1
|
Su MSW, Cheng YL, Lin YS, Wu JJ. Interplay between group A Streptococcus and host innate immune responses. Microbiol Mol Biol Rev 2024; 88:e0005222. [PMID: 38451081 PMCID: PMC10966951 DOI: 10.1128/mmbr.00052-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
SUMMARYGroup A Streptococcus (GAS), also known as Streptococcus pyogenes, is a clinically well-adapted human pathogen that harbors rich virulence determinants contributing to a broad spectrum of diseases. GAS is capable of invading epithelial, endothelial, and professional phagocytic cells while evading host innate immune responses, including phagocytosis, selective autophagy, light chain 3-associated phagocytosis, and inflammation. However, without a more complete understanding of the different ways invasive GAS infections develop, it is difficult to appreciate how GAS survives and multiplies in host cells that have interactive immune networks. This review article attempts to provide an overview of the behaviors and mechanisms that allow pathogenic GAS to invade cells, along with the strategies that host cells practice to constrain GAS infection. We highlight the counteractions taken by GAS to apply virulence factors such as streptolysin O, nicotinamide-adenine dinucleotidase, and streptococcal pyrogenic exotoxin B as a hindrance to host innate immune responses.
Collapse
Affiliation(s)
- Marcia Shu-Wei Su
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Lin Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
2
|
Bettadapura M, Roys H, Bowlin A, Venugopal G, Washam CL, Fry L, Murdock S, Wanjala H, Byrum SD, Weinkopff T. HIF-α Activation Impacts Macrophage Function during Murine Leishmania major Infection. Pathogens 2021; 10:pathogens10121584. [PMID: 34959539 PMCID: PMC8706659 DOI: 10.3390/pathogens10121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/21/2021] [Accepted: 12/01/2021] [Indexed: 11/16/2022] Open
Abstract
Leishmanial skin lesions are characterized by inflammatory hypoxia alongside the activation of hypoxia-inducible factors, HIF-1α and HIF-2α, and subsequent expression of the HIF-α target VEGF-A during Leishmania major infection. However, the factors responsible for HIF-α activation are not known. We hypothesize that hypoxia and proinflammatory stimuli contribute to HIF-α activation during infection. RNA-Seq of leishmanial lesions revealed that transcripts associated with HIF-1α signaling were induced. To determine whether hypoxia contributes to HIF-α activation, we followed the fate of myeloid cells infiltrating from the blood and into hypoxic lesions. Recruited myeloid cells experienced hypoxia when they entered inflamed lesions, and the length of time in lesions increased their hypoxic signature. To determine whether proinflammatory stimuli in the inflamed tissue can also influence HIF-α activation, we subjected macrophages to various proinflammatory stimuli and measured VEGF-A. While parasites alone did not induce VEGF-A, and proinflammatory stimuli only modestly induced VEGF-A, HIF-α stabilization increased VEGF-A during infection. HIF-α stabilization did not impact parasite entry, growth, or killing. Conversely, the absence of ARNT/HIF-α signaling enhanced parasite internalization. Altogether, these findings suggest that HIF-α is active during infection, and while macrophage HIF-α activation promotes lymphatic remodeling through VEGF-A production, HIF-α activation does not impact parasite internalization or control.
Collapse
Affiliation(s)
- Manjunath Bettadapura
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.B.); (H.R.); (A.B.); (G.V.); (L.F.); (S.M.); (H.W.)
| | - Hayden Roys
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.B.); (H.R.); (A.B.); (G.V.); (L.F.); (S.M.); (H.W.)
| | - Anne Bowlin
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.B.); (H.R.); (A.B.); (G.V.); (L.F.); (S.M.); (H.W.)
| | - Gopinath Venugopal
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.B.); (H.R.); (A.B.); (G.V.); (L.F.); (S.M.); (H.W.)
| | - Charity L. Washam
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (C.L.W.); (S.D.B.)
- Arkansas Children’s Research Institute, Little Rock, AR 72202, USA
| | - Lucy Fry
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.B.); (H.R.); (A.B.); (G.V.); (L.F.); (S.M.); (H.W.)
| | - Steven Murdock
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.B.); (H.R.); (A.B.); (G.V.); (L.F.); (S.M.); (H.W.)
| | - Humphrey Wanjala
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.B.); (H.R.); (A.B.); (G.V.); (L.F.); (S.M.); (H.W.)
| | - Stephanie D. Byrum
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (C.L.W.); (S.D.B.)
- Arkansas Children’s Research Institute, Little Rock, AR 72202, USA
| | - Tiffany Weinkopff
- Department of Microbiology and Immunology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA; (M.B.); (H.R.); (A.B.); (G.V.); (L.F.); (S.M.); (H.W.)
- Correspondence: ; Tel.: +1-501-686-5518
| |
Collapse
|
3
|
Richter J, Brouwer S, Schroder K, Walker MJ. Inflammasome activation and IL-1β signalling in group A Streptococcus disease. Cell Microbiol 2021; 23:e13373. [PMID: 34155776 DOI: 10.1111/cmi.13373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 01/02/2023]
Abstract
Group A Streptococcus (GAS) is a Gram-positive bacterial pathogen that causes significant morbidity and mortality worldwide. Recent clinical evidence suggests that the inflammatory marker interleukin-1β (IL-1β) plays an important role in GAS disease progression, and presents a potential target for therapeutic intervention. Interaction with GAS activates the host inflammasome pathway to stimulate production and secretion of IL-1β, but GAS can also stimulate IL-1β production in an inflammasome-independent manner. This review highlights progress that has been made in understanding the importance of host cell inflammasomes and IL-1 signalling in GAS disease, and explores challenges and unsolved problems in this host-pathogen interaction. TAKE AWAY: Inflammasome signalling during GAS infection is an emerging field of research. GAS modulates the NLRP3 inflammasome pathway through multiple mechanisms. SpeB contributes to IL-1β production independently of the inflammasome pathway. IL-1β signalling can be host-protective, but also drive severe GAS disease.
