1
|
Azuma C, Oishi T, Tohno Y, Ke L, Zhao XZ, Minami T, Horii-Hayashi N, Inoue K. Element accumulation in the tracheal and bronchial cartilages of monkeys. Biochem Biophys Res Commun 2024; 733:150699. [PMID: 39288699 DOI: 10.1016/j.bbrc.2024.150699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Compositional changes in the tracheal and bronchial cartilages can affect respiratory ventilation and lung function. We aimed to elucidate element accumulation in the tracheal and bronchial cartilages of monkeys and divided it into four sites: the tracheal, tracheal bifurcation, left bronchial, and right bronchial cartilages. The elemental content was analyzed using inductively coupled plasma atomic emission spectrometry. The average calcium content was two to three times higher in the tracheal cartilage than in the other three cartilages. The trends of phosphorus and zinc were similar to those of calcium. The average calcium, phosphorus, and zinc cartilage contents were the highest in the tracheal cartilage and decreased in the following order: the left bronchial, right bronchial, and tracheal bifurcation cartilages. These findings revealed that differences existed in element accumulation between different sites within the same airway cartilage and that calcium, phosphorus, and zinc accumulation mainly occurred in the tracheal cartilage. A substantial direct correlation was observed between age and calcium content in the tracheal and bronchial cartilages and all such monkeys with high calcium content were > four years of age. These results suggest that calcium accumulation occurs in the tracheal and bronchial cartilages after reaching a certain age. An extremely substantial direct correlation was observed between calcium and phosphorus contents in the tracheal and bronchial cartilages. This finding is similar to the previously published calcium and phosphorus correlations in several other cartilages, suggesting that the calcium and phosphorus contents of cartilage exist in a certain ratio.
Collapse
Affiliation(s)
- Cho Azuma
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| | - Takao Oishi
- Systems Neuroscience Section, Center for the Evolutionary Origins of Human Behaviors, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Yoshiyuki Tohno
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Lining Ke
- Department of Human Anatomy and Histo-Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Xiao-Zhen Zhao
- Department of Human Anatomy and Histo-Embryology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Takeshi Minami
- Laboratory of Environmental Biology, Department of Life Science, Faculty of Science and Technology, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Noriko Horii-Hayashi
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Koichi Inoue
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| |
Collapse
|
2
|
Khan Z, Naeem MO, Amin DA, Amin L, Shah A, Khaliq SU, Azhar A, Naz S, Shujauddin SM, Arshad MA, Ali SJ, Sajid EU, Jawad S. Effectiveness of hypertonic saline with or without hyaluronic acid among patients with cystic fibrosis: a systematic review and meta-analysis. Ann Med Surg (Lond) 2024; 86:6091-6096. [PMID: 39359762 PMCID: PMC11444569 DOI: 10.1097/ms9.0000000000002450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/31/2024] [Indexed: 10/04/2024] Open
Abstract
Background The clinical effectiveness of hypertonic saline (HS) in individuals with cystic fibrosis (CF) can be compromised by adverse effects. The objective of this study was to examine the efficacy of hyaluronic acid (HA) in mitigating these negative occurrences. Methods A comprehensive review of the literature was carried out using three electronic databases: Medline, Cochrane Central, and Embase. This systematic review and meta-analysis investigate the efficacy of hypertonic saline (HS) with and without hyaluronic acid (HA) in treating cystic fibrosis. Primary outcomes include the incidence of cough, throat irritation, unpleasant taste, and changes in FEV1. Our findings suggest that adding HA to HS significantly reduces adverse effects and enhances patient tolerability, marking a potential improvement in cystic fibrosis therapy. Risk ratios (RRs) and mean differences (MDs) with 95% CI were used to present evaluations. The quality of RCTs was evaluated using the Cochrane Risk of Bias Tool (CRBT). The quality of the observational study was evaluated using the Newcastle-Ottawa Scale. Results From the 1960 articles retrieved from the initial search, five relevant studies (n=236 patients) were included in the final analysis. Compared with patients only on HS, patients with HS and HA were significantly less likely to experience cough (RR: 0.45; 95% CI, 0.28-0.72, P=0.001), throat irritation (RR: 0.43; 95% CI, 0.22-0.81, P=0.009), and unpleasant smell (RR: 0.43; 95% CI, 0.23-0.80, P=0.09). In addition, patients with HS with HA had significantly less forced expiratory volume (FEV1) (MD: -2.97; 95% CI, -3.79--2.15, P=0.52), compared to patients only on HS. Patients on HA + HS had significantly lower rates of cough (RR: 0.45; 95% CI, 0.28-0.72, P=0.001), throat irritation (RR: 0.43; 95% CI, 0.22-0.81, P=0.009), and bad smell (RR: 0.43; 95% CI, 0.23-0.80, P=0.09) when compared to patients on HS alone. Furthermore, compared to patients solely on HS, patients with HS plus HA exhibited a substantially lower forced expiratory volume (FEV1) (MD: -2.97; 95% CI, -3.79 to -2.15, P=0.52) as well. Conclusion For CF patients who need ongoing HS therapy and have a history of poor therapy tolerance, adding HA is beneficial.
Collapse
Affiliation(s)
| | | | - Dr Anam Amin
- Department of Medicine, Northwest General Hospital And Research Centre
| | - Laraib Amin
- Department of Medicine, Northwest School of Medicine
| | - Abdullah Shah
- Department of Nephrology and Kidney Transplant Unit, Rehman Medical Institute, Peshawar
| | - Saad Ul Khaliq
- Department of Medicine, Northwest General Hospital And Research Centre
| | - Aima Azhar
- Department of Medicine, Fatima Jinnah Medical University
| | - Sana Naz
- Department of Medicine, Dow University of Health Sciences
| | | | - Muhammad A Arshad
- Department of Medicine, Bahria University of Medical and Dental College, Karachi
| | - Sarosh J Ali
- Department of Acute Medicine, Royal Albert Edward Infirmary, Wigan, UK
| | - Emad U Sajid
- Department of Acute Medicine, Royal Albert Edward Infirmary, Wigan, UK
| | - Sayed Jawad
- Kabul University of Health Sciences, Kabul, Pakistan
| |
Collapse
|
3
|
Kim YC, Sohn KH, Kang HR. Gut microbiota dysbiosis and its impact on asthma and other lung diseases: potential therapeutic approaches. Korean J Intern Med 2024; 39:746-758. [PMID: 39252487 PMCID: PMC11384250 DOI: 10.3904/kjim.2023.451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/08/2024] [Accepted: 04/07/2024] [Indexed: 09/11/2024] Open
Abstract
The emerging field of gut-lung axis research has revealed a complex interplay between the gut microbiota and respiratory health, particularly in asthma. This review comprehensively explored the intricate relationship between these two systems, focusing on their influence on immune responses, inflammation, and the pathogenesis of respiratory diseases. Recent studies have demonstrated that gut microbiota dysbiosis can contribute to asthma onset and exacerbation, prompting investigations into therapeutic strategies to correct this imbalance. Probiotics and prebiotics, known for their ability to modulate gut microbial compositions, were discussed as potential interventions to restore immune homeostasis. The impact of antibiotics and metabolites, including short-chain fatty acids produced by the gut microbiota, on immune regulation was examined. Fecal microbiota transplantation has shown promise in various diseases, but its role in respiratory disorders is not established. Innovative approaches, including mucus transplants, inhaled probiotics, and microencapsulation strategies, have been proposed as novel therapeutic avenues. Despite challenges, including the sophisticated adaptability of microbial communities and the need for mechanistic clarity, the potential for microbiota-based interventions is considerable. Collaboration between researchers, clinicians, and other experts is essential to unravel the complexities of the gut-lung axis, paving a way for innovative strategies that could transform the management of respiratory diseases.
Collapse
Affiliation(s)
- Young-Chan Kim
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Kyoung-Hee Sohn
- Division of Respiratory, Allergy and Critical Care Medicine, Department of Internal Medicine, Kyung Hee University Hospital, Seoul, Korea
| | - Hye-Ryun Kang
- Division of Allergy and Clinical Immunology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Farrell LA, O’Rourke MB, Padula MP, Souza-Fonseca-Guimaraes F, Caramori G, Wark PAB, Dharmage SC, Hansbro PM. The Current Molecular and Cellular Landscape of Chronic Obstructive Pulmonary Disease (COPD): A Review of Therapies and Efforts towards Personalized Treatment. Proteomes 2024; 12:23. [PMID: 39189263 PMCID: PMC11348234 DOI: 10.3390/proteomes12030023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) ranks as the third leading cause of global illness and mortality. It is commonly triggered by exposure to respiratory irritants like cigarette smoke or biofuel pollutants. This multifaceted condition manifests through an array of symptoms and lung irregularities, characterized by chronic inflammation and reduced lung function. Present therapies primarily rely on maintenance medications to alleviate symptoms, but fall short in impeding disease advancement. COPD's diverse nature, influenced by various phenotypes, complicates diagnosis, necessitating precise molecular characterization. Omics-driven methodologies, including biomarker identification and therapeutic target exploration, offer a promising avenue for addressing COPD's complexity. This analysis underscores the critical necessity of improving molecular profiling to deepen our comprehension of COPD and identify potential therapeutic targets. Moreover, it advocates for tailoring treatment strategies to individual phenotypes. Through comprehensive exploration-based molecular characterization and the adoption of personalized methodologies, innovative treatments may emerge that are capable of altering the trajectory of COPD, instilling optimism for efficacious disease-modifying interventions.
Collapse
Affiliation(s)
- Luke A. Farrell
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Centre for Inflammation, Ultimo, NSW 2007, Australia;
| | - Matthew B. O’Rourke
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Centre for Inflammation, Ultimo, NSW 2007, Australia;
| | - Matthew P. Padula
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | | | - Gaetano Caramori
- Pulmonology, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Peter A. B. Wark
- School of Translational Medicine, Monash University, Melbourne, VIC 3000, Australia;
| | - Shymali C. Dharmage
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Phillip M. Hansbro
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Centre for Inflammation, Ultimo, NSW 2007, Australia;
| |
Collapse
|
5
|
Fucarino A, Pitruzzella A, Burgio S, Intili G, Manna OM, Modica MD, Poma S, Benfante A, Tomasello A, Scichilone N, Bucchieri F. A novel approach to investigate severe asthma and COPD: the 3d ex vivo respiratory mucosa model. J Asthma 2024:1-14. [PMID: 39096201 DOI: 10.1080/02770903.2024.2388781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/23/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Purpose: This article illustrates the replication of asthma and COPD conditions in a laboratory setting and the potential applications of this methodology. Introduction: Biologic drugs have been shown to enhance the treatment of severe asthma and COPD. Monoclonal antibodies against specific targets have dramatically changed the management of these conditions. Although the inflammatory pathways of asthma and COPD have already been clearly outlined, alternative mechanisms of action remain mostly unexplored. They could provide additional insights into these diseases and their clinical management. Aims: In vivo or in vitro models have thus been developed to test alternative hypotheses. This study describes sophisticated ex vivo models that mimic the response of human respiratory mucosa to disease triggers, aiming to narrow the gap between laboratory studies and clinical practice. Results: These models successfully replicate crucial aspects of these diseases, such as inflammatory cell presence, cytokine production, and changes in tissue structure, offering a dynamic platform for investigating disease processes and evaluating potential treatments, such as monoclonal antibodies. The proposed models have the potential to enhance personalized medicine approaches and patient-specific treatments, helping to advance the understanding and management of respiratory diseases.
Collapse
Affiliation(s)
- Alberto Fucarino
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Italy
| | - Alessandro Pitruzzella
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BIND), Institute of Human Anatomy and Histology, University of Palermo, Palermo, Italy
| | - Stefano Burgio
- Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy
- Department of Medicine and Surgery, Kore University of Enna, Enna, Italy
| | - Giorgia Intili
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BIND), Institute of Human Anatomy and Histology, University of Palermo, Palermo, Italy
| | - Olga Maria Manna
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BIND), Institute of Human Anatomy and Histology, University of Palermo, Palermo, Italy
| | - Michele Domenico Modica
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BIND), Institute of Human Anatomy and Histology, University of Palermo, Palermo, Italy
- Department of Otorhinolaryngology, Villa Sofia-Cervello Hospital, Palermo, Italy
| | - Salvatore Poma
- Department of Otorhinolaryngology, Villa Sofia-Cervello Hospital, Palermo, Italy
| | - Alida Benfante
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), Division of Respiratory Diseases, University of Palermo, Palermo, Italy
| | - Alessandra Tomasello
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), Division of Respiratory Diseases, University of Palermo, Palermo, Italy
| | - Nicola Scichilone
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), Division of Respiratory Diseases, University of Palermo, Palermo, Italy
| | - Fabio Bucchieri
- Department of Biomedicine, Neurosciences and Advanced Diagnostic (BIND), Institute of Human Anatomy and Histology, University of Palermo, Palermo, Italy
| |
Collapse
|
6
|
Devi K, Tomar MS, Barsain M, Shrivastava A, Moharana B. Regeneration capability of neonatal lung-derived decellularized extracellular matrix in an emphysema model. J Control Release 2024; 372:234-250. [PMID: 38821413 DOI: 10.1016/j.jconrel.2024.05.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
Impaired and limited alveolar regeneration upon injury advances pulmonary disorders and irreversibly affects millions of people worldwide. Adult mammals do not have a strong potential to regenerate functional lung tissues, while neonatal lungs robustly proliferate and regenerate the functional tissue within a week of birth upon injury. The differential composition of the extracellular matrix (ECM) of neonatal tissues favors cellular proliferation and migration, fostering lung regeneration. Regardless, conventional ECM therapies employ adult-derived tissues. Therefore, the potential differences in regenerative properties of adult and neonatal lung ECM were investigated using in vitro and in vivo lung emphysema model. Decellularization of the neonatal and adult lungs was performed using freeze-thaw cycle method. Decellularization process was structurally characterized using SEM and immunostaining. In vitro treatment of neonatal lung-derived ECM (NECM) significantly enhanced the cellular migration and proliferation compared to adult-lung derived ECM (AECM) treated cigarette smoke-extract (CSE)-stimulated A549 cells. Following the administration of AECM and NECM, we observed a significant decline in emphysematous features and an improvement in lung functions in NECM group. NECM treatment increased the ratio of HOPX+/SpC+ cells with an active proliferation in SpC+ cells shown by colocalization of SpC+/Ki67+ and SpC+/Brdu+ cells. Moreover, NECM treatment activated the Neureguline-1/Erbb2 signaling and fostered a regenerative environment by upregulating the expression of regenerative genes including FGF, WNTs and AXIN-2 as compared to AECM treatment. Our findings suggested the potential utilization of NECM as novel therapeutics in regenerative medicine, deviating from the conventional application of adult-derived ECM treatments in pre-clinical and clinical research.
