1
|
Banoun H. Analysis of Beyfortus ® (Nirsevimab) Immunization Campaign: Effectiveness, Biases, and ADE Risks in RSV Prevention. Curr Issues Mol Biol 2024; 46:10369-10395. [PMID: 39329969 PMCID: PMC11431526 DOI: 10.3390/cimb46090617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/27/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Respiratory infections with respiratory syncytial virus (RSV) account for an important part of hospital admissions for acute respiratory infections. Nirsevimab has been developed to reduce the hospital burden of RSV infections. Compared with the product previously used, it has a stronger binding capacity to RSV F protein and a high affinity for FcRn (neonatal receptor for the Fc fragment of IgG), which extends its lifespan. Nirsevimab has been shown to be highly effective in reducing hospitalization rates of RSV infections but a large or unknown number of treated subjects have been excluded in clinical and post-marketing studies. However, analysis of these studies cannot exclude that, in rare cases, nirsevimab facilitates and worsens RSV infection (or other respiratory infections). This could be attributable to antibody-dependent enhancement (ADE) which has been observed with RSV F protein antibodies in inactivated vaccine trials. This risk has been incompletely assessed in pre-clinical and clinical trials (incomplete exploration of nirsevimab effector functions and pharmacokinetics). ADE by disruption of the immune system (not studied and due to FcRn binding) could explain why there is no reduction in all-cause hospital admissions in treated age groups. Given the high price of nirsevimab, the cost-effectiveness of mass immunization campaigns may therefore be debated from an economic as well as a scientific point of view.
Collapse
|
2
|
Rivera-Toledo E, Fernández-Rojas MA, Santiago-Olivares C, Cruz-Rivera M, Hernández-Bautista V, Ávila-Horta F, Flisser A, Mendlovic F. Transcriptome profiling of macrophages persistently infected with human respiratory syncytial virus and effect of recombinant Taenia solium calreticulin on immune-related genes. Front Microbiol 2024; 15:1402589. [PMID: 39296294 PMCID: PMC11408361 DOI: 10.3389/fmicb.2024.1402589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/05/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction Human respiratory syncytial virus (hRSV) is a main cause of bronchiolitis in infants and its persistence has been described in immunocompromised subjects. However, limited evidence has been reported on the gene expression triggered by the hRSV and the effect of recombinant Taenia solium-derived calreticulin (rTsCRT). Methods Using a comprehensive microarray approach, we analyzed the transcriptome profile of a macrophage cell line that has supported hRSV persistence for over 150 passages. We compared the gene expression of persistently infected and non-infected macrophages. We also evaluated the effect of rTsCRT on hRSV-infected macrophage gene transcription, as well as on cytokine production and number of copies of the persistent hRSV genome. Results Our analysis showed that hRSV long-term virus infection significantly alters mRNA expression of antiviral, inflammatory, as well as arginine and lipid metabolism-associated genes, revealing a transcriptional signature that suggests a mixed M1/M2 phenotype. The resulting host-virus equilibrium allows for the regulation of viral replication, while evading the antiviral and proinflammatory responses. Interestingly, rTsCRT stimulus upregulated Tnfα, Il6 and Nos2 mRNA. We found increased levels of both proinflammatory cytokines and nitrite levels in the conditioned media of persistent macrophages treated with rTsCRT. This increase was associated with a significant reduction in viral genome copies. Discussion hRSV persistently infected macrophages retain responsiveness to external stimuli and demonstrate that the profound changes induced by viral persistence are potentially reversible. Our observations contribute to the understanding of the mechanisms related to hRSV persistence in macrophages and have implications for the development of targeted therapies to eliminate persistent infections or reduce the negative effects related with chronic inflammatory diseases associated with hRSV infection.
Collapse
Affiliation(s)
- Evelyn Rivera-Toledo
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Miguel A Fernández-Rojas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Carlos Santiago-Olivares
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Mayra Cruz-Rivera
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Vania Hernández-Bautista
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Fernanda Ávila-Horta
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Ana Flisser
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Fela Mendlovic
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Facultad de Ciencias de la Salud, Universidad Anáhuac México Norte, Huixquilucan de Degollado, Mexico
| |
Collapse
|
3
|
Embry A, Gammon DB. Abortive Infection of Animal Cells: What Goes Wrong. Annu Rev Virol 2024; 11:193-213. [PMID: 38631917 PMCID: PMC11427174 DOI: 10.1146/annurev-virology-100422-023037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Even if a virus successfully binds to a cell, defects in any of the downstream steps of the viral life cycle can preclude the production of infectious virus particles. Such abortive infections are likely common in nature and can provide fundamental insights into the cell and host tropism of viral pathogens. Research over the past 60 years has revealed an incredible diversity of abortive infections by DNA and RNA viruses in various animal cell types. Here we discuss the general causes of abortive infections and provide specific examples from the literature to illustrate the range of abortive infections that have been reported. We also discuss how abortive infections can have critical roles in shaping host immune responses and in the development of virus-induced cancers. Finally, we describe how abortive infections can be applied to basic and clinical research, underscoring the importance of understanding these fascinating aspects of virus biology.
Collapse
Affiliation(s)
- Aaron Embry
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| | - Don B Gammon
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| |
Collapse
|
4
|
Loaiza RA, Farías MA, Andrade CA, Ramírez MA, Rodriguez-Guilarte L, Muñóz JT, González PA, Bueno SM, Kalergis AM. Immunomodulatory markers and therapies for the management of infant respiratory syncytial virus infection. Expert Rev Anti Infect Ther 2024; 22:631-645. [PMID: 39269198 DOI: 10.1080/14787210.2024.2403147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/16/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
INTRODUCTION The human respiratory syncytial virus (hRSV) is one of childhood diseases' most common respiratory pathogens and is associated with lower respiratory tract infections. The peak in disease that this virus can elicit during outbreaks is often a significant burden for healthcare systems worldwide. Despite theapproval of treatments against hRSV, this pathogen remains one the most common causative agent of infant mortality around the world. AREAS COVERED This review focuses on the key prognostic and immunomodulatory biomarkers associated with hRSV infection, as well as prophylactic monoclonal antibodies and vaccines. The goal is to catalyze a paradigm shift within the scientific community toward the discovery of novel targets to predict the clinical outcome of infected patients, as well as the development of novel antiviral agents targeting hRSV. The most pertinent research on this topic was systematically searched and analyzed using PubMed ISI Thomson Scientific databases. EXPERT OPINION Despite advances in approved therapies against hRSV, it is crucial to continue researching to develop new therapies and to find specific biomarkers to predict the severity of infection. Along these lines, the use of multi-omics data, artificial intelligence and natural-derived compounds with antiviral activity could be evaluated to fight hRSV and develop methods for rapid diagnosis of severity.
Collapse
Affiliation(s)
- Ricardo A Loaiza
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mónica A Farías
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Catalina A Andrade
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario A Ramírez
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Linmar Rodriguez-Guilarte
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José T Muñóz
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
5
|
Wang Y, Feng H, Li X, Ruan Y, Guo Y, Cui X, Zhang P, Li Y, Wang X, Wang X, Wei L, Yi Y, Zhang L, Yang X, Liu H. Dampening of ISGylation of RIG-I by ADAP regulates type I interferon response of macrophages to RNA virus infection. PLoS Pathog 2024; 20:e1012230. [PMID: 38776321 PMCID: PMC11111093 DOI: 10.1371/journal.ppat.1012230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/29/2024] [Indexed: 05/24/2024] Open
Abstract
While macrophage is one of the major type I interferon (IFN-I) producers in multiple tissues during viral infections, it also serves as an important target cell for many RNA viruses. However, the regulatory mechanism for the IFN-I response of macrophages to respond to a viral challenge is not fully understood. Here we report ADAP, an immune adaptor protein, is indispensable for the induction of the IFN-I response of macrophages to RNA virus infections via an inhibition of the conjugation of ubiquitin-like ISG15 (ISGylation) to RIG-I. Loss of ADAP increases RNA virus replication in macrophages, accompanied with a decrease in LPS-induced IFN-β and ISG15 mRNA expression and an impairment in the RNA virus-induced phosphorylation of IRF3 and TBK1. Moreover, using Adap-/- mice, we show ADAP deficiency strongly increases the susceptibility of macrophages to RNA-virus infection in vivo. Mechanically, ADAP selectively interacts and functionally cooperates with RIG-I but not MDA5 in the activation of IFN-β transcription. Loss of ADAP results in an enhancement of ISGylation of RIG-I, whereas overexpression of ADAP exhibits the opposite effect in vitro, indicating ADAP is detrimental to the RNA virus-induced ISGylation of RIG-I. Together, our data demonstrate a novel antagonistic activity of ADAP in the cell-intrinsic control of RIG-I ISGylation, which is indispensable for initiating and sustaining the IFN-I response of macrophages to RNA virus infections and replication.
Collapse
Affiliation(s)
- Yan Wang
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
| | - Haixia Feng
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
| | - Xiao Li
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
| | - Yina Ruan
- Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Department of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yueping Guo
- Department of Veterinary Medicine, Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Xinxing Cui
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
| | - Pengchao Zhang
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
| | - Yanli Li
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
| | - Xinning Wang
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
| | - Xingran Wang
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
| | - Luxin Wei
- Department of General Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Yulan Yi
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu Province, China
| | - Lifeng Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaodong Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hebin Liu
- Institutes of Biology and Medical Sciences (IBMS), Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
6
|
Johnson M, Chelysheva I, Öner D, McGinley J, Lin GL, O'Connor D, Robinson H, Drysdale SB, Gammin E, Vernon S, Muller J, Wolfenden H, Westcar S, Anguvaa L, Thwaites RS, Bont L, Wildenbeest J, Martinón-Torres F, Aerssens J, Openshaw PJM, Pollard AJ. A Genome-Wide Association Study of Respiratory Syncytial Virus Infection Severity in Infants. J Infect Dis 2024; 229:S112-S119. [PMID: 38271230 DOI: 10.1093/infdis/jiae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is a significant cause of infant morbidity and mortality worldwide. Most children experience at least one 1 RSV infection by the age of two 2 years, but not all develop severe disease. However, the understanding of genetic risk factors for severe RSV is incomplete. Consequently, we conducted a genome-wide association study of RSV severity. METHODS Disease severity was assessed by the ReSVinet scale, in a cohort of 251 infants aged 1 week to 1 year. Genotyping data were collected from multiple European study sites as part of the RESCEU Consortium. Linear regression models were used to assess the impact of genotype on RSV severity and gene expression as measured by microarray. RESULTS While no SNPs reached the genome-wide statistical significance threshold (P < 5 × 10-8), we identified 816 candidate SNPs with a P-value of <1 × 10-4. Functional annotation of candidate SNPs highlighted genes relevant to neutrophil trafficking and cytoskeletal functions, including LSP1 and RAB27A. Moreover, SNPs within the RAB27A locus significantly altered gene expression (false discovery rate, FDR P < .05). CONCLUSIONS These findings may provide insights into genetic mechanisms driving severe RSV infection, offering biologically relevant information for future investigations.
