1
|
Martínez-López N, Pereiro P, Saco A, Lama R, Figueras A, Novoa B. Characterization of a fish-specific immunoglobulin-like domain-containing protein (Igldcp) in zebrafish (Danio rerio) induced after nodavirus infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105285. [PMID: 39515405 DOI: 10.1016/j.dci.2024.105285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
One of the most highly induced genes in zebrafish (Danio rerio) larvae after infection with the nodavirus red-spotted grouper nervous necrosis virus (RGNNV) was a member of the immunoglobulin superfamily (IgSF), which has remained uncharacterized and erroneously annotated in zebrafish and other fish species as galectin 17 (lgals17). We characterized this gene and named it immunoglobulin (Ig)-like domain-containing protein (igldcp), a new member of the IgSF that does not possess orthologs in mammals. Igldcp expression is induced by viral infection and it belongs to the group of interferon-stimulated genes (ISGs). In vitro overexpression of igldcp decreased RGNNV replication, whereas in vivo knockdown of this gene had the opposite effect, resulting in increased larval mortality. RNA-Seq analyses of larvae overexpressing igldcp in the absence or presence of infection with RGNNV showed that the main processes affected by Igldcp could be directly involved in the regulation of various cellular processes associated with the modulation of the immune system.
Collapse
Affiliation(s)
| | | | - Amaro Saco
- Institute of Marine Research (IIM-CSIC), Vigo, Spain
| | - Raquel Lama
- Institute of Marine Research (IIM-CSIC), Vigo, Spain
| | | | - Beatriz Novoa
- Institute of Marine Research (IIM-CSIC), Vigo, Spain.
| |
Collapse
|
2
|
Akatsu C, Tsuneshige T, Numoto N, Long W, Uchiumi T, Kaneko Y, Asano M, Ito N, Tsubata T. CD72 is an inhibitory pattern recognition receptor that recognizes ribosomes and suppresses production of anti-ribosome autoantibody. J Autoimmun 2024; 146:103245. [PMID: 38754236 DOI: 10.1016/j.jaut.2024.103245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
B cell responses to nucleic acid-containing self-antigens that involve intracellular nucleic acid sensors play a crucial role in autoantibody production in SLE. CD72 is an inhibitory B cell co-receptor that down-regulates BCR signaling, and prevents the development of SLE. We previously showed that CD72 recognizes the RNA-containing self-antigen Sm/RNP, a target of SLE-specific autoantibodies, and induces B cell tolerance to Sm/RNP by specifically inhibiting B cell response to this self-antigen. Here, we address whether CD72 inhibits B cell response to ribosomes because the ribosome is an RNA-containing self-antigen and is a target of SLE-specific autoantibodies as well as Sm/RNP. We demonstrate that CD72 recognizes ribosomes as a ligand, and specifically inhibits BCR signaling induced by ribosomes. Although conventional protein antigens by themselves do not induce proliferation of specific B cells, ribosomes induce proliferation of B cells reactive to ribosomes in a manner dependent on RNA. This proliferative response is down-regulated by CD72. These results suggest that ribosomes activate B cells by inducing dual signaling through BCR and intracellular RNA sensors and that CD72 inhibits B cell response to ribosomes. Moreover, CD72-/- but not CD72+/+ mice spontaneously produce anti-ribosome autoantibodies. Taken together, CD72 induces B cell self-tolerance to ribosomes by recognizing ribosomes and inhibiting RNA-dependent B cell response to this self-antigen. CD72 appears to prevent development of SLE by inhibiting autoimmune B cell responses to multiple RNA-containing self-antigens. Because these self-antigens but not protein self-antigens induce RNA-dependent B cell activation, self-tolerance to RNA-containing self-antigens may require a distinct tolerance mechanism mediated by CD72.
Collapse
MESH Headings
- Animals
- Ribosomes/metabolism
- Ribosomes/immunology
- Mice
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/immunology
- Autoantibodies/immunology
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Antigens, Differentiation, B-Lymphocyte/immunology
- Antigens, Differentiation, B-Lymphocyte/metabolism
- Antigens, CD/metabolism
- Antigens, CD/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Signal Transduction/immunology
- Autoantigens/immunology
- Mice, Knockout
- Lymphocyte Activation/immunology
- Cell Proliferation
- Immune Tolerance
- Humans
Collapse
Affiliation(s)
- Chizuru Akatsu
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiro Tsuneshige
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan; Nihon University School of Dentistry, Tokyo, Japan
| | - Nobutaka Numoto
- Department of Structural Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Wang Long
- Nihon University School of Dentistry, Tokyo, Japan
| | - Toshio Uchiumi
- Department of Biology, Niigata University School of Science, Niigata, Japan
| | - Yoshikatsu Kaneko
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | - Nobutoshi Ito
- Department of Structural Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan; Nihon University School of Dentistry, Tokyo, Japan.
| |
Collapse
|
3
|
Patton JT, Woyach JA. Targeting the B cell receptor signaling pathway in chronic lymphocytic leukemia. Semin Hematol 2024; 61:100-108. [PMID: 38749798 DOI: 10.1053/j.seminhematol.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/04/2024] [Accepted: 04/10/2024] [Indexed: 06/09/2024]
Abstract
Aberrant signal transduction through the B cell receptor (BCR) plays a critical role in the pathogenesis of chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL). BCR-dependent signaling is necessary for the growth and survival of neoplastic cells, making inhibition of down-stream pathways a logical therapeutic strategy. Indeed, selective inhibitors against Bruton's tyrosine kinase (BTK) and phosphoinositide 3-kinase (PI3K) have been shown to induce high rates of response in CLL and other B cell lymphomas. In particular, the development of BTK inhibitors revolutionized the treatment approach to CLL, demonstrating long-term efficacy. While BTK inhibitors are widely used for multiple lines of treatment, PI3K inhibitors are much less commonly utilized, mainly due to toxicities. CLL remains an incurable disease and effective treatment options after relapse or development of TKI resistance are greatly needed. This review provides an overview of BCR signaling, a summary of the current therapeutic landscape, and a discussion of the ongoing trials targeting BCR-associated kinases.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Signal Transduction/drug effects
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, B-Cell/antagonists & inhibitors
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors
- Agammaglobulinaemia Tyrosine Kinase/metabolism
- Molecular Targeted Therapy
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
- Phosphoinositide-3 Kinase Inhibitors/therapeutic use
- Phosphoinositide-3 Kinase Inhibitors/pharmacology
Collapse
Affiliation(s)
- John T Patton
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH
| | - Jennifer A Woyach
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH.
| |
Collapse
|
4
|
Ruz-Maldonado I, Gonzalez JT, Zhang H, Sun J, Bort A, Kabir I, Kibbey RG, Suárez Y, Greif DM, Fernández-Hernando C. Heterogeneity of hepatocyte dynamics restores liver architecture after chemical, physical or viral damage. Nat Commun 2024; 15:1247. [PMID: 38341404 PMCID: PMC10858916 DOI: 10.1038/s41467-024-45439-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Midlobular hepatocytes are proposed to be the most plastic hepatic cell, providing a reservoir for hepatocyte proliferation during homeostasis and regeneration. However, other mechanisms beyond hyperplasia have been little explored and the contribution of other hepatocyte subpopulations to regeneration has been controversial. Thus, re-examining hepatocyte dynamics during regeneration is critical for cell therapy and treatment of liver diseases. Using a mouse model of hepatocyte- and non-hepatocyte- multicolor lineage tracing, we demonstrate that midlobular hepatocytes also undergo hypertrophy in response to chemical, physical, and viral insults. Our study shows that this subpopulation also combats liver impairment after infection with coronavirus. Furthermore, we demonstrate that pericentral hepatocytes also expand in number and size during the repair process and Galectin-9-CD44 pathway may be critical for driving these processes. Notably, we also identified that transdifferentiation and cell fusion during regeneration after severe injury contribute to recover hepatic function.
Collapse
Affiliation(s)
- Inmaculada Ruz-Maldonado
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Departments of Internal Medicine (Endocrinology) and Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - John T Gonzalez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Hanming Zhang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jonathan Sun
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Alicia Bort
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Inamul Kabir
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Richard G Kibbey
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Departments of Internal Medicine (Endocrinology) and Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Daniel M Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06511, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Yale Center of Molecular and Systems Metabolism, Yale University School of Medicine, New Haven, CT, 06520, USA.
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
5
|
Zhu J, Liu W, Bian Z, Ma Y, Kang Z, Jin J, Li X, Ge S, Hao Y, Zhang H, Xie Y. Lactobacillus plantarum Zhang-LL Inhibits Colitis-Related Tumorigenesis by Regulating Arachidonic Acid Metabolism and CD22-Mediated B-Cell Receptor Regulation. Nutrients 2023; 15:4512. [PMID: 37960165 PMCID: PMC10648432 DOI: 10.3390/nu15214512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023] Open
Abstract
Colorectal cancer (CRC) is a significant health concern and is the third most commonly diagnosed and second deadliest cancer worldwide. CRC has been steadily increasing in developing countries owing to factors such as aging and epidemics. Despite extensive research, the exact pathogenesis of CRC remains unclear, and its causes are complex and variable. Numerous in vitro, animal, and clinical trials have demonstrated the efficacy of probiotics such as Lactobacillus plantarum in reversing the adverse outcomes of CRC. These findings suggest that probiotics play vital roles in the prevention, adjuvant treatment, and prognosis of CRC. In this study, we constructed a mouse model of CRC using an intraperitoneal injection of azomethane combined with dextran sodium sulfate, while administering 5-fluorouracil as well as high- and low-doses of L. plantarum Zhang-LL live or heat-killed strains. Weight changes and disease activity indices were recorded during feeding, and the number of polyps and colon length were measured after euthanasia. HE staining was used to observe the histopathological changes in the colons of mice, and ELISA was used to detect the expression levels of IL-1β, TNF-α, and IFN-γ in serum. To investigate the specific mechanisms involved in alleviating CRC progression, gut microbial alterations were investigated using 16S rRNA amplicon sequencing and non-targeted metabolomics, and changes in genes related to CRC were assessed using eukaryotic transcriptomics. The results showed that both viable and heat-killed strains of L. plantarum Zhang-LL in high doses significantly inhibited tumorigenesis, colon shortening, adverse inflammatory reactions, intestinal tissue damage, and pro-inflammatory factor expression upregulation. Specifically, in the gut microbiota, the abundance of the dominant flora Acutalibacter muris and Lactobacillus johnsonii was regulated, PGE2 expression was significantly reduced, the arachidonic acid metabolism pathway was inhibited, and CD22-mediated B-cell receptor regulation-related gene expression was upregulated. This study showed that L. plantarum Zhang-LL live or heat-inactivated strains alleviated CRC progression by reducing the abundance of potentially pathogenic bacteria, increasing the abundance of beneficial commensal bacteria, mediating the arachidonic acid metabolism pathway, and improving host immunogenicity.