Collapse
Affiliation(s)
- Kusum Devi
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, Kamla Nehru Nagar, Ghaziabad, UP, 201002, India
| | - Manendra Singh Tomar
- Centre for Advance Research (CFAR), Faculty of Medical Sciences, King George's Medical University, Lucknow, India
| | - Mohit Barsain
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ashutosh Shrivastava
- Centre for Advance Research (CFAR), Faculty of Medical Sciences, King George's Medical University, Lucknow, India
| | - Baisakhi Moharana
- Division of Pharmacology, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research, Kamla Nehru Nagar, Ghaziabad, UP, 201002, India.
| |
Collapse
|
7
|
Li CL, Liu SF. Exploring Molecular Mechanisms and Biomarkers in COPD: An Overview of Current Advancements and Perspectives. Int J Mol Sci 2024; 25:7347. [PMID: 39000454 PMCID: PMC11242201 DOI: 10.3390/ijms25137347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) plays a significant role in global morbidity and mortality rates, typified by progressive airflow restriction and lingering respiratory symptoms. Recent explorations in molecular biology have illuminated the complex mechanisms underpinning COPD pathogenesis, providing critical insights into disease progression, exacerbations, and potential therapeutic interventions. This review delivers a thorough examination of the latest progress in molecular research related to COPD, involving fundamental molecular pathways, biomarkers, therapeutic targets, and cutting-edge technologies. Key areas of focus include the roles of inflammation, oxidative stress, and protease-antiprotease imbalances, alongside genetic and epigenetic factors contributing to COPD susceptibility and heterogeneity. Additionally, advancements in omics technologies-such as genomics, transcriptomics, proteomics, and metabolomics-offer new avenues for comprehensive molecular profiling, aiding in the discovery of novel biomarkers and therapeutic targets. Comprehending the molecular foundation of COPD carries substantial potential for the creation of tailored treatment strategies and the enhancement of patient outcomes. By integrating molecular insights into clinical practice, there is a promising pathway towards personalized medicine approaches that can improve the diagnosis, treatment, and overall management of COPD, ultimately reducing its global burden.
Collapse
Affiliation(s)
- Chin-Ling Li
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Shih-Feng Liu
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
8
|
Mao X, Wu S, Huang D, Li C. Complications and comorbidities associated with antineoplastic chemotherapy: Rethinking drug design and delivery for anticancer therapy. Acta Pharm Sin B 2024; 14:2901-2926. [PMID: 39027258 PMCID: PMC11252465 DOI: 10.1016/j.apsb.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/29/2024] [Accepted: 02/10/2024] [Indexed: 07/20/2024] Open
Abstract
Despite the considerable advancements in chemotherapy as a cornerstone modality in cancer treatment, the prevalence of complications and pre-existing diseases is on the rise among cancer patients along with prolonged survival and aging population. The relationships between these disorders and cancer are intricate, bearing significant influence on the survival and quality of life of individuals with cancer and presenting challenges for the prognosis and outcomes of malignancies. Herein, we review the prevailing complications and comorbidities that often accompany chemotherapy and summarize the lessons to learn from inadequate research and management of this scenario, with an emphasis on possible strategies for reducing potential complications and alleviating comorbidities, as well as an overview of current preclinical cancer models and practical advice for establishing bio-faithful preclinical models in such complex context.
Collapse
Affiliation(s)
- Xiaoman Mao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Shuang Wu
- Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Dandan Huang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Chong Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
- Medical Research Institute, Southwest University, Chongqing 400715, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
9
|
Bertuzzi M, Howell GJ, Thomson DD, Fortune-Grant R, Möslinger A, Dancer P, Van Rhijn N, Motsi N, Codling A, Bignell EM. Epithelial uptake leads to fungal killing in vivo and is aberrant in COPD-derived epithelial cells. iScience 2024; 27:109939. [PMID: 38846001 PMCID: PMC11154633 DOI: 10.1016/j.isci.2024.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/07/2023] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Hundreds of spores of Aspergillus fumigatus (Af) are inhaled daily by human beings, representing a constant, possibly fatal, threat to respiratory health. The small size of Af spores suggests that interactions with alveolar epithelial cells (AECs) are frequent; thus, we hypothesized that spore uptake by AECs is important for driving fungal killing and susceptibility to Aspergillus-related disease. Using single-cell approaches to measure spore uptake and its outcomes in vivo, we demonstrate that Af spores are internalized and killed by AECs during whole-animal infection. Moreover, comparative analysis of primary human AECs from healthy and chronic obstructive pulmonary disease (COPD) donors revealed significant alterations in the uptake and killing of spores in COPD-derived AECs. We conclude that AECs contribute to the killing of Af spores and that dysregulation of curative AEC responses in COPD may represent a driver of Aspergillus-related diseases.
Collapse
Affiliation(s)
- Margherita Bertuzzi
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
| | - Gareth J. Howell
- Flow Cytometry Core Facility, Faculty of Biology, Medicine and Health, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
| | - Darren D. Thomson
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
| | - Rachael Fortune-Grant
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
| | - Anna Möslinger
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
| | - Patrick Dancer
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
| | - Norman Van Rhijn
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
| | - Natasha Motsi
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
| | - Alice Codling
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
| | - Elaine M. Bignell
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
| |
Collapse
|
10
|
Wei K, Li Y, Du B, Wu J. Differences in Airway Remodeling and Emphysematous Lesions between Rats Exposed to Smoke from New-Type and Conventional Tobacco Varieties. Antioxidants (Basel) 2024; 13:511. [PMID: 38790616 PMCID: PMC11117731 DOI: 10.3390/antiox13050511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Genes from Perilla frutescens and Ocimum basilicum were introduced into N. tabacum L. var. HHY via distant hybridization, and the new-type tobacco varieties "Zisu" and "Luole" were developed, with noticeable differences in chemical composition. Smoking is the leading cause of chronic obstructive pulmonary disease (COPD), and its pathogenesis is complex. In the present study, 48 male Sprague-Dawley (SD) rats were randomly divided into four groups, namely, the control, "HHY", "Zisu" and "Luole", and then exposed to fresh air/cigarette smoke (CS) for 30 days and 60 days. The COPD model was constructed, and their health hazards were compared and evaluated. CS from different tobacco varieties influenced rats in varying degrees at the tissue, cell and molecular levels. The rats in the "HHY" group showed obvious symptoms, such as cough and dyspnea, which were less severe in the "Zisu" and "Luole" groups. Pathological and morphological analyses, including scores, MLI, MAN, WAt/Pbm and WAm/Pbm, showed that "Zisu" and "Luole" caused less damage to the airways and lung parenchyma than "HHY". Significant increases in the numbers of total leukocytes and neutrophils in the BALF were found in "HHY" compared to those in "Zisu" and "Luole". Moreover, they caused less oxidative stress and apoptosis in lung tissues, as reflected by indicators such as ROS, MDA, T-AOC, GSH, the apoptotic index and the ratio of Bcl-2 to Bax. "Zisu" and "Luole" even altered the ratios of MMP-9/TIMP-1 and IFN-γ/IL-4 in lung tissues to a lesser degree. These differences between CS-exposed rats may be closely related to the altered expression of Nrf2, p38 MAPK and p-p38 MAPK. Changes in chemical composition via introducing genes from some medicinal plants may be an attractive strategy for tobacco harm reduction.
Collapse
Affiliation(s)
- Keqiang Wei
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | | | | | | |
Collapse
|
11
|
Hickey AJ, Maloney SE, Kuehl PJ, Phillips JE, Wolff RK. Practical Considerations in Dose Extrapolation from Animals to Humans. J Aerosol Med Pulm Drug Deliv 2024; 37:77-89. [PMID: 38237032 DOI: 10.1089/jamp.2023.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024] Open
Abstract
Animal studies are an important component of drug product development and the regulatory review process since modern practices have been in place, for almost a century. A variety of experimental systems are available to generate aerosols for delivery to animals in both liquid and solid forms. The extrapolation of deposited dose in the lungs from laboratory animals to humans is challenging because of genetic, anatomical, physiological, pharmacological, and other biological differences between species. Inhaled drug delivery extrapolation requires scrutiny as the aerodynamic behavior, and its role in lung deposition is influenced not only by the properties of the drug aerosol but also by the anatomy and pulmonary function of the species in which it is being evaluated. Sources of variability between species include the formulation, delivery system, and species-specific biological factors. It is important to acknowledge the underlying variables that contribute to estimates of dose scaling between species.
Collapse
Affiliation(s)
- Anthony J Hickey
- Department of Technology Advancement and Commercialization, RTI International, Research Triangle Park, North Carolina, USA
| | - Sara E Maloney
- Department of Technology Advancement and Commercialization, RTI International, Research Triangle Park, North Carolina, USA
| | - Phillip J Kuehl
- Division: Scientific Core Laboratories; Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Jonathan E Phillips
- Amgen, Inc., Inflammation Discovery Research, Thousand Oaks, California, USA
| | | |
Collapse
|
12
|
Bergwik J, Liu J, Padra M, Bhongir RKV, Tanner L, Xiang Y, Lundblad M, Egesten A, Adner M. A novel quinoline with airway relaxant effects and anti-inflammatory properties. Respir Res 2024; 25:146. [PMID: 38555460 PMCID: PMC10981829 DOI: 10.1186/s12931-024-02780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/17/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND In chronic pulmonary diseases characterized by inflammation and airway obstruction, such as asthma and COPD, there are unmet needs for improved treatment. Quinolines is a group of small heterocyclic compounds that have a broad range of pharmacological properties. Here, we investigated the airway relaxant and anti-inflammatory properties of a novel quinoline (RCD405). METHODS The airway relaxant effect of RCD405 was examined in isolated airways from humans, dogs, rats and mice. Murine models of ovalbumin (OVA)-induced allergic asthma and LPS-induced airway inflammation were used to study the effects in vivo. RCD405 (10 mg/kg) or, for comparisons in selected studies, budesonide (3 mg/kg), were administered intratracheally 1 h prior to each challenge. Airway responsiveness was determined using methacholine provocation. Immune cell recruitment to bronchi was measured using flow cytometry and histological analyses were applied to investigate cell influx and goblet cell hyperplasia of the airways. Furthermore, production of cytokines and chemokines was measured using a multiplex immunoassay. The expression levels of asthma-related genes in murine lung tissue were determined by PCR. The involvement of NF-κB and metabolic activity was measured in the human monocytic cell line THP-1. RESULTS RCD405 demonstrated a relaxant effect on carbachol precontracted airways in all four species investigated (potency ranking: human = rat > dog = mouse). The OVA-specific IgE and airway hyperresponsiveness (AHR) were significantly reduced by intratracheal treatment with RCD405, while no significant changes were observed for budesonide. In addition, administration of RCD405 to mice significantly decreased the expression of proinflammatory cytokines and chemokines as well as recruitment of immune cells to the lungs in both OVA- and LPS-induced airway inflammation, with a similar effect as for budesonide (in the OVA-model). However, the effect on gene expression of Il-4, IL-5 and Il-13 was more pronounced for RCD405 as compared to budesonide. Finally, in vitro, RCD405 reduced the LPS-induced NF-κB activation and by itself reduced cellular metabolism. CONCLUSIONS RCD405 has airway relaxant effects, and it reduces AHR as well as airway inflammation in the models used, suggesting that it could be a clinically relevant compound to treat inflammatory airway diseases. Possible targets of this compound are complexes of mitochondrial oxidative phosphorylation, resulting in decreased metabolic activity of targeted cells as well as through pathways associated to NF-κB. However, further studies are needed to elucidate the mode of action.
