1
|
Xie Z, Chen Y, Xie J, Du S, Chen R, Zheng Y, You B, Feng M, Liao M, Dai M. Construction with recombinant epitope-expressing baculovirus enhances protective effects of inactivated H9N2 vaccine against heterologous virus. Vet Microbiol 2025; 300:110337. [PMID: 39671758 DOI: 10.1016/j.vetmic.2024.110337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/15/2024]
Abstract
Although the use of inactivated vaccines has kept avian influenza (AI) outbreaks largely under control, they fail to prevent virus shedding. To enhance the efficacy of inactivated H9N2 AIV vaccines (InV), we constructed a multi-epitope recombinant baculovirus (BV-BNT) containing two B cell epitopes and nine T cell epitopes of H9N2 AIV for combined immunization with InV. The results showed that HI titer, IgG and IgM levels, and the percentage of B cells, CD4+ T cells, CD8+ T cells, and CD4+CD8+ T cells were significantly higher in the InV+BV-BNT immunization group than the InV immunization group. Besides, the expression levels of IL-1β, IFN-γ, IFN-α, IL-4, IL-13, and CXCLi1 were significantly higher in the InV+BV-BNT group than the InV group. Moreover, four conservative peptides (NP182-190, NP455-463, NS198-106, and NP380-393) significantly stimulated splenocytes to express IFN-γ in the InV+BV-BNT group instead of InV group. After heterologous virus challenging, the percentages of CD4+ T and CD8+ T cells were significantly upregulated in the InV+BV-BNT group compared to Inv group at 3 DPI. Viral loads in oropharyngeal of the InV+BV-BNT group was significantly lower than that in the InV group at 3 days post-infection (DPI). Furthermore, compared to the InV group, the virus positivity rate of oropharyngeal and cloacal swabs in the InV+BV-BNT group was lower at 5 DPI, with none positive at 7 DPI. Hence, this study indicated that the combined immunization of InV and BV-BNT could induce stronger humoral and cellular immune responses, shorten the detoxification period and reduce viral load compared to Inv alone, which suggests BV-BNT could act as a supplementary vaccine to potentially address the protection deficiency of the H9N2 inactivated vaccine.
Collapse
Affiliation(s)
- Zimin Xie
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Yingyi Chen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Jun Xie
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Shanyao Du
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Rongmao Chen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Yuqin Zheng
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Bowen You
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Min Feng
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; UK-China Centre of Excellence for Research on Avian Diseases, Guangzhou 510642, PR China.
| | - Manman Dai
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China; UK-China Centre of Excellence for Research on Avian Diseases, Guangzhou 510642, PR China.
| |
Collapse
|
2
|
Anang V, Antonescu L, Nho R, Soni S, Mebratu YA. Targeting the Ubiquitin Proteasome System to Combat Influenza A Virus: Hijacking the Cleanup Crew. Rev Med Virol 2024; 34:e70005. [PMID: 39516190 DOI: 10.1002/rmv.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/17/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Influenza A virus (IAV) remains a significant global public health threat, causing substantial illness and economic burden. Despite existing antiviral drugs, the emergence of resistant strains necessitates alternative therapeutic strategies. This review explores the complex interplay between the ubiquitin proteasome system (UPS) and IAV pathogenesis. We discuss how IAV manipulates the UPS to promote its lifecycle, while also highlighting how host cells utilise the UPS to counteract viral infection. Recent research on deubiquitinases as potential regulators of IAV infection is also addressed. By elucidating the multifaceted role of the UPS in IAV pathogenesis, this review aims to identify potential targets for novel therapeutic interventions.
Collapse
Affiliation(s)
- Vandana Anang
- Pulmonary, Critical Care Medicine, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Laura Antonescu
- Pulmonary, Critical Care Medicine, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Richard Nho
- Pulmonary, Critical Care Medicine, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Sourabh Soni
- Pulmonary, Critical Care Medicine, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| | - Yohannes A Mebratu
- Pulmonary, Critical Care Medicine, and Sleep Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Wu HH, Li YJ, Weng CH, Hsu HH, Chang MY, Yang HY, Yang CW, Tian YC. Interferon-alpha and MxA inhibit BK polyomavirus replication by interaction with polyomavirus large T antigen. Biomed J 2024; 47:100682. [PMID: 38065365 PMCID: PMC11399625 DOI: 10.1016/j.bj.2023.100682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/11/2023] [Accepted: 12/02/2023] [Indexed: 08/30/2024] Open
Abstract
INTRODUCTION BK Polyomavirus (BKPyV) infection is a common complication in kidney transplant recipients and can result in poor outcomes and graft failure. Currently, there is no known effective antiviral agent. This study investigated the possible antiviral effects of Interferon alpha (IFNα) and its induced protein, MxA, against BKPyV. METHODS In vitro cell culture experiments were conducted using human primary renal proximal tubular epithelial cells (HRPTECs). We also did animal studies using Balb/c mice with unilateral kidney ischemic reperfusion injury. RESULTS Our results demonstrated that IFNα effectively inhibited BKPyV in vitro and murine polyomavirus in animal models. Additionally, IFNα and MxA were found to suppress BKPyV TAg and VP1 production. Silencing MxA attenuated the antiviral efficacy of IFNα. We observed that MxA interacted with BKPyV TAg, causing it to remain in the cytosol and preventing its nuclear translocation. To determine MxA's essential domain for its antiviral activities, different mutant MxA constructs were generated. The MxA mutant K83A retained its interaction with BKPyV TAg, and its antiviral effects were intact. The MxA T103A mutant, on the other hand, abolished GTPase activity, lost its protein-protein interaction with BKPyV TAg, and lost its antiviral effect. CONCLUSION IFNα and its downstream protein, MxA, have potent antiviral properties against BKPyV. Furthermore, our findings indicate that the interaction between MxA and BKVPyV TAg plays a crucial role in determining the anti-BKPyV effects of MxA.
Collapse
Affiliation(s)
- Hsin-Hsu Wu
- Kidney Research Center, Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taiwan
| | - Yi-Jung Li
- Kidney Research Center, Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Cheng-Hao Weng
- Kidney Research Center, Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsiang-Hao Hsu
- Kidney Research Center, Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ming-Yang Chang
- Kidney Research Center, Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Huang-Yu Yang
- Kidney Research Center, Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Wei Yang
- Kidney Research Center, Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ya-Chung Tian
- Kidney Research Center, Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
4
|
Ashraf MA, Raza MA, Amjad MN, Ud Din G, Yue L, Shen B, Chen L, Dong W, Xu H, Hu Y. A comprehensive review of influenza B virus, its biological and clinical aspects. Front Microbiol 2024; 15:1467029. [PMID: 39296301 PMCID: PMC11408344 DOI: 10.3389/fmicb.2024.1467029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Influenza B virus (IBV) stands as a paradox, often overshadowed by its more notorious counterpart, influenza A virus (IAV). Yet, it remains a captivating and elusive subject of scientific inquiry. Influenza B is important because it causes seasonal flu outbreaks that can lead to severe respiratory illnesses, including bronchitis, pneumonia, and exacerbations of chronic conditions like asthma. Limitations in the influenza B virus's epidemiological, immunological, and etiological evolution must be addressed promptly. This comprehensive review covers evolutionary epidemiology and pathogenesis, host-virus interactions, viral isolation and propagation, advanced molecular detection assays, vaccine composition and no animal reservoir for influenza B virus. Complex viral etiology begins with intranasal transmission of influenza B virus with the release of a segmented RNA genome that attacks host cell machinery for transcription and translation within the nucleus and the release of viral progeny. Influenza B virus prevalence in domesticated and wild canines, sea mammals, and birds is frequent, yet there is no zoonosis. The periodic circulation of influenza B virus indicates a 1-3-year cycle for monophyletic strain replacement within the Victoria strain due to frequent antigenic drift in the HA near the receptor-binding site (RBS), while the antigenic stability of Yamagata viruses portrays a more conservative evolutionary pattern. Additionally, this article outlines contemporary antiviral strategies, including pharmacological interventions and vaccination efforts. This article serves as a resource for researchers, healthcare professionals, and anyone interested in the mysterious nature of the influenza B virus. It provides valuable insights and knowledge essential for comprehending and effectively countering this viral foe, which continues to pose a significant public health threat.
