1
|
Hsieh C, Chen S, Lin C, Chen S, Liao C. Disability-Adjusted Life Years (DALYs) due to Breast, Cervical, Colorectal and Oral Cancers in Taiwan Regions. Cancer Med 2025; 14:e70592. [PMID: 39778066 PMCID: PMC11705416 DOI: 10.1002/cam4.70592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/09/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Cancer is a leading cause of death globally, with significant variations in incidence and mortality rates among different cancer types and regions. In Taiwan, breast cancer (BC), cervical cancer (CxCa), colorectal cancer (CRC), and oral cancer (OC) are prevalent and have prompted government-led screening programs to mitigate their impact. This study aims to assess the burden of these cancers at the county scale using disability-adjusted life years (DALYs) as a metric, focusing on the years 2010, 2015, 2018, 2019, and 2020. METHODS Data on cancer incidence, mortality, disability weights, and treatment outcomes were sourced from the Taiwan HPA, Ministry of Health and Welfare, and Taiwan Cancer Registry. Years of life lost (YLLs) and years lived with disability (YLDs) were calculated for each cancer, considering age, stage, and treatment. The correlation between cancer screening rates and disease burden also conducted. RESULTS The analysis highlights significant trends in cancer mortality, incidence, and disease burden in Taiwan from 2010 to 2020. BC and CRC showed rising ASMR and DALYs rates, while CxCa experienced consistent declines. OC had a fluctuating pattern, particularly in eastern regions. YLLs contributed significantly to DALYs for all cancers, emphasizing premature mortality's role in the disease burden. Screening rates, particularly for BC and CxCa, correlated with changes in burden, with BC rates increasing and CxCa decreasing, reflecting the impact of preventive measures on cancer outcomes. CONCLUSIONS The findings underscore the importance of targeted interventions and evidence-informed resource allocation to address regional differences in cancer burden in Taiwan.
Collapse
Affiliation(s)
- Cheng‐Chieh Hsieh
- Department of Public HealthChung Shan Medical UniversityTaichungTaiwan
| | - Si‐Yu Chen
- Department of Bioenvironmental Systems EngineeringNational Taiwan UniversityTaipeiTaiwan
| | - Chun‐Hui Lin
- Department of Public HealthChung Shan Medical UniversityTaichungTaiwan
- Department of Surgery, Division of General SurgeryFeng Yuan Hospital, Ministry of Health and WelfareTaichungTaiwan
| | - Szu‐Chieh Chen
- Department of Public HealthChung Shan Medical UniversityTaichungTaiwan
- Department of Family and Community MedicineChung Shan Medical University HospitalTaichungTaiwan
| | - Chung‐Min Liao
- Department of Bioenvironmental Systems EngineeringNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
2
|
Sadeghi MA, Stevens D, Kundu S, Sanghera R, Dagher R, Yedavalli V, Jones C, Sair H, Luna LP. Detecting Alzheimer's Disease Stages and Frontotemporal Dementia in Time Courses of Resting-State fMRI Data Using a Machine Learning Approach. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2768-2783. [PMID: 38780666 PMCID: PMC11612109 DOI: 10.1007/s10278-024-01101-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 05/25/2024]
Abstract
Early, accurate diagnosis of neurodegenerative dementia subtypes such as Alzheimer's disease (AD) and frontotemporal dementia (FTD) is crucial for the effectiveness of their treatments. However, distinguishing these conditions becomes challenging when symptoms overlap or the conditions present atypically. Resting-state fMRI (rs-fMRI) studies have demonstrated condition-specific alterations in AD, FTD, and mild cognitive impairment (MCI) compared to healthy controls (HC). Here, we used machine learning to build a diagnostic classification model based on these alterations. We curated all rs-fMRIs and their corresponding clinical information from the ADNI and FTLDNI databases. Imaging data underwent preprocessing, time course extraction, and feature extraction in preparation for the analyses. The imaging features data and clinical variables were fed into gradient-boosted decision trees with fivefold nested cross-validation to build models that classified four groups: AD, FTD, HC, and MCI. The mean and 95% confidence intervals for model performance metrics were calculated using the unseen test sets in the cross-validation rounds. The model built using only imaging features achieved 74.4% mean balanced accuracy, 0.94 mean macro-averaged AUC, and 0.73 mean macro-averaged F1 score. It accurately classified FTD (F1 = 0.99), HC (F1 = 0.99), and MCI (F1 = 0.86) fMRIs but mostly misclassified AD scans as MCI (F1 = 0.08). Adding clinical variables to model inputs raised balanced accuracy to 91.1%, macro-averaged AUC to 0.99, macro-averaged F1 score to 0.92, and improved AD classification accuracy (F1 = 0.74). In conclusion, a multimodal model based on rs-fMRI and clinical data accurately differentiates AD-MCI vs. FTD vs. HC.
Collapse
Affiliation(s)
- Mohammad Amin Sadeghi
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medicine, 600 N Wolfe St, Phipps B100F, Baltimore, MD, 21287, USA
| | - Daniel Stevens
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shinjini Kundu
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medicine, 600 N Wolfe St, Phipps B100F, Baltimore, MD, 21287, USA
| | - Rohan Sanghera
- University of Cambridge, School of Clinical Medicine, Cambridge, UK
| | - Richard Dagher
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medicine, 600 N Wolfe St, Phipps B100F, Baltimore, MD, 21287, USA
| | - Vivek Yedavalli
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medicine, 600 N Wolfe St, Phipps B100F, Baltimore, MD, 21287, USA
| | - Craig Jones
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medicine, 600 N Wolfe St, Phipps B100F, Baltimore, MD, 21287, USA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA
- The Malone Center for Engineering in Healthcare, The Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Haris Sair
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medicine, 600 N Wolfe St, Phipps B100F, Baltimore, MD, 21287, USA
- The Malone Center for Engineering in Healthcare, The Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Licia P Luna
- Division of Neuroradiology, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medicine, 600 N Wolfe St, Phipps B100F, Baltimore, MD, 21287, USA.
| |
Collapse
|
3
|
Baindoor S, Gibriel HAY, Venø MT, Su J, Morrissey EP, Jirström E, Woods I, Kenny A, Alves M, Halang L, Fabbrizio P, Bilen M, Engel T, Hogg MC, Bendotti C, Nardo G, Slack RS, Kjems J, Prehn JHM. Distinct fingerprints of tRNA-derived small non-coding RNA in animal models of neurodegeneration. Dis Model Mech 2024; 17:dmm050870. [PMID: 39552337 PMCID: PMC11603119 DOI: 10.1242/dmm.050870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
Transfer RNA-derived small RNAs (tsRNAs) - categorized as tRNA-derived fragments (tRFs), tRNA-derived stress-induced RNAs (tiRNAs) and internal tRF (itRF) - are small non-coding RNAs that participate in various cellular processes such as translation inhibition and responses to cellular stress. We here identified tsRNA profiles within susceptible tissues in animal models of amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD) and Parkinson's disease (PD) to pinpoint disease-specific tsRNAs and those shared across neurodegenerative diseases. We performed small RNA sequencing in the SOD1G93A and TDP43A315T mouse models of ALS (spinal cord), the TauP301S model of FTD (hippocampus), and the parkin/POLG model of PD (substantia nigra). Bioinformatic analysis showed higher expression of 5' tiRNAs selectively in the two ALS models, lower expression of 3' tRFs in both the ALS and FTD mouse models, and lower expression of itRF Arg in the PD model. Experimental validation confirmed the expression of tsRNAs. Gene Ontology analysis of targets associated with validated 3' tRFs indicated functions in the regulation of synaptic and neuronal pathways. Our profiling of tsRNAs indicates disease-specific fingerprints in animal models of neurodegeneration, which require validation in human disease.
Collapse
Affiliation(s)
- Sharada Baindoor
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Hesham A. Y. Gibriel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | | | - Junyi Su
- Omiics ApS, DK-8200 Aarhus N, Denmark
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Elena Perez Morrissey
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Elisabeth Jirström
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Ina Woods
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Aidan Kenny
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Luise Halang
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin D02 YN77, Ireland
| | - Paola Fabbrizio
- Laboratory of Neurobiology and Preclinical Therapeutics, Department of Neuroscience, IRCCS - Mario Negri Institute for Pharmacological Research, Via Mario Negri, 2, 20156 Milan, Italy
| | - Maria Bilen
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Marion C. Hogg
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
- Department of Biosciences, Nottingham Trent University, Nottingham NG11 8NS, UK
| | - Caterina Bendotti
- Laboratory of Neurobiology and Preclinical Therapeutics, Department of Neuroscience, IRCCS - Mario Negri Institute for Pharmacological Research, Via Mario Negri, 2, 20156 Milan, Italy
| | - Giovanni Nardo
- Laboratory of Neurobiology and Preclinical Therapeutics, Department of Neuroscience, IRCCS - Mario Negri Institute for Pharmacological Research, Via Mario Negri, 2, 20156 Milan, Italy
| | - Ruth S. Slack
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Centre, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jochen H. M. Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St Stephen's Green, Dublin D02 YN77, Ireland
- FutureNeuro SFI Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| |
Collapse
|
4
|
Vanderhaeghe S, Prerad J, Tharkeshwar AK, Goethals E, Vints K, Beckers J, Scheveneels W, Debroux E, Princen K, Van Damme P, Fivaz M, Griffioen G, Van Den Bosch L. A pathogenic mutation in the ALS/FTD gene VCP induces mitochondrial hypermetabolism by modulating the permeability transition pore. Acta Neuropathol Commun 2024; 12:161. [PMID: 39390590 PMCID: PMC11465669 DOI: 10.1186/s40478-024-01866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
Valosin-containing protein (VCP) is a ubiquitously expressed type II AAA+ ATPase protein, implicated in both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). This study aimed to explore the impact of the disease-causing VCPR191Q/wt mutation on mitochondrial function using a CRISPR/Cas9-engineered neuroblastoma cell line. Mitochondria in these cells are enlarged, with a depolarized mitochondrial membrane potential associated with increased respiration and electron transport chain activity. Our results indicate that mitochondrial hypermetabolism could be caused, at least partially, by increased calcium-induced opening of the permeability transition pore (mPTP), leading to mild mitochondrial uncoupling. In conclusion, our findings reveal a central role of the ALS/FTD gene VCP in maintaining mitochondrial homeostasis and suggest a model of pathogenesis based on progressive alterations in mPTP physiology and mitochondrial energetics.
Collapse
Affiliation(s)
- Silke Vanderhaeghe
- Laboratory of Neurobiology, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium
- Laboratory of Neurobiology, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
- reMYND, Leuven, Belgium
| | | | - Arun Kumar Tharkeshwar
- Department of Human Genetics, KU Leuven - University of Leuven, Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven - University of Leuven, Leuven, Belgium
| | - Elien Goethals
- Laboratory of Neurobiology, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium
- reMYND, Leuven, Belgium
| | - Katlijn Vints
- Electron Microscopy Platform and VIB-Bioimaging Core, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Jimmy Beckers
- Laboratory of Neurobiology, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium
- Laboratory of Neurobiology, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Wendy Scheveneels
- Laboratory of Neurobiology, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium
- Laboratory of Neurobiology, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | | | | | - Philip Van Damme
- Laboratory of Neurobiology, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | | | | | - Ludo Van Den Bosch
- Laboratory of Neurobiology, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven - University of Leuven, Leuven, Belgium.
- Laboratory of Neurobiology, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium.
| |
Collapse
|
5
|
Borroni B, Tarantino B, Graff C, Krüger J, Ludolph AC, Moreno F, Otto M, Rowe JB, Seelaar H, Solje E, Stefanova E, Traykov LD, Jelic V, Anderl-Straub S, Portaankorva AM, Barandiaran M, Gabilondo A, Murley AG, Rittman T, Van Der Ende E, Van Swieten JC, Hartikainen P, Stojmenović GM, Mehrabian S, Ghidoni R, Alberici AC, Dell'Abate MT, Zecca C, Grassi M, Logroscino G. Predictors of Care Home Admission and Survival Rate in Patients With Syndromes Associated With Frontotemporal Lobar Degeneration in Europe. Neurology 2024; 103:e209793. [PMID: 39226519 PMCID: PMC11362957 DOI: 10.1212/wnl.0000000000209793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Data on care home admission and survival rates of patients with syndromes associated with frontotemporal lobar degeneration (FTLD) are limited. However, their estimation is essential to plan trials and assess the efficacy of intervention. Population-based registers provide unique samples for this estimate. The aim of this study was to assess care home admission rate, survival rate, and their predictors in incident patients with FTLD-associated syndromes from the European FRONTIERS register-based study. METHODS We conducted a prospective longitudinal multinational observational registry study, considering incident patients with FTLD-associated syndromes diagnosed between June 1, 2018, and May 31, 2019, and followed for up to 5 years till May 31, 2023. We enrolled patients fulfilling diagnosis of the behavioral variant frontotemporal dementia (bvFTD), primary progressive aphasia (PPA), progressive supranuclear palsy (PSP) or corticobasal syndrome (CBS), and FTD with motor neuron disease (FTD-MND). Kaplan-Meier analysis and Cox multivariable regression models were used to assess care home admission and survival rates. The survival probability score (SPS) was computed based on independent predictors of survivorship. RESULTS A total of 266 incident patients with FTLD were included (mean age ± SD = 66.7 ± 9.0; female = 41.4%). The median care home admission rate was 97 months (95% CIs 86-98) from disease onset and 57 months (95% CIs 56-58) from diagnosis. The median survival was 90 months (95% CIs 77-97) from disease onset and 49 months (95% CIs 44-58) from diagnosis. Survival from diagnosis was shorter in FTD-MND (hazard ratio [HR] 4.59, 95% CIs 2.49-8.76, p < 0.001) and PSP/CBS (HR 1.56, 95% CIs 1.01-2.42, p = 0.044) compared with bvFTD; no differences between PPA and bvFTD were found. The SPS proved high accuracy in predicting 1-year survival probability (area under the receiver operating characteristic curve = 0.789, 95% CIs 0.69-0.87), when defined by age, European area of residency, extrapyramidal symptoms, and MND at diagnosis. DISCUSSION In FTLD-associated syndromes, survival rates differ according to clinical features and geography. The SPS was able to predict prognosis at individual patient level with an accuracy of ∼80% and may help to improve patient stratification in clinical trials. Future confirmatory studies considering different populations are needed.