Collapse
Affiliation(s)
- Jesper Bergwik
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology, & Palliative Medicine, Lund University and Skåne University Hospital, Lund, Sweden
| | - Jielu Liu
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Karolinska Institutet, Biomedicum, Solnavägen 9, 171 65, Stockholm, Sweden
| | - Médea Padra
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology, & Palliative Medicine, Lund University and Skåne University Hospital, Lund, Sweden
| | - Ravi K V Bhongir
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology, & Palliative Medicine, Lund University and Skåne University Hospital, Lund, Sweden
| | - Lloyd Tanner
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology, & Palliative Medicine, Lund University and Skåne University Hospital, Lund, Sweden
| | - Yujiao Xiang
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Karolinska Institutet, Biomedicum, Solnavägen 9, 171 65, Stockholm, Sweden
| | | | - Arne Egesten
- Department of Clinical Sciences Lund, Respiratory Medicine, Allergology, & Palliative Medicine, Lund University and Skåne University Hospital, Lund, Sweden
| | - Mikael Adner
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Karolinska Institutet, Biomedicum, Solnavägen 9, 171 65, Stockholm, Sweden.
| |
Collapse
|
13
|
Calzetta L, Page C, Matera MG, Cazzola M, Rogliani P. Use of human airway smooth muscle in vitro and ex vivo to investigate drugs for the treatment of chronic obstructive respiratory disorders. Br J Pharmacol 2024; 181:610-639. [PMID: 37859567 DOI: 10.1111/bph.16272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023] Open
Abstract
Isolated airway smooth muscle has been extensively investigated since 1840 to understand the pharmacology of airway diseases. There has often been poor predictability from murine experiments to drugs evaluated in patients with asthma or chronic obstructive pulmonary disease (COPD). However, the use of isolated human airways represents a sensible strategy to optimise the development of innovative molecules for the treatment of respiratory diseases. This review aims to provide updated evidence on the current uses of isolated human airways in validated in vitro methods to investigate drugs in development for the treatment of chronic obstructive respiratory disorders. This review also provides historical notes on the pioneering pharmacological research on isolated human airway tissues, the key differences between human and animal airways, as well as the pivotal differences between human medium bronchi and small airways. Experiments carried out with isolated human bronchial tissues in vitro and ex vivo replicate many of the main anatomical, pathophysiological, mechanical and immunological characteristics of patients with asthma or COPD. In vitro models of asthma and COPD using isolated human airways can provide information that is directly translatable into humans with obstructive lung diseases. Regardless of the technique used to investigate drugs for the treatment of chronic obstructive respiratory disorders (i.e., isolated organ bath systems, videomicroscopy and wire myography), the most limiting factors to produce high-quality and repeatable data remain closely tied to the manual skills of the researcher conducting experiments and the availability of suitable tissue.
Collapse
Affiliation(s)
- Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| | - Clive Page
- Pulmonary Pharmacology Unit, Institute of Pharmaceutical Science, King's College London, London, UK
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
14
|
Fröhlich E. Animals in Respiratory Research. Int J Mol Sci 2024; 25:2903. [PMID: 38474149 DOI: 10.3390/ijms25052903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The respiratory barrier, a thin epithelial barrier that separates the interior of the human body from the environment, is easily damaged by toxicants, and chronic respiratory diseases are common. It also allows the permeation of drugs for topical treatment. Animal experimentation is used to train medical technicians, evaluate toxicants, and develop inhaled formulations. Species differences in the architecture of the respiratory tract explain why some species are better at predicting human toxicity than others. Some species are useful as disease models. This review describes the anatomical differences between the human and mammalian lungs and lists the characteristics of currently used mammalian models for the most relevant chronic respiratory diseases (asthma, chronic obstructive pulmonary disease, cystic fibrosis, pulmonary hypertension, pulmonary fibrosis, and tuberculosis). The generation of animal models is not easy because they do not develop these diseases spontaneously. Mouse models are common, but other species are more appropriate for some diseases. Zebrafish and fruit flies can help study immunological aspects. It is expected that combinations of in silico, in vitro, and in vivo (mammalian and invertebrate) models will be used in the future for drug development.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| |
Collapse
|
15
|
Wei K, Zhang X, Yang J, Chen J. Tobacco introduced Perilla frutescens and Ocimum basilicum genes attenuates neutrophilic inflammation in lung tissues of COPD rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115956. [PMID: 38215665 DOI: 10.1016/j.ecoenv.2024.115956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/10/2023] [Accepted: 01/06/2024] [Indexed: 01/14/2024]
Abstract
The new-type tobacco varieties "Zisu" and "Luole" were obtained by distant hybridization between N. tabacum L. var. HHY and Perilla frutescens and Ocimum basilicum, with obviously different chemical composition. Smoking is the major risk factor for COPD, characterized by neutrophil-dominant inflammation. In the present study, rat COPD model was established by cigarette exposure, and the health hazard of three varieties was compared by general condition observation, pathological and morphological evaluation, total and differential cell numeration, and characterization of major inflammatory mediators and MAPK/NF-κB pathway, etc. Rats in "HHY" group developed obvious symptoms such as cough, dyspnea, mental fatigue, etc., but these symptoms were obviously mitigated in "Zisu" and "Luole" groups. H&E staining analysis, including score, MLI, MAN, wt% and WA%, showed that "Zisu" and "Luole" significantly alleviated lung injury and the degree of airway remodeling and emphysema compared to "HHY". In BALF, the number of total leukocyte and the percent neutrophils in "Zisu" and "Luole" groups were evidently lower than "HHY" group. The levels of inflammatory mediators, such as IL-8, MPO, MIP-2, LTB4, TNF-α and neutrophil elastase, in "HHY" group were obviously higher than "Zisu" and "Luole" groups. The ROS-mediated NF-κB p65 and p38MAPK pathways may play an important role. Results indicated that tobacco introduced perilla and basil genes could remarkably attenuate recruitment, infiltration and activation of neutrophils and intervene in airway inflammation, retarding disease progression, especially "Zisu". Changes in chemical composition via breeding techniques may be a novel way for tobacco harm reduction.
Collapse
Affiliation(s)
- Keqiang Wei
- School of Life Science, Shanxi University, Taiyuan 030006, China; Xinghuacun College of Shanxi University (Shanxi Institute of Brewing Technology and Industry), Taiyuan 030006, China.
| | - Xuan Zhang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jinwen Yang
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| | - Jiayi Chen
- School of Life Science, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
16
|
Tayanloo-Beik A, Kokabi Hamidpour S, Chaharbor M, Rezaei-Tavirani M, Arjmand R, Adibi H, Ojagh H, Larijani B, Arjmand B. The wonders of stem cells therapeutic application towards chronic obstructive pulmonary disease. Pulm Pharmacol Ther 2023; 83:102269. [PMID: 37967760 DOI: 10.1016/j.pupt.2023.102269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/01/2023] [Accepted: 11/09/2023] [Indexed: 11/17/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a respiratory condition characterized by its heterogeneous nature, progressive course, and significant impact on individuals' quality of life. It is a prevalent global health issue affecting a substantial number of individuals and can pose life-threatening complications if left unmanaged. The development and course of COPD can be influenced by a range of risk factors, including genetic predisposition and environmental exposures. Nevertheless, as researchers adopt a more comprehensive and expansive viewpoint of therapeutic techniques, the associated obstacles become more apparent. Indeed, a definitive medication for COPD that reliably leads to symptom alleviation has not yet been discovered. Therefore, the limitations of conventional therapy methods prompted researchers to focus on the advancement of novel procedures, potentially leading to significant outcomes. In contemporary times, the field of regenerative medicine and cell therapy has presented unprecedented opportunities for the exploration of innovative treatments for COPD, owing to the distinctive attributes exhibited by stem cells. Hence, it is imperative to provide due consideration to preclinical investigations and notable characteristics of stem cells as they serve as a means to comprehensively comprehend the fundamental mechanisms of COPD and uncover novel therapeutic strategies with enhanced efficacy for patients.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Mohaddese Chaharbor
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hossein Adibi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hamid Ojagh
- Student Research Committee of Nursing, Faculty of Nursing, Aja University of Medical Sciences, Tehran, Iran.
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Arshid S, Ullah SE, Imran J, Syed MA, Choradia A, Gousy N, Boparai S, Shoaib M, Shah BB, Netha A. The effectiveness of hyaluronic acid in reducing adverse effects associated with inhaled hypertonic saline therapy in patients with cystic fibrosis: A systematic review and meta-analysis. CANADIAN JOURNAL OF RESPIRATORY THERAPY : CJRT = REVUE CANADIENNE DE LA THERAPIE RESPIRATOIRE : RCTR 2023; 59:214-222. [PMID: 37927455 PMCID: PMC10621800 DOI: 10.29390/001c.89093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/20/2023] [Indexed: 11/07/2023]
Abstract
Background Inhaled hypertonic saline (HS) is an effective mucolytic agent in patients with cystic fibrosis (CF). However, adverse events can impair the clinical utility of hypertonic saline (HS) in this patient population. In this study, we aimed to investigate the effectiveness of hyaluronic acid (HA) in reducing these adverse events. Methods A literature search was conducted across three electronic databases (Medline, Cochrane Central, and EMBASE) from inception through February 2023. Randomized controlled trials (RCTs) assessing the impact of hyaluronic acid (HA) in reducing adverse events in patients taking hypertonic saline (HS) for CF were included in the analysis. Outcomes of interest included cough, throat irritation, unpleasant taste, and FEV1. Evaluations were reported as risk ratios (RRs) and mean differences (MDs) with 95% confidence intervals (CI). The Cochrane Risk of Bias Tool (CRBT) was employed to assess the quality of RCTs. The New Castle Ottawa Scale was used to assess the quality of observational studies. Results From the 1960 articles retrieved from the initial search, five relevant studies (n=236 patients) were included in the final analysis. Compared with patients only on HS, patients with HS and HA were significantly less likely to experience cough (RR: 0.45; 95% CI, 0.28-0.72, p=0.001), throat irritation (RR: 0.43; 95% CI, 0.22-0.81, p= 0.009), and unpleasant smell (RR: 0.43; 95% CI, 0.23 - 0.80, p=0.09). In addition, patients with HS with HA had significantly less forced expiratory volume (FEV1) (MD: -2.97; 95% CI, -3.79-2.15, p=0.52) compared to patients only on HS. Discussion The addition of HA to HS was linked to a better tolerability profile. When HS was coupled with HA, there was a reduction in all side effects. This may permit tolerance of the medication in otherwise difficult patients, improve adherence to patients receiving frequent inhalations, and improve therapeutic outcomes. Conclusion The addition of HA is advantageous in CF patients who require continuous HS therapy and have previously shown poor tolerance to therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Nicole Gousy
- Department of MedicineAmerican University of Antigua
| | - Sukhman Boparai
- Department of MedicineAcharya Shri Chander College of Medical Sciences and Hospital
| | | | | | - Aadarsh Netha
- Department of MedicineMelmaruvathur Adhiparasakthi Institute of Medical Sciences and Research
| |
Collapse
|
18
|
Ghosh B, Chengala PP, Shah S, Chen D, Karnam V, Wilmsen K, Yeung-Luk B, Sidhaye VK. Cigarette smoke-induced injury induces distinct sex-specific transcriptional signatures in mice tracheal epithelial cells. Am J Physiol Lung Cell Mol Physiol 2023; 325:L467-L476. [PMID: 37605829 PMCID: PMC10639008 DOI: 10.1152/ajplung.00104.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023] Open
Abstract
The airway epithelial barrier is crucial for defending against respiratory insults and diseases. Disruption of epithelial integrity contributes to respiratory diseases, and sex-specific differences in susceptibility and severity have been observed. However, sex-specific differences in the context of respiratory diseases are often overlooked, especially in murine models. In this study, we investigated the in vitro transcriptomics of male and female murine tracheal epithelial cells (mTECs) in response to chronic cigarette smoke (CS) exposure using an International Organization for Standardization (ISO) puff regimen. Our findings reveal sex-specific differences in the baseline characteristics of airway epithelial cells. Female mTECs demonstrated stronger barrier function and higher ciliary function compared with males. The barrier function was disrupted in both males and females following chronic CS, but the difference was more significant in females due to their higher baseline. Female mice exhibited transcriptional signatures suggesting dedifferentiation with increased basal cells and markers of cellular senescence. Pathway analysis indicated potential protective roles of planar cell polarity (PCP) in preventing dedifferentiation in male mice exposed to CS. We also observed sex-specific differences in the DNA damage response and antioxidant levels, suggesting distinct mechanisms underlying cellular stress. Understanding these sex-specific mechanisms could facilitate the development of targeted therapeutic strategies for lung diseases associated with environmental insults. Recognizing sex-based differences in disease susceptibility and treatment response can lead to personalized care and improved outcomes. Clinical trials should consider sex as a biological variable to develop effective interventions that address the unique differences between men and women in respiratory diseases.NEW & NOTEWORTHY The study underscores the importance of considering sex-specific differences in the airway epithelium in respiratory diseases such as COPD. Differences in gene expression between males and females at baseline and in response to chronic injury in the airway epithelium could have implications on disease susceptibility, both in COPD and other respiratory diseases. Therefore, understanding these differences is crucial for developing targeted therapies to treat respiratory diseases based on a sex-specific manner.
Collapse
Affiliation(s)
- Baishakhi Ghosh
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Pratulya Pragadaraju Chengala
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Sonya Shah
- Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| | - Daniel Chen
- Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| | - Vaishnavi Karnam
- Zanvyl Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland, United States
| | - Kai Wilmsen
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Bonnie Yeung-Luk
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States
| | - Venkataramana K Sidhaye
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
19
|
Lim EY, Song EJ, Shin HS. Gut Microbiome as a Possible Cause of Occurrence and Therapeutic Target in Chronic Obstructive Pulmonary Disease. J Microbiol Biotechnol 2023; 33:1111-1118. [PMID: 37164760 PMCID: PMC10580882 DOI: 10.4014/jmb.2301.01033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/12/2023]
Abstract
As a long-term condition that affects the airways and lungs, chronic obstructive pulmonary disease (COPD) is characterized by inflammation, emphysema, breathlessness, chronic cough, and sputum production. Currently, the bronchodilators and anti-inflammatory drugs prescribed for COPD are mostly off-target, warranting new disease management strategies. Accumulating research has revealed the gut-lung axis to be a bidirectional communication system. Cigarette smoke, a major exacerbating factor in COPD and lung inflammation, affects gut microbiota composition and diversity, causing gut microbiota dysbiosis, a condition that has recently been described in COPD patients and animal models. For this review, we focused on the gut-lung axis, which is influenced by gut microbial metabolites, bacterial translocation, and immune cell modulation. Further, we have summarized the findings of preclinical and clinical studies on the association between gut microbiota and COPD to provide a basis for using gut microbiota in therapeutic strategies against COPD. Our review also proposes that further research on probiotics, prebiotics, short-chain fatty acids, and fecal microbiota transplantation could assist therapeutic approaches targeting the gut microbiota to alleviate COPD.
