1
|
Zhang J, Guan X, Zhong X. Immunosenescence in digestive system cancers: Mechanisms, research advances, and therapeutic strategies. Semin Cancer Biol 2024; 106-107:234-250. [PMID: 39510149 DOI: 10.1016/j.semcancer.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024]
Abstract
Increasing lifespans and external environmental factors have contributed to the increase of age-related diseases, particularly cancer. A decrease in immune surveillance and clearance of cancer cells is the result of immunosenescence, which involves the remodeling of immune organs, the changes and functional decline of immune cell subsets, in association with systemic low-grade chronic inflammation. Stem cells aging in bone marrow and thymic involution are the most important causes of immunosenescence. Senescent cancer cells promote the differentiation, recruitment, and functional upregulation of immune-suppressive cell subsets e.g. regulatory T cells (Tregs), myeloid-derived suppressor cell (MDSC), tumor-associated macrophages (TAMS) through senescence-associated secretory phenotype (SASP) further exacerbating the immunosuppressive microenvironment. For digestive system cancers, age-related damage to the intestinal mucosal barrier, the aging of gut-associated lymphoid tissue (GALT), exposure to xenobiotic stimuli throughout life, and dysbiosis make the local immune microenvironment more vulnerable. This article systematically reviews the research progress of immunosenescence and immune microenvironment in digestive system cancers, as well as the exploration of related therapy strategies, hoping to point out new directions for research in the digestive system cancers.
Collapse
Affiliation(s)
- Junyan Zhang
- Department of Surgical Oncology and General Surgery, First Affiliated Hospital, China Medical University, Shenyang, China
| | - Xiaojiao Guan
- Department of Pathology, Shengjing Hospital, China Medical University, Shenyang, China.
| | - Xinwen Zhong
- Department of Thoracic Surgery, First Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Mancinetti F, Marinelli A, Boccardi V, Mecocci P. Challenges of infectious diseases in older adults: From immunosenescence and inflammaging through antibiotic resistance to management strategies. Mech Ageing Dev 2024; 222:111998. [PMID: 39447983 DOI: 10.1016/j.mad.2024.111998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Infectious diseases in older adults present a significant challenge to the healthcare system, marked by increased morbidity, mortality, and rising costs of care. Age-related changes (ARCs) in the immune system, including immunosenescence and inflammaging, contribute to heightened susceptibility to severe infections and reduced vaccine responsiveness. Additionally, alterations in the normal microbial flora due to aging and factors such as antibiotic therapy predispose older individuals to infections and age-related diseases. Changes in body composition also affect the pharmacokinetics and pharmacodynamics of drugs, complicating the management of antibiotics and leading to potential overdoses, adverse drug reactions, or underdoses that foster antibiotic resistance. The inappropriate use of antibiotics has exacerbated the emergence of multidrug-resistant pathogens, posing a critical global concern. This narrative review provides an overview of immunosenescence and inflammaging and focuses on three major infectious diseases affecting older adults: bacterial pneumonia, urinary tract infections, and Clostridium difficile infections. Through this exploration, we aim to highlight the need for targeted approaches in managing infectious diseases in the aging population.
Collapse
Affiliation(s)
- Francesca Mancinetti
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia-Santa Maria della Misericordia Hospital, Perugia, Italy
| | - Anna Marinelli
- Clinical of Internal Medicine, Department of Medical Surgical and Health Science, University of Trieste, Cattinara Hospital, Trieste, Italy
| | - Virginia Boccardi
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia-Santa Maria della Misericordia Hospital, Perugia, Italy.
| | - Patrizia Mecocci
- Division of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia-Santa Maria della Misericordia Hospital, Perugia, Italy; Division of Clinical Geriatrics, NVS Department, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Xu LL, Chen X, Cheng JP. The effect of T cell aging on the change of human tissue structure. Immun Ageing 2024; 21:26. [PMID: 38689298 PMCID: PMC11059612 DOI: 10.1186/s12979-024-00433-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024]
Abstract
The trend of aging of the global population is becoming more and more significant, and the incidence of age-related diseases continues to rise.This phenomenon makes the problem of aging gradually attracted wide attention of the society, and gradually developed into an independent research field.As a vital defense mechanism of the human body, the immune system changes significantly during the aging process.Age-induced changes in the body's immune system are considered harmful and are commonly referred to as immune aging, which may represent the beginning of systemic aging.Immune cells, especially T cells, are the biggest influencers and participants in age-related deterioration of immune function, making older people more susceptible to different age-related diseases.More and more evidence shows that T cells play an important role in the change of human tissue structure after aging, which fundamentally affects the health and survival of the elderly.In this review, we discuss the general characteristics of age-related T cell immune alterations and the possible effects of aging T cells in various tissue structures in the human body.
Collapse
Affiliation(s)
- Ling-Ling Xu
- Medical College, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, China
| | - Xiang Chen
- Medical College, School of Medicine, Wuhan University of Science and Technology, Wuhan, 430065, Hubei, China
| | - Jing-Ping Cheng
- Department of Gerontology, CR & WISCO General Hospital, Wuhan University of Science and Technology, Wuhan, Hubei, 430080, China.
| |
Collapse
|
4
|
Quiros-Roldan E, Sottini A, Natali PG, Imberti L. The Impact of Immune System Aging on Infectious Diseases. Microorganisms 2024; 12:775. [PMID: 38674719 PMCID: PMC11051847 DOI: 10.3390/microorganisms12040775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Immune system aging is becoming a field of increasing public health interest because of prolonged life expectancy, which is not paralleled by an increase in health expectancy. As age progresses, innate and adaptive immune systems undergo changes, which are defined, respectively, as inflammaging and immune senescence. A wealth of available data demonstrates that these two conditions are closely linked, leading to a greater vulnerability of elderly subjects to viral, bacterial, and opportunistic infections as well as lower post-vaccination protection. To face this novel scenario, an in-depth assessment of the immune players involved in this changing epidemiology is demanded regarding the individual and concerted involvement of immune cells and mediators within endogenous and exogenous factors and co-morbidities. This review provides an overall updated description of the changes affecting the aging immune system, which may be of help in understanding the underlying mechanisms associated with the main age-associated infectious diseases.
Collapse
Affiliation(s)
- Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, ASST- Spedali Civili and DSCS- University of Brescia, 25123 Brescia, Italy;
| | - Alessandra Sottini
- Clinical Chemistry Laboratory, Services Department, ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Pier Giorgio Natali
- Mediterranean Task Force for Cancer Control (MTCC), Via Pizzo Bernina, 14, 00141 Rome, Italy;
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, P. le Spedali Civili, 1, 25123 Brescia, Italy
| |
Collapse
|
5
|
Shemtov SJ, Emani R, Bielska O, Covarrubias AJ, Verdin E, Andersen JK, Winer DA. The intestinal immune system and gut barrier function in obesity and ageing. FEBS J 2023; 290:4163-4186. [PMID: 35727858 PMCID: PMC9768107 DOI: 10.1111/febs.16558] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/29/2022] [Accepted: 06/20/2022] [Indexed: 08/13/2023]
Abstract
Obesity and ageing predispose to numerous, yet overlapping chronic diseases. For example, metabolic abnormalities, including insulin resistance (IR) and type 2 diabetes (T2D) are important causes of morbidity and mortality. Low-grade chronic inflammation of tissues, such as the liver, visceral adipose tissue and neurological tissues, is considered a significant contributor to these chronic diseases. Thus, it is becoming increasingly important to understand what drives this inflammation in affected tissues. Recent evidence, especially in the context of obesity, suggests that the intestine plays an important role as the gatekeeper of inflammatory stimuli that ultimately fuels low-grade chronic tissue inflammation. In addition to metabolic diseases, abnormalities in the intestinal mucosal barrier have been linked to a range of other chronic inflammatory conditions, such as neurodegeneration and ageing. The flow of inflammatory stimuli from the gut is in part controlled by local immunological inputs impacting the intestinal barrier. Here, we will review the impact of obesity and ageing on the intestinal immune system and its downstream consequences on gut barrier function, which is strongly implicated in the pathogenesis of obesity and age-related diseases. In particular, we will discuss the effects of age-related intestinal dysfunction on neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarah J. Shemtov
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Rohini Emani
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Olga Bielska
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Anthony J. Covarrubias
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095 USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095 USA
| | - Eric Verdin
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Julie K. Andersen
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
| | - Daniel A. Winer
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA
- Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Research Institute (TGRI), University Health Network, 101 College Street, Toronto, ON, M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
- Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
6
|
Meng G, Monaghan TM, Duggal NA, Tighe P, Peerani F. Microbial-Immune Crosstalk in Elderly-Onset Inflammatory Bowel Disease: Unchartered Territory. J Crohns Colitis 2023; 17:1309-1325. [PMID: 36806917 DOI: 10.1093/ecco-jcc/jjad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Indexed: 02/23/2023]
Abstract
Elderly-onset inflammatory bowel disease [IBD] patients exhibit a distinct natural history compared to younger IBD patients, with unique disease phenotypes, differential responses to therapy, and increased surgical morbidity and mortality. Despite the foreseeable high demand for personalized medicine and specialized IBD care in the elderly, current paradigms of IBD management fail to capture the required nuances of care for elderly-onset IBD patients. Our review postulates the roles of systemic and mucosal immunosenescence, inflammageing and a dysbiotic microbial ecosystem in the pathophysiology of elderly-onset IBD. Ultimately, a better understanding of elderly-onset IBD can lead to improved patient outcomes and the tailoring of future preventative and treatment strategies.