Collapse
Affiliation(s)
- Jingxin Zhu
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| | - Wenbo Liu
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| | - Zheng Bian
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| | - Yumeng Ma
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| | - Zixin Kang
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| | - Junhua Jin
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| | - Xiangyang Li
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| | - Shaoyang Ge
- Beijing HEYIYUAN BIOTECHNOLOGY Co., Ltd., Beijing 100088, China;
| | - Yanling Hao
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, Co-Constructed by Ministry of Education and Beijing Government, China Agricultural University, Beijing 100190, China;
| | - Hongxing Zhang
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| | - Yuanhong Xie
- Beijing Laboratory of Food Quality and Safety, Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue, College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China; (J.Z.); (W.L.); (Z.B.); (Y.M.); (Z.K.); (J.J.); (X.L.)
| |
Collapse
|
6
|
Emerging phagocytosis checkpoints in cancer immunotherapy. Signal Transduct Target Ther 2023; 8:104. [PMID: 36882399 PMCID: PMC9990587 DOI: 10.1038/s41392-023-01365-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/31/2023] [Accepted: 02/14/2023] [Indexed: 03/09/2023] Open
Abstract
Cancer immunotherapy, mainly including immune checkpoints-targeted therapy and the adoptive transfer of engineered immune cells, has revolutionized the oncology landscape as it utilizes patients' own immune systems in combating the cancer cells. Cancer cells escape immune surveillance by hijacking the corresponding inhibitory pathways via overexpressing checkpoint genes. Phagocytosis checkpoints, such as CD47, CD24, MHC-I, PD-L1, STC-1 and GD2, have emerged as essential checkpoints for cancer immunotherapy by functioning as "don't eat me" signals or interacting with "eat me" signals to suppress immune responses. Phagocytosis checkpoints link innate immunity and adaptive immunity in cancer immunotherapy. Genetic ablation of these phagocytosis checkpoints, as well as blockade of their signaling pathways, robustly augments phagocytosis and reduces tumor size. Among all phagocytosis checkpoints, CD47 is the most thoroughly studied and has emerged as a rising star among targets for cancer treatment. CD47-targeting antibodies and inhibitors have been investigated in various preclinical and clinical trials. However, anemia and thrombocytopenia appear to be formidable challenges since CD47 is ubiquitously expressed on erythrocytes. Here, we review the reported phagocytosis checkpoints by discussing their mechanisms and functions in cancer immunotherapy, highlight clinical progress in targeting these checkpoints and discuss challenges and potential solutions to smooth the way for combination immunotherapeutic strategies that involve both innate and adaptive immune responses.
Collapse
|
7
|
Martínez-Bailén M, Rojo J, Ramos-Soriano J. Multivalent glycosystems for human lectins. Chem Soc Rev 2023; 52:536-572. [PMID: 36545903 DOI: 10.1039/d2cs00736c] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human lectins are involved in a wide variety of biological processes, both physiological and pathological, which have attracted the interest of the scientific community working in the glycoscience field. Multivalent glycosystems have been employed as useful tools to understand carbohydrate-lectin binding processes as well as for biomedical applications. The review shows the different scaffolds designed for a multivalent presentation of sugars and their corresponding binding studies to lectins and in some cases, their biological activities. We summarise this research by organizing based on lectin types to highlight the progression in this active field. The paper provides an overall picture of how these contributions have furnished relevant information on this topic to help in understanding and participate in these carbohydrate-lectin interactions.
Collapse
Affiliation(s)
- Macarena Martínez-Bailén
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Ramos-Soriano
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| |
Collapse
|
8
|
Gao J, Zou Y, Wu XJ, Xu Y, Zhu XQ, Zheng WB. Differential miRNA expression profiles in the bone marrow of Beagle dogs at different stages of Toxocara canis infection. BMC Genomics 2022; 23:847. [PMID: 36544082 PMCID: PMC9773451 DOI: 10.1186/s12864-022-09081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Toxocara canis is distributed worldwide, posing a serious threat to both human and dog health; however, the pathogenesis of T. canis infection in dogs remains unclear. In this study, the changes in microRNA (miRNA) expression profiles in the bone marrow of Beagle dogs were investigated by RNA-seq and bioinformatics analysis. RESULTS Thirty-nine differentially expressed (DE) miRNAs (DEmiRNAs) were identified in this study. Among these, four DEmiRNAs were identified at 24 h post-infection (hpi) and all were up-regulated; eight DEmiRNAs were identified with two up-regulated miRNAs and six down-regulated miRNAs at 96 hpi; 27 DEmiRNAs were identified with 13 up-regulated miRNAs and 14 down-regulated miRNAs at 36 days post-infection (dpi). Among these DEmiRNAs, cfa-miR-193b participates in the immune response by regulating the target gene cd22 at 24 hpi. The novel_328 could participate in the inflammatory and immune responses through regulating the target genes tgfb1 and tespa1, enhancing the immune response of the host and inhibiting the infection of T. canis at 96 hpi. In addition, cfa-miR-331 and novel_129 were associated with immune response and self-protection mechanisms at 36 dpi. 20 pathways were significantly enriched by KEGG pathway analysis, most of which were related to inflammatory response, immune response and cell differentiation, such as Cell adhesion molecules (CAMs), ECM-receptor interaction and Focal adhesion. CONCLUSIONS These findings suggested that miRNAs of Beagle dog bone marrow play important roles in the pathogenesis of T. canis infection in dogs and provided useful resources to better understand the interaction between T. canis and the hosts.
Collapse
Affiliation(s)
- Jin Gao
- grid.412545.30000 0004 1798 1300Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi Province China
| | - Yang Zou
- grid.454892.60000 0001 0018 8988State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046 Gansu Province China
| | - Xiao-Jing Wu
- grid.412545.30000 0004 1798 1300Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi Province China
| | - Yue Xu
- grid.412545.30000 0004 1798 1300Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi Province China
| | - Xing-Quan Zhu
- grid.412545.30000 0004 1798 1300Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi Province China ,grid.410696.c0000 0004 1761 2898Key Laboratory of Veterinary Public Health of Higher Education of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201 Yunnan Province China
| | - Wen-Bin Zheng
- grid.412545.30000 0004 1798 1300Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801 Shanxi Province China
| |
Collapse
|
9
|
Jame-Chenarboo F, Ng HH, Macdonald D, Mahal LK. High-Throughput Analysis Reveals miRNA Upregulating α-2,6-Sialic Acid through Direct miRNA-mRNA Interactions. ACS CENTRAL SCIENCE 2022; 8:1527-1536. [PMID: 36439307 PMCID: PMC9686205 DOI: 10.1021/acscentsci.2c00748] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 05/12/2023]
Abstract
Chemical biology has revealed the importance of sialic acids as a major signal in physiology and disease. The terminal modification α-2,6-sialic acid is controlled by the enzymes ST6GAL1 and ST6GAL2. Dysregulation of this glycan impacts immunological recognition and cancer development. microRNAs (miRNA, miR), noncoding RNAs that downregulate protein expression, are important regulators of glycosylation. Using our recently developed high-throughput fluorescence assay (miRFluR), we comprehensively mapped the miRNA regulatory landscape of α-2,6-sialyltransferases ST6GAL1 and ST6GAL2. We found, contrary to expectations, the majority of miRNAs upregulate ST6GAL1 and α-2,6-sialylation in a variety of cancer cells. In contrast, miRNAs that regulate ST6GAL2 were predominantly downregulatory. Mutational analysis identified direct binding sites in the 3'-untranslated region (UTR) responsible for upregulation, confirming it is a direct effect. The miRNA binding proteins AGO2 and FXR1 were required for upregulation. Our results upend common assumptions surrounding miRNA, arguing that upregulation by these noncoding RNA is common. Indeed, for some proteins, upregulation may be the dominant function of miRNA. Our work also suggests that upregulatory miRNAs enhance overexpression of ST6GAL1 and α-2,6-sialylation, providing another potential pathway to explain the dysregulation observed in cancer and other disease states.
Collapse
Affiliation(s)
| | - Hoi Hei Ng
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Dawn Macdonald
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Lara K. Mahal
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
10
|
Almeida‐Marrero V, Bethlehem F, Longo S, Bertolino MC, Torres T, Huskens J, de la Escosura A. Tailored Multivalent Targeting of Siglecs with Photosensitizing Liposome Nanocarriers. Angew Chem Int Ed Engl 2022; 61:e202206900. [PMID: 35652453 PMCID: PMC9401027 DOI: 10.1002/anie.202206900] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 11/18/2022]
Abstract
The modification of surfaces with multiple ligands allows the formation of platforms for the study of multivalency in diverse processes. Herein we use this approach for the implementation of a photosensitizer (PS)-nanocarrier system that binds efficiently to siglec-10, a member of the CD33 family of siglecs (sialic acid (SA)-binding immunoglobulin-like lectins). In particular, a zinc phthalocyanine derivative bearing three SA moieties (PcSA) has been incorporated in the membrane of small unilamellar vesicles (SUVs), retaining its photophysical properties upon insertion into the SUV's membrane. The interaction of these biohybrid systems with human siglec-10-displaying supported lipid bilayers (SLBs) has shown the occurrence of weakly multivalent, superselective interactions between vesicle and SLB. The SLB therefore acts as an excellent cell membrane mimic, while the binding with PS-loaded SUVs shows the potential for targeting siglec-expressing cells with photosensitizing nanocarriers.
Collapse
Affiliation(s)
- Verónica Almeida‐Marrero
- Department of Organic ChemistryUniversidad Autónoma de MadridCampus de Cantoblanco28049MadridSpain
| | - Fleur Bethlehem
- Department of Molecules & MaterialsMESA+ Institute for NanotechnologyFaculty of Science and TechnologyUniversity of TwenteP.O. Box 2177500 AEEnschedeThe Netherlands
| | - Sara Longo
- Department of Molecules & MaterialsMESA+ Institute for NanotechnologyFaculty of Science and TechnologyUniversity of TwenteP.O. Box 2177500 AEEnschedeThe Netherlands
| | - M. Candelaria Bertolino
- Department of Molecules & MaterialsMESA+ Institute for NanotechnologyFaculty of Science and TechnologyUniversity of TwenteP.O. Box 2177500 AEEnschedeThe Netherlands
| | - Tomás Torres
- Department of Organic ChemistryUniversidad Autónoma de MadridCampus de Cantoblanco28049MadridSpain
- Institute for Advanced Research in Chemistry (IAdChem)Campus de Cantoblanco28049MadridSpain
- Tomás TorresIMDEA NanoscienceCampus de Cantoblanco28049MadridSpain
| | - Jurriaan Huskens
- Department of Molecules & MaterialsMESA+ Institute for NanotechnologyFaculty of Science and TechnologyUniversity of TwenteP.O. Box 2177500 AEEnschedeThe Netherlands
| | - Andrés de la Escosura
- Department of Organic ChemistryUniversidad Autónoma de MadridCampus de Cantoblanco28049MadridSpain
- Institute for Advanced Research in Chemistry (IAdChem)Campus de Cantoblanco28049MadridSpain
| |
Collapse
|
11
|
Wong KL, Li Z, Ma F, Wang D, Song N, Chong CH, Luk KK, Leung SO. SM03, an Anti-CD22 Antibody, Converts Cis-to- Trans Ligand Binding of CD22 against α2,6-Linked Sialic Acid Glycans and Immunomodulates Systemic Autoimmune Diseases. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2726-2737. [PMID: 35688465 DOI: 10.4049/jimmunol.2100820] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/08/2022] [Indexed: 06/15/2023]
Abstract
SM03, an anti-CD22 recombinant IgG1 mAb, is currently in a phase III clinical trial for the treatment of rheumatoid arthritis (NCT04312815). SM03 showed good safety and efficacy in phase I systemic lupus erythematosus and phase II moderate to severe rheumatoid arthritis clinical trials. We propose the success of SM03 as a therapeutic to systemic autoimmune diseases is through the utilization of a novel mechanism of action unique to SM03. CD22, an inhibitory coreceptor of the BCR, is a potential immunotherapeutic target against autoimmune diseases. SM03 could disturb the CD22 homomultimeric configuration through disrupting cis binding to α2,6-linked sialic acids, induce rapid internalization of CD22 from the cell surface of human B cells, and facilitate trans binding between CD22 to human autologous cells. This in turn increased the activity of the downstream immunomodulatory molecule Src homology region 2 domain-containing phosphatase 1 (SHP-1) and decreased BCR-induced NF-κB activation in human B cells and B cell proliferation. This mechanism of action gives rationale to support the significant amelioration of disease and good safety profile in clinical trials, as by enabling the "self" recognition mechanism of CD22 via trans binding to α2,6 sialic acid ligands on autologous cells, SM03 specifically restores immune tolerance of B cells to host tissues without affecting the normal B cell immune response to pathogens.
