1
|
Chen C, Liu X, Li L, Guo M, He Y, Dong Y, Meng H, Yi F. Study of the mechanism by gentiopicroside protects against skin fibroblast glycation damage via the RAGE pathway. Sci Rep 2024; 14:4685. [PMID: 38409584 PMCID: PMC10897486 DOI: 10.1038/s41598-024-55525-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/24/2024] [Indexed: 02/28/2024] Open
Abstract
The occurrence of nonenzymatic glycosylation reactions in skin fibroblasts can lead to severe impairment of skin health. To investigate the protective effects of the major functional ingredient from Gentianaceae, gentiopicroside (GPS) on fibroblasts, network pharmacology was used to analyse the potential pathways and targets underlying the effects of GPS on skin. At the biochemical and cellular levels, we examined the inhibitory effect of GPS on AGEs, the regulation by GPS of key ECM proteins and vimentin, the damage caused by GPS to the mitochondrial membrane potential and the modulation by GPS of inflammatory factors such as matrix metalloproteinases (MMP-2, MMP-9), reactive oxygen species (ROS), and IL-6 via the RAGE/NF-κB pathway. The results showed that GPS can inhibit AGE-induced damage to the dermis via multiple pathways. The results of biochemical and cellular experiments showed that GPS can strongly inhibit AGE production. Conversely, GPS can block AGE-induced oxidative stress and inflammatory responses in skin cells by disrupting AGE-RAGE signalling, maintain the balance of ECM synthesis and catabolism, and alleviate AGE-induced dysfunctions in cellular behaviour. This study provides a theoretical basis for the use of GPS as an AGE inhibitor to improve skin health and alleviate the damage caused by glycosylation, showing its potential application value in the field of skin care.
Collapse
Affiliation(s)
- Chunyu Chen
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China
- The School of Light Industry Science and Technology, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China
| | - Xiaoxing Liu
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China
- The School of Light Industry Science and Technology, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China
| | - Li Li
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China
- The School of Light Industry Science and Technology, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China
| | - Miaomiao Guo
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China
- The School of Light Industry Science and Technology, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China
| | - Yifan He
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China
- The School of Light Industry Science and Technology, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China
| | - Yinmao Dong
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China
- The School of Light Industry Science and Technology, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China
| | - Hong Meng
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China
- The School of Light Industry Science and Technology, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China
| | - Fan Yi
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China.
- The School of Light Industry Science and Technology, Beijing Technology and Business University, No. 11, Fucheng Road, Haidian District, Beijing, 100048, People's Republic of China.
| |
Collapse
|
2
|
Wang KX, Zhao LL, Zheng LT, Meng LB, Jin L, Zhang LJ, Kong FL, Liang F. Accelerated Wound Healing in Diabetic Rat by miRNA-185-5p and Its Anti-Inflammatory Activity. Diabetes Metab Syndr Obes 2023; 16:1657-1667. [PMID: 37309505 PMCID: PMC10257917 DOI: 10.2147/dmso.s409596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/12/2023] [Indexed: 06/14/2023] Open
Abstract
Aim Addressing both inflammation and epithelialization during the treatment of diabetic foot ulcers is an important step, but current treatment options are limited. MiRNA has important prospects in the treatment of diabetic foot refractory wound ulcers. Previous studies have reported that miR-185-5p reduces hepatic glycogen production and fasting blood glucose levels. We herein hypothesized that miR-185-5p might play an important role in the field of diabetic foot wounds. Materials and Methods MiR-185-5p in skin tissue samples from patients with diabetic ulcers and diabetic rats were measured using quantitative real-time PCR (qRT-PCR). The streptozotocin-induced diabetes rat model (male Sprague-Dawley rats) for diabetic wound healing was conducted. The therapeutic potential was observed by subcutaneous injection of miR-185-5p mimic into diabetic rat wounds. The anti-inflammation roles of miR-185-5p on human dermal fibroblast cells were analyzed. Results We found that miR-185-5p is significantly downregulated in diabetic skin (people with DFU and diabetic rats) compared to controls. Further, in vitro upregulation of miR-185-5p decreased the inflammatory factors (IL-6, TNF-α) and intercellular adhesion molecule 1 (ICAM-1) of human skin fibroblasts under advanced glycation end products (AGEs). Meanwhile, the increase of miR-185-5p promoted cell migration. Our results also confirmed that the topical increase of miR-185-5p decreases diabetic wound p-nuclear factor-κB (p-NF-κB), ICAM-1, IL-6, TNF-α, and CD68 expression in diabetic wounds. MiR-185-5p overexpression boosted re-epithelization and expedited wound closure of diabetic rats. Conclusion MiR-185-5p accelerated wound healing of diabetic rats, reepithelization, and inhibited the inflammation of diabetic wounds in the healing process, a potentially new and valid treatment for refractory diabetic foot ulcers.
Collapse
Affiliation(s)
- Kui-Xiang Wang
- Department of Orthopaedics, Xingtai People’s Hospital of Hebei Medical University, Xingtai, Hebei Province, 054000, People’s Republic of China
| | - Li-Li Zhao
- Department of Orthopaedics, Xingtai People’s Hospital of Hebei Medical University, Xingtai, Hebei Province, 054000, People’s Republic of China
| | - Ling-Tao Zheng
- Department of Endocrinology, Xingtai People’s Hospital of Hebei Medical University, Xingtai, Hebei Province, 054000, People’s Republic of China
| | - Li-Bin Meng
- Department of Orthopaedics, Xingtai People’s Hospital of Hebei Medical University, Xingtai, Hebei Province, 054000, People’s Republic of China
| | - Liang Jin
- Department of Hand and Foot Surgery, Xingtai People’s Hospital of Hebei Medical University, Xingtai, Hebei Province, 054000, People’s Republic of China
| | - Long-Jun Zhang
- Department of Plastic and Burn, Xingtai People’s Hospital of Hebei Medical University, Xingtai, Hebei Province, 054000, People’s Republic of China
| | - Fan-Lei Kong
- Department of Orthopaedics, Xingtai People’s Hospital of Hebei Medical University, Xingtai, Hebei Province, 054000, People’s Republic of China
| | - Fang Liang
- Department of Endocrinology, Xingtai People’s Hospital of Hebei Medical University, Xingtai, Hebei Province, 054000, People’s Republic of China
| |
Collapse
|
3
|
Luo Y, Vivaldi Marrero E, Choudhary V, Bollag WB. Phosphatidylglycerol to Treat Chronic Skin Wounds in Diabetes. Pharmaceutics 2023; 15:1497. [PMID: 37242739 PMCID: PMC10222993 DOI: 10.3390/pharmaceutics15051497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
This review proposes the use of dioleoylphosphatidylglycerol (DOPG) to enhance diabetic wound healing. Initially, the characteristics of diabetic wounds are examined, focusing on the epidermis. Hyperglycemia accompanying diabetes results in enhanced inflammation and oxidative stress in part through the generation of advanced glycation end-products (AGEs), in which glucose is conjugated to macromolecules. These AGEs activate inflammatory pathways; oxidative stress results from increased reactive oxygen species generation by mitochondria rendered dysfunctional by hyperglycemia. These factors work together to reduce the ability of keratinocytes to restore epidermal integrity, contributing to chronic diabetic wounds. DOPG has a pro-proliferative action on keratinocytes (through an unclear mechanism) and exerts an anti-inflammatory effect on keratinocytes and the innate immune system by inhibiting the activation of Toll-like receptors. DOPG has also been found to enhance macrophage mitochondrial function. Since these DOPG effects would be expected to counteract the increased oxidative stress (attributable in part to mitochondrial dysfunction), decreased keratinocyte proliferation, and enhanced inflammation that characterize chronic diabetic wounds, DOPG may be useful in stimulating wound healing. To date, efficacious therapies to promote the healing of chronic diabetic wounds are largely lacking; thus, DOPG may be added to the armamentarium of drugs to enhance diabetic wound healing.