Collapse
Affiliation(s)
- Guanmin Meng
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Niharika A Duggal
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Paddy Tighe
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Farhad Peerani
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Quarleri J. Poliomyelitis is a current challenge: long-term sequelae and circulating vaccine-derived poliovirus. GeroScience 2022; 45:707-717. [PMID: 36260265 PMCID: PMC9886775 DOI: 10.1007/s11357-022-00672-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/12/2022] [Indexed: 02/03/2023] Open
Abstract
For more than 20 years, the World Health Organization Western Pacific Region (WPR) has been polio-free. However, two current challenges are still polio-related. First, around half of poliomyelitis elderly survivors suffer late poliomyelitis sequelae with a substantial impact on daily activities and quality of life, experiencing varying degrees of residual weakness as they age. The post-polio syndrome as well as accelerated aging may be involved. Second, after the worldwide Sabin oral poliovirus (OPV) vaccination, the recent reappearance of strains of vaccine-derived poliovirus (VDPV) circulating in the environment is worrisome and able to persistent person-to-person transmission. Such VDPV strains exhibit atypical genetic characteristics and reversed neurovirulence that can cause paralysis similarly to wild poliovirus, posing a significant obstacle to the elimination of polio. Immunization is essential for preventing paralysis in those who are exposed to the poliovirus. Stress the necessity of maintaining high vaccination rates because declining immunity increases the likelihood of reemergence. If mankind wants to eradicate polio in the near future, measures to raise immunization rates and living conditions in poorer nations are needed, along with strict observation. New oral polio vaccine candidates offer a promissory tool for this goal.
Collapse
Affiliation(s)
- Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina. .,Consejo de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
8
|
Ebersole JL, Nagarajan R, Kirakodu SS, Gonzalez OA. Immunoglobulin gene expression profiles and microbiome characteristics in periodontitis in nonhuman primates. Mol Immunol 2022; 148:18-33. [PMID: 35665658 DOI: 10.1016/j.molimm.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 04/20/2022] [Accepted: 05/16/2022] [Indexed: 11/19/2022]
Abstract
Colonization of mucosal tissues throughout the body occurs by a wide array of bacteria in the microbiome that stimulate the cells and tissues, as well as respond to changes in the local milieu. A feature of periodontitis is the detection of adaptive immune responses to members of the oral microbiome that show specificity and changes with disease and treatment. Thus, variations in antibody responses are noted across the population and affected by aging, albeit, data are still unclear as to how these differences relate to disease risk and expression. This study used a nonhuman primate model of experimental periodontitis to track local microbiome changes as they related to the use and expression of a repertoire of immunoglobulin genes in gingival tissues. Gingival tissue biopsies from healthy tissues and following ligature-placement for disease initiation and progression provided gene expression analysis. Additionally, following removal of the ligatures, clinical healing occurs with gene expression in disease resolved tissues. Groups of 9 animals (young: <3 yrs., adolescent: 3-7 yrs., adult -12 to 15 yrs.; aged: 17-22 yrs) were used in the investigation. In healthy tissues, young and adolescent animals showed levels of expression of 78 Ig genes that were uniformly less than adults. In contrast, ⅔ of the Ig genes were elevated by > 2-fold in the aged samples. Specific increases in an array of the Ig gene transcripts were detected in adults at disease initiation and throughout progression, while increases in young and adolescent animals were observed only with disease progression, and in aged samples primarily late in disease progression. Resolved lesions continued to demonstrate elevated levels of Ig gene expression in only young, adolescent and adult animals. The array of Ig genes significantly correlated with inflammatory, tissue biology and hypoxia genes in the gingival tissues, with variations associated with age. In the young group of animals, specific members of the oral microbiome positively correlated with Ig gene expression, while in the older animals, many of these correlations were negative. Significant correlations were observed with a select assortment of bacterial OTUs and multiple Ig genes in both younger and older animal samples, albeit the genera/species showed little overlap. Incorporating this array of microbes and host responses clearly discriminated the various time points in transition from health to disease and resolution in both the young and adult animals. The results support a major importance of adaptive immune responses in the kinetics of periodontal lesion formation, and support aging effects on the repertoire of Ig genes that may relate to the increased prevalence and severity of periodontitis with age.
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, USA; Center for Oral Health Research, College of Dentistry, University of Kentucky, USA
| | - Radhakrishnan Nagarajan
- Center for Oral and Systemic Health, Marshfield Clinic Research Institute, Marshfield Clinic Health System, USA
| | - Sreenatha S Kirakodu
- Center for Oral Health Research, College of Dentistry, University of Kentucky, USA
| | - Octavio A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, USA; Division of Periodontology, College of Dentistry, University of Kentucky, USA
| |
Collapse
|
9
|
Bos A, van Egmond M, Mebius R. The role of retinoic acid in the production of immunoglobulin A. Mucosal Immunol 2022; 15:562-572. [PMID: 35418672 DOI: 10.1038/s41385-022-00509-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/09/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023]
Abstract
Vitamin A and its derivative retinoic acid (RA) play important roles in the regulation of mucosal immunity. The effect of vitamin A metabolism on T lymphocyte immunity has been well documented, but its role in mucosal B lymphocyte regulation is less well described. Intestinal immunoglobulin A (IgA) is key in orchestrating a balanced gut microbiota composition. Here, we describe the contribution of RA to IgA class switching in tissues including the lamina propria, mesenteric lymph nodes, Peyer's patches and isolated lymphoid follicles. RA can either indirectly skew T cells or directly affect B cell differentiation. IgA levels in healthy individuals are under the control of the metabolism of vitamin A, providing a steady supply of RA. However, IgA levels are altered in inflammatory bowel disease patients, making control of the metabolism of vitamin A a potential therapeutic target. Thus, dietary vitamin A is a key player in regulating IgA production within the intestine, acting via multiple immunological pathways.
Collapse
Affiliation(s)
- Amelie Bos
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Research Institute of Amsterdam Institute for Infection and Immunity, Vrije Universiteit, Amsterdam, The Netherlands
| | - Marjolein van Egmond
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Research Institute of Amsterdam Institute for Infection and Immunity, Vrije Universiteit, Amsterdam, The Netherlands.,Amsterdam UMC, Department of Surgery, Research Institute of Amsterdam Institute for Infection and Immunity, Vrije Universiteit, Amsterdam, The Netherlands
| | - Reina Mebius
- Amsterdam UMC, Department of Molecular Cell Biology and Immunology, Research Institute of Amsterdam Institute for Infection and Immunity, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Meyer-Arndt L, Schwarz T, Loyal L, Henze L, Kruse B, Dingeldey M, Gürcan K, Uyar-Aydin Z, Müller MA, Drosten C, Paul F, Sander LE, Demuth I, Lauster R, Giesecke-Thiel C, Braun J, Corman VM, Thiel A. Cutting Edge: Serum but Not Mucosal Antibody Responses Are Associated with Pre-Existing SARS-CoV-2 Spike Cross-Reactive CD4 + T Cells following BNT162b2 Vaccination in the Elderly. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1001-1005. [PMID: 35121642 DOI: 10.4049/jimmunol.2100990] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/15/2021] [Indexed: 12/20/2022]
Abstract
Advanced age is a main risk factor for severe COVID-19. However, low vaccination efficacy and accelerated waning immunity have been reported in this age group. To elucidate age-related differences in immunogenicity, we analyzed human cellular, serological, and salivary SARS-CoV-2 spike glycoprotein-specific immune responses to the BNT162b2 COVID-19 vaccine in old (69-92 y) and middle-aged (24-57 y) vaccinees compared with natural infection (COVID-19 convalescents, 21-55 y of age). Serological humoral responses to vaccination excee-ded those of convalescents, but salivary anti-spike subunit 1 (S1) IgA and neutralizing capacity were less durable in vaccinees. In old vaccinees, we observed that pre-existing spike-specific CD4+ T cells are associated with efficient induction of anti-S1 IgG and neutralizing capacity in serum but not saliva. Our results suggest pre-existing SARS-CoV-2 cross-reactive CD4+ T cells as a predictor of an efficient COVID-19 vaccine-induced humoral immune response in old individuals.
