1
|
Li S, Hao L, Yu F, Li N, Deng J, Zhang J, Xiong S, Hu X. Capsaicin: a spicy way in liver disease. Front Pharmacol 2024; 15:1451084. [PMID: 39281271 PMCID: PMC11392895 DOI: 10.3389/fphar.2024.1451084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/22/2024] [Indexed: 09/18/2024] Open
Abstract
The incidence of liver disease continues to rise, encompassing a spectrum from simple steatosis or non-alcoholic fatty liver disease (NAFLD) to non-alcoholic steatohepatitis (NASH), cirrhosis and liver cancer. Dietary habits in individuals with liver disease may significantly impact the treatment and prevention of these conditions. This article examines the role of chili peppers, a common dietary component, in this context, focusing on capsaicin, the active ingredient in chili peppers. Capsaicin is an agonist of the transient receptor potential vanilloid subfamily 1 (TRPV1) and has been shown to exert protective effects on liver diseases, including liver injury, NAFLD, liver fibrosis and liver cancer. These protective effects are attributed to capsaicin's anti-oxidant, anti-inflammatory, anti-steatosis and anti-fibrosis effects. This article reviewed the different molecular mechanisms of the protective effect of capsaicin on liver diseases.
Collapse
Affiliation(s)
- Shenghao Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liyuan Hao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Yu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Na Li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiali Deng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Junli Zhang
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, China
| | - Shuai Xiong
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoyu Hu
- Department of Infectious Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
You D, Sun D, Zhao Z, Song M, Pan L, Wu Y, Tang Y, Lu M, Shao F, Shen S, Bai J, Yi H, Zhang R, Wei Y, Ma H, Xu H, Yu C, Lv J, Pei P, Yang L, Chen Y, Chen Z, Shen H, Chen F, Zhao Y, Li L. Spicy food consumption and risk of vascular disease: Evidence from a large-scale Chinese prospective cohort of 0.5 million people. Chin Med J (Engl) 2024:00029330-990000000-01150. [PMID: 39030074 DOI: 10.1097/cm9.0000000000003177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Spicy food consumption has been reported to be inversely associated with mortality from multiple diseases. However, the effect of spicy food intake on the incidence of vascular diseases in the Chinese population remains unclear. This study was conducted to explore this association. METHODS This study was performed using the large-scale China Kadoorie Biobank (CKB) prospective cohort of 486,335 participants. The primary outcomes were vascular disease, ischemic heart disease (IHD), major coronary events (MCEs), cerebrovascular disease, stroke, and non-stroke cerebrovascular disease. A Cox proportional hazards regression model was used to assess the association between spicy food consumption and incident vascular diseases. Subgroup analysis was also performed to evaluate the heterogeneity of the association between spicy food consumption and the risk of vascular disease stratified by several basic characteristics. In addition, the joint effects of spicy food consumption and the healthy lifestyle score on the risk of vascular disease were also evaluated, and sensitivity analyses were performed to assess the reliability of the association results. RESULTS During a median follow-up time of 12.1 years, a total of 136,125 patients with vascular disease, 46,689 patients with IHD, 10,097 patients with MCEs, 80,114 patients with cerebrovascular disease, 56,726 patients with stroke, and 40,098 patients with non-stroke cerebrovascular disease were identified. Participants who consumed spicy food 1-2 days/week (hazard ratio [HR] = 0.95, 95% confidence interval [95% CI] = [0.93, 0.97], P <0.001), 3-5 days/week (HR = 0.96, 95% CI = [0.94, 0.99], P = 0.003), and 6-7 days/week (HR = 0.97, 95% CI = [0.95, 0.99], P = 0.002) had a significantly lower risk of vascular disease than those who consumed spicy food less than once a week (Ptrend <0.001), especially in those who were younger and living in rural areas. Notably, the disease-based subgroup analysis indicated that the inverse associations remained in IHD (Ptrend = 0.011) and MCEs (Ptrend = 0.002) risk. Intriguingly, there was an interaction effect between spicy food consumption and the healthy lifestyle score on the risk of IHD (Pinteraction = 0.037). CONCLUSIONS Our findings support an inverse association between spicy food consumption and vascular disease in the Chinese population, which may provide additional dietary guidance for the prevention of vascular diseases.
Collapse
Affiliation(s)
- Dongfang You
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing 100191, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing 100191, China
| | - Ziyu Zhao
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Mingyu Song
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China
| | - Lulu Pan
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yaqian Wu
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yingdan Tang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Mengyi Lu
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Fang Shao
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Sipeng Shen
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Jianling Bai
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Honggang Yi
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Ruyang Zhang
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- China International Cooperation Center for Environment and Human Health, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- The Center of Biomedical Big Data and the Laboratory of Biomedical Big Data, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yongyue Wei
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China
| | - Hongxia Ma
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Hongyang Xu
- Department of Critical Care Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing 100191, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing 100191, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing 100191, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing 100191, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Pei Pei
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing 100191, China
| | - Ling Yang
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford OX3 7LF, United Kingdom
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, United Kingdom
| | - Yiping Chen
- Medical Research Council Population Health Research Unit at the University of Oxford, Oxford OX3 7LF, United Kingdom
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, United Kingdom
| | - Zhengming Chen
- Clinical Trial Service Unit & Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, United Kingdom
| | - Hongbing Shen
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Feng Chen
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- China International Cooperation Center for Environment and Human Health, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- The Center of Biomedical Big Data and the Laboratory of Biomedical Big Data, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Yang Zhao
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- China International Cooperation Center for Environment and Human Health, Center for Global Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- The Center of Biomedical Big Data and the Laboratory of Biomedical Big Data, Nanjing Medical University, Nanjing, Jiangsu 211166, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing 100191, China
- Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing 100191, China
- Key Laboratory of Epidemiology of Major Diseases, Ministry of Education, Peking University, Beijing 100191, China
| |
Collapse
|
3
|
Tahvilian R, Golesorkhi MA, Parhoudeh F, Heydarpour F, Hosseini H, Baghshahi H, Akbari H, Memarzadeh MR, Mehran M, Bagheri H. The Effect of the Combination of Ginseng, Tribulus Terrestris, and L-arginine on the Sexual Performance of Men with Erectile Dysfunction: a randomized, double-blind, parallel, and placebo-controlled clinical trial. J Pharmacopuncture 2024; 27:82-90. [PMID: 38948316 PMCID: PMC11194517 DOI: 10.3831/kpi.2024.27.2.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/21/2023] [Accepted: 04/22/2024] [Indexed: 07/02/2024] Open
Abstract
Objectives Nitric oxide is the most important mediator of penile erection after the onset of sexual excitement. It activates cyclic guanosine monophosphate (cGMP), increasing penile blood flow. Most pharmaceutical medications prevent enzyme phosphodiesterase type 5 (PDE-5) from breaking down cGMP, thus keeping its level high. However, due to the adverse effects of pharmacological therapies, herbal drugs that improve sexual function have gained attention recently. This study aimed to investigate the combined effects of ginseng, Tribulus terrestris, and L-arginine amino acid on the sexual performance of individuals with erectile dysfunction (ED) using the 5-item version of the International Index of Erectile Function (IIEF-5) questionnaire. Methods Over three months, 98 men with erectile dysfunction were randomly assigned to receive either 500 mg of herbal supplements or placebo pills. Each herbal tablet contained 100 mg of protodioscin, 35 mg of ginsenosides, and 250 mg of L-arginine. Results The results showed that the changes in the average scores of ILEF-5 within each group before and after the intervention indicated that all parameters related to the improvement of sexual function in patients with erectile dysfunction improved in the herbal treatment group (p < 0.001). The herbal group significantly improved IIEF-5 scores in non-diabetics (p < 0.05). However, there was no significant difference in the changes of IIEF-5 scores between the two intervention and control groups in diabetic patients. Conclusion In conclusion, ginseng, Tribulus terrestris, and L-arginine have properties that increase energy and strengthen sexual function, making them suitable for patients with sexual disorders.