Collapse
Affiliation(s)
- Barbara Borroni
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Barbara Tarantino
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Caroline Graff
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Johanna Krüger
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Albert C Ludolph
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Fermin Moreno
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Markus Otto
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - James B Rowe
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Harro Seelaar
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Eino Solje
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Elka Stefanova
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Latchezar D Traykov
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Vesna Jelic
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Sarah Anderl-Straub
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Anne M Portaankorva
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Myriam Barandiaran
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Alazne Gabilondo
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Alexander G Murley
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Timothy Rittman
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Emma Van Der Ende
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - John C Van Swieten
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Päivi Hartikainen
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Gorana Mandić Stojmenović
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Shima Mehrabian
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Roberta Ghidoni
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Antonella C Alberici
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Maria Teresa Dell'Abate
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Chiara Zecca
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Mario Grassi
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| | - Giancarlo Logroscino
- From the Department of Clinical and Experimental Sciences (B.B.), University of Brescia; Department of Continuity of Care and Frailty (B.B., A.C.A.), ASST Spedali Civili, Brescia; Medical and Genomic Statistics Unit (B.T., M.G.), Department of Brain and Behavioural Sciences, University of Pavia, Italy; Division of Neurogeriatrics (C.G.), Department NVS, Karolinska Institutet, Solna; Unit for Hereditary Dementia (C.G.), Theme Inflammation and Aging, Karolinska University Hospital-Solna, Stockholm, Sweden; Research Unit of Clinical Medicine (J.K., S.A.-S., A.M.P.), Neurology, University of Oulu; MRC (J.K., A.M.P.), Oulu University Hospital; Neurocenter (J.K.), Neurology, Oulu University Hospital, Finland; Department of Neurology (A.C.L., M.O.), University of Ulm; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) (A.C.L.), Ulm, Germany; Cognitive Disorders Unit (F.M., M.B., A.G.), Department of Neurology, Hospital Universitario Donostia; Neuroscience Area (F.M., M.B., A.G.), Biogipuzkoa Health Research Institute, San Sebastian, Spain; Department of Neurology (M.O.), Martin Luther University, University Hospital, Halle (Saale), Germany; MRC Cognition and Brain Sciences Unit (J.B.R., A.G.M., T.R.), Department of Clinical Neurosciences, and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, United Kingdom; Department of Neurology and Alzheimer Center Erasmus MC (H.S., E.V.D.E., J.C.V.S.), Erasmus MC University Medical Center, Rotterdam, the Netherlands; Neurology (E. Solje, P.H.), Institute of Clinical Medicine, University of Eastern Finland; Neurocenter (E. Solje), Neurology, Kuopio University Hospital, Finland; Neurology Clinic (E. Stefanova, G.M.S.), Faculty of Medicine, University Clinical Center, University of Belgrade; UH Alexandrovska (L.D.T., S.M.), Department of Neurology, Medical University Sofia, Bulgaria; Theme Inflammation and Aging (V.J.), Medical Unit Aging Brain, Karolinska University Hospital Huddinge, Solna; Division of Clinical Geriatrics (V.J.), Department NVS, Karolinska Institutet, Huddinge, Sweden; Molecular Markers Laboratory (R.G.), IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia; and Center for Neurodegenerative Diseases and the Aging Brain (M.T.D., C.Z., G.L.), Pia Fondazione Cardinale Giovanni Panico, University of Bari-Aldo Moro, Italy
| |
Collapse
|
6
|
Clarke AJ, Brodtmann A, Irish M, Mowszowski L, Radford K, Naismith SL, Mok VC, Kiernan MC, Halliday GM, Ahmed RM. Risk factors for the neurodegenerative dementias in the Western Pacific region. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 50:101051. [PMID: 39399869 PMCID: PMC11471060 DOI: 10.1016/j.lanwpc.2024.101051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/04/2024] [Accepted: 03/12/2024] [Indexed: 10/15/2024]
Abstract
The Western Pacific Region (WPR) is characterized by a group of socioeconomically, culturally, and geopolitically heterogenous countries and represents a microcosm of the global endemic of neurodegeneration. This review will chart the known risk factors for dementia across the WPR. We explore the intersection between the established risk factors for dementia including the biomedical and lifestyle (cardiovascular and metabolic disease, sleep, hearing loss, depression, alcohol, smoking, traumatic brain injury, genetics) and social determinants (social disadvantage, limited education, systemic racism) as well as incorporate neuroimaging data, where available, to predict disease progression in the WPR. In doing so, we highlight core risk factors for dementia in the WPR, as well as geographical epicentres at heightened risk for dementia, to orient future research towards addressing these disparities.
Collapse
Affiliation(s)
- Antonia J. Clarke
- Department of Neurosciences, Monash University, Melbourne, VIC 3004 Australia
| | - Amy Brodtmann
- Department of Neurosciences, Monash University, Melbourne, VIC 3004 Australia
| | - Muireann Irish
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050 Australia
| | - Loren Mowszowski
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050 Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Kylie Radford
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, Australia
- The University of New South Wales, Sydney, NSW 2031 Australia
| | - Sharon L. Naismith
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050 Australia
| | | | - Matthew C. Kiernan
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050 Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Glenda M. Halliday
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050 Australia
- Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2050 Australia
| | - Rebekah M. Ahmed
- Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050 Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, Australia
| |
Collapse
|
7
|
Katangwe-Chigamba T, Flanagan E, Mioshi E. Implementation of the MiNDToolkit intervention for the management of behavioral symptoms in MND by healthcare professionals: a mixed-methods process evaluation. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:496-505. [PMID: 38745475 DOI: 10.1080/21678421.2024.2349924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVE MiNDToolkit is a novel psychoeducational intervention for carers to support management of behavioral symptoms in people living with motor neuron disease (PlwMND). Implementation of MiNDToolkit involves delivery of an online intervention to carers, which is reinforced by trained healthcare professionals (HCPs). METHODS A mixed-methods process evaluation of the MiNDToolkit feasibility trial was conducted, focusing on reinforcement of the intervention by HCPs. Quantitative data, descriptively analyzed, were included from platform analytics, questionnaire, and 10 semi-structured interviews with HCPs. Interviews were transcribed verbatim; data were inductively analyzed using Reflective Thematic Analysis. RESULTS The MiNDToolkit training and platform is a beneficial and acceptable resource for HCPs with potential to increase knowledge and confidence in identifying and managing behavioral symptoms in MND. Implementation barriers included HCPs' perceptions that highlighting behavior changes would be burdensome to carers and assumptions that carers would take the initiative to ask for support from clinicians. Degree of intervention reinforcement varied, with most HCPs delegating intervention delivery solely to the online platform. CONCLUSIONS Implementation of the MiNDToolkit was viewed to be feasible and the platform thought to increase accessibility of support to carers. The flexible approach to delivery (online platform and optional HCP reinforcement) is acceptable as an intervention for supporting carers of PlwMND with behavioral symptoms. However, MiNDToolkit should not negate HCP involvement in providing medical and practical information to PlwMND and families. Future research should explore ways to incorporate support for carers in the management of PlwMND alongside standard care, alongside tools such as the MiNDToolkit.
Collapse
Affiliation(s)
- T Katangwe-Chigamba
- Norwich Clinical Trials Unit, Norwich Medical School, University of East Anglia, Norwich, England and
| | - E Flanagan
- Norwich Clinical Trials Unit, Norwich Medical School, University of East Anglia, Norwich, England and
| | - E Mioshi
- School of Health Sciences, University of East Anglia, Norwich, England
| |
Collapse
|
8
|
Mioshi E, Grant K, Flanagan E, Heal S, Copsey H, Gould R, Hammond M, Shepstone L, Ashford P. An online intervention for carers to manage behavioral symptoms in motor neuron disease (MiNDToolkit): a randomized parallel multi-center feasibility trial. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:506-516. [PMID: 38745522 PMCID: PMC11286211 DOI: 10.1080/21678421.2024.2350658] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Evidence on management of behavioral symptoms in motor neuron disease (MND) is lacking. The MiNDToolkit, an online psychoeducational platform, supports carers dealing with behavioral symptoms (BehSymp). The study objectives were to ascertain recruitment and retention rates, carer and healthcare professional (HCP) use of the platform, and completion of online assessments, to inform a full-scale trial. Design: Randomized, parallel, multi-center, feasibility trial. SETTING England and Wales, across diverse MND services; recruitment from July/21 to November/22; last participant follow-up in March/23. PARTICIPANTS Carers of people with motor neuron disease (PwMND) with BehSymp, recruited through MND services. After confirming eligibility, participants completed screening and baseline assessments online via the MiNDToolkit platform and were randomized centrally in a 1:1 ratio to MiNDToolkit or control. INTERVENTION MiNDToolkit offered tailored modules to carers for the 3-month study period. Carers in the intervention group could receive additional support from MiNDToolkit trained HCPs. The control group was offered access to the intervention at the end of the study. Data were collected on platform usage and psychosocial variables. MAIN OUTCOMES One hundred and fifty-one carers from 11 sites were invited to join the study (letter, face-to-face); 30 were screened; 29 were randomized. Fifteen people were allocated to the control arm; 14 to intervention. Carers were mostly female; median age for was 62.5 (IQR: 58, 68; intervention) and 57 (IQR: 56, 70; controls). Study retention was high (24/29 = 82.76%); carers engaged with the platform on average 14 times (median (IQR):14.0 (10.0, 18.5)) during the study period. CONCLUSION The MiNDToolkit study was feasible and well accepted by carers and trained HCPs. A definitive trial is warranted.
Collapse
Affiliation(s)
- E. Mioshi
- School of Health Sciences, University of East Anglia, Norwich, UK
| | - K. Grant
- Norwich Clinical Trials Unit, Norwich Medical School, University of East Anglia, Norwich, UK
| | - E. Flanagan
- Norwich Clinical Trials Unit, Norwich Medical School, University of East Anglia, Norwich, UK
| | - S. Heal
- MND Association Norfolk, Norwich & Waveney Branch, Norwich, UK
| | - H. Copsey
- Norfolk MND Care and Research Network, Norwich and Norfolk University Hospitals, Norwich, UK, and
| | - R.L. Gould
- Division of Psychiatry, University College London, London, UK
| | - M. Hammond
- Norwich Clinical Trials Unit, Norwich Medical School, University of East Anglia, Norwich, UK
| | - L. Shepstone
- Norwich Clinical Trials Unit, Norwich Medical School, University of East Anglia, Norwich, UK
| | - P.A. Ashford
- Norwich Clinical Trials Unit, Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
9
|
Godfrey RK, Alsop E, Bjork RT, Chauhan BS, Ruvalcaba HC, Antone J, Gittings LM, Michael AF, Williams C, Hala'ufia G, Blythe AD, Hall M, Sattler R, Van Keuren-Jensen K, Zarnescu DC. Modelling TDP-43 proteinopathy in Drosophila uncovers shared and neuron-specific targets across ALS and FTD relevant circuits. Acta Neuropathol Commun 2023; 11:168. [PMID: 37864255 PMCID: PMC10588218 DOI: 10.1186/s40478-023-01656-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/19/2023] [Indexed: 10/22/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) comprise a spectrum of neurodegenerative diseases linked to TDP-43 proteinopathy, which at the cellular level, is characterized by loss of nuclear TDP-43 and accumulation of cytoplasmic TDP-43 inclusions that ultimately cause RNA processing defects including dysregulation of splicing, mRNA transport and translation. Complementing our previous work in motor neurons, here we report a novel model of TDP-43 proteinopathy based on overexpression of TDP-43 in a subset of Drosophila Kenyon cells of the mushroom body (MB), a circuit with structural characteristics reminiscent of vertebrate cortical networks. This model recapitulates several aspects of dementia-relevant pathological features including age-dependent neuronal loss, nuclear depletion and cytoplasmic accumulation of TDP-43, and behavioral deficits in working memory and sleep that occur prior to axonal degeneration. RNA immunoprecipitations identify several candidate mRNA targets of TDP-43 in MBs, some of which are unique to the MB circuit and others that are shared with motor neurons. Among the latter is the glypican Dally-like-protein (Dlp), which exhibits significant TDP-43 associated reduction in expression during aging. Using genetic interactions we show that overexpression of Dlp in MBs mitigates TDP-43 dependent working memory deficits, conistent with Dlp acting as a mediator of TDP-43 toxicity. Substantiating our findings in the fly model, we find that the expression of GPC6 mRNA, a human ortholog of dlp, is specifically altered in neurons exhibiting the molecular signature of TDP-43 pathology in FTD patient brains. These findings suggest that circuit-specific Drosophila models provide a platform for uncovering shared or disease-specific molecular mechanisms and vulnerabilities across the spectrum of TDP-43 proteinopathies.
Collapse
Affiliation(s)
- R Keating Godfrey
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA.
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, 3215 Hull Road, Gainesville, FL, 32611, USA.
| | - Eric Alsop
- Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA
| | - Reed T Bjork
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Brijesh S Chauhan
- Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive Crescent Building C4605, Hershey, PA, 17033, USA
| | - Hillary C Ruvalcaba
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Jerry Antone
- Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA
| | - Lauren M Gittings
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA
| | - Allison F Michael
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Christi Williams
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Grace Hala'ufia
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Alexander D Blythe
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA
| | - Megan Hall
- Translational Genomics Research Institute, 445 N 5th St., Phoenix, AZ, 85004, USA
| | - Rita Sattler
- Department of Translational Neuroscience, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA
| | | | - Daniela C Zarnescu
- Department of Molecular and Cellular Biology, Life Sciences South, University of Arizona, 1007 E. Lowell St., Tucson, AZ, 85721, USA.
- Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive Crescent Building C4605, Hershey, PA, 17033, USA.
| |
Collapse
|
10
|
Angelopoulou E, Pyrgelis ES, Ahire C, Suman P, Mishra A, Piperi C. Functional Implications of Protein Arginine Methyltransferases (PRMTs) in Neurodegenerative Diseases. BIOLOGY 2023; 12:1257. [PMID: 37759656 PMCID: PMC10525691 DOI: 10.3390/biology12091257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
During the aging of the global population, the prevalence of neurodegenerative diseases will be continuously growing. Although each disorder is characterized by disease-specific protein accumulations, several common pathophysiological mechanisms encompassing both genetic and environmental factors have been detected. Among them, protein arginine methyltransferases (PRMTs), which catalyze the methylation of arginine of various substrates, have been revealed to regulate several cellular mechanisms, including neuronal cell survival and excitability, axonal transport, synaptic maturation, and myelination. Emerging evidence highlights their critical involvement in the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) spectrum, Huntington's disease (HD), spinal muscular atrophy (SMA) and spinal and bulbar muscular atrophy (SBMA). Underlying mechanisms include the regulation of gene transcription and RNA splicing, as well as their implication in various signaling pathways related to oxidative stress responses, apoptosis, neuroinflammation, vacuole degeneration, abnormal protein accumulation and neurotransmission. The targeting of PRMTs is a therapeutic approach initially developed against various forms of cancer but currently presents a novel potential strategy for neurodegenerative diseases. In this review, we discuss the accumulating evidence on the role of PRMTs in the pathophysiology of neurodegenerative diseases, enlightening their pathogenesis and stimulating future research.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.-S.P.)
