1
|
Alajeyan IA, Alsughayyir J, Alfhili MA. Stimulation of Calcium/NOS/CK1α Signaling by Cedrol Triggers Eryptosis and Hemolysis in Red Blood Cells. Yonago Acta Med 2024; 67:191-200. [PMID: 39176191 PMCID: PMC11335916 DOI: 10.33160/yam.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/23/2024] [Indexed: 08/24/2024]
Abstract
Background Cedrol (CRL) is a sesquiterpene alcohol present in the essential oils of coniferous trees including Cupressus and Juniperus genera. CRL has shown potent anticancer activity by virtue of apoptosis. Red blood cells (RBCs), although devoid of mitochondria and nucleus, can undergo hemolysis and eryptosis which contribute to chemotherapy-induced anemia (CIA). In this work, we explored the hemolytic and eryptotic potential of CRL in human RBCs as a safety assessment of the sesquiterpene as an anticancer agent. Methods RBCs from healthy donors were treated with anticancer concentrations of CRL for 24 h at 37°C with varying experimental manipulations. Hemolysis was photometrically assessed by measuring hemoglobin release whereas flow cytometry was employed to detect phosphatidylserine (PS) exposure by annexin-V-FITC, intracellular Ca2+ by Fluo4/AM, cell volume by forward scatter (FSC), and oxidative stress by 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA). Results Significant, concentration-responsive hemolysis was noted upon CRL exposure with concomitant K+, LDH, and AST leakage. CRL also significantly increased annexin-V-positive cells and Fluo4 fluorescence and reduced FSC. Moreover, the cytotoxicity of CRL was significantly ameliorated in the presence of L-NAME, D4476, and PEG 8,000 but was aggravated by urea and sucrose. Conclusion CRL stimulates hemolysis and eryptosis characterized by PS exposure, Ca2+ overload, and cell shrinkage. The hemolytic activity of CRL was mediated through nitric oxide synthase and casein kinase 1α. Blocking either enzyme may attenuate the toxicity of CRL to RBCs and prevent undesirable side effects associated with its anticancer applications.
Collapse
Affiliation(s)
- Iman A Alajeyan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Jawaher Alsughayyir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Mohammad A Alfhili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| |
Collapse
|
2
|
Alghareeb SA, Alsughayyir J, Alfhili MA. Ginsenoside Rh2 Regulates the Calcium/ROS/CK1α/MLKL Pathway to Promote Premature Eryptosis and Hemolysis in Red Blood Cells. Toxicol Pathol 2024; 52:284-294. [PMID: 39148410 DOI: 10.1177/01926233241268846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Ginsenoside Rh2 (GRh2) exhibits significant potential as an anticancer agent; however, progress in developing chemotherapeutic drugs is impeded by their toxicity toward off-target tissues. Specifically, anemia caused by chemotherapy is a debilitating side effect and can be caused by red blood cell (RBC) hemolysis and eryptosis. Cells were exposed to GRh2 in the antitumor range and hemolytic and eryptotic markers were examined under different experimental conditions using photometric and cytofluorimetric methods. GRh2 caused Ca2+-independent, concentration-responsive hemolysis in addition to disrupted ion trafficking with K+ and Cl- leakage. Significant increases in cells positive for annexin-V-fluorescein isothiocyanate, Fluo4, and 2,7-dichlorofluorescein were noted upon GRh2 treatment coupled with a decrease in forward scatter and acetylcholinesterase activity. Importantly, the cytotoxic effects of GRh2 were mitigated by ascorbic acid and by blocking casein kinase 1α (CK1α) and mixed lineage kinase domain-like (MLKL) signaling. In contrast, Ca2+ omission, inhibition of KCl efflux, and isosmotic sucrose aggravated GRh2-induced RBC death. In whole blood, GRh2 selectively targeted reticulocytes and lymphocytes. Altogether, this study identified novel mechanisms underlying GRh2-induced RBC death involving Ca2+ buildup, loss of membrane phospholipid asymmetry and cellular volume, anticholinesterase activity, and oxidative stress. These findings shed light on the hematologic toxicity of GRh2 which is crucial for optimizing its utilization in cancer treatment.
Collapse
Affiliation(s)
- Sumiah A Alghareeb
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Jawaher Alsughayyir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad A Alfhili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Abstract
Eryptosis is a regulated cell death (RCD) of mature erythrocytes initially described as a counterpart of apoptosis for enucleated cells. However, over the recent years, a growing number of studies have emphasized certain differences between both cell death modalities. In this review paper, we underline the hallmarks of eryptosis and apoptosis and highlight resemblances and dissimilarities between both RCDs. We summarize and critically discuss differences in the impact of caspase-3, Ca2+ signaling, ROS signaling pathways, opposing roles of casein kinase 1α, protein kinase C, Janus kinase 3, cyclin-dependent kinase 4, and AMP-activated protein kinase to highlight a certain degree of divergence between apoptosis and eryptosis. This review emphasizes the crucial importance of further studies that focus on deepening our knowledge of cell death machinery and identifying novel differences between cell death of nucleated and enucleated cells. This might provide evidence that erythrocytes can be defined as viable entities capable of programmed cell destruction. Additionally, the revealed cell type-specific patterns in cell death can facilitate the development of cell death-modulating therapeutic agents.
Collapse
Affiliation(s)
- Anton Tkachenko
- 1st Faculty of Medicine, BIOCEV, Charles University, Průmyslová 595, 25250, Vestec, Czech Republic.
| |
Collapse
|
4
|
Alghareeb SA, Alfhili MA, Alsughayyir J. Rosmarinic Acid Elicits Calcium-Dependent and Sucrose-Sensitive Eryptosis and Hemolysis through p38 MAPK, CK1α, and PKC. Molecules 2023; 28:8053. [PMID: 38138543 PMCID: PMC10745317 DOI: 10.3390/molecules28248053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/01/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Rosmarinic acid (RA) possesses promising anticancer potential, but further development of chemotherapeutic agents is hindered by their toxicity to off-target tissue. In particular, chemotherapy-related anemia is a major obstacle in cancer therapy, which may be aggravated by hemolysis and eryptosis. This work presents a toxicity assessment of RA in human RBCs and explores associated molecular mechanisms. METHODS RBCs isolated from healthy donors were treated with anticancer concentrations of RA (10-800 μM) for 24 h at 37 °C, and hemolysis and related markers were photometrically measured. Flow cytometry was used to detect canonical markers of eryptosis, including phosphatidylserine (PS) exposure by annexin-V-FITC, intracellular Ca2+ by Fluo4/AM, cell size by FSC, and oxidative stress by H2DCFDA. Ions and pH were assessed by an ion-selective electrode, while B12 was detected by chemiluminescence. RESULTS RA elicited concentration-dependent hemolysis with AST and LDH release but rescued the cells from hypotonic lysis at sub-hemolytic concentrations. RA also significantly increased annexin-V-positive cells, which was ameliorated by extracellular Ca2+ removal and isosmotic sucrose. Furthermore, a significant increase in Fluo4-positive cells and B12 content and a decrease in FSC and extracellular pH with KCl efflux were noted upon RA treatment. Hemolysis was augmented by blocking KCl efflux and was blunted by ATP, SB203580, staurosporin, D4476, isosmotic urea, and PEG 8000. CONCLUSIONS RA stimulates Ca2+-dependent and sucrose-sensitive hemolysis and eryptosis characterized by PS exposure, Ca2+ accumulation, loss of ionic regulation, and cell shrinkage. These toxic effects were mediated through energy deprivation, p38 MAPK, protein kinase C, and casein kinase 1α.
Collapse
Affiliation(s)
| | | | - Jawaher Alsughayyir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia; (S.A.A.); (M.A.A.)
| |
Collapse
|
5
|
Alghareeb SA, Alsughayyir J, Alfhili MA. Eriocitrin Disrupts Erythrocyte Membrane Asymmetry through Oxidative Stress and Calcium Signaling and the Activation of Casein Kinase 1α and Rac1 GTPase. Pharmaceuticals (Basel) 2023; 16:1681. [PMID: 38139808 PMCID: PMC10747371 DOI: 10.3390/ph16121681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Hemolysis and eryptosis result in the premature elimination of circulating erythrocytes and thus contribute to chemotherapy-related anemia, which is extremely prevalent in cancer patients. Eriocitrin (ERN), a flavanone glycoside in citrus fruits, has shown great promise as an anticancer agent, but the potential toxicity of ERN to human erythrocytes remains unstudied. METHODS Erythrocytes were exposed to anticancer concentrations of ERN (10-100 μM) for 24 h at 37 °C, and hemolysis and associated markers were quantified using colorimetric assays. Eryptosis was assessed by flow cytometric analysis to detect phosphatidylserine (PS) exposure by annexin-V-FITC, intracellular Ca2+ using Fluo4/AM, and oxidative stress with 2-,7-dichlorodihydrofluorescin diacetate (H2DCFDA). ERN was also tested against specific signaling inhibitors and anti-hemolytic agents. RESULTS ERN caused significant, concentration-dependent hemolysis at 20-100 μM. ERN also significantly increased the percentage of eryptotic cells characterized by Ca2+ elevation and oxidative stress. Furthermore, the hemolytic activity of ERN was significantly ameliorated in the presence of D4476, NSC23766, isosmotic urea and sucrose, and polyethylene glycol 8000 (PEG). In whole blood, ERN significantly elevated MCV and ESR, with no appreciable effects on other peripheral blood cells. CONCLUSIONS ERN promotes premature erythrocyte death through hemolysis and eryptosis characterized by PS externalization, Ca2+ accumulation, membrane blebbing, loss of cellular volume, and oxidative stress. These toxic effects, mediated through casein kinase 1α and Rac1 GTPase, can be ameliorated by urea, sucrose, and PEG. Altogether, these novel findings are relevant to the further development of ERN as an anticancer therapeutic.
Collapse
Affiliation(s)
| | | | - Mohammad A. Alfhili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia; (S.A.A.)
| |
Collapse
|
6
|
Alfhili MA, Alsughayyir J. Metabolic exhaustion and casein kinase 1α drive deguelin-induced premature red blood cell death. Xenobiotica 2023; 53:445-453. [PMID: 37590011 DOI: 10.1080/00498254.2023.2248492] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
1. Deguelin (DGN), a retinoid isolated from many plants, exhibits a potent anticancer activity against a wide spectrum of tumour cells. There is a dearth of evidence, however, regarding the toxicity of DGN to red blood cells (RBCs). This is relevant given the prevalent chemotherapy-associated anaemia observed in cancer patients.2. RBCs were exposed to 1-100 μM of DGN for 24 h at 37 °C. Haemolysis and related markers were photometrically measured while flow cytometry was employed to detect phosphatidylserine exposure through Annexin-V-FITC binding and light scatter properties. Additionally, cytosolic Ca2+ and reactive oxygen species were quantified using Fluo4/AM and H2DCFDA, respectively. DGN was also tested against specific signalling inhibitors in addition to vitamin C and ATP.3. DGN caused a significant increase in Annexin-V-positive cells which was accompanied by cell shrinkage without Ca2+ elevation or oxidative stress. DGN also elicited dose-responsive haemolysis which was ameliorated by preventing KCl efflux and in the presence of sucrose, D4476, and ATP. In whole blood, DGN significantly reduced the reticulocyte count and increased platelet distribution width and large cell count.4. DGN triggers premature RBC eryptosis and haemolysis through casein kinase 1α and ATP depletion, and exhibits a specific toxicity towards reticulocytes and platelets.
Collapse
Affiliation(s)
- Mohammad A Alfhili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Jawaher Alsughayyir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Abstract
Eryptosis is a coordinated non-lytic cell death of erythrocytes characterized by cell shrinkage, cell membrane scrambling, Ca2+ influx, ceramide accumulation, oxidative stress, activation of calpain and caspases. Physiologically, it aims at removing damaged or aged erythrocytes from circulation. A plethora of diseases are associated with enhanced eryptosis, including metabolic diseases, cardiovascular pathology, renal and hepatic diseases, hematological disorders, systemic autoimmune pathology, and cancer. This makes eryptosis and eryptosis-regulating signaling pathways a target for therapeutic interventions. This review highlights the eryptotic signaling machinery containing several protein kinases and its small molecular inhibitors with a special emphasis on casein kinase 1α (CK1α), a serine/threonine protein kinase with a broad spectrum of activity. In this review article, we provide a critical analysis of the regulatory role of CK1α in eryptosis, highlight triggers of CK1α-mediated suicidal death of red blood cells, cover the knowledge gaps in understanding CK1α-driven eryptosis and discover the opportunity of CK1α-targeted pharmacological modulation of eryptosis. Moreover, we discuss the directions of future research focusing on uncovering crosstalks between CK1α and other eryptosis-regulating kinases and pathways.