Collapse
Affiliation(s)
- Lil Meyer-Arndt
- Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berliner Institut für Gesundheitsforschung, Immunomics, Regenerative Immunologie und Altern, Berlin, Germany.,Charité - Universitätsmedizin Berlin, NeuroCure Clinical Research Center, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Klinik für Neurologie mit Experimenteller Neurologie, Berlin, Germany.,Charité - Universitätsmedizin Berlin and Max-Delbrück-Centrum für Molekulare Medizin, Experimental and Clinical Research Center, Berlin, Germany
| | - Tatjana Schwarz
- Charité - Universitätsmedizin Berlin, Institut für Virologie, Berlin, Germany
| | - Lucie Loyal
- Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berliner Institut für Gesundheitsforschung, Immunomics, Regenerative Immunologie und Altern, Berlin, Germany
| | - Larissa Henze
- Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berliner Institut für Gesundheitsforschung, Immunomics, Regenerative Immunologie und Altern, Berlin, Germany
| | - Beate Kruse
- Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berliner Institut für Gesundheitsforschung, Immunomics, Regenerative Immunologie und Altern, Berlin, Germany
| | - Manuela Dingeldey
- Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berliner Institut für Gesundheitsforschung, Immunomics, Regenerative Immunologie und Altern, Berlin, Germany
| | - Kübrah Gürcan
- Medizinische Biotechnologie, Institut für Biotechnologie, Technische Universität Berlin, Berlin, Germany
| | - Zehra Uyar-Aydin
- Medizinische Biotechnologie, Institut für Biotechnologie, Technische Universität Berlin, Berlin, Germany
| | - Marcel A Müller
- Charité - Universitätsmedizin Berlin, Institut für Virologie, Berlin, Germany
| | - Christian Drosten
- Charité - Universitätsmedizin Berlin, Institut für Virologie, Berlin, Germany
| | - Friedemann Paul
- Charité - Universitätsmedizin Berlin, Berliner Institut für Gesundheitsforschung, Immunomics, Regenerative Immunologie und Altern, Berlin, Germany.,Charité - Universitätsmedizin Berlin and Max-Delbrück-Centrum für Molekulare Medizin, Experimental and Clinical Research Center, Berlin, Germany
| | - Leif E Sander
- Charité - Universitätsmedizin Berlin, Klinik für Infektiologie und Pneumologie, Berlin, Germany
| | - Ilja Demuth
- Charité - Universitätsmedizin Berlin, Klinik für Endokrinologie und Stoffwechselmedizin, Biologie des Alterns, Berlin, Germany.,Berliner Institut für Gesundheitsforschung der Charité - Universitätsmedizin Berlin, Centrum für Regenerative Therapien, Berlin, Germany; and
| | - Roland Lauster
- Medizinische Biotechnologie, Institut für Biotechnologie, Technische Universität Berlin, Berlin, Germany
| | | | - Julian Braun
- Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berliner Institut für Gesundheitsforschung, Immunomics, Regenerative Immunologie und Altern, Berlin, Germany
| | - Victor M Corman
- Charité - Universitätsmedizin Berlin, Institut für Virologie, Berlin, Germany;
| | - Andreas Thiel
- Si-M/'Der Simulierte Mensch', Technische Universität Berlin and Charité - Universitätsmedizin Berlin, Berlin, Germany; .,Charité - Universitätsmedizin Berlin, Berliner Institut für Gesundheitsforschung, Immunomics, Regenerative Immunologie und Altern, Berlin, Germany
| |
Collapse
|
11
|
Connor RI, Brickley EB, Wieland-Alter WF, Ackerman ME, Weiner JA, Modlin JF, Bandyopadhyay AS, Wright PF. Mucosal immunity to poliovirus. Mucosal Immunol 2022; 15:1-9. [PMID: 34239028 PMCID: PMC8732262 DOI: 10.1038/s41385-021-00428-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/26/2021] [Accepted: 06/14/2021] [Indexed: 02/04/2023]
Abstract
A cornerstone of the global initiative to eradicate polio is the widespread use of live and inactivated poliovirus vaccines in extensive public health campaigns designed to prevent the development of paralytic disease and interrupt transmission of the virus. Central to these efforts is the goal of inducing mucosal immunity able to limit virus replication in the intestine. Recent clinical trials have evaluated new combined regimens of poliovirus vaccines, and demonstrated clear differences in their ability to restrict virus shedding in stool after oral challenge with live virus. Analyses of mucosal immunity accompanying these trials support a critical role for enteric neutralizing IgA in limiting the magnitude and duration of virus shedding. This review summarizes key findings in vaccine-induced intestinal immunity to poliovirus in infants, older children, and adults. The impact of immunization on development and maintenance of protective immunity to poliovirus and the implications for global eradication are discussed.
Collapse
Affiliation(s)
- Ruth I Connor
- Department of Pediatrics, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Elizabeth B Brickley
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Margaret E Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Joshua A Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | | | | | - Peter F Wright
- Department of Pediatrics, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| |
Collapse
|
12
|
Ciocca M, Zaffina S, Fernandez Salinas A, Bocci C, Palomba P, Conti MG, Terreri S, Frisullo G, Giorda E, Scarsella M, Brugaletta R, Vinci MR, Magnavita N, Carsetti R, Piano Mortari E. Evolution of Human Memory B Cells From Childhood to Old Age. Front Immunol 2021; 12:690534. [PMID: 34367150 PMCID: PMC8343175 DOI: 10.3389/fimmu.2021.690534] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/09/2021] [Indexed: 01/08/2023] Open
Abstract
High quality medical assistance and preventive strategies, including pursuing a healthy lifestyle, result in a progressively growing percentage of older people. The population and workforce is aging in all countries of the world. It is widely recognized that older individuals show an increased susceptibility to infections and a reduced response to vaccination suggesting that the aged immune system is less able to react and consequently protect the organism. The SARS-CoV-2 pandemic is dramatically showing us that the organism reacts to novel pathogens in an age-dependent manner. The decline of the immune system observed in aging remains unclear. We aimed to understand the role of B cells. We analyzed peripheral blood from children (4-18 years); young people (23-60 years) and elderly people (65-91 years) by flow cytometry. We also measured antibody secretion by ELISA following a T-independent stimulation. Here we show that the elderly have a significant reduction of CD27dull memory B cells, a population that bridges innate and adaptive immune functions. In older people, memory B cells are mostly high specialized antigen-selected CD27bright. Moreover, after in vitro stimulation with CpG, B cells from older individuals produced significantly fewer IgM and IgA antibodies compared to younger individuals. Aging is a complex process characterized by a functional decline in multiple physiological systems. The immune system of older people is well equipped to react to often encountered antigens but has a low ability to respond to new pathogens.
Collapse
Affiliation(s)
- Michela Ciocca
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Salvatore Zaffina
- Occupational Medicine/Health Technology Assessment and Safety Research Unit, Clinical-Technological Innovations Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Health Directorate, Occupational Medicine, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Ane Fernandez Salinas
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Chiara Bocci
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Patrizia Palomba
- Diagnostic Immunology Clinical Unit, Department of Diagnostic and Laboratory Medicine, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Maria Giulia Conti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Department of Maternal and Child Health, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Sara Terreri
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Giuseppe Frisullo
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Ezio Giorda
- Core Facilities, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marco Scarsella
- Core Facilities, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Rita Brugaletta
- Occupational Medicine/Health Technology Assessment and Safety Research Unit, Clinical-Technological Innovations Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Health Directorate, Occupational Medicine, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Maria Rosaria Vinci
- Occupational Medicine/Health Technology Assessment and Safety Research Unit, Clinical-Technological Innovations Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Health Directorate, Occupational Medicine, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Nicola Magnavita
- Post-Graduate School of Occupational Health, Section of Occupational Medicine and Labor Law, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Woman, Child & Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Rita Carsetti
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Diagnostic Immunology Clinical Unit, Department of Diagnostic and Laboratory Medicine, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Eva Piano Mortari
- Diagnostic Immunology Research Unit, Multimodal Medicine Research Area, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
13
|
Carrasco E, Gómez de Las Heras MM, Gabandé-Rodríguez E, Desdín-Micó G, Aranda JF, Mittelbrunn M. The role of T cells in age-related diseases. Nat Rev Immunol 2021; 22:97-111. [PMID: 34099898 DOI: 10.1038/s41577-021-00557-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 12/11/2022]
Abstract
Age-related T cell dysfunction can lead to failure of immune tolerance mechanisms, resulting in aberrant T cell-driven cytokine and cytotoxic responses that ultimately cause tissue damage. In this Review, we discuss the role of T cells in the onset and progression of age-associated conditions, focusing on cardiovascular disorders, metabolic dysfunction, neuroinflammation and defective tissue repair and regeneration. We present different mechanisms by which T cells contribute to inflammageing and might act as modulators of age-associated diseases, including through enhanced pro-inflammatory and cytotoxic activity, defective clearance of senescent cells or regulation of the gut microbiota. Finally, we propose that 'resetting' immune system tolerance or targeting pathogenic T cells could open up new therapeutic opportunities to boost resilience to age-related diseases.
Collapse
Affiliation(s)
- Elisa Carrasco
- Departamento de Biología, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Departamento de Biología Molecular, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel M Gómez de Las Heras
- Departamento de Biología Molecular, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Enrique Gabandé-Rodríguez
- Departamento de Biología Molecular, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Gabriela Desdín-Micó
- Departamento de Biología Molecular, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Juan Francisco Aranda
- Departamento de Biología Molecular, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Maria Mittelbrunn
- Departamento de Biología Molecular, Facultad de Ciencias (UAM); Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain. .,Instituto de Investigación Sanitaria del Hospital 12 de Octubre (i+12), Madrid, Spain.
| |
Collapse
|
14
|
Abstract
Diarrhea is a fairly common problem among the elderly that has a higher morbidity and mortality compared with the general population. There are multiple reasons for diarrhea in the elderly that can be stratified by different mechanisms: infectious, osmotic, secretory, inflammatory, and malabsorptive. Oral hydration and dietary management are the basic management principles for all forms of diarrhea but specific treatment should address the root cause of diarrhea in order to improve outcomes.
Collapse
Affiliation(s)
- Enad Dawod
- Department of Medicine, Weill Cornell Medicine, New York Presbyterian Hospital, 1305 York Avenue, 4th Floor, New York, NY 10021, USA
| | - Carl V Crawford
- Division of Gastroenterology, Weill Cornell Medicine, New York Presbyterian Hospital, 1305 York Avenue, 4th Floor, New York, NY 10021, USA.
| |
Collapse
|
15
|
Nagpal R, Neth BJ, Wang S, Mishra SP, Craft S, Yadav H. Gut mycobiome and its interaction with diet, gut bacteria and alzheimer's disease markers in subjects with mild cognitive impairment: A pilot study. EBioMedicine 2020; 59:102950. [PMID: 32861197 PMCID: PMC7475073 DOI: 10.1016/j.ebiom.2020.102950] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Recently, we reported that patients with mild cognitive impairment (MCI) harbor specific signature of bacteria in their gut and that a modified Mediterranean ketogenic diet (MMKD) improves Alzheimer's disease (AD) markers in cerebrospinal fluid (CSF) and the signatures of gut bacteria. However, other microbial population such as gut fungi (mycobiome) in relation to MCI/AD pathology, gut bacteria and diet remain unknown. METHODS We measure gut mycobiome by sequencing of the fungal rRNA ITS1 gene in 17 older adults (11 MCI; 6 cognitively normal [CN]) in a single-center, randomized, double-blind, crossover pilot study, before and after 6 weeks intervention of MMKD and American Heart Association Diet (AHAD), and determine its correlation with AD markers in CSF and gut bacteria. FINDINGS Compared to CN counterparts, patients with MCI have higher proportion of families Sclerotiniaceae, Phaffomyceteceae, Trichocomaceae, Cystofilobasidiaceae, Togniniaceae and genera Botrytis, Kazachstania, Phaeoacremonium and Cladosporium and lower abundance of Meyerozyma. Specific fungal taxa exhibit distinct correlation arrays with AD markers and gut bacteria in subjects with versus without MCI. MMKD induces broader effect on fungal diversity in subjects with MCI and increases Agaricus and Mrakia while decreasing Saccharomyces and Claviceps with differential response in subjects with or without MCI. INTERPRETATION The study reveals MCI-specific mycobiome signatures and demonstrates that distinct diets modulate the mycobiome in association with AD markers and fungal-bacterial co-regulation networks in patients with MCI. The findings corroborate the notion of considering gut mycobiome as a unique factor that can affect cognitive health/AD by interacting with gut bacteria and diet and facilitate better understanding of the AD and related microbiome, using unique diet or microbiome modulators.