Collapse
Affiliation(s)
- Johanna Richter
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Stephan Brouwer
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Kate Schroder
- Australian Infectious Diseases Research Centre, Institute for Molecular Bioscience and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
4
|
Washington A, Varki N, Valderrama JA, Nizet V, Bui JD. Evaluation of IL-17D in Host Immunity to Group A Streptococcus Infection. THE JOURNAL OF IMMUNOLOGY 2020; 205:3122-3129. [PMID: 33077643 DOI: 10.4049/jimmunol.1901482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
IL-17D is a cytokine that belongs to the IL-17 family and is conserved in vertebrates and invertebrates. In contrast to IL-17A and IL-17F, which are expressed in Th17 cells, IL-17D is expressed broadly in nonimmune cells. IL-17D can promote immune responses to cancer and viruses in part by inducing chemokines and recruiting innate immune cells such as NK cells. Although bacterial infection can induce IL-17D in fish and invertebrates, the role of mammalian IL-17D in antibacterial immunity has not been established. To determine whether IL-17D has a role in mediating host defense against bacterial infections, we studied i.p. infection by group A Streptococcus (GAS) in wild-type (WT) and Il17d -/- mice. Compared with WT animals, mice deficient in IL-17D experienced decreased survival, had greater weight loss, and showed increased bacterial burden in the kidney and peritoneal cavity following GAS challenge. In WT animals, IL-17D transcript was induced by GAS infection and correlated to increased levels of chemokine CCL2 and greater neutrophil recruitment. Of note, GAS-mediated IL-17D induction in nonimmune cells required live bacteria, suggesting that processes beyond recognition of pathogen-associated molecular patterns were required for IL-17D induction. Based on our results, we propose a model in which nonimmune cells can discriminate between nonviable and viable GAS cells, responding only to the latter by inducing IL-17D.
Collapse
Affiliation(s)
- Allen Washington
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093
| | - Nissi Varki
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093.,Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093
| | - J Andrés Valderrama
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92161; and
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92161; and.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Jack D Bui
- Department of Pathology, University of California, San Diego, La Jolla, CA 92093;
| |
Collapse
|
5
|
Matsumura T, Ikebe T, Arikawa K, Hosokawa M, Aiko M, Iguchi A, Togashi I, Kai S, Ohara S, Ohara N, Ohnishi M, Watanabe H, Kobayashi K, Takeyama H, Yamasaki S, Takahashi Y, Ato M. Sequential Sensing by TLR2 and Mincle Directs Immature Myeloid Cells to Protect against Invasive Group A Streptococcal Infection in Mice. Cell Rep 2020; 27:561-571.e6. [PMID: 30970258 DOI: 10.1016/j.celrep.2019.03.056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/22/2019] [Accepted: 03/14/2019] [Indexed: 01/27/2023] Open
Abstract
Severe invasive group A Streptococcus (GAS) infection evades anti-bacterial immunity by attenuating the cellular components of innate immune responses. However, this loss of protection is compensated for by interferon (IFN)-γ-producing immature myeloid cells (γIMCs), which are selectively recruited upon severe invasive GAS infection in mice. Here, we demonstrate that γIMCs provide this IFN-γ-mediated protection by sequentially sensing GAS through two distinct pattern recognition receptors. In a mouse model, GAS is initially recognized by Toll-like receptor 2 (TLR2), which promptly induces interleukin (IL)-6 production in γIMCs. γIMC-derived IL-6 promotes the upregulation of a recently identified GAS-sensing receptor, macrophage-inducible C-type lectin (Mincle), in an autocrine or paracrine manner. Notably, blockade of γIMC-derived IL-6 abrogates Mincle expression, downstream IFN-γ production, and γIMC-mediated protection against severe invasive GAS infection. Thus, γIMCs regulate host protective immunity against severe invasive GAS infection via a TLR2-IL-6-Mincle axis.
Collapse
Affiliation(s)
- Takayuki Matsumura
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Tadayoshi Ikebe
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Koji Arikawa
- Research Organization for Nano and Life Innovation, Waseda University, 513 Waseda-tsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Masahito Hosokawa
- Research Organization for Nano and Life Innovation, Waseda University, 513 Waseda-tsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Michio Aiko
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Aoi Iguchi
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Tokyo College of Biotechnology, 1-3-14 Kita-Kojiya, Ota-ku, Tokyo 144-0032, Japan
| | - Ikuko Togashi
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Tokyo College of Biotechnology, 1-3-14 Kita-Kojiya, Ota-ku, Tokyo 144-0032, Japan
| | - Sayaka Kai
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Dental School, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Sakiko Ohara
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Dental School, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Naoya Ohara
- Dental School, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan; Department of Oral Microbiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Haruo Watanabe
- School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita-shi, Chiba 286-8686, Japan
| | - Kazuo Kobayashi
- Division of Public Health, Osaka Institute of Public Health, 1-3-69 Nakamichi, Higashinari-ku, Osaka-shi, Osaka 537-0025, Japan
| | - Haruko Takeyama
- Research Organization for Nano and Life Innovation, Waseda University, 513 Waseda-tsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Sho Yamasaki
- Division of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan; Division of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Yoshimasa Takahashi
- Department of Immunology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Manabu Ato
- Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aoba-cho, Higashimurayama-shi, Tokyo 189-0002, Japan
| |
Collapse
|
6
|
Andreoni F, Ugolini F, Keller N, Neff A, Nizet V, Hollands A, Marques Maggio E, Zinkernagel AS, Schuepbach RA. Immunoglobulin Attenuates Streptokinase-Mediated Virulence in Streptococcus dysgalactiae Subspecies equisimilis Necrotizing Fasciitis. J Infect Dis 2019; 217:270-279. [PMID: 29099935 PMCID: PMC7263839 DOI: 10.1093/infdis/jix560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 10/28/2017] [Indexed: 01/18/2023] Open
Abstract
Background Necrotizing fasciitis (NF) retains a very high mortality rate despite prompt and adequate antibiotic treatment and surgical debridement. Necrotizing fasciitis has recently been associated withStreptococcus dysgalactiae subspeciesequisimilis (SDSE). Methods We investigated the causes of a very severe clinical manifestation of SDSE-NF by assessing both host and pathogen factors. Results We found a lack of streptokinase-function blocking antibodies in the patient resulting in increased streptokinase-mediated fibrinolysis and bacterial spread. At the same time, the clinical SDSE isolate produced very high levels of streptokinase. Exogenous immunoglobulin Gs (ex-IgGs) efficiently blocked streptokinase-mediated fibrinolysis in vitro, indicating a protective role against the action of streptokinase. In vivo, SDSE infection severity was also attenuated by ex-IgGs in a NF mouse model. Conclusions These findings illustrate for the first time that the lack of specific antibodies against streptococcal virulence factors, such as streptokinase, may contribute to NF disease severity. This can be counteracted by ex-IgGs.