Collapse
Affiliation(s)
- Mari Johnson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Irina Chelysheva
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Deniz Öner
- Biomarkers Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Joseph McGinley
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Gu-Lung Lin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Hannah Robinson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Simon B Drysdale
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Emma Gammin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Sophie Vernon
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | - Jill Muller
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| | | | | | | | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Louis Bont
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Netherlands
| | - Joanne Wildenbeest
- Department of Paediatric Infectious Diseases and Immunology, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Netherlands
| | - Federico Martinón-Torres
- Translational Pediatrics and Infectious Diseases, Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela
- Genetics, Vaccines and Infections Research Group, Instituto de Investigación Sanitaria de Santiago, Universidade de Santiago de Compostela
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Jeroen Aerssens
- Biomarkers Infectious Diseases, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Peter J M Openshaw
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford
- NIHR Oxford Biomedical Research Centre and Oxford University Hospitals NHS Foundation Trust, United Kingdom
| |
Collapse
|
7
|
Tavares LP, Nijmeh J, Levy BD. Respiratory viral infection and resolution of inflammation: Roles for specialized pro-resolving mediators. Exp Biol Med (Maywood) 2023; 248:1635-1644. [PMID: 37837390 PMCID: PMC10723024 DOI: 10.1177/15353702231199082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2023] Open
Abstract
Respiratory viral infections with influenza A virus (IAV) or respiratory syncytial virus (RSV) pose a significant threat to public health due to excess morbidity and mortality. Dysregulated and excessive inflammatory responses are major underlying causes of viral pneumonia severity and morbidity, including aberrant host immune responses and increased risk for secondary bacterial infections. Currently available antiviral therapies have not substantially reduced the risk of severe viral pneumonia for these pathogens. Thus, new therapeutic approaches that can promote resolution of the pathogen-initiated inflammation without impairing host defense would represent a significant advance. Recent research has uncovered the potential for specialized pro-resolving mediators (SPMs) to transduce multipronged actions for the resolution of serious respiratory viral infection without increased risk for subsequent host susceptibility to bacterial infection. Here, we review recent advances in our understanding of SPM production and SPM receptor signaling in respiratory virus infections and the intriguing potential of harnessing SPM pathways to control excess morbidity and mortality from IAV and RSV pneumonia.
Collapse
Affiliation(s)
- Luciana P Tavares
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Julie Nijmeh
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bruce D Levy
- Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
8
|
Agac A, Kolbe SM, Ludlow M, Osterhaus ADME, Meineke R, Rimmelzwaan GF. Host Responses to Respiratory Syncytial Virus Infection. Viruses 2023; 15:1999. [PMID: 37896776 PMCID: PMC10611157 DOI: 10.3390/v15101999] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Respiratory syncytial virus (RSV) infections are a constant public health problem, especially in infants and older adults. Virtually all children will have been infected with RSV by the age of two, and reinfections are common throughout life. Since antigenic variation, which is frequently observed among other respiratory viruses such as SARS-CoV-2 or influenza viruses, can only be observed for RSV to a limited extent, reinfections may result from short-term or incomplete immunity. After decades of research, two RSV vaccines were approved to prevent lower respiratory tract infections in older adults. Recently, the FDA approved a vaccine for active vaccination of pregnant women to prevent severe RSV disease in infants during their first RSV season. This review focuses on the host response to RSV infections mediated by epithelial cells as the first physical barrier, followed by responses of the innate and adaptive immune systems. We address possible RSV-mediated immunomodulatory and pathogenic mechanisms during infections and discuss the current vaccine candidates and alternative treatment options.
Collapse
Affiliation(s)
| | | | | | | | | | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (A.A.); (S.M.K.); (M.L.); (A.D.M.E.O.); (R.M.)
| |
Collapse
|
9
|
Miles MA, Liong S, Liong F, Coward-Smith M, Trollope GS, Oseghale O, Erlich JR, Brooks RD, Logan JM, Hickey S, Wang H, Bozinovski S, O’Leary JJ, Brooks DA, Selemidis S. TLR7 promotes chronic airway disease in RSV-infected mice. Front Immunol 2023; 14:1240552. [PMID: 37795093 PMCID: PMC10545951 DOI: 10.3389/fimmu.2023.1240552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/28/2023] [Indexed: 10/06/2023] Open
Abstract
Respiratory syncytial virus (RSV) commonly infects the upper respiratory tract (URT) of humans, manifesting with mild cold or flu-like symptoms. However, in infants and the elderly, severe disease of the lower respiratory tract (LRT) often occurs and can develop into chronic airway disease. A better understanding of how an acute RSV infection transitions to a LRT chronic inflammatory disease is critically important to improve patient care and long-term health outcomes. To model acute and chronic phases of the disease, we infected wild-type C57BL/6 and toll-like receptor 7 knockout (TLR7 KO) mice with RSV and temporally assessed nasal, airway and lung inflammation for up to 42 days post-infection. We show that TLR7 reduced viral titers in the URT during acute infection but promoted pronounced pathogenic and chronic airway inflammation and hyperreactivity in the LRT. This study defines a hitherto unappreciated molecular mechanism of lower respiratory pathogenesis to RSV, highlighting the potential of TLR7 modulation to constrain RSV pathology to the URT.
Collapse
Affiliation(s)
- Mark A. Miles
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Stella Liong
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Felicia Liong
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Madison Coward-Smith
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Gemma S. Trollope
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Osezua Oseghale
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Jonathan R. Erlich
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Robert D. Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Jessica M. Logan
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Shane Hickey
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Hao Wang
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Steven Bozinovski
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - John J. O’Leary
- Discipline of Histopathology, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland
- Sir Patrick Dun’s Laboratory, Central Pathology Laboratory, St James’s Hospital, Dublin, Ireland
| | - Doug A. Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, Australia
- Discipline of Histopathology, School of Medicine, Trinity Translational Medicine Institute (TTMI), Trinity College Dublin, Dublin, Ireland
| | - Stavros Selemidis
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
10
|
Britt RD, Ruwanpathirana A, Ford ML, Lewis BW. Macrophages Orchestrate Airway Inflammation, Remodeling, and Resolution in Asthma. Int J Mol Sci 2023; 24:10451. [PMID: 37445635 PMCID: PMC10341920 DOI: 10.3390/ijms241310451] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Asthma is a heterogenous chronic inflammatory lung disease with endotypes that manifest different immune system profiles, severity, and responses to current therapies. Regardless of endotype, asthma features increased immune cell infiltration, inflammatory cytokine release, and airway remodeling. Lung macrophages are also heterogenous in that there are separate subsets and, depending on the environment, different effector functions. Lung macrophages are important in recruitment of immune cells such as eosinophils, neutrophils, and monocytes that enhance allergic inflammation and initiate T helper cell responses. Persistent lung remodeling including mucus hypersecretion, increased airway smooth muscle mass, and airway fibrosis contributes to progressive lung function decline that is insensitive to current asthma treatments. Macrophages secrete inflammatory mediators that induce airway inflammation and remodeling. Additionally, lung macrophages are instrumental in protecting against pathogens and play a critical role in resolution of inflammation and return to homeostasis. This review summarizes current literature detailing the roles and existing knowledge gaps for macrophages as key inflammatory orchestrators in asthma pathogenesis. We also raise the idea that modulating inflammatory responses in lung macrophages is important for alleviating asthma.
Collapse
Affiliation(s)
- Rodney D Britt
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
| | - Anushka Ruwanpathirana
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH 43205, USA
| | - Maria L Ford
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH 43205, USA
| | - Brandon W Lewis
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, USA
| |
Collapse
|
11
|
Churiso G, Husen G, Bulbula D, Abebe L. Immunity Cell Responses to RSV and the Role of Antiviral Inhibitors: A Systematic Review. Infect Drug Resist 2022; 15:7413-7430. [PMID: 36540102 PMCID: PMC9759992 DOI: 10.2147/idr.s387479] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Antigen-presenting cells recognize respiratory syncytial virus antigens, and produce cytokines and chemokines that act on immune cells. Dendritic cells play the main role in inflammatory cytokine responses. Similarly, alveolar macrophages produce IFN-β, IFN-α, TNF-α, IL-6, CXCL10, and CCL3, while alternatively activated macrophages differentiate at the late phase, and require IL-13 or IL-4 cytokines. Furthermore, activated NKT cells secrete IL-13 and IL-4 that cause lung epithelial, endothelial and fibroblasts to secrete eotaxin that enhances the recruitment of eosinophil to the lung. CD8+ and CD4+T cells infection by the virus decreases the IFN-γ and IL-2 production. Despite this, both are involved in terminating virus replication. CD8+T cells produce a larger amount of IFN-γ than CD4+T cells, and CD8+T cells activated under type 2 conditions produce IL-4, down regulating CD8 expression, granzyme and IFN-γ production. Antiviral inhibitors inhibit biological functions of viral proteins. Some of them directly target the virus replication machinery and are effective at later stages of infection; while others inhibit F protein dependent fusion and syncytium formation. TMC353121 reduces inflammatory cytokines, TNF-α, IL-6, and IL-1β and chemokines, KC, IP-10, MCP and MIP1-α. EDP-938 inhibits viral nucleoprotein (N), while GRP-156784 blocks the activity of respiratory syncytial virus ribonucleic acid (RNA) polymerase. PC786 inhibits non-structural protein 1 (NS-1) gene, RANTES transcripts, virus-induced CCL5, IL-6, and mucin increase. In general, it is an immune reaction that is blamed for the disease severity and pathogenesis in respiratory syncytial virus infection. Anti-viral inhibitors not only inhibit viral entry and replication, but also may reduce inflammatory cytokines and chemokines. Many respiratory syncytial virus inhibitors are proposed; however, only palivizumab and ribavirin are approved for prophylaxis and treatment, respectively. Hence, this review is focused on immunity cell responses to respiratory syncytial virus and the role of antiviral inhibitors.
Collapse
Affiliation(s)
- Gemechu Churiso
- Department of Medical Laboratory Sciences, Dilla University, Dilla, Ethiopia,Correspondence: Gemechu Churiso, Email
| | - Gose Husen
- Department of Orthopedic Surgery, Dilla University, Dilla, Ethiopia
| | - Denebo Bulbula
- Department of Orthopedic Surgery, Dilla University, Dilla, Ethiopia
| | - Lulu Abebe
- Department of Psychiatry, Dilla University, Dilla, Ethiopia
| |
Collapse
|
12
|
Wang Y, Zheng J, Wang X, Yang P, Zhao D. Alveolar macrophages and airway hyperresponsiveness associated with respiratory syncytial virus infection. Front Immunol 2022; 13:1012048. [PMID: 36341376 PMCID: PMC9630648 DOI: 10.3389/fimmu.2022.1012048] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a ubiquitous pathogen of viral bronchiolitis and pneumonia in children younger than 2 years of age, which is closely associated with recurrent wheezing and airway hyperresponsiveness (AHR). Alveolar macrophages (AMs) located on the surface of the alveoli cavity are the important innate immune barrier in the respiratory tract. AMs are recognized as recruited airspace macrophages (RecAMs) and resident airspace macrophages (RAMs) based on their origins and roaming traits. AMs are polarized in the case of RSV infection, forming two macrophage phenotypes termed as M1-like and M2-like macrophages. Both M1 macrophages and M2 macrophages are involved in the modulation of inflammatory responses, among which M1 macrophages are capable of pro-inflammatory responses and M2 macrophages are capable of anti-proinflammatory responses and repair damaged tissues in the acute and convalescent phases of RSV infection. Polarized AMs affect disease progression through the alteration of immune cell surface phenotypes as well as participate in the regulation of T lymphocyte differentiation and the type of inflammatory response, which are closely associated with long-term AHR. In recent years, some progress have been made in the regulatory mechanism of AM polarization caused by RSV infection, which participates in acute respiratory inflammatory response and mediating AHR in infants. Here we summarized the role of RSV-infection-mediated AM polarization associated with AHR in infants.