Collapse
Affiliation(s)
- Muhammad Awais Ashraf
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Asif Raza
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Nabeel Amjad
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ghayyas Ud Din
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lihuan Yue
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Bei Shen
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Lingdie Chen
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Dong
- Pediatric Department, Nanxiang Branch of Ruijin Hospital, Shanghai, China
| | - Huiting Xu
- Pediatric Department, Nanxiang Branch of Ruijin Hospital, Shanghai, China
| | - Yihong Hu
- CAS Key Laboratory of Molecular Virology and Immunology, Institutional Center for Shared Technologies and Facilities, Pathogen Discovery and Big Data Platform, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Scott N, Martinovich KM, Granland CM, Seppanen EJ, Tjiam MC, de Gier C, Foo E, Short KR, Chew KY, Fulurija A, Strickland DH, Richmond PC, Kirkham LAS. Nasal Delivery of Haemophilus haemolyticus Is Safe, Reduces Influenza Severity, and Prevents Development of Otitis Media in Mice. J Infect Dis 2024; 230:346-356. [PMID: 38470272 DOI: 10.1093/infdis/jiae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/06/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Despite vaccination, influenza and otitis media (OM) remain leading causes of illness. We previously found that the human respiratory commensal Haemophilus haemolyticus prevents bacterial infection in vitro and that the related murine commensal Muribacter muris delays OM development in mice. The observation that M muris pretreatment reduced lung influenza titer and inflammation suggests that these bacteria could be exploited for protection against influenza/OM. METHODS Safety and efficacy of intranasal H haemolyticus at 5 × 107 colony-forming units (CFU) was tested in female BALB/cARC mice using an influenza model and influenza-driven nontypeable Haemophilus influenzae (NTHi) OM model. Weight, symptoms, viral/bacterial levels, and immune responses were measured. RESULTS Intranasal delivery of H haemolyticus was safe and reduced severity of influenza, with quicker recovery, reduced inflammation, and lower lung influenza virus titers (up to 8-fold decrease vs placebo; P ≤ .01). Haemophilus haemolyticus reduced NTHi colonization density (day 5 median NTHi CFU/mL = 1.79 × 103 in treatment group vs 4.04 × 104 in placebo, P = .041; day 7 median NTHi CFU/mL = 28.18 vs 1.03 × 104; P = .028) and prevented OM (17% OM in treatment group, 83% in placebo group; P = .015). CONCLUSIONS Haemophilus haemolyticus has potential as a live biotherapeutic for prevention or early treatment of influenza and influenza-driven NTHi OM. Additional studies will deem whether these findings translate to humans and other respiratory infections.
Collapse
Affiliation(s)
- Naomi Scott
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia
| | - Kelly M Martinovich
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia
- Centre for Child Health Research, University of Western Australia, Perth
| | - Caitlyn M Granland
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia
| | - Elke J Seppanen
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia
| | - M Christian Tjiam
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia
- Centre for Child Health Research, University of Western Australia, Perth
| | - Camilla de Gier
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia
| | - Edison Foo
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, Faculty of Science, University of Queensland, Brisbane
- Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, Queensland
| | - Keng Yih Chew
- School of Chemistry and Molecular Biosciences, Faculty of Science, University of Queensland, Brisbane
| | - Alma Fulurija
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia
- Centre for Child Health Research, University of Western Australia, Perth
| | - Deborah H Strickland
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia
- Centre for Child Health Research, University of Western Australia, Perth
| | - Peter C Richmond
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia
- Department of Paediatrics, School of Medicine, University of Western Australia, Perth, Australia
| | - Lea-Ann S Kirkham
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia
- Centre for Child Health Research, University of Western Australia, Perth
| |
Collapse
|
6
|
Gogoi M, Clark PA, Ferreira ACF, Rodriguez Rodriguez N, Heycock M, Ko M, Murphy JE, Chen V, Luan SL, Jolin HE, McKenzie ANJ. ILC2-derived LIF licences progress from tissue to systemic immunity. Nature 2024; 632:885-892. [PMID: 39112698 PMCID: PMC11338826 DOI: 10.1038/s41586-024-07746-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 06/24/2024] [Indexed: 08/17/2024]
Abstract
Migration and homing of immune cells are critical for immune surveillance. Trafficking is mediated by combinations of adhesion and chemokine receptors that guide immune cells, in response to chemokine signals, to specific locations within tissues and the lymphatic system to support tissue-localized immune reactions and systemic immunity1,2. Here we show that disruption of leukaemia inhibitory factor (LIF) production from group 2 innate lymphoid cells (ILC2s) prevents immune cells leaving the lungs to migrate to the lymph nodes (LNs). In the absence of LIF, viral infection leads to plasmacytoid dendritic cells (pDCs) becoming retained in the lungs where they improve tissue-localized, antiviral immunity, whereas chronic pulmonary allergen challenge leads to marked immune cell accumulation and the formation of tertiary lymphoid structures in the lung. In both cases immune cells fail to migrate to the lymphatics, leading to highly compromised LN reactions. Mechanistically, ILC2-derived LIF induces the production of the chemokine CCL21 from lymphatic endothelial cells lining the pulmonary lymphatic vessels, thus licensing the homing of CCR7+ immune cells (including dendritic cells) to LNs. Consequently, ILC2-derived LIF dictates the egress of immune cells from the lungs to regulate tissue-localized versus systemic immunity and the balance between allergen and viral responsiveness in the lungs.
Collapse
Affiliation(s)
- Mayuri Gogoi
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| | | | | | | | | | - Michelle Ko
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Victor Chen
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Shi-Lu Luan
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | |
Collapse
|
7
|
Maes A, Botzki A, Mathys J, Impens F, Saelens X. Systematic review and meta-analysis of genome-wide pooled CRISPR screens to identify host factors involved in influenza A virus infection. J Virol 2024; 98:e0185723. [PMID: 38567969 PMCID: PMC11257101 DOI: 10.1128/jvi.01857-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/14/2024] [Indexed: 05/15/2024] Open
Abstract
The host-virus interactome is increasingly recognized as an important research field to discover new therapeutic targets to treat influenza. Multiple pooled genome-wide CRISPR-Cas screens have been reported to identify new pro- and antiviral host factors of the influenza A virus. However, at present, a comprehensive summary of the results is lacking. We performed a systematic review of all reported CRISPR studies in this field in combination with a meta-analysis using the algorithm of meta-analysis by information content (MAIC). Two ranked gene lists were generated based on evidence in 15 proviral and 4 antiviral screens. Enriched pathways in the proviral MAIC results were compared to those of a prior array-based RNA interference (RNAi) meta-analysis. The top 50 proviral MAIC list contained genes whose role requires further elucidation, such as the endosomal ion channel TPCN1 and the kinase WEE1. Moreover, MAIC indicated that ALYREF, a component of the transcription export complex, has antiviral properties, whereas former knockdown experiments attributed a proviral role to this host factor. CRISPR-Cas-pooled screens displayed a bias toward early-replication events, whereas the prior RNAi meta-analysis covered early and late-stage events. RNAi screens led to the identification of a larger fraction of essential genes than CRISPR screens. In summary, the MAIC algorithm points toward the importance of several less well-known pathways in host-influenza virus interactions that merit further investigation. The results from this meta-analysis of CRISPR screens in influenza A virus infection may help guide future research efforts to develop host-directed anti-influenza drugs. IMPORTANCE Viruses rely on host factors for their replication, whereas the host cell has evolved virus restriction factors. These factors represent potential targets for host-oriented antiviral therapies. Multiple pooled genome-wide CRISPR-Cas screens have been reported to identify pro- and antiviral host factors in the context of influenza virus infection. We performed a comprehensive analysis of the outcome of these screens based on the publicly available gene lists, using the recently developed algorithm meta-analysis by information content (MAIC). MAIC allows the systematic integration of ranked and unranked gene lists into a final ranked gene list. This approach highlighted poorly characterized host factors and pathways with evidence from multiple screens, such as the vesicle docking and lipid metabolism pathways, which merit further exploration.