Collapse
Affiliation(s)
- Federica Andreoni
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Fabio Ugolini
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Switzerland.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Nadia Keller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Andrina Neff
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Victor Nizet
- Department of Pediatrics, Division of Pharmacology and Drug Discovery, San Diego, California.,Skaggs School of Pharmacy and Pharmaceutical Sciences, San Diego, California
| | - Andrew Hollands
- Department of Pediatrics, Division of Pharmacology and Drug Discovery, San Diego, California
| | - Ewerton Marques Maggio
- Department of Pathology and Molecular Pathology, University Hospital Zurich, University of Zurich, Switzerland
| | - Annelies S Zinkernagel
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Switzerland
| | - Reto A Schuepbach
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Switzerland
| |
Collapse
|
7
|
Hafner A, Kolbe U, Freund I, Castiglia V, Kovarik P, Poth T, Herster F, Weigand MA, Weber ANR, Dalpke AH, Eigenbrod T. Crucial Role of Nucleic Acid Sensing via Endosomal Toll-Like Receptors for the Defense of Streptococcus pyogenes in vitro and in vivo. Front Immunol 2019; 10:198. [PMID: 30846984 PMCID: PMC6394247 DOI: 10.3389/fimmu.2019.00198] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/23/2019] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pyogenes is a major human pathogen causing a variety of diseases ranging from common pharyngitis to life-threatening soft tissue infections and sepsis. Microbial nucleic acids, especially bacterial RNA, have recently been recognized as a major group of pathogen-associated molecular patterns (PAMPs) involved in the detection of Streptococcus pyogenes via endosomal Toll-like receptors (TLRs) in vitro. However, the individual contribution and cooperation between TLRs as well as cell-type and strain specific differences in dependency on nucleic acid detection during S. pyogenes infection in vitro have not been clarified in detail. Moreover, the role of particularly bacterial RNA for the defense of S. pyogenes infection in vivo remains poorly defined. In this study, we report that in all investigated innate immune cells involved in the resolution of bacterial infections, including murine macrophages, dendritic cells and neutrophils, recognition of S. pyogenes strain ATCC12344 is almost completely dependent on nucleic acid sensing via endosomal TLRs at lower MOIs, whereas at higher MOIs, detection via TLR2 plays an additional, yet redundant role. We further demonstrate that different S. pyogenes strains display a considerable inter-strain variability with respect to their nucleic acid dependent recognition. Moreover, TLR13-dependent recognition of S. pyogenes RNA is largely non-redundant in bone marrow-derived macrophages (BMDMs), but less relevant in neutrophils and bone marrow-derived myeloid dendritic cells (BMDCs) for the induction of an innate immune response in vitro. In vivo, we show that a loss of nucleic acid sensing blunts early recognition of S. pyogenes, leading to a reduced local containment of the bacterial infection with subsequent pronounced systemic inflammation at later time points. Thus, our results argue for a crucial role of nucleic acid sensing via endosomal TLRs in defense of S. pyogenes infection both in vitro and in vivo.
Collapse
Affiliation(s)
- Anna Hafner
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ulrike Kolbe
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Isabel Freund
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Virginia Castiglia
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Pavel Kovarik
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria
| | - Tanja Poth
- Center for Model System and Comparative Pathology, Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Franziska Herster
- Department of Immunology, Interfaculty Institute of Cell Biology, Eberhard-Karls-University, Tübingen, Germany
| | - Markus A. Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexander N. R. Weber
- Department of Immunology, Interfaculty Institute of Cell Biology, Eberhard-Karls-University, Tübingen, Germany
| | - Alexander H. Dalpke
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
- Institute of Medical Microbiology and Hygiene, Technical University Dresden, Dresden, Germany
| | - Tatjana Eigenbrod
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
8
|
Pancholi V. Group A Streptococcus-Mediated Host Cell Signaling. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0021-2018. [PMID: 30767846 PMCID: PMC11590744 DOI: 10.1128/microbiolspec.gpp3-0021-2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Indexed: 12/14/2022] Open
Abstract
In the past decade, the field of the cellular microbiology of group A Streptococcus (S. pyogenes) infection has made tremendous advances and touched upon several important aspects of pathogenesis, including receptor biology, invasive and evasive phenomena, inflammasome activation, strain-specific autophagic bacterial killing, and virulence factor-mediated programmed cell death. The noteworthy aspect of S. pyogenes-mediated cell signaling is the recognition of the role of M protein in a variety of signaling events, starting with the targeting of specific receptors on the cell surface and on through the induction and evasion of NETosis, inflammasome, and autophagy/xenophagy to pyroptosis and apoptosis. Variations in reports on S. pyogenes-mediated signaling events highlight the complex mechanism of pathogenesis and underscore the importance of the host cell and S. pyogenes strain specificity, as well as in vitro/in vivo experimental parameters. The severity of S. pyogenes infection is, therefore, dependent on the virulence gene expression repertoire in the host environment and on host-specific dynamic signaling events in response to infection. Commonly known as an extracellular pathogen, S. pyogenes finds host macrophages as safe havens wherein it survives and even multiplies. The fact that endothelial cells are inherently deficient in autophagic machinery compared to epithelial cells and macrophages underscores the invasive nature of S. pyogenes and its ability to cause severe systemic diseases. S. pyogenes is still one of the top 10 causes of infectious mortality. Understanding the orchestration of dynamic host signaling networks will provide a better understanding of the increasingly complex mechanism of S. pyogenes diseases and novel ways of therapeutically intervening to thwart severe and often fatal infections.
Collapse
Affiliation(s)
- Vijay Pancholi
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH 43210
| |
Collapse
|
9
|
Lipoteichoic acid anchor triggers Mincle to drive protective immunity against invasive group A Streptococcus infection. Proc Natl Acad Sci U S A 2018; 115:E10662-E10671. [PMID: 30352847 DOI: 10.1073/pnas.1809100115] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Group A Streptococcus (GAS) is a Gram-positive bacterial pathogen that causes a range of diseases, including fatal invasive infections. However, the mechanisms by which the innate immune system recognizes GAS are not well understood. We herein report that the C-type lectin receptor macrophage inducible C-type lectin (Mincle) recognizes GAS and initiates antibacterial immunity. Gene expression analysis of myeloid cells upon GAS stimulation revealed the contribution of the caspase recruitment domain-containing protein 9 (CARD9) pathway to the antibacterial responses. Among receptors signaling through CARD9, Mincle induced the production of inflammatory cytokines, inducible nitric oxide synthase, and reactive oxygen species upon recognition of the anchor of lipoteichoic acid, monoglucosyldiacylglycerol (MGDG), produced by GAS. Upon GAS infection, Mincle-deficient mice exhibited impaired production of proinflammatory cytokines, severe bacteremia, and rapid lethality. GAS also possesses another Mincle ligand, diglucosyldiacylglycerol; however, this glycolipid interfered with MGDG-induced activation. These results indicate that Mincle plays a central role in protective immunity against acute GAS infection.