Collapse
Affiliation(s)
- Yuxin Wang
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junwen Zheng
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xia Wang
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Pu Yang
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Children’s Digital Health and Data Center of Wuhan University, Wuhan, China
- *Correspondence: Dongchi Zhao, ; Pu Yang,
| | - Dongchi Zhao
- Department of Pediatrics, Zhongnan Hospital of Wuhan University, Wuhan, China
- Children’s Digital Health and Data Center of Wuhan University, Wuhan, China
- *Correspondence: Dongchi Zhao, ; Pu Yang,
| |
Collapse
|
13
|
Antunes KH, Cassão G, Santos LD, Borges SG, Poppe J, Gonçalves JB, Nunes EDS, Recacho GF, Sousa VB, Da Silva GS, Mansur D, Stein RT, Pasquali C, De Souza APD. Airway Administration of Bacterial Lysate OM-85 Protects Mice Against Respiratory Syncytial Virus Infection. Front Immunol 2022; 13:867022. [PMID: 35603159 PMCID: PMC9118194 DOI: 10.3389/fimmu.2022.867022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/11/2022] [Indexed: 01/05/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a seasonal pathogen responsible for the highest percentage of viral bronchiolitis in pediatric patients. There are currently no vaccine available and therapeutic methods to mitigate the severity of RSV bronchiolitis are limited. OM-85, an oral standardized bacterial lysate isolated from human respiratory strains and widely used to prevent recurrent infections and/or exacerbations in populations at risk, has been shown to be effective and safe in children and adults. Here, we demonstrate that airway administration of OM-85 in Balb/c mice prior to infection prevents RSV-induced disease, resulting in inhibition of viral replication associated with less perivascular and peribronchial inflammation in the lungs. These protective effects are dose and time-dependent with complete protection using 1mg dose of OM-85 only four times intranasally. Mechanistic insights using this topical route in the airways revealed increased alveolar macrophages, a selective set of tolerogenic DCs, Treg and Th1 expansion in the lung, even in the absence of infection, contributing to a better Th1/Th2 balance and preventing ILC2 recruitment in the airways and associated inflammatory sequelae. OM-85 preventive treatment also improved antiviral response by increasing IFNβ and its responsive genes in the lung. In vitro, OM-85 protects against RSV infection in a type I interferon pathway. Our animal model data suggest that intranasal use of OM-85 should be considered as a potential prophylactic product to prevent RSV bronchiolitis once human studies confirm these findings.
Collapse
Affiliation(s)
- Krist Helen Antunes
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Gisele Cassão
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Leonardo Duarte Santos
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Sofia Giacomet Borges
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Juliana Poppe
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - João Budelon Gonçalves
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Eduarda da Silva Nunes
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Guilherme Fernando Recacho
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Vitória Barbosa Sousa
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Gabriela Souza Da Silva
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Daniel Mansur
- Laboratory of Imunobiology, Department of Microbiology, Immunology and Parasitology, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Renato T Stein
- Department of Pediatrics, São Lucas Hospital PUCRS, School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | | | - Ana Paula Duarte De Souza
- Laboratory of Clinical and Experimental Immunology, School of Health and Life Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
14
|
Barnes MVC, Openshaw PJM, Thwaites RS. Mucosal Immune Responses to Respiratory Syncytial Virus. Cells 2022; 11:cells11071153. [PMID: 35406717 PMCID: PMC8997753 DOI: 10.3390/cells11071153] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
Despite over half a century of research, respiratory syncytial virus (RSV)-induced bronchiolitis remains a major cause of hospitalisation in infancy, while vaccines and specific therapies still await development. Our understanding of mucosal immune responses to RSV continues to evolve, but recent studies again highlight the role of Type-2 immune responses in RSV disease and hint at the possibility that it dampens Type-1 antiviral immunity. Other immunoregulatory pathways implicated in RSV disease highlight the importance of focussing on localised mucosal responses in the respiratory mucosa, as befits a virus that is essentially confined to the ciliated respiratory epithelium. In this review, we discuss studies of mucosal immune cell infiltration and production of inflammatory mediators in RSV bronchiolitis and relate these studies to observations from peripheral blood. We also discuss the advantages and limitations of studying the nasal mucosa in a disease that is most severe in the lower airway. A fresh focus on studies of RSV pathogenesis in the airway mucosa is set to revolutionise our understanding of this common and important infection.
Collapse
|
15
|
Martín-Vicente M, Resino S, Martínez I. Early innate immune response triggered by the human respiratory syncytial virus and its regulation by ubiquitination/deubiquitination processes. J Biomed Sci 2022; 29:11. [PMID: 35152905 PMCID: PMC8841119 DOI: 10.1186/s12929-022-00793-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/28/2022] [Indexed: 12/25/2022] Open
Abstract
The human respiratory syncytial virus (HRSV) causes severe lower respiratory tract infections in infants and the elderly. An exuberant inadequate immune response is behind most of the pathology caused by the HRSV. The main targets of HRSV infection are the epithelial cells of the respiratory tract, where the immune response against the virus begins. This early innate immune response consists of the expression of hundreds of pro-inflammatory and anti-viral genes that stimulates subsequent innate and adaptive immunity. The early innate response in infected cells is mediated by intracellular signaling pathways composed of pattern recognition receptors (PRRs), adapters, kinases, and transcriptions factors. These pathways are tightly regulated by complex networks of post-translational modifications, including ubiquitination. Numerous ubiquitinases and deubiquitinases make these modifications reversible and highly dynamic. The intricate nature of the signaling pathways and their regulation offers the opportunity for fine-tuning the innate immune response against HRSV to control virus replication and immunopathology.
Collapse
Affiliation(s)
- María Martín-Vicente
- Unidad de Infección Viral E Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220 Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Salvador Resino
- Unidad de Infección Viral E Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220 Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Isidoro Martínez
- Unidad de Infección Viral E Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda-Pozuelo, Km 2.2, 28220 Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
16
|
Ballarini S, Ardusso L, Ortega Martell JA, Sacco O, Feleszko W, Rossi GA. Can bacterial lysates be useful in prevention of viral respiratory infections in childhood? The results of experimental OM-85 studies. Front Pediatr 2022; 10:1051079. [PMID: 36479289 PMCID: PMC9720385 DOI: 10.3389/fped.2022.1051079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022] Open
Abstract
Respiratory tract infections (RTI) are mainly viral in origin and among the leading cause of childhood morbidity globally. Associated wheezing illness and asthma are still a clear unmet medical need. Despite the continuous progress in understanding the processes involved in their pathogenesis, preventive measures and treatments failed to demonstrate any significant disease-modifying effect. However, in the last decades it was understood that early-life exposure to microbes, may reduce the risk of infectious and allergic disorders, increasing the immune response efficacy. These results suggested that treatment with bacterial lysates (BLs) acting on gut microbiota, could promote a heterologous immunomodulation useful in the prevention of recurrent RTIs and of wheezing inception and persistence. This hypothesis has been supported by clinical and experimental studies showing the reduction of RTI frequency and severity in childhood after oral BL prophylaxis and elucidating the involved mechanisms. OM-85 is the product whose anti-viral effects have been most extensively studied in vitro, animal, and human cell studies and in translational animal infection/disease models. The results of the latter studies, describing the potential immune training-based activities of such BL, leading to the protection against respiratory viruses, will be reported. In response to human rhinovirus, influenza virus, respiratory syncytial virus and severe acute respiratory coronavirus-2, OM-85 was effective in modulating the structure and the functions of a large numbers of airways epithelial and immune cells, when administered both orally and intranasally.
Collapse
Affiliation(s)
| | - Ledit Ardusso
- Allergy and Immunology Department, Rosario School of Medicine, National University of Rosario, Rosario, Argentina
| | | | - Oliviero Sacco
- Department of Pediatrics, Pulmonary and Allergy Disease Unit, G. Gaslini University Hospital, Genoa, Italy
| | - Wojciech Feleszko
- Department of Pediatric Pulmonology and Allergy, The Medical University Children's Hospital, Warszawa, Poland
| | - Giovanni A Rossi
- Department of Pediatrics, Unit of Pediatrics Pulmonology and Respiratory Endoscopy, G. Gaslini Hospital, Genoa, Italy
| |
Collapse
|
17
|
Tissue-resident immunity in the lung: a first-line defense at the environmental interface. Semin Immunopathol 2022; 44:827-854. [PMID: 36305904 PMCID: PMC9614767 DOI: 10.1007/s00281-022-00964-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/08/2022] [Indexed: 12/15/2022]
Abstract
The lung is a vital organ that incessantly faces external environmental challenges. Its homeostasis and unimpeded vital function are ensured by the respiratory epithelium working hand in hand with an intricate fine-tuned tissue-resident immune cell network. Lung tissue-resident immune cells span across the innate and adaptive immunity and protect from infectious agents but can also prove to be pathogenic if dysregulated. Here, we review the innate and adaptive immune cell subtypes comprising lung-resident immunity and discuss their ontogeny and role in distinct respiratory diseases. An improved understanding of the role of lung-resident immunity and how its function is dysregulated under pathological conditions can shed light on the pathogenesis of respiratory diseases.
Collapse
|
18
|
Descamps D, Peres de Oliveira A, Gonnin L, Madrières S, Fix J, Drajac C, Marquant Q, Bouguyon E, Pietralunga V, Iha H, Morais Ventura A, Tangy F, Vidalain PO, Eléouët JF, Galloux M. Depletion of TAX1BP1 Amplifies Innate Immune Responses during Respiratory Syncytial Virus Infection. J Virol 2021; 95:e0091221. [PMID: 34431698 PMCID: PMC8549506 DOI: 10.1128/jvi.00912-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the main cause of acute respiratory infections in young children and also has a major impact on the elderly and immunocompromised people. In the absence of a vaccine or efficient treatment, a better understanding of RSV interactions with the host antiviral response during infection is needed. Previous studies revealed that cytoplasmic inclusion bodies (IBs), where viral replication and transcription occur, could play a major role in the control of innate immunity during infection by recruiting cellular proteins involved in the host antiviral response. We recently showed that the morphogenesis of IBs relies on a liquid-liquid-phase separation mechanism depending on the interaction between viral nucleoprotein (N) and phosphoprotein (P). These scaffold proteins are expected to play a central role in the recruitment of cellular proteins to IBs. Here, we performed a yeast two-hybrid screen using RSV N protein as bait and identified the cellular protein TAX1BP1 as a potential partner of this viral protein. This interaction was validated by pulldown and immunoprecipitation assays. We showed that TAX1BP1 suppression has only a limited impact on RSV infection in cell cultures. However, RSV replication is decreased in TAX1BP1-deficient (TAX1BP1 knockout [TAX1BP1KO]) mice, whereas the production of inflammatory and antiviral cytokines is enhanced. In vitro infection of wild-type or TAX1BP1KO alveolar macrophages confirmed that the innate immune response to RSV infection is enhanced in the absence of TAX1BP1. Altogether, our results suggest that RSV could hijack TAX1BP1 to restrain the host immune response during infection. IMPORTANCE Respiratory syncytial virus (RSV), which is the leading cause of lower respiratory tract illness in infants, remains a medical problem in the absence of a vaccine or efficient treatment. This virus is also recognized as a main pathogen in the elderly and immunocompromised people, and the occurrence of coinfections (with other respiratory viruses and bacteria) amplifies the risks of developing respiratory distress. In this context, a better understanding of the pathogenesis associated with viral respiratory infections, which depends on both viral replication and the host immune response, is needed. The present study reveals that the cellular protein TAX1BP1, which interacts with the RSV nucleoprotein N, participates in the control of the innate immune response during RSV infection, suggesting that the N-TAX1BP1 interaction represents a new target for the development of antivirals.