Collapse
Affiliation(s)
- Annabel Maes
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Janssen Pharmaceutica NV, Beerse, Belgium
| | | | | | - Francis Impens
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, VIB, Ghent, Belgium
| | - Xavier Saelens
- VIB Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
8
|
Foo IJH, Chua BY, Clemens EB, Chang SY, Jia X, McQuilten HA, Yap AHY, Cabug AF, Ashayeripanah M, McWilliam HEG, Villadangos JA, Evrard M, Mackay LK, Wakim LM, Fazakerley JK, Kedzierska K, Kedzierski L. Prior infection with unrelated neurotropic virus exacerbates influenza disease and impairs lung T cell responses. Nat Commun 2024; 15:2619. [PMID: 38521764 PMCID: PMC10960853 DOI: 10.1038/s41467-024-46822-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Immunity to infectious diseases is predominantly studied by measuring immune responses towards a single pathogen, although co-infections are common. In-depth mechanisms on how co-infections impact anti-viral immunity are lacking, but are highly relevant to treatment and prevention. We established a mouse model of co-infection with unrelated viruses, influenza A (IAV) and Semliki Forest virus (SFV), causing disease in different organ systems. SFV infection eight days before IAV infection results in prolonged IAV replication, elevated cytokine/chemokine levels and exacerbated lung pathology. This is associated with impaired lung IAV-specific CD8+ T cell responses, stemming from suboptimal CD8+ T cell activation and proliferation in draining lymph nodes, and dendritic cell paralysis. Prior SFV infection leads to increased blood brain barrier permeability and presence of IAV RNA in brain, associated with increased trafficking of IAV-specific CD8+ T cells and establishment of long-term tissue-resident memory. Relative to lung IAV-specific CD8+ T cells, brain memory IAV-specific CD8+ T cells have increased TCR repertoire diversity within immunodominant DbNP366+CD8+ and DbPA224+CD8+ responses, featuring suboptimal TCR clonotypes. Overall, our study demonstrates that infection with an unrelated neurotropic virus perturbs IAV-specific immune responses and exacerbates IAV disease. Our work provides key insights into therapy and vaccine regimens directed against unrelated pathogens.
Collapse
Affiliation(s)
- Isabelle Jia-Hui Foo
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Veterinary Biosciences, Faculty of Science, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - E Bridie Clemens
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - So Young Chang
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Xiaoxiao Jia
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hayley A McQuilten
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Ashley Huey Yiing Yap
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Aira F Cabug
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Mitra Ashayeripanah
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Hamish E G McWilliam
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Biochemistry and Pharmacology; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Maximilien Evrard
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Linda M Wakim
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - John K Fazakerley
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Veterinary Biosciences, Faculty of Science, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| | - Lukasz Kedzierski
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia.
| |
Collapse
|
9
|
Andreakos E. Type I and type III interferons: From basic biology and genetics to clinical development for COVID-19 and beyond. Semin Immunol 2024; 72:101863. [PMID: 38271892 DOI: 10.1016/j.smim.2024.101863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/11/2023] [Accepted: 01/02/2024] [Indexed: 01/27/2024]
Abstract
Type I and type III interferons (IFNs) constitute a key antiviral defense systems of the body, inducing viral resistance to cells and mediating diverse innate and adaptive immune functions. Defective type I and type III IFN responses have recently emerged as the 'Achilles heel' in COVID-19, with such patients developing severe disease and exhibiting a high risk for critical pneumonia and death. Here, we review the biology of type I and type III IFNs, their similarities and important functional differences, and their roles in SARS-CoV-2 infection. We also appraise the various mechanisms proposed to drive defective IFN responses in COVID-19 with particular emphasis to the ability of SARS-CoV-2 to suppress IFN production and activities, the genetic factors involved and the presence of autoantibodies neutralizing IFNs and accounting for a large proportion of individuals with severe COVID-19. Finally, we discuss the long history of the type I IFN therapeutics for the treatment of viral diseases, cancer and multiple sclerosis, the various efforts to use them in respiratory infections, and the newly emerging type III IFN therapeutics, with emphasis to the more recent studies on COVID-19 and their potential use as broad spectrum antivirals for future epidemics or pandemics.
Collapse
Affiliation(s)
- Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, BRFAA, Athens, Greece.
| |
Collapse
|
10
|
Tuluwengjiang G, Rasulova I, Ahmed S, Kiasari BA, Sârbu I, Ciongradi CI, Omar TM, Hussain F, Jawad MJ, Castillo-Acobo RY, Hani T, Lakshmaiya N, Samaniego SSC. Dendritic cell-derived exosomes (Dex): Underlying the role of exosomes derived from diverse DC subtypes in cancer pathogenesis. Pathol Res Pract 2024; 254:155097. [PMID: 38277745 DOI: 10.1016/j.prp.2024.155097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/01/2024] [Accepted: 01/02/2024] [Indexed: 01/28/2024]
Abstract
Exosomes are nanometric membrane vesicles of late endosomal origin that are released by most, if not all, cell types as a sophisticated means of intercellular communication. They play an essential role in the movement of materials and information between cells, transport a variety of proteins, lipids, RNA, and other vital data, and over time, they become an essential part of the drug delivery system and a marker for the early detection of many diseases. Dendritic cells have generated interest in cancer immunotherapy due to their ability to initiate and modify effective immune responses. Apart from their cytokine release and direct interactions with other cell types, DCs also emit nanovesicles, such as exosomes, that contribute to their overall activity. Numerous studies have demonstrated exosomes to mediate and regulate immune responses against cancers. Dendritic cell-derived exosomes (DCs) have attracted a lot of attention as immunotherapeutic anti-cancer treatments since it was found that they contain functional MHC-peptide complexes along with a variety of other immune-stimulating components that together enable immune cell-dependent tumor rejection. By enhancing tumor and immunosuppressive immune cells or changing a pro-inflammatory milieu to inhibit tumor advancement, exosomes generated from dendritic cells can initiate and support tumor growth. This study reviewed the immunogenicity of dendritic cell-derived exosomes and strategies for expanding their immunogenic potential as novel and effective anti-cancer therapies.