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efstratios-Stylianos Pyrgelis
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.-S.P.)
| | - Chetana Ahire
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Prachi Suman
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
11
|
Grossman M, Seeley WW, Boxer AL, Hillis AE, Knopman DS, Ljubenov PA, Miller B, Piguet O, Rademakers R, Whitwell JL, Zetterberg H, van Swieten JC. Frontotemporal lobar degeneration. Nat Rev Dis Primers 2023; 9:40. [PMID: 37563165 DOI: 10.1038/s41572-023-00447-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 08/12/2023]
Abstract
Frontotemporal lobar degeneration (FTLD) is one of the most common causes of early-onset dementia and presents with early social-emotional-behavioural and/or language changes that can be accompanied by a pyramidal or extrapyramidal motor disorder. About 20-25% of individuals with FTLD are estimated to carry a mutation associated with a specific FTLD pathology. The discovery of these mutations has led to important advances in potentially disease-modifying treatments that aim to slow progression or delay disease onset and has improved understanding of brain functioning. In both mutation carriers and those with sporadic disease, the most common underlying diagnoses are linked to neuronal and glial inclusions containing tau (FTLD-tau) or TDP-43 (FTLD-TDP), although 5-10% of patients may have inclusions containing proteins from the FUS-Ewing sarcoma-TAF15 family (FTLD-FET). Biomarkers definitively identifying specific pathological entities in sporadic disease have been elusive, which has impeded development of disease-modifying treatments. Nevertheless, disease-monitoring biofluid and imaging biomarkers are becoming increasingly sophisticated and are likely to serve as useful measures of treatment response during trials of disease-modifying treatments. Symptomatic trials using novel approaches such as transcranial direct current stimulation are also beginning to show promise.
Collapse
Affiliation(s)
- Murray Grossman
- Department of Neurology and Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA
| | - William W Seeley
- Departments of Neurology and Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| | - Adam L Boxer
- Departments of Neurology and Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Peter A Ljubenov
- Departments of Neurology and Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce Miller
- Departments of Neurology and Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Olivier Piguet
- School of Psychology and Brain and Mind Center, University of Sydney, Sydney, New South Wales, Australia
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The University of Gothenburg, Mölndal, Sweden
- Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
12
|
Loi SM, Tsoukra P, Sun E, Chen Z, Wibawa P, Biase MD, Farrand S, Eratne D, Kelso W, Evans A, Walterfang M, Velakoulis D. Survival in Huntington's disease and other young-onset dementias. Int J Geriatr Psychiatry 2023; 38:e5913. [PMID: 37062919 PMCID: PMC10946957 DOI: 10.1002/gps.5913] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/04/2023] [Indexed: 04/18/2023]
Abstract
OBJECTIVES To compare survival and risk factors associated with mortality in common young-onset dementias (YOD) including Huntington's disease. METHODS This retrospective cohort study included inpatients from an Australian specialist neuropsychiatry service, over 20 years. Dementia diagnoses were based on consensus criteria and Huntington's disease (HD) was confirmed genetically. Mortality and cause of death were determined using linkage to the Australian Institute of Health and Welfare National Death Index. RESULTS There were 386 individuals with YOD included. The dementia types included frontotemporal dementia (FTD) (24.5%), HD (21.2%) and Alzheimer's disease (AD) (20.5%). 63% (n = 243) individuals had died. The longest median survival was for those who had HD, 18.8 years from symptom onset and with a reduced mortality risk compared to AD and FTD (hazard ratio 0.5). Overall, people with YOD had significantly increased mortality, of 5-8 times, compared to the general population. Females with a YOD had higher standardised mortality ratio compared to males (9.3 vs. 4.9) overall. The most frequent cause of death in those with HD was reported as HD, with other causes of death in the other YOD-subtypes related to dementia and mental/behavioural disorders. DISCUSSION This is the first Australian study to investigate survival and risk factors of mortality in people with YOD. YOD has a significant risk of death compared to the general population. Our findings provide useful clinical information for people affected by YOD as well as future planning and service provision.
Collapse
Affiliation(s)
- Samantha M. Loi
- NeuropsychiatryNorthWestern Mental Health, Melbourne HealthRoyal Melbourne HospitalParkvilleVictoriaAustralia
- Department of PsychiatryThe University of MelbourneParkvilleVictoriaAustralia
| | | | - Emily Sun
- NeuropsychiatryNorthWestern Mental Health, Melbourne HealthRoyal Melbourne HospitalParkvilleVictoriaAustralia
| | - Zhibin Chen
- School of Public Health and Preventive MedicineMonash UniversityClaytonVictoriaAustralia
| | - Pierre Wibawa
- NeuropsychiatryNorthWestern Mental Health, Melbourne HealthRoyal Melbourne HospitalParkvilleVictoriaAustralia
| | - Maria di Biase
- Department of PsychiatryThe University of MelbourneParkvilleVictoriaAustralia
| | - Sarah Farrand
- NeuropsychiatryNorthWestern Mental Health, Melbourne HealthRoyal Melbourne HospitalParkvilleVictoriaAustralia
| | - Dhamidhu Eratne
- NeuropsychiatryNorthWestern Mental Health, Melbourne HealthRoyal Melbourne HospitalParkvilleVictoriaAustralia
- Department of PsychiatryThe University of MelbourneParkvilleVictoriaAustralia
- Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
| | - Wendy Kelso
- NeuropsychiatryNorthWestern Mental Health, Melbourne HealthRoyal Melbourne HospitalParkvilleVictoriaAustralia
| | - Andrew Evans
- Department of MedicineRoyal Melbourne HospitalParkvilleVictoriaAustralia
| | - Mark Walterfang
- NeuropsychiatryNorthWestern Mental Health, Melbourne HealthRoyal Melbourne HospitalParkvilleVictoriaAustralia
- Department of PsychiatryThe University of MelbourneParkvilleVictoriaAustralia
- Florey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
| | - Dennis Velakoulis
- NeuropsychiatryNorthWestern Mental Health, Melbourne HealthRoyal Melbourne HospitalParkvilleVictoriaAustralia
- Department of PsychiatryThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
13
|
Frings L, Blazhenets G, Binder R, Bormann T, Hellwig S, Meyer PT. More extensive hypometabolism and higher mortality risk in patients with right- than left-predominant neurodegeneration of the anterior temporal lobe. Alzheimers Res Ther 2023; 15:11. [PMID: 36627641 PMCID: PMC9830748 DOI: 10.1186/s13195-022-01146-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Left-predominant neurodegeneration of the anterior temporal lobe (ATL) and the associated syndrome termed semantic variant primary progressive aphasia (svPPA) are well characterized. Less is known about right-predominant neurodegeneration of the ATL, which has been associated with the clinical syndrome named right temporal variant of frontotemporal dementia (rtvFTD). Here, we assessed glucose metabolism across the brain, cognitive performance, and mortality in patients with right-predominant neurodegeneration of the ATL. METHODS Patients with predominant hypometabolism of the ATL on FDG PET (as a measure of neurodegeneration) were retrospectively identified and categorized into those with asymmetrical right, left, or symmetric bilateral involvement (N = 10, 17, and 8). We compared whole-brain, normalized regional glucose metabolism using SPM12, cognitive performance on the CERAD Neuropsychological Assessment Battery, and mortality risk (age- and sex-adjusted Cox proportional hazard model) between groups. RESULTS Hypometabolism was most pronounced and extensive in patients with right-predominant neurodegeneration of the ATL. Beyond the right temporal lobe, right frontal and left temporal lobes were affected in these patients. Cognitive performance was similarly impaired in all three groups, with predominant naming and hippocampal-dependent memory deficits. Mortality risk was 6.1 times higher in patients with right- than left-predominant ATL neurodegeneration (p < 0.05). Median survival duration after PET was shortest in patients with right- and longest in patients with left-predominant ATL neurodegeneration (5.7 vs 8.3 years after examination). DISCUSSION More extensive neurodegeneration and shorter survival duration in patients with right- than left-predominant neurodegeneration of the ATL might indicate that the former consult memory clinics at a later disease stage, when symptoms like naming and episodic memory deficits have already emerged. At the time of diagnosis, the shorter survival duration of patients with right- than left-predominant ATL neurodegeneration should be kept in mind when counseling patients and caregivers.
Collapse
Affiliation(s)
- Lars Frings
- grid.5963.9Department of Nuclear Medicine, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany ,grid.5963.9Center of Geriatrics and Gerontology, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ganna Blazhenets
- grid.5963.9Department of Nuclear Medicine, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Raphael Binder
- grid.5963.9Department of Nuclear Medicine, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Bormann
- grid.5963.9Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabine Hellwig
- grid.5963.9Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp T. Meyer
- grid.5963.9Department of Nuclear Medicine, Medical Center - University of Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Hypometabolic and hypermetabolic brain regions in patients with ALS-FTD show distinct patterns of grey and white matter degeneration: A pilot multimodal neuroimaging study. Eur J Radiol 2023; 158:110616. [PMID: 36493498 DOI: 10.1016/j.ejrad.2022.110616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/05/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Up to 50% of amyotrophic lateral sclerosis (ALS) patients develop some degree of cognitive dysfunction and a small proportion of these develop frontotemporal dementia (FTD). Non-invasive techniques of magnetic resonance imaging (MRI) and [18F]-fluoro-2-deoxy-d-glucose (18F-FDG) positron emission tomography (PET) have demonstrated structural and metabolic abnormalities, respectively, in the brains of such patients with ALS-FTD. Although initial 18F-FDG PET studies in ALS patients showed only hypometabolism of motor and extramotor brain regions, subsequent studies have demonstrated hypermetabolic changes as well. Such contrasting findings prompted us to hypothesize that hypo- and hypermetabolic brain regions in ALS-FTD patients are associated with divergent degeneration of structural grey matter (GM) and white matter (WM). METHODS Cerebral glucose metabolic rate (CMRglc), cortical thickness (CT), fractal dimension (FD), and graph theory WM network analyses were performed on clinical MRI and 18F-FDG PET images from 8 ALS-FTD patients and 14 neurologic controls to explore the relationship between GM-WM degeneration and hypo- and hypermetabolic brain regions. RESULTS CMRglc revealed significant hypometabolism in frontal and precentral gyrus brain regions, with hypermetabolism in temporal, occipital and cerebellar regions. Cortical thinning was noted in both hypo- and hypermetabolic brain areas. Unlike CT, FD did not reveal widespread GM degeneration in hypo- and hypermetabolic brain regions of ALS-FTD patients. Graph theory analysis showed severe WM degeneration in hypometabolic but not hypermetabolic areas, especially in the right hemisphere. CONCLUSION Our multimodal MRI-PET study provides insights into potentially differential pathophysiological mechanisms between hypo- and hypermetabolic brain regions of ALS-FTD patients.
Collapse
|
15
|
Chen Z, Chu M, Liu L, Zhang J, Kong Y, Xie K, Cui Y, Ye H, Li J, Wang L, Wu L. Genetic prion diseases presenting as frontotemporal dementia: clinical features and diagnostic challenge. Alzheimers Res Ther 2022; 14:90. [PMID: 35768878 PMCID: PMC9245249 DOI: 10.1186/s13195-022-01033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
To elucidate the clinical and ancillary features of genetic prion diseases (gPrDs) presenting with frontotemporal dementia (FTD) to aid early identification.
Methods
Global data of gPrDs presenting with FTD caused by prion protein gene mutations were collected from literature review and our records. Fifty-one cases of typical FTD and 136 cases of prion diseases admitted to our institution were included as controls. Clinical and ancillary data of the different groups were compared.
Results
Forty-nine cases of gPrDs presenting with FTD were identified. Compared to FTD or prion diseases, gPrDs presenting with FTD were characterized by earlier onset age (median 45 vs. 61/60 years, P < 0.001, P < 0.001) and higher incidence of positive family history (81.6% vs. 27.5/13.2%, P < 0.001, P < 0.001). Furthermore, GPrDs presenting with FTD exhibited shorter duration (median 5 vs. 8 years) and a higher rate of parkinsonism (63.7% vs. 9.8%, P < 0.001), pyramidal signs (39.1% vs. 7.8%, P = 0.001), mutism (35.9% vs. 0%, P < 0.001), seizures (25.8% vs. 0%, P < 0.001), myoclonus (22.5% vs. 0%, P < 0.001), and hyperintensity on MRI (25.0% vs. 0, P < 0.001) compared to FTD. Compared to prion diseases, gPrDs presenting with FTD had a longer duration of symptoms (median 5 vs. 1.1 years, P < 0.001), higher rates of frontotemporal atrophy (89.7% vs. 3.3%, P < 0.001), lower rates of periodic short-wave complexes on EEG (0% vs. 30.3%, P = 0.001), and hyperintensity on MRI (25.0% vs. 83.0%, P < 0.001). The frequency of codon 129 Val allele in gPrDs presenting with FTD was significantly higher than that reported in the literature for gPrDs in the Caucasian and East Asian populations (33.3% vs. 19.2%/8.0%, P = 0.005, P < 0.001).
Conclusions
GPrDs presenting with FTD are characterized by early-onset, high incidence of positive family history, high frequency of the Val allele at codon 129, overlapping symptoms with prion disease and FTD, and ancillary features closer to FTD. PRNP mutations may be a rare cause in the FTD spectrum, and PRNP genotyping should be considered in patients with these features.
Collapse
|
16
|
Mastrianni JA, Seibert K. Challenging Cases of Neurocognitive Disorders. Semin Neurol 2022; 42:742-751. [PMID: 36623535 DOI: 10.1055/s-0042-1760378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Dementia is broadly defined by DSM-V as cognitive decline from a previous level that impacts the patient's functioning at work or play. This broad definition does not provide information about the underlying disease process, an aspect of clinical care that is of increasing importance, as therapeutic development inches closer to effective disease-modifying treatments. The most common neurodegenerative dementias include Alzheimer's disease, dementia with Lewy bodies, frontotemporal dementia, and Parkinson's disease dementia. Although rare, the prion diseases constitute an important group of dementias that should be routinely considered in the evaluation. Over the last two decades, advances in neuroimaging, biomarker development, and neurogenetics have not only led to a better understanding of the biology of these diseases, but they have improved our awareness of less common clinical subtypes of dementia. As such, to best define the disease process, the evaluation of a patient with cognitive decline requires attention to a myriad of disease aspects, such as the primary symptom at onset (memory, language, visual perception, praxis, etc.), the age at onset (younger or older than 65 years), the rate of disease progression (weeks to months or years), the cognitive and behavioral profile (neuropsychological assessment), and involvement of physical findings. We present here three cases that highlight the decision-making process in the evaluation of patients with atypical presentations of dementia.