Collapse
Affiliation(s)
| | - Andressa Peres de Oliveira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Lorène Gonnin
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Sarah Madrières
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Jenna Fix
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Carole Drajac
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Quentin Marquant
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Edwige Bouguyon
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | - Hidekatsu Iha
- Department of Infectious Diseases, Faculty of Medicine, Oita University Idaiga-oka, Hasama Yufu, Japan
| | - Armando Morais Ventura
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Frédéric Tangy
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Pierre-Olivier Vidalain
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
- CIRI, Centre International de Recherche en Infectiologie, Université Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | | | - Marie Galloux
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| |
Collapse
|
19
|
Alveolar-like Macrophages Attenuate Respiratory Syncytial Virus Infection. Viruses 2021; 13:v13101960. [PMID: 34696391 PMCID: PMC8540499 DOI: 10.3390/v13101960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 01/26/2023] Open
Abstract
Respiratory Syncytial Virus (RSV) is the leading cause of acute lower respiratory infections in young children and infection has been linked to the development of persistent lung disease in the form of wheezing and asthma. Despite substantial research efforts, there are no RSV vaccines currently available and an effective monoclonal antibody targeting the RSV fusion protein (palivizumab) is of limited general use given the associated expense. Therefore, the development of novel approaches to prevent RSV infection is highly desirable to improve pediatric health globally. We have developed a method to generate alveolar-like macrophages (ALMs) from pluripotent stem cells. These ALMs have shown potential to promote airway innate immunity and tissue repair and so we hypothesized that ALMs could be used as a strategy to prevent RSV infection. Here, we demonstrate that ALMs are not productively infected by RSV and prevent the infection of epithelial cells. Prevention of epithelial infection was mediated by two different mechanisms: phagocytosis of RSV particles and release of an antiviral soluble factor different from type I interferon. Furthermore, intratracheal administration of ALMs protected mice from subsequent virus-induced weight loss and decreased lung viral titres and inflammation, indicating that ALMs can impair the pathogenesis of RSV infection. Our results support a prophylactic role for ALMs in the setting of RSV infection and warrant further studies on stem cell-derived ALMs as a novel cell-based therapy for pulmonary viral infections.
Collapse
|
20
|
Marquant Q, Laubreton D, Drajac C, Mathieu E, Bouguyon E, Noordine ML, Remot A, Riffault S, Thomas M, Descamps D. The microbiota plays a critical role in the reactivity of lung immune components to innate ligands. FASEB J 2021; 35:e21348. [PMID: 33715218 DOI: 10.1096/fj.202002338r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022]
Abstract
The gut microbiota contributes to shaping efficient and safe immune defenses in the gut. However, little is known about the role of the gut and/or lung microbiota in the education of pulmonary innate immune responses. Here, we tested whether the endogenous microbiota in general can modulate the reactivity of pulmonary tissue to pathogen stimuli by comparing the response of specific-pathogen-free (SPF) and germ-free (GF) mice. Thus, we observed earlier and greater inflammation in the pulmonary compartment of GF mice than that of SPF mice after intranasal instillation to lipopolysaccharide (LPS), a component of Gram-negative bacteria. Toll-like receptor 4 (TLR4) was more abundantly expressed in the lungs of GF mice than those of SPF mice at steady state, which could predispose the innate immunity of GF mice to strongly react to the environmental stimuli. Lung explants were stimulated with different TLR agonists or infected with the human airways pathogen, respiratory syncytial virus (RSV), resulting in greater inflammation under almost all conditions for the GF explants. Finally, alveolar macrophages (AM) from GF mice presented a higher innate immune response upon RSV infection than those of SPF mice. Overall, these data suggest that the presence of microbiota in SPF mice induced a process of innate immune tolerance in the lungs by a mechanism which remains to be elucidated. Our study represents a step forward to establishing the link between the microbiota and the immune reactivity of the lungs.
Collapse
Affiliation(s)
- Quentin Marquant
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Daphné Laubreton
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Carole Drajac
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Elliot Mathieu
- Université Paris-Saclay, INRAE, Micalis, Jouy-en-Josas, France
| | - Edwige Bouguyon
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | | - Aude Remot
- Université de Tours, INRAE, ISP, Tours, France
| | - Sabine Riffault
- Université Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Muriel Thomas
- Université Paris-Saclay, INRAE, Micalis, Jouy-en-Josas, France
| | | |
Collapse
|
21
|
Control of IFN-I responses by the aminopeptidase IRAP in neonatal C57BL/6 alveolar macrophages during RSV infection. Mucosal Immunol 2021; 14:949-962. [PMID: 33846534 PMCID: PMC8221999 DOI: 10.1038/s41385-021-00402-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 02/04/2023]
Abstract
Respiratory Syncytial Virus (RSV) is the major cause of lower respiratory tract infection in infants, in whom, the sensing of RSV by innate immune receptors and its regulation are still poorly described. However, the severe bronchiolitis following RSV infection in neonates has been associated with a defect in type I interferons (IFN-I) production, a cytokine produced mainly by alveolar macrophages (AMs) upon RSV infection in adults. In the present study, neonatal C57BL/6 AMs mobilized very weakly the IFN-I pathway upon RSV infection in vitro and failed to restrain virus replication. However, IFN-I productions by neonatal AMs were substantially increased by the deletion of Insulin-Responsive AminoPeptidase (IRAP), a protein previously involved in the regulation of IFN-I production by dendritic cells. Moreover, neonatal IRAPKO AMs showed a higher expression of IFN-stimulated genes than their wild-type C57BL/6 counterpart. Interestingly, depletion of IRAP did not affect adult AM responses. Finally, we demonstrated that newborn IRAPKO mice infected with RSV had more IFN-I in their lungs and eliminated the virus more efficiently than WT neonates. Taken together, early-life susceptibility to RSV infection may be related to an original age-dependent suppressive function of IRAP on the IFN-I driven-antiviral responses in neonatal AMs.
Collapse
|
22
|
Makris S, Johansson C. R848 or influenza virus can induce potent innate immune responses in the lungs of neonatal mice. Mucosal Immunol 2021; 14:267-276. [PMID: 32576926 PMCID: PMC7116567 DOI: 10.1038/s41385-020-0314-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 05/16/2020] [Accepted: 05/27/2020] [Indexed: 02/04/2023]
Abstract
Innate immune responses are important to protect the neonatal lung, which becomes exposed to commensal and pathogenic microorganisms immediately after birth, at a time when both the lung and the adaptive immune system are still developing. How immune cells in the neonatal lung respond to innate immune stimuli, including toll-like receptor (TLR) agonists, or viruses, is currently unclear. To address this, adult and neonatal mice were intranasally administered with various innate immune stimuli, respiratory syncytial virus (RSV) or influenza virus and cytokine and chemokine levels were quantified. The neonatal lungs responded weakly to RSV and most stimuli but more strongly than adult mice to R848 and influenza virus, both of which activate TLR7 and the inflammasome. Notably, neonatal lungs also contained higher levels of cAMP, a secondary messenger produced following adenosine receptor signaling, than adult lungs and increased responsiveness to R848 was observed in adult mice when adenosine was coadministered. Our data suggest that the neonatal lung may respond preferentially to stimuli that coactivate TLR7 and the inflammasome and that these responses may be amplified by extracellular adenosine. Improved understanding of regulation of immune responses in the neonatal lung can inform the development of vaccine adjuvants for the young.
Collapse
Affiliation(s)
- Spyridon Makris
- Correspondence: Cecilia Johansson (), Tel.: +44 207 594 2531
| | - Cecilia Johansson
- Section of Respiratory Infections, National Heart and Lung Institute, Imperial College London, UK
| |
Collapse
|
23
|
Garcia-Castillo V, Tomokiyo M, Raya Tonetti F, Islam MA, Takahashi H, Kitazawa H, Villena J. Alveolar Macrophages Are Key Players in the Modulation of the Respiratory Antiviral Immunity Induced by Orally Administered Lacticaseibacillus rhamnosus CRL1505. Front Immunol 2020; 11:568636. [PMID: 33133080 PMCID: PMC7550464 DOI: 10.3389/fimmu.2020.568636] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/01/2020] [Indexed: 12/27/2022] Open
Abstract
The oral administration of Lacticaseibacillus rhamnosus CRL1505 differentially modulates the respiratory innate antiviral immune response triggered by Toll-like receptor 3 (TLR3) activation in infant mice, improving the resistance to Respiratory Syncytial Virus (RSV) infection. In this work, by using macrophages depletion experiments and a detailed study of their production of cytokines and antiviral factors we clearly demonstrated the key role of this immune cell population in the improvement of both viral elimination and the protection against lung tissue damage induced by the CRL1505 strain. Orally administered L. rhamnosus CRL1505 activated alveolar macrophages and enhanced their ability to produce type I interferons (IFNs) and IFN-γ in response to RSV infection. Moreover, an increased expression of IFNAR1, Mx2, OAS1, OAS2, RNAseL, and IFITM3 was observed in alveolar macrophages after the oral treatment with L. rhamnosus CRL1505, which was consistent with the enhanced RSV clearance. The depletion of alveolar macrophages by the time of L. rhamnosus CRL1505 administration abolished the ability of infant mice to produce increased levels of IL-10 in response to RSV infection. However, no improvement in IL-10 production was observed when primary cultures of alveolar macrophages obtained from CRL1505-treated mice were analyzed. Of note, alveolar macrophages from the CRL1505 group had an increased production of IL-6 and IL-27 suggesting that these cells may play an important role in limiting inflammation and protecting lung function during RSV infection, by increasing the maturation and activation of Treg cells and their subsequent production of IL-10. In addition, we provided evidence of the important role of CD4+ cells and IFN-γ in the activation of alveolar macrophages highlighting a putative pathway through which the intestinal and respiratory mucosa are communicated under the influence of L. rhamnosus CRL1505.