Collapse
Affiliation(s)
- Kin L Wong
- SinoMab BioScience Ltd., Hong Kong Special Administrative Region, China
| | - Zhengdong Li
- SinoMab BioScience Ltd., Hong Kong Special Administrative Region, China
| | - Felix Ma
- SinoMab BioScience Ltd., Hong Kong Special Administrative Region, China
| | - Dong Wang
- SinoMab BioScience Ltd., Hong Kong Special Administrative Region, China
| | - Nan Song
- SinoMab BioScience Ltd., Hong Kong Special Administrative Region, China
| | - Chi H Chong
- SinoMab BioScience Ltd., Hong Kong Special Administrative Region, China
| | - Ka K Luk
- SinoMab BioScience Ltd., Hong Kong Special Administrative Region, China
| | - Shui O Leung
- SinoMab BioScience Ltd., Hong Kong Special Administrative Region, China
| |
Collapse
|
12
|
Almeida-Marrero V, Bethlehem F, Longo S, Bertolino MC, Torres T, Huskens J, de la Escosura A. Tailored Multivalent Targeting of Siglecs with Photosensitizing Liposome Nanocarriers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Verónica Almeida-Marrero
- Universidad Autonoma de Madrid - Campus de Cantoblanco: Universidad Autonoma de Madrid Organic Chemistry SPAIN
| | - Fleur Bethlehem
- University of Twente Institute for Nanotechnology: Universiteit Twente MESA+ Institute for Nanotechnology MESA+ NETHERLANDS
| | - Sara Longo
- University of Twente Institute for Nanotechnology: Universiteit Twente MESA+ Institute for Nanotechnology MESA+ NETHERLANDS
| | - M. Candelaria Bertolino
- University of Twente Institute for Nanotechnology: Universiteit Twente MESA+ Institute for Nanotechnology MESA+ NETHERLANDS
| | - Tomas Torres
- Universidad Autonoma de Madrid - Campus de Cantoblanco: Universidad Autonoma de Madrid Departmento de Química Orgánica Cantoblanco 28049 Madrid SPAIN
| | - Jurriaan Huskens
- University of Twente Institute for Nanotechnology: Universiteit Twente MESA+ Institute for Nanotechnology MESA+ NETHERLANDS
| | - Andrés de la Escosura
- Universidad Autonoma de Madrid - Campus de Cantoblanco: Universidad Autonoma de Madrid Organic Chemistry C/ Francisco Tomás y Valiente 7, Facultad de CienciasMódulo 01, Planta 4, L-401 28049 Madrid SPAIN
| |
Collapse
|
13
|
Islam M, Arlian BM, Pfrengle F, Duan S, Smith SA, Paulson JC. Suppressing Immune Responses Using Siglec Ligand-Decorated Anti-receptor Antibodies. J Am Chem Soc 2022; 144:9302-9311. [PMID: 35593593 DOI: 10.1021/jacs.2c00922] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The sialic acid-binding immunoglobulin-type lectins (Siglecs) are expressed predominantly on white blood cells and participate in immune cell recognition of self. Most Siglecs contain cytoplasmic inhibitory immunoreceptor tyrosine-based inhibitory motifs characteristic of inhibitory checkpoint co-receptors that suppress cell signaling when they are recruited to the immunological synapse of an activating receptor. Antibodies to activatory receptors typically activate immune cells by ligating the receptors on the cell surface. Here, we report that the conjugation of high affinity ligands of Siglecs to antibodies targeting activatory immune receptors can suppress receptor-mediated activation of immune cells. Indeed, B-cell activation by antibodies to the B-cell receptor IgD is dramatically suppressed by conjugation of anti-IgD with high affinity ligands of a B-cell Siglec CD22/Siglec-2. Similarly, degranulation of mast cells induced by antibodies to IgE, which ligate the IgE/FcεR1 receptor complex, is suppressed by conjugation of anti-IgE to high affinity ligands of a mast cell Siglec, CD33/Siglec-3 (CD33L). Moreover, the anti-IgE-CD33L suppresses anti-IgE-mediated systemic anaphylaxis of sensitized humanized mice and prevents anaphylaxis upon subsequent challenge with anti-IgE. The results demonstrate that attachment of ligands of inhibitory Siglecs to anti-receptor antibodies can suppress the activation of immune cells and modulate unwanted immune responses.
Collapse
Affiliation(s)
- Maidul Islam
- Department of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Britni M Arlian
- Department of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Fabian Pfrengle
- Department of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Shiteng Duan
- Department of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Scott A Smith
- Department of Medicine, and Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - James C Paulson
- Department of Molecular Medicine, and Department of Immunology & Microbiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
14
|
Erickson JJ, Archer-Hartmann S, Yarawsky AE, Miller JLC, Seveau S, Shao TY, Severance AL, Miller-Handley H, Wu Y, Pham G, Wasik BR, Parrish CR, Hu YC, Lau JTY, Azadi P, Herr AB, Way SS. Pregnancy enables antibody protection against intracellular infection. Nature 2022; 606:769-775. [PMID: 35676476 PMCID: PMC9233044 DOI: 10.1038/s41586-022-04816-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 04/27/2022] [Indexed: 12/17/2022]
Abstract
Adaptive immune components are thought to exert non-overlapping roles in antimicrobial host defence, with antibodies targeting pathogens in the extracellular environment and T cells eliminating infection inside cells1,2. Reliance on antibodies for vertically transferred immunity from mothers to babies may explain neonatal susceptibility to intracellular infections3,4. Here we show that pregnancy-induced post-translational antibody modification enables protection against the prototypical intracellular pathogen Listeria monocytogenes. Infection susceptibility was reversed in neonatal mice born to preconceptually primed mothers possessing L. monocytogenes-specific IgG or after passive transfer of antibodies from primed pregnant, but not virgin, mice. Although maternal B cells were essential for producing IgGs that mediate vertically transferred protection, they were dispensable for antibody acquisition of protective function, which instead required sialic acid acetyl esterase5 to deacetylate terminal sialic acid residues on IgG variable-region N-linked glycans. Deacetylated L. monocytogenes-specific IgG protected neonates through the sialic acid receptor CD226,7, which suppressed IL-10 production by B cells leading to antibody-mediated protection. Consideration of the maternal-fetal dyad as a joined immunological unit reveals protective roles for antibodies against intracellular infection and fine-tuned adaptations to enhance host defence during pregnancy and early life.
Collapse
Affiliation(s)
- John J Erickson
- Department of Pediatrics, Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, Division of Neonatology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | | | - Alexander E Yarawsky
- Department of Pediatrics, Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Jeanette L C Miller
- Department of Pediatrics, Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Stephanie Seveau
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Tzu-Yu Shao
- Department of Pediatrics, Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Ashley L Severance
- Department of Pediatrics, Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Hilary Miller-Handley
- Department of Pediatrics, Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
- Department of Internal Medicine, Division of Infectious Diseases, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Yuehong Wu
- Department of Pediatrics, Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Giang Pham
- Department of Pediatrics, Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Brian R Wasik
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Colin R Parrish
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Yueh-Chiang Hu
- Department of Pediatrics, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Joseph T Y Lau
- Department of Molecular and Cell Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Andrew B Herr
- Department of Pediatrics, Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Sing Sing Way
- Department of Pediatrics, Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
15
|
Transgenic mouse models to study the physiological and pathophysiological roles of human Siglecs. Biochem Soc Trans 2022; 50:935-950. [PMID: 35383825 DOI: 10.1042/bst20211203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022]
Abstract
Sialic acid-binding immunoglobulin-like lectins (Siglecs) are important immunomodulatory receptors. Due to differences between human and mouse Siglecs, defining the in vivo roles for human Siglecs (hSiglecs) can be challenging. One solution is the development and use of hSiglec transgenic mice to assess the physiological roles of hSiglecs in health and disease. These transgenic mice can also serve as important models for the pre-clinical testing of immunomodulatory approaches that are based on targeting hSiglecs. Four general methods have been used to create hSiglec-expressing transgenic mice, each with associated advantages and disadvantages. To date, transgenic mouse models expressing hSiglec-2 (CD22), -3 (CD33), -7, -8, -9, -11, and -16 have been created. This review focuses on both the generation of these hSiglec transgenic mice, along with the important findings that have been made through their study. Cumulatively, hSiglec transgenic mouse models are providing a deeper understanding of the differences between human and mice orthologs/paralogs, mechanisms by which Siglecs regulate immune cell signaling, physiological roles of Siglecs in disease, and different paradigms where targeting Siglecs may be therapeutically advantageous.
Collapse
|
16
|
Enterina JR, Sarkar S, Streith L, Jung J, Arlian BM, Meyer SJ, Takematsu H, Xiao C, Baldwin TA, Nitschke L, Shlomchick MJ, Paulson JC, Macauley MS. Coordinated changes in glycosylation regulate the germinal center through CD22. Cell Rep 2022; 38:110512. [PMID: 35294874 PMCID: PMC9018098 DOI: 10.1016/j.celrep.2022.110512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/19/2022] [Accepted: 02/16/2022] [Indexed: 12/18/2022] Open
Abstract
Germinal centers (GCs) are essential for antibody affinity maturation. GC B cells have a unique repertoire of cell surface glycans compared with naive B cells, yet functional roles for changes in glycosylation in the GC have yet to be ascribed. Detection of GCs by the antibody GL7 reflects a downregulation in ligands for CD22, an inhibitory co-receptor of the B cell receptor. To test a functional role for downregulation of CD22 ligands in the GC, we generate a mouse model that maintains CD22 ligands on GC B cells. With this model, we demonstrate that glycan remodeling plays a critical role in the maintenance of B cells in the GC. Sustained expression of CD22 ligands induces higher levels of apoptosis in GC B cells, reduces memory B cell and plasma cell output, and delays affinity maturation of antibodies. These defects are CD22 dependent, demonstrating that downregulation of CD22 ligands on B cells plays a critical function in the GC.
Collapse
Affiliation(s)
- Jhon R Enterina
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Susmita Sarkar
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Laura Streith
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Jaesoo Jung
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Britni M Arlian
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sarah J Meyer
- Division of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| | - Hiromu Takematsu
- Faculty of Medical Technology, Fujita Health University, Aichi 470-1192, Japan
| | - Changchun Xiao
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Troy A Baldwin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen, 91058 Erlangen, Germany
| | - Mark J Shlomchick
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - James C Paulson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Matthew S Macauley
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
17
|
Dou C, Zhen G, Dan Y, Wan M, Limjunyawong N, Cao X. Sialylation of TLR2 initiates osteoclast fusion. Bone Res 2022; 10:24. [PMID: 35232979 PMCID: PMC8888621 DOI: 10.1038/s41413-022-00186-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 01/24/2023] Open
Abstract
The molecular control of osteoclast formation is still not clearly elucidated. Here, we show that a process of cell recognition mediated by Siglec15-TLR2 binding is indispensable and occurs prior to cell fusion in RANKL-mediated osteoclastogenesis. Siglec15 has been shown to regulate osteoclastic bone resorption. However, the receptor for Siglec15 has not been identified, and the signaling mechanism involving Siglec15 in osteoclast function remains unclear. We found that Siglec15 bound sialylated TLR2 as its receptor and that the binding of sialylated TLR2 to Siglec15 in macrophages committed to the osteoclast-lineage initiated cell fusion for osteoclast formation, in which sialic acid was transferred by the sialyltransferase ST3Gal1. Interestingly, the expression of Siglec15 in macrophages was activated by M-CSF, whereas ST3Gal1 expression was induced by RANKL. Both Siglec15-specific deletion in macrophages and intrafemoral injection of sialidase abrogated cell recognition and reduced subsequent cell fusion for the formation of osteoclasts, resulting in increased bone formation in mice. Thus, our results reveal that cell recognition mediated by the binding of sialylated TLR2 to Siglec15 initiates cell fusion for osteoclast formation.