Collapse
Affiliation(s)
- Reza Tahvilian
- School of Pharmacy, Pharmaceutical Sciences Research Center, Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Farajollah Parhoudeh
- School of Medicine Imam Reza Hospital Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Heydarpour
- School of Health, Medical Biology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | | | - Hossein Akbari
- Social Determinants of Health (SDH) Research Center, Department of Biostatistics and Epidemiology, School of Public Health, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Mehdi Mehran
- Barij Essence Medicinal Plants Research Center, Kashan, Iran
| | - Hosna Bagheri
- Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
4
|
Zeng M, Hodges JK, Pokala A, Khalafi M, Sasaki GY, Pierson J, Cao S, Brock G, Yu Z, Zhu J, Vodovotz Y, Bruno RS. A green tea extract confection decreases circulating endotoxin and fasting glucose by improving gut barrier function but without affecting systemic inflammation: A double-blind, placebo-controlled randomized trial in healthy adults and adults with metabolic syndrome. Nutr Res 2024; 124:94-110. [PMID: 38430822 DOI: 10.1016/j.nutres.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/11/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Anti-inflammatory activities of catechin-rich green tea extract (GTE) in obese rodents protect against metabolic endotoxemia by decreasing intestinal permeability and absorption of gut-derived endotoxin. However, translation to human health has not been established. We hypothesized that GTE would reduce endotoxemia by decreasing gut permeability and intestinal and systemic inflammation in persons with metabolic syndrome (MetS) compared with healthy persons. A randomized, double-blind, placebo-controlled, crossover trial in healthy adults (n = 19, 34 ± 2 years) and adults with MetS (n = 21, 40 ± 3 years) examined 4-week administration of a decaffeinated GTE confection (890 mg/d total catechins) on serum endotoxin, intestinal permeability, gut and systemic inflammation, and cardiometabolic parameters. Compared with the placebo, the GTE confection decreased serum endotoxin (P = .023) in both healthy persons and those with MetS, while increasing concentrations of circulating catechins (P < .0001) and γ-valerolactones (P = .0001). Fecal calprotectin (P = .029) and myeloperoxidase (P = .048) concentrations were decreased by GTE regardless of health status. Following the ingestion of gut permeability probes, urinary lactose/mannitol (P = .043) but not sucralose/erythritol (P > .05) was decreased by GTE regardless of health status. No between-treatment differences (P > .05) were observed for plasma aminotransferases, blood pressure, plasma lipids, or body mass nor were plasma tumor necrosis factor-α, interleukin-6, or the ratio of lipopolysaccharide-binding protein/soluble cluster of differentiation-14 affected. However, fasting glucose in both study groups was decreased (P = .029) by the GTE confection compared with within-treatment arm baseline concentrations. These findings demonstrate that catechin-rich GTE is effective to decrease circulating endotoxin and improve glycemic control in healthy adults and those with MetS, likely by reducing gut inflammation and small intestinal permeability but without affecting systemic inflammation.
Collapse
Affiliation(s)
- Min Zeng
- Human Nutrition Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Joanna K Hodges
- Human Nutrition Program, The Ohio State University, Columbus, OH, 43210, USA; Department of Nutritional Sciences, The Pennsylvania State University, State College, PA, 16801, USA
| | - Avinash Pokala
- Human Nutrition Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Mona Khalafi
- Human Nutrition Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Geoffrey Y Sasaki
- Human Nutrition Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Jillian Pierson
- Human Nutrition Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Sisi Cao
- Human Nutrition Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Guy Brock
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Jiangjiang Zhu
- Human Nutrition Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Yael Vodovotz
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, 43210, USA
| | - Richard S Bruno
- Human Nutrition Program, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
5
|
Zhang W, Zhang Q, Wang L, Zhou Q, Wang P, Qing Y, Sun C. The effects of capsaicin intake on weight loss among overweight and obese subjects: a systematic review and meta-analysis of randomised controlled trials. Br J Nutr 2023; 130:1645-1656. [PMID: 36938807 DOI: 10.1017/s0007114523000697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Animal studies have shown that capsaicin plays a positive role in weight management. However, the results in human research are controversial. Therefore, the present systematic review and meta-analysis aimed to evaluate the effect of capsaicin on weight loss in adults. We searched PubMed, Embase, China Biomedical Literature Database (CBM), Cochrane library and clinical registration centre, identifying all randomised controlled trials (RCT) published in English and Chinese to 3 May 2022. A random-effect model was used to calculate the weighted mean difference (WMD) and 95 % CI. Heterogeneity between studies was assessed by the Cochran Q statistic and I-squared tests (I 2 ). Statistical analyses were performed using STATA version 15.1. P-values < 0·05 were considered as statistically significant. From 2377 retrieved studies, fifteen studies were finally included in the meta-analyses. Fifteen RCT with 762 individuals were included in our meta-analysis. Compared with the control group, the supplementation of capsaicin resulted in significant reduction on BMI (WMD: -0·25 kg/m2, 95 % CI = -0·35, -0·15 kg/m2, P < 0·05), body weight (BW) (WMD: -0·51 kg, 95 % CI = -0·86, -0·15 kg, P < 0·05) and waist circumference (WC) (WMD: -1·12 cm, 95 % CI = -2·00, -0·24 cm, P < 0·05). We found no detrimental effect of capsaicin on waist-to-hip ratio (WMD: -0·05, 95 % CI = -0·17, 0·06, P > 0·05). The current meta-analysis suggests that capsaicin supplementation may have rather modest effects in reducing BMI, BW and WC for overweight or obese individuals.
Collapse
Affiliation(s)
- Wensen Zhang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Road, High-Tech Development Zone of States, Zhengzhou450001, People's Republic of China
| | - Qiang Zhang
- School of Nursing and Health, Zhengzhou University, 101 Kexue Road, High-Tech Development Zone of States, Zhengzhou450001, People's Republic of China
| | - Lianke Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Road, High-Tech Development Zone of States, Zhengzhou450001, People's Republic of China
| | - Qianyu Zhou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Road, High-Tech Development Zone of States, Zhengzhou450001, People's Republic of China
| | - Panpan Wang
- School of Nursing and Health, Zhengzhou University, 101 Kexue Road, High-Tech Development Zone of States, Zhengzhou450001, People's Republic of China
| | - Ying Qing
- School of Nursing and Health, Zhengzhou University, 101 Kexue Road, High-Tech Development Zone of States, Zhengzhou450001, People's Republic of China
| | - Changqing Sun
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Road, High-Tech Development Zone of States, Zhengzhou450001, People's Republic of China
- School of Nursing and Health, Zhengzhou University, 101 Kexue Road, High-Tech Development Zone of States, Zhengzhou450001, People's Republic of China
| |
Collapse
|
6
|
Zhang Y, Bian Z, Lu H, Wang L, Xu J, Wang C. Association between tea consumption and glucose metabolism and insulin secretion in the Shanghai High-risk Diabetic Screen (SHiDS) study. BMJ Open Diabetes Res Care 2023; 11:11/2/e003266. [PMID: 36931660 PMCID: PMC10030497 DOI: 10.1136/bmjdrc-2022-003266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
INTRODUCTION The relationship between tea consumption and glucose metabolism remains controversial. This study investigated the associations of tea consumption with impaired glucose regulation, insulin secretion and sensitivity in Shanghai High-risk Diabetic Screen project. RESEARCH DESIGN AND METHODS A total of 2337 Chinese subjects were enrolled in the study from 2014 to 2019. Each participant conducted a 75 g oral glucose tolerance test (OGTT) with five-point glucose and insulin level examined. They also completed a nurse-administered standard questionnaire including tea, coffee, and alcohol consumption, smoking habit, physical activity, education, sleep quality, etc. RESULTS: The result showed that tea consumption was positively associated with plasma glucose levels during OGTT after adjusting for confounder (Ps <0.05) and was associated with worsening glucose tolerance (OR 1.21, 95% CI 1.01-1.44; p=0.034). Strong tea consumption or long-term tea intake (>10 years) had an increased risk of glucose intolerance (all p<0.05). These associations did not vary in participants drinking green tea. In addition, insulin secretion indexes were decreased 7.0%-13.0% in tea consumption group. Logistic regression analysis showed that tea consumption was independently associated with lower insulin secretion (homeostasis model assessment of β-cell function (HOMA-β) (OR 0.81, 95% CI 0.68-0.97; p=0.021); Stumvoll first-phase index (OR 0.81, 95% CI 0.68-0.97; p=0.020)) in a fully adjusted model. Green tea consumption showed a negative association with insulin secretion (HOMA-β (OR 0.77, 95% CI 0.62-0.96; p=0.019)). CONCLUSIONS Tea intake is associated with an increased risk of glucose intolerance in a large high-risk diabetic Chinese population. Habitual tea consumption subjects might have lower pancreatic β-cell function.