Collapse
Affiliation(s)
- Anton Tkachenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022, Kharkiv, Ukraine.
| | - Anatolii Onishchenko
- Research Institute of Experimental and Clinical Medicine, Kharkiv National Medical University, 4 Nauky ave, 61022, Kharkiv, Ukraine
| |
Collapse
|
8
|
In Vitro Induction of Eryptosis by Uremic Toxins and Inflammation Mediators in Healthy Red Blood Cells. J Clin Med 2022; 11:jcm11185329. [PMID: 36142976 PMCID: PMC9501441 DOI: 10.3390/jcm11185329] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/30/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Eryptosis is the stress-induced RBC (red blood cell) death mechanism. It is known that eryptosis is largely influenced by plasma and blood composition, and that it is accelerated in patients affected by chronic kidney disease (CKD). The aim of this study is to evaluate the eryptosis rate in healthy RBCs treated with different concentration of IL-6, IL-1β, urea and p-cresol, comparable to plasmatic level of CKD patients, at different time points. We exposed healthy RBCs to increasing concentrations of IL-6, IL-1β, urea and p-cresol. Morphological markers of eryptosis (cell membrane scrambling, cell shrinkage and PS exposure at RBC surface) were evaluated by flow cytometric analyses. The cytotoxic effect of cytokines and uremic toxins were analyzed in vitro on healthy RBCs at 4, 8 and 24 h. Morphology of treated RBCs was dramatically deranged, and the average cell volume was significantly higher in RBCs exposed to higher concentration of all molecules (all, p < 0.001). Furthermore, healthy RBCs incubated with each molecules demonstrated a significant increase in eryptosis. Cytofluorimetric analysis of eryptosis highlighted significantly higher cell death rate in RBCs incubated with a higher concentration of both cytokines compared with RBCs incubated with a lower concentration (all, p < 0.05). In conclusion, our data show that cytokines and uremic toxins have a harmful effect on RBCs viability and trigger eryptosis. Further studies are necessary to validate these results in vivo and to associate abnormal eryptosis with cytokine levels in CKD patients. The eryptosis pathway could, moreover, become a new promising target for anemia management in CKD patients.
Collapse
|
9
|
Zhang Y, Xu Y, Zhang S, Lu Z, Li Y, Zhao B. The regulation roles of Ca 2+ in erythropoiesis: What have we learned? Exp Hematol 2021; 106:19-30. [PMID: 34879257 DOI: 10.1016/j.exphem.2021.12.192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/15/2021] [Accepted: 12/03/2021] [Indexed: 01/09/2023]
Abstract
Calcium (Ca2+) is an important second messenger molecule in the body, regulating cell cycle and fate. There is growing evidence that intracellular Ca2+ levels play functional roles in the total physiological process of erythroid differentiation, including the proliferation and differentiation of erythroid progenitor cells, terminal enucleation, and mature red blood cell aging and clearance. Moreover, recent research on the pathology of erythroid disorders has made great progress in the past decades, indicating that calcium ion hemostasis is closely related to ineffective erythropoiesis and increased sensitivity to stress factors. In this review, we summarized what is known about the functional roles of intracellular Ca2+ in erythropoiesis and erythrocyte-related diseases, with an emphasis on the regulation of the intracellular Ca2+ homeostasis during erythroid differentiation. An understanding of the regulation roles of Ca2+ homeostasis in erythroid differentiation will facilitate further studies and eventually molecular identification of the pathways involved in the pathological process of erythroid disorders, providing new therapeutic opportunities in erythrocyte-related disease.
Collapse
Affiliation(s)
- Yuanzhen Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Xu
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shujing Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhiyuan Lu
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuan Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baobing Zhao
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China; Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
10
|
Alfhili MA, Basudan AM, Aljaser FS, Dera A, Alsughayyir J. Bioymifi, a novel mimetic of TNF-related apoptosis-induced ligand (TRAIL), stimulates eryptosis. Med Oncol 2021; 38:138. [PMID: 34633592 DOI: 10.1007/s12032-021-01589-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/21/2021] [Indexed: 11/26/2022]
Abstract
Tumor necrosis factor-related apoptosis-induced ligand (TRAIL) is a cytokine that initiates apoptosis upon binding to death receptor 5 (DR5) on cancer cells. Small molecule TRAIL mimetics have therefore been investigated as promising chemotherapeutic agents. Since anemia of chemotherapy is common, our goal is to investigate the hemolytic and eryptotic properties of novel DR5 agonist bioymifi (BMF) and identify the underlying molecular mechanisms. Whole blood (WB) was stimulated with 100 μM of BMF, whereas red blood cells (RBCs) were treated with 10-100 μM of BMF for 24 h at 37 °C. WB was analyzed for RBC, leukocyte, and platelet indices, while RBCs were examined for hemolysis by light absorbance of free hemoglobin, membrane scrambling by Annexin V-FITC, calcium by Fluo4/AM, cellular morphology by light scatter, and oxidative stress by 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) using flow cytometry. Caspase inhibitor Z-VAD-FMK, p38 inhibitor SB203580, casein kinase 1α inhibitor D4476, receptor-interacting protein 1 inhibitor necrostatin-2, reduced glutathione, or cyclooxygenase (COX) inhibitor aspirin were added accordingly. BMF exerted dose-responsive, calcium-independent hemolysis, reduced RBC hemoglobin, significantly increased Annexin V-, Fluo4-, and DCF-positive cells, along with a dual effect on forward and side light scatter. Notably, the cytotoxic potential of BMF was significantly mitigated upon pharmacological inhibition of p38. Furthermore, BMF exhibited selective toxicity to eosinophils and significantly diminished reticulocyte hemoglobin content. Altogether, these novel findings highlight the adverse outcomes of BMF exposure on RBC physiology and provide the first toxicological assessment of BMF as an antitumor agent.
Collapse
Affiliation(s)
- Mohammad A Alfhili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Ahmed M Basudan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Feda S Aljaser
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ayed Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Jawaher Alsughayyir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
11
|
Alfhili MA, Alsalmi E, Aljedai A, Alsughayyir J, Abudawood M, Basudan AM. Calcium-oxidative stress signaling axis and casein kinase 1α mediate eryptosis and hemolysis elicited by novel p53 agonist inauhzin. J Chemother 2021; 34:247-257. [PMID: 34410893 DOI: 10.1080/1120009x.2021.1963616] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inauhzin (INZ) is a novel p53 agonist with antitumor activity. Anemia is a common side effect of chemotherapy and may arise from red blood cell (RBC) hemolysis or eryptosis. In this study, we investigate the mechanisms of INZ toxicity in human RBCs. RBCs were isolated from healthy donors and treated with antitumor concentrations of INZ (5-500 μM) for 24 h at 37 °C. Hemoglobin was photometrically measured, and cells were stained with Annexin-V-FITC for phosphatidylserine (PS), Fluo4/AM for calcium, and 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) for oxidative stress. INZ caused significant dose-responsive, calcium-dependent hemolysis starting at 40 μM. Furthermore, INZ significantly increased Annexin-positive cells and Fluo4 and DCF fluorescence. The cytotoxicity of INZ was also significantly mitigated in presence of D4476. INZ possesses hemolytic and eryptotic potential characterized by cell membrane scrambling, intracellular calcium overload, cell shrinkage, and oxidative stress secondary to calcium influx from the extracellular space.
Collapse
Affiliation(s)
- Mohammad A Alfhili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Essa Alsalmi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Aljedai
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Jawaher Alsughayyir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Manal Abudawood
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed M Basudan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Alfhili MA, Alsughayyir J, Basudan AM. Reprogramming of erythrocyte lifespan by NFκB-TNFα naphthoquinone antagonist β-lapachone is regulated by calcium overload and CK1α. J Food Biochem 2021; 45:e13710. [PMID: 33749832 DOI: 10.1111/jfbc.13710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 11/29/2022]
Abstract
The pathophysiology of chemotherapy-associated anemia, prevalent in at least 75% of patients, remains difficult to establish. Chemotherapy-related anemia is attributed in part to eryptosis, and it is therefore of considerable interest to interrogate the toxicity of investigative anticancer compounds to red blood cells (RBCs). Beta-lapachone (LAP), an anthraquinone extracted from the bark of Lapacho tree (Tabebuia avellanedae), is effective against a myriad of cancer cells. However, the toxicity of LAP to RBCs remains unexplored. Hemoglobin leakage as a surrogate for hemolysis was photometrically measured, while flow cytometry was employed to capture phosphatidylserine (PS) exposure with Annexin-V-FITC, calcium levels with Fluo4/AM, cell size by forward scatter (FSC), and oxidative stress by H2DCFDA. Our results show that LAP, at antitumor levels (10-30 µM), induces dose-dependent hemolysis secondary to calcium influx from the extracellular space. Moreover, LAP stimulates eryptosis, as evident from PS exposure, which is associated with reduced cell volume and intracellular calcium overload. Importantly, it is also revealed that the cytotoxicity of LAP is mediated through casein kinase 1α. Altogether, this report shows, for the first time, that LAP possesses both hemolytic and eryptotic potential against RBCs that necessitates careful application in chemotherapy. PRACTICAL APPLICATIONS: Lapacho is a widely consumed herbal tea with origins in the Tabebuia avellanedae tree endogenous to South America. LAP is one of the active ingredients in lapacho with promising antitumor potential. We show that LAP is cytotoxic to human RBCs by virtue of eryptosis and hemolysis, and we identify associated molecular mechanisms. Given that these two manifestations are known to contribute to chemotherapy-induced anemia, our study provides invaluable insights into the suitability of LAP in cancer management and sheds some light on possible strategies to limit its undesirable side effects.