Collapse
Affiliation(s)
- Eun Yeong Lim
- Food Functionality Research Division, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Eun-Ji Song
- Food Functionality Research Division, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Hee Soon Shin
- Food Functionality Research Division, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
20
|
Desplanche E, Grillet PE, Wynands Q, Bideaux P, Alburquerque L, Charrabi A, Bourdin A, Cazorla O, Gouzi F, Virsolvy A. Elevated Blood Pressure Occurs without Endothelial Dysfunction in a Rat Model of Pulmonary Emphysema. Int J Mol Sci 2023; 24:12609. [PMID: 37628790 PMCID: PMC10454081 DOI: 10.3390/ijms241612609] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is an inflammatory lung disease involving airway closure and parenchyma destruction (emphysema). Cardiovascular diseases are the main causes of morbi-mortality in COPD and, in particular, hypertension and heart failure with preserved ejection fraction (HFpEF). However, no mechanistic link has currently been established between the onset of COPD, elevated blood pressure (BP) and systemic vascular impairment (endothelial dysfunction). Thus, we aimed to characterize BP and vascular function and remodeling in a rat model of exacerbated emphysema focusing on the role of sympathetic hyperactivity. Emphysema was induced in male Wistar rats by four weekly pulmonary instillations of elastase (4UI) and exacerbation by a single dose of lipopolysaccharides (LPS). Five weeks following the last instillation, in vivo and ex vivo cardiac and vascular functions were investigated. Exacerbated emphysema induced cardiac dysfunction (HFpEF) and a BP increase in this COPD model. We observed vasomotor changes and hypotrophic remodeling of the aorta without endothelial dysfunction. Indeed, changes in contractile and vasorelaxant properties, though endothelium-dependent, were pro-relaxant and NO-independent. A β1-receptor antagonist (bisoprolol) prevented HFpEF and vascular adaptations, while the effect on BP increase was partial. Endothelial dysfunction would not trigger hypertension and HFpEF in COPD. Vascular changes appeared as an adaptation to the increased BP. The preventing effect of bisoprolol revealed a pivotal role of sympathetic hyperactivation in BP elevation. The mechanistic link between HFpEF, cardiac sympathetic activation and BP deserves further studies in this exacerbated-emphysema model, as well as in COPD patients.
Collapse
Affiliation(s)
- Elodie Desplanche
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34295 Montpellier, France; (E.D.); (Q.W.); (P.B.); (L.A.); (A.C.); (O.C.)
| | - Pierre-Edouard Grillet
- PhyMedExp, Université de Montpellier, INSERM, CNRS, CHU de Montpellier, 34295 Montpellier, France; (P.-E.G.); (A.B.); (F.G.)
| | - Quentin Wynands
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34295 Montpellier, France; (E.D.); (Q.W.); (P.B.); (L.A.); (A.C.); (O.C.)
| | - Patrice Bideaux
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34295 Montpellier, France; (E.D.); (Q.W.); (P.B.); (L.A.); (A.C.); (O.C.)
| | - Laurie Alburquerque
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34295 Montpellier, France; (E.D.); (Q.W.); (P.B.); (L.A.); (A.C.); (O.C.)
| | - Azzouz Charrabi
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34295 Montpellier, France; (E.D.); (Q.W.); (P.B.); (L.A.); (A.C.); (O.C.)
| | - Arnaud Bourdin
- PhyMedExp, Université de Montpellier, INSERM, CNRS, CHU de Montpellier, 34295 Montpellier, France; (P.-E.G.); (A.B.); (F.G.)
| | - Olivier Cazorla
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34295 Montpellier, France; (E.D.); (Q.W.); (P.B.); (L.A.); (A.C.); (O.C.)
| | - Fares Gouzi
- PhyMedExp, Université de Montpellier, INSERM, CNRS, CHU de Montpellier, 34295 Montpellier, France; (P.-E.G.); (A.B.); (F.G.)
| | - Anne Virsolvy
- PhyMedExp, Université de Montpellier, INSERM, CNRS, 34295 Montpellier, France; (E.D.); (Q.W.); (P.B.); (L.A.); (A.C.); (O.C.)
| |
Collapse
|
21
|
Upadhyay P, Wu CW, Pham A, Zeki AA, Royer CM, Kodavanti UP, Takeuchi M, Bayram H, Pinkerton KE. Animal models and mechanisms of tobacco smoke-induced chronic obstructive pulmonary disease (COPD). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:275-305. [PMID: 37183431 PMCID: PMC10718174 DOI: 10.1080/10937404.2023.2208886] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide, and its global health burden is increasing. COPD is characterized by emphysema, mucus hypersecretion, and persistent lung inflammation, and clinically by chronic airflow obstruction and symptoms of dyspnea, cough, and fatigue in patients. A cluster of pathologies including chronic bronchitis, emphysema, asthma, and cardiovascular disease in the form of hypertension and atherosclerosis variably coexist in COPD patients. Underlying causes for COPD include primarily tobacco use but may also be driven by exposure to air pollutants, biomass burning, and workplace related fumes and chemicals. While no single animal model might mimic all features of human COPD, a wide variety of published models have collectively helped to improve our understanding of disease processes involved in the genesis and persistence of COPD. In this review, the pathogenesis and associated risk factors of COPD are examined in different mammalian models of the disease. Each animal model included in this review is exclusively created by tobacco smoke (TS) exposure. As animal models continue to aid in defining the pathobiological mechanisms of and possible novel therapeutic interventions for COPD, the advantages and disadvantages of each animal model are discussed.
Collapse
Affiliation(s)
- Priya Upadhyay
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| | - Ching-Wen Wu
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| | - Alexa Pham
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| | - Amir A. Zeki
- Department of Internal Medicine; Division of Pulmonary, Critical Care, and Sleep Medicine, Center for Comparative Respiratory Biology and Medicine, School of Medicine; University of California, Davis, School of Medicine; U.C. Davis Lung Center; Davis, CA USA
| | - Christopher M. Royer
- California National Primate Research Center, University of California, Davis, Davis, CA 95616 USA
| | - Urmila P. Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Minoru Takeuchi
- Department of Animal Medical Science, Kyoto Sangyo University, Kyoto, Japan
| | - Hasan Bayram
- Koc University Research Center for Translational Medicine (KUTTAM), School of Medicine, Istanbul, Turkey
| | - Kent E. Pinkerton
- Center for Health and the Environment, University of California, Davis, Davis, CA 95616 USA
| |
Collapse
|
22
|
Tanino R, Tsubata Y, Hotta T, Okimoto T, Amano Y, Takechi M, Tanaka T, Akita T, Nagase M, Yamashita C, Wada K, Isobe T. Characterization of a spontaneous mouse model of mild, accelerated aging via ECM degradation in emphysematous lungs. Sci Rep 2023; 13:10740. [PMID: 37400563 DOI: 10.1038/s41598-023-37638-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/25/2023] [Indexed: 07/05/2023] Open
Abstract
Emphysema limits airflow and causes irreversible progression of chronic obstructive pulmonary disease (COPD). Strain differences must be considered when selecting mouse models of COPD, owing to disease complexity. We previously reported that a novel C57BL/6JJcl substrain, the Mayumi-Emphysema (ME) mouse, exhibits spontaneous emphysema; however, the other characteristics remain unknown. We aimed to characterize the lungs of ME mice and determine their experimental availability as a model. ME mice had a lower body weight than the control C57BL/6JJcl mice, with a median survival time of ~80 weeks. ME mice developed diffused emphysema with respiratory dysfunction from 8 to 26 weeks of age, but did not develop bronchial wall thickening. Proteomic analyses revealed five extracellular matrix-related clusters in downregulated lung proteins in ME mice. Moreover, EFEMP2/fibulin-4, an essential extracellular matrix protein, was the most downregulated protein in the lungs of ME mice. Murine and human EFEMP2 were detected in the pulmonary artery. Furthermore, patients with mild COPD showed decreased EFEMP2 levels in the pulmonary artery when compared to those without COPD. The ME mouse is a model of mild, accelerated aging with low-inflammatory emphysema and respiratory dysfunction that progresses with age and pulmonary EFEMP2 decrease, similar to that observed in patients with mild COPD.
Collapse
Affiliation(s)
- Ryosuke Tanino
- Department of Internal Medicine, Division of Respiratory Medicine and Medical Oncology, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo, Shimane, 693-8501, Japan
| | - Yukari Tsubata
- Department of Internal Medicine, Division of Respiratory Medicine and Medical Oncology, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo, Shimane, 693-8501, Japan.
| | - Takamasa Hotta
- Department of Internal Medicine, Division of Respiratory Medicine and Medical Oncology, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo, Shimane, 693-8501, Japan
| | - Tamio Okimoto
- Department of Internal Medicine, Division of Respiratory Medicine and Medical Oncology, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo, Shimane, 693-8501, Japan
| | - Yoshihiro Amano
- Department of Internal Medicine, Division of Respiratory Medicine and Medical Oncology, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo, Shimane, 693-8501, Japan
| | - Mayumi Takechi
- Department of Experimental Animals, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo, Japan
| | - Tetsuya Tanaka
- Department of Human Nutrition, Faculty of Contemporary Life Science, Chugoku Gakuen University, Okayama, Japan
| | - Tomomi Akita
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Mamiko Nagase
- Department of Organ Pathology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Chikamasa Yamashita
- Department of Pharmaceutics and Drug Delivery, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Koichiro Wada
- Department of Pharmacology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Takeshi Isobe
- Department of Internal Medicine, Division of Respiratory Medicine and Medical Oncology, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo, Shimane, 693-8501, Japan
| |
Collapse
|
23
|
Cazzola M, Hanania NA, Page CP, Matera MG. Novel Anti-Inflammatory Approaches to COPD. Int J Chron Obstruct Pulmon Dis 2023; 18:1333-1352. [PMID: 37408603 PMCID: PMC10318108 DOI: 10.2147/copd.s419056] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Airway inflammation, driven by different types of inflammatory cells and mediators, plays a fundamental role in COPD and its progression. Neutrophils, eosinophils, macrophages, and CD4+ and CD8+ T lymphocytes are key players in this process, although the extent of their participation varies according to the patient's endotype. Anti-inflammatory medications may modify the natural history and progression of COPD. However, since airway inflammation in COPD is relatively resistant to corticosteroid therapy, innovative pharmacological anti-inflammatory approaches are required. The heterogeneity of inflammatory cells and mediators in annethe different COPD endo-phenotypes requires the development of specific pharmacologic agents. Indeed, over the past two decades, several mechanisms that influence the influx and/or activity of inflammatory cells in the airways and lung parenchyma have been identified. Several of these molecules have been tested in vitro models and in vivo in laboratory animals, but only a few have been studied in humans. Although early studies have not been encouraging, useful information emerged suggesting that some of these agents may need to be further tested in specific subgroups of patients, hopefully leading to a more personalized approach to treating COPD.
Collapse
Affiliation(s)
- Mario Cazzola
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Nicola A Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Clive P Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King’s College London, London, UK
| | - Maria Gabriella Matera
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
24
|
Optimization of Primary Human Bronchial Epithelial 3D Cell Culture with Donor-Matched Fibroblasts and Comparison of Two Different Culture Media. Int J Mol Sci 2023; 24:ijms24044113. [PMID: 36835529 PMCID: PMC9965758 DOI: 10.3390/ijms24044113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
In vitro airway models are increasingly important for pathomechanistic analyses of respiratory diseases. Existing models are limited in their validity by their incomplete cellular complexity. We therefore aimed to generate a more complex and meaningful three-dimensional (3D) airway model. Primary human bronchial epithelial cells (hbEC) were propagated in airway epithelial cell growth (AECG) or PneumaCult ExPlus medium. Generating 3D models, hbEC were airlifted and cultured on a collagen matrix with donor-matched bronchial fibroblasts for 21 days comparing two media (AECG or PneumaCult ALI (PC ALI)). 3D models were characterized by histology and immunofluorescence staining. The epithelial barrier function was quantified by transepithelial electrical resistance (TEER) measurements. The presence and function of ciliated epithelium were determined by Western blot and microscopy with high-speed camera. In 2D cultures, an increased number of cytokeratin 14-positive hbEC was present with AECG medium. In 3D models, AECG medium accounted for high proliferation, resulting in hypertrophic epithelium and fluctuating TEER values. Models cultured with PC ALI medium developed a functional ciliated epithelium with a stable epithelial barrier. Here, we established a 3D model with high in vivo-in vitro correlation, which has the potential to close the translational gap for investigations of the human respiratory epithelium in pharmacological, infectiological, and inflammatory research.