Collapse
Affiliation(s)
| | - Irodakhon Rasulova
- Senior Researcher, School of Humanities, Natural & Social Sciences, New Uzbekistan University, 54 Mustaqillik Ave., Tashkent, 100007, Uzbekistan; Department of Public Health, Samarkand State Medical University, Amir Temur street 18, Samarkand, Uzbekistan
| | - Shamim Ahmed
- Department of Pharmaceutical Sciences, North South University, Bashundhara, Dhaka 1229, Bangladesh
| | - Bahman Abedi Kiasari
- Microbiology & Immunology Group, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ioan Sârbu
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| | - Carmen Iulia Ciongradi
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| | - Thabit Moath Omar
- Department of Medical Laboratory Technics, Al-Noor University College, Nineveh, Iraq
| | - Farah Hussain
- Medical Technical College, Al-Farahidi University, Iraq
| | | | | | - Thamer Hani
- Dentistry Department, Al-Turath University College, Baghdad, Iraq
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | | |
Collapse
|
11
|
Prescott MA, Moulton H, Pastey MK. An alternative strategy to increasing influenza virus replication for vaccine production in chicken embryo fibroblast (DF-1) cells by inhibiting interferon alpha and beta using peptide-conjugated phosphorodiamidate morpholino oligomers. J Med Microbiol 2024; 73. [PMID: 38353513 DOI: 10.1099/jmm.0.001807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Introduction. Influenza is a global health issue causing substantial health and economic burdens on affected populations. Routine, annual vaccination for influenza virus is recommended for all persons older than 6 months of age. The propagation of the influenza virus for vaccine production is predominantly through embryonated chicken eggs.Hypothesis/Gap Statement. Many challenges face the propagation of the virus, including but not limited to low yields and lengthy production times. The development of a method to increase vaccine production in eggs or cell lines by suppressing cellular gene expression would be helpful to overcome some of the challenges facing influenza vaccine production.Aims. This study aimed to increase influenza virus titres by using a peptide-conjugated phosphorodiamidate morpholino oligomer (PPMO), an antisense molecule, to suppress protein expression of the host genes interferon alpha (IFN-α) and interferon beta (IFN-β) in chicken embryo fibroblast (DF-1) cells.Methods. The toxicity of PPMOs was evaluated by cytotoxicity assays, and their specificity to inhibit IFN-α and IFN-β proteins was measured by ELISA. We evaluated the potential of anti-IFN-α and anti-IFN-β PPMOs to reduce the antiviral proteins in influenza virus-infected DF-1 cells and compared the virus titres to untreated controls, nonsense-PPMO and JAK/STAT inhibitors. The effects of complementation and reconstitution of IFN-α and IFN-β proteins in PPMO-treated-infected cells were evaluated, and the virus titres were compared between treatment groups.Results. Suppression of IFN-α by PPMO resulted in significantly reduced levels of IFN-α protein in treated wells, as measured by ELISA and was shown to not have any cytotoxicity to DF-1 cells at the effective concentrations tested. Treatment of the self-directing PPMOs increased the ability of the influenza virus to replicate in DF-1 cells. Over a 2-log10 increase in viral production was observed in anti-IFN-α and IFN-β PPMO-treated wells compared to those of untreated controls at the initial viral input of 0.1 multiplicity of infection. The data from complementation and reconstitution of IFN-α and IFN-β proteins in PPMO-treated-infected cells was about 82 and 97% compared to the combined PPMO-treated but uncomplemented group and untreated group, respectively. There was a 0.5-log10 increase in virus titre when treated with anti-IFN-α and IFN-β PPMO compared to virus titre when treated with JAK/STAT inhibitors.Conclusions. This study emphasizes the utility of PPMO in allowing cell cultures to produce increased levels of influenza for vaccine production or alternatively, as a screening tool to cheaply test targets prior to the development of permanent knockouts of host gene expression.
Collapse
Affiliation(s)
- Meagan A Prescott
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis Oregon 97331, USA
- Department of Microbiology, College of Science, Oregon State University, Corvallis Oregon 97331, USA
| | - Hong Moulton
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis Oregon 97331, USA
| | - Manoj K Pastey
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis Oregon 97331, USA
| |
Collapse
|
12
|
Tamai M, Taba S, Mise T, Yamashita M, Ishikawa H, Shintake T. Effect of Ethanol Vapor Inhalation Treatment on Lethal Respiratory Viral Infection With Influenza A. J Infect Dis 2023; 228:1720-1729. [PMID: 37101418 PMCID: PMC10733743 DOI: 10.1093/infdis/jiad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/12/2023] [Accepted: 04/03/2023] [Indexed: 04/28/2023] Open
Abstract
Ethanol (EtOH) effectively inactivates enveloped viruses in vitro, including influenza and severe acute respiratory syndrome coronavirus 2. Inhaled EtOH vapor may inhibit viral infection in mammalian respiratory tracts, but this has not yet been demonstrated. Here we report that unexpectedly low EtOH concentrations in solution, approximately 20% (vol/vol), rapidly inactivate influenza A virus (IAV) at mammalian body temperature and are not toxic to lung epithelial cells on apical exposure. Furthermore, brief exposure to 20% (vol/vol) EtOH decreases progeny virus production in IAV-infected cells. Using an EtOH vapor exposure system that is expected to expose murine respiratory tracts to 20% (vol/vol) EtOH solution by gas-liquid equilibrium, we demonstrate that brief EtOH vapor inhalation twice a day protects mice from lethal IAV respiratory infection by reducing viruses in the lungs without harmful side effects. Our data suggest that EtOH vapor inhalation may provide a versatile therapy against various respiratory viral infectious diseases.
Collapse
Affiliation(s)
- Miho Tamai
- Immune Signal Unit, Okinawa Institute of Science and Technology, Tancha 1919-1, Onna-son, Okinawa 904-0495, Japan
| | - Seita Taba
- Quantum Wave Microscopy Unit, Okinawa Institute of Science and Technology, Tancha 1919-1, Onna-son, Okinawa 904-0495, Japan
| | - Takeshi Mise
- Quantum Wave Microscopy Unit, Okinawa Institute of Science and Technology, Tancha 1919-1, Onna-son, Okinawa 904-0495, Japan
| | - Masao Yamashita
- Quantum Wave Microscopy Unit, Okinawa Institute of Science and Technology, Tancha 1919-1, Onna-son, Okinawa 904-0495, Japan
| | - Hiroki Ishikawa
- Immune Signal Unit, Okinawa Institute of Science and Technology, Tancha 1919-1, Onna-son, Okinawa 904-0495, Japan
| | - Tsumoru Shintake
- Quantum Wave Microscopy Unit, Okinawa Institute of Science and Technology, Tancha 1919-1, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
13
|
Ivanova EN, Shwetar J, Devlin JC, Buus TB, Gray-Gaillard S, Koide A, Cornelius A, Samanovic MI, Herrera A, Mimitou EP, Zhang C, Karmacharya T, Desvignes L, Ødum N, Smibert P, Ulrich RJ, Mulligan MJ, Koide S, Ruggles KV, Herati RS, Koralov SB. mRNA COVID-19 vaccine elicits potent adaptive immune response without the acute inflammation of SARS-CoV-2 infection. iScience 2023; 26:108572. [PMID: 38213787 PMCID: PMC10783604 DOI: 10.1016/j.isci.2023.108572] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 09/21/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024] Open
Abstract
SARS-CoV-2 infection and vaccination elicit potent immune responses. Our study presents a comprehensive multimodal single-cell analysis of blood from COVID-19 patients and healthy volunteers receiving the SARS-CoV-2 vaccine and booster. We profiled immune responses via transcriptional analysis and lymphocyte repertoire reconstruction. COVID-19 patients displayed an enhanced interferon signature and cytotoxic gene upregulation, absent in vaccine recipients. B and T cell repertoire analysis revealed clonal expansion among effector cells in COVID-19 patients and memory cells in vaccine recipients. Furthermore, while clonal αβ T cell responses were observed in both COVID-19 patients and vaccine recipients, expansion of clonal γδ T cells was found only in infected individuals. Our dataset enables side-by-side comparison of immune responses to infection versus vaccination, including clonal B and T cell responses. Our comparative analysis shows that vaccination induces a robust, durable clonal B and T cell responses, without the severe inflammation associated with infection.