Collapse
Affiliation(s)
- Ravinder Nagpal
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States; Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Bryan J Neth
- Department of Internal Medicine- Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States; Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Shaohua Wang
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States; Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Sidharth P Mishra
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States; Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Suzanne Craft
- Department of Internal Medicine- Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States.
| | - Hariom Yadav
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States; Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|
16
|
Fülöp T, Munawara U, Larbi A, Desroches M, Rodrigues S, Catanzaro M, Guidolin A, Khalil A, Bernier F, Barron AE, Hirokawa K, Beauregard PB, Dumoulin D, Bellenger JP, Witkowski JM, Frost E. Targeting Infectious Agents as a Therapeutic Strategy in Alzheimer's Disease. CNS Drugs 2020; 34:673-695. [PMID: 32458360 PMCID: PMC9020372 DOI: 10.1007/s40263-020-00737-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most prevalent dementia in the world. Its cause(s) are presently largely unknown. The most common explanation for AD, now, is the amyloid cascade hypothesis, which states that the cause of AD is senile plaque formation by the amyloid β peptide, and the formation of neurofibrillary tangles by hyperphosphorylated tau. A second, burgeoning theory by which to explain AD is based on the infection hypothesis. Much experimental and epidemiological data support the involvement of infections in the development of dementia. According to this mechanism, the infection either directly or via microbial virulence factors precedes the formation of amyloid β plaques. The amyloid β peptide, possessing antimicrobial properties, may be beneficial at an early stage of AD, but becomes detrimental with the progression of the disease, concomitantly with alterations to the innate immune system at both the peripheral and central levels. Infection results in neuroinflammation, leading to, and sustained by, systemic inflammation, causing eventual neurodegeneration, and the senescence of the immune cells. The sources of AD-involved microbes are various body microbiome communities from the gut, mouth, nose, and skin. The infection hypothesis of AD opens a vista to new therapeutic approaches, either by treating the infection itself or modulating the immune system, its senescence, or the body's metabolism, either separately, in parallel, or in a multi-step way.
Collapse
Affiliation(s)
- Tamàs Fülöp
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada.
| | - Usma Munawara
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Immunos Building, Biopolis, Singapore, Singapore
- Department of Biology, Faculty of Science, University Tunis El Manar, Tunis, Tunisia
| | - Mathieu Desroches
- MathNeuro Team, Inria Sophia Antipolis Méditerranée, Valbonne, France
- Université Côte d'Azur, Nice, France
| | - Serafim Rodrigues
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain
- BCAM, The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Michele Catanzaro
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Andrea Guidolin
- BCAM, The Basque Center for Applied Mathematics, Bilbao, Spain
| | - Abdelouahed Khalil
- Geriatric Division, Department of Medicine, Faculty of Medicine and Health Sciences, Research Center on Aging, University of Sherbrooke, 3001, 12th Avenue North, Sherbrooke, QC, J1H 5N4, Canada
| | - François Bernier
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Annelise E Barron
- Department of Bioengineering, Stanford School of Medicine, Stanford, CA, USA
| | - Katsuiku Hirokawa
- Department of Pathology, Institute of Health and Life Science, Tokyo and Nito-memory Nakanosogo Hospital, Tokyo Med. Dent. University, Tokyo, Japan
| | - Pascale B Beauregard
- Department of Biology, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - David Dumoulin
- Department of Biology, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Philippe Bellenger
- Department of Chemistry, Faculty of Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| | - Jacek M Witkowski
- Department of Pathophysiology, Medical University of Gdansk, Gdansk, Poland
| | - Eric Frost
- Department of Microbiology and Infectious diseases, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
17
|
Cox LM, Schafer MJ, Sohn J, Vincentini J, Weiner HL, Ginsberg SD, Blaser MJ. Calorie restriction slows age-related microbiota changes in an Alzheimer's disease model in female mice. Sci Rep 2019; 9:17904. [PMID: 31784610 PMCID: PMC6884494 DOI: 10.1038/s41598-019-54187-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 11/09/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) affects an estimated 5.8 million Americans, and advanced age is the greatest risk factor. AD patients have altered intestinal microbiota. Accordingly, depleting intestinal microbiota in AD animal models reduces amyloid-beta (Aβ) plaque deposition. Age-related changes in the microbiota contribute to immunologic and physiologic decline. Translationally relevant dietary manipulations may be an effective approach to slow microbiota changes during aging. We previously showed that calorie restriction (CR) reduced brain Aβ deposition in the well-established Tg2576 mouse model of AD. Presently, we investigated whether CR alters the microbiome during aging. We found that female Tg2576 mice have more substantial age-related microbiome changes compared to wildtype (WT) mice, including an increase in Bacteroides, which were normalized by CR. Specific gut microbiota changes were linked to Aβ levels, with greater effects in females than in males. In the gut, Tg2576 female mice had an enhanced intestinal inflammatory transcriptional profile, which was reversed by CR. Furthermore, we demonstrate that Bacteroides colonization exacerbates Aβ deposition, which may be a mechanism whereby the gut impacts AD pathogenesis. These results suggest that long-term CR may alter the gut environment and prevent the expansion of microbes that contribute to age-related cognitive decline.
Collapse
Affiliation(s)
- Laura M Cox
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, NYU Langone Medical Center, New York, NY, USA.
| | - Marissa J Schafer
- Cellular and Molecular Biology Training Program, NYU Langone Medical Center, New York, NY, USA
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
- Department of Physical Medicine and Rehabilitation and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, US
| | - Jiho Sohn
- Department of Medicine, NYU Langone Medical Center, New York, NY, USA
- Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Julia Vincentini
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephen D Ginsberg
- Psychiatry, Neuroscience & Physiology & the NYU Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - Martin J Blaser
- Department of Medicine, NYU Langone Medical Center, New York, NY, USA
- Center for Advanced Biotechnology and Medicine, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
18
|
De Martinis M, Sirufo MM, Viscido A, Ginaldi L. Food Allergies and Ageing. Int J Mol Sci 2019; 20:E5580. [PMID: 31717303 PMCID: PMC6888073 DOI: 10.3390/ijms20225580] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
All over the world, there is an increase in the overall survival of the population and the number of elderly people. The incidence of allergic reactions is also rising worldwide. Until recently, allergies, and in particular food allergies (FAs), was regarded as a pediatric problem, since some of them start in early childhood and may spontaneously disappear in adulthood. It is being discovered that, on the contrary, these problems are increasingly affecting even the elderly. Along with other diseases that are considered characteristics of advanced age, such as cardiovascular, dysmetabolic, autoimmune, neurodegenerative, and oncological diseases, even FAs are increasingly frequent in the elderly. An FA is a pleiomorphic and multifactorial disease, characterized by an abnormal immune response and an impaired gut barrier function. The elderly exhibit distinct FA phenotypes, and diagnosis is difficult due to frequent co-morbidities and uncertainty in the interpretation of in vitro and in vivo tests. Several factors render the elderly susceptible to FAs, including the physiological changes of aging, a decline in gut barrier function, the skewing of adaptive immunity to a Th2 response, dysregulation of innate immune cells, and age-related changes of gut microbiota. Aging is accompanied by a progressive remodeling of immune system functions, leading to an increased pro-inflammatory status where type 1 cytokines are quantitatively dominant. However, serum Immunoglobulin E (IgE) levels and T helper type 2 (Th2 cytokine production have also been found to be increased in the elderly, suggesting that the type 2 cytokine pattern is not necessarily defective in older age. Dysfunctional dendritic cells in the gut, defects in secretory IgA, and decreased T regulatory function in the elderly also play important roles in FA development. We address herein the main immunologic aspects of aging according to the presence of FAs.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, AUSL 04 Teramo, Italy
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, AUSL 04 Teramo, Italy
| | - Angelo Viscido
- Gastroenterology Unit, Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.M.S.); (L.G.)
- Allergy and Clinical Immunology Unit, AUSL 04 Teramo, Italy
| |
Collapse
|
19
|
Osorio C, Kanukuntla T, Diaz E, Jafri N, Cummings M, Sfera A. The Post-amyloid Era in Alzheimer's Disease: Trust Your Gut Feeling. Front Aging Neurosci 2019; 11:143. [PMID: 31297054 PMCID: PMC6608545 DOI: 10.3389/fnagi.2019.00143] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/29/2019] [Indexed: 12/14/2022] Open
Abstract
The amyloid hypothesis, the assumption that beta-amyloid toxicity is the primary cause of neuronal and synaptic loss, has been the mainstream research concept in Alzheimer's disease for the past two decades. Currently, this model is quietly being replaced by a more holistic, “systemic disease” paradigm which, like the aging process, affects multiple body tissues and organs, including the gut microbiota. It is well-established that inflammation is a hallmark of cellular senescence; however, the infection-senescence link has been less explored. Microbiota-induced senescence is a gradually emerging concept promoted by the discovery of pathogens and their products in Alzheimer's disease brains associated with senescent neurons, glia, and endothelial cells. Infectious agents have previously been associated with Alzheimer's disease, but the cause vs. effect issue could not be resolved. A recent study may have settled this debate as it shows that gingipain, a Porphyromonas gingivalis toxin, can be detected not only in Alzheimer's disease but also in the brains of older individuals deceased prior to developing the illness. In this review, we take the position that gut and other microbes from the body periphery reach the brain by triggering intestinal and blood-brain barrier senescence and disruption. We also surmise that novel Alzheimer's disease findings, including neuronal somatic mosaicism, iron dyshomeostasis, aggressive glial phenotypes, and loss of aerobic glycolysis, can be explained by the infection-senescence model. In addition, we discuss potential cellular senescence targets and therapeutic strategies, including iron chelators, inflammasome inhibitors, senolytic antibiotics, mitophagy inducers, and epigenetic metabolic reprograming.