Collapse
Affiliation(s)
- Yinan Zhang
- The Metabolic Disease Biobank, Shanghai Key Laboratory of Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhouliang Bian
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huijuan Lu
- The Metabolic Disease Biobank, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lili Wang
- Department of Endocrinology and Metabolism, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jinfang Xu
- Department of Health Statistics, Second Military Medical University, Shanghai, China
| | - Congrong Wang
- Department of Endocrinology and Metabolism, Shanghai Fourth People's Hospital, school of medicine, Tongji University, Shanghai, China
| |
Collapse
|
7
|
Catalfamo LM, Marrone G, Basilicata M, Vivarini I, Paolino V, Della-Morte D, De Ponte FS, Di Daniele F, Quattrone D, De Rinaldis D, Bollero P, Di Daniele N, Noce A. The Utility of Capsicum annuum L. in Internal Medicine and In Dentistry: A Comprehensive Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11187. [PMID: 36141454 PMCID: PMC9517535 DOI: 10.3390/ijerph191811187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 06/16/2023]
Abstract
Capsaicin is a chili peppers extract, genus Capsicum, commonly used as a food spice. Since ancient times, Capsaicin has been used as a "homeopathic remedy" for treating a wild range of pathological conditions but without any scientific knowledge about its action. Several studies have demonstrated its potentiality in cardiovascular, nephrological, nutritional, and other medical fields. Capsaicin exerts its actions thanks to the bond with transient receptor potential vanilloid subtype 1 (TRPV1). TRPV1 is a nociceptive receptor, and its activation starts with a neurosensitive impulse, responsible for a burning pain sensation. However, constant local application of Capsaicin desensitized neuronal cells and leads to relief from neuropathic pain. In this review, we analyze the potential adjuvant role of Capsaicin in the treatment of different pathological conditions either in internal medicine or dentistry. Moreover, we present our experience in five patients affected by oro-facial pain consequent to post-traumatic trigeminal neuropathy, not responsive to any remedy, and successfully treated with topical application of Capsaicin. The topical application of Capsaicin is safe, effective, and quite tolerated by patients. For these reasons, in addition to the already-proven beneficial actions in the internal field, it represents a promising method for the treatment of neuropathic oral diseases.
Collapse
Affiliation(s)
- Luciano Maria Catalfamo
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University Hospital of Messina, 98100 Messina, Italy
| | - Giulia Marrone
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Michele Basilicata
- UOSD Special Care Dentistry, Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, 00100 Rome, Italy
| | - Ilaria Vivarini
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Vincenza Paolino
- UOSD Special Care Dentistry, Department of Systems Medicine, University of Rome Tor Vergata, 00100 Rome, Italy
| | - David Della-Morte
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, 00166 Rome, Italy
- Department of Neurology, Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Francesco Saverio De Ponte
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University Hospital of Messina, 98100 Messina, Italy
| | - Francesca Di Daniele
- School of Applied Medical, Surgical Sciences, University of Rome Tor Vergata, 00133 Rome, Italy
- UOSD of Dermatology, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Domenico Quattrone
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University Hospital of Messina, 98100 Messina, Italy
| | - Danilo De Rinaldis
- Department of Biomedical and Dental Sciences, Morphological and Functional Images, University Hospital of Messina, 98100 Messina, Italy
| | - Patrizio Bollero
- UOSD Special Care Dentistry, Department of Systems Medicine, University of Rome Tor Vergata, 00100 Rome, Italy
| | - Nicola Di Daniele
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Annalisa Noce
- UOC of Internal Medicine-Center of Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
8
|
Zhou C, Hu L, Mu R, Mei X, Wu X, Wang C, Zhou X. Compound green tea (CGT) regulates lipid metabolism in high-fat diet induced mice. RSC Adv 2022; 12:24301-24310. [PMID: 36128535 PMCID: PMC9412714 DOI: 10.1039/d2ra02831j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
This work aims to study the effect of compound green tea (CGT) on liver lipid metabolism in mice based on metabolomics of liquid chromatography-mass spectrometry (LC-MS), and preliminarily identify potential biomarkers and pathways of action by using a metabonomic network database to explore the lipid-lowering effect of CGT. In this study, forty mice were randomly divided into four groups: compound tea treatment group (DH), high-fat model control group (NK), normal control group (CK) and positive drug group (YK). After a month of different interventions, the mice were weighed and the blood lipid indexes were detected. In addition, differential liver metabolites were monitored by using LC-MS. The results showed that CGT and positive drug treatment were able to decrease body weight, liver coefficient, TC, TG and LDL levels of obese mice, while increasing HDL levels. Among the 110 compounds obtained, 54 metabolites were significantly altered in the four comparisons. More importantly, 15 remarkably downregulated metabolites involved in Lysopc 16:1, Lysopc 18:1, and Lysopc 18:2 were found in the DH group when the mice were treated with CGT; meanwhile, the positive drug Xuezhikang was able to significantly downregulate 14 compounds, including (±)18-HEPE, and 6 keto-PGF1α, compared with the NK group. Besides, KEGG enrichment analysis also revealed the important metabolic pathways, such as linoleic acid metabolism, Biosynthesis of unsaturated fatty acids, and α-linolenic acid metabolism, were related to fatty acid metabolism. These results suggested that CGT could regulate the lipid metabolism in the liver of hyperlipidemia mice, and may regulate 54 potential biomarkers in mice through a related metabolic pathway to make them return to a normal state and improve the disorder of lipid metabolism.
Collapse
Affiliation(s)
- Caibi Zhou
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities 5 Jianjiang Avenue Middle Section Duyun Guizhou 558000 China
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Liuhong Hu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities 5 Jianjiang Avenue Middle Section Duyun Guizhou 558000 China
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Ren Mu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities 5 Jianjiang Avenue Middle Section Duyun Guizhou 558000 China
| | - Xin Mei
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities 5 Jianjiang Avenue Middle Section Duyun Guizhou 558000 China
| | - Xingli Wu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities 5 Jianjiang Avenue Middle Section Duyun Guizhou 558000 China
| | - Chuanming Wang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine Guizhou 550000 China
| | - Xiaolu Zhou
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities 5 Jianjiang Avenue Middle Section Duyun Guizhou 558000 China
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| |
Collapse
|
9
|
Bovine alpha-lactalbumin particulates for controlled delivery: Impact of dietary fibers on stability, digestibility, and gastro-intestinal release of capsaicin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Nonivamide induces brown fat-like characteristics in porcine subcutaneous adipocytes. Biochem Biophys Res Commun 2022; 619:68-75. [PMID: 35738067 DOI: 10.1016/j.bbrc.2022.06.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022]
Abstract
Obesity, which is associated with type 2 diabetes, is a threat to human health. There are studies, which suggest that some compounds can induce browning of white adipocytes to combat obesity. In this study, we selected nonivamide, an analog of capsaicin, to detect whether it influenced the browning of porcine white adipocytes. First, we found 25 μM nonivamide promoted apoptosis of porcine subcutaneous pre-adipocytes. After pre-adipocytes differentiation, nonivamide inhibited adipogenesis by reducing the expressions of Pparγ, Cebpα, while it promoted lipolysis by up-regulating Hsl, Atgl. Nonivamide also induced browning of porcine subcutaneous adipocytes by up-regulating the expression of brown and beige adipocyte gene markers, such as Prdm16, Cidea, and Slc27a1. Additionally, thermogenesis gene markers Cpt1a and Cpt1b were significantly up-regulated by nonivamide. Furthermore, nonivamide promoted mitochondrial biogenesis by up-regulating the expression of Tfam, Nrf1, Nrf2, and Tomm20. In conclusion, nonivamide is a potent compound to induce porcine adipocyte browning for treating obesity.