Collapse
Affiliation(s)
- Ellie N. Ivanova
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jasmine Shwetar
- Institute of Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Joseph C. Devlin
- Institute of Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016, USA
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Terkild B. Buus
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sophie Gray-Gaillard
- New York University Langone Vaccine Center, New York University Langone Health, New York, NY 10016, USA
| | - Akiko Koide
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Amber Cornelius
- New York University Langone Vaccine Center, New York University Langone Health, New York, NY 10016, USA
| | - Marie I. Samanovic
- New York University Langone Vaccine Center, New York University Langone Health, New York, NY 10016, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Alberto Herrera
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | | | - Chenzhen Zhang
- Vilcek Institute of Graduate Biomedical Sciences, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Trishala Karmacharya
- New York University Langone Vaccine Center, New York University Langone Health, New York, NY 10016, USA
| | - Ludovic Desvignes
- New York University Langone Vaccine Center, New York University Langone Health, New York, NY 10016, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
- High Containment Laboratories, Office of Science and Research, New York University Langone Health, New York, NY 10016, USA
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Robert J. Ulrich
- New York University Langone Vaccine Center, New York University Langone Health, New York, NY 10016, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Mark J. Mulligan
- New York University Langone Vaccine Center, New York University Langone Health, New York, NY 10016, USA
| | - Shohei Koide
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kelly V. Ruggles
- Institute of Systems Genetics, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Ramin S. Herati
- New York University Langone Vaccine Center, New York University Langone Health, New York, NY 10016, USA
- Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Microbiology, New York University Grossman School of Medicine, 430 East 29th Street, New York, NY 10016, USA
| | - Sergei B. Koralov
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
14
|
Nouri HR, Schaunaman N, Kraft M, Li L, Numata M, Chu HW. Tollip deficiency exaggerates airway type 2 inflammation in mice exposed to allergen and influenza A virus: role of the ATP/IL-33 signaling axis. Front Immunol 2023; 14:1304758. [PMID: 38124753 PMCID: PMC10731025 DOI: 10.3389/fimmu.2023.1304758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Toll-interacting protein (Tollip) is a negative regulator of the pro-inflammatory response to viruses, including influenza A virus (IAV). Genetic variation of Tollip has been associated with reduced airway epithelial Tollip expression and poor lung function in patients with asthma. Whether Tollip deficiency exaggerates type 2 inflammation (e.g., eosinophils) and viral infection in asthma remains unclear. We sought to address this critical, but unanswered question by using a Tollip deficient mouse asthma model with IAV infection. Further, we determined the underlying mechanisms by focusing on the role of the ATP/IL-33 signaling axis. Wild-type and Tollip KO mice were intranasally exposed to house dust mite (HDM) and IAV with or without inhibitors for IL-33 (i.e., soluble ST2, an IL-33 decoy receptor) and ATP signaling (i.e., an antagonist of the ATP receptor P2Y13). Tollip deficiency amplified airway type 2 inflammation (eosinophils, IL-5, IL-13 and mucins), and the release of ATP and IL-33. Blocking ATP receptor P2Y13 decreased IL-33 release during IAV infection in HDM-challenged Tollip KO mice. Furthermore, soluble ST2 attenuated airway eosinophilic inflammation in Tollip KO mice treated with HDM and IAV. HDM challenges decreased lung viral load in wild-type mice, but Tollip deficiency reduced the protective effects of HDM challenges on viral load. Our data suggests that during IAV infection, Tollip deficiency amplified type 2 inflammation and delayed viral clearance, in part by promoting ATP signaling and subsequent IL-33 release. Our findings may provide several therapeutic targets, including ATP and IL-33 signaling inhibition for attenuating excessive airway type 2 inflammation in human subjects with Tollip deficiency and IAV infection.
Collapse
Affiliation(s)
- Hamid Reza Nouri
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | | | - Monica Kraft
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Liwu Li
- Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, VA, United States
| | - Mari Numata
- Department of Medicine, National Jewish Health, Denver, CO, United States
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, Denver, CO, United States
| |
Collapse
|
15
|
Frishberg A, Milman N, Alpert A, Spitzer H, Asani B, Schiefelbein JB, Bakin E, Regev-Berman K, Priglinger SG, Schultze JL, Theis FJ, Shen-Orr SS. Reconstructing disease dynamics for mechanistic insights and clinical benefit. Nat Commun 2023; 14:6840. [PMID: 37891175 PMCID: PMC10611752 DOI: 10.1038/s41467-023-42354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Diseases change over time, both phenotypically and in their underlying molecular processes. Though understanding disease progression dynamics is critical for diagnostics and treatment, capturing these dynamics is difficult due to their complexity and the high heterogeneity in disease development between individuals. We present TimeAx, an algorithm which builds a comparative framework for capturing disease dynamics using high-dimensional, short time-series data. We demonstrate the utility of TimeAx by studying disease progression dynamics for multiple diseases and data types. Notably, for urothelial bladder cancer tumorigenesis, we identify a stromal pro-invasion point on the disease progression axis, characterized by massive immune cell infiltration to the tumor microenvironment and increased mortality. Moreover, the continuous TimeAx model differentiates between early and late tumors within the same tumor subtype, uncovering molecular transitions and potential targetable pathways. Overall, we present a powerful approach for studying disease progression dynamics-providing improved molecular interpretability and clinical benefits for patient stratification and outcome prediction.
Collapse
Affiliation(s)
- Amit Frishberg
- Department of Immunology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Institute of Computational Biology, Helmholtz Center Munich, 85764, Neuherberg, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- CytoReason, Tel-Aviv, Israel
| | - Neta Milman
- Department of Immunology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ayelet Alpert
- Department of Immunology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hannah Spitzer
- Institute of Computational Biology, Helmholtz Center Munich, 85764, Neuherberg, Germany
- Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Germany
| | - Ben Asani
- Department of Ophthalmology, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | - Joachim L Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE). PRECISE Platform for Genomics and Epigenomics at DZNE and University of Bonn, Bonn, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich, 85764, Neuherberg, Germany
- Department of Mathematics, Technical University of Munich, 85748, Garching, Germany
- Technical University of Munich, TUM School of Life Sciences Weihenstephan, 85354, Freising, Germany
| | - Shai S Shen-Orr
- Department of Immunology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
- CytoReason, Tel-Aviv, Israel.
| |
Collapse
|
16
|
O’Neil JD, Bolimowska OO, Clayton SA, Tang T, Daley KK, Lara-Reyna S, Warner J, Martin CS, Mahida RY, Hardy RS, Arthur JSC, Clark AR. Dexamethasone impairs the expression of antimicrobial mediators in lipopolysaccharide-activated primary macrophages by inhibiting both expression and function of interferon β. Front Immunol 2023; 14:1190261. [PMID: 37942320 PMCID: PMC10628473 DOI: 10.3389/fimmu.2023.1190261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023] Open
Abstract
Glucocorticoids potently inhibit expression of many inflammatory mediators, and have been widely used to treat both acute and chronic inflammatory diseases for more than seventy years. However, they can have several unwanted effects, amongst which immunosuppression is one of the most common. Here we used microarrays and proteomic approaches to characterise the effect of dexamethasone (a synthetic glucocorticoid) on the responses of primary mouse macrophages to a potent pro-inflammatory agonist, lipopolysaccharide (LPS). Gene ontology analysis revealed that dexamethasone strongly impaired the lipopolysaccharide-induced antimicrobial response, which is thought to be driven by an autocrine feedback loop involving the type I interferon IFNβ. Indeed, dexamethasone strongly and dose-dependently inhibited the expression of IFNβ by LPS-activated macrophages. Unbiased proteomic data also revealed an inhibitory effect of dexamethasone on the IFNβ-dependent program of gene expression, with strong down-regulation of several interferon-induced antimicrobial factors. Surprisingly, dexamethasone also inhibited the expression of several antimicrobial genes in response to direct stimulation of macrophages with IFNβ. We tested a number of hypotheses based on previous publications, but found that no single mechanism could account for more than a small fraction of the broad suppressive impact of dexamethasone on macrophage type I interferon signaling, underlining the complexity of this pathway. Preliminary experiments indicated that dexamethasone exerted similar inhibitory effects on primary human monocyte-derived or alveolar macrophages.
Collapse
Affiliation(s)
- John D. O’Neil
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Oliwia O. Bolimowska
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Sally A. Clayton
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Tina Tang
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Kalbinder K. Daley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Samuel Lara-Reyna
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Jordan Warner
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Claire S. Martin
- School of Biomedical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rahul Y. Mahida
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Rowan S. Hardy
- School of Biomedical Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Andrew R. Clark
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
17
|
Ma W, Loving CL, Driver JP. From Snoot to Tail: A Brief Review of Influenza Virus Infection and Immunity in Pigs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1187-1194. [PMID: 37782856 PMCID: PMC10824604 DOI: 10.4049/jimmunol.2300385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/07/2023] [Indexed: 10/04/2023]
Abstract
Pigs play an important role in influenza A virus (IAV) epidemiology because they support replication of human, avian, and swine origin viruses and act as an IAV reservoir for pigs and other species, including humans. Moreover, novel IAVs with human pandemic potential may be generated in pigs. To minimize the threat of IAVs to human and swine health, it is crucial to understand host defense mechanisms that restrict viral replication and pathology in pigs. In this article, we review IAV strains circulating in the North American swine population, as well as porcine innate and acquired immune responses to IAV, including recent advances achieved through immunological tools developed specifically for swine. Furthermore, we highlight unique aspects of the porcine pulmonary immune system, which warrant consideration when developing vaccines and therapeutics to limit IAV in swine or when using pigs to model human IAV infections.