Collapse
Affiliation(s)
- Carolina Osorio
- Psychiatry, Loma Linda University, Loma Linda, CA, United States
| | - Tulasi Kanukuntla
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Eddie Diaz
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Nyla Jafri
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Michael Cummings
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| | - Adonis Sfera
- Department of Psychiatry, Patton State Hospital, San Bernardino, CA, United States
| |
Collapse
|
20
|
Paillaud E, Bastuji-Garin S, Plonquet A, Foucat E, Fournier B, Boutin E, Le Thuaut A, Levy Y, Hue S. Combined Plasma Elevation of CRP, Intestinal-Type Fatty Acid-Binding Protein (I-FABP), and sCD14 Identify Older Patients at High Risk for Health Care-Associated Infections. J Gerontol A Biol Sci Med Sci 2019; 73:211-217. [PMID: 28582475 DOI: 10.1093/gerona/glx106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/31/2017] [Indexed: 02/04/2023] Open
Abstract
Background We hypothesized that low-grade inflammation was driven by microbial translocation and associated with an increased risk of health care-associated infections (HAIs). Methods We included 121 patients aged 75 years or over in this prospective cohort study. High-sensitivity C-reactive protein (hs-CRP), I-FABP, and sCD14-as markers for low-grade inflammation, intestinal epithelial barrier integrity, and monocyte activation, respectively-were measured at admission. Results HAIs occurred during hospitalization in 62 (51%) patients. Elevated hs-CRP (≥6.02 mg/L, ie, the median) was associated with a significantly higher HAI risk when I-FABP was in the highest quartile (odds ratio [OR], 4; 95% confidence interval [95% CI], 1.39-11.49; p = .010). In patients with hs-CRP elevation and highest-quartile I-FABP, sCD14 elevation (≥0.65 µg/mL, ie, the median) was associated with an 11-fold higher HAI risk (OR, 10.8; 95% CI, 2.28-51.1; p = .003). Multivariate analyses adjusted for invasive procedures and comorbidities did not change the associations linking the three markers to the HAI risk. Conclusion Increased levels of hs-CRP, I-FABP, and sCD14 may reflect loss of intestinal epithelial barrier integrity with microbial translocation leading to monocyte activation and low-grade inflammation. In our cohort, these markers identified patients at high risk for HAIs.
Collapse
Affiliation(s)
- Elena Paillaud
- Assistance Publique-Hôpitaux de Paris (AP-HP), Groupe Hospitalier Henri-Mondor, Département de médecine interne et gériatrie, Creteil, France.,Université Paris Est (UPEC), DHU A-TVB, IMRB, CEpiA (Clinical Epidemiology and Ageing) Unit EA, Creteil, France
| | - Sylvie Bastuji-Garin
- Université Paris Est (UPEC), DHU A-TVB, IMRB, CEpiA (Clinical Epidemiology and Ageing) Unit EA, Creteil, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Henri-Mondor, Service de Santé Publique, Creteil, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Henri-Mondor, Unité de Recherche Clinique (URC Mondor), Creteil, France
| | - Anne Plonquet
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Henri-Mondor, Service d'immunologie biologique, Creteil, France
| | - Emile Foucat
- INSERM U955, team 16, IMRB Créteil, France.,Vaccine Research Institute (VRI), Université Paris Est Créteil, Faculté de Médecine, France
| | - Bénédicte Fournier
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Henri-Mondor, Service de biochimie, Creteil, France
| | - Emmanuelle Boutin
- Université Paris Est (UPEC), DHU A-TVB, IMRB, CEpiA (Clinical Epidemiology and Ageing) Unit EA, Creteil, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Henri-Mondor, Unité de Recherche Clinique (URC Mondor), Creteil, France
| | - Aurélie Le Thuaut
- Université Paris Est (UPEC), DHU A-TVB, IMRB, CEpiA (Clinical Epidemiology and Ageing) Unit EA, Creteil, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Henri-Mondor, Unité de Recherche Clinique (URC Mondor), Creteil, France
| | - Yves Levy
- INSERM U955, team 16, IMRB Créteil, France.,Vaccine Research Institute (VRI), Université Paris Est Créteil, Faculté de Médecine, France.,Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Henri-Mondor, Service d'immunologie clinique, Creteil, France
| | - Sophie Hue
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Henri-Mondor, Service d'immunologie biologique, Creteil, France.,INSERM U955, team 16, IMRB Créteil, France.,Vaccine Research Institute (VRI), Université Paris Est Créteil, Faculté de Médecine, France
| |
Collapse
|
21
|
Martins RR, Ellis PS, MacDonald RB, Richardson RJ, Henriques CM. Resident Immunity in Tissue Repair and Maintenance: The Zebrafish Model Coming of Age. Front Cell Dev Biol 2019; 7:12. [PMID: 30805338 PMCID: PMC6370978 DOI: 10.3389/fcell.2019.00012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/18/2019] [Indexed: 12/21/2022] Open
Abstract
The zebrafish has emerged as an exciting vertebrate model to study different aspects of immune system development, particularly due to its transparent embryonic development, the availability of multiple fluorescent reporter lines, efficient genetic tools and live imaging capabilities. However, the study of immunity in zebrafish has largely been limited to early larval stages due to an incomplete knowledge of the full repertoire of immune cells and their specific markers, in particular, a lack of cell surface antibodies to detect and isolate such cells in living tissues. Here we focus on tissue resident or associated immunity beyond development, in the adult zebrafish. It is our view that, with our increasing knowledge and the development of improved tools and protocols, the adult zebrafish will be increasingly appreciated for offering valuable insights into the role of immunity in tissue repair and maintenance, in both health and disease throughout the lifecourse.
Collapse
Affiliation(s)
- Raquel Rua Martins
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, United Kingdom.,Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Pam S Ellis
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, United Kingdom.,Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Ryan B MacDonald
- Bateson Centre, University of Sheffield, Sheffield, United Kingdom.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Rebecca J Richardson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Catarina Martins Henriques
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, United Kingdom.,Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
22
|
Ebersole JL, Dawson DA, Emecen Huja P, Pandruvada S, Basu A, Nguyen L, Zhang Y, Gonzalez OA. Age and Periodontal Health - Immunological View. CURRENT ORAL HEALTH REPORTS 2018; 5:229-241. [PMID: 30555774 PMCID: PMC6291006 DOI: 10.1007/s40496-018-0202-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF THE REVIEW Aging clearly impacts a wide array of systems, in particular the breadth of the immune system leading to immunosenescence, altered immunoactivation, and coincident inflammaging processes. The net result of these changes leads to increased susceptibility to infections, increased neoplastic occurrences, and elevated frequency of autoimmune diseases with aging. However, as the bacteria in the oral microbiome that contribute to the chronic infection of periodontitis is acquired earlier in life, the characteristics of the innate and adaptive immune systems to regulate these members of the autochthonous microbiota across the lifespan remains ill defined. RECENT FINDINGS Clear data demonstrate that both cells and molecules of the innate and adaptive immune response are adversely impacted by aging, including in the oral cavity, yielding a reasonable tenet that the increased periodontitis noted in aging populations is reflective of the age-associated immune dysregulation. Additionally, this facet of host-microbe interactions and disease needs to accommodate the population variation in disease onset and progression, which may also reflect an accumulation of environmental stressors and/or decreased protective nutrients that could function at the gene level (ie. epigenetic) or translational level for production and secretion of immune system molecules. SUMMARY Finally, the majority of studies of aging and periodontitis have emphasized the increased prevalence/severity of disease with aging, all based upon chronological age. However, evolving areas of study focusing on "biological aging" to help account for population variation in disease expression, may suggest that chronic periodontitis represents a co-morbidity that contributes to "gerovulnerability" within the population.
Collapse
Affiliation(s)
- J L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV
| | - D A Dawson
- Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, KY
| | - P Emecen Huja
- Department of Periodontics, JBE College of Dental Medicine, Medical University of South Carolina, Charleston, SC
| | - S Pandruvada
- Department of Oral Health Sciences, JBE College of Dental Medicine, Medical University of South Carolina, Charleston, SC
| | - A Basu
- Department of Kinesiology and Nutrition, School of Allied Health Sciences, University of Nevada Las Vegas, Las Vegas, NV
| | - L Nguyen
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV
| | - Y Zhang
- Southern Nevada Health District, Las Vegas, NV
| | - O A Gonzalez
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
23
|
Fernandes R, Viana SD, Nunes S, Reis F. Diabetic gut microbiota dysbiosis as an inflammaging and immunosenescence condition that fosters progression of retinopathy and nephropathy. Biochim Biophys Acta Mol Basis Dis 2018; 1865:1876-1897. [PMID: 30287404 DOI: 10.1016/j.bbadis.2018.09.032] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/18/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023]
Abstract
The increased prevalence of type 2 diabetes mellitus (T2DM) and life expectancy of diabetic patients fosters the worldwide prevalence of retinopathy and nephropathy, two major microvascular complications that have been difficult to treat with contemporary glucose-lowering medications. The gut microbiota (GM) has become a lively field research in the last years; there is a growing recognition that altered intestinal microbiota composition and function can directly impact the phenomenon of ageing and age-related disorders. In fact, human GM, envisaged as a potential source of novel therapeutics, strongly modulates host immunity and metabolism. It is now clear that gut dysbiosis and their products (e.g. p-cresyl sulfate, trimethylamine‑N‑oxide) dictate a secretory associated senescence phenotype and chronic low-grade inflammation, features shared in the physiological process of ageing ("inflammaging") as well as in T2DM ("metaflammation") and in its microvascular complications. This review provides an in-depth look on the crosstalk between GM, host immunity and metabolism. Further, it characterizes human GM signatures of elderly and T2DM patients. Finally, a comprehensive scrutiny of recent molecular findings (e.g. epigenetic changes) underlying causal relationships between GM dysbiosis and diabetic retinopathy/nephropathy complications is pinpointed, with the ultimate goal to unravel potential pathophysiological mechanisms that may be explored, in a near future, as personalized disease-modifying therapeutic approaches.