Collapse
Affiliation(s)
- Valeria Garcia-Castillo
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina.,Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Mikado Tomokiyo
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Fernanda Raya Tonetti
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina
| | - Md Aminul Islam
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hideki Takahashi
- Laboratory of Plant Pathology, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Plant Immunology Unit, International Education and Research Centre for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.,Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Julio Villena
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman, Argentina.,Food and Feed Immunology Group, Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
24
|
Bedient L, Pokharel SM, Chiok KR, Mohanty I, Beach SS, Miura TA, Bose S. Lytic Cell Death Mechanisms in Human Respiratory Syncytial Virus-Infected Macrophages: Roles of Pyroptosis and Necroptosis. Viruses 2020; 12:v12090932. [PMID: 32854254 PMCID: PMC7552060 DOI: 10.3390/v12090932] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/13/2020] [Accepted: 08/20/2020] [Indexed: 12/21/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is the most common cause of viral bronchiolitis and pneumonia in infants and children worldwide. Inflammation induced by RSV infection is responsible for its hallmark manifestation of bronchiolitis and pneumonia. The cellular debris created through lytic cell death of infected cells is a potent initiator of this inflammation. Macrophages are known to play a pivotal role in the early innate immune and inflammatory response to viral pathogens. However, the lytic cell death mechanisms associated with RSV infection in macrophages remains unknown. Two distinct mechanisms involved in lytic cell death are pyroptosis and necroptosis. Our studies revealed that RSV induces lytic cell death in macrophages via both of these mechanisms, specifically through the ASC (Apoptosis-associated speck like protein containing a caspase recruitment domain)-NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3) inflammasome activation of both caspase-1 dependent pyroptosis and receptor-interacting serine/threonine-protein kinase 3 (RIPK3), as well as a mixed lineage kinase domain like pseudokinase (MLKL)-dependent necroptosis. In addition, we demonstrated an important role of reactive oxygen species (ROS) during lytic cell death of RSV-infected macrophages.
Collapse
Affiliation(s)
- Lori Bedient
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (L.B.); (S.M.P.); (K.R.C.); (I.M.)
| | - Swechha Mainali Pokharel
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (L.B.); (S.M.P.); (K.R.C.); (I.M.)
| | - Kim R. Chiok
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (L.B.); (S.M.P.); (K.R.C.); (I.M.)
| | - Indira Mohanty
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (L.B.); (S.M.P.); (K.R.C.); (I.M.)
| | - Sierra S. Beach
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (S.S.B.); (T.A.M.)
| | - Tanya A. Miura
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA; (S.S.B.); (T.A.M.)
| | - Santanu Bose
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; (L.B.); (S.M.P.); (K.R.C.); (I.M.)
- Correspondence:
| |
Collapse
|
25
|
Laubreton D, Drajac C, Eléouët JF, Rameix-Welti MA, Lo-Man R, Riffault S, Descamps D. Regulatory B Lymphocytes Colonize the Respiratory Tract of Neonatal Mice and Modulate Immune Responses of Alveolar Macrophages to RSV Infection in IL-10-Dependant Manner. Viruses 2020; 12:v12080822. [PMID: 32751234 PMCID: PMC7472339 DOI: 10.3390/v12080822] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/11/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the prevalent pathogen of lower respiratory tract infections in children. The presence of neonatal regulatory B lymphocytes (nBreg) has been associated with a poor control of RSV infection in human newborns and with bronchiolitis severity. So far, little is known about how nBreg may contribute to neonatal immunopathology to RSV. We tracked nBreg in neonatal BALB/c mice and we investigated their impact on lung innate immunity, especially their crosstalk with alveolar macrophages (AMs) upon RSV infection. We showed that the colonization by nBreg during the first week of life is a hallmark of neonatal lung whereas this population is almost absent in adult lung. This particular period of age when nBreg are abundant corresponds to the same period when RSV replication in lungs fails to generate a type-I interferons (IFN-I) response and is not contained. When neonatal AMs are exposed to RSV in vitro, they produce IFN-I that in turn enhances IL-10 production by nBreg. IL-10 reciprocally can decrease IFN-I secretion by AMs. Thus, our work identified nBreg as an important component of neonatal lungs and pointed out new immunoregulatory interactions with AMs in the context of RSV infection.
Collapse
Affiliation(s)
- Daphné Laubreton
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350 Jouy-en-Josas, France; (D.L.); (C.D.); (J.-F.E.)
| | - Carole Drajac
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350 Jouy-en-Josas, France; (D.L.); (C.D.); (J.-F.E.)
| | - Jean-François Eléouët
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350 Jouy-en-Josas, France; (D.L.); (C.D.); (J.-F.E.)
| | - Marie-Anne Rameix-Welti
- Université Paris-Saclay, UVSQ, Inserm, Infection et Inflammation, U1173, 78180 Montigny-Le-Bretonneux, France;
- Laboratoire de Microbiologie, Hôpital Ambroise Paré, AP-HP, 92100 Boulogne-Billancourt, France
| | - Richard Lo-Man
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Unit Immunity and Pediatric Infectious Diseases, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China;
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Sabine Riffault
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350 Jouy-en-Josas, France; (D.L.); (C.D.); (J.-F.E.)
- Correspondence: (S.R.); (D.D.); Tel.: +(33)-01-34-65-26-20 (S.R.); +(33)-01-34-65-26-10 (D.D.)
| | - Delphyne Descamps
- Université Paris-Saclay, INRAE, UVSQ, VIM, 78350 Jouy-en-Josas, France; (D.L.); (C.D.); (J.-F.E.)
- Correspondence: (S.R.); (D.D.); Tel.: +(33)-01-34-65-26-20 (S.R.); +(33)-01-34-65-26-10 (D.D.)
| |
Collapse
|
26
|
Andrade CA, Pacheco GA, Gálvez NMS, Soto JA, Bueno SM, Kalergis AM. Innate Immune Components that Regulate the Pathogenesis and Resolution of hRSV and hMPV Infections. Viruses 2020; 12:E637. [PMID: 32545470 PMCID: PMC7354512 DOI: 10.3390/v12060637] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
The human respiratory syncytial virus (hRSV) and human Metapneumovirus (hMPV) are two of the leading etiological agents of acute lower respiratory tract infections, which constitute the main cause of mortality in infants. However, there are currently approved vaccines for neither hRSV nor hMPV. Moreover, despite the similarity between the pathology caused by both viruses, the immune response elicited by the host is different in each case. In this review, we discuss how dendritic cells, alveolar macrophages, neutrophils, eosinophils, natural killer cells, innate lymphoid cells, and the complement system regulate both pathogenesis and the resolution of hRSV and hMPV infections. The roles that these cells play during infections by either of these viruses will help us to better understand the illnesses they cause. We also discuss several controversial findings, relative to some of these innate immune components. To better understand the inflammation in the lungs, the role of the respiratory epithelium in the recruitment of innate immune cells is briefly discussed. Finally, we review the main prophylactic strategies and current vaccine candidates against both hRSV and hMPV.
Collapse
Affiliation(s)
- Catalina A. Andrade
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Gaspar A. Pacheco
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Nicolas M. S. Gálvez
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Jorge A. Soto
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Susan M. Bueno
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
| | - Alexis M. Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; (C.A.A.); (G.A.P.); (N.M.S.G.); (J.A.S.); (S.M.B.)
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile
| |
Collapse
|
27
|
Stephens LM, Varga SM. Function and Modulation of Type I Interferons during Respiratory Syncytial Virus Infection. Vaccines (Basel) 2020; 8:vaccines8020177. [PMID: 32290326 PMCID: PMC7349809 DOI: 10.3390/vaccines8020177] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/04/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory infections in infants and young children, accounting for an estimated 3 million hospitalizations annually worldwide. Despite the major health burden, there is currently no licensed RSV vaccine. RSV is recognized by a range of cellular receptors including both toll-like receptors (TLR) and retinoic acid-inducible gene-I-like receptors (RIG-I). This interaction initiates signaling through mitochondrial antiviral signaling (MAVS) and interferon regulatory factor (IRF) proteins, resulting in the induction of type I interferons (IFN). Early viral control is mediated by either IFN-α or IFN-β signaling through the IFN receptor (IFNAR), inducing the production of antiviral interferon-stimulating genes (ISGs). Type I IFNs also initiate the early production of proinflammatory cytokines including interleukin 6 (IL-6), tumor necrosis factor (TNF), and IFN-γ. Type I IFN levels correlate with age, and inadequate production may be a critical factor in facilitating the increased RSV disease severity observed in infants. Here, we review the current literature on the function of type I IFNs in RSV pathogenesis, as well as their involvement in the differential immune responses observed in infants and adults.
Collapse
Affiliation(s)
- Laura M. Stephens
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA;
| | - Steven M. Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA 52242, USA;
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
- Correspondence: ; Tel.: +1-319-335-7784
| |
Collapse
|
28
|
Kirsebom F, Michalaki C, Agueda-Oyarzabal M, Johansson C. Neutrophils do not impact viral load or the peak of disease severity during RSV infection. Sci Rep 2020; 10:1110. [PMID: 31980667 PMCID: PMC6981203 DOI: 10.1038/s41598-020-57969-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 01/07/2020] [Indexed: 11/30/2022] Open
Abstract
Lung and airway neutrophils are a hallmark of severe disease in infants with respiratory syncytial virus (RSV)-induced lower respiratory tract infections. Despite their abundance in the lungs during RSV infection of both mice and man, the role of neutrophils in viral control and in immune pathology is not clear. Here, antibody mediated neutrophil depletion was used to investigate the degree to which neutrophils impact the lung immune environment, the control of viral replication and the peak severity of disease after RSV infection of mice. Neutrophil depletion did not substantially affect the levels of inflammatory mediators such as type I interferons, IL-6, TNF-α or IL-1β in response to RSV. In addition, the lack of neutrophils did not change the viral load during RSV infection. Neither neutrophil depletion nor the enhancement of lung neutrophils by administration of the chemoattractant CXCL1 during RSV infection affected disease severity as measured by weight loss. Therefore, in this model of RSV infection, lung neutrophils do not offer obvious benefits to the host in terms of increasing anti-viral inflammatory responses or restricting viral replication and neutrophils do not contribute to disease severity.
Collapse
Affiliation(s)
- Freja Kirsebom
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | | | - Cecilia Johansson
- National Heart and Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
29
|
Galeas-Pena M, McLaughlin N, Pociask D. The role of the innate immune system on pulmonary infections. Biol Chem 2019; 400:443-456. [PMID: 29604208 DOI: 10.1515/hsz-2018-0304] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/19/2018] [Indexed: 12/15/2022]
Abstract
Inhalation is required for respiration and life in all vertebrates. This process is not without risk, as it potentially exposes the host to environmental pathogens with every breath. This makes the upper respiratory tract one of the most common routes of infection and one of the leading causes of morbidity and mortality in the world. To combat this, the lung relies on the innate immune defenses. In contrast to the adaptive immune system, the innate immune system does not require sensitization, previous exposure or priming to attack foreign particles. In the lung, the innate immune response starts with the epithelial barrier and mucus production and is reinforced by phagocytic cells and T cells. These cells are vital for the production of cytokines, chemokines and anti-microbial peptides that are critical for clearance of infectious agents. In this review, we discuss all aspects of the innate immune response, with a special emphasis on ways to target aspects of the immune response to combat antibiotic resistant bacteria.