Collapse
Affiliation(s)
- James A Mastrianni
- Department of Neurology, Center for Comprehensive Care and Research on Memory Disorders, University of Chicago, Chicago, Illinois
| | - Kaitlin Seibert
- Department of Neurology, Center for Comprehensive Care and Research on Memory Disorders, University of Chicago, Chicago, Illinois
| |
Collapse
|
17
|
del Campo M, Zetterberg H, Gandy S, Onyike CU, Oliveira F, Udeh‐Momoh C, Lleó A, Teunissen CE, Pijnenburg Y. New developments of biofluid-based biomarkers for routine diagnosis and disease trajectories in frontotemporal dementia. Alzheimers Dement 2022; 18:2292-2307. [PMID: 35235699 PMCID: PMC9790674 DOI: 10.1002/alz.12643] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 01/31/2023]
Abstract
Frontotemporal dementia (FTD) covers a spectrum of neurodegenerative disorders with different phenotypes, genetic backgrounds, and pathological states. Its clinicopathological diversity challenges the diagnostic process and the execution of clinical trials, calling for specific diagnostic biomarkers of pathologic FTD types. There is also a need for biomarkers that facilitate disease staging, quantification of severity, monitoring in clinics and observational studies, and for evaluation of target engagement and treatment response in clinical trials. This review discusses current FTD biofluid-based biomarker knowledge taking into account the differing applications. The limitations, knowledge gaps, and challenges for the development and implementation of such markers are also examined. Strategies to overcome these hurdles are proposed, including the technologies available, patient cohorts, and collaborative research initiatives. Access to robust and reliable biomarkers that define the exact underlying pathophysiological FTD process will meet the needs for specific diagnosis, disease quantitation, clinical monitoring, and treatment development.
Collapse
Affiliation(s)
- Marta del Campo
- Departamento de Ciencias Farmacéuticas y de la SaludFacultad de FarmaciaUniversidad San Pablo‐CEUCEU UniversitiesMadridSpain
| | - Henrik Zetterberg
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden,Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden,UK Dementia Research Institute at UCLLondonUK,Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK,Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| | - Sam Gandy
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Chiadi U Onyike
- Division of Geriatric Psychiatry and NeuropsychiatryThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Fabricio Oliveira
- Department of Neurology and NeurosurgeryEscola Paulista de MedicinaFederal University of São Paulo (UNIFESP)São PauloSão PauloBrazil
| | - Chi Udeh‐Momoh
- Ageing Epidemiology Research UnitSchool of Public HealthFaculty of MedicineImperial College LondonLondonUK,Translational Health SciencesFaculty of MedicineUniversity of BristolBristolUK
| | - Alberto Lleó
- Neurology DepartmentHospital de la Santa Creu I Sant PauBarcelonaSpain
| | - Charlotte E. Teunissen
- Neurochemistry LaboratoryDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam University Medical CentersVrije UniversiteitAmsterdamthe Netherlands
| | - Yolande Pijnenburg
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
| |
Collapse
|
18
|
Long Z, Irish M, Hodges JR, Piguet O, Burrell JR. Distinct disease trajectories in frontotemporal dementia-motor neuron disease and behavioural variant frontotemporal dementia: A longitudinal study. Eur J Neurol 2022; 29:3158-3169. [PMID: 35921225 PMCID: PMC9804178 DOI: 10.1111/ene.15518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND PURPOSE The heterogeneity of cognitive and behavioural disturbances in frontotemporal dementia-motor neuron disease (FTD-MND), and clinical differences between FTD-MND and FTD subtypes, have been illustrated cross-sectionally. This study aimed to examine the FTD-MND disease trajectory by comparing clinical features of FTD-MND and the behavioural variant FTD (bvFTD) longitudinally. METHODS Neuropsychological and disease severity assessments were conducted in a cohort of FTD-MND (baseline, n = 42; follow-up, n = 18) and bvFTD (baseline, n = 116; follow-up, n = 111) using a longitudinal, case-control design. Age-, sex-, and education-matched controls (n = 52) were recruited. Predictors of clinical progression were analyzed. Voxel-based morphometry analysis was undertaken to investigate the progression of brain atrophy. RESULTS At baseline, FTD-MND was characterized by semantic and general cognition deficits, whereas bvFTD had greater behavioural disturbances. General cognition and language deteriorated in FTD-MND when followed longitudinally. Language deficits at baseline predicted cognitive deterioration and disease progression and correlated with progressive atrophy of language regions. Further deterioration in behaviour was evident in bvFTD over time. The rate of disease progression (i.e., general cognition, semantic association, and disease severity) was significantly faster in FTD-MND than in bvFTD. CONCLUSIONS FTD-MND and bvFTD appear to have distinct disease trajectories, with more rapid progression in FTD-MND. Language impairments should be closely monitored in FTD-MND as potential predictors of cognitive deterioration and disease progression.
Collapse
Affiliation(s)
- Zhe Long
- Department of NeurologyThe Second Xiangya Hospital of Central South UniversityChangshaChina,Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia,Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia
| | - Muireann Irish
- Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia,School of PsychologyUniversity of SydneySydneyNew South WalesAustralia,Australian Research Council Centre of Excellence in Cognition and Its DisordersSydneyNew South WalesAustralia
| | - John R. Hodges
- Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia,Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia,Australian Research Council Centre of Excellence in Cognition and Its DisordersSydneyNew South WalesAustralia
| | - Olivier Piguet
- Brain and Mind CentreUniversity of SydneySydneyNew South WalesAustralia,School of PsychologyUniversity of SydneySydneyNew South WalesAustralia,Australian Research Council Centre of Excellence in Cognition and Its DisordersSydneyNew South WalesAustralia
| | - James R. Burrell
- Faculty of Medicine and HealthUniversity of SydneySydneyNew South WalesAustralia,Australian Research Council Centre of Excellence in Cognition and Its DisordersSydneyNew South WalesAustralia,Concord Medical SchoolUniversity of SydneySydneyNew South WalesAustralia,Faculty of Health SciencesUniversity of SydneySydneyNew South WalesAustralia
| |
Collapse
|
19
|
Snowden JS. Changing perspectives on frontotemporal dementia: A review. J Neuropsychol 2022. [DOI: 10.1111/jnp.12297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Julie S. Snowden
- Cerebral Function Unit, Manchester Centre for Neurosciences Salford Royal NHS Foundation Trust Salford UK
- Division of Neuroscience & Experimental Psychology School of Biological Sciences, University of Manchester Manchester UK
| |
Collapse
|
20
|
Salwierz P, Davenport C, Sumra V, Iulita MF, Ferretti MT, Tartaglia MC. Sex and gender differences in dementia. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 164:179-233. [PMID: 36038204 DOI: 10.1016/bs.irn.2022.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The dementia landscape has undergone a striking paradigm shift. The advances in understanding of neurodegeneration and proteinopathies has changed our approach to patients with cognitive impairment. Firstly, it has recently been shown that the various proteinopathies that are the cause of the dementia begin to build up long before the appearance of any obvious symptoms. This has cemented the idea that there is an urgency in diagnosis as it occurs very late in the pathophysiology of these diseases. Secondly, that accurate diagnosis is required to deliver targeted therapies, that is precision medicine. With this latter point, the realization that various factors of a person need to be considered as they may impact the presentation and progression of disease has risen to the forefront. Two of these factors aside from race and age are biological sex and gender (social construct), as both can have tremendous impact on manifestation of disease. This chapter will cover what is known and remains to be known on the interaction of sex and gender with some of the major causes of dementia.
Collapse
Affiliation(s)
- Patrick Salwierz
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Carly Davenport
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Vishaal Sumra
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - M Florencia Iulita
- Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain; Women's Brain Project, Guntershausen, Switzerland
| | | | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada; Memory Clinic, Krembil Brain Institute, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
21
|
Wang Y, Shen D, Hou B, Sun X, Yang X, Gao J, Liu M, Feng F, Cui L. Brain structural and perfusion changes in amyotrophic lateral sclerosis-frontotemporal dementia patients with cognitive and motor onset: a preliminary study. Brain Imaging Behav 2022; 16:2164-2174. [PMID: 35838935 DOI: 10.1007/s11682-022-00686-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2022] [Indexed: 11/27/2022]
Abstract
Amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) is rare but exhibits worse prognosis than either ALS or FTD alone. However, cognitive onset ALS-FTD (ALS-FTD-C) confers significantly better patient survival than does motor onset ALS-FTD (ALS-FTD-M), underscoring a meager understanding of pathological group differences. This study aimed to assess disparities in cortical atrophy and perfusion shown by patients with the above disease variants. A total of 38 participants (ALS-FTD-C, 8; ALS-FTD-M, 6; simultaneous-onset ALS-FTD [ALS-FTD-S], 4; healthy controls [HC], 20) qualified for the study and underwent magnetic resonance imaging scan. Three-dimensional T1-weighted structural brain imaging and 3D-pseudocontinuous arterial spin-labeled imaging were routinely collected. Gray matter volume (GMV) and cerebral blood flow (CBF) in ALS-FTD-C and ALS-FTD-M were compared through voxel-based analysis. Correlations between imaging parameters and clinical data were also assessed. Compared with HC, ALS-FTD had significant GMV reduction mainly in bilateral limbic system. GMV reduction in ALS-FTD-C was similar in pattern but less widespread, whereas ALS-FTD-M lacked any significant GMV reduction. In CBF analyses, ALS-FTD displayed hypoperfusion in bilateral motor cortex, frontotemporal lobe, and left basal ganglia. Hypoperfusion involved bilateral temporal lobe, prefrontal cortex, and putamen in ALS-FTD-C but was limited to left parahippocampal gyrus in ALS-FTD-M. Correlations between clinical data and GMV/CBF changes in specific regions were also identified in ALS-FTD. Group-specific patterns of cortical atrophy and perfusion were evident in ALS-FTD-C and ALS-FTD-M. ALS-FTD-C showed pronounced cortical atrophy and hypoperfusion, which were otherwise minimal in ALS-FTD-M. Above findings preliminarily revealed the pathological group differences that may help in classifying patients with ALS-FTD.
Collapse
Affiliation(s)
- Yanying Wang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Dongchao Shen
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Bo Hou
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xiaohan Sun
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Xunzhe Yang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Jing Gao
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Mingsheng Liu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
- Neuroscience Centre, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
22
|
Survival in Korean Patients with Frontotemporal Dementia Syndrome: Association with Behavioral Features and Parkinsonism. J Clin Med 2022; 11:jcm11082260. [PMID: 35456351 PMCID: PMC9025342 DOI: 10.3390/jcm11082260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/05/2023] Open
Abstract
We investigated the survival time of each clinical syndrome of frontotemporal dementia (FTD) and the impacts of behavioral and motor features on survival of FTD. A total of 216 patients with FTD [82 behavioral variant FTD (bvFTD), 78 semantic variant primary progressive aphasia (svPPA), 43 non-fluent/agrammatic variant PPA (nfvPPA), 13 FTD-motor neuron disease (MND)] were enrolled from 16 centers across Korea. Behaviors and parkinsonism were assessed using the Frontal Behavioral Inventory and Unified Parkinson’s Disease Rating Scale Part III, respectively. The Kaplan–Meier method was used for the survival analysis and the Cox proportional hazards model was applied for analysis of the effect of behavioral and motor symptoms on survival, after controlling vascular risk factors and cancer. An overall median survival of FTD was 12.1 years. The survival time from onset was shortest for FTD-MND and longest for svPPA. The median survival time of patients with bvFTD was unavailable but likely comparable to that of patients with nfvPPA. In the bvFTD group, negative behavioral symptoms and akinetic rigidity were significantly associated with survival. In the nfvPPA group, the presence of dysarthria had a negative impact on survival. These findings provide useful information to clinicians planning for care.
Collapse
|
23
|
Morrow CB, Leoutsakos JMS, Onyike CU. Functional Disabilities and Psychiatric Symptoms in Primary Progressive Aphasia. Am J Geriatr Psychiatry 2022; 30:372-382. [PMID: 34412935 PMCID: PMC9103777 DOI: 10.1016/j.jagp.2021.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aims of this study are to describe the chronology of functional disabilities in primary progressive aphasia (PPA), and to examine associations between psychiatric comorbidities and functional disabilities. METHODS We conducted a retrospective data analysis using subjects enrolled at Alzheimer's Disease Research Centers between 2005 and 2019. Data were obtained from the National Alzheimer's Coordinating Center database. We included subjects whose primary diagnosis was PPA. Functional status was coded as a binary variable for the following functions: ambulation, transaction skills, verbal communication, meal preparation, and self-care. Behavioral data derived from the Neuropsychiatric Inventory Questionnaire. Descriptive statistics and cox proportional hazard analyses were used to characterize the emergence of disabilities and their association with psychiatric comorbidities. RESULTS Data included 91 subjects with a clinical dementia rating scale of zero at baseline. At the initial visit, no individuals had impairments in self-care, while 7% had impairments in transactions, 3% in ambulation, and 2% in meal preparation. Ninety-three percent had language impairments at the onset of the study, and all by visit 4. By visit 5, 41% of patients had impairments in ambulation and in self-care, 49% were impaired in meal preparation and 70% had impairment in transactions. The presence of anxiety, depression, sleep disturbance and psychosis were all significantly associated with an increased risk for multiple functional disabilities. CONCLUSION These findings provide clinicians with guidance for forecasting disabilities and targeting interventions in PPA.
Collapse
Affiliation(s)
- Christopher B. Morrow
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns University Hopkins School of Medicine, Baltimore, MD
| | - Jeannie-Marie Sheppard Leoutsakos
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns University Hopkins School of Medicine, Baltimore, MD; Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Chiadi U. Onyike
- Division of Geriatric Psychiatry and Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Johns University Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
24
|
Armstrong MJ, Song S, Kurasz AM, Li Z. Predictors of Mortality in Individuals with Dementia in the National Alzheimer's Coordinating Center. J Alzheimers Dis 2022; 86:1935-1946. [PMID: 35253760 PMCID: PMC9153251 DOI: 10.3233/jad-215587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Dementia is one of the top causes of death worldwide, but individuals with dementia and their caregivers report that knowing what to expect, including regarding approaching end of life, is an unmet need. OBJECTIVE To identify predictors of death in individuals with Alzheimer disease (AD) dementia, Lewy body dementia (LBD), vascular dementia, and frontotemporal dementia. METHODS The study used data from National Alzheimer's Coordinating Center participants with dementia and an etiologic diagnosis of AD, Lewy body disease, frontotemporal lobar degeneration (FTLD, with or without motor neuron disease), or vascular dementia. Analyses included median survival across dementia types and predictors of death at 5 years based on baseline demographics and clinical measure performance. Five-year survival probability tables were stratified by predictor values. RESULTS Individuals with AD had the longest survival (median 6 years), followed by FTLD (5 years), and vascular dementia and LBD (each 4 years). The strongest predictors of death for the full cohort were dementia type (higher risk with non-AD dementias), sex (higher risk with male sex), and race and ethnicity (higher risk with white and non-Hispanic participants). Age was associated with higher mortality risk across the non-Alzheimer dementias; other significant associations included worse cognitive status (FTLD, LBD) and more depression (LBD). CONCLUSION Results can help clinicians counsel individuals with dementia and families regarding average dementia trajectories; findings regarding individual risk factors can aid individualizing expectations. Further research is needed to investigate drivers of mortality in the non-AD dementias to improve counseling and help identify potentially modifiable factors.