Collapse
Affiliation(s)
- Mohammad A Alfhili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Jawaher Alsughayyir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed M Basudan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Akiel M, Alsughayyir J, Basudan AM, Alamri HS, Dera A, Barhoumi T, Al Subayyil AM, Basmaeil YS, Aldakheel FM, Alakeel R, Ghneim HK, Al-Sheikh YA, Alraey Y, Asiri S, Alfhili MA. Physcion Induces Hemolysis and Premature Phosphatidylserine Externalization in Human Erythrocytes. Biol Pharm Bull 2021; 44:372-378. [DOI: 10.1248/bpb.b20-00744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Maaged Akiel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdullah International Research Center (KAIMRC)
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University
| | - Jawaher Alsughayyir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University
| | - Ahmed M. Basudan
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University
| | - Hassan S. Alamri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdullah International Research Center (KAIMRC)
| | - Ayed Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University
- Research Center of Advanced Materials, King Khalid University
| | - Tlili Barhoumi
- Medical Core Facility and Research Platforms, King Abdullah International Research Center (KAIMRC), King Abdulaziz Medical City, Ministry of National Guard Health Affairs, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS)
| | - Abdullah M. Al Subayyil
- Stem Cells and Regenerative Medicine Department, King Abdullah International Research Center (KAIMRC), King Abdulaziz Medical City, Ministry of National Guard Health Affairs, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS)
| | - Yasser S. Basmaeil
- Stem Cells and Regenerative Medicine Department, King Abdullah International Research Center (KAIMRC), King Abdulaziz Medical City, Ministry of National Guard Health Affairs, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS)
| | - Fahad M. Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University
| | - Raid Alakeel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University
| | - Hazem K. Ghneim
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University
| | - Yazeed A. Al-Sheikh
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University
| | - Yasser Alraey
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University
| | - Saeed Asiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University
| | - Mohammad A. Alfhili
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University
| |
Collapse
|
14
|
Alamri HS, Alsughayyir J, Akiel M, Al-Sheikh YA, Basudan AM, Dera A, Barhoumi T, Basuwdan AM, Alfhili MA. Stimulation of calcium influx and CK1α by NF-κB antagonist [6]-Gingerol reprograms red blood cell longevity. J Food Biochem 2020; 45:e13545. [PMID: 33145778 DOI: 10.1111/jfbc.13545] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022]
Abstract
Chemotherapy-induced anemia (CIA) is a major obstacle in cancer management. Although the mechanisms governing CIA are poorly understood, recent efforts have identified suicidal erythrocyte (red blood cell, RBC) death as a possible cause of CIA. [6]-Gingerol (GNG), a polyphenol extracted from Zingiber officinale plant, exhibits a wide array of biological activities including antimicrobial, antioxidant, anti-inflammatory, immunomodulatory, and anticancer activities, in vitro and in vivo. However, the potential toxicity of GNG to human RBCs remains unexplored. RBCs from heparinized blood were isolated by centrifugation and exposed to antitumor concentrations (10-100 µM) of GNG for 24 hr at 37°C. Hemolysis was calculated from hemoglobin leakage in the supernatant (λmax = 405 nm), while cytofluorometric analysis of eryptosis employed Annexin-V-FITC to detect phosphatidylserine (PS) exposure, forward scatter (FSC) to estimate cell volume, Fluo4/AM to measure calcium activity, and H2 DCFDA to assess oxidative stress. Moreover, zVAD(OMe)-FMK, SB203580, necrostatin-2, staurosporin, and D4476 were used to identify signaling pathways responsive to GNG. GNG induced significant hemolysis at 100 µM, independently of extracellular calcium, and increased Annexin-V-FITC fluorescence that was thoroughly abrogated without extracellular calcium. GNG also enhanced Fluo4 fluorescence and reduced FSC, but had no significant effect on DCF fluorescence. Importantly, the presence of D4476 significantly attenuated GNG-induced hemolysis. In conclusion, GNG stimulates premature RBC death characterized by loss of membrane asymmetry, elevated cytosolic calcium, cell shrinkage, and casein kinase 1α activation. Blocking the activity of calcium channels or CK1α may, therefore, ameliorate the toxic effects of GNG on RBCs. PRACTICAL APPLICATIONS: This report presents a safety assessment of GNG as a chemotherapeutic agent and highlights the novel toxicity of GNG to human RBCs. Our findings provide novel insights that may lead to more efficient utilization of GNG in chemotherapy. Specifically, our data revealed the involvement of calcium channels and casein kinase 1α in mediating GNG-induced premature RBC death, and, therefore, inverse agonists or inhibitors of either pathway may be used as pharmaceutical adjuvants to attenuate the toxic effects of GNG.
Collapse
Affiliation(s)
- Hassan S Alamri
- Clinical Laboratory Science Department, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia.,King Abdullah International Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Jawaher Alsughayyir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Maaged Akiel
- Clinical Laboratory Science Department, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia.,King Abdullah International Research Center (KAIMRC), Riyadh, Saudi Arabia.,Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yazeed A Al-Sheikh
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed M Basudan
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ayed Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.,Research Centre of Advanced Materials, King Khalid University, Abha, Saudi Arabia
| | - Tlili Barhoumi
- Medical Core Facility and Research Platforms, King Abdullah International Research Center (KAIMRC), King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Abdulrahman M Basuwdan
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Mohammad A Alfhili
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Sultan SA, Khawaji MH, Alsughayyir J, Alfhili MA, Alamri HS, Alrfaei BM. Antileukemic activity of sulfoxide nutraceutical allicin against THP-1 cells is associated with premature phosphatidylserine exposure in human erythrocytes. Saudi J Biol Sci 2020; 27:3376-3384. [PMID: 33304145 PMCID: PMC7715525 DOI: 10.1016/j.sjbs.2020.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022] Open
Abstract
Background Allicin (ACN), a sulfoxide in freshly crushed garlic, is known for its diverse bioactive properties. Among the most notable effects of ACN is its antitumor activity against a wide array of cancer types. Thus, ACN may be a promising anticancer therapeutic. Nevertheless, chemotherapy-induced anemia is a major obstacle in cancer management with a prevalence of up to 70%. Although the pathophysiology behind it remains elusive, a number of medications known to cause anemia in patients have been shown to induce premature programmed cell death in red blood cells (RBCs) known as eryptosis. This study, thus, investigates the anticancer potential of ACN against THP-1 monocytic leukemia cells, its toxic effects on human RBCs, and delineate the underlying biochemical mechanisms. Methods Cytotoxicity was detected using the MTT assay, while hemoglobin leakage was used as a surrogate for hemolysis which was photometrically measured. Major eryptotic events were examined using flow cytometry with fluorescent probes. Phosphatidylserine (PS) exposure was detected by Annexin-V-FITC, cytosolic calcium with Fluo4/AM, and reactive oxygen species with H2DCFDA. Results Our results show that ACN induces hemolysis in a dose-dependent fashion, which is significantly abrogated in absence of extracellular calcium. Moreover, ACN stimulates PS exposure, intracellular calcium overload, and oxidative stress. Using small-molecule inhibitors, we demonstrate that the pro-eryptotic activity of ACN is ameliorated in presence of zVAD(OMe)-FMK, SB203580, and D4476. Conclusion ACN possesses both hemolytic and eryptotic properties mediated through elevated intracellular calcium levels, oxidative stress, caspase, p38 MAPK, and CK1α.
Collapse
Affiliation(s)
- Samar A Sultan
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed H Khawaji
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Biochemistry, Faculty of Applied Medical Sciences, University of Jazan, Jizan, Saudi Arabia
| | - Jawaher Alsughayyir
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Mohammad A Alfhili
- Chair of Medical and Molecular Genetics Research, Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Hassan S Alamri
- Clinical Laboratory Science Department, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia.,King Abdullah International Medical Research Centre (KAIMRC), Riyadh, Saudi Arabia
| | - Bahauddeen M Alrfaei
- Stem Cell and Regenerative Medicine, King Abdullah International Medical Research Centre (KAIMRC)/King Saud bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Saudi Arabia
| |
Collapse
|
16
|
Karpov PA, Rayevsky AV, Sheremet YA, Yemets AI, Blume YB. Structural Biological Characteristics of CK1-Like Protein Kinase Isotypes Associated with Regulation of Plant Microtubules. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452720040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Föller M, Lang F. Ion Transport in Eryptosis, the Suicidal Death of Erythrocytes. Front Cell Dev Biol 2020; 8:597. [PMID: 32733893 PMCID: PMC7360839 DOI: 10.3389/fcell.2020.00597] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
Erythrocytes are among the most abundant cells in mammals and are perfectly adapted to their main functions, i.e., the transport of O2 to peripheral tissues and the contribution to CO2 transport to the lungs. In contrast to other cells, they are fully devoid of organelles. Similar to apoptosis of nucleated cells erythrocytes may enter suicidal death, eryptosis, which is characterized by the presentation of membrane phosphatidylserine on the cell surface and cell shrinkage, hallmarks that are also typical of apoptosis. Eryptosis may be triggered by an increase in the cytosolic Ca2+ concentration, which may be due to Ca2+ influx via non-selective cation channels of the TRPC family. Eryptosis is further induced by ceramide, which sensitizes erythrocytes to the eryptotic effect of Ca2+. Signaling regulating eryptosis further involves a variety of kinases including AMPK, PAK2, cGKI, JAK3, CK1α, CDK4, MSK1/2 and casein kinase. Eryptosis-dependent shrinkage is induced by K+ efflux through Ca2+-activated K+ channel KCa3.1, the Gardos channel. Eryptotic cells are phagocytosed and may adhere to endothelial cells. Eryptosis may help prevent hemolysis since defective erythrocytes usually undergo eryptosis followed by rapid clearance from circulating blood. Excessive eryptosis stimulated by various diseases and xenobiotics may result in anemia and/or impaired microcirculation. This review focuses on the significance and mechanisms of eryptosis as well as on the ion fluxes involved. Moreover, a short summary of further ion transport mechanisms of the erythrocyte membrane is provided.
Collapse
Affiliation(s)
- Michael Föller
- Department of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Florian Lang
- Department of Physiology Institute of Physiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Karpov PA, Sheremet YA, Blume YB, Yemets AI. Studying the Role of Protein Kinases CK1 in Organization of Cortical Microtubules in Arabidopsis thaliana Root Cells. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452719060033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Bissinger R, Lang E, Gonzalez-Menendez I, Quintanilla-Martinez L, Ghashghaeinia M, Pelzl L, Sukkar B, Bhuyan AAM, Salker MS, Singh Y, Fehrenbacher B, Fakhri H, Umbach AT, Schaller M, Qadri SM, Lang F. Genetic deficiency of the tumor suppressor protein p53 influences erythrocyte survival. Apoptosis 2019; 23:641-650. [PMID: 30238335 DOI: 10.1007/s10495-018-1481-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The transcription factor p53 suppresses tumor growth by inducing nucleated cell apoptosis and cycle arrest. Because of its influence on primitive erythroid cell differentiation and survival, p53 is an important determinant of erythropoiesis. However, the impact of p53 on the fate of erythrocytes, cells lacking nucleus and mitochondria, during their post-maturation phase in the circulation remained elusive. Erythrocyte survival may be compromised by suicidal erythrocyte death or eryptosis, which is hallmarked by phosphatidylserine translocation and stimulated by increase of cytosolic Ca2+ concentration. Here, we comparatively examined erythrocyte homeostasis in p53-mutant mice (Trp53tm1Tyj/J) and in corresponding WT mice (C57BL/6J) by analyzing eryptosis and erythropoiesis. To this end, spontaneous cell membrane phosphatidylserine exposure and cytosolic Ca2+ concentration were higher in erythrocytes drawn from Trp53tm1Tyj/J mice than from WT mice. Eryptosis induced by glucose deprivation, a pathophysiological cell stressor, was slightly, but significantly more prominent in erythrocytes drawn from Trp53tm1Tyj/J mice as compared to WT mice. The loss of erythrocytes by eryptosis was fully compensated by enhanced erythropoiesis in Trp53tm1Tyj/J mice, as reflected by increased reticulocytosis and abundance of erythroid precursor cells in the bone marrow. Accordingly, erythrocyte number, packed cell volume and hemoglobin were similar in Trp53tm1Tyj/J and WT mice. Taken together, functional p53 deficiency enhances the turnover of circulating erythrocytes by parallel increase of eryptosis and stimulated compensatory erythropoiesis.
Collapse
Affiliation(s)
- Rosi Bissinger
- Department of Internal Medicine III, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Elisabeth Lang
- Department of Molecular Medicine II, Heinrich-Heine University, Düsseldorf, Germany
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Neuropathology, Eberhard-Karls University Tübingen, Tübingen, Germany.,Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard-Karls University Tübingen, Tübingen, Germany.,Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Mehrdad Ghashghaeinia
- Psoriasis Center, Department of Dermatology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard Karls University Tübingen, Wilhelmstraße 56, 72074, Tübingen, Germany
| | - Lisann Pelzl
- Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard Karls University Tübingen, Wilhelmstraße 56, 72074, Tübingen, Germany
| | - Basma Sukkar
- Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard Karls University Tübingen, Wilhelmstraße 56, 72074, Tübingen, Germany
| | - Abdulla Al Mamun Bhuyan
- Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard Karls University Tübingen, Wilhelmstraße 56, 72074, Tübingen, Germany
| | - Madhuri S Salker
- Research Institute for Women's Health, University Hospital Tübingen, Tübingen, Germany
| | - Yogesh Singh
- Institute of Medical Genetics and Applied Genomics, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Birgit Fehrenbacher
- Department of Dermatology, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Hajar Fakhri
- Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard Karls University Tübingen, Wilhelmstraße 56, 72074, Tübingen, Germany
| | - Anja T Umbach
- Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard Karls University Tübingen, Wilhelmstraße 56, 72074, Tübingen, Germany
| | - Martin Schaller
- Department of Dermatology, Eberhard-Karls University Tübingen, Tübingen, Germany
| | - Syed M Qadri
- Department of Pathology and Molecular Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada. .,Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.
| | - Florian Lang
- Department of Internal Medicine III, Eberhard-Karls University Tübingen, Tübingen, Germany. .,Department of Molecular Medicine II, Heinrich-Heine University, Düsseldorf, Germany. .,Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard Karls University Tübingen, Wilhelmstraße 56, 72074, Tübingen, Germany.
| |
Collapse
|
20
|
Boulet C, Doerig CD, Carvalho TG. Manipulating Eryptosis of Human Red Blood Cells: A Novel Antimalarial Strategy? Front Cell Infect Microbiol 2018; 8:419. [PMID: 30560094 PMCID: PMC6284368 DOI: 10.3389/fcimb.2018.00419] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/14/2018] [Indexed: 12/13/2022] Open
Abstract
Malaria is a major global health burden, affecting over 200 million people worldwide. Resistance against all currently available antimalarial drugs is a growing threat, and represents a major and long-standing obstacle to malaria eradication. Like many intracellular pathogens, Plasmodium parasites manipulate host cell signaling pathways, in particular programmed cell death pathways. Interference with apoptotic pathways by malaria parasites is documented in the mosquito and human liver stages of infection, but little is known about this phenomenon in the erythrocytic stages. Although mature erythrocytes have lost all organelles, they display a form of programmed cell death termed eryptosis. Numerous features of eryptosis resemble those of nucleated cell apoptosis, including surface exposure of phosphatidylserine, cell shrinkage and membrane ruffling. Upon invasion, Plasmodium parasites induce significant stress to the host erythrocyte, while delaying the onset of eryptosis. Many eryptotic inducers appear to have a beneficial effect on the course of malaria infection in murine models, but major gaps remain in our understanding of the underlying molecular mechanisms. All currently available antimalarial drugs have parasite-encoded targets, which facilitates the emergence of resistance through selection of mutations that prevent drug-target binding. Identifying host cell factors that play a key role in parasite survival will provide new perspectives for host-directed anti-malarial chemotherapy. This review focuses on the interrelationship between Plasmodium falciparum and the eryptosis of its host erythrocyte. We summarize the current knowledge in this area, highlight the different schools of thoughts and existing gaps in knowledge, and discuss future perspectives for host-directed therapies in the context of antimalarial drug discovery.