Collapse
|
11
|
Saha K, Sarkar D, Khan U, Karmakar BC, Paul S, Mukhopadhyay AK, Dutta S, Bhattacharya S. Capsaicin Inhibits Inflammation and Gastric Damage during H pylori Infection by Targeting NF-kB–miRNA Axis. Pathogens 2022; 11:pathogens11060641. [PMID: 35745495 PMCID: PMC9227394 DOI: 10.3390/pathogens11060641] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/26/2022] Open
Abstract
Helicobacter pylori (H. pylori) infection is considered as one of the strongest risk factors for gastric disorders. Infection triggers several host pathways to elicit inflammation, which further proceeds towards gastric complications. The NF-kB pathway plays a central role in the upregulation of the pro-inflammatory cytokines during infection. It also regulates the transcriptional network of several inflammatory cytokine genes. Hence, targeting NF-kB could be an important strategy to reduce pathogenesis. Moreover, treatment of H. pylori needs attention as current therapeutics lack efficacy due to antibiotic resistance, highlighting the need for alternative therapeutic approaches. In this study, we investigated the effects of capsaicin, a known NF-kB inhibitor in reducing inflammation and gastric complications during H. pylori infection. We observed that capsaicin reduced NF-kB activation and upregulation of cytokine genes in an in vivo mice model. Moreover, it affected NF-kB–miRNA interplay to repress inflammation and gastric damages. Capsaicin reduced the expression level of mir21 and mir223 along with the pro-inflammatory cytokines. The repression of miRNA further affected downstream targets such as e-cadherin and Akt. Our data represent the first evidence that treatment with capsaicin inhibits inflammation and induces antimicrobial activity during H. pylori infection. This alternative approach might open a new avenue in treating H. pylori infection, thus reducing gastric problems.
Collapse
Affiliation(s)
- Kalyani Saha
- Department of Biochemistry, National Institute of Cholera and Enteric Diseases, Indian Council of Medical Research (ICMR-NICED), P-33, CIT Rd, Subhas Sarobar Park, Phool Bagan, Beleghata, Kolkata 700010, India; (K.S.); (D.S.); (U.K.)
| | - Deotima Sarkar
- Department of Biochemistry, National Institute of Cholera and Enteric Diseases, Indian Council of Medical Research (ICMR-NICED), P-33, CIT Rd, Subhas Sarobar Park, Phool Bagan, Beleghata, Kolkata 700010, India; (K.S.); (D.S.); (U.K.)
| | - Uzma Khan
- Department of Biochemistry, National Institute of Cholera and Enteric Diseases, Indian Council of Medical Research (ICMR-NICED), P-33, CIT Rd, Subhas Sarobar Park, Phool Bagan, Beleghata, Kolkata 700010, India; (K.S.); (D.S.); (U.K.)
| | - Bipul Chandra Karmakar
- Department of Microbiology, National Institute of Cholera and Enteric Diseases (ICMR-NICED), Indian Council of Medical Research, P-33, CIT Rd, Subhas Sarobar Park, Phool Bagan, Beleghata, Kolkata 700010, India; (B.C.K.); (S.P.); (A.K.M.)
| | - Sangita Paul
- Department of Microbiology, National Institute of Cholera and Enteric Diseases (ICMR-NICED), Indian Council of Medical Research, P-33, CIT Rd, Subhas Sarobar Park, Phool Bagan, Beleghata, Kolkata 700010, India; (B.C.K.); (S.P.); (A.K.M.)
| | - Asish K. Mukhopadhyay
- Department of Microbiology, National Institute of Cholera and Enteric Diseases (ICMR-NICED), Indian Council of Medical Research, P-33, CIT Rd, Subhas Sarobar Park, Phool Bagan, Beleghata, Kolkata 700010, India; (B.C.K.); (S.P.); (A.K.M.)
| | - Shanta Dutta
- Department of Bacteriology, National Institute of Cholera and Enteric Diseases, Indian Council of Medical Research (ICMR-NICED), P-33, CIT Rd, Subhas Sarobar Park, Phool Bagan, Beleghata, Kolkata 700010, India;
| | - Sushmita Bhattacharya
- Department of Biochemistry, National Institute of Cholera and Enteric Diseases, Indian Council of Medical Research (ICMR-NICED), P-33, CIT Rd, Subhas Sarobar Park, Phool Bagan, Beleghata, Kolkata 700010, India; (K.S.); (D.S.); (U.K.)
- Correspondence: ; Tel.: +91-97179-96740
| |
Collapse
|
12
|
Jiang Z, Qu H, Lin G, Shi D, Chen K, Gao Z. Lipid-Lowering Efficacy of the Capsaicin in Patients With Metabolic Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front Nutr 2022; 9:812294. [PMID: 35299764 PMCID: PMC8923259 DOI: 10.3389/fnut.2022.812294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/31/2022] [Indexed: 12/28/2022] Open
Abstract
Background Patients with metabolic syndrome (MetS) have increased cardiovascular risk. Capsaicin (CAP) has been shown to reduce lipids, but efficacy for patients with MetS is unknown. Methods A systematic review was performed according to PRISMA guidelines, to compare the effects of CAP against a placebo. Differences in the weight mean difference (WMD) with 95% confidence intervals (95% CI) were then pooled using a random effects model. Results Nine randomized controlled trials including 461 patients were identified in the overall analysis. CAP significantly decreased total cholesterol (TC) (WMD = −0.48, 95% CI: −0.63 to −0.34, I2= 0.00%) and low-density lipoprotein cholesterol (LDL-C) (WMD = −0.23, 95% CI: −0.45 to −0.02, I2 = 68.27%) among patients with MetS. No significant effects of CAP were found on triglycerides (TG) or high-density lipoprotein cholesterol (HDL-C) (WMD = −0.40, 95% CI: −1.50 to 0.71, I2 = 98.32%; WMD = −0.08, 95% CI: −0.21 to 0.04, I2 = 86.06%). Subgroup analyses indicated that sex and intervention period were sources of heterogeneity. The results revealed that CAP decreased TG levels in women (WMD = −0.59, 95% CI: −1.07 to −0.10) and intervention period <12 weeks (WMD = −0.65; 95% CI: −1.10 to −0.20). And there was no potential publication bias according to funnel plot, Begg' test and Egger regression test. Conclusions CAP supplementation is a promising approach to decreasing TC and LCL-C levels in patients with MetS. However, short-term (<12 weeks) use of CAP in women may also reduce TG levels. Systematic Review Registration Identifier: CRD42021228032.
Collapse
Affiliation(s)
- Zhonghui Jiang
- Department of Cardiology, China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Hua Qu
- Department of Cardiology, China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Gongyu Lin
- Department of Cardiology, China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Dazhuo Shi
- Department of Cardiology, China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Keji Chen
- Department of Cardiology, China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
- *Correspondence: Keji Chen
| | - Zhuye Gao
- Department of Cardiology, China Academy of Chinese Medical Sciences, Xiyuan Hospital, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
- Zhuye Gao
| |
Collapse
|
13
|
Atas U, Erin N, Tazegul G, Elpek GO, Yıldırım B. Distribution of transient receptor potential vanilloid-1 channels in gastrointestinal tract of patients with morbid obesity. World J Clin Cases 2022; 10:79-90. [PMID: 35071508 PMCID: PMC8727248 DOI: 10.12998/wjcc.v10.i1.79] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/25/2021] [Accepted: 11/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Transient receptor potential vanilloid-1 (TRPV1), a nonselective cation channel, is activated by capsaicin, a pungent ingredient of hot pepper. Previous studies have suggested a link between obesity and capsaicin-associated pathways, and activation of TRPV1 may provide an alternative approach for obesity treatment. However, data on the TRPV1 distribution in human gastric mucosa are limited, and the degree of TRPV1 distribution in the gastric and duodenal mucosal cells of obese people in comparison with normal-weight individuals is unknown.
AIM To clarify gastric and duodenal mucosal expression of TRPV1 in humans and compare TRPV1 expression in obese and healthy individuals.
