Collapse
Affiliation(s)
- Katharina L Kopp
- Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sen D, Chapla A, Walter N, Daniel V, Srivastava A, Jayandharan GR. Nuclear factor (NF)-κB and its associated pathways are major molecular regulators of blood-induced joint damage in a murine model of hemophilia. J Thromb Haemost 2013; 11:293-306. [PMID: 23231432 DOI: 10.1111/jth.12101] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 11/26/2012] [Indexed: 01/06/2023]
Abstract
BACKGROUND The present study was designed to investigate the molecular signaling events from onset of bleeding through the development of arthropathy in a murine model of hemophilia A. METHODS AND RESULTS A sharp-injury model of hemarthrosis was used. A global gene expression array on joint-specific RNA isolated 3 h post-injury revealed nuclear factor-kappa B (NF-κB) as the major transcription factor triggering inflammation. As a number of genes encoding the cytokines, growth factors and hypoxia regulating factors are known to be activated by NF-κB and many of these are part of the pathogenesis of various joint diseases, we reasoned that NF-κB-associated pathways may play a crucial role in blood-induced joint damage. To further understand its role, we screened NF-κB-associated pathways between 1 h to 90 days after injury. After a single articular bleed, distinct members of the NF-κB family (NF-κB1/NF-κB2/RelA/RelB) and their responsive pro-inflammatory cytokines (IL-1β/IL-6/IFNγ/TNFα) were significantly up-regulated (> 2 fold, P < 0.05) in injured vs. control joints at the various time-points analyzed (1 h/3 h/7 h/24 h). After multiple bleeds (days 30/60/75/90), there was increased expression of NF-κB-associated factors that contribute to hypoxia (HIF-1α, 3.3-6.5 fold), angiogenesis (VEGF-α, 2.5-4.4 fold) and chondrocyte damage (matrix metalloproteinase-13, 2.8-3.8 fold) in the injured joints. Micro RNAs (miR) that are known to regulate NF-κB activation (miRs-9 and 155), inflammation (miRs-16, 155 and 182) and apoptosis (miRs-19a, 155 and 186) were also differentially expressed (-4 to +13-fold) after joint bleeding, indicating that the small RNAs could modulate the arthropathy phenotype. CONCLUSIONS These data suggest that NF-κB-associated signaling pathways are involved in the development of hemophilic arthropathy.
Collapse
Affiliation(s)
- D Sen
- Department of Hematology, Christian Medical College, Vellore, Tamil Nadu, India
| | | | | | | | | | | |
Collapse
|
44
|
Aizawa-Yashiro T, Imaizumi T, Tsuruga K, Watanabe S, Matsumiya T, Hayakari R, Yoshida H, Satoh K, Ito E, Tanaka H. Glomerular expression of fractalkine is induced by polyinosinic-polycytidylic acid in human mesangial cells: possible involvement of fractalkine after viral infection. Pediatr Res 2013; 73:180-6. [PMID: 23168573 DOI: 10.1038/pr.2012.165] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Viral infections often trigger the onset or worsening of glomerular diseases, but the details of this mechanism are unclear. Fractalkine/CX3CL1 (Fkn) is a chemokine that induces the chemotaxis and activation of cells expressing its receptor, CX3CR1. To examine the involvement of glomerular Fkn expression in the development of glomerulonephritis after viral infection, we conducted experimental studies using human mesangial cells (MCs) in culture. METHODS We examined the effect of polyinosinic-polycytidylic acid (poly IC), an authentic viral double-stranded RNA, on Fkn expression in MCs to investigate the involvement of Fkn in the antiviral reaction of MCs. Fkn mRNA and protein were analyzed using real-time PCR and enzyme-linked immunosorbent assay. Also, an immunofluorescent study to examine mesangial Fkn expression in biopsy specimens obtained from patients with glomerulonephritis was conducted. RESULTS Poly IC-induced Fkn expression in MCs in both a time- and dose-dependent manner, and RNA interference (RNAi) against Toll-like receptor 3 (TLR3) or interferon regulatory factor 3 (IRF3) inhibited poly IC-induced Fkn expression. Significant glomerular Fkn expression was observed in biopsy specimens from patients with immunoglobulin A nephropathy and purpura nephritis, with increasing severity of glomerular inflammation. CONCLUSION The TLR3/IRF3/Fkn signaling pathway may, at least in part, mediate immune and inflammatory responses against viral infection in MCs.