Collapse
|
10
|
Abstract
Group A Streptococcus (GAS) is a leading human bacterial pathogen with diverse clinical manifestations. Macrophages constitute a critical first line of host defense against GAS infection, using numerous surface and intracellular receptors such as Toll-like receptors and inflammasomes for pathogen recognition and activation of inflammatory signaling pathways. Depending on the intensity of the GAS infection, activation of these signaling cascades may provide a beneficial early alarm for effective immune clearance, or conversely, may cause hyperinflammation and tissue injury during severe invasive infection. Although traditionally considered an extracellular pathogen, GAS can invade and replicate within macrophages using specific molecular mechanisms to resist phagolysosomal and xenophagic killing. Unraveling GAS-macrophage encounters may reveal new treatment options for this leading agent of infection-associated mortality. [Formula: see text].
Collapse
Affiliation(s)
- J Andrés Valderrama
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.,Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
11
|
Le Breton Y, Belew AT, Freiberg JA, Sundar GS, Islam E, Lieberman J, Shirtliff ME, Tettelin H, El-Sayed NM, McIver KS. Genome-wide discovery of novel M1T1 group A streptococcal determinants important for fitness and virulence during soft-tissue infection. PLoS Pathog 2017; 13:e1006584. [PMID: 28832676 PMCID: PMC5584981 DOI: 10.1371/journal.ppat.1006584] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/05/2017] [Accepted: 08/15/2017] [Indexed: 01/08/2023] Open
Abstract
The Group A Streptococcus remains a significant human pathogen causing a wide array of disease ranging from self-limiting to life-threatening invasive infections. Epithelium (skin or throat) colonization with progression to the subepithelial tissues is the common step in all GAS infections. Here, we used transposon-sequencing (Tn-seq) to define the GAS 5448 genetic requirements for in vivo fitness in subepithelial tissue. A near-saturation transposon library of the M1T1 GAS 5448 strain was injected subcutaneously into mice, producing suppurative inflammation at 24 h that progressed to prominent abscesses with tissue necrosis at 48 h. The library composition was monitored en masse by Tn-seq and ratios of mutant abundance comparing the output (12, 24 and 48 h) versus input (T0) mutant pools were calculated for each gene. We identified a total of 273 subcutaneous fitness (scf) genes with 147 genes (55 of unknown function) critical for the M1T1 GAS 5448 fitness in vivo; and 126 genes (53 of unknown function) potentially linked to in vivo fitness advantage. Selected scf genes were validated in competitive subcutaneous infection with parental 5448. Two uncharacterized genes, scfA and scfB, encoding putative membrane-associated proteins and conserved among Gram-positive pathogens, were further characterized. Defined scfAB mutants in GAS were outcompeted by wild type 5448 in vivo, attenuated for lesion formation in the soft tissue infection model and dissemination to the bloodstream. We hypothesize that scfAB play an integral role in enhancing adaptation and fitness of GAS during localized skin infection, and potentially in propagation to other deeper host environments. The WHO ranks the Group A Streptococcus (GAS) in the top 10 leading causes of morbidity and mortality from infectious diseases worldwide. GAS is a strict human pathogen causing both benign superficial infections as well as life-threatening invasive diseases. All GAS infections begin by colonization of an epithelium (throat or skin) followed by propagation into subepithelial tissues. The genetic requirements for M1T1 GAS 5448 within this niche were interrogated by in vivo transposon sequencing (Tn-seq), identifying 273 subcutaneous fitness (scf) genes with 108 of those previously of “unknown function”. Two yet uncharacterized genes, scfA and scfB, were shown to be critical during GAS 5448 soft tissue infection and dissemination into the bloodstream. Thus, this study improves the functional annotation of the GAS genome, providing new insights into GAS pathophysiology and enhancing the development of novel GAS therapeutics.
Collapse
Affiliation(s)
- Yoann Le Breton
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (YLB); (KSM)
| | - Ashton T. Belew
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Jeffrey A. Freiberg
- Graduate Program in Life Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ganesh S. Sundar
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
| | - Emrul Islam
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
| | - Joshua Lieberman
- Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Mark E. Shirtliff
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbial Pathogenesis, Dental School, University of Maryland, Baltimore, Maryland, United States of America
| | - Hervé Tettelin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Najib M. El-Sayed
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Kevin S. McIver
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (YLB); (KSM)
| |
Collapse
|
12
|
Kilsgård O, Karlsson C, Malmström E, Malmström J. Differential compartmentalization of Streptococcus pyogenes virulence factors and host protein binding properties as a mechanism for host adaptation. Int J Med Microbiol 2016; 306:504-516. [DOI: 10.1016/j.ijmm.2016.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022] Open
|
13
|
Regnier E, Grange PA, Ollagnier G, Crickx E, Elie L, Chouzenoux S, Weill B, Plainvert C, Poyart C, Batteux F, Dupin N. Superoxide anions produced by Streptococcus pyogenes group A-stimulated keratinocytes are responsible for cellular necrosis and bacterial growth inhibition. Innate Immun 2015; 22:113-23. [PMID: 26621818 DOI: 10.1177/1753425915619476] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/28/2015] [Indexed: 11/15/2022] Open
Abstract
Gram-positive Streptococcus pyogenes (group A Streptococcus or GAS) is a major skin pathogen and interacts with keratinocytes in cutaneous tissues. GAS can cause diverse suppurative and inflammatory infections, such as cellulitis, a common acute bacterial dermo-hypodermitis with a high morbidity. Bacterial isolation yields from the lesions are low despite the strong local inflammation observed, raising numerous questions about the pathogenesis of the infection. Using an in vitro model of GAS-infected keratinocytes, we show that the major ROS produced is the superoxide anion ([Formula: see text]), and that its production is time- and dose-dependent. Using specific modulators of ROS production, we show that [Formula: see text] is mainly synthesized by the cytoplasmic NADPH oxidase. Superoxide anion production leads to keratinocyte necrosis but incomplete inhibition of GAS growth, suggesting that GAS may be partially resistant to the oxidative burst. In conclusion, GAS-stimulated keratinocytes are able to develop an innate immune response based on the production of ROS. This local immune response limits GAS development and induces keratinocyte cell death, resulting in the skin lesions observed in patients with cellulitis.