METHODS Forty-six patients with a body mass index (BMI) of > 40 kg/m2 and 20 patients with a BMI between 18-25 kg/m2 were included. Simultaneous biopsies from the fundus, antrum, and duodenum tissues were obtained from subjects between the ages of 18 and 65 who underwent esophagogastroduodenoscopy. Age, sex, history of alcohol and cigarette consumption, and past medical history regarding chronic diseases and medications were accessed from patient charts and were analyzed accordingly. Evaluation with anti-TRPV1 antibody was performed separately according to cell types in the fundus, antrum, and duodenum tissues using an immunoreactivity score. Data were analyzed using SPSS 17.0.
RESULTS TRPV1 expression was higher in the stomach than in the duodenum and was predominantly found in parietal and chief cells of the fundus and mucous and foveolar cells of the antrum. Unlike foveolar cells in the antrum, TRPV1 was relatively low in foveolar cells in the fundus (4.92 ± 0.49 vs 0.48 ± 0.16, P < 0.01, Mann-Whitney U test). Additionally, the mucous cells in the duodenum also had low levels of TRPV1 compared to mucous cells in the antrum (1.33 ± 0.31 vs 2.95 ± 0.46, P < 0.01, Mann-Whitney U test). TRPV1 expression levels of different cell types in the fundus, antrum, and duodenum tissues of the morbidly obese group were similar to those of the control group. Staining with TRPV1 in fundus chief cells and antrum and duodenum mucous cells was higher in patients aged ≥ 45 years than in patients < 45 years (3.03 ± 0.42, 4.37 ± 0.76, 2.28 ± 0.55 vs 1.9 ± 0.46, 1.58 ± 0.44, 0.37 ± 0.18, P = 0.03, P < 0.01, P < 0.01, respectively, Mann-Whitney U test). The mean staining levels of TRPV1 in duodenal mucous cells in patients with diabetes and hypertension were higher than those in patients without diabetes and hypertension (diabetes: 2.11 ± 0.67 vs 1.02 ± 0.34, P = 0.04; hypertension: 2.42 ± 0.75 vs 1.02 ± 0.33, P < 0.01 Mann-Whitney U test).
CONCLUSION The expression of TRPV1 is unchanged in the gastroduodenal mucosa of morbidly obese patients demonstrating that drugs targeting TRPV1 may be effective in these patients.
Collapse
Affiliation(s)
- Unal Atas
- Department of Internal Medicine, Akdeniz University Medical School, Antalya 07070, Turkey
| | - Nuray Erin
- Department of Pharmacology, Akdeniz University Medical School, Antalya 07070, Turkey
| | - Gokhan Tazegul
- Department of Internal Medicine, Akdeniz University Medical School, Antalya 07070, Turkey
| | - Gulsum Ozlem Elpek
- Department of Pathology, Akdeniz University Medical School, Antalya 07070, Turkey
| | - Bülent Yıldırım
- Department of Gastroenterology, Akdeniz University Medical School, Antalya 07070, Turkey
| |
Collapse
|
14
|
Han HS, Chung KS, Shin YK, Yu JS, Kang SH, Lee SH, Lee KT. Effect of Standardized Hydrangea serrata (Thunb.) Ser. Leaves Extract on Body Weight and Body Fat Reduction in Overweight or Obese Humans: A Randomized Double-Blind Placebo-Controlled Study. Nutrients 2022; 14:nu14010208. [PMID: 35011083 PMCID: PMC8747274 DOI: 10.3390/nu14010208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/27/2021] [Accepted: 12/31/2021] [Indexed: 02/01/2023] Open
Abstract
Obesity is a major health problem that is caused by body fat accumulation and that can lead to metabolic diseases. Owing to several side effects of the currently used antiobesity drugs, natural plants have risen as safe and potential candidates to alleviate obesity. We have previously reported the antiobesity effect of Hydrangea serrata (Thunb.) Ser. leaves extract (WHS) and its underlying mechanisms. As an extension of our preclinical studies, this study aimed to investigate the effect of WHS on body weight and body fat reduction in overweight or obese humans. A total of 93 healthy overweight or obese males and females, aged 19–65 years, with body mass indexes (BMIs) ≥ 25 and <32 kg/m2, were recruited and received either an oral administration of 600 mg of WHS, or placebo tablets for 12 weeks. Daily supplementation with WHS decreased body weights, body fat masses, and BMIs compared with the placebo-treated group. The hip circumferences, visceral fat areas, abdominal fat areas, and visceral-to-subcutaneous ratios decreased after WHS supplementation. No significant side effects were observed during or after the 12 weeks of WHS intake. In conclusion, WHS, which has beneficial effects on body weight and body fat reduction, could be a promising antiobesity supplement that does not produce any side effects.
Collapse
Affiliation(s)
- Hee-Soo Han
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (H.-S.H.); (K.-S.C.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (H.-S.H.); (K.-S.C.)
| | - Yu-Kyong Shin
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Korea; (Y.-K.S.); (J.-S.Y.)
| | - Jae-Sik Yu
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Korea; (Y.-K.S.); (J.-S.Y.)
| | - Seung-Hyun Kang
- Clinical Research Center of H PLUS Yangji Hospital, Sillim-dong, Gwanak-gu, Seoul 08779, Korea;
| | - Sun-Hee Lee
- Department of New Material Development, COSMAXBIO, Seongnam 13486, Korea; (Y.-K.S.); (J.-S.Y.)
- Correspondence: (S.-H.L.); (K.-T.L.); Tel.: +82-31-8018-0390 (S.-H.L.); +82-2-961-0860 (K.-T.L.)
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Korea; (H.-S.H.); (K.-S.C.)
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (S.-H.L.); (K.-T.L.); Tel.: +82-31-8018-0390 (S.-H.L.); +82-2-961-0860 (K.-T.L.)
| |
Collapse
|
15
|
Liang W, Lan Y, Chen C, Song M, Xiao J, Huang Q, Cao Y, Ho CT, Lu M. Modulating effects of capsaicin on glucose homeostasis and the underlying mechanism. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34657531 DOI: 10.1080/10408398.2021.1991883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Abnormal glucose homeostasis is linked to a variety of metabolic syndromes, such as insulin resistance, obesity, type-2 diabetes mellitus, hypertension and cardiovascular diseases. Maintenance of normal glucose homeostasis is important for the body to keep normal biological functions. As the major bioactive ingredient in chili peppers responsible for the pungent flavor, capsaicin has been reported to effectively improve glucose homeostasis with low cytotoxicity. In this review, the modulating effects of capsaicin on glucose homeostasis in cell models, animal models and human trials are summarized through both TRPV1 dependent and TRPV1 independent pathways. The relevant molecular mechanisms underlying its regulatory effects are also evaluated. Understanding the effects and mechanisms of capsaicin on glucose metabolism could provide theoretical evidence for its application in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Wanxia Liang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Chengyu Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
16
|
Wu M, Gani H, Viney S, Ho P, Orfila C. Effect of ginger‐enriched pasta on acceptability and satiety. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Mengyao Wu
- School of Food Science and Nutrition University of Leeds Woodhouse Lane Leeds West Yorkshire LS2 9JT UK
| | - Hanis Gani
- School of Food Science and Nutrition University of Leeds Woodhouse Lane Leeds West Yorkshire LS2 9JT UK
- Faculty of Bioresources and Food Industry Universiti Sultan Zainal Abidin Besut 22000Terengganu Malaysia
| | - Sara Viney
- School of Food Science and Nutrition University of Leeds Woodhouse Lane Leeds West Yorkshire LS2 9JT UK
| | - Peter Ho
- School of Food Science and Nutrition University of Leeds Woodhouse Lane Leeds West Yorkshire LS2 9JT UK
| | - Caroline Orfila
- School of Food Science and Nutrition University of Leeds Woodhouse Lane Leeds West Yorkshire LS2 9JT UK
| |
Collapse
|
17
|
Shang A, Li J, Zhou DD, Gan RY, Li HB. Molecular mechanisms underlying health benefits of tea compounds. Free Radic Biol Med 2021; 172:181-200. [PMID: 34118386 DOI: 10.1016/j.freeradbiomed.2021.06.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/06/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022]
Abstract
Tea is one of the three most widely consumed beverages in the world, not only because of its unique flavor but also due to its various health benefits. The bioactive components in tea, such as polyphenols, polysaccharides, polypeptides, pigments, and alkaloids, are the main contributors to its health functions. Based on epidemiological surveys, the consumption of tea and its compounds in daily life has positive effects on cardiovascular diseases, cancers, hepatopathy, obesity, and diabetes mellitus. In experimental studies, the antioxidant, anti-inflammatory, anti-cancer, anti-obesity, cardiovascular protective, liver protective, and hypoglycemic activities of tea and the related mechanisms of action have been widely investigated. The regulation of several classical signaling pathways, such as nuclear factor-κB (NF-κB), AMP activated protein kinase (AMPK), and wingless/integrated (Wnt) signaling, is involved. Clinical trials have also demonstrated the potential of tea products to be applied as dietary supplements and natural medicines. In this paper, we reviewed and discussed the recent literature on the health benefits of tea and its compounds, and specifically explored the molecular mechanisms involved.