Collapse
Affiliation(s)
- Michelle Galeas-Pena
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, 333 S. Liberty St., New Orleans, LA 70112, USA
| | - Nathaniel McLaughlin
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, 333 S. Liberty St., New Orleans, LA 70112, USA
| | - Derek Pociask
- Department of Pulmonary Critical Care and Environmental Medicine, Tulane University School of Medicine, 333 S. Liberty St., New Orleans, LA 70112, USA
| |
Collapse
|
30
|
Londrigan SL, Wakim LM, Smith J, Haverkate AJ, Brooks AG, Reading PC. IFITM3 and type I interferons are important for the control of influenza A virus replication in murine macrophages. Virology 2019; 540:17-22. [PMID: 31731106 DOI: 10.1016/j.virol.2019.11.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/23/2022]
Abstract
Abortive infection of macrophages serves as a "dead end" for most seasonal influenza A virus (IAV) strains, and it is likely to contribute to effective host defence. Interferon (IFN)-induced transmembrane protein 3 (IFITM3) restricts the early stages of IAV replication in epithelial cells, but IFITM3 restriction of IAV replication in macrophages has not been previously investigated. Herein, macrophages isolated from IFITM3-deficient mice were more susceptible to initial IAV infection, but late-stage viral replication was still controlled through abortive infection. Strikingly, IFNα/β receptor (IFNAR)-deficient macrophages infected with IAV were not only more susceptible to initial infection, but these cells also supported productive viral replication. Significantly, we have established that abortive IAV infection in macrophages is controlled through a type I IFN-dependent mechanism, where late-stage IAV replication can proceed in the absence of type I IFN responses. These findings provide novel mechanistic insight into macrophage-specific processes that potently shut down IAV replication.
Collapse
Affiliation(s)
- Sarah L Londrigan
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia.
| | - Linda M Wakim
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Jeffrey Smith
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Anne J Haverkate
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| | - Patrick C Reading
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia; WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Victoria, 3000, Australia
| |
Collapse
|
31
|
Abstract
Respiratory syncytial virus (RSV) can cause severe lower respiratory tract infections especially in infants, immunocompromised individuals and the elderly and is the most common cause of infant hospitalisation in the developed world. The immune responses against RSV are crucial for viral control and clearance but, if dysregulated, can also result in immunopathology and impaired gas exchange. Lung immunity to RSV and other respiratory viruses begins with the recruitment of immune cells from the bloodstream into the lungs. This inflammatory process is controlled largely by chemokines, which are small proteins that are produced in response to innate immune detection of the virus or the infection process. These chemokines serve as chemoattractants for granulocytes, monocytes, lymphocytes and other leukocytes. In this review, we highlight recent advances in the field of RSV infection and disease, focusing on how chemokines regulate virus-induced inflammation.
Collapse
Affiliation(s)
- Rinat Nuriev
- National Heart and Lung Institute, Imperial College London, London, UK.,I. Mechnikov Research Institute for Vaccines and Sera, Moscow, Russian Federation
| | - Cecilia Johansson
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
32
|
Heykers A, Leemans A, Van der Gucht W, De Schryver M, Cos P, Delputte P. Differences in Susceptibility of Human and Mouse Macrophage Cell Lines to Respiratory Syncytial Virus Infection. Intervirology 2019; 62:134-144. [PMID: 31533107 DOI: 10.1159/000502674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 08/12/2019] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Differences have been observed in the susceptibility of macrophage cell lines to respiratory syncytial virus (RSV) infection. In this study, we evaluated whether the type of macrophage cell line and RSV strain used have an influence on the infectivity and production of progeny virus. METHODS Both human and murine macrophage-like cell lines were infected with different RSV strains, both lab strains as well as clinical isolates. The infection was evaluated after 24 and 72 h by immunofluorescence staining and microscopic analysis, and the production of new virus particles was determined by plaque assay. RESULTS Susceptibility of macrophages to RSV was influenced by the RSV strain used but was mostly dependent on the macrophage cell line. Numbers of infected cells and virus production were generally very low or absent in murine cell lines. In human cell lines, clear infection was observed associated with production of new virus particles. CONCLUSION Differences in susceptibility of macrophage cell lines to RSV infection are primarily related to the species of origin of the cell line but are also influenced by the RSV strain.
Collapse
Affiliation(s)
- Annick Heykers
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Annelies Leemans
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Winke Van der Gucht
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Marjorie De Schryver
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Paul Cos
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium,
| |
Collapse
|
33
|
Semerjyan AB, Sargsyan MA, Arzumanyan HH, Hakobyan LH, Abroyan LO, Semerjyan ZB, Avetisyan AS, Karalova EM, Manukyan DM, Matevosyan HS, Krasnikov NF, Karalyan ZA. Immune cell pathology in rabbit hemorrhagic disease. Vet World 2019; 12:1332-1340. [PMID: 31641316 PMCID: PMC6755391 DOI: 10.14202/vetworld.2019.1332-1340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/11/2019] [Indexed: 12/13/2022] Open
Abstract
Aim: The aim of this research was to study the effect of rabbit hemorrhagic disease virus (RHDV) on the host immune response by examining the cellular composition/pathology of lymphoid organs and serum levels of tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ). Materials and Methods: Nine adult rabbits were inoculated with 1 ml of 10% infected liver homogenate, and three rabbits served as controls. The rabbit hemorrhagic disease (RHD)-induced animals were studied on 3 consecutive days post-infection. Diagnosis of RHD was made through routine hemagglutination tests and the polymerase chain reaction. Blood smears and tissue samples from bone marrow (BM), spleen, lymph nodes, and liver were analyzed for cell composition and cytopathology. Serum levels of TNF-α and IFN-γ were measured by enzyme-linked immunosorbent assay. Results: RHD showed a decreased absolute cell count of blood as well as lymph nodes, spleen, and BM cell populations with marked left shift. This was seen as a progressive rise in immature and blast cells. Quantitative cellular changes were accompanied by an increase in specific inflammatory cytokines. Immunocytopathological alterations were evidenced by: Vacuolized, hyperactivated tissue macrophages, finding of Döhle bodies in neutrophils, and activated lymphocytes with increased nuclear-cytoplasmic ratio. Cytoplasmic eosinophilic viral inclusions found in tissue (liver, spleen, and BM) macrophages were shown for the 1st time in RHD. Megakaryocytic emperipolesis was a common feature of RHD. Conclusion: These studies suggest that RHDV induces pathology in leukocytes due to hyperactivation with left shift (toward immature stages of the different cell lineages). Macrophages are increased in number and show an expressed cytopathic effect often accompanied by viral eosinophilic cytoplasmic inclusions. They also developed a secretory activation (increased levels of pro-inflammatory cytokines).
Collapse
Affiliation(s)
| | - Mariam Armenak Sargsyan
- Department of Epidemiology and Parasitology, Armenian National Agrarian University, Yerevan, Armenia
| | | | - Lina Hayrapet Hakobyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, Armenia
| | - Liana Onik Abroyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, Armenia
| | - Zara Babken Semerjyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, Armenia
| | - Aida Sergey Avetisyan
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, Armenia
| | - Elena Michael Karalova
- Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, Armenia
| | | | | | | | - Zaven Alexandr Karalyan
- Department of Medical Biology, Yerevan State Medical University, Yerevan, Armenia.,Laboratory of Cell Biology and Virology, Institute of Molecular Biology of NAS RA, Yerevan, Armenia
| |
Collapse
|
34
|
Innate immune protection from pneumonia virus of mice induced by a novel immunomodulator is prolonged by dual treatment and mediated by macrophages. Antiviral Res 2019; 171:104594. [PMID: 31470041 DOI: 10.1016/j.antiviral.2019.104594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/20/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022]
Abstract
Respiratory syncytial virus (RSV) is responsible for a large proportion of acute lower respiratory tract infections, specifically in children. Pneumonia virus of mice (PVM) causes similar lung pathology and clinical disease in rodents, and is therefore an appropriate model of RSV infection. Previously, we demonstrated that a single intranasal dose of P-I-P, a novel immunomodulator composed of the toll-like receptor 3 agonist poly(I:C), an innate defense regulator peptide and a polyphosphazene, confers protection in Balb/c mice for up to 3 days from lethal PVM-15 infection. In the present study a dual intranasal treatment with P-I-P was shown to extend the duration of the protection conferred by P-I-P from PVM-15 challenge. Balb/c mice treated twice with P-I-P showed higher survival rates and milder clinical signs when compared to animals that received a single P-I-P dose. While the mice treated with two consecutive doses of P-I-P experienced some weight loss, they all recovered. The dual P-I-P treatment mediated infiltration of several innate immune cells into the BALF and lung, including alveolar macrophages, neutrophils, and γδ T cells. Partial depletion of alveolar macrophages decreased survival rates and exacerbated clinical signs of mice subjected to the P-I-P dual treatment regime followed by PVM-15 challenge. This suggests that the alveolar macrophage is at least partially responsible for the protection elicited by this novel prophylactic treatment strategy.
Collapse
|
35
|
Miura TA. Respiratory epithelial cells as master communicators during viral infections. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019; 6:10-17. [PMID: 31592409 PMCID: PMC6779166 DOI: 10.1007/s40588-019-0111-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Communication by epithelial cells during respiratory viral infections is critical in orchestrating effective anti-viral responses but also can lead to excessive inflammation. This review will evaluate studies that investigate how respiratory epithelial cells influence the behavior of immune cells and how epithelial cell/immune cell interactions contribute to antiviral responses and immunopathology outcomes. RECENT FINDINGS Previous studies have characterized cytokine responses of virus-infected epithelial cells. More recent studies have carefully demonstrated the effects of these cytokines on cellular behaviors within the infected lung. Infected epithelial cells release exosomes that specifically regulate responses of monocytes and neighboring epithelial cells without promoting spread of virus. In contrast, rhinovirus-infected cells induce monocytes to upregulate expression of the viral receptor, promoting spread of the virus to alternate cell types. The precise alteration of PDL expression on infected epithelial cells has been shown to switch between inhibition and activation of antiviral responses. SUMMARY These studies have more precisely defined the interactions between epithelial and immune cells during viral infections. This level of understanding is critical for the development of novel therapeutic strategies that promote effective antiviral responses or epithelial repair, or inhibit damaging inflammatory responses during severe respiratory viral infections.
Collapse
Affiliation(s)
- Tanya A Miura
- Department of Biological Sciences and Center for Modeling Complex Interactions, University of Idaho, Moscow, ID 83844, USA,
| |
Collapse
|
36
|
Casadei E, Salinas I. Comparative models for human nasal infections and immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:212-222. [PMID: 30513304 PMCID: PMC7102639 DOI: 10.1016/j.dci.2018.11.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/30/2018] [Accepted: 11/30/2018] [Indexed: 05/09/2023]
Abstract
The human olfactory system is a mucosal surface and a major portal of entry for respiratory and neurotropic pathogens into the body. Understanding how the human nasopharynx-associated lymphoid tissue (NALT) halts the progression of pathogens into the lower respiratory tract or the central nervous system is key for developing effective cures. Although traditionally mice have been used as the gold-standard model for the study of human nasal diseases, mouse models present important caveats due to major anatomical and functional differences of the human and murine olfactory system and NALT. We summarize the NALT anatomy of different animal groups that have thus far been used to study host-pathogen interactions at the olfactory mucosa and to test nasal vaccines. The goal of this review is to highlight the strengths and limitations of each animal model of nasal immunity and to identify the areas of research that require further investigation to advance human health.