Collapse
Affiliation(s)
- Ce Dou
- grid.21107.350000 0001 2171 9311Department of Orthopedic Surgery, Institute of Cell Engineering and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Gehua Zhen
- grid.21107.350000 0001 2171 9311Department of Orthopedic Surgery, Institute of Cell Engineering and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Yang Dan
- grid.21107.350000 0001 2171 9311Department of Orthopedic Surgery, Institute of Cell Engineering and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Mei Wan
- grid.21107.350000 0001 2171 9311Department of Orthopedic Surgery, Institute of Cell Engineering and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Nathachit Limjunyawong
- grid.21107.350000 0001 2171 9311The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Xu Cao
- grid.21107.350000 0001 2171 9311Department of Orthopedic Surgery, Institute of Cell Engineering and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD USA
| |
Collapse
|
18
|
Tsubata T. Role of inhibitory B cell co-receptors in B cell self-tolerance to non-protein antigens. Immunol Rev 2022; 307:53-65. [PMID: 34989000 DOI: 10.1111/imr.13059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022]
Abstract
Antibodies to non-protein antigens such as nucleic acids, polysaccharides, and glycolipids play important roles in both host defense against microbes and development of autoimmune diseases. Although non-protein antigens are not recognized by T cells, antibody production to non-protein antigens involve T cell-independent mechanisms such as signaling through TLR7 and TLR9 in antibody production to nucleic acids. Although self-reactive B cells are tolerized by various mechanisms including deletion, anergy, and receptor editing, T cell tolerance is also crucial in self-tolerance of B cells to protein self-antigen because self-reactive T cells induce autoantibody production to these self-antigens. However, presence of T cell-independent mechanism suggests that T cell tolerance is not able to maintain B cell tolerance to non-protein self-antigens. Lines of evidence suggest that B cell response to non-protein self-antigens such as nucleic acids and gangliosides, sialic acid-containing glycolipids, are suppressed by inhibitory B cell co-receptors CD72 and Siglec-G, respectively. These inhibitory co-receptors recognize non-protein self-antigens and suppress BCR signaling induced by these antigens, thereby inhibiting B cell response to these self-antigens. Inhibitory B cell co-receptors appear to be involved in B cell self-tolerance to non-protein self-antigens that can activate B cells by T cell-independent mechanisms.
Collapse
Affiliation(s)
- Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
19
|
Lennon CS, Cao H, Hall AM, Vickers MA, Barker RN. The red blood cell as a novel regulator of human B-cell activation. Immunology 2021; 163:436-447. [PMID: 33728669 PMCID: PMC8274151 DOI: 10.1111/imm.13327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 02/12/2021] [Accepted: 03/01/2021] [Indexed: 01/08/2023] Open
Abstract
Non‐immune cells are increasingly recognized as important in regulating immunity, but the role of red blood cells (RBC) remains relatively unexplored, despite their abundance in the circulation and a cell surface rich in potential ligands. Here, we determine whether RBC influence the activation state of human B cells. Separation of RBC from peripheral blood mononuclear cells increased B‐cell expression of HLA‐DR/DP/DQ, whilst reconstitution reduced the levels of B‐cell activation markers HLA‐DR/DP/DQ, CD86, CD69 and CD40, as well as decreasing proliferative responses and IgM secretion. Inhibition of B cells required contact with RBC and was abrogated by either removal of sialic acids from RBC or blocking the corresponding lectin receptor CD22 on B cells. Chronic lymphocytic leukaemia B cells express low levels of CD22 and were less susceptible to inhibition by RBC, which may contribute to their activated phenotype. Taken together, the results identify a novel mechanism that may suppress inappropriate responsiveness of healthy B cells whilst circulating in the bloodstream.
Collapse
Affiliation(s)
| | - Huan Cao
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Andrew M Hall
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Mark A Vickers
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Robert N Barker
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
20
|
Palm AKE, Kleinau S. Marginal zone B cells: From housekeeping function to autoimmunity? J Autoimmun 2021; 119:102627. [PMID: 33640662 DOI: 10.1016/j.jaut.2021.102627] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Marginal zone (MZ) B cells comprise a subset of innate-like B cells found predominantly in the spleen, but also in lymph nodes and blood. Their principal functions are participation in quick responses to blood-borne pathogens and secretion of natural antibodies. The latter is important for housekeeping functions such as clearance of apoptotic cell debris. MZ B cells have B cell receptors with low poly-/self-reactivity, but they are not pathogenic at steady state. However, if simultaneously stimulated with self-antigen and pathogen- and/or damage-associated molecular patterns (PAMPs/DAMPs), MZ B cells may participate in the initial steps towards breakage of immunological tolerance. This review summarizes what is known about the role of MZ B cells in autoimmunity, both in mouse models and human disease. We cover factors important for shaping the MZ B cell compartment, how the functional properties of MZ B cells may contribute to breaking tolerance, and how MZ B cells are being regulated.
Collapse
Affiliation(s)
- Anna-Karin E Palm
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | - Sandra Kleinau
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
21
|
Zou Z, Ha Y, Liu S, Huang B. Identification of tumor-infiltrating immune cells and microenvironment-relevant genes in nasopharyngeal carcinoma based on gene expression profiling. Life Sci 2020; 263:118620. [PMID: 33096113 DOI: 10.1016/j.lfs.2020.118620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/30/2020] [Accepted: 10/11/2020] [Indexed: 12/24/2022]
Abstract
AIMS The purpose of this study was to investigate the prognostic significance of tumor-infiltrating immune cells and microenvironment-relevant genes in nasopharyngeal carcinoma (NPC) and their correlations. MATERIALS AND METHODS The "xCell" algorithm was used to calculate the enrichment scores for 33 immune cells in the samples of GSE12452, GSE40290, GSE53819, GSE68799, and GSE102349. The difference of immune cells between NPC group and non-cancerous group and the prognostic value of the immune cells were analyzed. Besides, based on the Microenvironment scores, the differentially expressed genes (DEGs) between the high- and low-score groups were screened to identify the microenvironment-relevant hub genes. Furthermore, the DEGs were used to establish a risk score model for predicting progression-free survival (PFS) via LASSO penalized Cox regression. KEY FINDINGS The scores of B-cells and Memory B-cells of NPC were significantly lower than those of non-cancerous tissues, and they were positively associated with PFS. Moreover, 10 hub genes (PTPRC, CD19, CD79B, BTK, CD79A, SELL, MS4A1, CD38, CD52, and CD22) were identified and positively correlated with B-cells, Memory B-cells, and Microenvironment scores in GSE12452, GSE68799, and GSE102349. High expression levels of CD22, CD38, CD79B, MS4A1, SELL, and PTPRC were associated with longer PFS. Besides, a risk score model composed of DARC, IL33, IGHG1, and SLC6A8 was established with a good performance for PFS prediction. SIGNIFICANCE These results enhance our understanding of the composition and prognostic significance of tumor-infiltrating immune cells in NPC lesions, and provide potential targets for prognostication and immunotherapy for NPC patients.
Collapse
Affiliation(s)
- Zhenning Zou
- Department of Pathology, Guangdong Medical University, Zhanjiang, China
| | - Yanping Ha
- Department of Pathology, Guangdong Medical University, Zhanjiang, China
| | - Shuguang Liu
- Department of Pathology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Bowan Huang
- Department of Anesthesiology, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
22
|
Abstract
Sialic acid-binding immunoglobulin-type lectins (Siglecs) are expressed on the majority of white blood cells of the immune system and play critical roles in immune cell signaling. Through recognition of sialic acid-containing glycans as ligands, they help the immune system distinguish between self and nonself. Because of their restricted cell type expression and roles as checkpoints in immune cell responses in human diseases such as cancer, asthma, allergy, neurodegeneration, and autoimmune diseases they have gained attention as targets for therapeutic interventions. In this review we describe the Siglec family, its roles in regulation of immune cell signaling, current efforts to define its roles in disease processes, and approaches to target Siglecs for treatment of human disease.
Collapse
Affiliation(s)
- Shiteng Duan
- Departments of Molecular Medicine, and Immunology and Microbiology, Scripps Research, La Jolla, California 92037, USA;
| | - James C Paulson
- Departments of Molecular Medicine, and Immunology and Microbiology, Scripps Research, La Jolla, California 92037, USA;
| |
Collapse
|
23
|
Affiliation(s)
- Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
24
|
Enterina JR, Jung J, Macauley MS. Coordinated roles for glycans in regulating the inhibitory function of CD22 on B cells. Biomed J 2019; 42:218-232. [PMID: 31627864 PMCID: PMC6818156 DOI: 10.1016/j.bj.2019.07.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/19/2019] [Accepted: 07/26/2019] [Indexed: 01/17/2023] Open
Abstract
CD22 is an inhibitory B cell co-receptor that recognizes sialic acid-containing glycoconjugates as ligands. Interactions with its glycan ligands are key to regulating the ability of CD22 to modulate B cell function, the most widely explored of which is antagonizing B cell receptor (BCR) signaling. Most importantly, interactions of CD22 with ligands on the same cell (cis) control the organization of CD22 on the cell surface, which minimizes co-localization with the BCR. In contrast with the modest ability of CD22 to intrinsically dampen BCR signaling, glycan ligands presented on another cell (trans) along with an antigen drawn CD22 and the BCR together within an immunological synapse, strongly inhibiting BCR signaling. New concepts are emerging for how CD22 controls B cell function, such as changes in glycosylation at different stages of B cell differentiation, specifically on GC B cells. Related to these changes, new players, such galectin-9, have been discovered that regulate cell surface nanoclusters of CD22. Roles of glycan ligands in controlling CD22 are the primary focus of this review as we highlight the ability of CD22 to modulate B cell function.
Collapse
Affiliation(s)
- Jhon R Enterina
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Jaesoo Jung
- Department of Chemistry, University of Alberta, Edmonton, Canada
| | - Matthew S Macauley
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada; Department of Chemistry, University of Alberta, Edmonton, Canada.
| |
Collapse
|
25
|
Pure yeast beta-glucan and two types of yeast cell wall extracts enhance cell migration in porcine intestine model. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
26
|
Clark EA, Giltiay NV. CD22: A Regulator of Innate and Adaptive B Cell Responses and Autoimmunity. Front Immunol 2018; 9:2235. [PMID: 30323814 PMCID: PMC6173129 DOI: 10.3389/fimmu.2018.02235] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
CD22 (Siglec 2) is a receptor predominantly restricted to B cells. It was initially characterized over 30 years ago and named “CD22” in 1984 at the 2nd International workshop in Boston (1). Several excellent reviews have detailed CD22 functions, CD22-regulated signaling pathways and B cell subsets regulated by CD22 or Siglec G (2–4). This review is an attempt to highlight recent and possibly forgotten findings. We also describe the role of CD22 in autoimmunity and the great potential for CD22-based immunotherapeutics for the treatment of autoimmune diseases such as systemic lupus erythematosus (SLE).