Collapse
|
45
|
Li C, He H, Zhu M, Zhao S, Li X. Molecular characterisation of porcine miR-155 and its regulatory roles in the TLR3/TLR4 pathways. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:110-116. [PMID: 22301067 DOI: 10.1016/j.dci.2012.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 01/05/2012] [Accepted: 01/05/2012] [Indexed: 05/31/2023]
Abstract
MiR-155 plays very important roles in host inflammation and immunity. However, few studies have focused on miR-155 in livestock. In this study, the molecular characterisation of miR-155 and its functional roles in TLR3/TLR4 signalling pathways were investigated in pigs. The results indicated that miR-155 was highly expressed in the spleen and fat tissues of the pig. In PK-15 cells, miR-155 was up-regulated 4h after LPS stimulation and up-regulated 12h and 24h after poly (I:C) stimulation. Furthermore, the overexpression of miR-155 significantly activated the TLR3/TLR4 signalling pathways, and the inhibition of miR-155 suppressed these pathways. Thus, miR-155 played positive regulatory roles in TLR3/TLR4 signalling pathways. Additionally, one T/C SNP of miR-155 was significantly associated with basophil percentage (BA%), absolute eosinophili value (EO) and the distribution width of the least squares mean of CD3-CD4-CD8+ T cells (DWT) in pigs. Our study offers new evidence on the immune function of miR-155 in pigs.
Collapse
Affiliation(s)
- Congcong Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, Hubei, PR China
| | | | | | | | | |
Collapse
|
46
|
Elton TS, Selemon H, Elton SM, Parinandi NL. Regulation of the MIR155 host gene in physiological and pathological processes. Gene 2012; 532:1-12. [PMID: 23246696 DOI: 10.1016/j.gene.2012.12.009] [Citation(s) in RCA: 356] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 11/29/2012] [Accepted: 12/05/2012] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs), a family of small nonprotein-coding RNAs, play a critical role in posttranscriptional gene regulation by acting as adaptors for the miRNA-induced silencing complex to inhibit gene expression by targeting mRNAs for translational repression and/or cleavage. miR-155-5p and miR-155-3p are processed from the B-cell Integration Cluster (BIC) gene (now designated, MIR155 host gene or MIR155HG). MiR-155-5p is highly expressed in both activated B- and T-cells and in monocytes/macrophages. MiR-155-5p is one of the best characterized miRNAs and recent data indicate that miR-155-5p plays a critical role in various physiological and pathological processes such as hematopoietic lineage differentiation, immunity, inflammation, viral infections, cancer, cardiovascular disease, and Down syndrome. In this review we summarize the mechanisms by which MIR155HG expression can be regulated. Given that the pathologies mediated by miR-155-5p result from the over-expression of this miRNA it may be possible to therapeutically attenuate miR-155-5p levels in the treatment of several pathological processes.
Collapse
Affiliation(s)
- Terry S Elton
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; College of Pharmacy, Division of Pharmacology, The Ohio State University, Columbus, OH, USA; Department of Medicine, Division of Cardiology, The Ohio State University, Columbus, OH, USA.
| | | | | | | |
Collapse
|
47
|
Schulte LN, Westermann AJ, Vogel J. Differential activation and functional specialization of miR-146 and miR-155 in innate immune sensing. Nucleic Acids Res 2012; 41:542-53. [PMID: 23143100 PMCID: PMC3592429 DOI: 10.1093/nar/gks1030] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Many microRNAs (miRNAs) are co-regulated during the same physiological process but the underlying cellular logic is often little understood. The conserved, immunomodulatory miRNAs miR-146 and miR-155, for instance, are co-induced in many cell types in response to microbial lipopolysaccharide (LPS) to feedback-repress LPS signalling through Toll-like receptor TLR4. Here, we report that these seemingly co-induced regulatory RNAs dramatically differ in their induction behaviour under various stimuli strengths and act non-redundantly through functional specialization; although miR-146 expression saturates at sub-inflammatory doses of LPS that do not trigger the messengers of inflammation markers, miR-155 remains tightly associated with the pro-inflammatory transcriptional programmes. Consequently, we found that both miRNAs control distinct mRNA target profiles; although miR-146 targets the messengers of LPS signal transduction components and thus downregulates cellular LPS sensitivity, miR-155 targets the mRNAs of genes pervasively involved in pro-inflammatory transcriptional programmes. Thus, miR-155 acts as a broad limiter of pro-inflammatory gene expression once the miR-146 dependent barrier to LPS triggered inflammation has been breached. Importantly, we also report alternative miR-155 activation by the sensing of bacterial peptidoglycan through cytoplasmic NOD-like receptor, NOD2. We predict that dose-dependent responses to environmental stimuli may involve functional specialization of seemingly co-induced miRNAs in other cellular circuitries as well.