Collapse
Affiliation(s)
- Elisa Casadei
- University of New Mexico, Department of Biology, Center for Evolutionary and Theoretical Immunology (CETI), Albuquerque, NM, USA.
| | - Irene Salinas
- University of New Mexico, Department of Biology, Center for Evolutionary and Theoretical Immunology (CETI), Albuquerque, NM, USA
| |
Collapse
|
37
|
Kirsebom FCM, Kausar F, Nuriev R, Makris S, Johansson C. Neutrophil recruitment and activation are differentially dependent on MyD88/TRIF and MAVS signaling during RSV infection. Mucosal Immunol 2019; 12:1244-1255. [PMID: 31358860 PMCID: PMC6778055 DOI: 10.1038/s41385-019-0190-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 06/14/2019] [Accepted: 06/29/2019] [Indexed: 02/04/2023]
Abstract
Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract infections, especially in infants. Lung neutrophilia is a hallmark of RSV disease but the mechanism by which neutrophils are recruited and activated is unclear. Here, we investigate the innate immune signaling pathways underlying neutrophil recruitment and activation in RSV-infected mice. We show that MyD88/TRIF signaling is essential for lung neutrophil recruitment while MAVS signaling, leading to type I IFN production, is necessary for neutrophil activation. Consistent with that notion, administration of type I IFNs to the lungs of RSV-infected Mavs-/- mice partially activates lung neutrophils recruited via the MyD88/TRIF pathway. Conversely, lack of neutrophil recruitment to the lungs of RSV-infected Myd88/Trif-/- mice can be corrected by administration of chemoattractants and those neutrophils become fully activated. Interestingly, Myd88/Trif-/- mice did not have increased lung viral loads during RSV infection, suggesting that neutrophils are dispensable for viral control. Thus, two distinct pathogen sensing pathways collaborate for neutrophil recruitment and full activation during RSV infection.
Collapse
Affiliation(s)
- Freja C. M. Kirsebom
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, St Mary’s Hospital, Norfolk Place, London, W2 1PG UK
| | - Fahima Kausar
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, St Mary’s Hospital, Norfolk Place, London, W2 1PG UK
| | - Rinat Nuriev
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, St Mary’s Hospital, Norfolk Place, London, W2 1PG UK
| | - Spyridon Makris
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, St Mary’s Hospital, Norfolk Place, London, W2 1PG UK ,0000000122478951grid.14105.31Present Address: MRC/UCL Lab for Molecular Cell Biology, London, UK
| | - Cecilia Johansson
- 0000 0001 2113 8111grid.7445.2National Heart and Lung Institute, Imperial College London, St Mary’s Hospital, Norfolk Place, London, W2 1PG UK
| |
Collapse
|
38
|
Verhoeven D. Influence of Immunological Maturity on Respiratory Syncytial Virus-Induced Morbidity in Young Children. Viral Immunol 2018; 32:76-83. [PMID: 30499759 DOI: 10.1089/vim.2018.0121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a very frequent viral respiratory pathogen of the young (<5 years old) with a significant portion of young toddlers having been infected before 2 years of age. Although we understand that some of the morbidity associated with RSV in neonates is due to immunological maturation that favors immunosuppression over antiviral innate and/or adaptive immune responses, the rapid development of the immune system right after birth suggests that each age group (newborn, early infant, older infant, toddler, and older) may respond to the virus in different ways. In this study, we summarize the morbidity associated with infection in young children in the context of immunological maturation of monocytes/macrophages and the ramifications for poor innate control of viral pathogenesis. We also summarize key mechanisms that contribute to the diminished antiviral innate immune responses of these young children.
Collapse
Affiliation(s)
- David Verhoeven
- Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames , Iowa
| |
Collapse
|
39
|
Egesten A, Herwald H. Journal of Innate Immunity Ten Years Later. J Innate Immun 2018; 10:363-364. [PMID: 30359972 DOI: 10.1159/000494683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
40
|
With Complement. J Innate Immun 2018; 10:253-254. [PMID: 30176674 PMCID: PMC6757143 DOI: 10.1159/000493170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024] Open
|
41
|
Engystol reduces onset of experimental respiratory syncytial virus-induced respiratory inflammation in mice by modulating macrophage phagocytic capacity. PLoS One 2018; 13:e0195822. [PMID: 29672626 PMCID: PMC5909611 DOI: 10.1371/journal.pone.0195822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 03/30/2018] [Indexed: 01/21/2023] Open
Abstract
Background Respiratory viruses such as respiratory syncytial virus (RSV) or rhinovirus are one of the major causes for respiratory tract infections causing common cold disease. Respiratory viral infections range from mild symptoms in adults to serious illness especially in the very young or elderly as well as patients suffering from lung diseases or being immunocompromised due to other reasons. Engystol (EGY-2) is a multicomponent, multitarget preparation consisting of Vincetoxicum hirundinaria and Sulfur in various dilutions. The study objective was to test the effect of EGY-2 on the innate immune response during the early onset of respiratory viral infection in vivo as exemplified in a mouse model of RSV-induced respiratory inflammation. Methods Naïve BALB/c mice were infected with 1x106 infectious units RSV A2 intranasally to cause a mild respiratory infection. EGY-2 was administered daily per oral gavage starting seven days prior to RSV infection at doses of 0.4 to 5.1 tablets/kg. Control groups received placebo treatment. Animals were sacrificed 1 to 3 days post infection (p.i.) to analyse the infection and induced immune response in the lung. Viral load in bronchoalveolar lavage fluid (BALF) and lung homogenate was determined by TCID50 assay as well as immunofluorescence staining of BALF cells using anti-RSV antibody and microscopic analysis. The RSV induced immune response was assessed by evaluation of BALF differential cell count, BALF cytokine secretion and analysis of the phagocytic capacity of alveolar macrophages. Results EGY-2 significantly reduced the RSV induced neutrophil and early lymphocyte influx on day 1 p.i. in BALF. EGY-2 treatment significantly diminished the RSV induced secretion of pro-inflammatory cytokines such as IFN-γ, IL-1β, IL-6, KC and TNF-α at day 1. EGY-2 treatment was not protective for RSV infection per se, as no alteration in the viral load in lung and BALF was detected. Enhanced numbers of phagocytic-active macrophages were observed in EGY-2 treated animals on day 1 and this macrophage population showed strongly enhanced phagocytic activity on day 1 and day 3. Conclusion The data suggest a beneficial immunomodulatory effect of EGY-2 during early onset of respiratory viral infection in vivo, mediated by stimulation of macrophage phagocytosis, resulting in a reduced innate inflammatory response in terms of neutrophil and early lymphocyte infiltration as well as reduced inflammatory cytokine secretion.
Collapse
|
42
|
Sarkar I, Garg R, van Drunen Littel-van den Hurk S. The respiratory syncytial virus fusion protein formulated with a polymer-based adjuvant induces multiple signaling pathways in macrophages. Vaccine 2018; 36:2326-2336. [PMID: 29559168 DOI: 10.1016/j.vaccine.2018.03.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 03/04/2018] [Accepted: 03/06/2018] [Indexed: 12/13/2022]
Abstract
Respiratory syncytial virus (RSV) causes acute respiratory tract infections in infants, the elderly and immunocompromised individuals. No licensed vaccine is available against RSV. We previously reported that intranasal immunization of rodents and lambs with a RSV vaccine candidate (ΔF/TriAdj) induces protective immunity with a good safety profile. ΔF/TriAdj promoted innate immune responses in respiratory mucosal tissues in vivo, by local chemokine and cytokine production, as well as infiltration and activation of immune cells including macrophages. The macrophage is an important cell type in context of both innate and adaptive immune responses against RSV. Therefore, we characterized the effects of ΔF/TriAdj on a murine macrophage cell line, RAW264.7, and bone marrow-derived macrophages (BMMs). A gene expression study of pattern recognition receptors (PRRs) revealed induction of endosomal and cytosolic receptors in RAW264.7 cells and BMMs by ΔF/TriAdj, but no up-regulation by ΔF in PBS. As a secondary response to the PRR gene expression, induction of several chemokines and pro-inflammatory cytokines, as well as up-regulation of MHC-II and co-stimulatory immune markers, was observed. To further investigate the mechanisms involved in ΔF/TriAdj-mediated secondary responses, we used relevant signal transduction pathway inhibitors. Based on inhibition studies at both transcript and protein levels, JNK, ERK1/2, CaMKII, PI3K and JAK pathways were clearly responsible for ΔF/TriAdj-mediated chemokine and pro-inflammatory cytokine responses, while the p38 and NF-κB pathways appeared to be not or minimally involved. ΔF/TriAdj induced IFN-β, which may participate in the JAK-STAT pathway to further amplify CXCL-10 production, which was strongly up-regulated. Blocking this pathway by a JAK inhibitor almost completely abrogated CXCL-10 production and caused a significant reduction in the cell surface expression of MHC-II and co-stimulatory immune markers. These data demonstrate that ΔF/TriAdj induces multiple signaling pathways in macrophages.
Collapse
Affiliation(s)
- Indranil Sarkar
- VIDO-InterVac, University of Saskatchewan, Saskatoon S7N 5E3, Canada; Microbiology and Immunology, University of Saskatchewan, Saskatoon S7N 5E5, Canada
| | - Ravendra Garg
- VIDO-InterVac, University of Saskatchewan, Saskatoon S7N 5E3, Canada
| | - Sylvia van Drunen Littel-van den Hurk
- VIDO-InterVac, University of Saskatchewan, Saskatoon S7N 5E3, Canada; Microbiology and Immunology, University of Saskatchewan, Saskatoon S7N 5E5, Canada.
| |
Collapse
|
43
|
Ascough S, Paterson S, Chiu C. Induction and Subversion of Human Protective Immunity: Contrasting Influenza and Respiratory Syncytial Virus. Front Immunol 2018; 9:323. [PMID: 29552008 PMCID: PMC5840263 DOI: 10.3389/fimmu.2018.00323] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/06/2018] [Indexed: 12/15/2022] Open
Abstract
Respiratory syncytial virus (RSV) and influenza are among the most important causes of severe respiratory disease worldwide. Despite the clinical need, barriers to developing reliably effective vaccines against these viruses have remained firmly in place for decades. Overcoming these hurdles requires better understanding of human immunity and the strategies by which these pathogens evade it. Although superficially similar, the virology and host response to RSV and influenza are strikingly distinct. Influenza induces robust strain-specific immunity following natural infection, although protection by current vaccines is short-lived. In contrast, even strain-specific protection is incomplete after RSV and there are currently no licensed RSV vaccines. Although animal models have been critical for developing a fundamental understanding of antiviral immunity, extrapolating to human disease has been problematic. It is only with recent translational advances (such as controlled human infection models and high-dimensional technologies) that the mechanisms responsible for differences in protection against RSV compared to influenza have begun to be elucidated in the human context. Influenza infection elicits high-affinity IgA in the respiratory tract and virus-specific IgG, which correlates with protection. Long-lived influenza-specific T cells have also been shown to ameliorate disease. This robust immunity promotes rapid emergence of antigenic variants leading to immune escape. RSV differs markedly, as reinfection with similar strains occurs despite natural infection inducing high levels of antibody against conserved antigens. The immunomodulatory mechanisms of RSV are thus highly effective in inhibiting long-term protection, with disturbance of type I interferon signaling, antigen presentation and chemokine-induced inflammation possibly all contributing. These lead to widespread effects on adaptive immunity with impaired B cell memory and reduced T cell generation and functionality. Here, we discuss the differences in clinical outcome and immune response following influenza and RSV. Specifically, we focus on differences in their recognition by innate immunity; the strategies used by each virus to evade these early immune responses; and effects across the innate-adaptive interface that may prevent long-lived memory generation. Thus, by comparing these globally important pathogens, we highlight mechanisms by which optimal antiviral immunity may be better induced and discuss the potential for these insights to inform novel vaccines.