Collapse
Affiliation(s)
- Edward A Clark
- Department of Immunology, University of Washington, Seattle, WA, United States.,Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Natalia V Giltiay
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
27
|
Matsubara N, Imamura A, Yonemizu T, Akatsu C, Yang H, Ueki A, Watanabe N, Abdu-Allah H, Numoto N, Takematsu H, Kitazume S, Tedder TF, Marth JD, Ito N, Ando H, Ishida H, Kiso M, Tsubata T. CD22-Binding Synthetic Sialosides Regulate B Lymphocyte Proliferation Through CD22 Ligand-Dependent and Independent Pathways, and Enhance Antibody Production in Mice. Front Immunol 2018; 9:820. [PMID: 29725338 PMCID: PMC5917077 DOI: 10.3389/fimmu.2018.00820] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 04/04/2018] [Indexed: 01/06/2023] Open
Abstract
Sialic acid-binding immunoglobulin-like lectins (Siglecs) are expressed in various immune cells and most of them carry signaling functions. High-affinity synthetic sialoside ligands have been developed for various Siglecs. Therapeutic potentials of the nanoparticles and compounds that contain multiple numbers of these sialosides and other reagents such as toxins and antigens have been demonstrated. However, whether immune responses can be regulated by monomeric sialoside ligands has not yet been known. CD22 (also known as Siglec-2) is an inhibitory molecule preferentially expressed in B lymphocytes (B cells) and is constitutively bound and functionally regulated by α2,6 sialic acids expressed on the same cell (cis-ligands). Here, we developed synthetic sialosides GSC718 and GSC839 that bind to CD22 with high affinity (IC50 ~100 nM), and inhibit ligand binding of CD22. When B cells are activated by B cell antigen receptor (BCR) ligation, both GSC718 and GSC839 downregulate proliferation of B cells, and this regulation requires both CD22 and α2,6 sialic acids. This result suggests that these sialosides regulate BCR ligation-induced B cell activation by reversing endogenous ligand-mediated regulation of CD22. By contrast, GSC718 and GSC839 augment B cell proliferation induced by TLR ligands or CD40 ligation, and this augmentation requires CD22 but not α2,6 sialic acids. Thus, these sialosides appear to enhance B cell activation by directly suppressing the inhibitory function of CD22 independently of endogenous ligand-mediated regulation. Moreover, GSC839 augments B cell proliferation that depends on both BCR ligation and CD40 ligation as is the case for in vivo B cell responses to antigens, and enhanced antibody production to the extent comparable to CpG oligonuleotides or a small amount of alum. Although these known adjuvants induce production of the inflammatory cytokines or accumulation of inflammatory cells, CD22-binding sialosides do not. Thus, synthetic sialosides that bind to CD22 with high-affinity modulate B cell activation through endogenous ligand-dependent and independent pathways, and carry an adjuvant activity without inducing inflammation.
Collapse
Affiliation(s)
- Naoko Matsubara
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akihiro Imamura
- Department of Applied Bio-Organic Chemistry, Gifu University, Gifu, Japan
| | - Tatsuya Yonemizu
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chizuru Akatsu
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hongrui Yang
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akiharu Ueki
- Department of Applied Bio-Organic Chemistry, Gifu University, Gifu, Japan
| | - Natsuki Watanabe
- Department of Applied Bio-Organic Chemistry, Gifu University, Gifu, Japan
| | - Hajjaj Abdu-Allah
- Department of Applied Bio-Organic Chemistry, Gifu University, Gifu, Japan
| | - Nobutaka Numoto
- Department of Structural Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiromu Takematsu
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | - Thomas F Tedder
- Department of Immunology, Duke University Medical Center, Durham, NC, United States
| | - Jamey D Marth
- Center for Nanomedicine, University of California, Santa Barbara, CA, United States
| | - Nobutoshi Ito
- Department of Structural Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiromune Ando
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Hideharu Ishida
- Department of Applied Bio-Organic Chemistry, Gifu University, Gifu, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Makoto Kiso
- Department of Applied Bio-Organic Chemistry, Gifu University, Gifu, Japan
| | - Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
28
|
Daskhan GC, Tran HTT, Meloncelli PJ, Lowary TL, West LJ, Cairo CW. Construction of Multivalent Homo- and Heterofunctional ABO Blood Group Glycoconjugates Using a Trifunctional Linker Strategy. Bioconjug Chem 2018; 29:343-362. [PMID: 29237123 DOI: 10.1021/acs.bioconjchem.7b00679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The design and synthesis of multivalent ligands displaying complex oligosaccharides is necessary for the development of therapeutics, diagnostics, and research tools. Here, we report an efficient conjugation strategy to prepare complex glycoconjugates with 4 copies of 1 or 2 separate glycan epitopes, providing 4-8 carbohydrate residues on a tetravalent poly(ethylene glycol) scaffold. This strategy provides complex glycoconjugates that approach the size of glycoproteins (15-18 kDa) while remaining well-defined. The synthetic strategy makes use of three orthogonal functional groups, including a reactive N-hydroxysuccinimide (NHS)-ester moiety on the linker to install the first carbohydrate epitope via reaction with an amine. A masked amine functionality on the linker is revealed after the removal of a fluorenylmethyloxycarbonyl (Fmoc)-protecting group, allowing the attachment to the NHS-activated poly(ethylene glycol) (PEG) scaffold. An azide group in the linker was then used to incorporate the second carbohydrate epitope via catalyzed alkyne-azide cycloaddition. Using a known tetravalent PEG scaffold (PDI, 1.025), we prepared homofunctional glycoconjugates that display four copies of lactose and the A-type II or the B-type II human blood group antigens. Using our trifunctional linker, we expanded this strategy to produce heterofunctional conjugates with four copies of two separate glycan epitopes. These heterofunctional conjugates included Neu5Ac, 3'-sialyllactose, or 6'-sialyllactose as a second antigen. Using an alternative strategy, we generated heterofunctional conjugates with three copies of the glycan epitope and one fluorescent group (on average) using a sequential dual-amine coupling strategy. These conjugation strategies should be easily generalized for conjugation of other complex glycans. We demonstrate that the glycan epitopes of heterofunctional conjugates engage and cluster target B-cell receptors and CD22 receptors on B cells, supporting the application of these reagents for investigating cellular response to carbohydrate antigens of the ABO blood group system.
Collapse
Affiliation(s)
- Gour Chand Daskhan
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada
| | - Hanh-Thuc Ton Tran
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada
| | - Peter J Meloncelli
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada
| | - Todd L Lowary
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada.,Canadian National Transplant Research Program, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Lori J West
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada.,Department of Pediatrics, Surgery, Medical Microbiology and Immunology, and Laboratory Medicine and Pathology, Alberta Transplant Institute, University of Alberta Edmonton, Alberta T6G 2E1, Canada.,Canadian National Transplant Research Program, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| | - Christopher W Cairo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta , Edmonton, Alberta T6G 2G2, Canada.,Canadian National Transplant Research Program, University of Alberta , Edmonton, Alberta T6G 2E1, Canada
| |
Collapse
|
29
|
Giltiay NV, Shu GL, Shock A, Clark EA. Targeting CD22 with the monoclonal antibody epratuzumab modulates human B-cell maturation and cytokine production in response to Toll-like receptor 7 (TLR7) and B-cell receptor (BCR) signaling. Arthritis Res Ther 2017; 19:91. [PMID: 28506291 PMCID: PMC5433084 DOI: 10.1186/s13075-017-1284-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/24/2017] [Indexed: 12/03/2022] Open
Abstract
Background Abnormal B-cell activation is implicated in the pathogenesis of autoimmune diseases, including systemic lupus erythematosus (SLE). The B-cell surface molecule CD22, which regulates activation through the B-cell receptor (BCR), is a potential target for inhibiting pathogenic B cells; however, the regulatory functions of CD22 remain poorly understood. In this study, we determined how targeting of CD22 with epratuzumab (Emab), a humanized anti-CD22 IgG1 monoclonal antibody, affects the activation of human B-cell subsets in response to Toll-like receptor 7 (TLR7) and BCR engagement. Methods B-cell subsets were isolated from human tonsils and stimulated with F(ab′)2 anti-human IgM and/or the TLR7 agonist R848 in the presence of Emab or a human IgG1 isotype control. Changes in mRNA levels of genes associated with B-cell activation and differentiation were analyzed by quantitative PCR. Cytokine production was measured by ELISA. Cell proliferation, survival, and differentiation were assessed by flow cytometry. Results Pretreatment of phenotypically naïve CD19+CD10–CD27– cells with Emab led to a significant increase in IL-10 expression, and in some but not all patient samples to a reduction of IL-6 production in response to TLR7 stimulation alone or in combination with anti-IgM. Emab selectively inhibited the expression of PRDM1, the gene encoding B-lymphocyte-induced maturation protein 1 (Blimp-1) in activated CD10–CD27– B cells. CD10–CD27–IgD– cells were highly responsive to stimulation through TLR7 as evidenced by the appearance of blasting CD27hiCD38hi cells. Emab significantly inhibited the activation and differentiation of CD10–CD27–IgD– B cells into plasma cells. Conclusions Emab can both regulate cytokine expression and block Blimp1-dependent B-cell differentiation, although the effects of Emab may depend on the stage of B-cell development or activation. In addition, Emab inhibits the activation of CD27–IgD– tonsillar cells, which correspond to so-called double-negative memory B cells, known to be increased in SLE patients with more active disease. These data may be relevant to the therapeutic effect of Emab in vivo via modulation of the production of pro-inflammatory and anti-inflammatory cytokines by B cells. Because Blimp-1 is required by B cells to mature into antibody-producing cells, inhibition of Blimp1 may reduce autoantibody production. Electronic supplementary material The online version of this article (doi:10.1186/s13075-017-1284-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natalia V Giltiay
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA. .,Department of Immunology, University of Washington, Seattle, WA, 98109, USA.
| | - Geraldine L Shu
- Department of Immunology, University of Washington, Seattle, WA, 98109, USA
| | | | - Edward A Clark
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, 98109, USA.,Department of Immunology, University of Washington, Seattle, WA, 98109, USA
| |
Collapse
|
30
|
CD22 is required for formation of memory B cell precursors within germinal centers. PLoS One 2017; 12:e0174661. [PMID: 28346517 PMCID: PMC5367813 DOI: 10.1371/journal.pone.0174661] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 03/13/2017] [Indexed: 01/17/2023] Open
Abstract
CD22 is a BCR co-receptor that regulates B cell signaling, proliferation and survival and is required for T cell-independent Ab responses. To investigate the role of CD22 during T cell-dependent (TD) Ab responses and memory B cell formation, we analyzed Ag-specific B cell responses generated by wild-type (WT) or CD22-/- B cells following immunization with a TD Ag. CD22-/- B cells mounted normal early Ab responses yet failed to generate either memory B cells or long-lived plasma cells, whereas WT B cells formed both populations. Surprisingly, B cell expansion and germinal center (GC) differentiation were comparable between WT and CD22-/- B cells. CD22-/- B cells, however, were significantly less capable of generating a population of CXCR4hiCD38hi GC B cells, which we propose represent memory B cell precursors within GCs. These results demonstrate a novel role for CD22 during TD humoral responses evident during primary GC formation and underscore that CD22 functions not only during B cell maturation but also during responses to both TD and T cell-independent antigens.