Collapse
|
25
|
Tanner L, Single AB, Bhongir RKV, Heusel M, Mohanty T, Karlsson CAQ, Pan L, Clausson CM, Bergwik J, Wang K, Andersson CK, Oommen RM, Erjefält JS, Malmström J, Wallner O, Boldogh I, Helleday T, Kalderén C, Egesten A. Small-molecule-mediated OGG1 inhibition attenuates pulmonary inflammation and lung fibrosis in a murine lung fibrosis model. Nat Commun 2023; 14:643. [PMID: 36746968 PMCID: PMC9902543 DOI: 10.1038/s41467-023-36314-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
Interstitial lung diseases such as idiopathic pulmonary fibrosis (IPF) are caused by persistent micro-injuries to alveolar epithelial tissues accompanied by aberrant repair processes. IPF is currently treated with pirfenidone and nintedanib, compounds which slow the rate of disease progression but fail to target underlying pathophysiological mechanisms. The DNA repair protein 8-oxoguanine DNA glycosylase-1 (OGG1) has significant roles in the modulation of inflammation and metabolic syndromes. Currently, no pharmaceutical solutions targeting OGG1 have been utilized in the treatment of IPF. In this study we show Ogg1-targeting siRNA mitigates bleomycin-induced pulmonary fibrosis in male mice, highlighting OGG1 as a tractable target in lung fibrosis. The small molecule OGG1 inhibitor, TH5487, decreases myofibroblast transition and associated pro-fibrotic gene expressions in fibroblast cells. In addition, TH5487 decreases levels of pro-inflammatory mediators, inflammatory cell infiltration, and lung remodeling in a murine model of bleomycin-induced pulmonary fibrosis conducted in male C57BL6/J mice. OGG1 and SMAD7 interact to induce fibroblast proliferation and differentiation and display roles in fibrotic murine and IPF patient lung tissue. Taken together, these data suggest that TH5487 is a potentially clinically relevant treatment for IPF but further study in human trials is required.
Collapse
Affiliation(s)
- L Tanner
- Respiratory Medicine, Allergology, & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 84, Lund, Sweden.
| | - A B Single
- Respiratory Medicine, Allergology, & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 84, Lund, Sweden
| | - R K V Bhongir
- Respiratory Medicine, Allergology, & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 84, Lund, Sweden
| | - M Heusel
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-221 84, Lund, Sweden
| | - T Mohanty
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-221 84, Lund, Sweden
| | - C A Q Karlsson
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-221 84, Lund, Sweden
| | - L Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - C-M Clausson
- Division of Airway Inflammation, Department of Experimental Medical Sciences, Lund University, SE-221 84, Lund, Sweden
| | - J Bergwik
- Respiratory Medicine, Allergology, & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 84, Lund, Sweden
| | - K Wang
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - C K Andersson
- Respiratory Cell Biology, Department of Experimental Medical Sciences Lund, Lund University, SE-221 84, Lund, Sweden
| | - R M Oommen
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - J S Erjefält
- Division of Airway Inflammation, Department of Experimental Medical Sciences, Lund University, SE-221 84, Lund, Sweden
| | - J Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, SE-221 84, Lund, Sweden
| | - O Wallner
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden
| | - I Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX, 77555, USA
| | - T Helleday
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- Oxcia AB, Norrbackagatan 70C, SE-113 34, Stockholm, Sweden
- Weston Park Cancer Centre, Department of Oncology and Metabolism, University of Sheffield, Sheffield, S10 2RX, UK
| | - C Kalderén
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska Institutet, SE-171 76, Stockholm, Sweden
- Oxcia AB, Norrbackagatan 70C, SE-113 34, Stockholm, Sweden
| | - A Egesten
- Respiratory Medicine, Allergology, & Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, SE-221 84, Lund, Sweden
| |
Collapse
|
26
|
Siraitia grosvenorii Extract Attenuates Airway Inflammation in a Murine Model of Chronic Obstructive Pulmonary Disease Induced by Cigarette Smoke and Lipopolysaccharide. Nutrients 2023; 15:nu15020468. [PMID: 36678340 PMCID: PMC9865488 DOI: 10.3390/nu15020468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
We studied the activities of Siraitia grosvenorii extracts (SGE) on airway inflammation in a mouse model of chronic obstructive pulmonary disease (COPD) stimulated by cigarette smoke extract (CSE) and lipopolysaccharide (LPS), as well as in LPS-treated human bronchial epithelial cell line (BEAS-2B). SGE improved the viability of LPS-incubated BEAS-2B cells and inhibited the expression and production of inflammatory cytokines. SGE also attenuated the mitogen-activated protein kinase (MAPK)-nuclear factor-kappa B (NF-κB) signaling activated by LPS stimulation in BEAS-2B cells. In mice stimulated by CSE and LPS, we observed the infiltration of immune cells into the airway after COPD induction. SGE reduced the number of activated T cells, B cells, and neutrophils in bronchoalveolar fluid (BALF), lung tissue, mesenteric lymph node, and peripheral blood mononuclear cells, as well as inhibited infiltration into organs and mucus production. The secretion of cytokines in BALF and the expression level of pro-inflammatory cytokines, mucin 5AC, Transient receptor potential vanilloid 1, and Transient receptor potential ankyrin 1 in lung tissue were alleviated by SGE. In addition, to investigate the activity of SGE on expectoration, we evaluated phenol red secretions in the trachea of mice. SGE administration showed the effect of improving expectoration through an increase in phenol red secretion. Consequently, SGE attenuates the airway inflammatory response in CSE/LPS-stimulated COPD. These findings indicate that SGE may be a potential herbal candidate for the therapy of COPD.
Collapse
|
27
|
Patel VS, Amin K, Wahab A, Marimoutou M, Ukishima L, Alvarez J, Battle K, Stucki AO, Clippinger AJ, Behrsing HP. Cryopreserved human precision-cut lung slices provide an immune competent pulmonary test system for "on-demand" use and long-term cultures. Toxicol Sci 2023; 191:253-265. [PMID: 36617185 PMCID: PMC9936202 DOI: 10.1093/toxsci/kfac136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human precision-cut lung slices (hPCLS), considered a highly relevant ex vivo model of the lung, offer native architecture and cells of the lung tissue including respiratory parenchyma, small airways, and immune competent cells. However, the irregular availability of donor lungs has limited the accessibility of this system. As described here, thousands of hPCLS can be created from 1 lung, cryopreserved, and used "on demand" by applying slicing and cryopreservation methodology improvements. Fresh and cryopreserved (∼7 and ∼34 weeks; F&C) hPCLS from 1 donor lung were cultured for up to 29 days and evaluated for biomass, viability, tissue integrity, and inflammatory markers in response to lipopolysaccharide (LPS; 5 µg/ml) and Triton X-100 (TX100; 0.1%) challenge (24 h) at days 1, 8, 15, 22, and 29 following culture initiation. The F&C hPCLS retained biomass, viability, and tissue integrity throughout the 29 days and demonstrated immune responsiveness with up to ∼30-fold LPS-induced cytokine increases. Histologically, more than 70% of normal cytomorphological features were preserved in all groups through day 29. Similar retention of tissue viability and immune responsiveness post cryopreservation (4-6 weeks) and culture (up to 14 days) was observed in hPCLS from additional 3 donor lungs. Banking cryopreserved hPCLS from various donors (and disease states) provides a critical element in researching human-derived pulmonary tissue. The retention of viability and functional responsiveness (≥4 weeks) allows evaluation of long-term, complex endpoints reflecting key events in Adverse Outcome Pathways and positions hPCLS as a valuable human-relevant model for use in regulatory applications.
Collapse
Affiliation(s)
- Vivek S Patel
- To whom correspondence should be addressed at Institute for In Vitro Sciences, Inc., 30 West Watkins Mill Road, Suite 100, Gaithersburg, MD 20878. E-mail:
| | - Khalid Amin
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Adam Wahab
- Institute for In Vitro Sciences, Inc., Gaithersburg, Maryland 20878, USA
| | - Méry Marimoutou
- Institute for In Vitro Sciences, Inc., Gaithersburg, Maryland 20878, USA
| | - Lindsey Ukishima
- Institute for In Vitro Sciences, Inc., Gaithersburg, Maryland 20878, USA
| | - Jose Alvarez
- Institute for In Vitro Sciences, Inc., Gaithersburg, Maryland 20878, USA
| | - Kelley Battle
- Institute for In Vitro Sciences, Inc., Gaithersburg, Maryland 20878, USA
| | - Andreas O Stucki
- PETA Science Consortium International e.V., Stuttgart 70499, Germany
| | - Amy J Clippinger
- PETA Science Consortium International e.V., Stuttgart 70499, Germany
| | - Holger P Behrsing
- Institute for In Vitro Sciences, Inc., Gaithersburg, Maryland 20878, USA
| |
Collapse
|
28
|
Laucirica DR, Stick SM, Garratt LW, Kicic A. Bacteriophage: A new therapeutic player to combat neutrophilic inflammation in chronic airway diseases. Front Med (Lausanne) 2022; 9:1069929. [PMID: 36590945 PMCID: PMC9794625 DOI: 10.3389/fmed.2022.1069929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Persistent respiratory bacterial infections are a clinical burden in several chronic inflammatory airway diseases and are often associated with neutrophil infiltration into the lungs. Following recruitment, dysregulated neutrophil effector functions such as increased granule release and formation of neutrophil extracellular traps (NETs) result in damage to airway tissue, contributing to the progression of lung disease. Bacterial pathogens are a major driver of airway neutrophilic inflammation, but traditional management of infections with antibiotic therapy is becoming less effective as rates of antimicrobial resistance rise. Bacteriophages (phages) are now frequently identified as antimicrobial alternatives for antimicrobial resistant (AMR) airway infections. Despite growing recognition of their bactericidal function, less is known about how phages influence activity of neutrophils recruited to sites of bacterial infection in the lungs. In this review, we summarize current in vitro and in vivo findings on the effects of phage therapy on neutrophils and their inflammatory mediators, as well as mechanisms of phage-neutrophil interactions. Understanding these effects provides further validation of their safe use in humans, but also identifies phages as a targeted neutrophil-modulating therapeutic for inflammatory airway conditions.
Collapse
Affiliation(s)
- Daniel R. Laucirica
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Stephen M. Stick
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Luke W. Garratt
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
| | - Anthony Kicic
- Wal-yan Respiratory Research Centre, Telethon Kids Institute, The University of Western Australia, Nedlands, WA, Australia
- Department of Respiratory and Sleep Medicine, Perth Children’s Hospital, Nedlands, WA, Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
- School of Population Health, Curtin University, Bentley, WA, Australia
| |
Collapse
|
29
|
The establishment of COPD organoids to study host-pathogen interaction reveals enhanced viral fitness of SARS-CoV-2 in bronchi. Nat Commun 2022; 13:7635. [PMID: 36496442 PMCID: PMC9735280 DOI: 10.1038/s41467-022-35253-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterised by airflow limitation and infective exacerbations, however, in-vitro model systems for the study of host-pathogen interaction at the individual level are lacking. Here, we describe the establishment of nasopharyngeal and bronchial organoids from healthy individuals and COPD that recapitulate disease at the individual level. In contrast to healthy organoids, goblet cell hyperplasia and reduced ciliary beat frequency were observed in COPD organoids, hallmark features of the disease. Single-cell transcriptomics uncovered evidence for altered cellular differentiation trajectories in COPD organoids. SARS-CoV-2 infection of COPD organoids revealed more productive replication in bronchi, the key site of infection in severe COVID-19. Viral and bacterial exposure of organoids induced greater pro-inflammatory responses in COPD organoids. In summary, we present an organoid model that recapitulates the in vivo physiological lung microenvironment at the individual level and is amenable to the study of host-pathogen interaction and emerging infectious disease.
Collapse
|
30
|
Hattori N, Nakagawa T, Yoneda M, Hayashida H, Nakagawa K, Yamamoto K, Htun MW, Shibata Y, Koji T, Ito T. Compounds in cigarette smoke induce EGR1 expression via the AHR, resulting in apoptosis and COPD. J Biochem 2022; 172:365-376. [PMID: 36200927 DOI: 10.1093/jb/mvac077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/13/2022] [Indexed: 12/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of mortality worldwide, and pulmonary epithelial cell apoptosis is regarded as one of the most important factors in its pathogenesis. Here, we examined the molecular mechanisms of apoptosis caused by cigarette smoke (CS). In the normal bronchial epithelium cell line BEAS-2B, a CS extract markedly induced apoptosis together with transient early growth response 1 (EGR1) protein expression, which is activated over time via the aryl hydrocarbon receptor (AHR). The CS extract-induced apoptosis decreased cell count of BEAS-2B cells and was significantly reversed by knockdown of either EGR1 or AHR. In vivo, the CS extract caused alveolar wall destruction, mimicking COPD, 1 week after intrathoracic injection. Bronchoalveolar lavage fluid (BALF) from the CS extract-treated mice contained massive numbers of apoptotic epithelial cells. Furthermore, it was found that aminoanthracene induced EGR1 expression and cell apoptosis. By contrast, the AHR antagonist stemregenin 1 (SR1) restored apoptosis upon CS treatment. These results suggest that aryl hydrocarbons, such as aminoanthracene, induce EGR1 expression via the AHR, resulting in cell apoptosis and that this can be prevented by administration of an antagonist of AHR.