Collapse
Affiliation(s)
- Melissa J. Armstrong
- Departments of Neurology and Health Outcomes & Biomedical Informatics, University of Florida College of Medicine, Gainesville, FL, 32611, USA
| | - Shangchen Song
- Department of Biostatistics, University of Florida College of Public Health & Health Professions and College of Medicine, Gainesville, Florida, 32611, USA
| | - Andrea M. Kurasz
- Department of Clinical and Health Psychology, University of Florida College of Public Health & Health Professions, Gainesville, FL, 32611, USA
| | - Zhigang Li
- Department of Biostatistics, University of Florida College of Public Health & Health Professions and College of Medicine, Gainesville, Florida, 32611, USA
| |
Collapse
|
25
|
Abstract
Primary palliative care is a fundamental aspect of high-quality care for patients with a serious illness such as dementia. The clinician caring for a patient and family suffering with dementia can provide primary palliative care in numerous ways. Perhaps the most important aspects are high quality communication while sharing a diagnosis, counseling the patient through progression of illness and prognostication, and referral to hospice when appropriate. COVID-19 presents additional risks of intensive care requirement and mortality which we must help patients and families navigate. Throughout all of these discussions, the astute clinician must monitor the patient's decision making capacity and balance respect for autonomy with protection against uninformed consent. Excellent primary palliative care also involves discussion of deprescribing medications of uncertain benefit such as long term use of cholinesterase inhibitors and memantine and being vigilant in the monitoring of pain with its relationship to behavioral disturbance in patients with dementia. Clinicians should follow a standardized approach to pain management in this vulnerable population. Caregiver burden is high for patients with dementia and comprehensive care should also address this burden and implement reduction strategies. When these aspects of care are particularly complex or initial managements strategies fall short, palliative care specialists can be an important additional resource not only for the patient and family, but for the care team struggling to guide the way through a disease with innumerable challenges.
Collapse
Affiliation(s)
- Neal Weisbrod
- Department of Neurology, University of Florida, 1505 SW Archer, Gainesville, FL, 32608, USA.
- Department of Medicine Division of Palliative Care, University of Florida, 1505 SW Archer, Gainesville, FL, 32608, USA.
| |
Collapse
|
26
|
Liu E, Karpf L, Bohl D. Neuroinflammation in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia and the Interest of Induced Pluripotent Stem Cells to Study Immune Cells Interactions With Neurons. Front Mol Neurosci 2022; 14:767041. [PMID: 34970118 PMCID: PMC8712677 DOI: 10.3389/fnmol.2021.767041] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a shared hallmark between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). For long, studies were conducted on tissues of post-mortem patients and neuroinflammation was thought to be only bystander result of the disease with the immune system reacting to dying neurons. In the last two decades, thanks to improving technologies, the identification of causal genes and the development of new tools and models, the involvement of inflammation has emerged as a potential driver of the diseases and evolved as a new area of intense research. In this review, we present the current knowledge about neuroinflammation in ALS, ALS-FTD, and FTD patients and animal models and we discuss reasons of failures linked to therapeutic trials with immunomodulator drugs. Then we present the induced pluripotent stem cell (iPSC) technology and its interest as a new tool to have a better immunopathological comprehension of both diseases in a human context. The iPSC technology giving the unique opportunity to study cells across differentiation and maturation times, brings the hope to shed light on the different mechanisms linking neurodegeneration and activation of the immune system. Protocols available to differentiate iPSC into different immune cell types are presented. Finally, we discuss the interest in studying monocultures of iPS-derived immune cells, co-cultures with neurons and 3D cultures with different cell types, as more integrated cellular approaches. The hope is that the future work with human iPS-derived cells helps not only to identify disease-specific defects in the different cell types but also to decipher the synergistic effects between neurons and immune cells. These new cellular tools could help to find new therapeutic approaches for all patients with ALS, ALS-FTD, and FTD.
Collapse
Affiliation(s)
- Elise Liu
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Léa Karpf
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Delphine Bohl
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
27
|
Loi SM, Tsoukra P, Chen Z, Wibawa P, Eratne D, Kelso W, Walterfang M, Velakoulis D. Risk factors to mortality and causes of death in frontotemporal dementia: An Australian perspective. Int J Geriatr Psychiatry 2021; 37. [PMID: 34921446 DOI: 10.1002/gps.5668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/15/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Frontotemporal dementia (FTD) is a common cause of dementia in younger people. There is less information known about risk factors to mortality such as the type of symptom onset and cause of death in this group. METHOD This was a retrospective file review of inpatients with FTD admitted to a tertiary neuropsychiatry unit located in Australia from 1992 to 2014. Mortality information including linkage of names and causes of death were obtained from the Australian Institute Health and Welfare National Death Index. RESULTS One hundred inpatients were diagnosed with FTD, including behavioural-variant, language-variant FTDs and FTD-motor neuron disease (FTD-MND). Mean age was 52.8 years (SD = 10, range 31-76 years). Sixty-seven of them had died at linkage. Median survival of the sample was 10.5 years and FTD-MND had the shortest survival, 3.5 years. Increasing age of onset and FTD-MND were found to be significant predictors of association for mortality. Compared to the general population, having a FTD had an 8× increased risk of death. Females had double the standardised mortality ratio compared to males. DISCUSSION This study provides important prognostic information for people diagnosed with FTD living in Australia. It highlights the importance of obtaining a definitive diagnosis as early as possible for future planning. More investigation into the relationship of symptom onset type and sex differences in FTD is required.
Collapse
Affiliation(s)
- Samantha M Loi
- Neuropsychiatry, NorthWestern Mental Health, Melbourne Health, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Zhibin Chen
- School of Public Health and Preventive Medicine, Monash University, Clayton, Australia
| | - Pierre Wibawa
- Neuropsychiatry, NorthWestern Mental Health, Melbourne Health, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Dhamidhu Eratne
- Neuropsychiatry, NorthWestern Mental Health, Melbourne Health, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Wendy Kelso
- Neuropsychiatry, NorthWestern Mental Health, Melbourne Health, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Mark Walterfang
- Neuropsychiatry, NorthWestern Mental Health, Melbourne Health, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| | - Dennis Velakoulis
- Neuropsychiatry, NorthWestern Mental Health, Melbourne Health, Royal Melbourne Hospital, Parkville, Victoria, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
28
|
Su WM, Cheng YF, Jiang Z, Duan QQ, Yang TM, Shang HF, Chen YP. Predictors of survival in patients with amyotrophic lateral sclerosis: A large meta-analysis. EBioMedicine 2021; 74:103732. [PMID: 34864363 PMCID: PMC8646173 DOI: 10.1016/j.ebiom.2021.103732] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/10/2021] [Accepted: 11/22/2021] [Indexed: 02/04/2023] Open
Abstract
Background The survival time of amyotrophic lateral sclerosis (ALS) is greatly variable and protective or risk effects of the potential survival predictors are controversial. Thus, we aim to undertake a comprehensive meta-analysis of studies investigating non-genetic prognostic and survival factors in patients with ALS. Methods A search of relevant literature from PubMed, Embase, Cochrane library and other citations from 1st January 1966 to 1st December 020 was conducted. Random-effects models were conducted to pool the multivariable or adjusted hazard ratios (HR) by Stata MP 16.0. PROSPERO registration number: CRD42021256923. Findings A total of 5717 reports were identified, with 115 studies meeting pre-designed inclusion criteria involving 55,169 ALS patients. Five dimensions, including demographic, environmental or lifestyle, clinical manifestations, biochemical index, therapeutic factors or comorbidities were investigated. Twenty-five prediction factors, including twenty non-intervenable and five intervenable factors, were associated with ALS survival. Among them, NFL (HR:3.70, 6.80, in serum and CSF, respectively), FTD (HR:2.98), ALSFRS-R change (HR:2.37), respiratory subtype (HR:2.20), executive dysfunction (HR:2.10) and age of onset (HR:1.03) were superior predictors for poor prognosis, but pLMN or pUMN (HR:0.32), baseline ALSFRS-R score (HR:0.95), duration (HR:0.96), diagnostic delay (HR:0.97) were superior predictors for a good prognosis. Our results did not support the involvement of gender, education level, diabetes, hypertension, NIV, gastrostomy, and statins in ALS survival. Interpretation Our study provided a comprehensive and quantitative index for assessing the prognosis for ALS patients, and the identified non-intervenable or intervenable factors will facilitate the development of treatment strategies for ALS. Funding This study was supported by the National Natural Science Fund of China (Grant No. 81971188), the 1.3.5 project for disciplines of excellence, West China Hospital, Sichuan University (Grant No. 2019HXFH046), and the Science and Technology Bureau Fund of Sichuan Province (No. 2019YFS0216).
Collapse
Affiliation(s)
- Wei-Ming Su
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang-Fan Cheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zheng Jiang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qing-Qing Duan
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tian-Mi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hui-Fang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yong-Ping Chen
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
29
|
Dominguez J, Ng A, Yu J, Guevarra AC, Daroy ML, Alfon A, Catindig JA, Dizon M, Santiago J, Del Moral MC, Yu J, Jamerlan A, Ligsay A, Bagyinszky E, An SS, Kim S. Autosomal Dominant Frontotemporal Lobar Degeneration in a Filipino Family with Progranulin Mutation. Dement Geriatr Cogn Disord 2021; 49:557-564. [PMID: 33486486 DOI: 10.1159/000510106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/10/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Compared to Western populations, familial frontotemporal lobar degeneration (FTLD) is rare among Asians. Progranulin (GRN) gene mutation, which is a major cause of FTLD, is likewise rare. We present a family with FTLD from the Philippines with an autosomal dominant pattern of inheritance and GRN mutation and briefly review reports of GRN mutations in Asia. CASE PRESENTATION The proband is 66 years old with progressive nonfluent aphasia (PNFA)-corticobasal syndrome . We assessed 3 generations of her pedigree and found 11 affected relatives with heterogenous phenotypes, usually behavioral variant frontotemporal dementia (FTD) and PNFA. Neuroimaging showed atrophy and hypometabolism consistent with FTD syndromes. White matter hyperintensities were seen in affected members even in the absence of vascular risk factors. A GRN mutation R110X was found in 6 members, 3 with symptoms and 3 were asymptomatic. Plasma GRN was low (<112 ng/mL) in all mutation carriers. No mutations were found in microtubule-associated protein tau, APP, PSEN1, and PSEN2 genes, and all were APOE3. CONCLUSION This is the first Filipino family with autosomal dominant FTD documented with GRN mutation. Identifying families and cohorts would contribute to therapeutic developments in an area with FTD-GRN.
Collapse
Affiliation(s)
- Jacqueline Dominguez
- Institute for Neurosciences, St. Luke's Medical Center, Quezon City, Philippines,
| | - Arlene Ng
- Institute for Neurosciences, St. Luke's Medical Center, Quezon City, Philippines
| | - Jeryl Yu
- Institute for Neurosciences, St. Luke's Medical Center, Quezon City, Philippines
| | - Anne Cristine Guevarra
- Research and Biotechnology Division, St. Luke's Medical Center, Quezon City, Philippines
| | - Maria Luisa Daroy
- Research and Biotechnology Division, St. Luke's Medical Center, Quezon City, Philippines
| | - Alicia Alfon
- Research and Biotechnology Division, St. Luke's Medical Center, Quezon City, Philippines
| | - Joseree-Ann Catindig
- Memory Center-Institute for Neurosciences, St. Luke's Medical Center, Taguig City, Philippines
| | - Mercedes Dizon
- Institute of Radiology, St. Luke's Medical Center, Quezon City, Philippines
| | - Jonas Santiago
- PET Center, St. Luke's Medical Center, Quezon City, Philippines
| | | | - Justine Yu
- Memory Center-Institute for Neurosciences, St. Luke's Medical Center, Taguig City, Philippines
| | - Angelo Jamerlan
- Department of Bionano Technology, Gachon University, Seongnam, Republic of Korea
| | - Antonio Ligsay
- Section of Clinical Research, St. Luke's Medical Center - College of Medicine, Quezon City, Philippines
| | - Eva Bagyinszky
- Department of Industrial and Environmental Engineering, Gachon University, Seongnam, Republic of Korea
| | - Seong Soo An
- Department of Bionano Technology, Gachon University, Seongnam, Republic of Korea
| | - Sangyun Kim
- Department of Neurology, Seoul National University College of Medicine & Neurocognitive Behavior Center, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| |
Collapse
|
30
|
de la Sablonnière J, Tastevin M, Lavoie M, Laforce R. Longitudinal Changes in Cognition, Behaviours, and Functional Abilities in the Three Main Variants of Primary Progressive Aphasia: A Literature Review. Brain Sci 2021; 11:1209. [PMID: 34573229 PMCID: PMC8466869 DOI: 10.3390/brainsci11091209] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 11/22/2022] Open
Abstract
Primary progressive aphasias (PPAs) are a group of neurodegenerative diseases presenting with insidious and relentless language impairment. Three main PPA variants have been described: the non-fluent/agrammatic variant (nfvPPA), the semantic variant (svPPA), and the logopenic variant (lvPPA). At the time of diagnosis, patients and their families' main question pertains to prognosis and evolution, but very few data exist to support clinicians' claims. The objective of this study was to review the current literature on the longitudinal changes in cognition, behaviours, and functional abilities in the three main PPA variants. A comprehensive review was undertaken via a search on PUBMED and EMBASE. Two authors independently reviewed a total of 65 full-text records for eligibility. A total of 14 group studies and one meta-analysis were included. Among these, eight studies included all three PPA variants. Eight studies were prospective, and the follow-up duration was between one and five years. Overall, svPPA patients showed more behavioural disturbances both at baseline and over the course of the disease. Patients with lvPPA showed a worse cognitive decline, especially in episodic memory, and faster progression to dementia. Finally, patients with nfvPPA showed the most significant losses in language production and functional abilities. Data regarding the prodromal and last stages of PPA are still missing and studies with a longer follow-up observation period are needed.