Collapse
Affiliation(s)
- Yonghong Luo
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (Y.L.); (E.V.M.); (V.C.)
| | - Edymarie Vivaldi Marrero
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (Y.L.); (E.V.M.); (V.C.)
| | - Vivek Choudhary
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (Y.L.); (E.V.M.); (V.C.)
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904, USA
| | - Wendy B. Bollag
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA; (Y.L.); (E.V.M.); (V.C.)
- Charlie Norwood VA Medical Center, One Freedom Way, Augusta, GA 30904, USA
- Department of Dermatology, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
4
|
Kamiya E, Morita A, Mori A, Sakamoto K, Nakahara T. The process of methylglyoxal-induced retinal capillary endothelial cell degeneration in rats. Microvasc Res 2023; 146:104455. [PMID: 36396077 DOI: 10.1016/j.mvr.2022.104455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022]
Abstract
Methylglyoxal, a highly reactive dicarbonyl compound, is increased and accumulated in patients with diabetic mellitus. Methylglyoxal forms advanced glycation end products (AGE), contributing to the pathogenesis of diabetic complications, including diabetic retinopathy. Recent studies have shown that methylglyoxal induces diabetic retinopathy-like abnormalities in retinal vasculature. In this study, we investigated the processes and mechanisms of methylglyoxal-induced retinal capillary endothelial cell degeneration in rats. Morphological changes in vascular components (endothelial cells, pericytes, and basement membranes) were assessed in the retinas 2, 7, and 14 days after intravitreal injection of methylglyoxal. Intravitreal methylglyoxal injection induced retinal capillary endothelial cell degeneration in a dose- and time-dependent manner. Changes in the shape and distribution of pericytes occurred before the initiation of capillary regression in the retinas of methylglyoxal-injected eyes. The receptor for AGEs (RAGEs) antagonist FPS-ZM1, and the matrix metalloproteinase (MMP) inhibitor GM6001 significantly attenuated methylglyoxal-induced capillary endothelial cell degeneration. FPS-ZM1 failed to prevent pathological changes in pericytes in methylglyoxal-injected eyes. In situ zymography revealed that MMP activity was enhanced at sites of blood vessels with reduced pericyte coverage in methylglyoxal-injected eyes. These results suggest that intravitreal methylglyoxal injection induces pathological changes in pericytes before the initiation of capillary endothelial cell degeneration via an AGE-RAGE-independent pathway. The capillary endothelial cell degeneration is mediated by activating the AGE-RAGE pathway and increasing MMP activity in endothelial cells by impairing pericyte function in the retina.
Collapse
Affiliation(s)
- Erika Kamiya
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Akane Morita
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Asami Mori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Kenji Sakamoto
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
5
|
Zhao Q, Qin J, Kong F, Wang D, Guo Y, Li Y. A novel red-emission fluorescent probe for the detection of cysteine in vitro and in vivo. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Zakharchenko A, Rock CA, Thomas TE, Keeney S, Hall EJ, Takano H, Krieger AM, Ferrari G, Levy RJ. Inhibition of advanced glycation end product formation and serum protein infiltration in bioprosthetic heart valve leaflets: Investigations of anti-glycation agents and anticalcification interactions with ethanol pretreatment. Biomaterials 2022; 289:121782. [PMID: 36099713 PMCID: PMC10015409 DOI: 10.1016/j.biomaterials.2022.121782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022]
Abstract
Bioprosthetic heart valves (BHV) fabricated from heterograft tissue, such as glutaraldehyde pretreated bovine pericardium (BP), are the most frequently used heart valve replacements. BHV durability is limited by structural valve degeneration (SVD), mechanistically associated with calcification, advanced glycation end products (AGE), and serum protein infiltration. We investigated the hypothesis that anti-AGE agents, Aminoguanidine, Pyridoxamine [PYR], and N-Acetylcysteine could mitigate AGE-serum protein SVD mechanisms in vitro and in vivo, and that these agents could mitigate calcification or demonstrate anti-calcification interactions with BP pretreatment with ethanol. In vitro, each of these agents significantly inhibited AGE-serum protein infiltration in BP. However, in 28-day rat subdermal BP implants only orally administered PYR demonstrated significant inhibition of AGE and serum protein uptake. Furthermore, BP PYR preincubation of BP mitigated AGE-serum protein SVD mechanisms in vitro, and demonstrated mitigation of both AGE-serum protein uptake and reduced calcification in vivo in 28-day rat subdermal BP explants. Inhibition of BP calcification as well as inhibition of AGE-serum protein infiltration was observed in 28-day rat subdermal BP explants pretreated with ethanol followed by PYR preincubation. In conclusion, AGE-serum protein and calcification SVD pathophysiology are significantly mitigated by both PYR oral therapy and PYR and ethanol pretreatment of BP.
Collapse
Affiliation(s)
- Andrey Zakharchenko
- The Pediatric Heart Valve Center, Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Christopher A Rock
- The Pediatric Heart Valve Center, Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Tina E Thomas
- The Pediatric Heart Valve Center, Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Samuel Keeney
- The Pediatric Heart Valve Center, Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Emily J Hall
- The Pediatric Heart Valve Center, Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Hajime Takano
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Abba M Krieger
- Department of Statistics, The Wharton School, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Giovanni Ferrari
- Departments of Surgery and Biomedical Engineering, Columbia University, New York, NY, 10032, USA
| | - Robert J Levy
- The Pediatric Heart Valve Center, Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|
7
|
Patient-driven discovery of CCN1 to rescue cutaneous wound healing in diabetes via the intracellular EIF3A/CCN1/ATG7 signaling by nanoparticle-enabled delivery. Biomaterials 2022; 288:121698. [PMID: 36038422 DOI: 10.1016/j.biomaterials.2022.121698] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022]
Abstract
Diabetic ulcers (DUs), a devastating complication of diabetes, are intractable for limited effective interventions in clinic. Based on the clinical samples and bioinformatic analysis, we found lower level of CCN1 in DU individuals. Considering the accelerated proliferation effect in keratinocytes, we propose the therapeutic role of CCN1 supplementation in DU microenvironment. To address the challenge of rapid degradation of CCN1 in protease-rich diabetic healing condition, we fabricated a nanoformulation of CCN1 (CCN1-NP), which protected CCN1 from degradation and significantly raised CCN1 intracellular delivery efficiency to 6.2-fold. The results showed that the intracellular CCN1 exhibited a greater anti-inflammatory and proliferative/migratory activities once the extracellular signal of CCN1 was blocked in vitro. The nanoformulation unveils a new mechanism that CCN1 delivered into cells interacted with Eukaryotic translation initiation factor 3 subunit A (EIF3A) to downregulate autophagy-related 7 (ATG7). Furthermore, topical application of CCN1-NP had profound curative effects on delayed wound healing in diabetes both in vitro and in vivo. Our results illustrate a novel mechanism of intracellular EIF3A/CCN1/ATG7 axis triggered by nanoformulation and the therapeutic potential of CCN1-NP for DU management.