Collapse
Affiliation(s)
- Naoko Hattori
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan.,Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan.,Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Takeya Nakagawa
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan.,Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan
| | - Mitsuhiro Yoneda
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan.,Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan
| | - Hiromi Hayashida
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan.,Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan
| | - Kaori Nakagawa
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan.,Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan
| | - Kazuo Yamamoto
- Biomedical Research Support Center, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan
| | - Myo Win Htun
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan.,Department of Histology and Cell Biology, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan
| | - Yasuaki Shibata
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan.,Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Takehiko Koji
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan.,Department of Histology and Cell Biology, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan
| | - Takashi Ito
- Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan.,Department of Biochemistry, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan
| |
Collapse
|
31
|
Zhang C, Zhu W, Meng Q, Lian N, Wu J, Liu B, Wang H, Wang X, Gu S, Wen J, Shen X, Li Y, Qi X. Halotherapy relieves chronic obstructive pulmonary disease by alleviating NLRP3 inflammasome-mediated pyroptosis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1279. [PMID: 36618788 PMCID: PMC9816841 DOI: 10.21037/atm-22-5632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
Background Airway remodeling and inflammation are considered the main characteristics of chronic obstructive pulmonary disease (COPD). Cigarette smoke promotes the occurrence of inflammation, oxidative stress, and pyroptosis. Halotherapy has been shown to dilute secretions in the airways and promote drainage, but the mechanism remains unclear. In this study, we evaluated the anti-inflammatory and antioxidant effects of halotherapy in COPD rats and investigated the underlying mechanism. Methods A COPD rat model was constructed by cigarette smoke and lipopolysaccharide tracheal instillation. A total of 120 male Sprague-Dawley (SD) rats were randomly divided into control, model, halotherapy, terbutaline, halotherapy + terbutaline, and Ac-YVAD-CMK (Caspase-1 inhibitor) groups. After modeling and treatment, the pulmonary function of the rats was measured. Pathological changes in the lungs were measured by hematoxylin-eosin (H&E) staining. Serum interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-4 (IL-4), and nitric oxide (NO) levels were determined using enzyme-linked immunosorbent assay (ELISA) kits. Malondialdehyde (MDA) levels and superoxide dismutase (SOD) activity in the lungs were determined by biochemical tests. The levels of cluster of differentiation 4 (CD4+) and CD8+ T cells in the blood were determined by flow cytometry. The expression levels of Toll-like receptor 4 (TLR4), nuclear factor kappa B (NF-κB), gasdermin-D (GSDMD), nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC), Caspase-1, and IL-1β in lung tissues were detected by immunohistochemistry, Western blotting, or quantitative polymerase chain reaction (qPCR). Results Halotherapy recovered the clinical symptoms of COPD rats, and reduced lung inflammatory cell infiltration and air wall attenuation. It also relieved oxidative stress in the lung tissue of COPD rats, reduced CD4+ and CD8+ T cell accumulation in lung tissue, and decreased inflammatory factor production in the serum of COPD rats. Furthermore, it inhibited the TLR4/NF-κB/GSDMD and NLRP3/ASC/Caspase-1 signaling pathways. Ac-YVAD-CMK could not completely inhibit the therapeutic effect of halotherapy on COPD rats. Conclusions Halotherapy improves lung function by inhibiting the NLRP3/ASC/Caspase-1 signaling pathway to reduce inflammation and pyroptosis in COPD rats, and may be a new option for the prevention and treatment of COPD.
Collapse
Affiliation(s)
- Chenyan Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weijie Zhu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qinghai Meng
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Naqi Lian
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingzhen Wu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bowen Liu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hao Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinyu Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shujun Gu
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingli Wen
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoling Shen
- Nanjing Kuancheng Technology Co., Ltd., Nanjing, China
| | - Yu Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xu Qi
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China;,The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
32
|
Optimization of Long-Acting Bronchodilator Dose Ratios Using Isolated Guinea Pig Tracheal Rings for Synergistic Combination Therapy in Asthma and COPD. Pharmaceuticals (Basel) 2022; 15:ph15080963. [PMID: 36015111 PMCID: PMC9416144 DOI: 10.3390/ph15080963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
The co-administration of a long-acting β2-agonist (LABA), and a long-acting muscarinic antagonist (LAMA), has been shown to be beneficial in the management of non-communicable chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD). The resulting relaxation of the airways can be synergistically enhanced, reducing symptoms and optimizing lung function. This provides an insight into more effective treatments. In this study, the LABAs formoterol fumarate dihydrate (FOR) and indacaterol maleate (IND) were each associated with tiotropium bromide monohydrate (TIO) to assess their synergistic potential. This was done using an appropriate ex vivo model of isolated perfused guinea pig tracheal rings, and pharmacological models of drug interaction. Among the dose ratios studied for both types of combination, a higher synergistic potential was highlighted for FOR/TIO 2:1 (w/w). This was done through three steps by using multiple additions of drugs to the organ baths based on a non-constant dose ratio and then on a constant dose ratio, and by a single addition to the organ baths of specific amounts of drugs. In this way, the synergistic improvement of the relaxant effect on the airways was confirmed, providing a basis for improving therapeutic approaches in asthma and COPD. The synergy found at this dose ratio should now be confirmed on a preclinical model of asthma and COPD by assessing lung function.
Collapse
|
33
|
Mai K, Chen X, Zhang K, Gu S, Wu X, Gu Z, Wu Z, Huang K, Liu Z, Yang Z, Chen D. A juvenile murine model with chronic lung inflammation induced by repeated intratracheal instillation of lipopolysaccharides: a versatile and replicable model. Transl Pediatr 2022; 11:1292-1300. [PMID: 36072534 PMCID: PMC9442212 DOI: 10.21037/tp-22-44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/06/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Recurrent lower respiratory tract infection or chronic pulmonary infection often occur in children with chronic lung diseases (CLDs). By continuous lung inflammation, recurrent and chronic infection could cause irreversible airway structural and lung function damage, which eventually leads to respiratory failure and death. METHODS In purpose of recapitulating persistent high-intensity lung inflammation caused by recurrent lower respiratory tract infection or chronic infection, we established a juvenile murine model with chronic lung inflammation induced by repeated intratracheal instillations of lipopolysaccharides (LPS) from Pseudomonas aeruginosa once a week for 4 weeks. Four-week-old C57BL/6N mice were divided into 4 groups, including LPS0.5 group (n=15), LPS1.0 group (n=15), Control group (n=15) and Normal group (n=15). Mice in LPS0.5 group and LPS1.0 group were instilled intratracheally with 0.5 mg/kg LPS and 1.0 mg/kg LPS respectively. Mice in control group were instilled intratracheally with LPS-free sterile 0.9% NaCl, whereas normal group received no treatment. The successful chronic lung inflammation murine model was validated via (I) pathological manifestations of chronic inflammatory mononuclear-cell infiltration and lung parenchyma damage; (II) decreased lung function. RESULTS All mice in LPS1.0 group died before the third instillation. No death after instillation was observed in Control and LPS0.5 group. Histological analysis revealed that in LPS0.5 group, 7 days after the third instillation, most bronchus and parabronchial vessels were wrapped by infiltrating monocytes and lymphocyte and alveolar cavities were compressed, which were not observed in control and normal group. Also, ratio of forced expiratory volume in 0.1 second (FEV0.1) and forced vital capacity (FVC) in LPS0.5 group was significantly lower (P<0.0001) than both control group and normal group, suggesting ventilatory dysfunction developed after repeatedly intratracheal instillation once a week for 4 weeks. CONCLUSIONS Intratracheal instillation of 0.5 mg/kg LPS once a week for 4 weeks can cause chronic lung inflammation in young mice.
Collapse
Affiliation(s)
- Kailin Mai
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kangkang Zhang
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shujun Gu
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zihao Gu
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhongji Wu
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kaiyin Huang
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenwei Liu
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dehui Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
34
|
Reineckia carnea Alleviates the Production of Inflammatory Cytokines and MUC5AC in Rats with Chronic Obstructive Pulmonary Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2135487. [PMID: 35754687 PMCID: PMC9225912 DOI: 10.1155/2022/2135487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/22/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022]
Abstract
Background Reineckia carnea (RC), a perennial evergreen herb which belongs to Reineckia Kunth (Liliaceae), can be used for clearing the lungs and relieving cough, reducing phlegm and anti-inflammatory effects. Moreover, chronic obstructive pulmonary disease (COPD) is characterized by airway and lung inflammation and increased secretion of airway mucus. Therefore, RC has the potential to treat COPD. Methods NR8383 cells were cultured and treated with various concentrations of RC (100 mg/mL, 10 mg/mL, 1 mg/mL, 100 μg/mL, 10 μg/mL, 1 μg/mL, 100 ng/mL, and 10 ng/mL). Cell viability and levels of interleukin (IL)-1β, cyclooxygenase-2 (COX-2), and prostaglandin E2 (PGE2) in the cell culture supernatant or rat serum were analyzed using CCK-8 and enzyme-linked immunosorbent assay (ELISA), respectively. Sprague Dawley rats were assigned to mock, COPD model, RC (0.67 g/kg, 1.35 g/kg, and 2.7 g/kg), and ambroxol (5.4 mg/kg) groups. Western blot and quantitative polymerase chain reaction (qPCR) analyses were used to evaluate the protein and mRNA expression levels of mucin 5AC (MUC5AC) and Toll-like receptor 4 (TLR4). Results The results showed that Reineckia carnea (RC) extract (RCE) inhibited the proliferation of NR8383 cells and suppressed the production of IL-1β, PGE2, and COX-2 in NR8383 cells. Moreover, RCE decreased the levels of IL-1β, PGE2, and COX-2 in the serum of rats with COPD and alleviated the expression of TLR4 and MUC5AC induced by COPD in rat lung tissue. Conclusion RCE alleviated COPD by inhibiting the expression of COPD-induced inflammatory cytokines and MUC5AC in rats.
Collapse
|
35
|
Tanner L, Bergwik J, Single AB, Bhongir RKV, Erjefält JS, Egesten A. Zoledronic Acid Targeting of the Mevalonate Pathway Causes Reduced Cell Recruitment and Attenuates Pulmonary Fibrosis. Front Pharmacol 2022; 13:899469. [PMID: 35721132 PMCID: PMC9201219 DOI: 10.3389/fphar.2022.899469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background and aim: Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease causing irreparable scarring of lung tissue, with most patients succumbing rapidly after diagnosis. The mevalonate pathway, which is involved in the regulation of cell proliferation, survival, and motility, is targeted by the bisphosphonate zoledronic acid (ZA). The aim of this study was to assess the antifibrotic effects of ZA and to elucidate the mechanisms by which potential IPF treatment occurs. Methods: A series of in vitro and in vivo models were employed to identify the therapeutic potential of ZA in treating IPF. In vitro transwell assays were used to assess the ability of ZA to reduce fibrotic-related immune cell recruitment. Farnesyl diphosphate synthase (FDPS) was screened as a potential antifibrotic target using a bleomycin mouse model. FDPS-targeting siRNA and ZA were administered to mice following the onset of experimentally-induced lung fibrosis. Downstream analyses were conducted on murine lung tissues and lung fluids including 23-plex cytokine array, flow cytometry, histology, Western blotting, immunofluorescent staining, and PCR analysis. Results:In vitro administration of ZA reduced myofibroblast transition and blocked NF-κB signaling in macrophages leading to impaired immune cell recruitment in a transwell assay. FDPS-targeting siRNA administration significantly attenuated profibrotic cytokine production and lung damage in a murine lung fibrosis model. Furthermore, ZA treatment of mice with bleomycin-induced lung damage displayed decreased cytokine levels in the BALF, plasma, and lung tissue, resulting in less histologically visible fibrotic scarring. Bleomycin-induced upregulation of the ZA target, FDPS, was reduced in lung tissue and fibroblasts upon ZA treatment. Confirmatory increases in FDPS immunoreactivity was seen in human IPF resected lung samples compared to control tissue indicating potential translational value of the approach. Additionally, ZA polarized macrophages towards a less profibrotic phenotype contributing to decreased IPF pathogenesis. Conclusion: This study highlights ZA as an expedient and efficacious treatment option against IPF in a clinical setting.
Collapse
Affiliation(s)
- Lloyd Tanner
- Respiratory Medicine, Allergology, and Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Jesper Bergwik
- Respiratory Medicine, Allergology, and Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Andrew B Single
- Respiratory Medicine, Allergology, and Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Ravi K V Bhongir
- Respiratory Medicine, Allergology, and Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| | - Jonas S Erjefält
- Unit of Airway Inflammation, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Arne Egesten
- Respiratory Medicine, Allergology, and Palliative Medicine, Department of Clinical Sciences Lund, Lund University and Skåne University Hospital, Lund, Sweden
| |
Collapse
|
36
|
Calzetta L, Pistocchini E, Ritondo BL, Cavalli F, Camardelli F, Rogliani P. Muscarinic receptor antagonists and airway inflammation: A systematic review on pharmacological models. Heliyon 2022; 8:e09760. [PMID: 35785239 PMCID: PMC9240991 DOI: 10.1016/j.heliyon.2022.e09760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/18/2022] [Accepted: 06/17/2022] [Indexed: 12/05/2022] Open
Abstract
Airway inflammation is crucial in the pathogenesis of many respiratory diseases, including chronic obstructive pulmonary disease (COPD) and asthma. Current evidence supports the beneficial impact of muscarinic receptor antagonists against airway inflammation from bench-to-bedside. Considering the numerous sampling approaches and the ethical implications required to study inflammation in vivo in patients, the use of pre-clinical models is inevitable. Starting from our recently published systematic review concerning the impact of muscarinic antagonists, we have systematically assessed the current pharmacological models of airway inflammation and provided an overview on the advances in in vitro and ex vivo approaches. The purpose of in vitro models is to recapitulate selected pathophysiological parameters or processes that are crucial to the development of new drugs within a controlled environment. Nevertheless, immortalized cell lines or primary airway cells present major limitations, including the inability to fully replicate the conditions of the corresponding cell types within a whole organism. Induced animal models are extensively used in research in the attempt to replicate a respiratory condition reflective of a human pathological state, although considering animal models with spontaneously occurring respiratory diseases may be more appropriate since most of the clinical features are accompanied by lung pathology resembling that of the human condition. In recent years, three-dimensional organoids have become an alternative to animal experiments, also because animal models are unable to fully mimic the complexity of human pulmonary diseases. Ex vivo studies performed on human isolated airways have a superior translational value compared to in vitro and animal models, as they retain the morphology and the microenvironment of the lung in vivo. In the foreseeable future, greater effort should be undertaken to rely on more physiologically relevant models, that provide translational value into clinic and have a direct impact on patient outcomes.