Collapse
Affiliation(s)
- Wenjun Ma
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO
| | - Crystal L. Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA
| | - John P. Driver
- Division of Animal Sciences, University of Missouri, Columbia, MO
| |
Collapse
|
18
|
Cao L, Hui X, Xu T, Mao H, Lin X, Huang K, Zhao L, Jin M. The RNA-Splicing Ligase RTCB Promotes Influenza A Virus Replication by Suppressing Innate Immunity via Interaction with RNA Helicase DDX1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1020-1031. [PMID: 37556111 PMCID: PMC10476163 DOI: 10.4049/jimmunol.2200799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 07/11/2023] [Indexed: 08/10/2023]
Abstract
The RNA-splicing ligase RNA 2',3'-cyclic phosphate and 5'-OH ligase (RTCB) is a catalytic subunit of the tRNA-splicing ligase complex, which plays an essential role in catalyzing tRNA splicing and modulating the unfolded protein response. However, the function of RTCB in influenza A virus (IAV) replication has not yet been described. In this study, RTCB was revealed to be an IAV-suppressed host factor that was significantly downregulated during influenza virus infection in several transformed cell lines, as well as in primary human type II alveolar epithelial cells, and its knockout impaired the propagation of the IAV. Mechanistically, RTCB depletion led to a robust elevation in the levels of type I and type III IFNs and proinflammatory cytokines in response to IAV infection, which was confirmed by RTCB overexpression studies. Lastly, RTCB was found to compete with DDX21 for RNA helicase DDX1 binding, attenuating the DDX21-DDX1 association and thus suppressing the expression of IFN and downstream IFN-stimulated genes. Our study indicates that RTCB plays a critical role in facilitating IAV replication and reveals that the RTCB-DDX1 binding interaction is an important innate immunomodulator for the host to counteract viral infection.
Collapse
Affiliation(s)
- Lei Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xianfeng Hui
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Ting Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haiying Mao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xian Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Kun Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Lianzhong Zhao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Meilin Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
- China Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
19
|
Ivanova EN, Shwetar J, Devlin JC, Buus TB, Gray-Gaillard S, Koide A, Cornelius A, Samanovic MI, Herrera A, Mimitou EP, Zhang C, Karmacharya T, Desvignes L, Ødum N, Smibert P, Ulrich RJ, Mulligan MJ, Koide S, Ruggles KV, Herati RS, Koralov SB. mRNA COVID-19 vaccine elicits potent adaptive immune response without the persistent inflammation seen in SARS-CoV-2 infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2021.04.20.21255677. [PMID: 33907755 PMCID: PMC8077568 DOI: 10.1101/2021.04.20.21255677] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SARS-CoV-2 infection and vaccination elicit potent immune responses. Our study presents a comprehensive multimodal single-cell dataset of peripheral blood of patients with acute COVID-19 and of healthy volunteers before and after receiving the SARS-CoV-2 mRNA vaccine and booster. We compared host immune responses to the virus and vaccine using transcriptional profiling, coupled with B/T cell receptor repertoire reconstruction. COVID-19 patients displayed an enhanced interferon signature and cytotoxic gene upregulation, absent in vaccine recipients. These findings were validated in an independent dataset. Analysis of B and T cell repertoires revealed that, while the majority of clonal lymphocytes in COVID-19 patients were effector cells, clonal expansion was more evident among circulating memory cells in vaccine recipients. Furthermore, while clonal αβ T cell responses were observed in both COVID-19 patients and vaccine recipients, dramatic expansion of clonal γδT cells was found only in infected individuals. Our dataset enables comparative analyses of immune responses to infection versus vaccination, including clonal B and T cell responses. Integrating our data with publicly available datasets allowed us to validate our findings in larger cohorts. To our knowledge, this is the first dataset to include comprehensive profiling of longitudinal samples from healthy volunteers pre/post SARS-CoV-2 vaccine and booster.
Collapse
|
20
|
Mertowska P, Smolak K, Mertowski S, Grywalska E. Immunomodulatory Role of Interferons in Viral and Bacterial Infections. Int J Mol Sci 2023; 24:10115. [PMID: 37373262 DOI: 10.3390/ijms241210115] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Interferons are a group of immunomodulatory substances produced by the human immune system in response to the presence of pathogens, especially during viral and bacterial infections. Their remarkably diverse mechanisms of action help the immune system fight infections by activating hundreds of genes involved in signal transduction pathways. In this review, we focus on discussing the interplay between the IFN system and seven medically important and challenging viruses (herpes simplex virus (HSV), influenza, hepatitis C virus (HCV), lymphocytic choriomeningitis virus (LCMV), human immunodeficiency virus (HIV), Epstein-Barr virus (EBV), and SARS-CoV coronavirus) to highlight the diversity of viral strategies. In addition, the available data also suggest that IFNs play an important role in the course of bacterial infections. Research is currently underway to identify and elucidate the exact role of specific genes and effector pathways in generating the antimicrobial response mediated by IFNs. Despite the numerous studies on the role of interferons in antimicrobial responses, many interdisciplinary studies are still needed to understand and optimize their use in personalized therapeutics.
Collapse
Affiliation(s)
- Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Konrad Smolak
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
21
|
Sasaki E, Asanuma H, Momose H, Furuhata K, Mizukami T, Matsumura T, Takahashi Y, Hamaguchi I. Systemically inoculated adjuvants stimulate pDC-dependent IgA response in local site. Mucosal Immunol 2023; 16:275-286. [PMID: 36935091 DOI: 10.1016/j.mucimm.2023.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/25/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023]
Abstract
The stimulation of local immunity by vaccination is desirable for controlling virus replication in the respiratory tract. However, the local immune stimulatory effects of adjuvanted vaccines administered through the non-mucosal route are poorly understood. Here, we clarify the mechanisms by which non-mucosal inoculation of adjuvants stimulates the plasmacytoid dendritic cell (pDC)-dependent immunoglobulin (Ig)A response in the lungs. After systemic inoculation with type 1 interferon (IFN)-inducing adjuvants, type 1 IFN promotes CXCL9/10/11 release from alveolar endothelial and epithelial cells and recruits CXCR3-expressing pDCs into the lungs. Because adjuvant-activated pulmonary pDCs highly express major histocompatibility complex II, cluster of differentiation 80, and cluster of differentiation 86, transplantation of such cells into the lungs successfully enhances antigen-specific IgA production by the intranasally sensitized vaccine. In contrast, pDC accumulation in the lungs and subsequent IgA production are impaired in pDC-depleted mice and Ifnar1-/- mice. Notably, the combination of systemic inoculation with type 1 IFN-inducing adjuvants and intranasal antigen sensitization protects mice against influenza virus infection due to the pDC-dependent IgA response and type I IFN response. Our results provide insights into the novel mucosal vaccine strategies using non-mucosal inoculated adjuvants.