Collapse
|
8
|
Mioc M, Milan A, Malița D, Mioc A, Prodea A, Racoviceanu R, Ghiulai R, Cristea A, Căruntu F, Șoica C. Recent Advances Regarding the Molecular Mechanisms of Triterpenic Acids: A Review (Part I). Int J Mol Sci 2022; 23:ijms23147740. [PMID: 35887090 PMCID: PMC9322890 DOI: 10.3390/ijms23147740] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Triterpenic acids are phytocompounds with a widespread range of biological activities that have been the subject of numerous in vitro and in vivo studies. However, their underlying mechanisms of action in various pathologies are not completely elucidated. The current review aims to summarize the most recent literature, published in the last five years, regarding the mechanism of action of three triterpenic acids (asiatic acid, oleanolic acid, and ursolic acid), corelated with different biological activities such as anticancer, anti-inflammatory, antidiabetic, cardioprotective, neuroprotective, hepatoprotective, and antimicrobial. All three discussed compounds share several mechanisms of action, such as the targeted modulation of the PI3K/AKT, Nrf2, NF-kB, EMT, and JAK/STAT3 signaling pathways, while other mechanisms that proved to only be specific for a part of the triterpenic acids discussed, such as the modulation of Notch, Hippo, and MALAT1/miR-206/PTGS1 signaling pathway, were highlighted as well. This paper stands as the first part in our literature study on the topic, which will be followed by a second part focusing on other triterpenic acids of therapeutic value.
Collapse
Affiliation(s)
- Marius Mioc
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Andreea Milan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Daniel Malița
- Department of Radiology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 300041 Timisoara, Romania
- Correspondence: (D.M.); (A.M.); Tel.: +40-256-494-604 (D.M. & A.M.)
| | - Alexandra Mioc
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
- Department of Anatomy, Physiology, Pathophysiology, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
- Correspondence: (D.M.); (A.M.); Tel.: +40-256-494-604 (D.M. & A.M.)
| | - Alexandra Prodea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Roxana Racoviceanu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Roxana Ghiulai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| | - Andreea Cristea
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
| | - Florina Căruntu
- Department of Medical Semiology II, Faculty of Medicine, “Victor Babeş” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Street, 300041 Timisoara, Romania;
| | - Codruța Șoica
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania; (M.M.); (A.M.); (A.P.); (R.R.); (R.G.); (A.C.); (C.Ș.)
- Research Centre for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Sq., No. 2, 300041 Timisoara, Romania
| |
Collapse
|
9
|
Zhu Q, Liu X, Zhu Q, Liu Z, Yang C, Wu H, Zhang L, Xia X, Wang M, Hao H, Cui Y, Zhang G, Hill MA, Flaker GC, Zhou S, Liu Z. N-Acetylcysteine Enhances the Recovery of Ischemic Limb in Type-2 Diabetic Mice. Antioxidants (Basel) 2022; 11:antiox11061097. [PMID: 35739993 PMCID: PMC9219773 DOI: 10.3390/antiox11061097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/16/2022] Open
Abstract
Critical limb ischemia (CLI) is a severe complication of diabetes mellitus that occurs without effective therapy. Excessive reactive oxygen species (ROS) production and oxidative stress play critical roles in the development of diabetic cardiovascular complications. N-acetylcysteine (NAC) reduces ischemia-induced ROS production. The present study aimed to investigate the effect of NAC on the recovery of ischemic limb in an experimental model of type-2 diabetes. TALLYHO/JngJ diabetic and SWR/J non-diabetic mice were used for developing a CLI model. For NAC treatment, mice received NAC (1 mg/mL) in their drinking water for 24 h before initiating CLI, and continuously for the duration of the experiment. Blood flow, mechanical function, histology, expression of antioxidant enzymes including superoxide dismutase (SOD)-1, SOD-3, glutathione peroxidase (Gpx)-1, catalase, and phosphorylated insulin receptor substrate (IRS)-1, Akt, and eNOS in ischemic limb were evaluated in vivo or ex vivo. Body weight, blood glucose, plasma advanced glycation end-products (AGEs), plasma insulin, insulin resistance index, and plasma TNF-a were also evaluated during the experiment. NAC treatment effectively attenuated ROS production with preserved expressions of SOD-1, Gpx-1, catalase, phosphorylated Akt, and eNOS, and enhanced the recovery of blood flow and function of the diabetic ischemic limb. NAC treatment also significantly decreased the levels of phosphorylated IRS-1 (Ser307) expression and plasma TNF-α in diabetic mice without significant changes in blood glucose and AGEs levels. In conclusion, NAC treatment enhanced the recovery of blood flow and mechanical function in ischemic limbs in T2D mice in association with improved tissue redox/inflammatory status and insulin resistance.
Collapse
Affiliation(s)
- Qiang Zhu
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
- Department of Cardiology, Second Xiangya Hospital, Central South University, Changsha 410011, China;
| | - Xuanyou Liu
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
| | - Qingyi Zhu
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
- Department of Cardiology, Second Xiangya Hospital, Central South University, Changsha 410011, China;
| | - Zehao Liu
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
| | - Chunlin Yang
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
| | - Hao Wu
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
| | - Linfang Zhang
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
| | - Xiujuan Xia
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
| | - Meifang Wang
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
| | - Hong Hao
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
| | - Yuqi Cui
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
| | - Guangsen Zhang
- Institute of Molecular Hematopathy, Second Xiangya Hospital, Central South University, Changsha 410011, China;
| | - Michael A. Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA;
| | - Gregory C. Flaker
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
| | - Shenghua Zhou
- Department of Cardiology, Second Xiangya Hospital, Central South University, Changsha 410011, China;
| | - Zhenguo Liu
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
- Correspondence: ; Tel.: +1-573-884-3278; Fax: +1-573-884-7743
| |
Collapse
|
10
|
Development of Evaluation Methods for Anti-Glycation Activity and Functional Ingredients Contained in Coriander and Fennel Seeds. Processes (Basel) 2022. [DOI: 10.3390/pr10050982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Spices are known to have various physiological functions. We focused on the anti-glycation effects of spices, researched anti-glycation active ingredients in coriander (Coriandrum sativum L.) and fennel (Foeniculum vulgare) seeds, and conducted experiments using human skin-derived fibroblast TIG-110 cells as a model of glycation. We isolated 11 compounds from two spice seeds and found several substances that showed anti-glycation activity. A new compound (5,5′-diallyl-2,2′-diglucopyranosyl-3,3′-dimethoxy diphenyl ether) was isolated from fennel seeds and showed high anti-glycation activity with an IC50 value of 0.08 mM, thereby indicating a high anti-glycosylation activity. In this study, we established a glyoxal (GO)-induced glycation test method for human skin cells, confirmed the anti-glycation effect of spice seeds using this glycation induction model, and found that the exposure of TIG-110 human skin-derived fibroblast cells to GO reduced cell viability. The most stable conditions for cell viability were found to be a GO concentration of 1.25 mM and a culture time of 48 h. We evaluated extracts and isolates of spice seeds using this model as a model test for glycation induction. We conducted qualitative and quantitative analyses of carboxymethyl lysine (CML), a type of AGE, to determine the relationship between cell viability and AGEs. The relationship between cell viability and the amount of CML was correlated. Establishing a glycation induction model test using skin cells makes it possible to quickly screen extracts of natural ingredients in the future. Moreover, the results of this model showed that extracts of two spice seeds and their isolates have high anti-glycation activity, and they are expected to be used as cosmetics, health foods, and pharmaceutical ingredients.