Collapse
Affiliation(s)
- Coralie Boulet
- Molecular Parasitology Laboratory, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Christian D Doerig
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Teresa G Carvalho
- Molecular Parasitology Laboratory, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
21
|
Bissinger R, Bhuyan AAM, Qadri SM, Lang F. Oxidative stress, eryptosis and anemia: a pivotal mechanistic nexus in systemic diseases. FEBS J 2018; 286:826-854. [PMID: 30028073 DOI: 10.1111/febs.14606] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/15/2018] [Accepted: 07/18/2018] [Indexed: 12/21/2022]
Abstract
The average lifespan of circulating erythrocytes usually exceeds hundred days. Prior to that, however, erythrocytes may be exposed to oxidative stress in the circulation which could cause injury and trigger their suicidal death or eryptosis. Oxidative stress activates Ca2+ -permeable nonselective cation channels in the cell membrane, thus, stimulating Ca2+ entry and subsequent cell membrane scrambling resulting in phosphatidylserine exposure and activation of Ca2+ -sensitive K+ channels leading to K+ exit, hyperpolarization, Cl- exit, and ultimately cell shrinkage due to loss of KCl and osmotically driven water. While the mechanistic link between oxidative stress and anemia remains ill-defined, several diseases such as diabetes, hepatic failure, malignancy, chronic kidney disease and inflammation have been identified to display both increased oxidative stress as well as eryptosis. Recent compelling evidence suggests that oxidative stress is an important perpetrator in accelerating erythrocyte loss in different systemic conditions and an underlying mechanism for anemia associated with these pathological states. In the present review, we discuss the role of oxidative stress in reducing erythrocyte survival and provide novel insights into the possible use of antioxidants as putative antieryptotic and antianemic agents in a variety of systemic diseases.
Collapse
Affiliation(s)
- Rosi Bissinger
- Department of Internal Medicine III, Eberhard-Karls-University Tübingen, Germany
| | - Abdulla Al Mamun Bhuyan
- Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard-Karls-University Tübingen, Germany
| | - Syed M Qadri
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.,Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada
| | - Florian Lang
- Department of Vegetative & Clinical Physiology, Institute of Physiology, Eberhard-Karls-University Tübingen, Germany.,Department of Molecular Medicine II, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
22
|
Jiang S, Zhang M, Sun J, Yang X. Casein kinase 1α: biological mechanisms and theranostic potential. Cell Commun Signal 2018; 16:23. [PMID: 29793495 PMCID: PMC5968562 DOI: 10.1186/s12964-018-0236-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
Abstract
Casein kinase 1α (CK1α) is a multifunctional protein belonging to the CK1 protein family that is conserved in eukaryotes from yeast to humans. It regulates signaling pathways related to membrane trafficking, cell cycle progression, chromosome segregation, apoptosis, autophagy, cell metabolism, and differentiation in development, circadian rhythm, and the immune response as well as neurodegeneration and cancer. Given its involvement in diverse cellular, physiological, and pathological processes, CK1α is a promising therapeutic target. In this review, we summarize what is known of the biological functions of CK1α, and provide an overview of existing challenges and potential opportunities for advancing theranostics.
Collapse
Affiliation(s)
- Shaojie Jiang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, Hangzhou, China
| | - Miaofeng Zhang
- Department of Orthopaedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, Hangzhou, China
| | - Xiaoming Yang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, Hangzhou, China. .,Image-Guided Bio-Molecular Intervention Research, Department of Radiology, University of Washington School of Medicine, Seattle, WA, 98109, USA.
| |
Collapse
|
23
|
Alvarez-Sala A, López-García G, Attanzio A, Tesoriere L, Cilla A, Barberá R, Alegría A. Effects of Plant Sterols or β-Cryptoxanthin at Physiological Serum Concentrations on Suicidal Erythrocyte Death. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1157-1166. [PMID: 29345907 DOI: 10.1021/acs.jafc.7b05575] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The eryptotic and hemolytic effects of a phytosterol (PS) mixture (β-sitosterol, campesterol, stigmasterol) or β-cryptoxanthin (β-Cx) at physiological serum concentration and their effect against oxidative stress induced by tert-butylhydroperoxide (tBOOH) (75 and 300 μM) were evaluated. β-Cryptoxanthin produced an increase in eryptotic cells, cell volume, hemolysis, and glutathione depletion (GSH) without ROS overproduction and intracellular Ca2+ influx. Co-incubation of both bioactive compounds protected against β-Cx-induced eryptosis. Under tBOOH stress, PS prevented eryptosis, reducing Ca2+ influx, ROS overproduction and GSH depletion at 75 μM, and hemolysis at both tBOOH concentrations. β-Cryptoxanthin showed no cytoprotective effect. Co-incubation with both bioactive compounds completely prevented hemolysis and partially prevented eryptosis as well as GSH depletion induced by β-Cx plus tBOOH. Phytosterols at physiological serum concentrations help to prevent pro-eryptotic and hemolytic effects and are promising candidate compounds for ameliorating eryptosis-associated diseases.
Collapse
Affiliation(s)
- Andrea Alvarez-Sala
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia , Avda. Vicente Andrés Estellés s/n, Burjassot, Valencia 46100, Spain
| | - Gabriel López-García
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia , Avda. Vicente Andrés Estellés s/n, Burjassot, Valencia 46100, Spain
| | - Alessandro Attanzio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo , Via Archirafi 28, 90123 Palermo, Italy
| | - Luisa Tesoriere
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo , Via Archirafi 28, 90123 Palermo, Italy
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia , Avda. Vicente Andrés Estellés s/n, Burjassot, Valencia 46100, Spain
| | - Reyes Barberá
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia , Avda. Vicente Andrés Estellés s/n, Burjassot, Valencia 46100, Spain
| | - Amparo Alegría
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia , Avda. Vicente Andrés Estellés s/n, Burjassot, Valencia 46100, Spain
| |
Collapse
|
24
|
Qadri SM, Bissinger R, Solh Z, Oldenborg PA. Eryptosis in health and disease: A paradigm shift towards understanding the (patho)physiological implications of programmed cell death of erythrocytes. Blood Rev 2017; 31:349-361. [PMID: 28669393 DOI: 10.1016/j.blre.2017.06.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/05/2017] [Accepted: 06/15/2017] [Indexed: 12/19/2022]
Abstract
During the course of their natural ageing and upon injury, anucleate erythrocytes can undergo an unconventional apoptosis-like cell death, termed eryptosis. Eryptotic erythrocytes display a plethora of morphological alterations including volume reduction, membrane blebbing and breakdown of the membrane phospholipid asymmetry resulting in phosphatidylserine externalization which, in turn, mediates their phagocytic recognition and clearance from the circulation. Overall, the eryptosis machinery is tightly orchestrated by a wide array of endogenous mediators, ion channels, membrane receptors, and a host of intracellular signaling proteins. Enhanced eryptosis shortens the lifespan of circulating erythrocytes and confers a procoagulant phenotype; this phenomenon has been tangibly implicated in the pathogenesis of anemia, deranged microcirculation, and increased prothrombotic risk associated with a multitude of clinical conditions. Herein, we reviewed the molecular mechanisms dictating eryptosis and erythrophagocytosis and critically analyzed the current evidence leading to the pathophysiological ramifications of eryptotic cell death in the context of human disease.
Collapse
Affiliation(s)
- Syed M Qadri
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada; Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.
| | - Rosi Bissinger
- Department of Internal Medicine, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Ziad Solh
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada; Department of Pediatrics, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada; Medical Services and Innovation, Canadian Blood Services, Hamilton, ON, Canada
| | - Per-Arne Oldenborg
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
25
|
Qadri SM, Chen D, Schubert P, Perruzza DL, Bhakta V, Devine DV, Sheffield WP. Pathogen inactivation by riboflavin and ultraviolet light illumination accelerates the red blood cell storage lesion and promotes eryptosis. Transfusion 2016; 57:661-673. [DOI: 10.1111/trf.13959] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 11/09/2016] [Accepted: 11/09/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Syed M. Qadri
- Centre for Innovation, Canadian Blood Services; McMaster University; Hamilton Ontario Canada
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton Ontario Canada
| | - Deborah Chen
- Centre for Innovation, Canadian Blood Services; University of British Columbia; Vancouver British Columbia Canada
- Centre for Blood Research; University of British Columbia; Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver British Columbia Canada
| | - Peter Schubert
- Centre for Innovation, Canadian Blood Services; University of British Columbia; Vancouver British Columbia Canada
- Centre for Blood Research; University of British Columbia; Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver British Columbia Canada
| | - Darian L. Perruzza
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton Ontario Canada
| | - Varsha Bhakta
- Centre for Innovation, Canadian Blood Services; McMaster University; Hamilton Ontario Canada
| | - Dana V. Devine
- Centre for Innovation, Canadian Blood Services; University of British Columbia; Vancouver British Columbia Canada
- Centre for Blood Research; University of British Columbia; Vancouver British Columbia Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia; Vancouver British Columbia Canada
| | - William P. Sheffield
- Centre for Innovation, Canadian Blood Services; McMaster University; Hamilton Ontario Canada
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton Ontario Canada
| |
Collapse
|
26
|
Zhang L, McGraw KL, Sallman DA, List AF. The role of p53 in myelodysplastic syndromes and acute myeloid leukemia: molecular aspects and clinical implications. Leuk Lymphoma 2016; 58:1777-1790. [PMID: 27967292 DOI: 10.1080/10428194.2016.1266625] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
TP53 gene mutations occurring in patients with myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are associated with high-risk karyotypes including 17p abnormalities, monosomal and complex cytogenetics. TP53 mutations in these disorders portend rapid disease progression and resistance to conventional therapeutics. Notably, the size of the TP53 mutant clone as measured by mutation allele burden is directly linked to overall survival (OS) confirming the importance of p53 as a negative prognostic variable. In nucleolar stress-induced ribosomopathies, such as del(5q) MDS, disassociation of MDM2 and p53 results in p53 accumulation in erythroid precursors manifested as erythroid hypoplasia. P53 antagonism by lenalidomide or other therapeutics such as antisense oligonucleotides, repopulates erythroid precursors and enhances effective erythropoiesis. These findings demonstrate that p53 is an intriguing therapeutic target that is currently under investigation in MDS and AML. This study reviews molecular advances in understanding the role of p53 in MDS and AML, and explores potential therapeutic strategies in this era of personalized medicine.