Collapse
Affiliation(s)
- Leon N Schulte
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Josef-Schneider Strasse 2/D15, D-97080 Würzburg, Germany
| | | | | |
Collapse
|
48
|
Virtue A, Wang H, Yang XF. MicroRNAs and toll-like receptor/interleukin-1 receptor signaling. J Hematol Oncol 2012; 5:66. [PMID: 23078795 PMCID: PMC3529674 DOI: 10.1186/1756-8722-5-66] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/15/2012] [Indexed: 02/06/2023] Open
Abstract
The discovery of miRNAs has revolutionized the way we examine the genome, RNA products, and the regulation of transcription and translation. Their ability to modulate protein expression through mRNA degradation and translation repression resulted in avid scientific interest in miRNAs over the past decade. This research has led to findings that indicate miRNAs can regulate an array of cellular functions such as cellular apoptosis, proliferation, differentiation, and metabolism. Specifically, the capability of miRNAs to finely-tune gene expression naturally lends itself to immune system regulation which requires precise control for proper activity. In fact, abnormal miRNAs expression is often seen with inflammatory disorders like rheumatoid arthritis, systemic lupus erthematosus, experimental autoimmune encephalomyelitis, and inflammatory cancers. As a result, research investigating miRNAs modulation of immune cell proliferation, differentiation, and cellular signaling has yielded fruitful results. Specifically, in this review, we will examine the impact of miRNAs on toll-like receptor (TLRs) and interleukin-1β (IL-1β) signaling, which are integral in the proper functioning of the innate immune system. These signaling pathways share several key downstream signaling adaptors and therefore produce similar downstream effects such as the production of pro-inflammatory cytokines, chemokines, and interferons. This review will examine in depth the specific interactions of miRNAs with receptors, adaptor molecules, and regulator molecules within these cellular pathways. In addition, we will discuss the modulation of miRNAs’ expression by TLR and IL-1R signaling through positive and negative feedback loops.
Collapse
Affiliation(s)
- Anthony Virtue
- Cardiovascular Research Center and Department of Pharmacology, Temple University School of Medicine, 3500 North Broad Street, MERB 1059, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
49
|
Mattiske S, Suetani RJ, Neilsen PM, Callen DF. The oncogenic role of miR-155 in breast cancer. Cancer Epidemiol Biomarkers Prev 2012; 21:1236-43. [PMID: 22736789 DOI: 10.1158/1055-9965.epi-12-0173] [Citation(s) in RCA: 199] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
miR-155 is an oncogenic miRNA with well described roles in leukemia. However, additional roles of miR-155 in breast cancer progression have recently been described. A thorough literature search was conducted to review all published data to date, examining the role of miR-155 in breast cancer. Data on all validated miR-155 target genes was collated to identify biologic pathways relevant to miR-155 and breast cancer progression. Publications describing the clinical relevance, functional characterization, and regulation of expression of miR-155 in the context of breast cancer are reviewed. A total of 147 validated miR-155 target genes were identified from the literature. Pathway analysis of these genes identified likely roles in apoptosis, differentiation, angiogenesis, proliferation, and epithelial-mesenchymal transition. The large number of validated miR-155 targets presented here provide many avenues of interest as to the clinical potential of miR-155. Further investigation of these target genes will be required to elucidate the specific mechanisms and functions of miR-155 in breast cancer. This is the first review examining the role of miR-155 in breast cancer progression. The collated data of target genes and biologic pathways of miR-155 identified in this review suggest new avenues of research for this oncogenic miRNA.
Collapse
Affiliation(s)
- Sam Mattiske
- Centre for Personalised Cancer Medicine, Cancer Therapeutics Laboratory, Department of Medicine, University of Adelaide, Australia.
| | | | | | | |
Collapse
|
50
|
Nahid MA, Satoh M, Chan EK. MicroRNA in TLR signaling and endotoxin tolerance. Cell Mol Immunol 2011; 8:388-403. [PMID: 21822296 DOI: 10.1038/cmi.2011.26] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Toll-like receptors (TLRs) in innate immune cells are the prime cellular sensors for microbial components. TLR activation leads to the production of proinflammatory mediators and thus TLR signaling must be properly regulated by various mechanisms to maintain homeostasis. TLR4-ligand lipopolysaccharide (LPS)-induced tolerance or cross-tolerance is one such mechanism, and it plays an important role in innate immunity. Tolerance is established and sustained by the activity of the microRNA miR-146a, which is known to target key elements of the myeloid differentiation factor 88 (MyD88) signaling pathway, including IL-1 receptor-associated kinase (IRAK1), IRAK2 and tumor-necrosis factor (TNF) receptor-associated factor 6 (TRAF6). In this review, we comprehensively examine the TLR signaling involved in innate immunity, with special focus on LPS-induced tolerance. The function of TLR ligand-induced microRNAs, including miR-146a, miR-155 and miR-132, in regulating inflammatory mediators, and their impact on the immune system and human diseases, are discussed. Modulation of these microRNAs may affect TLR pathway activation and help to develop therapeutics against inflammatory diseases.
Collapse
Affiliation(s)
- Md A Nahid
- Department of Oral Biology, University of Florida, Gainesville, FL, USA
| | | | | |
Collapse
|