Collapse
Affiliation(s)
- Eita Sasaki
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Hideki Asanuma
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Tokyo, Japan
| | - Haruka Momose
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keiko Furuhata
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takuo Mizukami
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takayuki Matsumura
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Isao Hamaguchi
- Research Center for Biological Products in the Next Generation, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
22
|
Finn CM, Dhume K, Prokop E, Strutt TM, McKinstry KK. STAT1 Controls the Functionality of Influenza-Primed CD4 T Cells but Therapeutic STAT4 Engagement Maximizes Their Antiviral Impact. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1292-1304. [PMID: 36961447 PMCID: PMC10121883 DOI: 10.4049/jimmunol.2200407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/22/2023] [Indexed: 03/25/2023]
Abstract
It is generally accepted that influenza A virus (IAV) infection promotes a Th1-like CD4 T cell response and that this effector program underlies its protective impact. Canonical Th1 polarization requires cytokine-mediated activation of the transcription factors STAT1 and STAT4 that synergize to maximize the induction of the "master regulator" Th1 transcription factor, T-bet. Here, we determine the individual requirements for these transcription factors in directing the Th1 imprint primed by influenza infection in mice by tracking virus-specific wild-type or T-bet-deficient CD4 T cells in which STAT1 or STAT4 is knocked out. We find that STAT1 is required to protect influenza-primed CD4 T cells from NK cell-mediated deletion and for their expression of hallmark Th1 attributes. STAT1 is also required to prevent type I IFN signals from inhibiting the induction of the Th17 master regulator, Rorγt, in Th17-prone T-bet-/- cells responding to IAV. In contrast, STAT4 expression does not appreciably impact the phenotypic or functional attributes of wild-type or T-bet-/- CD4 T cell responses. However, cytokine-mediated STAT4 activation in virus-specific CD4 T cells enhances their Th1 identity in a T-bet-dependent manner, indicating that influenza infection does not promote maximal Th1 induction. Finally, we show that the T-bet-dependent protective capacity of CD4 T cell effectors against IAV is optimized by engaging both STAT1 and STAT4 during Th1 priming, with important implications for vaccine strategies aiming to generate T cell immunity.
Collapse
Affiliation(s)
- Caroline M. Finn
- Burnett School of Biomedical Sciences, Division of Immunity and Pathogenesis, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Kunal Dhume
- Burnett School of Biomedical Sciences, Division of Immunity and Pathogenesis, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Emily Prokop
- Burnett School of Biomedical Sciences, Division of Immunity and Pathogenesis, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Tara M. Strutt
- Burnett School of Biomedical Sciences, Division of Immunity and Pathogenesis, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - K. Kai McKinstry
- Burnett School of Biomedical Sciences, Division of Immunity and Pathogenesis, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
23
|
Agraval H, Crue T, Schaunaman N, Numata M, Day BJ, Chu HW. Electronic Cigarette Exposure Increases the Severity of Influenza a Virus Infection via TRAIL Dysregulation in Human Precision-Cut Lung Slices. Int J Mol Sci 2023; 24:ijms24054295. [PMID: 36901724 PMCID: PMC10002047 DOI: 10.3390/ijms24054295] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023] Open
Abstract
The use of electronic nicotine dispensing systems (ENDS), also known as electronic cigarettes (ECs), is common among adolescents and young adults with limited knowledge about the detrimental effects on lung health such as respiratory viral infections and underlying mechanisms. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), a protein of the TNF family involved in cell apoptosis, is upregulated in COPD patients and during influenza A virus (IAV) infections, but its role in viral infection during EC exposures remains unclear. This study was aimed to investigate the effect of ECs on viral infection and TRAIL release in a human lung precision-cut lung slices (PCLS) model, and the role of TRAIL in regulating IAV infection. PCLS prepared from lungs of nonsmoker healthy human donors were exposed to EC juice (E-juice) and IAV for up to 3 days during which viral load, TRAIL, lactate dehydrogenase (LDH), and TNF-α in the tissue and supernatants were determined. TRAIL neutralizing antibody and recombinant TRAIL were utilized to determine the contribution of TRAIL to viral infection during EC exposures. E-juice increased viral load, TRAIL, TNF-α release and cytotoxicity in IAV-infected PCLS. TRAIL neutralizing antibody increased tissue viral load but reduced viral release into supernatants. Conversely, recombinant TRAIL decreased tissue viral load but increased viral release into supernatants. Further, recombinant TRAIL enhanced the expression of interferon-β and interferon-λ induced by E-juice exposure in IAV-infected PCLS. Our results suggest that EC exposure in human distal lungs amplifies viral infection and TRAIL release, and that TRAIL may serve as a mechanism to regulate viral infection. Appropriate levels of TRAIL may be important to control IAV infection in EC users.
Collapse
Affiliation(s)
- Hina Agraval
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Taylor Crue
- School of Medicine, University of Colorado, 12700 E 19th Ave, Aurora, CO 80045, USA
| | - Niccolette Schaunaman
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Mari Numata
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Brian J. Day
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
| | - Hong Wei Chu
- Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA
- Correspondence: ; Tel.: +1-303-398-1689
| |
Collapse
|
24
|
Liu X, Zheng F, Tian L, Li T, Zhang Z, Ren Z, Chen X, Chen W, Li K, Sheng J. Lidocaine inhibits influenza a virus replication by up-regulating IFNα4 via TBK1-IRF7 and JNK-AP1 signaling pathways. Int Immunopharmacol 2023; 115:109706. [PMID: 36638664 DOI: 10.1016/j.intimp.2023.109706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Influenza A viruses (IAV), significant respiratory pathogenic agents, cause seasonal epidemics and global pandemics in intra- and interannual cycles. Despite effective therapies targeting viral proteins, the continuous generation of drug-resistant IAV strains is challenging. Therefore, exploring novel host-specific antiviral treatment strategies is urgently needed. Here, we found that lidocaine, widely used for local anesthesia and sedation, significantly inhibited H1N1(PR8) replication in macrophages. Interestingly, its antiviral effect did not depend on the inhibition of voltage-gated sodium channels (VGSC), the main target of lidocaine for anesthesia. Lidocaine significantly upregulated early IFN-I, interferon α4 (IFNα4) mRNA, and protein levels, but not those of early IFNβ in mouse RAW 264.7 cell line and human THP-1 derived macrophages. Knocking out IFNα4 by CRISPR-Cas9 partly reversed lidocaine's inhibition of PR8 replication in macrophages. Mechanistically, lidocaine upregulated IFNα4 by activating TANK-binding kinase 1 (TBK1)-IRF7 and JNK-AP1 signaling pathways. These findings indicate that lidocaine has an incredible antiviral potential by enhancing IFN-I signaling in macrophages. In conclusion, our results indicate the potential auxiliary role of lidocaine for anti-influenza A virus therapy and even for anti-SARS-CoV-2 virus therapy, especially in the absence of a specific medicine.
Collapse
Affiliation(s)
- Xueer Liu
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Fengqing Zheng
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Lu Tian
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Tian Li
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Zelin Zhang
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Zhihui Ren
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Xiaoxuan Chen
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Weiqiang Chen
- Department of Neurosurgery, First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou 515041, Guangdong, China.
| | - Kangsheng Li
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong, China.
| | - Jiangtao Sheng
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong, China.
| |
Collapse
|
25
|
Kim DH, Jeong M, Kim JH, Son JE, Lee JJY, Park SJ, Lee J, Kim M, Oh JW, Park MS, Byun S. Lactobacillus salivarius HHuMin-U Activates Innate Immune Defense against Norovirus Infection through TBK1-IRF3 and NF-κB Signaling Pathways. RESEARCH (WASHINGTON, D.C.) 2022; 2022:0007. [PMID: 39290965 PMCID: PMC11407524 DOI: 10.34133/research.0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/21/2022] [Indexed: 09/19/2024]
Abstract
The composition of commensal bacteria plays a critical role in controlling immune responses in the intestine. Studies have shown that specific bacterial strains may have the capacity to enhance host immune defense against gastrointestinal viral infections. While norovirus is known to be the most common cause of gastroenteritis, leading to an estimated 200,000 deaths every year, identification of bacterial strains with protective effects against norovirus infection remains elusive. Here, we discovered Lactobacillus salivarius HHuMin-U (HHuMin-U) as a potent antiviral strain against norovirus infection. HHuMin-U significantly suppressed murine norovirus replication and lowered viral RNA titers in macrophages. The transcriptome sequencing (RNA sequencing) analysis revealed that HHuMin-U markedly enhanced the expression level of antiviral interferon-stimulated genes compared to mock treatment. HHuMin-U treatment dose-dependently induced type I interferons (IFN-α and IFN-β) and tumor necrosis factor-α production in mouse and human macrophages, promoting antiviral innate responses against norovirus infection. Investigation on the molecular mechanism demonstrated that HHuMin-U can activate nuclear factor κB and TANK-binding kinase 1 (TBK1)-interferon regulatory factor 3 signaling pathways, leading to the phosphorylation of signal transducer and activator of transcription 1 and signal transducer and activator of transcription 2, the key mediators of interferon-stimulated genes. Finally, oral administration of HHuMin-U increased IFN-β levels in the ileum of mice and altered the gut microbiome profile. These results suggest the species/strain-specific importance of gut microbial composition for antiviral immune responses and the potential use of HHuMin-U as a probiotic agent.