Collapse
Affiliation(s)
- Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Jiahui Li
- School of Science, The Hong Kong University of Science and Technology, Hong Kong 999077, China.
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| |
Collapse
|
18
|
Elmas C, Gezer C. Capsaicin and Its Effects on Body Weight. J Am Coll Nutr 2021; 41:831-839. [PMID: 34383610 DOI: 10.1080/07315724.2021.1962771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Capsaicin is a bioactive compound found in the fruits (i.e., peppers) of the plant genus Capsicum, which is widely used in many cultures. Besides many health effects of this compound, it can also be effective in body weight control through various mechanisms such as regulating lipolysis in adipocytes, increasing the feeling of satiety, stimulating energy expenditure, and reducing energy intake. This study investigated capsaicin and its effects on body weight control. In clinical studies, the amount of capsaicin affecting body weight loss differ. Longitudinal and randomized controlled studies are needed to explain the effects of capsaicin on body weight control.Key teaching points• Capsaicin can decrease hunger through hormones in the gastrointestinal tract.• Capsaicin can increase energy expenditure through brown adipose tissue.• Capsaicin can increase lipolysis in white adipose tissue.• More comprehensive studies are needed to clarify this issue.
Collapse
Affiliation(s)
- Cemre Elmas
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Eastern Mediterranean University, Famagusta, Turkey
| | - Ceren Gezer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Eastern Mediterranean University, Famagusta, Turkey
| |
Collapse
|
19
|
Arora C, Malhotra A, Ranjan P, Kumar A. Designing and Conducting Randomized Controlled Trials: Basic Concepts for Educating Early Researchers in the Field of Clinical Nutrition. Cureus 2021; 13:e17036. [PMID: 34522515 PMCID: PMC8425776 DOI: 10.7759/cureus.17036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2021] [Indexed: 11/05/2022] Open
Abstract
Randomized controlled trials (RCTs) provide the best quality evidence to steer patient care in the field of clinical nutrition. However, designing and conducting an RCT, analyzing data, interpreting and reporting its findings is rather complex for young researchers working in the field of clinical nutrition. This review article attempts to educate early researchers by offering a simple step by step guide on planning the key aspects (randomization, allocation concealment, blinding, outcome measures) of a trial, and highlighting the practical considerations (ethical clearance, trial registry, patient recruitment, trial monitoring) to be kept in mind while conducting a trial contextualised to clinical nutrition settings.
Collapse
Affiliation(s)
- Charu Arora
- Food and Nutrition, University of Delhi, New Delhi, IND
| | - Anita Malhotra
- Food and Nutrition, Lakshmibai College, University of Delhi, New Delhi, IND
| | - Piyush Ranjan
- Medicine, All India Institute of Medical Sciences, New Delhi, IND
| | - Akshay Kumar
- Internal Medicine, All India Institute of Medical Sciences, New Delhi, IND
| |
Collapse
|
20
|
Kelava L, Nemeth D, Hegyi P, Keringer P, Kovacs DK, Balasko M, Solymar M, Pakai E, Rumbus Z, Garami A. Dietary supplementation of transient receptor potential vanilloid-1 channel agonists reduces serum total cholesterol level: a meta-analysis of controlled human trials. Crit Rev Food Sci Nutr 2021; 62:7025-7035. [PMID: 33840333 DOI: 10.1080/10408398.2021.1910138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abnormal cholesterol level is a major risk factor in the development of atherosclerosis, which is a fundamental derangement in cardiovascular diseases. Any efforts should be undertaken to lower blood cholesterol levels. Among dietary interventions, capsaicinoid supplementation is also considered as a novel cholesterol-lowering approach, but human studies concluded contradictory results about its effectiveness. The present meta-analysis aimed at determining the effects of capsaicinoids on serum lipid profile in humans. We searched the PubMed, EMBASE, and CENTRAL databases from inception to February 2021. We included 10 controlled studies, which involved 398 participants. We found that dietary capsaicinoid supplementation alone or in combination with other substances significantly (p = 0.004 and 0.001, respectively) reduced serum total cholesterol level compared to controls with an overall standardized mean difference of -0.52 (95% confidence interval: -0.83, -0.21). Capsaicinoids also decreased low-density lipoprotein level significantly (p = 0.035), whereas no effect was observed on serum levels of high-density lipoprotein and triglycerides. Our findings provide novel quantitative evidence for the efficacy of dietary capsaicin supplementation in lowering serum total cholesterol and low-density lipoprotein levels in humans. To validate our conclusion, further randomized controlled trials in a diverse population of adult humans receiving dietary capsaicinoid supplementation are warranted.
Collapse
Affiliation(s)
- Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - David Nemeth
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Peter Hegyi
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary.,Szentagothai Research Centre, University of Pecs, Pecs, Hungary.,Department of Translational Medicine, First Department of Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Patrik Keringer
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Dora K Kovacs
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Marta Balasko
- Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Margit Solymar
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Eszter Pakai
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Zoltan Rumbus
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| | - Andras Garami
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pecs, Pecs, Hungary
| |
Collapse
|
21
|
Effect of Acute and Chronic Dietary Supplementation with Green Tea Catechins on Resting Metabolic Rate, Energy Expenditure and Respiratory Quotient: A Systematic Review. Nutrients 2021; 13:nu13020644. [PMID: 33671139 PMCID: PMC7922336 DOI: 10.3390/nu13020644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 11/25/2022] Open
Abstract
The consumption of green tea catechins (GTC) is associated with modulations of fat metabolism and consequent weight loss. The aim of this systematic review was to investigate the effect of GTC on resting metabolic rate (RMR), energy expenditure (EE), and respiratory quotient (RQ). Eligible studies considered both the chronic and acute intake of GTC-based supplements, with epigallocatechin gallate (EGCG) doses ranging between 100–800 mg. Findings from 15 studies (n = 499 participants) lasting 8–12 weeks (for chronic consumption) or 1–3 days (for acute intake) are summarized. This review reveals the positive effects of GTC supplementation on RQ values (272 subjects). Regarding the effects of acute and chronic GTC supplementation on RMR (244 subjects) and EE (255 subjects), the results did not allow for a definitive conclusion, even though they were promising, because some reported a positive improvement (two studies revealed an increase in RMR: one demonstrated an RMR increase of 43.82 kcal/day and another demonstrated an increase of 260.8 kcal/day, mainly when subjects were also engaged in resistance training exercise). Considering GTC daily dose supplementation, studies in which modifications of energetic parameters occurred, in particular RQ reduction, considered GTC low doses (100–300 mg). GTC may be useful for improving metabolic profiles. Further investigations are needed to better define adequate doses of supplementation.