Collapse
Affiliation(s)
- Rosa Fernandes
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, CNC.IBILI Consortium & CIBB Consortium, University of Coimbra, Coimbra, Portugal
| | - Sofia D Viana
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, CNC.IBILI Consortium & CIBB Consortium, University of Coimbra, Coimbra, Portugal; Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy, Coimbra, Portugal
| | - Sara Nunes
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, CNC.IBILI Consortium & CIBB Consortium, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Institute of Pharmacology & Experimental Therapeutics, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, CNC.IBILI Consortium & CIBB Consortium, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
24
|
Ebersole JL, Al-Sabbagh M, Gonzalez OA, Dawson DR. Ageing effects on humoral immune responses in chronic periodontitis. J Clin Periodontol 2018; 45:680-692. [PMID: 29476652 PMCID: PMC5992058 DOI: 10.1111/jcpe.12881] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2018] [Indexed: 12/16/2022]
Abstract
Periodontal disease is a dominant global bacterial infection that increases with ageing. AIM This report focuses on host adaptive immune responses in periodontitis. While experimental models and humans diagnosed with periodontitis demonstrate an antigenic specificity for particular oral bacteria, we have a limited understanding of (i) how ageing affects the adaptive immune responses to these bacteria that chronically colonize the oral cavity for decades prior to disease expression and (ii) how the magnitude and specificity of the response interface with pathogens that emerge within the bacterial ecology during exacerbations of disease. MATERIALS AND METHODS Serum antibody levels to a group of pathogenic and commensal oral bacteria were measured in a population of individuals from 21 to 74 years of age, stratified based on clinical status of the periodontium, smoking and sex. RESULTS Clinical parameters were not significantly different within health, gingivitis or periodontitis groups related to age. Antibody to oral pathogens and commensals was similar in different age groups in each of the clinical categories, with no age correlation noted in the periodontitis patients. CONCLUSIONS The adaptive immune responses to oral bacteria that chronically colonize the oral cavity appear generally unaffected by age, but clearly are linked to the extent of disease.
Collapse
Affiliation(s)
- Jeffrey L Ebersole
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada Las Vegas, Las Vegas, NV, USA
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Mohanad Al-Sabbagh
- Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Octavio A Gonzalez
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
- Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Dolph R Dawson
- Center for Oral Health Research, College of Dentistry, University of Kentucky, Lexington, KY, USA
- Division of Periodontology, College of Dentistry, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
25
|
Fighting against a protean enemy: immunosenescence, vaccines, and healthy aging. NPJ Aging Mech Dis 2017; 4:1. [PMID: 29285399 PMCID: PMC5740164 DOI: 10.1038/s41514-017-0020-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/09/2017] [Accepted: 11/27/2017] [Indexed: 12/16/2022] Open
Abstract
The progressive increase of the aged population worldwide mandates new strategies to ensure sustained health and well-being with age. The development of better and/or new vaccines against pathogens that affect older adults is one pivotal intervention in approaching this goal. However, the functional decline of various physiological systems, including the immune system, requires novel approaches to counteract immunosenescence. Although important progress has been made in understanding the mechanisms underlying the age-related decline of the immune response to infections and vaccinations, knowledge gaps remain, both in the areas of basic and translational research. In particular, it will be important to better understand how environmental factors, such as diet, physical activity, co-morbidities, and pharmacological treatments, delay or contribute to the decline of the capability of the aging immune system to appropriately respond to infectious diseases and vaccination. Recent findings suggest that successful approaches specifically targeted to the older population can be developed, such as the high-dose and adjuvanted vaccines against seasonal influenza, the adjuvanted subunit vaccine against herpes zoster, as well as experimental interventions with immune-potentiators or immunostimulants. Learning from these first successes may pave the way to developing novel and improved vaccines for the older adults and immunocompromised. With an integrated, holistic vaccination strategy, society will offer the opportunity for an improved quality of life to the segment of the population that is going to increase most significantly in numbers and proportion over future decades.
Collapse
|
26
|
Tsuruhara A, Aso K, Tokuhara D, Ohori J, Kawabata M, Kurono Y, McGhee JR, Fujihashi K. Rejuvenation of mucosal immunosenescence by adipose tissue-derived mesenchymal stem cells. Int Immunol 2017; 29:5-10. [PMID: 28391291 DOI: 10.1093/intimm/dxx001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/05/2017] [Indexed: 02/07/2023] Open
Abstract
Age-associated alterations in the mucosal immune system are generally termed mucosal immunosenescence. The major change seen in the aged mucosa is a failure to elicit an antigen-specific secretory IgA (SIgA) antibody response, which is a central player for host defense from various pathogens at mucosal surfaces. In this regard, it would be a first priority to compensate for mucosal dysregulation in the elderly in order to maintain their health in aging. We have successfully established antigen-specific SIgA antibody responses in aged (2 years old) mice, which provide protective immunity from Streptococcus pneumoniae and influenza virus infections, by using a new adjuvant system consisting of a plasmid encoding Flt3 ligand (pFL) and CpG ODN. In order to explore possible use of current mucosal vaccine strategies for the elderly, we have adoptively transferred adipose tissue-derived mesenchymal stem cells (AMSCs) to aged mice prior to mucosal vaccination. This immune therapy successfully resulted in protective antigen-specific antibody responses in the intestinal mucosa of aged mice that were comparable to those seen in young adult mice. In this regard, we postulate that adoptively transferred AMSCs could augment dendritic cell functions in aged mice. The potential cellular and molecular mechanisms whereby AMSCs restore mucosal immunity in immunosenescence are discussed in this short review. A stem cell transfer system could be an attractive and effective immunologic intervention strategy to reverse mucosal immunosenescence.
Collapse
Affiliation(s)
- Akitoshi Tsuruhara
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, 1919 7th Avenue South, SDB 801 A1, Birmingham, AL 35294-0007, USA
| | - Kazuyoshi Aso
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, 1919 7th Avenue South, SDB 801 A1, Birmingham, AL 35294-0007, USA.,Department of Pediatrics, Graduate School of Medicine, Osaka City University, Asahi-cho 1-5-7, Abeno-ku, Osaka, Osaka 545-0051, Japan
| | - Daisuke Tokuhara
- Department of Pediatrics, Graduate School of Medicine, Osaka City University, Asahi-cho 1-5-7, Abeno-ku, Osaka, Osaka 545-0051, Japan
| | - Junichiro Ohori
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, 1919 7th Avenue South, SDB 801 A1, Birmingham, AL 35294-0007, USA.,Department of Otolaryngology, Kagoshima University Faculty of Medicine, Sakuragaoka 8-35-1, Kagoshima, Kagoshima 890-8520, Japan
| | - Masaki Kawabata
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, 1919 7th Avenue South, SDB 801 A1, Birmingham, AL 35294-0007, USA.,Department of Otolaryngology, Kagoshima University Faculty of Medicine, Sakuragaoka 8-35-1, Kagoshima, Kagoshima 890-8520, Japan
| | - Yuichi Kurono
- Department of Otolaryngology, Kagoshima University Faculty of Medicine, Sakuragaoka 8-35-1, Kagoshima, Kagoshima 890-8520, Japan
| | - Jerry R McGhee
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, 1919 7th Avenue South, SDB 801 A1, Birmingham, AL 35294-0007, USA
| | - Kohtaro Fujihashi
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, 1919 7th Avenue South, SDB 801 A1, Birmingham, AL 35294-0007, USA
| |
Collapse
|
27
|
Incorporation of a bi-functional protein FimH enhances the immunoprotection of chitosan-pVP1 vaccine against coxsackievirus B3-induced myocarditis. Antiviral Res 2017; 140:121-132. [DOI: 10.1016/j.antiviral.2017.01.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 01/12/2023]
|
28
|
Ventura MT, Scichilone N, Paganelli R, Minciullo PL, Patella V, Bonini M, Passalacqua G, Lombardi C, Simioni L, Ridolo E, Del Giacco SR, Gangemi S, Canonica GW. Allergic diseases in the elderly: biological characteristics and main immunological and non-immunological mechanisms. Clin Mol Allergy 2017; 15:2. [PMID: 28174512 PMCID: PMC5290673 DOI: 10.1186/s12948-017-0059-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/06/2017] [Indexed: 02/08/2023] Open
Abstract
Life expectancy and the number of elderly people are progressively increasing around the world. Together with other pathologies, allergic diseases also show an increasing incidence in geriatric age. This is partly due to the growing emphasis on a more accurate and careful diagnosis of the molecular mechanisms that do not allow to ignore the real pathogenesis of many symptoms until now unknown, and partly to the fact that the allergic people from 20 years ago represent the elderly population now. Moreover, environmental pollution predisposes to the onset of allergic asthma and dermatitis which are the result of internal pathologies more than the expression of allergic manifestations. At the same time the food contamination permits the onset of allergic diseases related to food allergy. In this review we provide the state of the art on the physiological changes in the elderly responsible for allergic diseases, their biological characteristics and the major immunological and extra immunological mechanisms. Much emphasis is given to the management of several diseases in the elderly, including anaphylactic reactions. Moreover, some new features are discussed, such as management of asthma with the support of physical activity and the use of the AIT as prevention of respiratory diseases and for the purpose of a real and long lasting benefit. The mechanisms of adverse reactions to drugs are also discussed, due to their frequency in this age, especially in polytherapy regimens. Study of the modifications of the immune system is also of great importance, as regards to the distribution of the lymphocytes and also the presence of a chronic inflammatory disease related to the production of cytokines, especially in prevision of all the possible therapies to be adopted to allow an active and healthy aging.