Collapse
Affiliation(s)
| | | | | | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques du CHU de Québec, Faculté de Médecine, Université Laval, Quebec City, QC G1J 1Z4, Canada; (J.d.l.S.); (M.T.); (M.L.)
| |
Collapse
|
31
|
Tastevin M, Lavoie M, de la Sablonnière J, Carrier-Auclair J, Laforce R. Survival in the Three Common Variants of Primary Progressive Aphasia: A Retrospective Study in a Tertiary Memory Clinic. Brain Sci 2021; 11:brainsci11091113. [PMID: 34573135 PMCID: PMC8466819 DOI: 10.3390/brainsci11091113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 11/16/2022] Open
Abstract
Knowledge on the natural history of the three main variants of primary progressive aphasia (PPA) is lacking, particularly regarding mortality. Moreover, advanced stages and end of life issues are rarely discussed with caregivers and families at diagnosis, which can cause more psychological distress. We analyzed data from 83 deceased patients with a diagnosis of PPA. We studied survival in patients with a diagnosis of logopenic variant (lvPPA), semantic variant (svPPA), or non-fluent variant (nfvPPA) and examined causes of death. From medical records, we retrospectively collected data for each patient at several time points spanning five years before the first visit to death. When possible, interviews were performed with proxies of patients to complete missing data. Results showed that survival from symptom onset and diagnosis was significantly longer in svPPA than in lvPPA (p = 0.002) and nfvPPA (p < 0.001). No relevant confounders were associated with survival. Mean survival from symptom onset was 7.6 years for lvPPA, 7.1 years for nfvPPA, and 12 years for svPPA. The most common causes of death were natural cardio-pulmonary arrest and pneumonia. Aspiration pneumonia represented 23% of deaths in nfvPPA. In conclusion, this pilot study found significant differences in survival between the three variants of PPA with svPPA showing the longest and nfvPPA showing more neurologically-related causes of death.
Collapse
|
32
|
Novak V, Rogelj B, Župunski V. Therapeutic Potential of Polyphenols in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Antioxidants (Basel) 2021; 10:antiox10081328. [PMID: 34439576 PMCID: PMC8389294 DOI: 10.3390/antiox10081328] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are severe neurodegenerative disorders that belong to a common disease spectrum. The molecular and cellular aetiology of the spectrum is a highly complex encompassing dysfunction in many processes, including mitochondrial dysfunction and oxidative stress. There is a paucity of treatment options aside from therapies with subtle effects on the post diagnostic lifespan and symptom management. This presents great interest and necessity for the discovery and development of new compounds and therapies with beneficial effects on the disease. Polyphenols are secondary metabolites found in plant-based foods and are well known for their antioxidant activity. Recent research suggests that they also have a diverse array of neuroprotective functions that could lead to better treatments for neurodegenerative diseases. We present an overview of the effects of various polyphenols in cell line and animal models of ALS/FTD. Furthermore, possible mechanisms behind actions of the most researched compounds (resveratrol, curcumin and green tea catechins) are discussed.
Collapse
Affiliation(s)
- Valentina Novak
- Chair of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (V.N.); (B.R.)
| | - Boris Rogelj
- Chair of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (V.N.); (B.R.)
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Vera Župunski
- Chair of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (V.N.); (B.R.)
- Correspondence:
| |
Collapse
|
33
|
Piña-Escudero SD, Aguirre GA, Javandel S, Longoria-Ibarrola EM. Caregiving for Patients With Frontotemporal Dementia in Latin America. Front Neurol 2021; 12:665694. [PMID: 34305781 PMCID: PMC8292669 DOI: 10.3389/fneur.2021.665694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022] Open
Abstract
Latin America is a vast heterogeneous territory where chronic diseases such as mild cognitive impairment or dementia are becoming higher. Frontotemporal dementia (FTD) prevalence in this region is estimated to be around 12-18 cases per thousand persons. However, this prevalence is underestimated given the lack of awareness of FTD even among healthcare professionals. Family members are responsible for the care of patients with FTD at home. These caregivers deliver care despite being ill-equipped and living in the context of austerity policies and social inequities. They often face unsurmountable financial and social burdens that are specific to the region. The most important step to support caregivers in Latin America is to increase awareness of the disease at all levels. Healthcare diplomacy is fundamental to create joint efforts that push policies forward to protect caregivers of FTD patients.
Collapse
Affiliation(s)
- Stefanie Danielle Piña-Escudero
- The Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United Statesand Trinity College, Dublin, Ireland
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Gloria Annette Aguirre
- The Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United Statesand Trinity College, Dublin, Ireland
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Shireen Javandel
- The Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United Statesand Trinity College, Dublin, Ireland
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Erika Mariana Longoria-Ibarrola
- The Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United Statesand Trinity College, Dublin, Ireland
- Instituto Nacional de Neurología y Neurocirugía José Velazco Suárez, Mexico City, Mexico
| |
Collapse
|
34
|
Murley AG, Rouse MA, Coyle-Gilchrist ITS, Jones PS, Li W, Wiggins J, Lansdall C, Vázquez Rodríguez P, Wilcox A, Patterson K, Rowe JB. Predicting loss of independence and mortality in frontotemporal lobar degeneration syndromes. J Neurol Neurosurg Psychiatry 2021; 92:737-744. [PMID: 33563798 PMCID: PMC8223632 DOI: 10.1136/jnnp-2020-324903] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To test the hypothesis that in syndromes associated with frontotemporal lobar degeneration, behavioural impairment predicts loss of functional independence and motor clinical features predict mortality, irrespective of diagnostic group. METHODS We used a transdiagnostic approach to survival in an epidemiological cohort in the UK, testing the association between clinical features, independence and survival in patients with clinical diagnoses of behavioural variant frontotemporal dementia (bvFTD n=64), non-fluent variant primary progressive aphasia (nfvPPA n=36), semantic variant primary progressive aphasia (svPPA n=25), progressive supranuclear palsy (PSP n=101) and corticobasal syndrome (CBS n=68). A principal components analysis identified six dimensions of clinical features. Using Cox proportional hazards and logistic regression, we identified the association between each of these dimensions and both functionally independent survival (time from clinical assessment to care home admission) and absolute survival (time to death). Analyses adjusted for the covariates of age, gender and diagnostic group. Secondary analysis excluded specific diagnostic groups. RESULTS Behavioural disturbance, including impulsivity and apathy, was associated with reduced functionally independent survival (OR 2.46, p<0.001), even if patients with bvFTD were removed from the analysis. Motor impairments were associated with reduced absolute survival, even if patients with PSP and CBS were removed from the analysis. CONCLUSION Our results can assist individualised prognostication and planning of disease-modifying trials, and they support a transdiagnostic approach to symptomatic treatment trials in patients with clinical syndromes associated with frontotemporal lobar degeneration.
Collapse
Affiliation(s)
- Alexander G Murley
- Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Matthew A Rouse
- Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ian T S Coyle-Gilchrist
- Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Neurology, Norfolk and Norwich University Hospitals NHS Foundation Trust, Norwich, UK
| | - P Simon Jones
- Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Win Li
- Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Julie Wiggins
- Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Claire Lansdall
- Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Alicia Wilcox
- Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Karalyn Patterson
- Clinical Neurosciences, University of Cambridge, Cambridge, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - James B Rowe
- Clinical Neurosciences, University of Cambridge, Cambridge, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
35
|
Shiells H, Schelter BO, Bentham P, Baddeley TC, Rubino CM, Ganesan H, Hammel J, Vuksanovic V, Staff RT, Murray AD, Bracoud L, Wischik DJ, Riedel G, Gauthier S, Jia J, Moebius HJ, Hardlund J, Kipps CM, Kook K, Storey JMD, Harrington CR, Wischik CM. Concentration-Dependent Activity of Hydromethylthionine on Clinical Decline and Brain Atrophy in a Randomized Controlled Trial in Behavioral Variant Frontotemporal Dementia. J Alzheimers Dis 2021; 75:501-519. [PMID: 32280089 PMCID: PMC7306898 DOI: 10.3233/jad-191173] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Hydromethylthionine is a potent inhibitor of pathological aggregation of tau and TDP-43 proteins. OBJECTIVE To compare hydromethylthionine treatment effects at two doses and to determine how drug exposure is related to treatment response in bvFTD. METHODS We undertook a 52-week Phase III study in 220 bvFTD patients randomized to compare hydromethylthionine at 200 mg/day and 8 mg/day (intended as a control). The principal outcomes were change on the Addenbrookes Cognitive Examination - Revised (ACE-R), the Functional Activities Questionnaire (FAQ), and whole brain volume. Secondary outcomes included Modified Clinical Global Impression of Change (Modified-CGIC). A population pharmacokinetic exposure-response analysis was undertaken in 175 of the patients with available blood samples and outcome data using a discriminatory plasma assay for the parent drug. RESULTS There were no significant differences between the two doses as randomized. There were steep concentration-response relationships for plasma levels in the range 0.3-0.6 ng/ml at the 8 mg/day dose on clinical and MRI outcomes. There were significant exposure-dependent differences at 8 mg/day for FAQ, Modified-CGIC, and whole brain atrophy comparing patients with plasma levels greater than 0.346 ng/ml with having minimal drug exposure. The exposure-response is biphasic with worse outcomes at the high concentrations produced by 200 mg/day. CONCLUSIONS Hydromethylthionine has a similar concentration-response profile for effects on clinical decline and brain atrophy at the 8 mg/day dose in bvFTD as recently reported in AD. Treatment responses in bvFTD are predicted to be maximal at doses in the range 20-60 mg/day. A confirmatory placebo-controlled trial is now planned.
Collapse
Affiliation(s)
| | - Bjoern O Schelter
- TauRx Therapeutics Ltd., Aberdeen, UK.,Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, UK
| | | | - Thomas C Baddeley
- TauRx Therapeutics Ltd., Aberdeen, UK.,Department of Chemistry, University of Aberdeen, Aberdeen, UK
| | | | - Harish Ganesan
- Institute of Clinical Pharmacodynamics, Schenectady, NY, USA
| | - Jeffrey Hammel
- Institute of Clinical Pharmacodynamics, Schenectady, NY, USA
| | - Vesna Vuksanovic
- Aberdeen Biomedical Imaging Centre, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Roger T Staff
- Aberdeen Royal Infirmary, NHS Grampian, Aberdeen, UK
| | - Alison D Murray
- Aberdeen Biomedical Imaging Centre, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | | | - Damon J Wischik
- TauRx Therapeutics Ltd., Aberdeen, UK.,Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | - Gernot Riedel
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Serge Gauthier
- McGill Centre for Studies in Aging, Alzheimer's Disease Research Unit, and Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Jianping Jia
- Beijing Institute for Brain Disorders Alzheimer's Disease Centre, Beijing, China
| | | | | | | | | | - John M D Storey
- TauRx Therapeutics Ltd., Aberdeen, UK.,Department of Chemistry, University of Aberdeen, Aberdeen, UK
| | - Charles R Harrington
- TauRx Therapeutics Ltd., Aberdeen, UK.,School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK
| | - Claude M Wischik
- TauRx Therapeutics Ltd., Aberdeen, UK.,School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, UK
| |
Collapse
|
36
|
Broce IJ, Castruita PA, Yokoyama JS. Moving Toward Patient-Tailored Treatment in ALS and FTD: The Potential of Genomic Assessment as a Tool for Biological Discovery and Trial Recruitment. Front Neurosci 2021; 15:639078. [PMID: 33732107 PMCID: PMC7956998 DOI: 10.3389/fnins.2021.639078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/01/2021] [Indexed: 01/04/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two devastating and intertwined neurodegenerative diseases. Historically, ALS and FTD were considered distinct disorders given differences in presenting clinical symptoms, disease duration, and predicted risk of developing each disease. However, research over recent years has highlighted the considerable clinical, pathological, and genetic overlap of ALS and FTD, and these two syndromes are now thought to represent different manifestations of the same neuropathological disease spectrum. In this review, we discuss the need to shift our focus from studying ALS and FTD in isolation to identifying the biological mechanisms that drive these diseases-both common and distinct-to improve treatment discovery and therapeutic development success. We also emphasize the importance of genomic data to facilitate a "precision medicine" approach for treating ALS and FTD.
Collapse
Affiliation(s)
- Iris J. Broce
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Family Medicine and Public Health, University of California, San Diego, San Diego, CA, United States
| | - Patricia A. Castruita
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Jennifer S. Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
37
|
Glasmacher SA, Wong C, Pearson IE, Pal S. Survival and Prognostic Factors in C9orf72 Repeat Expansion Carriers: A Systematic Review and Meta-analysis. JAMA Neurol 2021; 77:367-376. [PMID: 31738367 DOI: 10.1001/jamaneurol.2019.3924] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Importance The c9orf72 repeat expansion (c9 or c9orf72RE) confers a survival disadvantage in amyotrophic lateral sclerosis (ALS); its effect on prognosis in frontotemporal dementia (FTD) remains uncertain. Data on prognostic factors in c9orf72RE disorders could inform patient care, genetic counseling, and trial design. Objective To examine prognostic factors in c9ALS, c9FTD, c9ALS-FTD, and atypical phenotypes. Data Sources The MEDLINE, Embase, Amed, ProQuest, PsychINFO, CINAHL, and LILACS databases were searched between January 2011 and January 2019. Keywords used were c9orf72 and chromosome 9 open reading frame 72. Reference lists, citations of eligible studies, and review articles were also searched by hand. Study Selection Studies reporting disease duration for patients with a confirmed c9orf72RE and a neurological and/or psychiatric disorder were included. A second author independently reviewed studies classified as irrelevant by the first author. Analysis began in January 2019. Data Extraction and Synthesis Data were extracted by 1 author; a further author independently extracted 10% of data. Data were synthesized in univariate and multivariable Cox regression and are displayed as hazard ratios (HR) and 95% confidence intervals. Main Outcomes and Measures Survival after symptom onset. Results Overall, 206 studies reporting on 1060 patients were included from 2878 publications identified (c9ALS: n = 455; c9FTD: n = 296; c9ALS-FTD: n = 198; atypical phenotypes: n = 111); 197 duplicate cases were excluded. The median (95% CI) survival (in years) differed significantly between patients with c9ALS (2.8 [2.67-3.00]), c9FTD (9.0 [8.09-9.91]), and c9ALS-FTD (3.0 [2.73-3.27]); survival in atypical phenotypes varied substantially. Older age at onset was associated with shorter survival in c9ALS (HR, 1.03; 95% CI, 1.02-1.04; P < .001), c9FTD (HR, 1.04; 95% CI, 1.02-1.06; P < .001), and c9ALS-FTD (HR, 1.02; 95% CI, 1.004-1.04; P = .016). Bulbar onset was associated with shorter survival in c9ALS (HR, 1.64; 95% CI, 1.27-2.08; P < .001). Age at onset and bulbar onset ALS remained significant in multivariable regression including variables indicating potential diagnostic ascertainment bias, selection bias, and reporting bias. Family history, sex, study continent, FTD subtype, or the presence of additional pathogenic sequence variants were not significantly associated with survival. Clinical phenotypes in patients with neuropathologically confirmed frontotemporal lobar degeneration-TDP-43, motor neuron disease-TDP-43 and frontotemporal lobar degeneration-motor neuron disease-TDP-43 were heterogenous and impacted on survival. Conclusions and Relevance Several factors associated with survival in c9orf72RE disorders were identified. The inherent limitations of our methodological approach must be considered; nonetheless, the reported prognostic factors were not significantly associated with the bias indicators examined.