Collapse
|
22
|
Green tea extract for mild-to-moderate diabetic peripheral neuropathy A randomized controlled trial. Complement Ther Clin Pract 2021; 43:101317. [PMID: 33517103 DOI: 10.1016/j.ctcp.2021.101317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIM This randomized study aimed to evaluate the effect of green tea extract (GTE) intake on clinical and neurophysiological parameters in patients with mild-to-moderate diabetic peripheral neuropathy (DPN). PATIENTS AND METHODS The present study included 194 patients with DPN. Patients were randomized into two treatment arms: GTE (n = 96) and placebo (n = 98) arms who received allocated treatment for 16 weeks. Symptoms of DPN were assessed using Toronto Clinical Scoring System (TCSS). Sensorineural pain was assessed using visual analog scale (VAS). Neural dysfunction was evaluated using the vibration perception thresholds (VPT). Assessments were made at baseline and after 4, 8, and 16 weeks of starting treatment. RESULTS At baseline and after 4 weeks of treatment, VAS, TCSS and VPT were comparable in the studied groups. However, after 8 weeks of treatment, patients in GTE group expressed lower VAS scores, significantly lower TCSS scores and significantly lower VPT. As treatment continued, the differences between groups regarding the outcome parameters became more evident at 16 weeks. CONCLUSIONS GTE intake may have a beneficial value in treatment of DPN.
Collapse
|
23
|
Maunder A, Bessell E, Lauche R, Adams J, Sainsbury A, Fuller NR. Effectiveness of herbal medicines for weight loss: A systematic review and meta-analysis of randomized controlled trials. Diabetes Obes Metab 2020; 22:891-903. [PMID: 31984610 DOI: 10.1111/dom.13973] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/13/2020] [Accepted: 01/19/2020] [Indexed: 01/09/2023]
Abstract
AIM To update the available evidence on the efficacy and safety of complementary medicines to assist in weight loss by conducting a systematic review and meta-analysis of herbal medicines for weight loss. METHODS Four electronic databases (Medline, Embase, CINAHL and Web of Science) were searched from inception until August 2018. A total of 54 randomized placebo-controlled trials of healthy overweight or obese adults were identified. Meta-analyses were conducted for herbal medicines with ≥4 studies available. Weight differences of ≥2.5 kg were considered clinically significant. RESULTS As a single agent, only Phaseolus vulgaris resulted in a statistically significant weight loss compared to placebo, although this was not considered clinically significant. No effect was seen for Camellia sinensis or Garcinia cambogia. Statistically, but not clinically, significant differences were observed for combination preparations containing C. sinensis, P. vulgaris or Ephedra sinica. Of the herbal medicines trialled in ≤3 randomized controlled trials, statistically and clinically significant weight loss compared to placebo was reported for Irvingia gabonensis, Cissus quadrangularis, and Sphaeranthus indicus combined with Garcinia mangostana, among others, but these findings should be interpreted cautiously because of the small number of studies, generally poor methodological quality, and poor reporting of the herbal medicine interventions. Most herbal medicines appeared safe for consumption over the short duration of the studies (commonly ≤12 weeks). Some warrant further investigation to determine effect size, dosage and long-term safety. CONCLUSION There is currently insufficient evidence to recommend any of the herbal medicines for weight loss included in the present review.
Collapse
Affiliation(s)
- Alison Maunder
- University of Sydney, Boden Collaboration for Obesity, Nutrition, Exercise and Eating Disorders, Central Clinical School, Charles Perkins Centre, New South Wales, Australia
| | - Erica Bessell
- University of Sydney, Boden Collaboration for Obesity, Nutrition, Exercise and Eating Disorders, Central Clinical School, Charles Perkins Centre, New South Wales, Australia
| | - Romy Lauche
- University of Technology Sydney, Australian Research Centre in Complementary and Integrative Medicine (ARCCIM), NSW, Australia
- Department of Internal and Integrative Medicine, Sozialstiftung Bamberg, Germany
| | - Jon Adams
- University of Technology Sydney, Australian Research Centre in Complementary and Integrative Medicine (ARCCIM), NSW, Australia
| | - Amanda Sainsbury
- University of Sydney, Boden Collaboration for Obesity, Nutrition, Exercise and Eating Disorders, Central Clinical School, Charles Perkins Centre, New South Wales, Australia
| | - Nicholas R Fuller
- University of Sydney, Boden Collaboration for Obesity, Nutrition, Exercise and Eating Disorders, Central Clinical School, Charles Perkins Centre, New South Wales, Australia
| |
Collapse
|
24
|
Li R, Lan Y, Chen C, Cao Y, Huang Q, Ho CT, Lu M. Anti-obesity effects of capsaicin and the underlying mechanisms: a review. Food Funct 2020; 11:7356-7370. [DOI: 10.1039/d0fo01467b] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mechanisms of anti-obesity effects of capsaicin in cell models, rodent models and human subjects were reviewed.
Collapse
Affiliation(s)
- Run Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Science
- South China Agricultural University
- Guangzhou 510642
- China
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Science
- South China Agricultural University
- Guangzhou 510642
- China
| | - Chengyu Chen
- College of Natural Resources and Environment
- South China Agricultural University
- Guangzhou 510642
- China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Science
- South China Agricultural University
- Guangzhou 510642
- China
| | - Qingrong Huang
- Department of Food Science
- Rutgers University
- New Brunswick
- USA
| | - Chi-Tang Ho
- Department of Food Science
- Rutgers University
- New Brunswick
- USA
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods
- College of Food Science
- South China Agricultural University
- Guangzhou 510642
- China
| |
Collapse
|
25
|
Tang GY, Meng X, Gan RY, Zhao CN, Liu Q, Feng YB, Li S, Wei XL, Atanasov AG, Corke H, Li HB. Health Functions and Related Molecular Mechanisms of Tea Components: An Update Review. Int J Mol Sci 2019; 20:E6196. [PMID: 31817990 PMCID: PMC6941079 DOI: 10.3390/ijms20246196] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
Tea is widely consumed all over the world. Generally, tea is divided into six categories: White, green, yellow, oolong, black, and dark teas, based on the fermentation degree. Tea contains abundant phytochemicals, such as polyphenols, pigments, polysaccharides, alkaloids, free amino acids, and saponins. However, the bioavailability of tea phytochemicals is relatively low. Thus, some novel technologies like nanotechnology have been developed to improve the bioavailability of tea bioactive components and consequently enhance the bioactivity. So far, many studies have demonstrated that tea shows various health functions, such as antioxidant, anti-inflammatory, immuno-regulatory, anticancer, cardiovascular-protective, anti-diabetic, anti-obesity, and hepato-protective effects. Moreover, it is also considered that drinking tea is safe to humans, since reports about the severe adverse effects of tea consumption are rare. In order to provide a better understanding of tea and its health potential, this review summarizes and discusses recent literature on the bioactive components, bioavailability, health functions, and safety issues of tea, with special attention paid to the related molecular mechanisms of tea health functions.
Collapse
Affiliation(s)
- Guo-Yi Tang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Cai-Ning Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Qing Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| | - Yi-Bin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, No. 10 Sassoon Road, Pokfulam, Hong Kong 999077, China; (Y.-B.F.); (S.L.)
| | - Xin-Lin Wei
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
| | - Atanas G. Atanasov
- The Institute of Genetics and Animal Breeding, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland;
| | - Harold Corke
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (X.-L.W.); (H.C.)
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; (G.-Y.T.); (X.M.); (C.-N.Z.); (Q.L.)
| |
Collapse
|
26
|
Role of Gut Microbiota in the Pharmacological Effects of Natural Products. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2682748. [PMID: 31118952 PMCID: PMC6500626 DOI: 10.1155/2019/2682748] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/31/2019] [Accepted: 04/09/2019] [Indexed: 02/08/2023]
Abstract
Increasing evidence has demonstrated that natural products derived from traditional Chinese medicine, such as ginseng, berberine, and curcumin, possess a wide variety of biological activities on gut microbiota, which may cause changes in the composition of intestinal microbiota, microbial metabolites, intestinal tight junction structure, and mucosal immunology. These changes will eventually result in the exertion of the pharmacological effects by treatment with these natural products. In this review, we will discuss how gut microbiota is influenced by commonly used natural products. Furthermore, our findings are expected to provide novel insight into how these untargeted natural products function via gut microbiota.