Collapse
|
11
|
Jifar WW, Atnafie SA, Angalaparameswari S. A Review: Matrix Metallopeptidase-9 Nanoparticles Targeted for the Treatment of Diabetic Foot Ulcers. J Multidiscip Healthc 2021; 14:3321-3329. [PMID: 34880623 PMCID: PMC8646228 DOI: 10.2147/jmdh.s343085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetes foot ulcers are a leading cause of death in diabetic individuals. There are very few medicines and treatments that have received regulatory clearance for this indication, and numerous compounds from various pharmacological classes are now in various stages of clinical studies for diabetic foot ulcers treatment. Multiple risk factors contribute to diabetic foot ulcers, including neuropathy, peripheral artery disease, infection, gender, cigarette smoking, and age. The present difficulties in diabetic foot ulcers treatment are related to bacterial resistance to currently utilized antibiotics. Inhibition of the quorum sensing (QS) system and targeting matrix metallopeptidase-9 (MMP-9) are promising. This study focuses on the difficulties of existing treatment, current treatment technique, and novel pharmacological targets for diabetic foot ulcer. The electronic data base search diabetic for literature on foot ulcers treatment was carried out using Science Direct, PubMed, Google-Scholar, Springer Link, Scopus, and Wiley up to 2021. Becaplermin, a medication that targets MMP-9, glyceryl trinitrate, which inhibits the bacterial quorum sensing system, probiotic therapy, and nano technological solutions are just a few of the novel pharmaceuticals being developed for diabetic foot ulcers treatment. A combination of therapies, rather than one particular agent, will be the best option for treatment of Diabetes foot ulcer since it is multifactorial factors that render occurs of diabetic foot ulcer.
Collapse
Affiliation(s)
- Wakuma Wakene Jifar
- Mettu University, College of Health Sciences, Department of Pharmacy, Mettu, Ethiopia
| | - Seyfe Asrade Atnafie
- University of Gondar, College of Medicine and Health Sciences, School of Pharmacy, Department of Pharmacology, Gondar, Ethiopia
| | | |
Collapse
|
12
|
Kostoff RN, Briggs MB, Kanduc D, Shores DR, Kovatsi L, Vardavas AI, Porter AL. Common contributing factors to COVID-19 and inflammatory bowel disease. Toxicol Rep 2021; 8:1616-1637. [PMID: 34485092 PMCID: PMC8406546 DOI: 10.1016/j.toxrep.2021.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/17/2021] [Accepted: 08/28/2021] [Indexed: 12/11/2022] Open
Abstract
The devastating complications of coronavirus disease 2019 (COVID-19) result from an individual's dysfunctional immune response following the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple toxic stressors and behaviors contribute to underlying immune system dysfunction. SARS-CoV-2 exploits the dysfunctional immune system to trigger a chain of events ultimately leading to COVID-19. We have previously identified many contributing factors (CFs) (representing toxic exposure, lifestyle factors and psychosocial stressors) common to myriad chronic diseases. We hypothesized significant overlap between CFs associated with COVID-19 and inflammatory bowel disease (IBD), because of the strong role immune dysfunction plays in each disease. A streamlined dot-product approach was used to identify potential CFs to COVID-19 and IBD. Of the fifty CFs to COVID-19 that were validated for demonstration purposes, approximately half had direct impact on COVID-19 (the CF and COVID-19 were mentioned in the same record; i.e., CF---→COVID-19), and the other half had indirect impact. The nascent character of the COVID-19 core literature (∼ one year old) did not allow sufficient time for the direct impacts of many CFs on COVID-19 to be identified. Therefore, an immune system dysfunction (ID) literature directly related to the COVID-19 core literature was used to augment the COVID-19 core literature and provide the remaining CFs that impacted COVID-19 indirectly (i.e., CF---→immune system dysfunction---→COVID-19). Approximately 13000 potential CFs for myriad diseases (obtained from government and university toxic substance lists) served as the starting point for the dot-product identification process. These phrases were intersected (dot-product) with phrases extracted from a PubMed-derived IBD core literature, a nascent COVID-19 core literature, and the COVID-19-related immune system dysfunction (ID) core literature to identify common ID/COVID-19 and IBD CFs. Approximately 3000 potential CFs common to both ID and IBD, almost 2300 potential CFs common to ID and COVID-19, and over 1900 potential CFs common to IBD and COVID-19 were identified. As proof of concept, we validated fifty of these ∼3000 overlapping ID/IBD candidate CFs with biologic plausibility. We further validated 24 of the fifty as common CFs in the IBD and nascent COVID-19 core literatures. This significant finding demonstrated that the CFs indirectly related to COVID-19 -- identified with use of the immune system dysfunction literature -- are strong candidates to emerge eventually as CFs directly related to COVID-19. As discussed in the main text, many more CFs common to all these core literatures could be identified and validated. ID and IBD share many common risk/contributing factors, including behaviors and toxic exposures that impair immune function. A key component to immune system health is removal of those factors that contribute to immune system dysfunction in the first place. This requires a paradigm shift from traditional Western medicine, which often focuses on treatment, rather than prevention.