Collapse
Affiliation(s)
- Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
- Corresponding author.
| | - Elena Pistocchini
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Beatrice Ludovica Ritondo
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Francesco Cavalli
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Francesca Camardelli
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
37
|
Clowers MJ, Moghaddam SJ. Cell Type-Specific Roles of STAT3 Signaling in the Pathogenesis and Progression of K-ras Mutant Lung Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14071785. [PMID: 35406557 PMCID: PMC8997152 DOI: 10.3390/cancers14071785] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Lung adenocarcinomas with mutations in the K-ras gene are hard to target pharmacologically and highly lethal. As a result, there is a need to identify other therapeutic targets that influence K-ras oncogenesis. One contender is STAT3, a transcription factor that is associated with K-ras mutations and aids tumor development and progression through tumor cell intrinsic and extrinsic mechanisms. In this review, we summarize the lung epithelial and infiltrating immune cells that express STAT3, the roles of STAT3 in K-ras mutant lung adenocarcinoma, and therapies that may be able to target STAT3. Abstract Worldwide, lung cancer, particularly K-ras mutant lung adenocarcinoma (KM-LUAD), is the leading cause of cancer mortality because of its high incidence and low cure rate. To treat and prevent KM-LUAD, there is an urgent unmet need for alternative strategies targeting downstream effectors of K-ras and/or its cooperating pathways. Tumor-promoting inflammation, an enabling hallmark of cancer, strongly participates in the development and progression of KM-LUAD. However, our knowledge of the dynamic inflammatory mechanisms, immunomodulatory pathways, and cell-specific molecular signals mediating K-ras-induced lung tumorigenesis is substantially deficient. Nevertheless, within this signaling complexity, an inflammatory pathway is emerging as a druggable target: signal transducer and activator of transcription 3 (STAT3). Here, we review the cell type-specific functions of STAT3 in the pathogenesis and progression of KM-LUAD that could serve as a new target for personalized preventive and therapeutic intervention for this intractable form of lung cancer.
Collapse
Affiliation(s)
- Michael J. Clowers
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
38
|
Dudal S, Bissantz C, Caruso A, David-Pierson P, Driessen W, Koller E, Krippendorff BF, Lechmann M, Olivares-Morales A, Paehler A, Rynn C, Türck D, Van De Vyver A, Wang K, Winther L. Translating pharmacology models effectively to predict therapeutic benefit. Drug Discov Today 2022; 27:1604-1621. [PMID: 35304340 DOI: 10.1016/j.drudis.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/03/2022] [Accepted: 03/11/2022] [Indexed: 12/26/2022]
Abstract
Many in vitro and in vivo models are used in pharmacological research to evaluate the role of targeted proteins in a disease. Understanding the translational relevance and limitation of these models for analyzing the disposition, pharmacokinetic/pharmacodynamic (PK/PD) profile, mechanism, and efficacy of a drug, is essential when selecting the most appropriate model of the disease of interest and predicting clinically efficacious doses of the investigational drug. Here, we review selected animal models used in ophthalmology, infectious diseases, oncology, autoimmune diseases, and neuroscience. Each area has specific challenges around translatability and determination of an efficacious dose: new patient-specific dosing methods could help overcome these limitations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Ken Wang
- F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | | |
Collapse
|
39
|
Saxena J, Bisen M, Misra A, Srivastava VK, Kaushik S, Siddiqui AJ, Mishra N, Singh A, Jyoti A. Targeting COPD with PLGA-Based Nanoparticles: Current Status and Prospects. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5058121. [PMID: 35309178 PMCID: PMC8933108 DOI: 10.1155/2022/5058121] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/01/2022] [Accepted: 02/11/2022] [Indexed: 11/17/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is pulmonary emphysema characterized by blockage in the airflow resulting in the long-term breathing problem, hence a major cause of mortality worldwide. Excessive generation of free radicals and the development of chronic inflammation are the major two episodes underlying the pathogenesis of COPD. Currently used drugs targeting these episodes including anti-inflammatory, antioxidants, and corticosteroids are unsafe, require high doses, and pose serious side effects. Nanomaterial-conjugated drugs have shown promising therapeutic potential against different respiratory diseases as they are required in small quantities which lower overall treatment costs and can be effectively targeted to diseased tissue microenvironment hence having minimal side effects. Poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) are safe as their breakdown products are easily metabolized in the body. Drugs loaded on the PLGA NPs have been shown to be promising agents as anticancer, antimicrobial, antioxidants, and anti-inflammatory. Surface modification of PLGA NPs can further improve their mechanical properties, drug loading potential, and pharmacological activities. In the present review, we have presented a brief insight into the pathophysiological mechanism underlying COPD and highlighted the role, potential, and current status of PLGA NPs loaded with drugs in the therapy of COPD.
Collapse
Affiliation(s)
- Juhi Saxena
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab 140413, India
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Monish Bisen
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Aditya Misra
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India
| | - Vijay Kumar Srivastava
- Amity Institute of Biotechnology, Amity University Rajasthan, Amity Education Valley, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University Rajasthan, Amity Education Valley, Kant Kalwar, NH-11C, Jaipur-Delhi Highway, Jaipur, India
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Neetu Mishra
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, Maharashtra 412115, India
| | - Abhijeet Singh
- Department of Biosciences, Manipal University Jaipur, Rajasthan 303007, India
| | - Anupam Jyoti
- Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, Mohali, Punjab 140413, India
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Bajhol, Solan, Himachal Pradesh 173229, India
| |
Collapse
|
40
|
Sadekar N, Boisleve F, Dekant W, Fryer AD, Gerberick GF, Griem P, Hickey C, Krutz NL, Lemke O, Mignatelli C, Panettieri R, Pinkerton KE, Renskers KJ, Sterchele P, Switalla S, Wolter M, Api AM. Identifying a reference list of respiratory sensitizers for the evaluation of novel approaches to study respiratory sensitization. Crit Rev Toxicol 2022; 51:792-804. [PMID: 35142253 DOI: 10.1080/10408444.2021.2024142] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The induction of immunological responses that trigger bio-physiological symptoms in the respiratory tract following repeated exposure to a substance, is known as respiratory sensitization. The inducing compound is known as a respiratory sensitizer. While respiratory sensitization by high molecular weight (HMW) materials is recognized and extensively studied, much less information is available regarding low molecular weight (LMW) materials as respiratory sensitizers. Variability of symptoms presented in humans from such exposures, limited availability of (and access to) documented reports, and the absence of standardized and validated test models, hinders the identification of true respiratory sensitizers. This review aims to sort suspected LMW respiratory sensitizers based on available compelling, reasonable, inadequate, or questionable evidence in humans from occupational exposures and use this information to compose a reference list of reported chemical respiratory sensitizers for scientific research purposes. A list of 97 reported respiratory sensitizers was generated from six sources, and 52 LMW organic chemicals were identified, reviewed, and assigned to the four evidence categories. Less than 10 chemicals were confirmed with compelling evidence for induction of respiratory sensitization in humans from occupational exposures. Here, we propose the reference list for developing novel research on respiratory sensitization.
Collapse
Affiliation(s)
- Nikaeta Sadekar
- Research Institute for Fragrance Materials (RIFM), Woodcliff Lake, NJ, USA
| | | | - Wolfgang Dekant
- Institute of Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Allison D Fryer
- Division of Pulmonary and Critical Care Medicine, Oregon Health Science University, Portland, OR, USA
| | | | | | | | - Nora L Krutz
- NV Procter & Gamble Services Company SA, Global Product Stewardship, Strombeek-Bever, Belgium
| | | | | | - Reynold Panettieri
- Rutgers Institute for Translational Medicine and Science (RITMS), Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Kent E Pinkerton
- Center for Health and the Environment and Department of Pediatrics, University of California, Davis, CA, USA
| | | | | | | | | | - Anne Marie Api
- Research Institute for Fragrance Materials (RIFM), Woodcliff Lake, NJ, USA
| |
Collapse
|
41
|
Araújo NPDS, de Matos NA, Oliveira M, de Souza ABF, Castro TDF, Machado-Júnior PA, de Souza DMS, Talvani A, Cangussú SD, de Menezes RCA, Bezerra FS. Quercetin Improves Pulmonary Function and Prevents Emphysema Caused by Exposure to Cigarette Smoke in Male Mice. Antioxidants (Basel) 2022; 11:antiox11020181. [PMID: 35204064 PMCID: PMC8868486 DOI: 10.3390/antiox11020181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the major cause of morbidity and mortality worldwide, and cigarette smoke is a key factor in the development of COPD. Thus, the development of effective therapies to prevent the advancement of COPD has become increasingly essential. We hypothesized that quercetin protects lungs in mice exposed to long-term cigarette smoke. Thirty-five C57BL/6 mice were exposed to cigarette smoke (12 cigarettes per day) for 60 days and pretreated with 10 mg/kg/day of quercetin via orogastric gavage. After the experimental protocol, the animals were euthanized and samples were collected for histopathological, antioxidant defense, oxidative stress and inflammatory analysis. The animals exposed to cigarette smoke showed an increase in respiratory rate and hematological parameters, cell influx into the airways, oxidative damage and inflammatory mediators, besides presenting with alterations in the pulmonary histoarchitecture. The animals receiving 10 mg/kg/day of quercetin that were exposed to cigarette smoke presented a reduction in cellular influx, less oxidative damage, reduction in cytokine levels, improvement in the histological pattern and improvement in pulmonary emphysema compared to the group that was only exposed to cigarette smoke. These results suggest that quercetin may be an agent in preventing pulmonary emphysema induced by cigarette smoke.
Collapse
Affiliation(s)
- Natália Pereira da Silva Araújo
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Natália Alves de Matos
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Michel Oliveira
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Pedro Alves Machado-Júnior
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Débora Maria Soares de Souza
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (D.M.S.d.S.); (A.T.)
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (D.M.S.d.S.); (A.T.)
| | - Sílvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
| | - Rodrigo Cunha Alvim de Menezes
- Laboratory of Cardiovascular Physiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil;
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto 35400-000, Brazil; (N.P.d.S.A.); (N.A.d.M.); (M.O.); (A.B.F.d.S.); (T.d.F.C.); (P.A.M.-J.); (S.D.C.)
- Correspondence:
| |
Collapse
|
42
|
Moreira A, Müller M, Costa PF, Kohl Y. Advanced In Vitro Lung Models for Drug and Toxicity Screening: The Promising Role of Induced Pluripotent Stem Cells. Adv Biol (Weinh) 2021; 6:e2101139. [PMID: 34962104 DOI: 10.1002/adbi.202101139] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/25/2021] [Indexed: 12/24/2022]
Abstract
The substantial socioeconomic burden of lung diseases, recently highlighted by the disastrous impact of the coronavirus disease 2019 (COVID-19) pandemic, accentuates the need for interventive treatments capable of decelerating disease progression, limiting organ damage, and contributing to a functional tissue recovery. However, this is hampered by the lack of accurate human lung research models, which currently fail to reproduce the human pulmonary architecture and biochemical environment. Induced pluripotent stem cells (iPSCs) and organ-on-chip (OOC) technologies possess suitable characteristics for the generation of physiologically relevant in vitro lung models, allowing for developmental studies, disease modeling, and toxicological screening. Importantly, these platforms represent potential alternatives for animal testing, according to the 3Rs (replace, reduce, refine) principle, and hold promise for the identification and approval of new chemicals under the European REACH (registration, evaluation, authorization and restriction of chemicals) framework. As such, this review aims to summarize recent progress made in human iPSC- and OOC-based in vitro lung models. A general overview of the present applications of in vitro lung models is presented, followed by a summary of currently used protocols to generate different lung cell types from iPSCs. Lastly, recently developed iPSC-based lung models are discussed.
Collapse
Affiliation(s)
| | - Michelle Müller
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany
| | - Pedro F Costa
- BIOFABICS, Rua Alfredo Allen 455, Porto, 4200-135, Portugal
| | - Yvonne Kohl
- Department of Bioprocessing and Bioanalytics, Fraunhofer Institute for Biomedical Engineering IBMT, Joseph-von-Fraunhofer-Weg 1, 66280, Sulzbach, Germany.,Postgraduate Course for Toxicology and Environmental Toxicology, Medical Faculty, University of Leipzig, Johannisallee 28, 04103, Leipzig, Germany
| |
Collapse
|
43
|
Replacement Strategies for Animal Studies in Inhalation Testing. SCI 2021. [DOI: 10.3390/sci3040045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Animal testing is mandatory in drug testing and is the gold standard for toxicity and efficacy evaluations. This situation is expected to change in the future as the 3Rs principle, which stands for the replacement, reduction, and refinement of the use of animals in science, is reinforced by many countries. On the other hand, technologies for alternatives to animal testing have increased. The need to develop and use alternatives depends on the complexity of the research topic and also on the extent to which the currently used animal models can mimic human physiology and/or exposure. The lung morphology and physiology of commonly used animal species differs from that of human lungs, and the realistic inhalation exposure of animals is challenging. In vitro and in silico methods can assess important aspects of the in vivo effects, namely particle deposition, dissolution, action at, and permeation through, the respiratory barrier, and pharmacokinetics. This review discusses the limitations of animal models and exposure systems and proposes in vitro and in silico techniques that could, when used together, reduce or even replace animal testing in inhalation testing in the future.