Collapse
Affiliation(s)
- Elodie Regnier
- Institut Cochin, INSERM U1016, Faculté de Médecine, Université Paris Descartes, Paris, France
| | - Philippe A Grange
- Institut Cochin, INSERM U1016, Faculté de Médecine, Université Paris Descartes, Paris, France
| | - Guillaume Ollagnier
- Institut Cochin, INSERM U1016, Faculté de Médecine, Université Paris Descartes, Paris, France
| | - Etienne Crickx
- Institut Cochin, INSERM U1016, Faculté de Médecine, Université Paris Descartes, Paris, France
| | - Laetitia Elie
- Institut Cochin, INSERM U1016, Faculté de Médecine, Université Paris Descartes, Paris, France
| | - Sandrine Chouzenoux
- Institut Cochin, INSERM U1016, Faculté de Médecine, Université Paris Descartes, Paris, France Service d'Immunologie Biologique, Hôpital Cochin-Pavillon Achard, Paris, France
| | - Bernard Weill
- Institut Cochin, INSERM U1016, Faculté de Médecine, Université Paris Descartes, Paris, France Service d'Immunologie Biologique, Hôpital Cochin-Pavillon Achard, Paris, France
| | - Céline Plainvert
- Institut Cochin, INSERM U1016, Faculté de Médecine, Université Paris Descartes, Paris, France Service de Bactériologie, Centre National de Référence des Streptocoques, Groupe Hospitalier Paris Centre Cochin-Hôtel Dieu-Broca, Paris, France
| | - Claire Poyart
- Institut Cochin, INSERM U1016, Faculté de Médecine, Université Paris Descartes, Paris, France Service de Bactériologie, Centre National de Référence des Streptocoques, Groupe Hospitalier Paris Centre Cochin-Hôtel Dieu-Broca, Paris, France
| | - Frédéric Batteux
- Institut Cochin, INSERM U1016, Faculté de Médecine, Université Paris Descartes, Paris, France Service d'Immunologie Biologique, Hôpital Cochin-Pavillon Achard, Paris, France
| | - Nicolas Dupin
- Institut Cochin, INSERM U1016, Faculté de Médecine, Université Paris Descartes, Paris, France Service de Dermatologie-Vénéréologie, Hôpital Cochin-Pavillon Tarnier, Paris, France
| |
Collapse
|
14
|
LaRock CN, Nizet V. Inflammasome/IL-1β Responses to Streptococcal Pathogens. Front Immunol 2015; 6:518. [PMID: 26500655 PMCID: PMC4597127 DOI: 10.3389/fimmu.2015.00518] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/24/2015] [Indexed: 02/06/2023] Open
Abstract
Inflammation mediated by the inflammasome and the cytokine IL-1β are some of the earliest and most important alarms to infection. These pathways are responsive to the virulence factors that pathogens use to subvert immune processes, and thus are typically activated only by microbes with potential to cause severe disease. Among the most serious human infections are those caused by the pathogenic streptococci, in part because these species numerous strategies for immune evasion. Since the virulence factor armament of each pathogen is unique, the role of IL-1β and the pathways leading to its activation varies for each infection. This review summarizes the role of IL-1β during infections caused by streptococcal pathogens, with emphasis on emergent mechanisms and concepts countering paradigms determined for other organisms.
Collapse
Affiliation(s)
- Christopher N LaRock
- Department of Pediatrics, University of California San Diego , La Jolla, CA , USA
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego , La Jolla, CA , USA ; Skaggs School of Medicine and Pharmaceutical Sciences, University of California San Diego , La Jolla, CA , USA
| |
Collapse
|
15
|
Fiebig A, Loof TG, Babbar A, Itzek A, Koehorst JJ, Schaap PJ, Nitsche-Schmitz DP. Comparative genomics of Streptococcus pyogenes M1 isolates differing in virulence and propensity to cause systemic infection in mice. Int J Med Microbiol 2015; 305:532-43. [PMID: 26129624 DOI: 10.1016/j.ijmm.2015.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 06/15/2015] [Accepted: 06/19/2015] [Indexed: 12/14/2022] Open
Abstract
Streptococcus pyogenes serotype M1 is a frequent cause of severe infections in humans. Some M1 isolates are pathogenic in mice and used in studies on infection pathogenesis. We observed marked differences in murine infections caused by M1 strain SF370, 5448, 5448AP or AP1 which prompted us to sequence the whole genome of isolates 5448 and AP1 for comparative analysis. Strain 5448 is known to acquire inactivating mutations in the CovRS two-component system during mouse infection, producing hypervirulent progeny such as 5448AP. Isolates AP1 and 5448AP, more than 5448, caused disseminating infections that became systemic and lethal. SF370 was not pathogenic. Phages caused gross genetic differences and increased the gene content of AP1 by 8% as compared to 5448 and SF370. Each of six examined M1 genomes contained two CRISPR-Cas systems. Phage insertion destroyed a type II CRISPR-Cas system in AP1 and other strains of serotypes M1, M3, M6 and M24, but not in M1 strains 5448, SF370, MGAS5005, A20 or M1 476. A resulting impaired defence against invading genetic elements could have led to the wealth of phages in AP1. AP1 lacks genetic features of the MGAS5005-like clonal complex including the streptodornase that drives selection for hypervirulent clones with inactivated CovRS system. Still, inactivating mutations in covS were a common genetic feature of AP1 and the MGAS5005-like isolate 5448AP. Abolished expression of the cysteine proteinase SpeB, due to CovRS inactivation could be a common cause for hypervirulence of the two isolates. Moreover, an additional protein H-coding gene and a mutation in the regulator gene rofA distinguished AP1 form other M1 isolates. In conclusion, hypervirulence of S. pyogenes M1 in mice is not limited to the MGAS5005-like genotype.