Collapse
Affiliation(s)
- Ronald Neil Kostoff
- School of Public Policy, Georgia Institute of Technology, Gainesville, VA, 20155, United States
| | | | - Darja Kanduc
- Dept. of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari, Via Orabona 4, Bari, 70125, Italy
| | - Darla Roye Shores
- Department of Pediatrics, Division of Gastroenterology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21287, United States
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124, Greece
| | - Alexander I. Vardavas
- Laboratory of Toxicology & Forensic Sciences, Faculty of Medicine, University of Crete, Greece
| | - Alan L. Porter
- R&D, Search Technology, Inc., Peachtree Corners, GA, 30092, United States
- School of Public Policy, Georgia Institute of Technology, Atlanta, GA, 30332, United States
| |
Collapse
|
13
|
In Vitro Evaluation of the Toxicological Profile and Oxidative Stress of Relevant Diet-Related Advanced Glycation End Products and Related 1,2-Dicarbonyls. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9912240. [PMID: 34422213 PMCID: PMC8371648 DOI: 10.1155/2021/9912240] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/09/2021] [Accepted: 07/07/2021] [Indexed: 12/28/2022]
Abstract
During food processing and storage, and in tissues and fluids under physiological conditions, the Maillard reaction occurs. During this reaction, reactive 1,2-dicarbonyl compounds arise as intermediates that undergo further reactions to form advanced glycation end products (AGEs). Diet is the primary source of exogenous AGEs. Endogenously formed AGEs have been proposed as a risk factor in the pathogenesis of diet-related diseases such as diabetes, insulin resistance, cardiovascular diseases, or chronic disease. AGEs may differently contribute to the diet-related exacerbation of oxidative stress, inflammation, and protein modifications. Here, to understand the contribution of each compound, we tested individually, for the first time, the effect of five 1,2-dicarbonyl compounds 3-deoxyglucosone (3-DG), 3-deoxygalactosone (3-DGal), 3,4-dideoxyglucosone-3-ene (3,4-DGE), glyoxal (GO), and methylglyoxal (MGO) and four different glycated amino acids N-ε-(carboxyethyl)lysine (CEL), N-ε-(carboxymethyl)lysine (CML), methylglyoxal-derived hydroimidazolone-1 (MG-H1), and pyrraline (Pyrr) in a cell line of human keratinocytes (HaCaT). We found that most of the glycated amino acids, i.e., CEL, CML, and MG-H1, did not show any cytotoxicity. At the same time, 1,2-dicarbonyl compounds 3-DGal, 3,4-DGE, GO, and MGO increased the production of reactive oxygen species and induced cell death. MGO induced cell death by apoptosis, whereas 3-DGal and 3,4-DGE induced nuclear translocation of the proinflammatory NF-κB transcription pathway, and the activation of the pyroptosis-related NLRP3 inflammasome cascade. Overall, these results demonstrate the higher toxic impact of 1,2-dicarbonyl compounds on mucosal epithelial cells when compared to glycated amino acids and the selective activation of intracellular signaling pathways involved in the crosstalk mechanisms linking oxidative stress to excessive inflammation.
Collapse
|
14
|
Prantner D, Nallar S, Richard K, Spiegel D, Collins KD, Vogel SN. Classically activated mouse macrophages produce methylglyoxal that induces a TLR4- and RAGE-independent proinflammatory response. J Leukoc Biol 2021; 109:605-619. [PMID: 32678947 PMCID: PMC7855181 DOI: 10.1002/jlb.3a0520-745rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/05/2023] Open
Abstract
The highly reactive compound methylglyoxal (MG) can cause direct damage to cells and tissues by reacting with cellular macromolecules. MG has been identified as a biomarker associated with increased sepsis-induced mortality. Patients undergoing septic shock have significantly elevated circulating MG levels compared to postoperative patients and healthy controls. Furthermore, MG has been implicated in the development of type II diabetes mellitus and Alzheimer's disease. Because MG is generated during glycolysis, we hypothesized that MG may be produced by classically activated (M1) macrophages, possibly contributing to the inflammatory response. LPS and IFN-γ-treated macrophages acquired an M1 phenotype (as evidenced by M1 markers and enhanced glycolysis) and formed MG adducts, MG-H1, MG-H2, and MG-H3, which were detected using antibodies specific for MG-modified proteins (methylglyoxal 5-hydro-5-methylimidazolones). MG adducts were also increased in the lungs of LPS-treated mice. Macrophages treated with LPS and IFN-γ also exhibited decreased expression of glyoxalase 1 (Glo1), an enzyme that metabolizes MG. Concentrations of exogenous, purified MG > 0.5 mM were toxic to macrophages; however, a nontoxic dose of 0.3 mM induced TNF-α and IL-1β, albeit to a lesser extent than LPS stimulation. Despite prior evidence that MG adducts may signal through "receptor for advanced glycation endproducts" (RAGE), MG-mediated cell death and cytokine induction by exogenous MG was RAGE-independent in primary macrophages. Finally, RAGE-deficient mice did not exhibit a significant survival advantage following lethal LPS injection. Overall, our evidence suggests that MG may be produced by M1 macrophages during sepsis, following IFN-γ-dependent down-regulation of Glo1, contributing to over-exuberant inflammation.
Collapse
Affiliation(s)
- Daniel Prantner
- Dept. of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Shreeram Nallar
- Dept. of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - Katharina Richard
- Dept. of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| | - David Spiegel
- Department of Chemistry, Yale University, New Haven, CT
| | - Kim D. Collins
- Dept. of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
- Institute of Marine and Environmental Technology (IMET), University of Maryland, Baltimore, Baltimore, MD
| | - Stefanie N. Vogel
- Dept. of Microbiology and Immunology, University of Maryland, School of Medicine, Baltimore, MD
| |
Collapse
|
15
|
Notartomaso S, Scarselli P, Mascio G, Liberatore F, Mazzon E, Mammana S, Gugliandolo A, Cruccu G, Bruno V, Nicoletti F, Battaglia G. N-Acetylcysteine causes analgesia in a mouse model of painful diabetic neuropathy. Mol Pain 2021; 16:1744806920904292. [PMID: 32009537 PMCID: PMC6997966 DOI: 10.1177/1744806920904292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
N-Acetylcysteine, one of the most prescribed antioxidant drugs, enhances pain
threshold in rodents and humans by activating mGlu2 metabotropic glutamate
receptors. Here, we assessed the analgesic activity of N-acetylcysteine in the
streptozotocin model of painful diabetic neuropathy and examined the effect of
N-acetylcysteine on proteins that are involved in mechanisms of nociceptive
sensitization. Mice with blood glucose levels ≥250 mg/dl in response to a single
intraperitoneal (i.p.) injection of streptozotocin (200 mg/kg) were used for the
assessment of mechanical pain thresholds. Systemic treatment with
N-acetylcysteine (100 mg/kg, i.p., either single injection or daily injections
for seven days) caused analgesia in diabetic mice. N-acetylcysteine-induced
analgesia was abrogated by the Sxc− inhibitors, sulfasalazine (8 mg/kg, i.p.), erastin (30 mg/kg,
i.p.), and sorafenib (10 mg/kg, i.p.), or by the mGlu2/3 receptor antagonist,
LY341495 (1 mg/kg, i.p.). Repeated administrations of N-acetylcysteine in
diabetic mice reduced ERK1/2 phosphorylation in the dorsal region of the lumbar
spinal cord. The analgesic activity of N-acetylcysteine was occluded by the MEK
inhibitor, PD0325901 (25 mg/kg, i.p.), the TRPV1 channel blocker, capsazepine
(40 mg/kg, i.p.), or by a cocktail of NMDA and mGlu5 metabotropic glutamate
receptor antagonists (memantine, 25 mg/kg, plus MTEP, 5 mg/kg,
both i.p.). These findings offer the first demonstration that N-acetylcysteine
relieves pain associated with diabetic neuropathy and holds promise for the use
of N-acetylcysteine as an add-on drug in diabetic patients.