Collapse
Affiliation(s)
- Ling Zhang
- a Department of Hematopathology and Laboratory Medicine , H. Lee Moffitt Cancer Center and Research Institute , Tampa , FL , USA
| | - Kathy L McGraw
- b Department of Malignant Hematology , H. Lee Moffitt Cancer Center and Research Institute , Tampa , FL , USA
| | - David A Sallman
- b Department of Malignant Hematology , H. Lee Moffitt Cancer Center and Research Institute , Tampa , FL , USA
| | - Alan F List
- b Department of Malignant Hematology , H. Lee Moffitt Cancer Center and Research Institute , Tampa , FL , USA
| |
Collapse
|
27
|
Bissinger R, Lang E, Ghashghaeinia M, Singh Y, Zelenak C, Fehrenbacher B, Honisch S, Chen H, Fakhri H, Umbach AT, Liu G, Rexhepaj R, Liu G, Schaller M, Mack AF, Lupescu A, Birnbaumer L, Lang F, Qadri SM. Blunted apoptosis of erythrocytes in mice deficient in the heterotrimeric G-protein subunit Gαi2. Sci Rep 2016; 6:30925. [PMID: 27499046 PMCID: PMC4976336 DOI: 10.1038/srep30925] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 07/11/2016] [Indexed: 01/09/2023] Open
Abstract
Putative functions of the heterotrimeric G-protein subunit Gαi2-dependent signaling include ion channel regulation, cell differentiation, proliferation and apoptosis. Erythrocytes may, similar to apoptosis of nucleated cells, undergo eryptosis, characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine (PS) exposure. Eryptosis may be triggered by increased cytosolic Ca2+ activity and ceramide. In the present study, we show that Gαi2 is expressed in both murine and human erythrocytes and further examined the survival of erythrocytes drawn from Gαi2-deficient mice (Gαi2−/−) and corresponding wild-type mice (Gαi2+/+). Our data show that plasma erythropoietin levels, erythrocyte maturation markers, erythrocyte counts, hematocrit and hemoglobin concentration were similar in Gαi2−/− and Gαi2+/+ mice but the mean corpuscular volume was significantly larger in Gαi2−/− mice. Spontaneous PS exposure of circulating Gαi2−/− erythrocytes was significantly lower than that of circulating Gαi2+/+ erythrocytes. PS exposure was significantly lower in Gαi2−/− than in Gαi2+/+ erythrocytes following ex vivo exposure to hyperosmotic shock, bacterial sphingomyelinase or C6 ceramide. Erythrocyte Gαi2 deficiency further attenuated hyperosmotic shock-induced increase of cytosolic Ca2+ activity and cell shrinkage. Moreover, Gαi2−/− erythrocytes were more resistant to osmosensitive hemolysis as compared to Gαi2+/+ erythrocytes. In conclusion, Gαi2 deficiency in erythrocytes confers partial protection against suicidal cell death.
Collapse
Affiliation(s)
- Rosi Bissinger
- Institute of Cardiology, Vascular Medicine and Physiology, University of Tuebingen, Germany
| | - Elisabeth Lang
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of Duesseldorf, Germany
| | - Mehrdad Ghashghaeinia
- Institute of Cardiology, Vascular Medicine and Physiology, University of Tuebingen, Germany
| | - Yogesh Singh
- Institute of Cardiology, Vascular Medicine and Physiology, University of Tuebingen, Germany
| | - Christine Zelenak
- Department of Internal Medicine, Charité Medical University, Berlin, Germany
| | | | - Sabina Honisch
- Institute of Cardiology, Vascular Medicine and Physiology, University of Tuebingen, Germany
| | - Hong Chen
- Institute of Cardiology, Vascular Medicine and Physiology, University of Tuebingen, Germany
| | - Hajar Fakhri
- Institute of Cardiology, Vascular Medicine and Physiology, University of Tuebingen, Germany
| | - Anja T Umbach
- Institute of Cardiology, Vascular Medicine and Physiology, University of Tuebingen, Germany
| | - Guilai Liu
- Institute of Cardiology, Vascular Medicine and Physiology, University of Tuebingen, Germany
| | - Rexhep Rexhepaj
- Institute of Cardiology, Vascular Medicine and Physiology, University of Tuebingen, Germany.,Institute of Biochemistry and Molecular Biology, University of Bonn, Germany
| | - Guoxing Liu
- Institute of Cardiology, Vascular Medicine and Physiology, University of Tuebingen, Germany
| | | | | | - Adrian Lupescu
- Institute of Cardiology, Vascular Medicine and Physiology, University of Tuebingen, Germany
| | - Lutz Birnbaumer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, USA
| | - Florian Lang
- Institute of Cardiology, Vascular Medicine and Physiology, University of Tuebingen, Germany
| | - Syed M Qadri
- Institute of Cardiology, Vascular Medicine and Physiology, University of Tuebingen, Germany.,Institute of Biomedical Research (BIOMED), School of Medical Sciences, Catholic University of Argentina, Buenos Aires, Argentina.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
28
|
Signoretto E, Zierle J, Bhuyan AAM, Castagna M, Lang F. Ceranib-2-induced suicidal erythrocyte death. Cell Biochem Funct 2016; 34:359-66. [PMID: 27291470 DOI: 10.1002/cbf.3196] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 12/30/2022]
Abstract
Ceramide is known to trigger apoptosis of nucleated cells and eryptosis of erythrocytes. Eryptosis is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Besides ceramide, stimulators of eryptosis include increase of cytosolic Ca(2+) -activity ([Ca(2+) ]i ) and oxidative stress. Ceramide is degraded by acid ceramidase and inhibition of the enzyme similarly triggers apoptosis. The present study explored, whether ceramidase inhibitor Ceranib-2 induces eryptosis. Flow cytometry was employed to quantify phosphatidylserine-exposure at the cell surface from annexin-V-binding, cell volume from forward scatter, [Ca(2+) ]i from Fluo3-fluorescence, reactive oxygen species (ROS) from DCF dependent fluorescence, and ceramide abundance utilizing specific antibodies. Hemolysis was estimated from hemoglobin concentration in the supernatant. A 48 h exposure of human erythrocytes to Ceranib-2 significantly increased the percentage of annexin-V-binding cells (≥50 μM) and the percentage of hemolytic cells (≥10 μM) without significantly modifying forward scatter. Ceranib-2 significantly increased Fluo3-fluorescence, DCF fluorescence and ceramide abundance. The effect of Ceranib-2 on annexin-V-binding was not significantly blunted by removal of extracellular Ca(2+) . Ceranib-2 triggers phospholipid scrambling of the erythrocyte cell membrane, an effect at least in part due to increase of ceramide abundance and induction of oxidative stress, but not dependent on Ca(2+) entry. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Elena Signoretto
- Departments of Physiology and Cardiology & Cardiovascular Medicine, Eberhard-Karls-University of Tuebingen, Tuebingen, Germany.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Jens Zierle
- Departments of Physiology and Cardiology & Cardiovascular Medicine, Eberhard-Karls-University of Tuebingen, Tuebingen, Germany
| | - Abdulla Al Mamun Bhuyan
- Departments of Physiology and Cardiology & Cardiovascular Medicine, Eberhard-Karls-University of Tuebingen, Tuebingen, Germany
| | - Michela Castagna
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Florian Lang
- Departments of Physiology and Cardiology & Cardiovascular Medicine, Eberhard-Karls-University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
29
|
HIV-1 Protease in the Fission Yeast Schizosaccharomyces pombe. PLoS One 2016; 11:e0151286. [PMID: 26982200 PMCID: PMC4794156 DOI: 10.1371/journal.pone.0151286] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/25/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND HIV-1 protease (PR) is an essential viral enzyme. Its primary function is to proteolyze the viral Gag-Pol polyprotein for production of viral enzymes and structural proteins and for maturation of infectious viral particles. Increasing evidence suggests that PR cleaves host cellular proteins. However, the nature of PR-host cellular protein interactions is elusive. This study aimed to develop a fission yeast (Schizosaccharomyces pombe) model system and to examine the possible interaction of HIV-1 PR with cellular proteins and its potential impact on cell proliferation and viability. RESULTS A fission yeast strain RE294 was created that carried a single integrated copy of the PR gene in its chromosome. The PR gene was expressed using an inducible nmt1 promoter so that PR-specific effects could be measured. HIV-1 PR from this system cleaved the same indigenous viral p6/MA protein substrate as it does in natural HIV-1 infections. HIV-1 PR expression in fission yeast cells prevented cell proliferation and induced cellular oxidative stress and changes in mitochondrial morphology that led to cell death. Both these PR activities can be prevented by a PR-specific enzymatic inhibitor, indinavir, suggesting that PR-mediated proteolytic activities and cytotoxic effects resulted from enzymatic activities of HIV-1 PR. Through genome-wide screening, a serine/threonine kinase, Hhp2, was identified that suppresses HIV-1 PR-induced protease cleavage and cell death in fission yeast and in mammalian cells, where it prevented PR-induced apoptosis and cleavage of caspase-3 and caspase-8. CONCLUSIONS This is the first report to show that HIV-1 protease is functional as an enzyme in fission yeast, and that it behaves in a similar manner as it does in HIV-1 infection. HIV-1 PR-induced cell death in fission yeast could potentially be used as an endpoint for mechanistic studies, and this system could be used for developing a high-throughput system for drug screenings.
Collapse
|
30
|
Qadri SM, Donkor DA, Bhakta V, Eltringham-Smith LJ, Dwivedi DJ, Moore JC, Pepler L, Ivetic N, Nazi I, Fox-Robichaud AE, Liaw PC, Sheffield WP. Phosphatidylserine externalization and procoagulant activation of erythrocytes induced by Pseudomonas aeruginosa virulence factor pyocyanin. J Cell Mol Med 2016; 20:710-20. [PMID: 26781477 PMCID: PMC5125577 DOI: 10.1111/jcmm.12778] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/04/2015] [Indexed: 12/16/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa causes a wide range of infections in multiple hosts by releasing an arsenal of virulence factors such as pyocyanin. Despite numerous reports on the pleiotropic cellular targets of pyocyanin toxicity in vivo, its impact on erythrocytes remains elusive. Erythrocytes undergo an apoptosis‐like cell death called eryptosis which is characterized by cell shrinkage and phosphatidylserine (PS) externalization; this process confers a procoagulant phenotype on erythrocytes as well as fosters their phagocytosis and subsequent clearance from the circulation. Herein, we demonstrate that P. aeruginosa pyocyanin‐elicited PS exposure and cell shrinkage in erythrocyte while preserving the membrane integrity. Mechanistically, exposure of erythrocytes to pyocyanin showed increased cytosolic Ca2+ activity as well as Ca2+‐dependent proteolytic processing of μ‐calpain. Pyocyanin further up‐regulated erythrocyte ceramide abundance and triggered the production of reactive oxygen species. Pyocyanin‐induced increased PS externalization in erythrocytes translated into enhanced prothrombin activation and fibrin generation in plasma. As judged by carboxyfluorescein succinimidyl‐ester labelling, pyocyanin‐treated erythrocytes were cleared faster from the murine circulation as compared to untreated erythrocytes. Furthermore, erythrocytes incubated in plasma from patients with P. aeruginosa sepsis showed increased PS exposure as compared to erythrocytes incubated in plasma from healthy donors. In conclusion, the present study discloses the eryptosis‐inducing effect of the virulence factor pyocyanin, thereby shedding light on a potentially important mechanism in the systemic complications of P. aeruginosa infection.