Collapse
Affiliation(s)
- Stephanie Ascough
- Section of Infectious Diseases and Immunity, Imperial College London, London, United Kingdom
| | - Suzanna Paterson
- Section of Infectious Diseases and Immunity, Imperial College London, London, United Kingdom
| | - Christopher Chiu
- Section of Infectious Diseases and Immunity, Imperial College London, London, United Kingdom
| |
Collapse
|
44
|
Bohmwald K, Espinoza JA, Pulgar RA, Jara EL, Kalergis AM. Functional Impairment of Mononuclear Phagocyte System by the Human Respiratory Syncytial Virus. Front Immunol 2017; 8:1643. [PMID: 29230219 PMCID: PMC5712212 DOI: 10.3389/fimmu.2017.01643] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 11/10/2017] [Indexed: 12/18/2022] Open
Abstract
The mononuclear phagocyte system (MPS) comprises of monocytes, macrophages (MΦ), and dendritic cells (DCs). MPS is part of the first line of immune defense against a wide range of pathogens, including viruses, such as the human respiratory syncytial virus (hRSV). The hRSV is an enveloped virus that belongs to the Pneumoviridae family, Orthopneumovirus genus. This virus is the main etiological agent causing severe acute lower respiratory tract infection, especially in infants, children and the elderly. Human RSV can cause bronchiolitis and pneumonia and it has also been implicated in the development of recurrent wheezing and asthma. Monocytes, MΦ, and DCs significantly contribute to acute inflammation during hRSV-induced bronchiolitis and asthma exacerbation. Furthermore, these cells seem to be an important component for the association between hRSV and reactive airway disease. After hRSV infection, the first cells encountered by the virus are respiratory epithelial cells, alveolar macrophages (AMs), DCs, and monocytes in the airways. Because AMs constitute the predominant cell population at the alveolar space in healthy subjects, these cells work as major innate sentinels for the recognition of pathogens. Although adaptive immunity is crucial for viral clearance, AMs are required for the early immune response against hRSV, promoting viral clearance and controlling immunopathology. Furthermore, exposure to hRSV may affect the phagocytic and microbicidal capacity of monocytes and MΦs against other infectious agents. Finally, different studies have addressed the roles of different DC subsets during infection by hRSV. In this review article, we discuss the role of the lung MPS during hRSV infection and their involvement in the development of bronchiolitis.
Collapse
Affiliation(s)
- Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Janyra A Espinoza
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Raúl A Pulgar
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Evelyn L Jara
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
45
|
Pulmonary Susceptibility of Neonates to Respiratory Syncytial Virus Infection: A Problem of Innate Immunity? J Immunol Res 2017; 2017:8734504. [PMID: 29250560 PMCID: PMC5700507 DOI: 10.1155/2017/8734504] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/09/2017] [Indexed: 12/13/2022] Open
Abstract
Human respiratory syncytial virus (RSV) is a common and highly contagious viral agent responsible for acute lower respiratory infection in infants. This pathology characterized by mucus hypersecretion and a disturbed T cell immune response is one of the major causes of infant hospitalization for severe bronchiolitis. Although different risk factors are associated with acute RSV bronchiolitis, the immunological factors contributing to the susceptibility of RSV infection in infants are not clearly elucidated. Epidemiological studies have established that the age at initial infection plays a central role in the severity of the disease. Thus, neonatal susceptibility is intrinsically linked to the immunological characteristics of the young pulmonary mucosa. Early life is a critical period for the lung development with the first expositions to external environmental stimuli and microbiota colonization. Furthermore, neonates display a lung immune system that profoundly differs to those from adults, with the predominance of type 2 immune cells. In this review, we discuss the latest information about the lung immune environment in the early period of life at a steady state and upon RSV infection and how we can modulate neonatal susceptibility to RSV infection.
Collapse
|
46
|
Nombela I, Puente-Marin S, Chico V, Villena AJ, Carracedo B, Ciordia S, Mena MC, Mercado L, Perez L, Coll J, Estepa A, Ortega-Villaizan MDM. Identification of diverse defense mechanisms in rainbow trout red blood cells in response to halted replication of VHS virus. F1000Res 2017; 6:1958. [PMID: 29527292 PMCID: PMC5820608 DOI: 10.12688/f1000research.12985.2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/31/2018] [Indexed: 01/14/2023] Open
Abstract
Background: It has been described that fish nucleated red blood cells (RBCs) generate a wide variety of immune-related gene transcripts when viruses highly replicate inside them and are their main target cell. The immune response and mechanisms of fish RBCs against viruses targeting other cells or tissues has not yet been explored and is the objective of our study. Methods: Rainbow trout RBCs were obtained from peripheral blood, ficoll purified and exposed to Viral Haemorrhagic Septicaemia virus (VHSV). Immune response was evaluated by means of RT-qPCR, flow cytometry, immunofluorescence and isobaric tag for relative and absolute quantification (iTRAQ) protein profiling. Results: VHSV N gene transcripts incremented early postexposure and were drastically decreased after 6 hours postexposure (hpe). The expression of type I interferon ( ifn1) gene was significantly downregulated at early postexposure (3 hpe), together with a gradual downregulation of interferon-inducible mx and pkr genes until 72 hpe. Type I IFN protein was downregulated and interferon-inducible Mx protein was maintained at basal levels. Co-culture assays of RBCs, previously exposed to UV-inactivated VHSV, and TSS (stromal cell line from spleen) revealed IFN crosstalk between both cell types. On the other hand, anti-microbial peptide β-defensin 1 and neutrophil chemotactic factor interleukin 8 were slightly upregulated in VHSV-exposed RBCs. iTRAQ profiling revealed that VHSV exposure can induce a global protein downregulation in rainbow trout RBCs, mainly related to RNA stability and proteasome pathways. Antioxidant/antiviral response is also suggested to be involved in the response of rainbow trout RBCs to VHSV. Conclusions: A variety of mechanisms are proposed to be implicated in the antiviral response of rainbow trout RBCs against VHSV halted infection. Ongoing research is focused on understanding the mechanisms in detail.
Collapse
Affiliation(s)
- Ivan Nombela
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Spain
| | - Sara Puente-Marin
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Spain
| | - Veronica Chico
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Spain
| | - Alberto J. Villena
- Área de Biología Celular, Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Begoña Carracedo
- Área de Biología Celular, Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Sergio Ciordia
- Unidad de Proteómica, Centro Nacional de Biotecnología, Madrid, Spain
| | - Maria Carmen Mena
- Unidad de Proteómica, Centro Nacional de Biotecnología, Madrid, Spain
| | - Luis Mercado
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Luis Perez
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Spain
| | | | - Amparo Estepa
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Spain
| | | |
Collapse
|
47
|
Nombela I, Puente-Marin S, Chico V, Villena AJ, Carracedo B, Ciordia S, Mena MC, Mercado L, Perez L, Coll J, Estepa A, Ortega-Villaizan MDM. Identification of diverse defense mechanisms in trout red blood cells in response to VHSV halted viral replication. F1000Res 2017; 6:1958. [PMID: 29527292 PMCID: PMC5820608 DOI: 10.12688/f1000research.12985.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2017] [Indexed: 01/09/2023] Open
Abstract
Background: It has been described that fish nucleated red blood cells (RBCs) generate a wide variety of immune-related gene transcripts when viruses highly replicate inside them and are their main target cell. The immune response and mechanisms of fish RBCs against viruses targeting other cells or tissues has not yet been explored and is the objective of our study. Methods: Trout RBCs were obtained from peripheral blood, ficoll purified and exposed to Viral Haemorrhagic Septicaemia virus (VHSV). Immune response was evaluated by means of RT-qPCR, flow cytometry, immunofluorescence and isobaric tag for relative and absolute quantification (iTRAQ) protein profiling Results: VHSV N gene transcripts incremented early postexposure and were drastically decreased after 6 hours postexposure (hpe). The expression of the type I interferon ( ifn1) gene was significantly downregulated at early postexposure (3 hpe), together with a gradual downregulation of interferon-inducible mx and pkr genes until 72 hpe. Type I IFN protein was downregulated and interferon-inducible Mx protein was maintained at basal levels. Co-culture assays of RBCs with TSS (stromal cell line from spleen) revealed the IFN crosstalk between both cell types. On the other hand, anti-microbial peptide β-defensin 1 and neutrophil chemotactic factor interleukin 8 were slightly upregulated in VHSV-exposed RBCs Isobaric tag for relative and absolute quantification (iTRAQ) revealed that VHSV exposure can induce a global protein downregulation in trout RBCs, mainly related to RNA stability and proteasome pathways. The antioxidant/antiviral response is also suggested to be involved in the response of trout RBCs to VHSV. Conclusions: A variety of mechanisms are proposed to be implicated in the antiviral response of trout RBCs against VHSV halted infection. Ongoing research is focused on understanding the mechanisms in detail. To our knowledge, this is the first report that implicates fish RBCs in the antiviral response against viruses not targeting RBCs.
Collapse
Affiliation(s)
- Ivan Nombela
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Spain
| | - Sara Puente-Marin
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Spain
| | - Veronica Chico
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Spain
| | - Alberto J. Villena
- Área de Biología Celular, Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Begoña Carracedo
- Área de Biología Celular, Departamento de Biología Molecular, Universidad de León, León, Spain
| | - Sergio Ciordia
- Unidad de Proteómica, Centro Nacional de Biotecnología, Madrid, Spain
| | - Maria Carmen Mena
- Unidad de Proteómica, Centro Nacional de Biotecnología, Madrid, Spain
| | - Luis Mercado
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Luis Perez
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Spain
| | | | - Amparo Estepa
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Elche, Spain
| | | |
Collapse
|
48
|
Openshaw PJ, Chiu C, Culley FJ, Johansson C. Protective and Harmful Immunity to RSV Infection. Annu Rev Immunol 2017; 35:501-532. [DOI: 10.1146/annurev-immunol-051116-052206] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peter J.M. Openshaw
- Respiratory Infections, National Heart and Lung Institute, Imperial College London, London W2 1PG, United Kingdom
| | - Chris Chiu
- Respiratory Infections, National Heart and Lung Institute, Imperial College London, London W2 1PG, United Kingdom
| | - Fiona J. Culley
- Respiratory Infections, National Heart and Lung Institute, Imperial College London, London W2 1PG, United Kingdom
| | - Cecilia Johansson
- Respiratory Infections, National Heart and Lung Institute, Imperial College London, London W2 1PG, United Kingdom
| |
Collapse
|
49
|
Abstract
Respiratory syncytial virus (RSV) is a common cause of upper respiratory tract infection in children and adults. However, infection with this virus sometimes leads to severe lower respiratory disease and is the major cause of infant hospitalisations in the developed world. Several risk factors such as baby prematurity and congenital heart disease are known to predispose towards severe disease but previously healthy, full-term infants can also develop bronchiolitis and viral pneumonia during RSV infection. The causes of severe disease are not fully understood but may include dysregulation of the immune response to the virus, resulting in excessive recruitment and activation of innate and adaptive immune cells that can cause damage. This review highlights recent discoveries on the balancing act of immune-mediated virus clearance versus immunopathology during RSV infection.
Collapse
Affiliation(s)
- Cecilia Johansson
- Respiratory Infections Section, St Mary's campus, National Heart and Lung Institute, Imperial College London, London, W2 1PG, UK
| |
Collapse
|
50
|
|