Collapse
Affiliation(s)
| | - Pamela Scarselli
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | - Giada Mascio
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy
| | | | | | - Santa Mammana
- IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | | | - Giorgio Cruccu
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Valeria Bruno
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Ferdinando Nicoletti
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Giuseppe Battaglia
- IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| |
Collapse
|
16
|
Tan Y, Zou L, Li N, Huang L, Chen M, Li X, Zheng X, Li W, Li Y, Yang CT. Data Analysis-Driven Precise Asthmatic Treatment by Targeting Mast Cells. Endocr Metab Immune Disord Drug Targets 2021; 21:315-323. [PMID: 32520694 DOI: 10.2174/1871530320666200610152922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/23/2020] [Accepted: 05/04/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Although the importance of mast cells in asthma has been studied, mast cellsinduced global changes in lungs are largely unknown. Data-driven identification contributes to discovering significant biomarkers or therapeutic targets, which are the basis of effective clinical medications. OBJECTIVE This study aims to explore the effects of mast cells on gene expression in asthmatic lungs, and to assess the curative effects of inhaled budesonide (BUD). METHODS Pulmonary gene expression in KitWsh mice with or without mast cell engraftment was analyzed with R software. Functional enrichment of Gene Ontology and KEGG was carried out through the DAVID online tool. Hub genes were identified with String and Cytoscape software. RESULTS The array analyses showed that the mast cell engraftment enhanced inflammation/immune response, cytokine/chemokine signal, and monocyte/neutrophil/lymphocyte chemotaxis. Interleukin (IL)-6 was identified to be a significant hub gene with the highest interaction degree. Based on this, the effects of BUD were investigated on the aspects of anti-inflammation. BUD's treatment was found to reduce serum IL-6 content and pulmonary inflammation in ovalbumin-induced asthma rats. The treatment also downregulated beta-tryptase expression both in lung tissues and serum. Morphologically, the accumulation and degranulation of mast cells were significantly suppressed. Notably, the effects of BUD on inflammation and degranulation were comparable with Tranilast (a classic mast cell inhibitor), while a remarkable synergy was not observed. CONCLUSION This study presented a unique pulmonary gene profile induced by mast cell engraftment, which could be reversed through blockage of mast cells or inhaled BUD.
Collapse
Affiliation(s)
- Yupin Tan
- Department of Pediatrics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, China
| | - Lili Zou
- Department of Pediatrics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, China
| | - Na Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Li Huang
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Meiji Chen
- Department of Pediatrics, East Division of The First Affiliated Hospital, Sun Yatsen University, Guangzhou 510700, China
| | - Xuexiang Li
- Department of Cardiology, Laizhou People's Hospital, Laizhou 261400, China
| | - Xue Zheng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| | - Wenkai Li
- Department of Pediatrics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, China
| | - Yun Li
- Department of Pediatrics, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, China
| | - Chun-Tao Yang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Key Laboratory of Protein Modification and Degradation, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
17
|
Liu C, Guo H, Dain JA, Wan Y, Gao XH, Chen HD, Seeram NP, Ma H. Cytoprotective effects of a proprietary red maple leaf extract and its major polyphenol, ginnalin A, against hydrogen peroxide and methylglyoxal induced oxidative stress in human keratinocytes. Food Funct 2020; 11:5105-5114. [PMID: 32356551 PMCID: PMC10902859 DOI: 10.1039/d0fo00359j] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Phytochemicals from functional foods are common ingredients in dietary supplements and cosmetic products for anti-skin aging effects due to their antioxidant activities. A proprietary red maple (Acer rubrum) leaf extract (Maplifa™) and its major phenolic compound, ginnalin A (GA), have been reported to show antioxidant, anti-melanogenesis, and anti-glycation effects but their protective effects against oxidative stress in human skin cells remain unknown. Herein, we investigated the cytoprotective effects of Maplifa™ and GA against hydrogen peroxide (H2O2) and methylglyoxal (MGO)-induced oxidative stress in human keratinocytes (HaCaT cells). H2O2 and MGO (both at 400 μM) induced toxicity in HaCaT cells and reduced their viability to 59.2 and 61.6%, respectively. Treatment of Maplifa™ (50 μg mL-1) and GA (50 μM) increased the viability of H2O2- and MGO-treated cells by 22.0 and 15.5%, respectively. Maplifa™ and GA also showed cytoprotective effects by reducing H2O2-induced apoptosis in HaCaT cells by 8.0 and 7.2%, respectively. The anti-apoptotic effect of Maplifa™ was further supported by the decreased levels of apoptosis associated enzymes including caspases-3/7 and -8 in HaCaT cells by 49.5 and 19.0%, respectively. In addition, Maplifa™ (50 μg mL-1) and GA (50 μM) reduced H2O2- and MGO-induced reactive oxygen species (ROS) by 84.1 and 56.8%, respectively. Furthermore, flow cytometry analysis showed that Maplifa™ and GA reduced MGO-induced total cellular ROS production while increasing mitochondria-derived ROS production in HaCaT cells. The cytoprotective effects of Maplifa™ and GA in human keratinocytes support their potential utilization for cosmetic and/or dermatological applications.
Collapse
Affiliation(s)
- Chang Liu
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| | - Hao Guo
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA. and Department of Dermatology, Key Laboratory of Immunodermatology, No. 1 Hospital of China Medical University, Shenyang 110001, Liaoning, China and Department of Biology, Providence College, Providence, RI 02918, USA
| | - Joel A Dain
- Department of Chemistry, University of Rhode Island, Kingston, RI 02881, USA
| | - Yinsheng Wan
- Department of Biology, Providence College, Providence, RI 02918, USA
| | - Xing-Hua Gao
- Department of Dermatology, Key Laboratory of Immunodermatology, No. 1 Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Hong-Duo Chen
- Department of Dermatology, Key Laboratory of Immunodermatology, No. 1 Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Navindra P Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA. and School of Biotechnology and Health Sciences, Wuyi University, International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, Guangdong, China
| |
Collapse
|
18
|
Sheng J, Liu C, Petrovas S, Wan Y, Chen HD, Seeram NP, Ma H. Phenolic-enriched maple syrup extract protects human keratinocytes against hydrogen peroxide and methylglyoxal induced cytotoxicity. Dermatol Ther 2020; 33:e13426. [PMID: 32301192 PMCID: PMC7880121 DOI: 10.1111/dth.13426] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/17/2020] [Accepted: 04/14/2020] [Indexed: 01/20/2023]
Abstract
Reactive carbonyl species including methylglyoxal (MGO) are oxidation metabolites of glucose and precursors of advanced glycation end products (AGEs). They are important mediators of cellular oxidative stress and exacerbate skin complications. Published data supports that certain phenolic compounds can exert cellular protective effects by their antioxidant activity. A phenolic-enriched maple syrup extract (MSX) was previously reported to show protective effects against AGEs- and MGO-induced cytotoxicity in human colon cells but its skin protective effects remain unknown. The protective effects of MSX were evaluated against hydrogen peroxide (H2 O2 )- and MGO-induced cytotoxicity in human keratinocytes (HaCaT cells). Cellular viability and antioxidant activity were evaluated by the luminescent cell viability CellTiter-Glo assay and the reactive oxygen species (ROS) assay, respectively. A single-cell gel electrophoresis (Comet assay) was used to measure the strand breaks in the DNA of HaCaT cells. MSX (at 50 μg/mL) ameliorated H2 O2 - and MGO-induced cytotoxicity by increasing cell viability by 21.5% and 25.9%, respectively. MSX reduced H2 O2 - and MGO-induced ROS production by 69.4% and 56.6%, respectively. MSX also reduced MGO-induced DNA damage by 47.5%. MSX showed protective effects against H2 O2 - and MGO-induced cytotoxicity in HaCaT cells supporting its potential for dermatological and/or cosmeceutical applications.