Collapse
Affiliation(s)
- Syed M Qadri
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - David A Donkor
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Varsha Bhakta
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada
| | | | - Dhruva J Dwivedi
- Thrombosis and Atherosclerosis Research Institute (TaARI), McMaster University, Hamilton, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jane C Moore
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Laura Pepler
- Thrombosis and Atherosclerosis Research Institute (TaARI), McMaster University, Hamilton, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Nikola Ivetic
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Ishac Nazi
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Alison E Fox-Robichaud
- Thrombosis and Atherosclerosis Research Institute (TaARI), McMaster University, Hamilton, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Patricia C Liaw
- Thrombosis and Atherosclerosis Research Institute (TaARI), McMaster University, Hamilton, ON, Canada.,Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - William P Sheffield
- Centre for Innovation, Canadian Blood Services, Hamilton, ON, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
31
|
Officioso A, Manna C, Alzoubi K, Lang F. Bromfenvinphos induced suicidal death of human erythrocytes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 126:58-63. [PMID: 26778435 DOI: 10.1016/j.pestbp.2015.07.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 07/23/2015] [Accepted: 07/23/2015] [Indexed: 06/05/2023]
Abstract
The organophosphorus pesticide bromfenvinphos ((E,Z)-O,O-diethyl-O-[1-(2,4-dichlorophenyl)-2-bromovinyl] phosphate) has been shown to decrease hematocrit and hemoglobin levels in blood presumably by triggering oxidative stress of erythrocytes. Oxidative stress is known to activate erythrocytic Ca(2+) permeable unselective cation channels leading to Ca(2+) entry and increase of cytosolic Ca(2+) activity ([Ca(2+)]i), which in turn triggers eryptosis, the suicidal death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. The present study explored, whether and how bromfenvinphos induces eryptosis. To this end, phosphatidylserine exposure at the cell surface was estimated from annexin-V-binding, cell volume from forward scatter, hemolysis from hemoglobin release, [Ca(2+)]i from Fluo3-fluorescence, and ROS formation from DCFDA dependent fluorescence. As a result, a 48hour exposure of human erythrocytes to bromfenvinphos (≥100μM) significantly increased the percentage of annexin-V-binding cells, significantly decreased forward scatter, significantly increased Fluo3-fluorescence, and significantly increased DCFDA fluorescence. The effect of bromfenvinphos on annexin-V-binding and forward scatter was significantly blunted, but not abolished by removal of extracellular Ca(2+). In conclusion, bromfenvinphos triggers cell shrinkage and phospholipid scrambling of the erythrocyte cell membrane, an effect in part due to stimulation of ROS formation and Ca(2+) entry.
Collapse
Affiliation(s)
- Arbace Officioso
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany; Department of Biochemistry, Biophysics and General Pathology, School of Medicine and Surgery, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Caterina Manna
- Department of Biochemistry, Biophysics and General Pathology, School of Medicine and Surgery, Second University of Naples, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Kousi Alzoubi
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany
| | - Florian Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| |
Collapse
|
32
|
Attanasio P, Bissinger R, Haverkamp W, Pieske B, Wutzler A, Lang F. Enhanced suicidal erythrocyte death in acute cardiac failure. Eur J Clin Invest 2015; 45:1316-24. [PMID: 26479159 DOI: 10.1111/eci.12555] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/15/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND A common complication of acute cardiac failure (AHF) is anaemia, which negatively influences the clinical outcome. Causes of anaemia include enhanced eryptosis, a suicidal erythrocyte death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation. Signalling triggering eryptosis include oxidative stress, increase of cytosolic Ca(2+) -activity ([Ca(2+) ]i ) and ceramide. The present study explored whether AHF is associated with accelerated eryptosis. MATERIALS AND METHODS Erythrocytes were drawn from healthy volunteers (n = 10) and patients hospitalized for AHF (n = 22). Phosphatidylserine exposure was estimated from annexin-V-binding, cell volume from forward scatter, [Ca(2+) ]i from Fluo3-fluorescence, ceramide abundance utilizing specific antibodies and reactive oxygen species (ROS) abundance from 2',7'-dichlorodihydrofluorescein diacetate (DCFDA) fluorescence, as determined by flow cytometry. RESULTS In AHF-patients, haemoglobin concentration (11·5 ± 0·5 g/dL), and haematocrit (35·6 ± 1·2%) were significantly lower than haemoglobin concentration (14·1 ± 0·4 g/dL), and haematocrit (40·1 ± 1·0%) in healthy volunteers, even though reticulocyte number was significantly higher in AHF patients (2·3 ± 0·3%) than in healthy volunteers (1·1 ± 0·2%). The percentage of erythrocytes exposing phosphatidylserine was significantly higher in AHF patients (1·8 ± 0·1%) than in healthy volunteers (1·2 ± 0·2%). The forward scatter was significantly lower and the ROS abundance significantly larger in AHF patients than in healthy volunteers. In erythrocytes drawn from healthy volunteers, phosphatidylserine and ROS abundance was increased to significantly higher values following a 24 h treatment with plasma from AHF patients than with plasma from healthy volunteers. CONCLUSION AHF leads to anaemia despite increased reticulocyte number and at least partially due to enhanced eryptosis. Underlying mechanisms include oxidative stress imposed by a plasma borne component.
Collapse
Affiliation(s)
- Philipp Attanasio
- Department of Cardiology, Charité, Campus Virchow Berlin, Berlin, Germany
| | - Rosi Bissinger
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Wilhelm Haverkamp
- Department of Cardiology, Charité, Campus Virchow Berlin, Berlin, Germany
| | - Burkert Pieske
- Department of Cardiology, Charité, Campus Virchow Berlin, Berlin, Germany
| | - Alexander Wutzler
- Department of Cardiology, Charité, Campus Virchow Berlin, Berlin, Germany
| | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
33
|
Abstract
INTRODUCTION The conventional term 'casein kinase' (CK) denotes three classes of kinases - CK1, CK2 and Golgi-CK (G-CK)/Fam20C (family with sequence similarity 20, member C) - sharing the ability to phoshorylate casein in vitro, but otherwise unrelated to each other. All CKs have been reported to be implicated in human diseases, and reviews individually dealing with the druggability of CK1 and CK2 are available. Our aim is to provide a comparative analysis of the three classes of CKs as therapeutic targets. AREAS COVERED CK2 is the CK for which implication in neoplasia is best documented, with the survival of cancer cells often relying on its overexpression. An ample variety of cell-permeable CK2 inhibitors have been developed, with a couple of these now in clinical trials. Isoform-specific CK1 inhibitors that are expected to play a beneficial role in oncology and neurodegeneration have been also developed. In contrast, the pathogenic potential of G-CK/Fam20C is caused by its loss of function. Activators of Fam20C, notably sphingolipids and their analogs, may prove beneficial in this respect. EXPERT OPINION Optimization of CK2 and CK1 inhibitors will prove useful to develop new therapeutic strategies for treating cancer and neurodegenerative disorders, while the design of potent activators of G-CK/Fam20C will provide a new tool in the fields of bio-mineralization and hypophosphatemic diseases.
Collapse
Affiliation(s)
- Giorgio Cozza
- a 1 University of Padova, Department of Biomedical Sciences , Via Ugo Bassi 58B, 35131 Padova, Italy
| | - Lorenzo A Pinna
- a 1 University of Padova, Department of Biomedical Sciences , Via Ugo Bassi 58B, 35131 Padova, Italy .,b 2 University of Padova, Department of Biomedical Sciences and CNR Institute of Neurosciences , Padova, Italy ;
| |
Collapse
|
34
|
Triggers, inhibitors, mechanisms, and significance of eryptosis: the suicidal erythrocyte death. BIOMED RESEARCH INTERNATIONAL 2015; 2015:513518. [PMID: 25821808 PMCID: PMC4364016 DOI: 10.1155/2015/513518] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 01/12/2015] [Accepted: 01/15/2015] [Indexed: 12/13/2022]
Abstract
Suicidal erythrocyte death or eryptosis is characterized by erythrocyte shrinkage, cell membrane blebbing, and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include Ca(2+) entry, ceramide formation, stimulation of caspases, calpain activation, energy depletion, oxidative stress, and dysregulation of several kinases. Eryptosis is triggered by a wide variety of xenobiotics. It is inhibited by several xenobiotics and endogenous molecules including NO and erythropoietin. The susceptibility of erythrocytes to eryptosis increases with erythrocyte age. Phosphatidylserine exposing erythrocytes adhere to the vascular wall by binding to endothelial CXC-Motiv-Chemokin-16/Scavenger-receptor for phosphatidylserine and oxidized low density lipoprotein (CXCL16). Phosphatidylserine exposing erythrocytes are further engulfed by phagocytosing cells and are thus rapidly cleared from circulating blood. Eryptosis eliminates infected or defective erythrocytes thus counteracting parasitemia in malaria and preventing detrimental hemolysis of defective cells. Excessive eryptosis, however, may lead to anemia and may interfere with microcirculation. Enhanced eryptosis contributes to the pathophysiology of several clinical disorders including metabolic syndrome and diabetes, malignancy, cardiac and renal insufficiency, hemolytic uremic syndrome, sepsis, mycoplasma infection, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, and Wilson's disease. Facilitating or inhibiting eryptosis may be a therapeutic option in those disorders.
Collapse
|
35
|
Lang E, Lang F. Mechanisms and pathophysiological significance of eryptosis, the suicidal erythrocyte death. Semin Cell Dev Biol 2015; 39:35-42. [PMID: 25636585 DOI: 10.1016/j.semcdb.2015.01.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 01/14/2015] [Accepted: 01/19/2015] [Indexed: 12/11/2022]
Abstract
Eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and cell membrane scrambling, is stimulated by Ca(2+) entry through Ca(2+)-permeable, PGE2-activated cation channels, by ceramide, caspases, calpain, complement, hyperosmotic shock, energy depletion, oxidative stress, and deranged activity of several kinases (e.g. AMPK, GK, PAK2, CK1α, JAK3, PKC, p38-MAPK). Eryptosis is triggered by intoxication, malignancy, hepatic failure, diabetes, chronic renal insufficiency, hemolytic uremic syndrome, dehydration, phosphate depletion, fever, sepsis, mycoplasma infection, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, and Wilson's disease. Eryptosis may precede and protect against hemolysis but by the same token result in anemia and deranged microcirculation.
Collapse
Affiliation(s)
- Elisabeth Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany
| | - Florian Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tübingen, Germany.
| |
Collapse
|
36
|
Lang E, Gatidis S, Freise NF, Bock H, Kubitz R, Lauermann C, Orth HM, Klindt C, Schuier M, Keitel V, Reich M, Liu G, Schmidt S, Xu HC, Qadri SM, Herebian D, Pandyra AA, Mayatepek E, Gulbins E, Lang F, Häussinger D, Lang KS, Föller M, Lang PA. Conjugated bilirubin triggers anemia by inducing erythrocyte death. Hepatology 2015; 61:275-84. [PMID: 25065608 PMCID: PMC4303990 DOI: 10.1002/hep.27338] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 07/24/2014] [Indexed: 12/17/2022]
Abstract
UNLABELLED Hepatic failure is commonly associated with anemia, which may result from gastrointestinal bleeding, vitamin deficiency, or liver-damaging diseases, such as infection and alcohol intoxication. At least in theory, anemia during hepatic failure may result from accelerated clearance of circulating erythrocytes. Here we show that bile duct ligation (BDL) in mice leads to severe anemia despite increased reticulocyte numbers. Bilirubin stimulated suicidal death of human erythrocytes. Mechanistically, bilirubin triggered rapid Ca(2+) influx, sphingomyelinase activation, formation of ceramide, and subsequent translocation of phosphatidylserine to the erythrocyte surface. Consistent with our in vitro and in vivo findings, incubation of erythrocytes in serum from patients with liver disease induced suicidal death of erythrocytes in relation to their plasma bilirubin concentration. Consistently, patients with hyperbilirubinemia had significantly lower erythrocyte and significantly higher reticulocyte counts compared to patients with low bilirubin levels. CONCLUSION Bilirubin triggers suicidal erythrocyte death, thus contributing to anemia during liver disease.