Collapse
Affiliation(s)
- Anne Fiebig
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Torsten G Loof
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Anshu Babbar
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andreas Itzek
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jasper J Koehorst
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research Centre, Wageningen, the Netherlands
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research Centre, Wageningen, the Netherlands
| | - D Patric Nitsche-Schmitz
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany.
| |
Collapse
|
16
|
Fieber C, Janos M, Koestler T, Gratz N, Li XD, Castiglia V, Aberle M, Sauert M, Wegner M, Alexopoulou L, Kirschning CJ, Chen ZJ, von Haeseler A, Kovarik P. Innate immune response to Streptococcus pyogenes depends on the combined activation of TLR13 and TLR2. PLoS One 2015; 10:e0119727. [PMID: 25756897 PMCID: PMC4355416 DOI: 10.1371/journal.pone.0119727] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 01/30/2015] [Indexed: 11/18/2022] Open
Abstract
Innate immune recognition of the major human-specific Gram-positive pathogen Streptococcus pyogenes is not understood. Here we show that mice employ Toll-like receptor (TLR) 2- and TLR13-mediated recognition of S. pyogenes. These TLR pathways are non-redundant in the in vivo context of animal infection, but are largely redundant in vitro, as only inactivation of both of them abolishes inflammatory cytokine production by macrophages and dendritic cells infected with S. pyogenes. Mechanistically, S. pyogenes is initially recognized in a phagocytosis-independent manner by TLR2 and subsequently by TLR13 upon internalization. We show that the TLR13 response is specifically triggered by S. pyogenes rRNA and that Tlr13−/− cells respond to S. pyogenes infection solely by engagement of TLR2. TLR13 is absent from humans and, remarkably, we find no equivalent route for S. pyogenes RNA recognition in human macrophages. Phylogenetic analysis reveals that TLR13 occurs in all kingdoms but only in few mammals, including mice and rats, which are naturally resistant against S. pyogenes. Our study establishes that the dissimilar expression of TLR13 in mice and humans has functional consequences for recognition of S. pyogenes in these organisms.
Collapse
Affiliation(s)
- Christina Fieber
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Marton Janos
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Tina Koestler
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Nina Gratz
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Xiao-Dong Li
- Howard Hughes Medical Institute, Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | | | - Marion Aberle
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Martina Sauert
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| | - Mareike Wegner
- Universitätsklinikum Freiburg, Universitäts-Hautklinik, Freiburg, Germany
| | - Lena Alexopoulou
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille Université UM 2, Marseille, France
| | | | - Zhijian J. Chen
- Howard Hughes Medical Institute, Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, Vienna, Austria
- Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, Vienna, Austria
| | - Pavel Kovarik
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
17
|
Fieber C, Kovarik P. Responses of innate immune cells to group A Streptococcus. Front Cell Infect Microbiol 2014; 4:140. [PMID: 25325020 PMCID: PMC4183118 DOI: 10.3389/fcimb.2014.00140] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 09/17/2014] [Indexed: 12/22/2022] Open
Abstract
Group A Streptococcus (GAS), also called Streptococcus pyogenes, is a Gram-positive beta-hemolytic human pathogen which causes a wide range of mostly self-limiting but also several life-threatening diseases. Innate immune responses are fundamental for defense against GAS, yet their activation by pattern recognition receptors (PRRs) and GAS-derived pathogen-associated molecular patterns (PAMPs) is incompletely understood. In recent years, the use of animal models together with the powerful tools of human molecular genetics began shedding light onto the molecular mechanisms of innate immune defense against GAS. The signaling adaptor MyD88 was found to play a key role in launching the immune response against GAS in both humans and mice, suggesting that PRRs of the Toll-like receptor (TLR) family are involved in sensing this pathogen. The specific TLRs and their ligands have yet to be identified. Following GAS recognition, induction of cytokines such as TNF and type I interferons (IFNs), leukocyte recruitment, phagocytosis, and the formation of neutrophil extracellular traps (NETs) have been recognized as key events in host defense. A comprehensive knowledge of these mechanisms is needed in order to understand their frequent failure against GAS immune evasion strategies.
Collapse
Affiliation(s)
| | - Pavel Kovarik
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of ViennaVienna, Austria
| |
Collapse
|
18
|
Tsatsaronis JA, Walker MJ, Sanderson-Smith ML. Host responses to group a streptococcus: cell death and inflammation. PLoS Pathog 2014; 10:e1004266. [PMID: 25165887 PMCID: PMC4148426 DOI: 10.1371/journal.ppat.1004266] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Infections caused by group A Streptococcus (GAS) are characterized by robust inflammatory responses and can rapidly lead to life-threatening disease manifestations. However, host mechanisms that respond to GAS, which may influence disease pathology, are understudied. Recent works indicate that GAS infection is recognized by multiple extracellular and intracellular receptors and activates cell signalling via discrete pathways. Host leukocyte receptor binding to GAS-derived products mediates release of inflammatory mediators associated with severe GAS disease. GAS induces divergent phagocyte programmed cell death responses and has inflammatory implications. Epithelial cell apoptotic and autophagic components are mobilized by GAS infection, but can be subverted to ensure bacterial survival. Examination of host interactions with GAS and consequences of GAS infection in the context of cellular receptors responsible for GAS recognition, inflammatory mediator responses, and cell death mechanisms, highlights potential avenues for diagnostic and therapeutic intervention. Understanding the molecular and cellular basis of host symptoms during severe GAS disease will assist the development of improved treatment regimens for this formidable pathogen.
Collapse
Affiliation(s)
- James A. Tsatsaronis
- Illawarra Health and Medical Research Institute (IHMRI), School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Mark J. Walker
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Martina L. Sanderson-Smith
- Illawarra Health and Medical Research Institute (IHMRI), School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia
- * E-mail:
| |
Collapse
|
19
|
Herwald H, Egesten A. A farewell to arms: streptococcal strategies to cope with innate immunity. J Innate Immun 2014; 6:561-2. [PMID: 24970016 DOI: 10.1159/000363749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
20
|
Okumura CYM, Nizet V. Subterfuge and sabotage: evasion of host innate defenses by invasive gram-positive bacterial pathogens. Annu Rev Microbiol 2014; 68:439-58. [PMID: 25002085 DOI: 10.1146/annurev-micro-092412-155711] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of a severe invasive bacterial infection in an otherwise healthy individual is one of the most striking and fascinating aspects of human medicine. A small cadre of gram-positive pathogens of the genera Streptococcus and Staphylococcus stand out for their unique invasive disease potential and sophisticated ability to counteract the multifaceted components of human innate defense. This review illustrates how these leading human disease agents evade host complement deposition and activation, impede phagocyte recruitment and activation, resist the microbicidal activities of host antimicrobial peptides and reactive oxygen species, escape neutrophil extracellular traps, and promote and accelerate phagocyte cell death through the action of pore-forming cytolysins. Understanding the molecular basis of bacterial innate immune resistance can open new avenues for therapeutic intervention geared to disabling specific virulence factors and resensitizing the pathogen to host innate immune clearance.