Collapse
Affiliation(s)
- Jie Sheng
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, 110001 China
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biology, Providence College, RI 02881, USA
| | - Chang Liu
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Sophia Petrovas
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Yinsheng Wan
- Department of Biology, Providence College, RI 02881, USA
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Hong-Duo Chen
- Department of Dermatology, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Navindra P. Seeram
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
19
|
Lee JH, Subedi L, Kim SY. Effect of Cysteine on Methylglyoxal-Induced Renal Damage in Mesangial Cells. Cells 2020; 9:E234. [PMID: 31963523 PMCID: PMC7016887 DOI: 10.3390/cells9010234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Methylglyoxal (MGO), a highly reactive dicarbonyl compound, is a key precursor of the formation of advanced glycation end products (AGEs). MGO and MGO-AGEs were reportedly increased in patients with diabetic dysfunction, including diabetic nephropathy. The activation of glyoxalase-I (GLO-I) increases MGO and MGO-AGE detoxification. MGO-mediated glucotoxicity can also be ameliorated by MGO scavengers such as N-acetylcysteine (NAC), aminoguanidine (AG), and metformin. In this study, we noted that l-cysteine demonstrated protective effects against MGO-induced glucotoxicity in renal mesangial cells. l-cysteine prevented MGO-induced apoptosis and necrosis, together with a reduction of reactive oxygen species (ROS) production in MES13 cells. Interestingly, l-cysteine significantly reduced MGO-AGE formation and also acted as an MGO-AGE crosslink breaker. Furthermore, l-cysteine treatment accelerated MGO catabolism to D-lactate via the upregulation of GLO-I. The reduction of AGE formation and induction of AGE breakdown, following l-cysteine treatment, further supports the potential use of l-cysteine as an alternative for the therapeutic control of MGO-induced renal complications in diabetes, especially against diabetic nephropathy.
Collapse
Affiliation(s)
- Jae Hyuk Lee
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (J.H.L.); (L.S.)
| | - Lalita Subedi
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (J.H.L.); (L.S.)
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (J.H.L.); (L.S.)
- Gachon Institute of Pharmaceutical Science, Gachon University, #191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea
- Gachon Medical Research Institute, Gil Medical Center, Incheon 21565, Korea
| |
Collapse
|
20
|
Chen YJ, Tang ZZ, Du L, Liu Y, Lu Q, Ma TF, Liu YW. A novel compound AB-38b improves diabetes-associated cognitive decline in mice via activation of Nrf2/ARE pathway. Brain Res Bull 2019; 150:160-167. [DOI: 10.1016/j.brainresbull.2019.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/30/2019] [Accepted: 05/14/2019] [Indexed: 12/14/2022]
|
21
|
Natural Hydrogen Sulfide Donors from Allium sp. as a Nutraceutical Approach in Type 2 Diabetes Prevention and Therapy. Nutrients 2019; 11:nu11071581. [PMID: 31336965 PMCID: PMC6682899 DOI: 10.3390/nu11071581] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/30/2019] [Accepted: 07/10/2019] [Indexed: 12/30/2022] Open
Abstract
Type 2 diabetes mellitus (DM) is a socially relevant chronic disease with high prevalence worldwide. DM may lead to several vascular, macrovascular, and microvascular complications (cerebrovascular, coronary artery, and peripheral arterial diseases, retinopathy, neuropathy, and nephropathy), often accelerating the progression of atherosclerosis. Dietary therapy is generally considered to be the first step in the treatment of diabetic patients. Among the current therapeutic options, such as insulin therapy and hypoglycemic drugs, in recent years, attention has been shifting to the effects and properties-that are still not completely known-of medicinal plants as valid and inexpensive therapeutic supports with limited side effects. In this review, we report the relevant effects of medicinal plants and nutraceuticals in diabetes. In particular, we paid attention to the organosulfur compounds (OSCs) present in plant extracts that due to their antioxidant, hypoglycemic, anti-inflammatory, and immunomodulatory effects, can contribute as cardioprotective agents in type 2 DM. OSCs derived from garlic (Allium sp.), due to their properties, can represent a valuable support to the diet in type 2 DM, as outlined in this manuscript based on both in vitro and in vivo studies. Moreover, a relevant characteristic of garlic OSCs is their ability to produce the gasotransmitter H2S, and many of their effects can be explained by this property. Indeed, in recent years, several studies have demonstrated the relevant effects of endogenous and exogenous H2S in human DM, including by in vitro and in vivo experiments and clinical trials; therefore, here, we summarize the effects and the underlying molecular mechanisms of H2S and natural H2S donors.
Collapse
|
22
|
Jones JI, Nguyen TT, Peng Z, Chang M. Targeting MMP-9 in Diabetic Foot Ulcers. Pharmaceuticals (Basel) 2019; 12:E79. [PMID: 31121851 PMCID: PMC6630664 DOI: 10.3390/ph12020079] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/15/2019] [Accepted: 05/18/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetic foot ulcers (DFUs) are significant complications of diabetes and an unmet medical need. Matrix metalloproteinases (MMPs) play important roles in the pathology of wounds and in the wound healing process. However, because of the challenge in distinguishing active MMPs from the two catalytically inactive forms of MMPs and the clinical failure of broad-spectrum MMP inhibitors in cancer, MMPs have not been a target for treatment of DFUs until recently. This review covers the discovery of active MMP-9 as the biochemical culprit in the recalcitrance of diabetic wounds to healing and targeting this proteinase as a novel approach for the treatment of DFUs. Active MMP-8 and MMP-9 were observed in mouse and human diabetic wounds using a batimastat affinity resin and proteomics. MMP-9 was shown to play a detrimental role in diabetic wound healing, whereas MMP-8 was beneficial. A new class of selective MMP-9 inhibitors shows clinical promise for the treatment of DFUs.