Collapse
Affiliation(s)
- Elisabeth Lang
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of DüsseldorfDüsseldorf, Germany,Department of Physiology, University of TübingenTübingen, Germany
| | - Sergios Gatidis
- Department of Physiology, University of TübingenTübingen, Germany
| | - Noemi F Freise
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of DüsseldorfDüsseldorf, Germany
| | - Hans Bock
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of DüsseldorfDüsseldorf, Germany
| | - Ralf Kubitz
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of DüsseldorfDüsseldorf, Germany
| | - Christian Lauermann
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of DüsseldorfDüsseldorf, Germany
| | - Hans Martin Orth
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of DüsseldorfDüsseldorf, Germany
| | - Caroline Klindt
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of DüsseldorfDüsseldorf, Germany
| | - Maximilian Schuier
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of DüsseldorfDüsseldorf, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of DüsseldorfDüsseldorf, Germany
| | - Maria Reich
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of DüsseldorfDüsseldorf, Germany
| | - Guilai Liu
- Department of Physiology, University of TübingenTübingen, Germany
| | | | - Haifeng C Xu
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of DüsseldorfDüsseldorf, Germany
| | - Syed M Qadri
- Department of Physiology, University of TübingenTübingen, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University of DüsseldorfDüsseldorf, Germany
| | | | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University of DüsseldorfDüsseldorf, Germany
| | - Erich Gulbins
- Department of Molecular Biology, University of Duisburg-EssenEssen, Germany
| | - Florian Lang
- Department of Physiology, University of TübingenTübingen, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of DüsseldorfDüsseldorf, Germany
| | - Karl S Lang
- Institute of Immunology, University of Duisburg-EssenEssen, Germany
| | - Michael Föller
- Department of Physiology, University of TübingenTübingen, Germany
| | - Philipp A Lang
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of DüsseldorfDüsseldorf, Germany,Department of Molecular Medicine II, Heinrich Heine University DüsseldorfDüsseldorf, Germany
| |
Collapse
|
37
|
Alzoubi K, Calabrò S, Egler J, Faggio C, Lang F. Triggering of programmed erythrocyte death by alantolactone. Toxins (Basel) 2014; 6:3596-612. [PMID: 25533522 PMCID: PMC4280550 DOI: 10.3390/toxins6123596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/10/2014] [Accepted: 12/17/2014] [Indexed: 01/08/2023] Open
Abstract
The sesquiterpene alantolactone counteracts malignancy, an effect at least in part due to stimulation of suicidal death or apoptosis of tumor cells. Signaling of alantolactone induced apoptosis involves altered gene expression and mitochondrial depolarization. Erythrocytes lack mitochondria and nuclei but may enter suicidal death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the erythrocyte surface. Cellular mechanisms involved in triggering of eryptosis include increase of cytosolic Ca2+-activity ([Ca2+]i) and oxidative stress. The present study explored, whether alantolactone stimulates eryptosis. To this end, erythrocyte volume was estimated from forward scatter, phosphatidylserine-exposure at the erythrocyte surface from FITC-annexin-V-binding, [Ca2+]i from Fluo3-fluorescence, ceramide abundance from binding of fluorescent antibodies, and oxidative stress from 2',7'-dichlorodihydrofluorescein-diacetate (DCFDA) fluorescence. As a result, a 48 h exposure of human erythrocytes to alantolactone (≥20 μM) significantly decreased erythrocyte forward scatter and increased the percentage of annexin-V-binding cells. Alantolactone significantly increased Fluo3 fluorescence (60 μM), ceramide abundance (60 μM) and DCFDA fluorescence (≥40 μM). The effect of alantolactone (60 μM) on annexin-V-binding was not significantly modified by removal of extracellular Ca2+. In conclusion, alantolactone stimulates suicidal erythrocyte death or eryptosis, an effect paralleled by increase of [Ca2+]i, ceramide abundance and oxidative stress.
Collapse
Affiliation(s)
- Kousi Alzoubi
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Salvatrice Calabrò
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Jasmin Egler
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Caterina Faggio
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 S. Agata-Messina, Italy.
| | - Florian Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| |
Collapse
|
38
|
Calabrò S, Alzoubi K, Bissinger R, Faggio C, Lang F. Stimulation of Suicidal Erythrocyte Death by Ellipticine. Basic Clin Pharmacol Toxicol 2014; 116:485-92. [DOI: 10.1111/bcpt.12350] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 11/07/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Salvatrice Calabrò
- Department of Physiology; University of Tübingen; Tübingen Germany
- Department of Biological and Environmental Sciences; University of Messina; S. Agata-Messina Italy
| | - Kousi Alzoubi
- Department of Physiology; University of Tübingen; Tübingen Germany
| | - Rosi Bissinger
- Department of Physiology; University of Tübingen; Tübingen Germany
| | - Caterina Faggio
- Department of Biological and Environmental Sciences; University of Messina; S. Agata-Messina Italy
| | - Florian Lang
- Department of Physiology; University of Tübingen; Tübingen Germany
| |
Collapse
|
39
|
Calabrò S, Alzoubi K, Bissinger R, Jilani K, Faggio C, Lang F. Enhanced eryptosis following juglone exposure. Basic Clin Pharmacol Toxicol 2014; 116:460-7. [PMID: 25348830 DOI: 10.1111/bcpt.12340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/02/2014] [Indexed: 12/13/2022]
Abstract
Juglone, a quinone isolated from Juglans mandshurica Maxim, has previously been shown to be effective against malignancy. The effect is at least partially due to stimulation of suicidal death or apoptosis of tumour cells. On the other hand, juglone has been shown to counteract apoptosis, for example, of neurons. In analogy to apoptosis of nucleated cells, erythrocytes may enter eryptosis, a suicidal death characterized by cell shrinkage and breakdown of phosphatidylserine asymmetry of the cell membrane with phosphatidylserine exposure at the erythrocyte surface. Stimulators of eryptosis include increase in cytosolic Ca(2+) activity [(Ca(2+) )i]. This study explored whether juglone stimulates eryptosis. To this end, erythrocyte volume was estimated from forward scatter, phosphatidylserine exposure at the erythrocyte surface from FITC annexin V binding, ceramide abundance from binding of fluorescent antibodies in flow cytometry and cytosolic ATP with a luciferin-luciferase-based assay. As a result, a 24-hr exposure of human erythrocytes to juglone (5 μM) significantly decreased erythrocyte forward scatter. Juglone (1-5 μM) significantly increased the percentage of annexin V binding cells. Juglone (5 μM) significantly increased ceramide abundance at the erythrocyte surface and decreased erythrocyte ATP concentration. The effect of juglone (10 μM) on annexin V binding was slightly but significantly blunted by removal of extracellular Ca(2+) and by addition of protein kinase C (PKC) inhibitor staurosporine (1 μM). In conclusion, juglone stimulates suicidal erythrocyte death or eryptosis at least in part by upregulation of ceramide abundance, energy depletion and activation of PKC.
Collapse
Affiliation(s)
- Salvatrice Calabrò
- Department of Physiology, University of Tuebingen, Tuebingen, Germany; Department of Biological and Environmental Sciences, University of Messina, S. Agata-Messina, Italy
| | | | | | | | | | | |
Collapse
|
40
|
Malik A, Bissinger R, Calabrò S, Faggio C, Jilani K, Lang F. Aristolochic acid induced suicidal erythrocyte death. Kidney Blood Press Res 2014; 39:408-19. [PMID: 25412628 DOI: 10.1159/000368454] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Aristolochic Acid, a component of Aristolochia plants, has been shown to cause acute kidney injury, renal aristolochic acid nephropathy, Balkan endemic nephropathy, and urothelial carcinoma. Aristolochic acid nephropathy may be associated with severe anemia. The anemia could theoretically be due to stimulation of eryptosis, the suicidal death of erythrocytes characterized by cell shrinkage and cell membrane scrambling with translocation of phosphatidylserine to the erythrocyte cell membrane surface. Signalling involved in the stimulation of eryptosis include increase of cytosolic Ca(2+)-activity ([Ca(2+)]i) and formation of ceramide. METHODS Cell volume was estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, [Ca(2+)]i from Fluo3 fluorescence, and ceramide abundance from binding of fluorescent antibodies in flow cytometry. RESULTS A 48 hours exposure to Aristolochic Acid (≥ 75 µg/ml) was followed by a significant decrease of forward scatter and increase of annexin-V-binding. The effects were paralleled by a significant increase of [Ca(2+)]i and significantly blunted, but not abrogated by removal of extracellular Ca(2+). Aristolochic Acid further significantly increased ceramide abundance. CONCLUSIONS Aristolochic Acid triggers eryptosis, an effect at least in part due to entry of extracellular Ca(2+) and ceramide formation.
Collapse
Affiliation(s)
- Abaid Malik
- Department of Physiology, University of Tuebingen, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Bissinger R, Malik A, Warsi J, Jilani K, Lang F. Piperlongumine-induced phosphatidylserine translocation in the erythrocyte membrane. Toxins (Basel) 2014; 6:2975-88. [PMID: 25317837 PMCID: PMC4210880 DOI: 10.3390/toxins6102975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/02/2014] [Accepted: 09/24/2014] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Piperlongumine, a component of Piper longum fruit, is considered as a treatment for malignancy. It is effective by inducing apoptosis. Mechanisms involved in the apoptotic action of piperlongumine include oxidative stress and activation of p38 kinase. In analogy to apoptosis of nucleated cells, erythrocytes may undergo eryptosis, the suicidal death of erythrocytes characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine-exposure at the erythrocyte surface. Signaling involved in eryptosis include increase of cytosolic Ca²⁺-activity ([Ca²⁺]i), formation of ceramide, oxidative stress and activation of p38 kinase. METHODS Cell volume was estimated from forward scatter, phosphatidylserine-exposure from annexin V binding, [Ca²⁺]i from Fluo3 fluorescence, reactive oxygen species from 2',7'-dichlorodihydrofluorescein-diacetate fluorescence, and ceramide abundance from binding of fluorescent antibodies in flow cytometry. RESULTS A 48 h exposure to piperlongumine (30 µM) was followed by significant decrease of forward scatter and increase of annexin-V-binding. Piperlongumine did not significantly modify [Ca²⁺]i and the effect was not dependent on presence of extracellular Ca²⁺. Piperlongumine significantly increased ROS formation and ceramide abundance. CONCLUSIONS Piperlongumine triggers cell membrane scrambling, an effect independent from entry of extracellular Ca²⁺ but at least partially due to ROS and ceramide formation.
Collapse
Affiliation(s)
- Rosi Bissinger
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Abaid Malik
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Jamshed Warsi
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Kashif Jilani
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Florian Lang
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| |
Collapse
|
42
|
Alzoubi K, Calabrò S, Faggio C, Lang F. Stimulation of Suicidal Erythrocyte Death by Sulforaphane. Basic Clin Pharmacol Toxicol 2014; 116:229-35. [DOI: 10.1111/bcpt.12309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/05/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Kousi Alzoubi
- Department of Physiology; University of Tübingen; Tuebingen Germany
| | - Salvatrice Calabrò
- Department of Physiology; University of Tübingen; Tuebingen Germany
- Department of Biological and Environmental Sciences; University of Messina; S.Agata-Messina Italy
| | - Caterina Faggio
- Department of Biological and Environmental Sciences; University of Messina; S.Agata-Messina Italy
| | - Florian Lang
- Department of Physiology; University of Tübingen; Tuebingen Germany
| |
Collapse
|
43
|
Bissinger R, Malik A, Honisch S, Warsi J, Jilani K, Lang F. In vitro sensitization of erythrocytes to programmed cell death following baicalein treatment. Toxins (Basel) 2014; 6:2771-86. [PMID: 25238045 PMCID: PMC4179159 DOI: 10.3390/toxins6092771] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 11/27/2022] Open
Abstract
The polyphenolic flavonoid Baicalein has been shown to trigger suicidal death or apoptosis of tumor cells and is thus considered for the prevention and treatment of malignancy. Similar to apoptosis of nucleated cells, erythrocytes may enter eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine translocation to the erythrocyte surface. Stimulators of eryptosis include increase of cytosolic Ca2+-activity ([Ca2+]i) and ceramide. The present study explored whether Baicalein stimulates eryptosis. To this end, forward scatter was taken for measurement of cell volume, annexin-V-binding for phosphatidylserine-exposure, Fluo3 fluorescence for [Ca2+]i and fluorescent antibodies for ceramide abundance. As a result, a 48 h exposure of human erythrocytes to Baicalein was followed by significant decrease of forward scatter (≥10 µM), significant increase of the percentage of annexin-V-binding cells (≥25 µM), significant increase of [Ca2+]i (50 µM) and significant increase of ceramide abundance (50 µM). The effect of Baicalein (50 µM) on annexin-V-binding was significantly blunted but not abrogated by removal of extracellular Ca2+. In conclusion, at the concentrations employed, Baicalein stimulates suicidal erythrocyte death or eryptosis, an effect at least in part due to the combined effects of Ca2+ entry and ceramide formation.