Collapse
|
31
|
Pozhitkov AE, Neme R, Domazet-Lošo T, Leroux BG, Soni S, Tautz D, Noble PA. Tracing the dynamics of gene transcripts after organismal death. Open Biol 2017; 7:160267. [PMID: 28123054 PMCID: PMC5303275 DOI: 10.1098/rsob.160267] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022] Open
Abstract
In life, genetic and epigenetic networks precisely coordinate the expression of genes-but in death, it is not known if gene expression diminishes gradually or abruptly stops or if specific genes and pathways are involved. We studied this by identifying mRNA transcripts that apparently increase in relative abundance after death, assessing their functions, and comparing their abundance profiles through postmortem time in two species, mouse and zebrafish. We found mRNA transcript profiles of 1063 genes became significantly more abundant after death of healthy adult animals in a time series spanning up to 96 h postmortem. Ordination plots revealed non-random patterns in the profiles by time. While most of these transcript levels increased within 0.5 h postmortem, some increased only at 24 and 48 h postmortem. Functional characterization of the most abundant transcripts revealed the following categories: stress, immunity, inflammation, apoptosis, transport, development, epigenetic regulation and cancer. The data suggest a step-wise shutdown occurs in organismal death that is manifested by the apparent increase of certain transcripts with various abundance maxima and durations.
Collapse
Affiliation(s)
- Alex E Pozhitkov
- Department of Oral Health Sciences, University of Washington, PO Box 357444, Seattle, WA 98195, USA
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Ploen, Germany
| | - Rafik Neme
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Ploen, Germany
| | - Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, 10002 Zagreb, Croatia
- Catholic University of Croatia, Ilica 242, Zagreb, Croatia
| | - Brian G Leroux
- Department of Oral Health Sciences, University of Washington, PO Box 357444, Seattle, WA 98195, USA
| | - Shivani Soni
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36101-0271, USA
| | - Diethard Tautz
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Ploen, Germany
| | - Peter A Noble
- Department of Periodontics, University of Washington, PO Box 357444, Seattle, WA 98195, USA
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36101-0271, USA
- PhD Program in Microbiology, Alabama State University, Montgomery, AL 36101-0271, USA
| |
Collapse
|
32
|
Wittmann A, Lamprinaki D, Bowles KM, Katzenellenbogen E, Knirel YA, Whitfield C, Nishimura T, Matsumoto N, Yamamoto K, Iwakura Y, Saijo S, Kawasaki N. Dectin-2 Recognizes Mannosylated O-antigens of Human Opportunistic Pathogens and Augments Lipopolysaccharide Activation of Myeloid Cells. J Biol Chem 2016; 291:17629-38. [PMID: 27358401 PMCID: PMC5016159 DOI: 10.1074/jbc.m116.741256] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Indexed: 12/20/2022] Open
Abstract
LPS consists of a relatively conserved region of lipid A and core oligosaccharide and a highly variable region of O-antigen polysaccharide. Whereas lipid A is known to bind to the Toll-like receptor 4 (TLR4)-myeloid differentiation factor 2 (MD2) complex, the role of the O-antigen remains unclear. Here we report a novel molecular interaction between dendritic cell-associated C-type lectin-2 (Dectin-2) and mannosylated O-antigen found in a human opportunistic pathogen, Hafnia alvei PCM 1223, which has a repeating unit of [-Man-α1,3-Man-α1,2-Man-α1,2-Man-α1,2-Man-α1,3-]. H. alvei LPS induced higher levels of TNFα and IL-10 from mouse bone marrow-derived dendritic cells (BM-DCs), when compared with Salmonella enterica O66 LPS, which has a repeat of [-Gal-α1,6-Gal-α1,4-[Glc-β1,3]GalNAc-α1,3-GalNAc-β1,3-]. In a cell-based reporter assay, Dectin-2 was shown to recognize H. alvei LPS. This binding was inhibited by mannosidase treatment of H. alvei LPS and by mutations in the carbohydrate-binding domain of Dectin-2, demonstrating that H. alvei LPS is a novel glycan ligand of Dectin-2. The enhanced cytokine production by H. alvei LPS was Dectin-2-dependent, because Dectin-2 knock-out BM-DCs failed to do so. This receptor cross-talk between Dectin-2 and TLR4 involved events including spleen tyrosine kinase (Syk) activation and receptor juxtaposition. Furthermore, another mannosylated LPS from Escherichia coli O9a also bound to Dectin-2 and augmented TLR4 activation of BM-DCs. Taken together, these data indicate that mannosylated O-antigens from several Gram-negative bacteria augment TLR4 responses through interaction with Dectin-2.
Collapse
Affiliation(s)
- Alexandra Wittmann
- From the Food and Health Institute Strategic Programme, Institute of Food Research, Norwich NR4 7UA, United Kingdom
| | - Dimitra Lamprinaki
- From the Food and Health Institute Strategic Programme, Institute of Food Research, Norwich NR4 7UA, United Kingdom
| | - Kristian M Bowles
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Ewa Katzenellenbogen
- the Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Wroclaw 53-114, Poland
| | - Yuriy A Knirel
- the N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Chris Whitfield
- the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Takashi Nishimura
- the Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| | - Naoki Matsumoto
- the Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| | - Kazuo Yamamoto
- the Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| | - Yoichiro Iwakura
- the Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan, and
| | - Shinobu Saijo
- the Department of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Norihito Kawasaki
- From the Food and Health Institute Strategic Programme, Institute of Food Research, Norwich NR4 7UA, United Kingdom, the Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan,
| |
Collapse
|
33
|
Cafeteria diet-induced obesity causes oxidative damage in white adipose. Biochem Biophys Res Commun 2016; 473:545-50. [PMID: 27033600 DOI: 10.1016/j.bbrc.2016.03.113] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 03/23/2016] [Indexed: 01/01/2023]
Abstract
Obesity continues to be one of the most prominent public health dilemmas in the world. The complex interaction among the varied causes of obesity makes it a particularly challenging problem to address. While typical high-fat purified diets successfully induce weight gain in rodents, we have described a more robust model of diet-induced obesity based on feeding rats a diet consisting of highly palatable, energy-dense human junk foods - the "cafeteria" diet (CAF, 45-53% kcal from fat). We previously reported that CAF-fed rats became hyperphagic, gained more weight, and developed more severe hyperinsulinemia, hyperglycemia, and glucose intolerance compared to the lard-based 45% kcal from fat high fat diet-fed group. In addition, the CAF diet-fed group displayed a higher degree of inflammation in adipose and liver, mitochondrial dysfunction, and an increased concentration of lipid-derived, pro-inflammatory mediators. Building upon our previous findings, we aimed to determine mechanisms that underlie physiologic findings in the CAF diet. We investigated the effect of CAF diet-induced obesity on adipose tissue specifically using expression arrays and immunohistochemistry. Genomic evidence indicated the CAF diet induced alterations in the white adipose gene transcriptome, with notable suppression of glutathione-related genes and pathways involved in mitigating oxidative stress. Immunohistochemical analysis indicated a doubling in adipose lipid peroxidation marker 4-HNE levels compared to rats that remained lean on control standard chow diet. Our data indicates that the CAF diet drives an increase in oxidative damage in white adipose tissue that may affect tissue homeostasis. Oxidative stress drives activation of inflammatory kinases that can perturb insulin signaling leading to glucose intolerance and diabetes.
Collapse
|
34
|
Qian L, Chen W, Qin H, Rui C, Jia X, Fu Y, Gong W, Tian F, Ji M. Immune complex negatively regulates Toll-like receptor 9-mediated immune responses in B cells through the inhibitory Fc-gamma receptor IIb. Microbiol Immunol 2016; 59:142-51. [PMID: 25557539 DOI: 10.1111/1348-0421.12224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/10/2014] [Accepted: 12/25/2014] [Indexed: 01/30/2023]
Abstract
Because inappropriate activation of Toll-like receptor 9 (TLR9) may induce pathological damage, negative regulation of the TLR9-triggered immune response has attracted considerable attention. Nonpathogenic immune complex (IC) has been demonstrated to have beneficial therapeutic effects in some kinds of autoimmune diseases. However, the role of IC in the regulation of TLR9-triggered immune responses and the underlying mechanisms remain unclear. In this study, it was demonstrated that IC stimulation of B cells not only suppresses CpG-oligodeoxynucleotide (CpG-ODN)-induced pro-inflammatory IL-6 and IgM κ production, but also attenuates CD40 and CD80 expression. Furthermore, our results suggest that the receptor for the Fc portion of IgG (FcγR) IIb is involved in the suppressive effect of IC on TLR9-mediated CD40, CD80 and IL-6 expression. Finally, it was found that IC down-regulates TLR9 expression in CpG-ODN activated B cells. Our results provide an outline of a new pathway for the negative regulation of TLR9-triggered immune responses in B cells via FcγRIIb. A new mechanistic explanation of the therapeutic effect of nonpathogenic IC on inflammatory and autoimmune diseases is also provided.
Collapse
Affiliation(s)
- Li Qian
- Laboratory of Immunology, Yangzhou University School of Medicine, Yangzhou 225001; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225001
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jiang YN, Cai X, Zhou HM, Jin WD, Zhang M, Zhang Y, Du XX, Chen ZHK. Diagnostic and prognostic roles of soluble CD22 in patients with Gram-negative bacterial sepsis. Hepatobiliary Pancreat Dis Int 2015; 14:523-9. [PMID: 26459729 DOI: 10.1016/s1499-3872(15)60394-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Soluble CD22 (sCD22) is a fragment of CD22, a B cell-specific membrane protein that negatively regulates B-cell receptor signaling. To date, sCD22 has only been regarded as a tumor marker of B-cell malignancies. Its expression in infectious diseases has not yet been assessed. METHODS Serum concentrations of sCD22, procalcitonin (PCT) and interleukin-6 (IL-6) were measured by enzyme-linked immunosorbent assays in patients with intra-abdominal Gram-negative bacterial infection. Receiver operating characteristic curve analysis was performed to evaluate the diagnostic accuracy of these biomarkers in this type of infection. The correlations between biomarkers and the Acute Physiology and Chronic Health Evaluation (APACHE) II scores were also analyzed. RESULTS Concentrations of sCD22 were significantly elevated in patients with sepsis and the elevation is correlated with the severity of sepsis. sCD22 was also slightly elevated in patients with non-infected systemic inflammatory response syndrome or local infection. The diagnostic accuracy of sCD22 for sepsis was equivalent to that of PCT or IL-6. In addition, the correlation of sCD22 with APACHE II scores was stronger than that of PCT or IL-6. CONCLUSIONS Serum sCD22 is a novel inflammatory mediator released during infection. This soluble biomarker plays a potential role in the diagnosis of Gram-negative bacterial sepsis, with a diagnostic accuracy as efficient as that of PCT or IL-6. Furthermore, sCD22 is more valuable to predict the outcomes in patients with sepsis than PCT or IL-6. The present study suggested that sCD22 might be potentially useful in supplementing current criteria for sepsis.
Collapse
Affiliation(s)
- Yi-Nan Jiang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Ministry of Health, and Key Laboratory of Ministry of Education, Wuhan 430030, China.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Dörner T, Shock A, Goldenberg DM, Lipsky PE. The mechanistic impact of CD22 engagement with epratuzumab on B cell function: Implications for the treatment of systemic lupus erythematosus. Autoimmun Rev 2015. [PMID: 26212727 DOI: 10.1016/j.autrev.2015.07.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Epratuzumab is a B-cell-directed non-depleting monoclonal antibody that targets CD22. It is currently being evaluated in two phase 3 clinical trials in patients with systemic lupus erythematosus (SLE), a disease associated with abnormalities in B-cell function and activation. The mechanism of action of epratuzumab involves perturbation of the B-cell receptor (BCR) signalling complex and intensification of the normal inhibitory role of CD22 on the BCR, leading to reduced signalling and diminished activation of B cells. Such effects may result from down-modulation of CD22 upon binding by epratuzumab, as well as decreased expression of other proteins involved in amplifying BCR signalling capability, notably CD19. The net result is blunting the capacity of antigen engagement to induce B-cell activation. The functional consequences of epratuzumab binding to CD22 include diminished B-cell proliferation, effects on adhesion molecule expression, and B-cell migration, as well as reduced production of pro-inflammatory cytokines, such as IL-6 and TNF. Studies in patients treated with epratuzumab have revealed a number of pharmacodynamic effects that are linked to the mechanism of action (i.e., a loss of the target molecule CD22 from the B-cell surface followed by a modest reduction in peripheral B-cell numbers after prolonged therapy). Together, these data indicate that epratuzumab therapy affords a unique means to modulate BCR complex expression and signalling.