Collapse
Affiliation(s)
- Stella A Glasmacher
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Charis Wong
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Iona E Pearson
- College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Suvankar Pal
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom.,Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
38
|
El-Wahsh S, Finger EC, Piguet O, Mok V, Rohrer JD, Kiernan MC, Ahmed RM. Predictors of survival in frontotemporal lobar degeneration syndromes. J Neurol Neurosurg Psychiatry 2021; 92:jnnp-2020-324349. [PMID: 33441385 DOI: 10.1136/jnnp-2020-324349] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/26/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022]
Abstract
After decades of research, large-scale clinical trials in patients diagnosed with frontotemporal lobar degeneration (FTLD) are now underway across multiple centres worldwide. As such, refining the determinants of survival in FTLD represents a timely and important challenge. Specifically, disease outcome measures need greater clarity of definition to enable accurate tracking of therapeutic interventions in both clinical and research settings. Multiple factors potentially determine survival, including the clinical phenotype at presentation; radiological patterns of atrophy including markers on both structural and functional imaging; metabolic factors including eating behaviour and lipid metabolism; biomarkers including both serum and cerebrospinal fluid markers of underlying pathology; as well as genetic factors, including both dominantly inherited genes, but also genetic modifiers. The present review synthesises the effect of these factors on disease survival across the syndromes of frontotemporal dementia, with comparison to amyotrophic lateral sclerosis, progressive supranuclear palsy and corticobasal syndrome. A pathway is presented that outlines the utility of these varied survival factors for future clinical trials and drug development. Given the complexity of the FTLD spectrum, it seems unlikely that any single factor may predict overall survival in individual patients, further suggesting that a precision medicine approach will need to be developed in predicting disease survival in FTLD, to enhance drug target development and future clinical trial methodologies.
Collapse
Affiliation(s)
- Shadi El-Wahsh
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Elizabeth C Finger
- Department of Clinicial Neurological Sciences, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Olivier Piguet
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Vincent Mok
- Gerald Choa Neuroscience Centre, Lui Che Woo Institute of Innovative Medicine, Margaret K.L. Cheung Research Centre for Management of Parkinsonism, Division of Neurology, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Matthew C Kiernan
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Rebekah M Ahmed
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
39
|
Onyike CU, Shinagawa S, Ellajosyula R. Frontotemporal Dementia: A Cross-Cultural Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:141-150. [PMID: 33433874 DOI: 10.1007/978-3-030-51140-1_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is predictable that syndromes of frontotemporal dementia (FTD) may have a worldwide distribution; however, data available on their incidence and prevalence are variable. This variability most likely reflects disparities across regions in the distribution of the expertise, technology, and resources available for FTD research and care. Important discoveries have been made regarding FTD's phenotypes, genetics, and cultural influences on the expression of symptoms; however, in many countries, there are barriers posed by a dearth of resources. There are pressing needs to further develop research on FTD: including first, population studies designed to fill the gaps in our knowledge about FTD's frequency and risk factors in developing regions and among minority groups in developed countries. It is also necessary to facilitate the psychometric characterization of contemporary diagnostic criteria and their translation to different languages and cultural contexts. Furthermore, much needed is the analysis of differences in the genetic risk factors for FTD, particularly non-Mendelian susceptibility factors. It is hoped that reflections on FTD from an international perspective will spur an extension of the vibrant multicenter collaborations, that exist in North America and Europe, toward new centers to be established and supported in the developing regions of the world.
Collapse
Affiliation(s)
- Chiadi U Onyike
- Division of Geriatric Psychiatry and Neuropsychiatry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | |
Collapse
|
40
|
Bogolepova A, Vasenina E, Gomzyakova N, Gusev E, Dudchenko N, Emelin A, Zalutskaya N, Isaev R, Kotovskaya Y, Levin O, Litvinenko I, Lobzin V, Martynov M, Mkhitaryan E, Nikolay G, Palchikova E, Tkacheva O, Cherdak M, Chimagomedova A, Yakhno N. Clinical Guidelines for Cognitive Disorders in Elderly and Older Patients. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:6. [DOI: 10.17116/jnevro20211211036] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
41
|
Mjørud M, Selbæk G, Bjertness E, Edwin TH, Engedal K, Knapskog AB, Strand BH. Time from dementia diagnosis to nursing-home admission and death among persons with dementia: A multistate survival analysis. PLoS One 2020; 15:e0243513. [PMID: 33275638 PMCID: PMC7717539 DOI: 10.1371/journal.pone.0243513] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/22/2020] [Indexed: 12/28/2022] Open
Abstract
Objectives To estimate transition times from dementia diagnosis to nursing-home (NH) admission or death and to examine whether sex, education, marital status, level of cognitive impairment and dementia aetiology are associated with transition times. Design Markov multistate survival analysis and flexible parametric models. Setting Participants were recruited from the Norwegian Registry of Persons Assessed for Cognitive Symptoms (NorCog) in specialist healthcare between 2008 and 2017 and followed until August 2019, a maximum of 10.6 years follow-up time (mean 4.4 years, SD 2.2). Participants’ address histories, emigration and vital status were retrieved from the National Population Registry from time of diagnosis and linked to NorCog clinical data. Participants 2,938 home-dwelling persons with dementia, ages 40–97 years at time of diagnosis (mean 76.1, SD 8.5). Results During follow-up, 992 persons (34%) were admitted to nursing-homes (NHs) and 1,556 (53%) died. Approximately four years after diagnosis, the probability of living in a NH peaked at 19%; thereafter, the probability decreased due to mortality. Median elapsed time from dementia diagnosis to NH admission among those admitted to NHs was 2.28 years (IQR 2.32). The probability of NH admission was greater for women than men due to women´s lower mortality rate. Persons living alone, particularly men, had a higher probability of NH admission than cohabitants. Age, dementia aetiology and severity of cognitive impairment at time of diagnosis did not influence the probability of NH admission. Those with fewer than 10 years of education had a lower probability of NH admission than those with 10 years or more, and this was independent of the excess mortality in the less-educated group. Conclusion Four years after diagnosis, half of the participants still lived at home, while NH residency peaked at 19%. Those with fewer than 10 years of education were less often admitted to NH.
Collapse
Affiliation(s)
- Marit Mjørud
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- * E-mail:
| | - Geir Selbæk
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Espen Bjertness
- Faculty of Medicine, Department of Community Medicine and Global Health, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Trine Holt Edwin
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Knut Engedal
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | | | - Bjørn Heine Strand
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
- Department of Chronic Diseases and Ageing, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
42
|
Premi E, Cristillo V, Gazzina S, Benussi A, Alberici A, Cotelli MS, Calhoun VD, Iraji A, Magoni M, Cotelli M, Micheli A, Gasparotti R, Padovani A, Borroni B. Expanding the role of education in frontotemporal dementia: a functional dynamic connectivity (the chronnectome) study. Neurobiol Aging 2020; 93:35-43. [DOI: 10.1016/j.neurobiolaging.2020.04.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022]
|
43
|
Pender N, Pinto-Grau M, Hardiman O. Cognitive and behavioural impairment in amyotrophic lateral sclerosis. Curr Opin Neurol 2020; 33:649-654. [PMID: 32833751 DOI: 10.1097/wco.0000000000000862] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The current review provides an up to date overview of the nature and progression of the cognitive and behavioural impairment in amyotrophic lateral sclerosis (ALS). Understanding these symptoms has implications for the management of the disease and the design of clinical trials, in addition to the support of patient and caregiver regarding mental capacity and end of life decision-making. RECENT FINDINGS Cognitive and behavioural change in ALS are best characterized as the consequence of extensive network dysfunction. 35-45% of ALS patients present with mild-moderate cognitive impairment and comorbid dementia occurs in approximately 14% of patients, the majority of these meeting diagnostic criteria for frontotemporal dementia (FTD). Cognitive change in ALS manifests most commonly as executive dysfunction and language impairment. Behavioural change in the form of apathy, disinhibition, loss of sympathy and empathy, stereotyped behaviours and dietary changes occur. SUMMARY Cognitive and behavioural impairment is an important feature of ALS, and reflects broad network dysfunction of frontostriatal and frontotemporal systems. Cognition and behaviour should be assessed early in the diagnostic process, and data driven approaches should be developed to enable reliable quantitative outcome assessment suitable for clinical trials.
Collapse
Affiliation(s)
- Niall Pender
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin.,Department of Psychology
| | - Marta Pinto-Grau
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin.,Department of Psychology
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin.,Department of Neurology, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
44
|
Abstract
Frontotemporal dementia (FTD) encompasses a group of clinical syndromes, including behavioral-variant FTD, nonfluent variant primary progressive aphasia, semantic variant primary progressive aphasia, FTD motor neuron disease, progressive supranuclear palsy syndrome, and corticobasal syndrome. Early on in its course, FTD is commonly seen in psychiatric clinics. We review the clinical features and diagnostic criteria in FTD spectrum disorders.
Collapse
Affiliation(s)
- Kyan Younes
- UCSF Memory and Aging Center, Box 1207, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94143, USA.
| | - Bruce L Miller
- UCSF Memory and Aging Center, Box 1207, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94143, USA. https://twitter.com/brucemillerucsf
| |
Collapse
|
45
|
Choudhury P, Scharf EL, Paolini MA, Graff-Radford J, Alden EC, Machulda MM, Jones DT, Fields JA, Murray ME, Graff-Radford NR, Constantopoulos E, Reichard RR, Knopman DS, Duffy JR, Dickson DW, Parisi JE, Josephs KA, Petersen RC, Boeve BF. Pick's disease: clinicopathologic characterization of 21 cases. J Neurol 2020; 267:2697-2704. [PMID: 32440921 DOI: 10.1007/s00415-020-09927-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Pick's disease (PiD) is a unique subtype of frontotemporal lobar degeneration characterized pathologically by aggregates of 3-Repeat tau. Few studies have examined the clinical variability and disease progression in PiD. We describe the clinical features, neuropsychological profiles and coexistent pathologies in 21 cases of autopsy-confirmed PiD. METHODS This study was a retrospective analysis of patients with Pick's disease evaluated at Mayo Clinic, Rochester or Jacksonville (1995-2018), and identified through an existing database. RESULTS Twenty-one cases with sufficient clinical data were identified. Behavioral variant FTD (bvFTD; 12/21) was the most common phenotype, followed by primary progressive aphasia (PPA; 7/21), corticobasal syndrome (CBS; 1/21) and amnestic dementia (1/21). Median age at disease onset was 54 years, with PPA cases (median = 52 years) presenting earlier than bvFTD (median = 59). Median disease duration (onset-death) overall was 10 years and did not differ significantly between bvFTD (median = 9.5 years) and PPA (median = 13). Age at death was not significantly different in PPA (median = 66) compared to bvFTD (median = 68.5). A third of the cases (n = 7/21) demonstrated pure PiD pathology, while the remainder showed co-existent other pathologies including Alzheimer's type (n = 6), cerebral amyloid angiopathy (n = 3), combined Alzheimer's and amyloid angiopathy (n = 4), and Lewy body disease (n = 1). CONCLUSIONS Our study shows that bvFTD and PPA are the most common clinical phenotypes associated with PiD, although rare presentations such as CBS were also seen. Coexisting non-Pick's pathology was also present in many cases. Our study highlights the clinical and pathologic heterogeneity in PiD.
Collapse
Affiliation(s)
- Parichita Choudhury
- Department of Neurology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Eugene L Scharf
- Department of Neurology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Michael A Paolini
- Department of Molecular and Cellular Medicine, Texas A&M, College Station, TX, USA
| | | | - Eva C Alden
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - David T Jones
- Department of Neurology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Julie A Fields
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Eleni Constantopoulos
- Department of Laboratory Medicine and Pathology (Neuropathology), Mayo Clinic, Rochester, MN, USA
| | - Ross R Reichard
- Department of Laboratory Medicine and Pathology (Neuropathology), Mayo Clinic, Rochester, MN, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Joseph R Duffy
- Department of Neurology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | | | - Joseph E Parisi
- Department of Neurology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.,Department of Laboratory Medicine and Pathology (Neuropathology), Mayo Clinic, Rochester, MN, USA
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Ronald C Petersen
- Department of Neurology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
46
|
Abstract
BACKGROUND/AIMS Few longitudinal studies have explored the progression of cognitive and functional impairment of patients with primary progressive aphasia (PPA). The aims of the study were to describe the clinical, neuroimaging, and genetic features of a cohort of 68 PPA patients, and to outline the natural history of the disease. MATERIALS AND METHODS A sample of 23 patients with the logopenic variant, 26 with the nonfluent/agrammatic variant, and 19 with the semantic variant was retrospectively collected and followed-up for a maximum of 6 years. Clinical-neuropsychological assessment, fluorodeoxyglucose positron emission tomographic imaging, and genetic analyses were acquired at baseline. Disease progression was evaluated in terms of language impairment, global cognitive decline, and functional dependency. RESULTS During follow-up, one third of subjects presented total language loss, and 20% severe functional dependency. Global cognitive decline after the first year (hazard ratio, 5.93; confidence interval, 1.63-21.56) and high schooling (hazard ratio, 0.07; confidence interval, 0.008-0.74) represented risk factors for functional impairment. The apolipoprotein E status was associated with the progression of cognitive decline. Positive family history for dementia was frequent and 3 genetic autosomal dominant mutations were identified. CONCLUSIONS There were no differences in the progression of PPA subtypes. Genetics plays an important role in disease onset and progression.