Collapse
Affiliation(s)
- Rosi Bissinger
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Abaid Malik
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Sabina Honisch
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Jamshed Warsi
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| | - Kashif Jilani
- Department of Biochemistry, University of Agriculture, 38040 Faisalabad, Pakistan.
| | - Florian Lang
- Department of Physiology, University of Tübingen, Gmelinstr. 5, 72076 Tuebingen, Germany.
| |
Collapse
|
44
|
Abstract
The term 'casein kinase' has been widely used for decades to denote protein kinases sharing the ability to readily phosphorylate casein in vitro. These fall into three main classes: two of them, later renamed as protein kinases CK1 (casein kinase 1, also known as CKI) and CK2 (also known as CKII), are pleiotropic members of the kinome functionally unrelated to casein, whereas G-CK, or genuine casein kinase, responsible for the phosphorylation of casein in the Golgi apparatus of the lactating mammary gland, has only been identified recently with Fam20C [family with sequence similarity 20C; also known as DMP-4 (dentin matrix protein-4)], a member of the four-jointed family of atypical protein kinases, being responsible for the phosphorylation of many secreted proteins. In hindsight, therefore, the term 'casein kinase' is misleading in every instance; in the case of CK1 and CK2, it is because casein is not a physiological substrate, and in the case of G-CK/Fam20C/DMP-4, it is because casein is just one out of a plethora of its targets, and a rather marginal one at that. Strikingly, casein kinases altogether, albeit representing a minimal proportion of the whole kinome, appear to be responsible for the generation of up to 40-50% of non-redundant phosphosites currently retrieved in human phosphopeptides database. In the present review, a short historical explanation will be provided accounting for the usage of the same misnomer to denote three unrelated classes of protein kinases, together with an update of our current knowledge of these pleiotropic enzymes, sharing the same misnomer while playing very distinct biological roles.
Collapse
|
45
|
Malik A, Bissinger R, Jilani K, Lang F. Stimulation of erythrocyte cell membrane scrambling by nystatin. Basic Clin Pharmacol Toxicol 2014; 116:47-52. [PMID: 24894380 DOI: 10.1111/bcpt.12279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/26/2014] [Indexed: 12/11/2022]
Abstract
The antifungal ionophore nystatin dissipates the Na(+) and K(+) gradients across the cell membrane, leading to cellular gain of Na(+) and cellular loss of K(+) . The increase of cellular Na(+) concentration may result in Ca(2+) accumulation in exchange for Na(+) . Increase of cytosolic Ca(2+) activity ([Ca(2+) ]i ) and loss of cellular K(+) foster apoptosis-like suicidal erythrocyte death or eryptosis, which is characterised by cell shrinkage and cell membrane scrambling leading to phosphatidylserine exposure at the erythrocyte surface. The present study explored whether nystatin stimulates eryptosis. Cell volume was estimated from forward scatter (FSC), phosphatidylserine exposure from annexin V binding and [Ca(2+) ]i from Fluo3-fluorescence in flow cytometry. A 48-hr exposure to nystatin (15 μg/ml) was followed by a significant increase of [Ca(2+) ]i , a significant increase of annexin V binding and a significant decrease of FSC. The annexin V binding after nystatin treatment was significantly blunted in the nominal absence of extracellular Ca(2+) . Partial replacement of extracellular Na(+) with extracellular K(+) blunted the nystatin-induced erythrocyte shrinkage but increased [Ca(2+) ]i and annexin V binding. Nystatin triggers cell membrane scrambling, an effect at least partially due to entry of extracellular Ca(2+) .
Collapse
Affiliation(s)
- Abaid Malik
- Department of Physiology, University of Tuebingen, Tuebingen, Germany
| | | | | | | |
Collapse
|
46
|
Abstract
SIGNIFICANCE Eryptosis, the suicidal erythrocyte death, is characterized by cell shrinkage, membrane blebbing, and phosphatidylserine translocation to the outer membrane leaflet. Phosphatidylserine at the erythrocyte surface binds endothelial CXCL16/SR-PSOX (CXC-Motiv-Chemokin-16/Scavenger-receptor-for-phosphatidylserine-and-oxidized-low-density-lipoprotein) and fosters engulfment of affected erythrocytes by phagocytosing cells. Eryptosis serves to eliminate infected or defective erythrocytes, but excessive eryptosis may lead to anemia and may interfere with microcirculation. Clinical conditions with excessive eryptosis include diabetes, chronic renal failure, hemolytic uremic syndrome, sepsis, malaria, iron deficiency, sickle cell anemia, thalassemia, glucose 6-phosphate dehydrogenase deficiency, glutamate cysteine ligase modulator deficiency, and Wilson's disease. RECENT ADVANCES Eryptosis is triggered by a wide variety of xenobiotics and other injuries such as oxidative stress. Signaling of eryptosis includes prostaglandin E₂ formation with subsequent activation of Ca(2+)-permeable cation channels, Ca(2+) entry, activation of Ca(2+)-sensitive K(+) channels, and cell membrane scrambling, as well as phospholipase A2 stimulation with release of platelet-activating factor, sphingomyelinase activation, and ceramide formation. Eryptosis may involve stimulation of caspases and calpain with subsequent degradation of the cytoskeleton. It is regulated by AMP-activated kinase, cGMP-dependent protein kinase, Janus-activated kinase 3, casein kinase 1α, p38 kinase, and p21-activated kinase 2. It is inhibited by erythropoietin, antioxidants, and further small molecules. CRITICAL ISSUES It remains uncertain for most disorders whether eryptosis is rather beneficial because it precedes and thus prevents hemolysis or whether it is harmful because of induction of anemia and impairment of microcirculation. FUTURE DIRECTIONS This will address the significance of eryptosis, further mechanisms underlying eryptosis, and additional pharmacological tools fostering or inhibiting eryptosis.
Collapse
Affiliation(s)
- Florian Lang
- Department of Physiology, University of Tübingen , Tübingen, Germany
| | | | | | | |
Collapse
|
47
|
Bissinger R, Modicano P, Alzoubi K, Honisch S, Faggio C, Abed M, Lang F. Effect of saponin on erythrocytes. Int J Hematol 2014; 100:51-9. [DOI: 10.1007/s12185-014-1605-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 05/20/2014] [Accepted: 05/22/2014] [Indexed: 12/22/2022]
|
48
|
Knippschild U, Krüger M, Richter J, Xu P, García-Reyes B, Peifer C, Halekotte J, Bakulev V, Bischof J. The CK1 Family: Contribution to Cellular Stress Response and Its Role in Carcinogenesis. Front Oncol 2014; 4:96. [PMID: 24904820 PMCID: PMC4032983 DOI: 10.3389/fonc.2014.00096] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 04/18/2014] [Indexed: 12/19/2022] Open
Abstract
Members of the highly conserved and ubiquitously expressed pleiotropic CK1 family play major regulatory roles in many cellular processes including DNA-processing and repair, proliferation, cytoskeleton dynamics, vesicular trafficking, apoptosis, and cell differentiation. As a consequence of cellular stress conditions, interaction of CK1 with the mitotic spindle is manifold increased pointing to regulatory functions at the mitotic checkpoint. Furthermore, CK1 is able to alter the activity of key proteins in signal transduction and signal integration molecules. In line with this notion, CK1 is tightly connected to the regulation and degradation of β-catenin, p53, and MDM2. Considering the importance of CK1 for accurate cell division and regulation of tumor suppressor functions, it is not surprising that mutations and alterations in the expression and/or activity of CK1 isoforms are often detected in various tumor entities including cancer of the kidney, choriocarcinomas, breast carcinomas, oral cancer, adenocarcinomas of the pancreas, and ovarian cancer. Therefore, scientific effort has enormously increased (i) to understand the regulation of CK1 and its involvement in tumorigenesis- and tumor progression-related signal transduction pathways and (ii) to develop CK1-specific inhibitors for the use in personalized therapy concepts. In this review, we summarize the current knowledge regarding CK1 regulation, function, and interaction with cellular proteins playing central roles in cellular stress-responses and carcinogenesis.
Collapse
Affiliation(s)
- Uwe Knippschild
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Marc Krüger
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Julia Richter
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Pengfei Xu
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Balbina García-Reyes
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| | - Christian Peifer
- Institute for Pharmaceutical Chemistry, Christian Albrechts University , Kiel , Germany
| | - Jakob Halekotte
- Institute for Pharmaceutical Chemistry, Christian Albrechts University , Kiel , Germany
| | - Vasiliy Bakulev
- Department of Organic Synthesis, Ural Federal University , Ekaterinburg , Russia
| | - Joachim Bischof
- Department of General and Visceral Surgery, Surgery Center, Ulm University Hospital , Ulm , Germany
| |
Collapse
|
49
|
In vitro induction of erythrocyte phosphatidylserine translocation by the natural naphthoquinone shikonin. Toxins (Basel) 2014; 6:1559-74. [PMID: 24828755 PMCID: PMC4052252 DOI: 10.3390/toxins6051559] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/05/2014] [Accepted: 05/05/2014] [Indexed: 01/10/2023] Open
Abstract
Shikonin, the most important component of Lithospermum erythrorhizon, has previously been shown to exert antioxidant, anti-inflammatory, antithrombotic, antiviral, antimicrobial and anticancer effects. The anticancer effect has been attributed to the stimulation of suicidal cell death or apoptosis. Similar to the apoptosis of nucleated cells, erythrocytes may experience eryptosis, the suicidal erythrocyte death characterized by cell shrinkage and by phosphatidylserine translocation to the erythrocyte surface. Triggers of eryptosis include the increase of cytosolic Ca2+-activity ([Ca2+]i) and ceramide formation. The present study explored whether Shikonin stimulates eryptosis. To this end, Fluo 3 fluorescence was measured to quantify [Ca2+]i, forward scatter to estimate cell volume, annexin V binding to identify phosphatidylserine-exposing erythrocytes, hemoglobin release to determine hemolysis and antibodies to quantify ceramide abundance. As a result, a 48 h exposure of human erythrocytes to Shikonin (1 µM) significantly increased [Ca2+]i, increased ceramide abundance, decreased forward scatter and increased annexin V binding. The effect of Shikonin (1 µM) on annexin V binding was significantly blunted, but not abolished by the removal of extracellular Ca2+. In conclusion, Shikonin stimulates suicidal erythrocyte death or eryptosis, an effect at least partially due to the stimulation of Ca2+ entry and ceramide formation.
Collapse
|
50
|
Bissinger R, Malik A, Jilani K, Lang F. Triggering of erythrocyte cell membrane scrambling by salinomycin. Basic Clin Pharmacol Toxicol 2014; 115:396-402. [PMID: 24717091 DOI: 10.1111/bcpt.12250] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/31/2014] [Indexed: 12/13/2022]
Abstract
Salinomycin, a polyether ionophore antibiotic effective against a variety of pathogens, has been shown to trigger apoptosis of cancer cells and cancer stem cells. The substance is thus considered for the treatment of malignancy. Salinomycin compromises tumour cell survival at least in part by interference with mitochondrial function. Erythrocytes lack mitochondria but may undergo apoptosis-like suicidal cell death or eryptosis, which is characterized by scrambling of the cell membrane with phosphatidylserine exposure at the erythrocyte surface. Signalling involved in the triggering of eryptosis includes activation of oxidant-sensitive Ca(2+) permeable cation channels with subsequent increase in cytosolic Ca(2+) activity ([Ca(2+)]i). This study explored whether salinomycin stimulates eryptosis. Phosphatidylserine-exposing erythrocytes were identified by measurement of annexin-V binding, cell volume was estimated from forward scatter, haemolysis determined from haemoglobin release, [Ca(2+)]i quantified utilizing Fluo3-fluorescence and oxidative stress from 2',7' dichlorodihydrofluorescein diacetate (DCFDA) fluorescence in flow cytometry. A 48-hr exposure to salinomycin (5-100 nM) was followed by a significant increase in Fluo3-fluorescence, DCFDA fluorescence and annexin-V binding, as well as a significant decrease in forward scatter (at 5-10 nM, but not at 50 and 100 nM). The annexin-V binding after salinomycin treatment was significantly blunted but not abrogated in the nominal absence of extracellular Ca(2+) or in the presence of antioxidant n-acetyl cysteine (1 mM). Salinomycin triggers cell membrane scrambling, an effect at least partially due to oxidative stress and entry of extracellular Ca(2+).
Collapse
Affiliation(s)
- Rosi Bissinger
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | |
Collapse
|