Collapse
|
27
|
Venkatakrishnan K, Chiu HF, Wang CK. Extensive review of popular functional foods and nutraceuticals against obesity and its related complications with a special focus on randomized clinical trials. Food Funct 2019; 10:2313-2329. [DOI: 10.1039/c9fo00293f] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Weight management (anti-obesity) by popular functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Kamesh Venkatakrishnan
- School of Nutrition
- Chung Shan Medical University
- Taichung City-40201
- Taiwan
- Republic of China
| | - Hui-Fang Chiu
- Department of Chinese Medicine
- Taichung Hospital Ministry of Health and Welfare
- Taichung-40301
- Taiwan
- Republic of China
| | - Chin-Kun Wang
- School of Nutrition
- Chung Shan Medical University
- Taichung City-40201
- Taiwan
- Republic of China
| |
Collapse
|
28
|
Amozadeh H, Shabani R, Nazari M. The Effect of Aerobic Training and Green Tea Supplementation on Cardio Metabolic Risk Factors in Overweight and Obese Females: A Randomized Trial. Int J Endocrinol Metab 2018; 16:e60738. [PMID: 30464771 PMCID: PMC6216193 DOI: 10.5812/ijem.60738] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 06/30/2018] [Accepted: 07/31/2018] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The use of exercise along with green tea supplements has been shown to have beneficial effects on obesity and its complications. OBJECTIVES This study aimed at exploring the effect of aerobic training (AT) and green tea (GT) supplementation on body composition, blood lipids, blood glucose, and cardiovascular risk factors in overweight and obese females. METHODS Thirty-nine healthy non-athlete overweight and obese females with an average age of 28.11 ± 6.50 years were sampled and randomly assigned to control (n = 13), AT (n = 13), and AT + GT (n = 13). Participants of the latter group received 33 mg of green tea after each main meal every day, and in addition, they were subjected to AT for eight weeks, including three 90-minute training sessions that were progressive, reaching 80% of the target heart rate (THR). Blood samples were taken from participants one week before the initiation of the study and 48 hours after the last training session. RESULTS Compared to the control group, body weight, body fat percentage, body mass index (BMI), triglyceride, low-density lipoprotein, blood pressure, and heart rate (HR) significantly decreased in the groups treated with AT and AT + GT (P < 0.05). However, no significant changes occurred in FBS, HDL, TC, and WHR (P > 0.05). CONCLUSIONS AT was effective in modifying cardiovascular risk factors, e.g. hypertension, heart rate (HR), triglyceride, and low-density lipoprotein (LDL). However, GT addition was not effective. Considering Iranians' high tendency towards the consumption of plant materials, this finding needs further investigation.
Collapse
Affiliation(s)
- Hajar Amozadeh
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Ramin Shabani
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Rasht Branch, Islamic Azad University, Rasht, Iran
- Corresponding Author: Associate Professor of Exercise Physiology, Rasht Branch, Islamic Azad University, Rasht, Iran. Tel: +98-9112324796,
| | - Marzieh Nazari
- Young Researchers and Elite Club, Rasht Branch, Islamic Azad University, Rasht, Iran
| |
Collapse
|
29
|
Panchal SK, Bliss E, Brown L. Capsaicin in Metabolic Syndrome. Nutrients 2018; 10:E630. [PMID: 29772784 PMCID: PMC5986509 DOI: 10.3390/nu10050630] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022] Open
Abstract
Capsaicin, the major active constituent of chilli, is an agonist on transient receptor potential vanilloid channel 1 (TRPV1). TRPV1 is present on many metabolically active tissues, making it a potentially relevant target for metabolic interventions. Insulin resistance and obesity, being the major components of metabolic syndrome, increase the risk for the development of cardiovascular disease, type 2 diabetes, and non-alcoholic fatty liver disease. In vitro and pre-clinical studies have established the effectiveness of low-dose dietary capsaicin in attenuating metabolic disorders. These responses of capsaicin are mediated through activation of TRPV1, which can then modulate processes such as browning of adipocytes, and activation of metabolic modulators including AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor α (PPARα), uncoupling protein 1 (UCP1), and glucagon-like peptide 1 (GLP-1). Modulation of these pathways by capsaicin can increase fat oxidation, improve insulin sensitivity, decrease body fat, and improve heart and liver function. Identifying suitable ways of administering capsaicin at an effective dose would warrant its clinical use through the activation of TRPV1. This review highlights the mechanistic options to improve metabolic syndrome with capsaicin.
Collapse
Affiliation(s)
- Sunil K Panchal
- Functional Foods Research Group, University of Southern Queensland, Toowoomba QLD 4350, Australia.
| | - Edward Bliss
- Functional Foods Research Group, University of Southern Queensland, Toowoomba QLD 4350, Australia.
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba QLD 4350, Australia.
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Toowoomba QLD 4350, Australia.
- School of Health and Wellbeing, University of Southern Queensland, Toowoomba QLD 4350, Australia.
| |
Collapse
|
30
|
Maharlouei N, Tabrizi R, Lankarani KB, Rezaianzadeh A, Akbari M, Kolahdooz F, Rahimi M, Keneshlou F, Asemi Z. The effects of ginger intake on weight loss and metabolic profiles among overweight and obese subjects: A systematic review and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr 2018; 59:1753-1766. [PMID: 29393665 DOI: 10.1080/10408398.2018.1427044] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
This systematic review and meta-analysis of randomized controlled trials (RCTs) was performed to summarize the effect of ginger intake on weight loss, glycemic control and lipid profiles among overweight and obese subjects. We searched the following databases through November 2017: MEDLINE, EMBASE, Web of Science, and Cochrane Central Register of Controlled Trials. The relevant data were extracted and assessed for quality of the studies according to the Cochrane risk of bias tool. Data were pooled using the inverse variance method and expressed as Standardized Mean Difference (SMD) with 95% Confidence Intervals (95% CI). Heterogeneity between studies was assessed by the Cochran Q statistic and I-squared tests (I2). Overall, 14 studies were included in the meta-analyses. Fourteen RCTs with 473 subjects were included in our meta-analysis. The results indicated that the supplementation with ginger significantly decreased body weight (BW) (SMD -0.66; 95% CI, -1.31, -0.01; P = 0.04), waist-to-hip ratio (WHR) (SMD -0.49; 95% CI, -0.82, -0.17; P = 0.003), hip ratio (HR) (SMD -0.42; 95% CI, -0.77, -0.08; P = 0.01), fasting glucose (SMD -0.68; 95% CI, -1.23, -0.05; P = 0.03) and insulin resistance index (HOMA-IR) (SMD -1.67; 95% CI, -2.86, -0.48; P = 0.006), and significantly increased HDL-cholesterol levels (SMD 0.40; 95% CI, 0.10, 0.70; P = 0.009). We found no detrimental effect of ginger on body mass index (BMI) (SMD -0.65; 95% CI, -1.36, 0.06; P = 0.074), insulin (SMD -0.54; 95% CI, -1.43, 0.35; P = 0.23), triglycerides (SMD -0.27; 95% CI, -0.71, 0.18; P = 0.24), total- (SMD -0.20; 95% CI, -0.58, 0.18; P = 0.30) and LDL-cholesterol (SMD -0.13; 95% CI, -0.51, 0.24; P = 0.48). Overall, the current meta-analysis demonstrated that ginger intake reduced BW, WHR, HR, fasting glucose and HOMA-IR, and increased HDL-cholesterol, but did not affect insulin, BMI, triglycerides, total- and LDL-cholesterol levels.
Collapse
Affiliation(s)
- Najmeh Maharlouei
- a Health Policy Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Reza Tabrizi
- b Health Policy Research Center, Institute of Health, Student Research Committee, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Kamran B Lankarani
- a Health Policy Research Center, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Abbas Rezaianzadeh
- c Department of Epidemiology , Shiraz University of Medical Sciences, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Maryam Akbari
- b Health Policy Research Center, Institute of Health, Student Research Committee, Shiraz University of Medical Sciences , Shiraz , Iran
| | - Fariba Kolahdooz
- d Indigenous and Global Health Research, Department of Medicine , University of Alberta , Edmonton , Canada
| | - Maryam Rahimi
- e Department of Gynecology and Obstetrics , School of Medicine, Iran University of Medical Sciences , Tehran , Iran
| | - Fariba Keneshlou
- f Department of Urology , School of Medicine, Alborz University of Medical Sciences , Karaj , Iran
| | - Zatollah Asemi
- g Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences , Kashan , I.R. Iran
| |
Collapse
|