Collapse
Affiliation(s)
- Cheryl Y M Okumura
- Department of Biology, Occidental College, Los Angeles, California 90041;
| | | |
Collapse
|
21
|
Opaluch AM, Schneider M, Chiang CY, Nguyen QT, Maestre AM, Mulder LCF, Secundino I, De Jesus PD, König R, Simon V, Nizet V, MacLeod G, Varmuza S, Fernandez-Sesma A, Chanda SK. Positive regulation of TRAF6-dependent innate immune responses by protein phosphatase PP1-γ. PLoS One 2014; 9:e89284. [PMID: 24586659 PMCID: PMC3930702 DOI: 10.1371/journal.pone.0089284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/20/2014] [Indexed: 12/24/2022] Open
Abstract
Innate immune sensors such as Toll-like receptors (TLRs) differentially utilize adaptor proteins and additional molecular mediators to ensure robust and precise immune responses to pathogen challenge. Through a gain-of-function genetic screen, we identified the gamma catalytic subunit of protein phosphatase 1 (PP1-γ) as a positive regulator of MyD88-dependent proinflammatory innate immune activation. PP1-γ physically interacts with the E3 ubiquitin ligase TRAF6, and enhances the activity of TRAF6 towards itself and substrates such as IKKγ, whereas enzymatically inactive PP1-γ represses these events. Importantly, these activities were found to be critical for cellular innate responses to pathogen challenge and microbial clearance in both mouse macrophages and human monocyte lines. These data indicate that PP1-γ phosphatase activity regulates overall TRAF6 E3 ubiquitin ligase function and promotes NF-κB-mediated innate signaling responses.
Collapse
Affiliation(s)
- Amanda M. Opaluch
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Monika Schneider
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Chih-yuan Chiang
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Quy T. Nguyen
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Ana M. Maestre
- Department of Microbiology and The Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Lubbertus C. F. Mulder
- Department of Microbiology and The Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Ismael Secundino
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
| | - Paul D. De Jesus
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Renate König
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- Paul-Ehrlich-Institut, Federal Institute for Vaccines and Biomedicines, Research Group “Host-Pathogen Interactions”, Langen, Germany
| | - Viviana Simon
- Department of Microbiology and The Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Graham MacLeod
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Susannah Varmuza
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Ana Fernandez-Sesma
- Department of Microbiology and The Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Sumit K. Chanda
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
22
|
Streptococcus pyogenes arginine and citrulline catabolism promotes infection and modulates innate immunity. Infect Immun 2013; 82:233-42. [PMID: 24144727 DOI: 10.1128/iai.00916-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A bacterium's ability to acquire nutrients from its host during infection is an essential component of pathogenesis. For the Gram-positive pathogen Streptococcus pyogenes, catabolism of the amino acid arginine via the arginine deiminase (ADI) pathway supplements energy production and provides protection against acid stress in vitro. Its expression is enhanced in murine models of infection, suggesting an important role in vivo. To gain insight into the function of the ADI pathway in pathogenesis, the virulence of mutants defective in each of its enzymes was examined. Mutants unable to use arginine (ΔArcA) or citrulline (ΔArcB) were attenuated for carriage in a murine model of asymptomatic mucosal colonization. However, in a murine model of inflammatory infection of cutaneous tissue, the ΔArcA mutant was attenuated but the ΔArcB mutant was hyperattenuated, revealing an unexpected tissue-specific role for citrulline metabolism in pathogenesis. When mice defective for the arginine-dependent production of nitric oxide (iNOS(-/-)) were infected with the ΔArcA mutant, cutaneous virulence was rescued, demonstrating that the ability of S. pyogenes to utilize arginine was dispensable in the absence of nitric oxide-mediated innate immunity. This work demonstrates the importance of arginine and citrulline catabolism and suggests a novel mechanism of virulence by which S. pyogenes uses its metabolism to modulate innate immunity through depletion of an essential host nutrient.
Collapse
|
23
|
Ueda S, Uchiyama S, Azzi T, Gysin C, Berger C, Bernasconi M, Harabuchi Y, Zinkernagel AS, Nadal D. Oropharyngeal group A streptococcal colonization disrupts latent Epstein-Barr virus infection. J Infect Dis 2013; 209:255-64. [PMID: 23935199 DOI: 10.1093/infdis/jit428] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Epstein-Barr virus (EBV) infects >90% of the human population within the first 2 decades of life and establishes reversible latent infection in B cells. The stimuli that lead to switching from latent to lytic EBV infection in vivo are still elusive. Group A streptococci (GAS) are a common cause of bacterial pharyngotonsillitis in children and adolescents and colonize the tonsils and pharynx of up to 20% of healthy children. Thus, concomitant presence of EBV and GAS in the same individual is frequent. Here, we show that EBV carriers who are colonized with GAS shed EBV particles in higher numbers in their saliva, compared with EBV carriers not colonized with GAS. Messenger RNA levels of the master lytic regulatory EBV gene BZLF1 were more frequently detected in tonsils from EBV carriers colonized with GAS than from EBV carriers not colonized. Heat-killed GAS, potentially mimicking GAS colonization, elicited lytic EBV in latently infected lymphoblastoid cell lines (LCLs) partially via Toll-like receptor 2 triggering, as did purified GAS peptidoglycan. Thus, colonization by GAS might benefit EBV by increasing the EBV load in saliva and thereby enhancing the likelihood of EBV spread to other hosts.
Collapse
Affiliation(s)
- Seigo Ueda
- Experimental Infectious Diseases and Cancer Research, Division of Infectious Diseases and Hospital Epidemiology
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
He X, Jia H, Jing Z, Liu D. Recognition of pathogen-associated nucleic acids by endosomal nucleic acid-sensing toll-like receptors. Acta Biochim Biophys Sin (Shanghai) 2013; 45:241-58. [PMID: 23369718 PMCID: PMC7109797 DOI: 10.1093/abbs/gms122] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Foreign nucleic acids, the essential signature molecules of invading pathogens that act as danger signals for host cells, are detected by endosomal nucleic acid-sensing toll-like receptors (TLRs) 3, 7, 8, 9, and 13. These TLRs have evolved to recognize ‘non-self’ nucleic acids within endosomal compartments and rapidly initiate innate immune responses to ensure host protection through induction of type I interferons, inflammatory cytokines, chemokines, and co-stimulatory molecules and maturation of immune cells. In this review, we highlight our understanding of the recognition of pathogen-associated nucleic acids and activation of corresponding signaling pathways through endosomal nucleic acid-sensing TLRs 3, 7, 8, 9, and 13 for an enormous diversity of pathogens, with particular emphasis on their compartmentalization, intracellular trafficking, proteolytic cleavage, autophagy, and regulatory programs.