Collapse
Affiliation(s)
- Maria Teresa Ventura
- Interdisciplinary Department of Medicine, Unit of Geriatric Immunoallergology, University of Bari Medical School, Bari, Italy
| | | | - Roberto Paganelli
- Laboratory of Immunology and Allergy, Department of Medicine and Sciences of Aging, University of G. d’Annunzio, Chieti, Italy
| | - Paola Lucia Minciullo
- Division and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
| | - Vincenzo Patella
- Division of Allergy and Clinical Immunology, Department of Medicine, Battipaglia Hospital, Battipaglia, Salerno, Italy
- School of Allergy and Clinical Immunology, University of Naples Federico II, Naples, Italy
| | - Matteo Bonini
- National Heart and Lung Institute (NHLI), Imperial College London & Royal Brompton Hospital, London, UK
| | - Giovanni Passalacqua
- Allergy and Respiratory Diseases, IRCCS San Martino-IST-University of Genoa, Genoa, Italy
| | - Carlo Lombardi
- Departmental Unit of AllergologyClinical Immunology & Pneumology, Fondazione Poliambulanza Hospital, Brescia, Italy
| | - Livio Simioni
- Department of Medicine, Allergy Service, ULSS 2 Feltre, Belluno, Italy
| | - Erminia Ridolo
- Experimental and Clinical Medicine, University of Parma, Parma, Italy
| | | | - Sebastiano Gangemi
- Division and School of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University Hospital of Messina, Messina, Italy
| | | |
Collapse
|
29
|
Mashaghi A, Hong J, Chauhan SK, Dana R. Ageing and ocular surface immunity. Br J Ophthalmol 2017; 101:1-5. [PMID: 27378485 PMCID: PMC5583682 DOI: 10.1136/bjophthalmol-2015-307848] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 04/26/2016] [Accepted: 06/19/2016] [Indexed: 12/22/2022]
Abstract
The prevalence of ocular surface immunopathologies is enhanced in the elderly. This increased prevalence has been attributed to age-related dysregulation of innate and adaptive immune system responses. Age-related changes in ocular surface immunity have similar and distinct characteristics to those changes seen in other mucosal tissues. This mini review provides a brief outline of key findings in the field of ocular ageing, draws comparisons with other mucosal tissues and, finally, discusses age-related changes in the context of immunopathogenesis of infectious keratitis and dry eye disease, two of the most common inflammatory disorders of the ocular surface.
Collapse
Affiliation(s)
- Alireza Mashaghi
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Jiaxu Hong
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Sunil K Chauhan
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
30
|
Levi Mortera S, Del Chierico F, Vernocchi P, Rosado MM, Cavola A, Chierici M, Pieroni L, Urbani A, Carsetti R, Lante I, Dallapiccola B, Putignani L. Monitoring Perinatal Gut Microbiota in Mouse Models by Mass Spectrometry Approaches: Parental Genetic Background and Breastfeeding Effects. Front Microbiol 2016; 7:1523. [PMID: 27725814 PMCID: PMC5036385 DOI: 10.3389/fmicb.2016.01523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/12/2016] [Indexed: 01/22/2023] Open
Abstract
At birth, contact with external stimuli, such as nutrients derived from food, is necessary to modulate the symbiotic balance between commensal and pathogenic bacteria, protect against bacterial dysbiosis, and initiate the development of the mucosal immune response. Among a variety of different feeding patterns, breastfeeding represents the best modality. In fact, the capacity of breast milk to modulate the composition of infants’ gut microbiota leads to beneficial effects on their health. In this study, we used newborn mice as a model to evaluate the effect of parental genetic background (i.e., IgA-producing mice and IgA-deficient mice) and feeding modulation (i.e., maternal feeding and cross-feeding) on the onset and shaping of gut microbiota after birth. To investigate these topics, we used either a culturomic approach that employed Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry (MS), or bottom–up Liquid Chromatography, with subsequent MSMS shotgun metaproteomic analysis that compared and assembled results of the two techniques. We found that the microbial community was enriched by lactic acid bacteria when pups were breastfed by wild-type (WT) mothers, while IgA-deficient milk led to an increase in the opportunistic bacterial pathogen (OBP) population. Cross-feeding results suggested that IgA supplementation promoted the exclusion of some OBPs and the temporary appearance of beneficial species in pups fed by WT foster mothers. Our results show that both techniques yield a picture of microbiota from different angles and with varying depths. In particular, our metaproteomic pipeline was found to be a reliable tool in the description of microbiota. Data from these studies are available via ProteomeXchange, with identifier PXD004033.
Collapse
Affiliation(s)
- Stefano Levi Mortera
- Human Microbiome Unit, Area of Genetic and Rare Diseases, Bambino Gesù Children's Hospital, IRCCS Rome, Italy
| | - Federica Del Chierico
- Human Microbiome Unit, Area of Genetic and Rare Diseases, Bambino Gesù Children's Hospital, IRCCS Rome, Italy
| | - Pamela Vernocchi
- Human Microbiome Unit, Area of Genetic and Rare Diseases, Bambino Gesù Children's Hospital, IRCCS Rome, Italy
| | - Maria M Rosado
- Immunology Research Area, B-cell Physiopathology Unit and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS Rome, Italy
| | - Agnese Cavola
- Department of Experimental Medicine, University of Rome Tor Vergata Rome, Italy
| | | | | | - Andrea Urbani
- IRCCS-Santa Lucia FoundationRome, Italy; Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro CuoreRome, Italy
| | - Rita Carsetti
- Immunology Research Area, B-cell Physiopathology Unit and Diagnostic Immunology Unit, Bambino Gesù Children's Hospital, IRCCS Rome, Italy
| | - Isabella Lante
- Laboratory Medicine Department, San Camillo Hospital Treviso, Italy
| | | | - Lorenza Putignani
- Human Microbiome Unit, Area of Genetic and Rare Diseases, Bambino Gesù Children's Hospital, IRCCSRome, Italy; Unit of Parasitology, Department of Laboratory, Bambino Gesù Children's Hospital, IRCCSRome, Italy
| |
Collapse
|
31
|
Ribera Casado JM. [Intestinal microbiota and ageing: A new intervention route?]. Rev Esp Geriatr Gerontol 2016; 51:290-295. [PMID: 26947897 DOI: 10.1016/j.regg.2015.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 12/11/2015] [Accepted: 12/11/2015] [Indexed: 06/05/2023]
Abstract
Intestinal microbiota (IM) has continued to be the subject in all types of studies and publications. More is known on its different components and functions, as well as the changes that take place in IM through the life cycle, and the role of the factors involved in these changes. The aim of this review is to update the relationship between IM and aging. The presentation in 4 sections: (i)main factors of the human ageing process, underlining those related with gut changes; (ii)conceptual meaning of words like microbiota and other related terms; (iii)to comment on the most current findings as regards the changes in IM that occur in the ageing process, whether arising from the physiology or from disease situations, or other factors (environment, diet, drugs, etc.), and the health-consequences of these changes, and (iv)possibilities of different active positive interventions, with emphasis on diet measures.
Collapse
|
32
|
Teixeira AM, Ferreira JP, Hogervorst E, Braga MF, Bandelow S, Rama L, Figueiredo A, Campos MJ, Furtado GE, Chupel MU, Pedrosa FM. Study Protocol on Hormonal Mediation of Exercise on Cognition, Stress and Immunity (PRO-HMECSI): Effects of Different Exercise Programmes in Institutionalized Elders. Front Public Health 2016; 4:133. [PMID: 27446898 PMCID: PMC4921497 DOI: 10.3389/fpubh.2016.00133] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 06/13/2016] [Indexed: 11/13/2022] Open
Abstract
Physical activity (PA) in elders has been shown to have positive effects on a plethora of chronic diseases and to improve immunity, mental health, and cognition. Chronic stress has also been shown to have immuno-suppressive effects and to accelerate immunosenescence. Exercise could be a significant factor in ameliorating the deleterious effects of chronic stress, but variables such as the type, intensity, and frequency of exercise that should be performed in order to effectively reduce the stress burden need to be defined clearly. PRO-HMECSI will allow us to investigate which hormonal and immunological parameters are able to mediate the effects of exercise on mucosal immunity, psychological/biological stress, and cognitive functioning in older people. Phase I consists of an observational cross-sectional study that compares elders groups (n = 223, >65 years) by functional fitness levels aiming to identify biomarkers involved in maintaining immune and mental health. Neuroendocrine and immune biomarkers of stress, psychological well-being related to mental health, neurocognitive function, functional fitness, and daily PA will be evaluated. Phase II consists of a 28-week intervention in elders with mild cognitive impairment (MCI) profile (n = 149, >65 years, divided in three groups of exercise and one control group), aiming to investigate whether the positive effect of three different types of chair-based exercise programs on physical and psychological health is mediated by an optimal endocrine environment. Primary outcomes are measures of cognitive function and global health. Secondary outcomes include the evaluation the other dimensions such as immune function, psychological health, and depression. Few studies addressed the effects of different types of exercise interventions in older population samples with MCI. We will also be able to determine which type of exercise is more effective in the immune and hormonal function of this population.