Collapse
Affiliation(s)
- Jeffrey I Jones
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Trung T Nguyen
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Zhihong Peng
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Mayland Chang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
23
|
Yang CT, Chen L, Chen WL, Li N, Chen MJ, Li X, Zheng X, Zhao YZ, Wu YX, Xian M, Liu J. Hydrogen sulfide primes diabetic wound to close through inhibition of NETosis. Mol Cell Endocrinol 2019; 480:74-82. [PMID: 30339820 DOI: 10.1016/j.mce.2018.10.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/02/2018] [Accepted: 10/15/2018] [Indexed: 01/13/2023]
Abstract
Diabetes-induced neutrophil NETosis impairs wound healing through neutrophil extracellular traps (NETs). Reactive oxygen species (ROS)-triggered activation of mitogen-activated protein kinase (MAPK) ERK1/2 and p38 is involved in NETosis. Hydrogen sulfide (H2S), an endogenous signaling molecule, accelerates diabetic wound healing (DWH), and inhibits ROS production, ERK1/2 and p38 activation, while its level is decreased in diabetes. However, it remains unknown whether H2S could accelerate DWH through inhibition of NETosis, and whether this inhibitory effect was associated with blockage of ROS-induced ERK1/2 and p38 activation. In order to solve these problems, serum NETs content was measured in diabetic foot patients and healthy individuals. Wound was created in dorsal skin of LepRdb/db and control mice and NETs content in wound tissues was tested. An in vitro NETosis model was induced by phorbol 12-myristate 13-acetate (PMA) in isolated neutrophils. Effects of H2S in form of Na2S on skin wound healing and NETosis were investigated both in vivo and in vitro. It was found that NETs level was highly increased in diabetic foot patients. Comparing with LepRm+/db mice, DWH was delayed in LepRdb/db mice, accompanied with high NETs level. In PMA-induced NETosis model, peptidylarginine deiminase (PAD)-4 and citrullinated histone H3, as well as NETs components dsDNA framework, myeloperoxidase and neutrophil elastase, were significantly increased. PMA-induced neutrophil NETosis and NETs formation were abolished by treatment with H2S. The delayed DWH of diabetic mice was partially restored by intraperitoneal injection of H2S, meanwhile, the highly expressed NETosis and NETs release were also down-regulated. The treatment with H2S not only attenuated ROS production but also abolished MAPK ERK1/2 and p38 activation. Like the effects of H2S, inhibition of MAPK ERK1/2 or p38 could decrease NETs release. These findings suggests that H2S attenuates NETosis and primes diabetic wound to heal through blockage of ROS-mediated MAPK ERK1/2 and p38 activation.
Collapse
Affiliation(s)
- Chun-Tao Yang
- Affiliated Cancer Hospital & Institute, Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Li Chen
- Affiliated Cancer Hospital & Institute, Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wan-Ling Chen
- Department of Endocrinology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Na Li
- Affiliated Cancer Hospital & Institute, Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Mei-Ji Chen
- Department of Pediatrics, Eastern Hospital of the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510700, China
| | - Xiang Li
- Affiliated Cancer Hospital & Institute, Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xue Zheng
- Affiliated Cancer Hospital & Institute, Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yue-Ze Zhao
- Affiliated Cancer Hospital & Institute, Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yi-Xing Wu
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 511447, China
| | - Ming Xian
- Key Laboratory of Molecular Clinical Pharmacology, School of Pharmaceutics Science, Guangzhou Medical University, Guangzhou, 511436, China; Department of Chemistry, Washington State University, Pullman, WA, 99164, United States
| | - Jinbao Liu
- Affiliated Cancer Hospital & Institute, Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
24
|
Antognelli C, Talesa VN. Glyoxalases in Urological Malignancies. Int J Mol Sci 2018; 19:ijms19020415. [PMID: 29385039 PMCID: PMC5855637 DOI: 10.3390/ijms19020415] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 12/16/2022] Open
Abstract
Urological cancers include a spectrum of malignancies affecting organs of the reproductive and/or urinary systems, such as prostate, kidney, bladder, and testis. Despite improved primary prevention, detection and treatment, urological cancers are still characterized by an increasing incidence and mortality worldwide. While advances have been made towards understanding the molecular bases of these diseases, a complete understanding of the pathological mechanisms remains an unmet research goal that is essential for defining safer pharmacological therapies and prognostic factors, especially for the metastatic stage of these malignancies for which no effective therapies are currently being used. Glyoxalases, consisting of glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2), are enzymes that catalyze the glutathione-dependent metabolism of cytotoxic methylglyoxal (MG), thus protecting against cellular damage and apoptosis. They are generally overexpressed in numerous cancers as a survival strategy by providing a safeguard through enhancement of MG detoxification. Increasing evidence suggests that glyoxalases, especially Glo1, play an important role in the initiation and progression of urological malignancies. In this review, we highlight the critical role of glyoxalases as regulators of tumorigenesis in the prostate through modulation of various critical signaling pathways, and provide an overview of the current knowledge on glyoxalases in bladder, kidney and testis cancers. We also discuss the promise and challenges for Glo1 inhibitors as future anti-prostate cancer (PCa) therapeutics and the potential of glyoxalases as biomarkers for PCa diagnosis.
Collapse
Affiliation(s)
- Cinzia Antognelli
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy.
| | | |
Collapse
|
25
|
Yang CT, Chen L, Xu S, Day JJ, Li X, Xian M. Recent Development of Hydrogen Sulfide Releasing/Stimulating Reagents and Their Potential Applications in Cancer and Glycometabolic Disorders. Front Pharmacol 2017; 8:664. [PMID: 29018341 PMCID: PMC5623001 DOI: 10.3389/fphar.2017.00664] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/06/2017] [Indexed: 12/24/2022] Open
Abstract
As an important endogenous gaseous signaling molecule, hydrogen sulfide (H2S) exerts various effects in the body. A variety of pathological changes, such as cancer, glycometabolic disorders, and diabetes, are associated with altered endogenous levels of H2S, especially decreased. Therefore, the supplement of H2S is of great significance for the treatment of diseases containing the above pathological changes. At present, many efforts have been made to increase the in vivo levels of H2S by administration of gaseous H2S, simple inorganic sulfide salts, sophisticated synthetic slow-releasing controllable H2S donors or materials, and using H2S stimulating agents. In this article, we reviewed the recent development of H2S releasing/stimulating reagents and their potential applications in two common pathological processes including cancer and glycometabolic disorders.
Collapse
Affiliation(s)
- Chun-Tao Yang
- Affiliated Cancer Hospital and Institute, Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.,Department of Chemistry, Washington State University, Pullman, WA, United States
| | - Li Chen
- Affiliated Cancer Hospital and Institute, Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shi Xu
- Department of Chemistry, Washington State University, Pullman, WA, United States
| | - Jacob J Day
- Department of Chemistry, Washington State University, Pullman, WA, United States
| | - Xiang Li
- Affiliated Cancer Hospital and Institute, Key Laboratory of Protein Modification and Degradation in School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, WA, United States
| |
Collapse
|
26
|
Amino Carbonylation of Epidermal Basement Membrane Inhibits Epidermal Cell Function and Is Suppressed by Methylparaben. COSMETICS 2017. [DOI: 10.3390/cosmetics4040038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|