Collapse
Affiliation(s)
- Xiaobing He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - Huaijie Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - Zhizhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
- Correspondence address. Tel: +86-931-8341979; Fax: +86-931-8340977; E-mail: (Z.J.)/ (D.L.)
| | - Dingxiang Liu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Ministry of Agriculture, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore
- Correspondence address. Tel: +86-931-8341979; Fax: +86-931-8340977; E-mail: (Z.J.)/ (D.L.)
| |
Collapse
|
25
|
Chiang CY, Engel A, Opaluch AM, Ramos I, Maestre AM, Secundino I, De Jesus PD, Nguyen QT, Welch G, Bonamy GMC, Miraglia LJ, Orth AP, Nizet V, Fernandez-Sesma A, Zhou Y, Barton GM, Chanda SK. Cofactors required for TLR7- and TLR9-dependent innate immune responses. Cell Host Microbe 2012; 11:306-18. [PMID: 22423970 DOI: 10.1016/j.chom.2012.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 12/04/2011] [Accepted: 02/06/2012] [Indexed: 10/28/2022]
Abstract
Pathogens commonly utilize endocytic pathways to gain cellular access. The endosomal pattern recognition receptors TLR7 and TLR9 detect pathogen-encoded nucleic acids to initiate MyD88-dependent proinflammatory responses to microbial infection. Using genome-wide RNAi screening and integrative systems-based analysis, we identify 190 cofactors required for TLR7- and TLR9-directed signaling responses. A set of cofactors were crossprofiled for their activities downstream of several immunoreceptors and then functionally mapped based on the known architecture of NF-κB signaling pathways. Protein complexes and pathways involved in ubiquitin-protein ligase activities, sphingolipid metabolism, chromatin modifications, and ancient stress responses were found to modulate innate recognition of endosomal nucleic acids. Additionally, hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) was characterized as necessary for ubiquitin-dependent TLR9 targeting to the endolysosome. Proteins and pathways identified here should prove useful in delineating strategies to manipulate innate responses for treatment of autoimmune disorders and microbial infection.
Collapse
Affiliation(s)
- Chih-Yuan Chiang
- Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Uchiyama S, Andreoni F, Schuepbach RA, Nizet V, Zinkernagel AS. DNase Sda1 allows invasive M1T1 Group A Streptococcus to prevent TLR9-dependent recognition. PLoS Pathog 2012; 8:e1002736. [PMID: 22719247 PMCID: PMC3375267 DOI: 10.1371/journal.ppat.1002736] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 04/20/2012] [Indexed: 01/09/2023] Open
Abstract
Group A Streptococcus (GAS) has developed a broad arsenal of virulence factors that serve to circumvent host defense mechanisms. The virulence factor DNase Sda1 of the hyperinvasive M1T1 GAS clone degrades DNA-based neutrophil extracellular traps allowing GAS to escape extracellular killing. TLR9 is activated by unmethylated CpG-rich bacterial DNA and enhances innate immune resistance. We hypothesized that Sda1 degradation of bacterial DNA could alter TLR9-mediated recognition of GAS by host innate immune cells. We tested this hypothesis using a dual approach: loss and gain of function of DNase in isogenic GAS strains and presence and absence of TLR9 in the host. Either DNA degradation by Sda1 or host deficiency of TLR9 prevented GAS induced IFN-α and TNF-α secretion from murine macrophages and contributed to bacterial survival. Similarly, in a murine necrotizing fasciitis model, IFN-α and TNF-α levels were significantly decreased in wild type mice infected with GAS expressing Sda1, whereas no such Sda1-dependent effect was seen in a TLR9-deficient background. Thus GAS Sda1 suppressed both the TLR9-mediated innate immune response and macrophage bactericidal activity. Our results demonstrate a novel mechanism of bacterial innate immune evasion based on autodegradation of CpG-rich DNA by a bacterial DNase.
Collapse
Affiliation(s)
- Satoshi Uchiyama
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Division of Surgical Intensive Care, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Federica Andreoni
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reto A. Schuepbach
- Division of Surgical Intensive Care, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Victor Nizet
- Department of Pediatrics, Division of Pharmacology & Drug Discovery and Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Annelies S. Zinkernagel
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
27
|
Yoritaka A, Ohizumi H, Tanaka S, Hattori N. Parkinson's disease with and without REM sleep behaviour disorder: are there any clinical differences? Eur Neurol 2009; 61:164-70. [PMID: 19129703 DOI: 10.1159/000189269] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Accepted: 08/25/2008] [Indexed: 12/28/2022]
Abstract
Rapid eye movement sleep behaviour disorder (RBD) may serve as a useful indicator to approach Parkinson's disease (PD); however, PD patients do not always exhibit RBD. We wondered whether the presence of RBD would be reflected in the expansion of PD lesions and represent the same PD entity. We examined the clinical differences between PD with and without RBD and studied the frequency of RBD-like symptoms (RBD-s) and clinical differences in 150 PD patients, including 81 patients (54.0%) who satisfied the International Classification of Sleep Disorders, Revised, minimum clinical criteria for RBD. RBD-s preceding the appearance of parkinsonism were found in 44.4% of patients. Statistically, the presence of RBD-s was associated with ages above 65 years, male gender, constipation, dopa-induced dyskinesia and 'sleep attack', with odds ratios of 3.709, 2.469, 2.184, 5.046 and 6.562, respectively. No differences were found between the 2 groups with regard to symptoms at PD onset, disease duration, Hoehn-Yahr stage, hallucination, dementia, wearing-off, orthostatic hypotension, cerebral blood flow and antiparkinsonism drugs. In the early stage, RBD and autonomic system dysfunction are important factors in the progression of PD.
Collapse
Affiliation(s)
- Asako Yoritaka
- Department of Neurology, Juntendo Urayasu Hospital, Tokyo, Japan.
| | | | | | | |
Collapse
|