Collapse
|
47
|
Boxer AL, Gold M, Feldman H, Boeve BF, Dickinson SLJ, Fillit H, Ho C, Paul R, Pearlman R, Sutherland M, Verma A, Arneric SP, Alexander BM, Dickerson BC, Dorsey ER, Grossman M, Huey ED, Irizarry MC, Marks WJ, Masellis M, McFarland F, Niehoff D, Onyike CU, Paganoni S, Panzara MA, Rockwood K, Rohrer JD, Rosen H, Schuck RN, Soares HD, Tatton N. New directions in clinical trials for frontotemporal lobar degeneration: Methods and outcome measures. Alzheimers Dement 2020; 16:131-143. [PMID: 31668596 PMCID: PMC6949386 DOI: 10.1016/j.jalz.2019.06.4956] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Frontotemporal lobar degeneration (FTLD) is the most common form of dementia for those under 60 years of age. Increasing numbers of therapeutics targeting FTLD syndromes are being developed. METHODS In March 2018, the Association for Frontotemporal Degeneration convened the Frontotemporal Degeneration Study Group meeting in Washington, DC, to discuss advances in the clinical science of FTLD. RESULTS Challenges exist for conducting clinical trials in FTLD. Two of the greatest challenges are (1) the heterogeneity of FTLD syndromes leading to difficulties in efficiently measuring treatment effects and (2) the rarity of FTLD disorders leading to recruitment challenges. DISCUSSION New personalized endpoints that are clinically meaningful to individuals and their families should be developed. Personalized approaches to analyzing MRI data, development of new fluid biomarkers and wearable technologies will help to improve the power to detect treatment effects in FTLD clinical trials and enable new, clinical trial designs, possibly leveraged from the experience of oncology trials. A computational visualization and analysis platform that can support novel analyses of combined clinical, genetic, imaging, biomarker data with other novel modalities will be critical to the success of these endeavors.
Collapse
Affiliation(s)
- Adam L. Boxer
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA
| | | | - Howard Feldman
- Department of Neurosciences, University of California San Diego, San Diego, CA
| | | | | | | | - Carole Ho
- Denali Therapeutics, San Francisco, CA
| | | | | | | | | | | | | | | | - Earl Ray Dorsey
- Center for Health and Technology, University of Rochester, Rochester, NY
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Philadelphia, PA
| | - Edward D. Huey
- Departments of Psychiatry and Neurology, Columbia University, NY
| | | | - William J. Marks
- Clinical Neurology, Verily Life Sciences, South San Francisco, CA
| | - Mario Masellis
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, ON, Canada; Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, ON, Canada
| | | | - Debra Niehoff
- Association for Frontotemporal Degeneration, Radnor, PA
| | - Chiadi U. Onyike
- Department Geriatric Psychiatry and Neuropsychiatry, Johns Hopkins University, Baltimore, MD
| | - Sabrina Paganoni
- Healey Center for ALS, Massachusetts General Hospital, Boston, MA
| | | | - Kenneth Rockwood
- Division of Geriatric Medicine, Dalhousie University, Halifax, NS
| | - Jonathan D. Rohrer
- Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Howard Rosen
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Robert N. Schuck
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, FDA, Silver Spring, MD
| | | | - Nadine Tatton
- Association for Frontotemporal Degeneration, Radnor, PA
| |
Collapse
|
48
|
Caswell C, McMillan CT, Xie SX, Van Deerlin VM, Suh E, Lee EB, Trojanowski JQ, Lee VMY, Irwin DJ, Grossman M, Massimo LM. Genetic predictors of survival in behavioral variant frontotemporal degeneration. Neurology 2019; 93:e1707-e1714. [PMID: 31537715 DOI: 10.1212/wnl.0000000000008387] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE To determine autosomal dominant genetic predictors of survival in individuals with behavioral variant frontotemporal degeneration (bvFTD). METHODS A retrospective chart review of 174 cases with a clinical phenotype of bvFTD but no associated elementary neurologic features was performed, with diagnosis either autopsy-confirmed (n = 57) or supported by CSF evidence of non-Alzheimer pathology (n = 117). Genetic analysis of the 3 most common genes with pathogenic autosomal dominant mutations associated with frontotemporal degeneration was performed in all patients, which identified cases with C9orf72 expansion (n = 28), progranulin (GRN) mutation (n = 12), and microtubule-associated protein tau (MAPT) mutation (n = 10). Cox proportional hazards regressions were used to test for associations between survival and mutation status, sex, age at symptom onset, and education. RESULTS Across all patients with bvFTD, the presence of a disease-associated pathogenic mutation was associated with shortened survival (hazard ratio [HR] 2.164, 95% confidence interval [CI] 1.391, 3.368). In separate models, a GRN mutation (HR 2.423, 95% CI 1.237, 4.744), MAPT mutation (HR 8.056, 95% CI 2.938, 22.092), and C9orf72 expansion (HR 1.832, 95% CI 1.034, 3.244) were each individually associated with shorter survival relative to sporadic bvFTD. A mutation on the MAPT gene results in an earlier age at onset than a C9orf72 expansion or mutation on the GRN gene (p = 0.016). CONCLUSIONS Our findings suggest that autosomal dominantly inherited mutations, modulated by age at symptom onset, associate with shorter survival among patients with bvFTD. We suggest that clinical trials and clinical management should consider mutation status and age at onset when evaluating disease progression.
Collapse
Affiliation(s)
- Carrie Caswell
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Corey T McMillan
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Sharon X Xie
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Vivianna M Van Deerlin
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - EunRan Suh
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Edward B Lee
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - John Q Trojanowski
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Virginia M-Y Lee
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - David J Irwin
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Murray Grossman
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | - Lauren M Massimo
- From the Department of Biostatistics, Epidemiology, and Informatics (C.C., S.X.X.), Department of Neurology (C.T.M., D.J.I., M.G., L.M.M.), Penn Frontotemporal Degeneration Center (C.T.M., D.J.I., M.G., L.M.M.), Translational Neuropathology Research Laboratory (E.B.L.), Department of Pathology and Laboratory Medicine (V.M.V.D., E.B.L., J.Q.T., V.M.-Y.L.), and Center for Neurodegenerative Disease Research (V.M.V.D., E.S., E.B.L., J.Q.T., V.M.-Y.L.), Perelman School of Medicine, University of Pennsylvania, Philadelphia.
| |
Collapse
|
49
|
Meeter LHH, Steketee RME, Salkovic D, Vos ME, Grossman M, McMillan CT, Irwin DJ, Boxer AL, Rojas JC, Olney NT, Karydas A, Miller BL, Pijnenburg YAL, Barkhof F, Sánchez-Valle R, Lladó A, Borrego-Ecija S, Diehl-Schmid J, Grimmer T, Goldhardt O, Santillo AF, Hansson O, Vestberg S, Borroni B, Padovani A, Galimberti D, Scarpini E, Rohrer JD, Woollacott IOC, Synofzik M, Wilke C, de Mendonca A, Vandenberghe R, Benussi L, Ghidoni R, Binetti G, Niessen WJ, Papma JM, Seelaar H, Jiskoot LC, de Jong FJ, Donker Kaat L, Del Campo M, Teunissen CE, Bron EE, Van den Berg E, Van Swieten JC. Clinical value of cerebrospinal fluid neurofilament light chain in semantic dementia. J Neurol Neurosurg Psychiatry 2019; 90:997-1004. [PMID: 31123142 PMCID: PMC6820157 DOI: 10.1136/jnnp-2018-319784] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/12/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Semantic dementia (SD) is a neurodegenerative disorder characterised by progressive language problems falling within the clinicopathological spectrum of frontotemporal lobar degeneration (FTLD). The development of disease-modifying agents may be facilitated by the relative clinical and pathological homogeneity of SD, but we need robust monitoring biomarkers to measure their efficacy. In different FTLD subtypes, neurofilament light chain (NfL) is a promising marker, therefore we investigated the utility of cerebrospinal fluid (CSF) NfL in SD. METHODS This large retrospective multicentre study compared cross-sectional CSF NfL levels of 162 patients with SD with 65 controls. CSF NfL levels of patients were correlated with clinical parameters (including survival), neuropsychological test scores and regional grey matter atrophy (including longitudinal data in a subset). RESULTS CSF NfL levels were significantly higher in patients with SD (median: 2326 pg/mL, IQR: 1628-3593) than in controls (577 (446-766), p<0.001). Higher CSF NfL levels were moderately associated with naming impairment as measured by the Boston Naming Test (rs =-0.32, p=0.002) and with smaller grey matter volume of the parahippocampal gyri (rs =-0.31, p=0.004). However, cross-sectional CSF NfL levels were not associated with progression of grey matter atrophy and did not predict survival. CONCLUSION CSF NfL is a promising biomarker in the diagnostic process of SD, although it has limited cross-sectional monitoring or prognostic abilities.
Collapse
Affiliation(s)
- Lieke H H Meeter
- Alzheimer Center and Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Rebecca M E Steketee
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
| | - Dina Salkovic
- Alzheimer Center and Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Maartje E Vos
- Alzheimer Center and Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Murray Grossman
- Penn FTD Center, Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Corey T McMillan
- Penn FTD Center, Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - David J Irwin
- Penn FTD Center, Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Adam L Boxer
- Neurology, Memory and Aging Center University of California San Francisco, San Francisco, California, USA
| | - Julio C Rojas
- Neurology, Memory and Aging Center University of California San Francisco, San Francisco, California, USA
| | - Nicholas T Olney
- Neurology, University of California San Francisco Memory and Aging Center, San Francisco, California, USA
| | - Anna Karydas
- Neurology, University of California San Francisco Memory and Aging Center, San Francisco, California, USA
| | - Bruce L Miller
- Neurology, Memory and Aging Center University of California San Francisco, San Francisco, California, USA
| | - Yolande A L Pijnenburg
- Alzheimer Center and Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Neurology and Healthcare Engineering, University College London Medical School, London, UK
| | - Raquel Sánchez-Valle
- Department of Neurology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Albert Lladó
- Department of Neurology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Sergi Borrego-Ecija
- Department of Neurology, Hospital Clinic de Barcelona, Barcelona, Catalunya, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Janine Diehl-Schmid
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Oliver Goldhardt
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Alexander F Santillo
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | - Barbara Borroni
- Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Padovani
- Centre for Ageing Brain and Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniela Galimberti
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy
- Biomedical, Surgical and Dental Sciences, University of Milan, Centro Dino Ferrari, Milan, Italy
| | - Elio Scarpini
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy
- Pathophysiology and Transplantation, University of Milan, Centro Dino Ferrari, Milan, Italy
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
| | - Ione O C Woollacott
- Dementia Research Centre, Department of Neurodegenerative Diseases, UCL Institute of Neurology, London, UK
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Carlo Wilke
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Alexandre de Mendonca
- Institute of Molecular Medicine and Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Rik Vandenberghe
- Department of Neurology, University Hospital Leuven, Leuven, Belgium
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Vlaanderen, Belgium
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giuliano Binetti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
- MAC Memory Clinic, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Wiro J Niessen
- Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
- Imaging Physics, Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Janne M Papma
- Alzheimer Center and Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Harro Seelaar
- Alzheimer Center and Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Lize C Jiskoot
- Alzheimer Center and Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Frank Jan de Jong
- Alzheimer Center and Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - Laura Donker Kaat
- Alzheimer Center and Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
- Department of Clinical Genetics, Leids Universitair Medisch Centrum, Leiden, Zuid-Holland, The Netherlands
| | - Marta Del Campo
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Esther E Bron
- Biomedical Imaging Group Rotterdam, Departments of Medical Informatics and Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, Zuid-Holland, The Netherlands
| | - Esther Van den Berg
- Alzheimer Center and Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| | - John C Van Swieten
- Alzheimer Center and Department of Neurology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
50
|
Santacruz Escudero JM, Beltrán J, Palacios Á, Chimbí CM, Matallana D, Reyes P, Perez-Sola V, Santamaría-García H. Neuropsychiatric Symptoms as Predictors of Clinical Course in Neurodegeneration. A Longitudinal Study. Front Aging Neurosci 2019; 11:176. [PMID: 31396074 PMCID: PMC6668630 DOI: 10.3389/fnagi.2019.00176] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 07/01/2019] [Indexed: 12/22/2022] Open
Abstract
Background: To study the extent to which neuropsychiatric symptoms (NPS) influence the cognitive and functional decline in frontotemporal degeneration (FTD) and Alzheimer’s disease (AD). Methods: We assessed the progression of NPS and their influence on cognitive and functional progression in a group of FTD (n = 36) and AD patients (n = 47) at two different stages of the disease (2.5 years). A standardized scale was used to assess NPS—the Columbia University Scale for Psychopathology in Alzheimer’s Disease (CUSPAD)—which tracks different symptoms including depression, psychotic symptoms, as well as sleep and conduct problems. In addition, in a subsample of patients (AD n = 14 and FTD n = 14), we analyzed another group of NPS by using the Neuropsychiatric Inventory (NPI). Cognitive declines were tracked by using the Montreal Cognitive Assessment (MoCA) and the Mini-Mental State Examination (MMSE), while functionality was tracked by using the Lawton scale and the Barthel Index. Results: The presence of NPS impacts cognitive and functional decline in both groups of patients 2.5 years after disease onset. However, we observed a dissociable profile of the affectation of NPS in each group. In the AD group, results indicate that the progression of depressive symptoms and sleep problems predict cognitive and functional decline. In contrast, the progression of a mixed group of NPS, including conduct problems and delusions, predicts cognitive and functional decline in FTD. Conclusion: The presence of NPS has a critical impact on the prediction of cognitive decline in FTD and AD patients after 2.5 years of disease progression. Our results demonstrate the importance of assessing different types of NPS in neurodegenerative disorders which, in turn, predict disease progression. Future studies should assess the role of NPS in predicting different neurocognitive pathways and in neurodegeneration.
Collapse
Affiliation(s)
- José Manuel Santacruz Escudero
- Departments of Psychiatry, Physiology and Institute for Studies on the Aging, Pontificia Universidad Javeriana, Bogotá, Colombia.,Intellectus Memory and Cognition Center, Hospital Universitario San Ignacio, Bogotá, Colombia.,Department of Psychiatry and Forensic Medicine, Univesitat Autonòma de Bercelona, Barcelona, Spain
| | - Jonathan Beltrán
- Departments of Psychiatry, Physiology and Institute for Studies on the Aging, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Álvaro Palacios
- Departments of Psychiatry, Physiology and Institute for Studies on the Aging, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Claudia Marcela Chimbí
- Intellectus Memory and Cognition Center, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Diana Matallana
- Departments of Psychiatry, Physiology and Institute for Studies on the Aging, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Pablo Reyes
- Departments of Psychiatry, Physiology and Institute for Studies on the Aging, Pontificia Universidad Javeriana, Bogotá, Colombia.,Intellectus Memory and Cognition Center, Hospital Universitario San Ignacio, Bogotá, Colombia
| | - Victor Perez-Sola
- Department of Psychiatry and Forensic Medicine, Univesitat Autonòma de Bercelona, Barcelona, Spain
| | - Hernando Santamaría-García
- Departments of Psychiatry, Physiology and Institute for Studies on the Aging, Pontificia Universidad Javeriana, Bogotá, Colombia.,Intellectus Memory and Cognition Center, Hospital Universitario San Ignacio, Bogotá, Colombia
| |
Collapse
|