Collapse
Affiliation(s)
- Thomas Dörner
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Berlin and DRFZ Berlin, 10117 Berlin, Germany.
| | - Anthony Shock
- UCB Pharma, 208 Bath Road, Slough, West Berkshire, SL1 3WE, UK.
| | | | - Peter E Lipsky
- Formerly National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
37
|
Singh D, Fox SM, Tal-Singer R, Bates S, Riley JH, Celli B. Altered gene expression in blood and sputum in COPD frequent exacerbators in the ECLIPSE cohort. PLoS One 2014; 9:e107381. [PMID: 25265030 PMCID: PMC4179270 DOI: 10.1371/journal.pone.0107381] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 08/14/2014] [Indexed: 11/27/2022] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD) who are defined as frequent exacerbators suffer with 2 or more exacerbations every year. The molecular mechanisms responsible for this phenotype are poorly understood. We investigated gene expression profile patterns associated with frequent exacerbations in sputum and blood cells in a well-characterised cohort. Samples from subjects from the ECLIPSE COPD cohort were used; sputum and blood samples from 138 subjects were used for microarray gene expression analysis, while blood samples from 438 subjects were used for polymerase chain reaction (PCR) testing. Using microarray, 150 genes were differentially expressed in blood (>±1.5 fold change, p≤0.01) between frequent compared to non-exacerbators. In sputum cells, only 6 genes were differentially expressed. The differentially regulated genes in blood included downregulation of those involved in lymphocyte signalling and upregulation of pro-apoptotic signalling genes. Multivariate analysis of the microarray data followed by confirmatory PCR analysis identified 3 genes that predicted frequent exacerbations; B3GNT, LAF4 and ARHGEF10. The sensitivity and specificity of these 3 genes to predict the frequent exacerbator phenotype was 88% and 33% respectively. There are alterations in systemic immune function associated with frequent exacerbations; down-regulation of lymphocyte function and a shift towards pro-apoptosis mechanisms are apparent in patients with frequent exacerbations.
Collapse
Affiliation(s)
- Dave Singh
- University of Manchester, Medicines Evaluation Unit, Manchester, United Kingdom
- * E-mail:
| | - Steven M. Fox
- GlaxoSmithKline, Medicines Research Centre, Stevenage, United Kingdom
| | - Ruth Tal-Singer
- GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Stewart Bates
- GlaxoSmithKline, Medicines Research Centre, Stevenage, United Kingdom
| | - John H. Riley
- GlaxoSmithKline, Stockley Park, Uxbridge, United Kingdom
| | - Bartolome Celli
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
38
|
Macauley MS, Crocker PR, Paulson JC. Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol 2014; 14:653-66. [PMID: 25234143 DOI: 10.1038/nri3737] [Citation(s) in RCA: 778] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
All mammalian cells display a diverse array of glycan structures that differ from those that are found on microbial pathogens. Siglecs are a family of sialic acid-binding immunoglobulin-like receptors that participate in the discrimination between self and non-self, and that regulate the function of cells in the innate and adaptive immune systems through the recognition of their glycan ligands. In this Review, we describe the recent advances in our understanding of the roles of Siglecs in the regulation of immune cell function in infectious diseases, inflammation, neurodegeneration, autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Matthew S Macauley
- Departments of Cell and Molecular Biology, Immunology and Microbial Science, and Physiological Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Paul R Crocker
- Division of Cell Signalling and Immunology, Wellcome Trust Building, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - James C Paulson
- Departments of Cell and Molecular Biology, Immunology and Microbial Science, and Physiological Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
39
|
Nitschke L. CD22 and Siglec-G regulate inhibition of B-cell signaling by sialic acid ligand binding and control B-cell tolerance. Glycobiology 2014; 24:807-17. [PMID: 25002414 DOI: 10.1093/glycob/cwu066] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CD22 and Siglec-G are two B-cell expressed members of the Siglec (sialic acid-binding immunoglobulin (Ig)-like lectin) family and are potent inhibitors of B-cell signaling. Genetic approaches have provided evidence that this inhibition of B-cell antigen receptor (BCR) signaling by Siglecs is dependent on ligand binding to sialic acids in specific linkages. The cis-ligand-binding activity of CD22 leads to homo-oligomer formation, which are to a large extent found in membrane domains that are distinct from those containing the BCR. In contrast, Siglec-G is recruited via sialic acid binding to the BCR. This interaction of Siglec-G with mIgM leads to an inhibitory function that seems to be specific for B-1 cells. Both CD22 and Siglec-G control B-cell tolerance and loss of these proteins, its ligands or its inhibitory pathways can increase the susceptibility for autoimmune diseases. CD22 is a target protein both in B-cell leukemias and lymphomas, as well as in B-cell mediated autoimmune diseases. Both antibodies and synthetic chemically modified sialic acids are currently tested to target Siglecs on B cells.
Collapse
Affiliation(s)
- Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| |
Collapse
|
40
|
Alsadeq A, Hobeika E, Medgyesi D, Kläsener K, Reth M. The role of the Syk/Shp-1 kinase-phosphatase equilibrium in B cell development and signaling. THE JOURNAL OF IMMUNOLOGY 2014; 193:268-76. [PMID: 24899508 DOI: 10.4049/jimmunol.1203040] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Signal transduction from the BCR is regulated by the equilibrium between kinases (e.g., spleen tyrosine kinase [Syk]) and phosphatases (e.g., Shp-1). Previous studies showed that Syk-deficient B cells have a developmental block at the pro/pre-B cell stage, whereas a B cell-specific Shp-1 deficiency promoted B-1a cell development and led to autoimmunity. We generated B cell-specific Shp-1 and Syk double-knockout (DKO) mice and compared them to the single-knockout mice deficient for either Syk or Shp-1. Unlike Syk-deficient mice, the DKO mice can generate mature B cells, albeit at >20-fold reduced B cell numbers. The DKO B-2 cells are all Syk-negative, whereas the peritoneal B1 cells of the DKO mice still express Syk, indicating that they require this kinase for their proper development. The DKO B-2 cells cannot be stimulated via the BCR, whereas they are efficiently activated via TLR or CD40. We also found that in DKO pre-B cells, the kinase Zap70 is associated with the pre-BCR, suggesting that Zap70 is important to promote B cell maturation in the absence of Syk and SHP-1. Together, our data show that a properly balanced kinase/phosphatase equilibrium is crucial for normal B cell development and function.
Collapse
Affiliation(s)
- Ameera Alsadeq
- Department of Molecular Immunology, Max-Planck-Institut of Immunobiology and Epigenetics, Freiburg 79108, Germany; Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg 79108, Germany Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, Freiburg 79108, Germany; and BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg 79108, Germany
| | - Elias Hobeika
- Department of Molecular Immunology, Max-Planck-Institut of Immunobiology and Epigenetics, Freiburg 79108, Germany; Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg 79108, Germany
| | - David Medgyesi
- Department of Molecular Immunology, Max-Planck-Institut of Immunobiology and Epigenetics, Freiburg 79108, Germany; Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg 79108, Germany BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg 79108, Germany
| | - Kathrin Kläsener
- Department of Molecular Immunology, Max-Planck-Institut of Immunobiology and Epigenetics, Freiburg 79108, Germany; Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg 79108, Germany BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg 79108, Germany
| | - Michael Reth
- Department of Molecular Immunology, Max-Planck-Institut of Immunobiology and Epigenetics, Freiburg 79108, Germany; Biology III, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg 79108, Germany Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, Freiburg 79108, Germany; and BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Freiburg 79108, Germany
| |
Collapse
|
41
|
Archer LD, Langford-Smith KJ, Bigger BW, Fildes JE. Mucopolysaccharide diseases: a complex interplay between neuroinflammation, microglial activation and adaptive immunity. J Inherit Metab Dis 2014; 37:1-12. [PMID: 23653226 DOI: 10.1007/s10545-013-9613-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 04/16/2013] [Indexed: 12/23/2022]
Abstract
Mucopolysaccharide (MPS) diseases are lysosomal storage disorders (LSDs) caused by deficiencies in enzymes required for glycosaminoglycan (GAG) catabolism. Mucopolysaccharidosis I (MPS I), MPS IIIA, MPS IIIB and MPS VII are deficient in the enzymes α-L-Iduronidase, Heparan-N-Sulphatase, N-Acetylglucosaminidase and Beta-Glucuronidase, respectively. Enzyme deficiency leads to the progressive multi-systemic build-up of heparan sulphate (HS) and dermatan sulphate (DS) within cellular lysosomes, followed by cell, tissue and organ damage and in particular neurodegeneration. Clinical manifestations of MPS are well established; however as lysosomes represent vital components of immune cells, it follows that lysosomal accumulation of GAGs could affect diverse immune functions and therefore influence disease pathogenesis. Theoretically, MPS neurodegeneration and GAGs could be substantiating a threat of danger and damage to alert the immune system for cellular clearance, which due to the progressive nature of MPS storage would propagate disease pathogenesis. Innate immunity appears to have a key role in MPS; however the extent of adaptive immune involvement remains to be elucidated. The current literature suggests a complex interplay between neuroinflammation, microglial activation and adaptive immunity in MPS disease.
Collapse
Affiliation(s)
- Louise D Archer
- The Transplant Centre, UHSM, University of Manchester, Manchester, England, UK
| | | | | | | |
Collapse
|
42
|
Ha SY, Sung J, Ju H, Karube K, Kim SJ, Kim WS, Seto M, Ko YH. Epstein–Barr virus-positive nodal peripheral T cell lymphomas: Clinicopathologic and gene expression profiling study. Pathol Res Pract 2013; 209:448-54. [DOI: 10.1016/j.prp.2013.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/19/2013] [Accepted: 04/20/2013] [Indexed: 02/05/2023]
|
43
|
Sieger N, Fleischer SJ, Mei HE, Reiter K, Shock A, Burmester GR, Daridon C, Dörner T. CD22 ligation inhibits downstream B cell receptor signaling and Ca(2+) flux upon activation. ACTA ACUST UNITED AC 2013; 65:770-9. [PMID: 23233360 DOI: 10.1002/art.37818] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 11/29/2012] [Indexed: 12/25/2022]
Abstract
OBJECTIVE CD22 is a surface molecule exclusively expressed on B cells that regulates adhesion and B cell receptor (BCR) signaling as an inhibitory coreceptor of the BCR. Central downstream signaling molecules that are activated upon BCR engagement include spleen tyrosine kinase (Syk) and, subsequently, phospholipase Cγ2 (PLCγ2), which results in calcium (Ca(2+)) mobilization. The humanized anti-CD22 monoclonal antibody epratuzumab is currently being tested in clinical trials. This study was undertaken to determine the potential mechanism by which this drug regulates B cell activation. METHODS Purified B cells were preincubated with epratuzumab, and the colocalization of CD22 and CD79α, without BCR engagement, was assessed by confocal microscopy. The phosphorylation of Syk (Y348, Y352) and PLCγ2 (Y759) as well as the Ca(2+) flux in the cells were analyzed by flow cytometry upon stimulation of the BCR and/or Toll-like receptor 9 (TLR-9). The influence of CD22 ligation on BCR signaling was assessed by pretreating the cells with epratuzumab or F(ab')(2) fragment of epratuzumab, in comparison with control cells (medium alone or isotype-matched IgG1). RESULTS Epratuzumab induced colocalization of CD22 and components of the BCR independent of BCR engagement, and also reduced intracellular Ca(2+) mobilization and diminished the phosphorylation of Syk and PLCγ2 after BCR stimulation in vitro. Inhibition of kinase phosphorylation was demonstrated in both CD27- and CD27+ B cells, and this appeared to be independent of Fc receptor signaling. Preactivation of the cells via the stimulation of TLR-9 did not circumvent the inhibitory effect of epratuzumab on BCR signaling. CONCLUSION These findings are consistent with the concept of targeting CD22 to raise the threshold of BCR activation, which could offer therapeutic benefit in patients with autoimmune diseases.