Collapse
|
44
|
Patel V, Amin K, Allen D, Ukishima L, Wahab A, Grodi C, Behrsing H. Comparison of Long-term Human Precision-cut Lung Slice Culture Methodology and Response to Challenge: An Argument for Standardisation. Altern Lab Anim 2021; 49:209-222. [PMID: 34836458 DOI: 10.1177/02611929211061884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
As non-animal alternatives gain acceptance, a need for harmonised testing strategies has emerged. Arguably the most physiologically-relevant model for assessing potential respiratory toxicants, that based on human precision-cut lung slices (hPCLS) has been utilised in many laboratories, but a variety of culture methodologies are employed. In this pilot study, combinations of three different hPCLS culture methods (dynamic organ roller culture (DOC), air-liquid interface (ALI) and submersion) and various media (based on E-199, DMEM/F12 and RPMI-1640) were compared. The hPCLS were assessed in terms of their viability and responsiveness to challenge. The endpoints selected to compare the medium-method (M-M) combinations, which included histological features and viability, were evaluated at day 14 (D14) and day 28 (D28); protein and adenylate kinase (AK) content, and cytokine response to immunostimulants (lipopolysaccharide (LPS) at 5 μg/ml; polyinosinic:polycytidylic acid (Poly I:C) at 15 μg/ml) were evaluated at D28 only. Based on the set of endpoints assessed at D28, it was clear that certain culture conditions significantly affected the hPCLS, with the tissue retaining more of its native features and functionality (in terms of cytokine response) in some of the M-M combinations tested more than others. This pilot study indicates that the use of appropriate M-M combinations can help maintain the health and functional responses of hPCLS, and highlights the need for the standardisation of culture conditions in order to facilitate effective inter-laboratory comparisons and encourage greater acceptance by the regulatory community.
Collapse
Affiliation(s)
- Vivek Patel
- Respiratory Toxicology, 329003Institute for In Vitro Sciences, Inc., Gaithersburg, MD, USA
| | - Khalid Amin
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - David Allen
- Integrated Laboratory Systems, Inc., Morrisville, NC, USA
| | - Lindsey Ukishima
- Respiratory Toxicology, 329003Institute for In Vitro Sciences, Inc., Gaithersburg, MD, USA
| | - Adam Wahab
- Respiratory Toxicology, 329003Institute for In Vitro Sciences, Inc., Gaithersburg, MD, USA
| | - Chad Grodi
- Respiratory Toxicology, 329003Institute for In Vitro Sciences, Inc., Gaithersburg, MD, USA
| | - Holger Behrsing
- Respiratory Toxicology, 329003Institute for In Vitro Sciences, Inc., Gaithersburg, MD, USA
| |
Collapse
|
45
|
Yaqub N, Wayne G, Birchall M, Song W. Recent advances in human respiratory epithelium models for drug discovery. Biotechnol Adv 2021; 54:107832. [PMID: 34481894 DOI: 10.1016/j.biotechadv.2021.107832] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/08/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
The respiratory epithelium is intimately associated with the pathophysiologies of highly infectious viral contagions and chronic illnesses such as chronic obstructive pulmonary disorder, presently the third leading cause of death worldwide with a projected economic burden of £1.7 trillion by 2030. Preclinical studies of respiratory physiology have almost exclusively utilised non-humanised animal models, alongside reductionistic cell line-based models, and primary epithelial cell models cultured at an air-liquid interface (ALI). Despite their utility, these model systems have been limited by their poor correlation to the human condition. This has undermined the ability to identify novel therapeutics, evidenced by a 15% chance of success for medicinal respiratory compounds entering clinical trials in 2018. Consequently, preclinical studies require new translational efficacy models to address the problem of respiratory drug attrition. This review describes the utility of the current in vivo (rodent), ex vivo (isolated perfused lungs and precision cut lung slices), two-dimensional in vitro cell-line (A549, BEAS-2B, Calu-3) and three-dimensional in vitro ALI (gold-standard and co-culture) and organoid respiratory epithelium models. The limitations to the application of these model systems in drug discovery research are discussed, in addition to perspectives of the future innovations required to facilitate the next generation of human-relevant respiratory models.
Collapse
Affiliation(s)
- Naheem Yaqub
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2PF, UK
| | - Gareth Wayne
- Novel Human Genetics, GlaxoSmithKline, Stevenage SG1 2NY, UK
| | - Martin Birchall
- The Ear Institute, Faculty of Brain Sciences, University College London, London WC1X 8EE, UK.
| | - Wenhui Song
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2PF, UK.
| |
Collapse
|
46
|
Leslie MN, Chou J, Young PM, Traini D, Bradbury P, Ong HX. How Do Mechanics Guide Fibroblast Activity? Complex Disruptions during Emphysema Shape Cellular Responses and Limit Research. Bioengineering (Basel) 2021; 8:110. [PMID: 34436113 PMCID: PMC8389228 DOI: 10.3390/bioengineering8080110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 11/28/2022] Open
Abstract
The emphysema death toll has steadily risen over recent decades, causing the disease to become the third most common cause of death worldwide in 2019. Emphysema is currently incurable and could be due to a genetic condition (Alpha-1 antitrypsin deficiency) or exposure to pollutants/irritants, such as cigarette smoke or poorly ventilated cooking fires. Despite the growing burden of emphysema, the mechanisms behind emphysematous pathogenesis and progression are not fully understood by the scientific literature. A key aspect of emphysematous progression is the destruction of the lung parenchyma extracellular matrix (ECM), causing a drastic shift in the mechanical properties of the lung (known as mechanobiology). The mechanical properties of the lung such as the stiffness of the parenchyma (measured as the elastic modulus) and the stretch forces required for inhalation and exhalation are both reduced in emphysema. Fibroblasts function to maintain the structural and mechanical integrity of the lung parenchyma, yet, in the context of emphysema, these fibroblasts appear incapable of repairing the ECM, allowing emphysema to progress. This relationship between the disturbances in the mechanical cues experienced by an emphysematous lung and fibroblast behaviour is constantly overlooked and consequently understudied, thus warranting further research. Interestingly, the failure of current research models to integrate the altered mechanical environment of an emphysematous lung may be limiting our understanding of emphysematous pathogenesis and progression, potentially disrupting the development of novel treatments. This review will focus on the significance of emphysematous lung mechanobiology to fibroblast activity and current research limitations by examining: (1) the impact of mechanical cues on fibroblast activity and the cell cycle, (2) the potential role of mechanical cues in the diminished activity of emphysematous fibroblasts and, finally, (3) the limitations of current emphysematous lung research models and treatments as a result of the overlooked emphysematous mechanical environment.
Collapse
Affiliation(s)
- Mathew N. Leslie
- Respiratory Technology, The Woolcock Institute of Medical Research, Glebe, Sydney, NSW 2037, Australia; (M.N.L.); (P.M.Y.); (D.T.)
- Department of Biomedical Sciences, Faculty of Medicine, Healthy and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Joshua Chou
- Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia;
| | - Paul M. Young
- Respiratory Technology, The Woolcock Institute of Medical Research, Glebe, Sydney, NSW 2037, Australia; (M.N.L.); (P.M.Y.); (D.T.)
- Department of Marketing, Macquarie Business School, Macquarie University, Sydney, NSW 2109, Australia
| | - Daniela Traini
- Respiratory Technology, The Woolcock Institute of Medical Research, Glebe, Sydney, NSW 2037, Australia; (M.N.L.); (P.M.Y.); (D.T.)
- Department of Biomedical Sciences, Faculty of Medicine, Healthy and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Peta Bradbury
- Respiratory Technology, The Woolcock Institute of Medical Research, Glebe, Sydney, NSW 2037, Australia; (M.N.L.); (P.M.Y.); (D.T.)
- Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, Sydney, NSW 2007, Australia;
- Mechanics and Genetics of Embryonic and Tumoral Development Group, UMR168—Laboratoire Physico-Chimie Curie, Institut Curie, 75248 Paris, France
| | - Hui Xin Ong
- Respiratory Technology, The Woolcock Institute of Medical Research, Glebe, Sydney, NSW 2037, Australia; (M.N.L.); (P.M.Y.); (D.T.)
- Department of Biomedical Sciences, Faculty of Medicine, Healthy and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
47
|
Matera MG, Calzetta L, Annibale R, Russo F, Cazzola M. Classes of drugs that target the cellular components of inflammation under clinical development for COPD. Expert Rev Clin Pharmacol 2021; 14:1015-1027. [PMID: 33957839 DOI: 10.1080/17512433.2021.1925537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION The persistent inflammation that characterizes COPD and affects its natural course also impacting on symptoms has prompted research to find molecules that can regulate the inflammatory process but still available anti-inflammatory therapies provide little or no benefit in COPD patients. Consequently, numerous anti-inflammatory molecules that are effective in animal models of COPD have been or are being evaluated in humans. AREAS COVERED In this article we describe several classes of drugs that target the cellular components of inflammation under clinical development for COPD. EXPERT OPINION Although the results of many clinical trials with new molecules have often been disappointing, several studies are underway to investigate whether some of these molecules may be effective in treating specific subgroups of COPD patients. Indeed, the current perspective is to apply a more personalized treatment to the patient. This means being able to better define the patient's inflammatory state and treat it in a targeted manner. Unfortunately, the difficulty in translating encouraging experimental data into human clinical trials, the redundancy in the effects induced by signal-transmitting substances and the nonspecific effects of many classes that are undergoing clinical trials, do not yet allow specific inflammatory cell types to be targeted.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Rosa Annibale
- Pharmacy Unit, "Luigi Vanvitelli" University Hospital, Naples, Italy
| | - Francesco Russo
- Pharmacy Unit, "Luigi Vanvitelli" University Hospital, Naples, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
48
|
Wang Z, Liang W, Ma C, Wang J, Gao X, Wei L. Macrophages Inhibit Ciliary Protein Levels by Secreting BMP-2 Leading to Airway Epithelial Remodeling Under Cigarette Smoke Exposure. Front Mol Biosci 2021; 8:663987. [PMID: 33981724 PMCID: PMC8107431 DOI: 10.3389/fmolb.2021.663987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/29/2021] [Indexed: 11/22/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease with high morbidity and mortality worldwide. So far, smoking is still its leading cause. The characteristics of COPD are emphysema and airway remodeling, as well as chronic inflammation, which were predominated by macrophages. Some studies have reported that macrophages were involved in emphysema and chronic inflammation, but whether there is a link between airway remodeling and macrophages remains unclear. In this study, we found that both acute and chronic cigarette smoke exposure led to an increase of macrophages in the lung and a decrease of ciliated cells in the airway epithelium of a mouse model. The results of in vitro experiments showed that the ciliary protein (β-tubulin-IV) levels of BEAS-2B cells could be inhibited when co-cultured with human macrophage line THP-1, and the inhibitory effect was augmented with the stimulation of cigarette smoke extract (CSE). Based on the results of transcriptome sequencing, we focused on the protein, bone morphogenetic protein-2 (BMP-2), secreted by the macrophage, which might mediate this inhibitory effect. Further studies confirmed that BMP-2 protein inhibited β-tubulin-IV protein levels of BEAS-2B cells under the stimulation of CSE. Coincidentally, this inhibitory effect could be nearly blocked by the BMP receptor inhibitor, LDN, or could be interfered with BMP-2 siRNA. This study suggests that activation and infiltration of macrophages in the lung induced by smoke exposure lead to a high expression of BMP-2, which in turn inhibits the ciliary protein levels of the bronchial epithelial cells, contributing to the remodeling of airway epithelium, and aggravates the development of COPD.
Collapse
Affiliation(s)
- Zhigang Wang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China.,Department of Intensive Care Unit, Hebei General Hospital, Shijiazhuang, China
| | - Wenzhang Liang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Cuiqing Ma
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Jiachao Wang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Xue Gao
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Lin Wei
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
49
|
Egesten A, Herwald H. Modelers Modelling Models. J Innate Immun 2021; 13:61-62. [PMID: 33744878 DOI: 10.1159/000515202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/19/2022] Open
|
50
|
Determining Pharmacological Mechanisms of Chinese Incompatible Herbs Fuzi and Banxia in Chronic Obstructive Pulmonary Disease: A Systems Pharmacology-Based Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2020:8365603. [PMID: 33488748 PMCID: PMC7790578 DOI: 10.1155/2020/8365603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/31/2020] [Accepted: 12/12/2020] [Indexed: 01/09/2023]
Abstract
Aconiti Lateralis Radix Praeparata (Fuzi) and Pinelliae Rhizoma (Banxia) are among the 18 incompatible medications that are forbidden from use in one formulation. However, there is increasing evidence implying that this prohibition is not entirely correct. According to the theory of Chinese traditional medicine, they can be used for the treatment of chronic obstructive pulmonary disease (COPD). Thus, we analyzed the possible approaches for the treatment of COPD using network pharmacology. The active compounds of Fuzi and Banxia (FB) were collected, and their targets were identified. COPD-related targets were obtained by analyzing the differentially expressed genes between COPD patients and healthy individuals, which were expressed using a Venn diagram of COPD and FB. Protein-protein interaction data and network regarding COPD and drugs used were obtained. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis were conducted. The gene-pathway network was constructed to screen the key target genes. In total, 34 active compounds and 47 targets of FB were identified; moreover, 7,153 differentially expressed genes were identified between COPD patients and healthy individuals. The functional annotations of target genes were found to be related to mechanisms such as transcription, cytosol, and protein binding; furthermore, 68 pathways including neuroactive ligand-receptor interaction, Kaposi sarcoma-associated herpesvirus infection, apoptosis, and measles were significantly enriched. FOS CASP3, VEGFA, ESR1, and PTGS2 were the core genes in the gene-pathway network of FB for the treatment of COPD. Our results indicated that the effect of FB against COPD may involve the regulation of immunological function through several specific biological processes and their corresponding pathways. This study demonstrates the application of network pharmacology in evaluating mechanisms of action and molecular targets of herb-opponents FB.
Collapse
|