Collapse
Affiliation(s)
- Ana Maria Teixeira
- Faculty of Sport Sciences and Physical Education, University of Coimbra , Coimbra , Portugal
| | - José Pedro Ferreira
- Faculty of Sport Sciences and Physical Education, University of Coimbra , Coimbra , Portugal
| | - Eef Hogervorst
- National Centre for Sports and Exercise Medicine, Loughborough University , Loughborough , UK
| | - Margarida Ferreira Braga
- Medical Psychology Unit, Department of Clinical Neurosciences and Mental Health, Faculty of Medicine, Porto University , Porto , Portugal
| | - Stephan Bandelow
- National Centre for Sports and Exercise Medicine, Loughborough University , Loughborough , UK
| | - Luís Rama
- Faculty of Sport Sciences and Physical Education, University of Coimbra , Coimbra , Portugal
| | - António Figueiredo
- Faculty of Sport Sciences and Physical Education, University of Coimbra , Coimbra , Portugal
| | - Maria João Campos
- Faculty of Sport Sciences and Physical Education, University of Coimbra , Coimbra , Portugal
| | - Guilherme Eustáquio Furtado
- Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal; CAPES Foundation, Ministry of Education, Brasilia, Brazil
| | - Matheus Uba Chupel
- Faculty of Sport Sciences and Physical Education, University of Coimbra, Coimbra, Portugal; CAPES Foundation, Ministry of Education, Brasilia, Brazil
| | - Filipa Martins Pedrosa
- Faculty of Sport Sciences and Physical Education, University of Coimbra , Coimbra , Portugal
| |
Collapse
|
33
|
Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao JZ, Abe F, Osawa R. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC Microbiol 2016; 16:90. [PMID: 27220822 PMCID: PMC4879732 DOI: 10.1186/s12866-016-0708-5] [Citation(s) in RCA: 886] [Impact Index Per Article: 98.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/22/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND It has been reported that the composition of human gut microbiota changes with age; however, few studies have used molecular techniques to investigate the long-term, sequential changes in gut microbiota composition. In this study, we investigated the sequential changes in gut microbiota composition in newborn to centenarian Japanese subjects. RESULTS Fecal samples from 367 healthy Japanese subjects between the ages of 0 and 104 years were analyzed by high-throughput sequencing of amplicons derived from the V3-V4 region of the 16S rRNA gene. Analysis based on bacterial co-abundance groups (CAGs) defined by Kendall correlations between genera revealed that certain transition types of microbiota were enriched in infants, adults, elderly individuals and both infant and elderly subjects. More positive correlations between the relative abundances of genera were observed in the elderly-associated CAGs compared with the infant- and adult-associated CAGs. Hierarchical Ward's linkage clustering based on the abundance of genera indicated five clusters, with median (interquartile range) ages of 3 (0-35), 33 (24-45), 42 (32-62), 77 (36-84) and 94 (86-98) years. Subjects were predominantly clustered with their matched age; however, some of them fell into mismatched age clusters. Furthermore, clustering based on the proportion of transporters predicted by phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) showed that subjects were divided into two age-related groups, the adult-enriched and infant/elderly-enriched clusters. Notably, all the drug transporters based on Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology groups were found in the infant/elderly-enriched cluster. CONCLUSION Our results indicate some patterns and transition points in the compositional changes in gut microbiota with age. In addition, the transporter property prediction results suggest that nutrients in the gut might play an important role in changing the gut microbiota composition with age.
Collapse
Affiliation(s)
- Toshitaka Odamaki
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan.
| | - Kumiko Kato
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
| | - Hirosuke Sugahara
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
| | - Nanami Hashikura
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
| | - Sachiko Takahashi
- Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
| | - Jin-Zhong Xiao
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
| | - Fumiaki Abe
- Food Ingredients & Technology Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, Japan
| | - Ro Osawa
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| |
Collapse
|
34
|
Aso K, Tsuruhara A, Takagaki K, Oki K, Ota M, Nose Y, Tanemura H, Urushihata N, Sasanuma J, Sano M, Hirano A, Aso R, McGhee JR, Fujihashi K. Adipose-Derived Mesenchymal Stem Cells Restore Impaired Mucosal Immune Responses in Aged Mice. PLoS One 2016; 11:e0148185. [PMID: 26840058 PMCID: PMC4740412 DOI: 10.1371/journal.pone.0148185] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/14/2016] [Indexed: 12/29/2022] Open
Abstract
It has been shown that adipose-derived mesenchymal stem cells (AMSCs) can differentiate into adipocytes, chondrocytes and osteoblasts. Several clinical trials have shown the ability of AMSCs to regenerate these differentiated cell types. Age-associated dysregulation of the gastrointestinal (GI) immune system has been well documented. Our previous studies showed that impaired mucosal immunity in the GI tract occurs earlier during agingthan is seen in the systemic compartment. In this study, we examined the potential of AMSCs to restore the GI mucosal immune system in aged mice. Aged (>18 mo old) mice were adoptively transferred with AMSCs. Two weeks later, mice were orally immunized with ovalbumin (OVA) plus cholera toxin (CT) three times at weekly intervals. Seven days after the final immunization, when fecal extract samples and plasma were subjected to OVA- and CT-B-specific ELISA, elevated levels of mucosal secretory IgA (SIgA) and plasma IgG antibody (Ab) responses were noted in aged mouse recipients. Similar results were also seen aged mice which received AMSCs at one year of age. When cytokine production was examined, OVA-stimulated Peyer's patch CD4+ T cells produced increased levels of IL-4. Further, CD4+ T cells from the lamina propria revealed elevated levels of IL-4 and IFN-γ production. In contrast, aged mice without AMSC transfer showed essentially no OVA- or CT-B-specific mucosal SIgA or plasma IgG Ab or cytokine responses. Of importance, fecal extracts from AMSC transferred aged mice showed neutralization activity to CT intoxication. These results suggest that AMSCs can restore impaired mucosal immunity in the GI tract of aged mice.
Collapse
Affiliation(s)
- Kazuyoshi Aso
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Akitoshi Tsuruhara
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | | | | | - Megumi Ota
- BioMimetics Sympathies Inc., Tokyo, Japan
| | | | | | | | - Jinichi Sasanuma
- Department of Neurosurgery, Shinyurigaoka General Hospital, Kawasaki, Japan
| | | | | | - Rio Aso
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Jerry R. McGhee
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Kohtaro Fujihashi
- Department of Pediatric Dentistry, The University of Alabama at Birmingham, Birmingham, AL, United States of America
- * E-mail:
| |
Collapse
|
35
|
Martelli S, Pender SLF, Larbi A. Compartmentalization of immunosenescence: a deeper look at the mucosa. Biogerontology 2015; 17:159-76. [PMID: 26689202 DOI: 10.1007/s10522-015-9628-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/09/2015] [Indexed: 12/30/2022]
Abstract
Developments in medical care and living conditions led to an astonishing increase in life-span perspective and subsequently a rise in the old population. This can be seen as a success for public health policies but it also challenges society to adapt, in order to cope with the potentially overwhelming cost for the healthcare system. A fast-growing number of older people lose their ability to live independently because of diseases and disabilities, frailty or cognitive impairment. Many require long-term care, including home-based nursing, communities and hospital-based care. Immunosenescence, an age-related deterioration in immune functions, is considered a major contributory factor for the higher prevalence and severity of infectious diseases and the poor efficacy of vaccination in the elderly. When compared with systemic immunosenescence, alterations in the mucosal immune system with age are less well understood. For this reason, this area deserves more extensive and intensive research and support. In this article, we provide an overview of age-associated changes occurring in systemic immunity and discuss the distinct features of mucosal immunosenescence.
Collapse
Affiliation(s)
- Serena Martelli
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,Singapore Immunology Network (SIgN), Aging and Immunity Program, Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Sylvia L F Pender
- Academic Unit of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Aging and Immunity Program, Agency for Science Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
36
|
Potgieter M, Bester J, Kell DB, Pretorius E. The dormant blood microbiome in chronic, inflammatory diseases. FEMS Microbiol Rev 2015; 39:567-91. [PMID: 25940667 PMCID: PMC4487407 DOI: 10.1093/femsre/fuv013] [Citation(s) in RCA: 274] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 02/07/2023] Open
Abstract
Blood in healthy organisms is seen as a ‘sterile’ environment: it lacks proliferating microbes. Dormant or not-immediately-culturable forms are not absent, however, as intracellular dormancy is well established. We highlight here that a great many pathogens can survive in blood and inside erythrocytes. ‘Non-culturability’, reflected by discrepancies between plate counts and total counts, is commonplace in environmental microbiology. It is overcome by improved culturing methods, and we asked how common this would be in blood. A number of recent, sequence-based and ultramicroscopic studies have uncovered an authentic blood microbiome in a number of non-communicable diseases. The chief origin of these microbes is the gut microbiome (especially when it shifts composition to a pathogenic state, known as ‘dysbiosis’). Another source is microbes translocated from the oral cavity. ‘Dysbiosis’ is also used to describe translocation of cells into blood or other tissues. To avoid ambiguity, we here use the term ‘atopobiosis’ for microbes that appear in places other than their normal location. Atopobiosis may contribute to the dynamics of a variety of inflammatory diseases. Overall, it seems that many more chronic, non-communicable, inflammatory diseases may have a microbial component than are presently considered, and may be treatable using bactericidal antibiotics or vaccines. Atopobiosis of microbes (the term describing microbes that appear in places other than where they should be), as well as the products of their metabolism, seems to correlate with, and may contribute to, the dynamics of a variety of inflammatory diseases.
Collapse
Affiliation(s)
- Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa
| | - Janette Bester
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa
| | - Douglas B Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, 131, Princess St, Manchester M1 7DN, Lancs, UK
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa
| |
Collapse
|