Collapse
Affiliation(s)
- N Sieger
- Charité University Medicine Berlin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
CD22 is a 140-kDa member of the Siglec family of cell surface proteins that is expressed by most mature B-cell lineages. As a co-receptor of the B-cell receptor (BCR), it is known to contribute to the sensitive control of the B-cell response to antigen. Cross-linking of CD22 and the BCR by antigen triggers the phosphorylation of CD22, which leads to activation of signaling molecules such as phosphatases. Signal transduction pathways involving CD22 have been explored in a number of mouse models, some of which have provided evidence that in the absence of functional CD22, B cells have a "hyperactivated" phenotype, and suggest that loss of CD22 function could contribute to the pathogenesis of autoimmune diseases. Modulating CD22 activity has therefore been suggested as a possible therapeutic approach to such diseases. For example, the novel CD22-targeting monoclonal antibody epratuzumab is currently under investigation as a treatment for the connective tissue disorder systemic lupus erythematosus (SLE).
Collapse
Affiliation(s)
- Thomas Dörner
- Charité University Medicine Berlin, CC12, Dept. Medicine/Rheumatology and Clinical Immunology and German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany.
| | | | | |
Collapse
|
45
|
Walker JA, Hall AM, Kotsopoulou E, Espeli M, Nitschke L, Barker RN, Lyons PA, Smith KGC. Increased red cell turnover in a line of CD22-deficient mice is caused by Gpi1c: a model for hereditary haemolytic anaemia. Eur J Immunol 2012; 42:3212-22. [PMID: 22930244 DOI: 10.1002/eji.201242633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 08/02/2012] [Accepted: 08/24/2012] [Indexed: 11/06/2022]
Abstract
CD22, an inhibitory co-receptor of the BCR, has been identified as a potential candidate gene for the development of autoimmune haemolytic anaemia in mice. In this study, we have examined Cd22(tm1Msn) CD22-deficient mice and identified an increase in RBC turnover and stress erythropoiesis, which might be consistent with haemolysis. We then, however, eliminated CD22 deficiency as the cause of accelerated RBC turnover and established that enhanced RBC turnover occurs independently of B cells and anti-RBC autoanti-bodies. Accelerated RBC turnover in this particular strain of CD22-deficient mice is red cell intrinsic and appears to be the consequence of a defective allele of glucose phosphate isomerase, Gpi1(c). This form of Gpi1 was originally derived from wild mice and results in a substantial reduction in enzyme activity. We have identified the polymorphism that causes impaired catalytic activity in the Gpi1(c) allele, and biochemically confirmed an approximate 75% reduction of GPI1 activity in Cd22(-/-) RBCs. The Cd22(-/-).Gpi1(c) congenic mouse provides a novel animal model of GPI1-deficiency, which is one of the most common causes of chronic non-spherocytic haemolytic anaemia in humans.
Collapse
Affiliation(s)
- Jennifer A Walker
- Cambridge Institute for Medical Research and Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Chen WC, Kawasaki N, Nycholat CM, Han S, Pilotte J, Crocker PR, Paulson JC. Antigen delivery to macrophages using liposomal nanoparticles targeting sialoadhesin/CD169. PLoS One 2012; 7:e39039. [PMID: 22723922 PMCID: PMC3378521 DOI: 10.1371/journal.pone.0039039] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 05/15/2012] [Indexed: 01/15/2023] Open
Abstract
Sialoadhesin (Sn, Siglec-1, CD169) is a member of the sialic acid binding Ig-like lectin (siglec) family expressed on macrophages. Its macrophage specific expression makes it an attractive target for delivering antigens to tissue macrophages via Sn-mediated endocytosis. Here we describe a novel approach for delivering antigens to macrophages using liposomal nanoparticles displaying high affinity glycan ligands of Sn. The Sn-targeted liposomes selectively bind to and are internalized by Sn-expressing cells, and accumulate intracellularly over time. Our results show that ligand decorated liposomes are specific for Sn, since they are taken up by bone marrow derived macrophages that are derived from wild type but not Sn(-/-) mice. Importantly, the Sn-targeted liposomes dramatically enhance the delivery of antigens to macrophages for presentation to and proliferation of antigen-specific T cells. Together, these data provide insights into the potential of cell-specific targeting and delivery of antigens to intracellular organelles of macrophages using Sn-ligand decorated liposomal nanoparticles.
Collapse
Affiliation(s)
- Weihsu C. Chen
- Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Norihito Kawasaki
- Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Corwin M. Nycholat
- Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Shoufa Han
- Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Julie Pilotte
- Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Paul R. Crocker
- Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - James C. Paulson
- Departments of Chemical Physiology and Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
47
|
Abstract
Sialic acids have a pivotal functional impact in many biological interactions such as virus attachment, cellular adhesion, regulation of proliferation, and apoptosis. A common modification of sialic acids is O-acetylation. O-Acetylated sialic acids occur in bacteria and parasites and are also receptor determinants for a number of viruses. Moreover, they have important functions in embryogenesis, development, and immunological processes. O-Acetylated sialic acids represent cancer markers, as shown for acute lymphoblastic leukemia, and they are known to play significant roles in the regulation of ganglioside-mediated apoptosis. Expression of O-acetylated sialoglycans is regulated by sialic acid-specific O-acetyltransferases and O-acetylesterases. Recent developments in the identification of the enigmatic sialic acid-specific O-acetyltransferase are discussed.
Collapse
Affiliation(s)
- Chitra Mandal
- Cancer and Cell Biology, Council of Scientific and Industrial Research - Indian Institute of Chemical Biology, 4 Raja S.C. Mallick Road, Kolkata, 700 032 India
| | - Reinhard Schwartz-Albiez
- Department of Translational Immunology, German Cancer Research Center, 69120 Heidelberg, Germany
| | - Reinhard Vlasak
- Department of Molecular Biology, University Salzburg, Billrothstr 11, 5020 Salzburg, Austria
| |
Collapse
|
48
|
Paulson JC, Macauley MS, Kawasaki N. Siglecs as sensors of self in innate and adaptive immune responses. Ann N Y Acad Sci 2012; 1253:37-48. [PMID: 22288608 DOI: 10.1111/j.1749-6632.2011.06362.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Siglecs are expressed on most white blood cells of the immune system and are known to modulate the activity of cell signaling receptors via regulatory motifs in their cytoplasmic domains. This immunoglobulin subfamily of coreceptors recognize sialic acid containing glycans as ligands, which are found on glycoproteins and glycolipids of all mammalian cells. By virtue of their ability to recognize this common structural element, siglecs are increasingly recognized for their ability to help immune cells distinguish between self and nonself, and dampen autoimmune responses.
Collapse
Affiliation(s)
- James C Paulson
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
49
|
Jellusova J, Nitschke L. Regulation of B cell functions by the sialic acid-binding receptors siglec-G and CD22. Front Immunol 2012; 2:96. [PMID: 22566885 PMCID: PMC3342095 DOI: 10.3389/fimmu.2011.00096] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 12/28/2011] [Indexed: 01/08/2023] Open
Abstract
B cell antigen receptor (BCR) engagement can lead to many different physiologic outcomes. To achieve an appropriate response, the BCR signal is interpreted in the context of other stimuli and several additional receptors on the B cell surface participate in the modulation of the signal. Two members of the Siglec (sialic acid-binding immunoglobulin-like lectin) family, CD22 and Siglec-G have been shown to inhibit the BCR signal. Recent findings indicate that the ability of these two receptors to bind sialic acids might be important to induce tolerance to self-antigens. Sialylated glycans are usually absent on microbes but abundant in higher vertebrates and might therefore provide an important tolerogenic signal. Since the expression of the specific ligands for Siglec-G and CD22 is tightly regulated and since Siglecs are not only able to bind their ligands in trans but also on the same cell surface this might provide additional mechanisms to control the BCR signal. Although both Siglec-G and CD22 are expressed on B cells and are able to inhibit BCR mediated signaling, they also show unique biological functions. While CD22 is the dominant regulator of calcium signaling on conventional B2 cells and also seems to play a role on marginal zone B cells, Siglec-G exerts its function mainly on B1 cells and influences their lifespan and antibody production. Both Siglec-G and CD22 have also recently been linked to toll-like receptor signaling and may provide a link in the regulation of the adaptive and innate immune response of B cells.
Collapse
|
50
|
Vossenkämper A, Lutalo PMK, Spencer J. Translational Mini-Review Series on B cell subsets in disease. Transitional B cells in systemic lupus erythematosus and Sjögren's syndrome: clinical implications and effects of B cell-targeted therapies. Clin Exp Immunol 2012; 167:7-14. [PMID: 22132879 PMCID: PMC3248081 DOI: 10.1111/j.1365-2249.2011.04460.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2011] [Indexed: 12/11/2022] Open
Abstract
Systemic lupus erythematosus (SLE) and Sjögren's syndrome are autoimmune disorders which are characterized by a disturbed B cell homeostasis which leads ultimately to dysfunction of various organs. One of the B cell subsets that appear in abnormal numbers is the population of transitional B cells, which is increased in the blood of patients with SLE and Sjögren's syndrome. Transitional B cells are newly formed B cells. In mice, transitional B cells undergo selection checks for unwanted specificity in the bone marrow and the spleen in order to eliminate autoreactive B cells from the circulating naive B cell population. In humans, the exact anatomical compartments and mechanisms of the specificity check-points for transitional B cells remain unclear, but appear to be defective in SLE and Sjögren's syndrome. This review aims to highlight the current understanding of transitional B cells and their defects in the two disorders before and after B cell-targeted therapies.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Murine-Derived/therapeutic use
- B-Cell Activating Factor/immunology
- B-Lymphocyte Subsets/immunology
- B-Lymphocyte Subsets/pathology
- Clinical Trials, Phase II as Topic
- Clinical Trials, Phase III as Topic
- Disease Models, Animal
- Double-Blind Method
- Humans
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/pathology
- Lupus Erythematosus, Systemic/therapy
- Lymphocyte Count
- Lymphocyte Depletion/methods
- Lymphoid Tissue/immunology
- Lymphoid Tissue/pathology
- Lymphopoiesis
- Mice
- Rituximab
- Sjogren's Syndrome/immunology
- Sjogren's Syndrome/pathology
- Sjogren's Syndrome/therapy
Collapse
Affiliation(s)
- A Vossenkämper
- Centre for Immunology and Infectious Disease, Barts and The London School of Medicine and Dentistry, Blizard Institute, London, UK.
| | | | | |
Collapse
|