Collapse
Affiliation(s)
- Da Hyun Kim
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Minju Jeong
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Hwan Kim
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Joe Eun Son
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - John J Y Lee
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sang-Jun Park
- Research Center, BIFIDO Co. Ltd., Hanam 12930, Republic of Korea
| | - Juyeon Lee
- Research Center, BIFIDO Co. Ltd., Hanam 12930, Republic of Korea
| | - Minwoo Kim
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Won Oh
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Myeong Soo Park
- Research Center, BIFIDO Co. Ltd., Hanam 12930, Republic of Korea
| | - Sanguine Byun
- Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
26
|
Ghale R, Spottiswoode N, Anderson MS, Mitchell A, Wang G, Calfee CS, DeRisi JL, Langelier CR. Prevalence of type-1 interferon autoantibodies in adults with non-COVID-19 acute respiratory failure. Respir Res 2022; 23:354. [PMID: 36527083 PMCID: PMC9756918 DOI: 10.1186/s12931-022-02283-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Auto-antibodies (Abs) to type I interferons (IFNs) are found in up to 25% of patients with severe COVID-19, and are implicated in disease pathogenesis. It has remained unknown, however, whether type I IFN auto-Abs are unique to COVID-19, or are also found in other types of severe respiratory illnesses. To address this, we studied a prospective cohort of 284 adults with acute respiratory failure due to causes other than COVID-19. We measured type I IFN auto-Abs by radio ligand binding assay and screened for respiratory viruses using clinical PCR and metagenomic sequencing. Three patients (1.1%) tested positive for type I IFN auto-Abs, and each had a different underlying clinical presentation. Of the 35 patients found to have viral infections, only one patient tested positive for type I IFN auto-Abs. Together, our data suggest that type I IFN auto-Abs are uncommon in critically ill patients with acute respiratory failure due to causes other than COVID-19.
Collapse
Affiliation(s)
- Rajani Ghale
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of California, San Francisco, CA, USA
- Division of Infectious Diseases, University of California, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Natasha Spottiswoode
- Division of Infectious Diseases, University of California, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Mark S Anderson
- Department of Medicine, University of California, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, CA, USA
| | - Anthea Mitchell
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Grace Wang
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Carolyn S Calfee
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of California, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Joseph L DeRisi
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Charles R Langelier
- Division of Infectious Diseases, University of California, San Francisco, CA, USA.
- Department of Medicine, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
27
|
Hinay AA, Kakee S, Kageyama S, Tsuneki-Tokunaga A, Perdana WY, Akena Y, Nishiyama S, Kanai K. Pro-Inflammatory Cytokines and Interferon-Stimulated Gene Responses Induced by Seasonal Influenza A Virus with Varying Growth Capabilities in Human Lung Epithelial Cell Lines. Vaccines (Basel) 2022; 10:vaccines10091507. [PMID: 36146585 PMCID: PMC9503125 DOI: 10.3390/vaccines10091507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
In a previous study, we described the diverse growth capabilities of circulating seasonal influenza A viruses (IAVs) with low to high viral copy numbers in vitro. In this study, we analyzed the cause of differences in growth capability by evaluating pro-inflammatory cytokines (TNF-α, IL-6, IFN-β) and antiviral interferon-stimulated genes (ISG-15, IFIM1, and TRIM22). A549 cells (3.0 × 105 cells) were inoculated with circulating seasonal IAV strains and incubated for 6 and 24 h. In cells inoculated for 6 h, IAV production was assessed using IAV-RNA copies in the culture supernatant and cell pellets to evaluate gene expression. At 24 h post-infection, cells were collected for IFN-β and ISG-15 protein expression. A549 cells inoculated with seasonal IAV strains with a high growth capability expressed lower levels of IFN-β and ISGs than strains with low growth capabilities. Moreover, suppression of the JAK/STAT pathway enhanced the viral copies of seasonal IAV strains with a low growth capability. Our results suggest that the expression of ISG-15, IFIM1, and TRIM22 in seasonal IAV-inoculated A549 cells could influence the regulation of viral replication, indicating the existence of strains with high and low growth capability. Our results may contribute to the development of new and effective therapeutic strategies to reduce the risk of severe influenza infections.
Collapse
|
28
|
Wu W, Alexander JS, Metcalf JP. In Vivo and In Vitro Studies of Cigarette Smoke Effects on Innate Responses to Influenza Virus: A Matter of Models? Viruses 2022; 14:1824. [PMID: 36016446 PMCID: PMC9415757 DOI: 10.3390/v14081824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 11/26/2022] Open
Abstract
Cigarette smoke (CS) is a significant public health problem and a leading risk factor for the development of chronic obstructive pulmonary disease (COPD) in the developed world. Respiratory viral infections, such as the influenza A virus (IAV), are associated with acute exacerbations of COPD and are more severe in cigarette smokers. To fight against viral infection, the host has developed an innate immune system, which has complicated mechanisms regulating the expression and activation of cytokines and chemokines to maximize the innate and adaptive antiviral response, as well as limiting the immunopathology that leads to exaggerated lung damage. In the case of IAV, responders include airway and alveolar epithelia, lung macrophages and dendritic cells. To achieve a successful infection, IAV must overcome these defenses. In this review, we summarize the detrimental role of CS in influenza infections. This includes both immunosuppressive and proinflammatory effects on innate immune responses during IAV infection. Some of the results, with respect to CS effects in mouse models, appear to have discordant results, which could be at least partially addressed by standardization of animal viral infection models to evaluate the effect of CS exposure in this context.
Collapse
Affiliation(s)
- Wenxin Wu
- Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jeremy S. Alexander
- Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jordan P. Metcalf
- Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Microbiology and Immunology, the University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Veterans Affairs Medical Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
29
|
The Contribution of Viral Proteins to the Synergy of Influenza and Bacterial Co-Infection. Viruses 2022; 14:v14051064. [PMID: 35632805 PMCID: PMC9143653 DOI: 10.3390/v14051064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
A severe course of acute respiratory disease caused by influenza A virus (IAV) infection is often linked with subsequent bacterial superinfection, which is difficult to cure. Thus, synergistic influenza-bacterial co-infection represents a serious medical problem. The pathogenic changes in the infected host are accelerated as a consequence of IAV infection, reflecting its impact on the host immune response. IAV infection triggers a complex process linked with the blocking of innate and adaptive immune mechanisms required for effective antiviral defense. Such disbalance of the immune system allows for easier initiation of bacterial superinfection. Therefore, many new studies have emerged that aim to explain why viral-bacterial co-infection can lead to severe respiratory disease with possible fatal outcomes. In this review, we discuss the key role of several IAV proteins-namely, PB1-F2, hemagglutinin (HA), neuraminidase (NA), and NS1-known to play a role in modulating the immune defense of the host, which consequently escalates the development of secondary bacterial infection, most often caused by Streptococcus pneumoniae. Understanding the mechanisms leading to pathological disorders caused by bacterial superinfection after the previous viral infection is important for the development of more effective means of prevention; for example, by vaccination or through therapy using antiviral drugs targeted at critical viral proteins.
Collapse
|
30
|
Hong Y, Truong AD, Vu TH, Lee S, Heo J, Kang S, Lillehoj HS, Hong YH. Exosomes from H5N1 avian influenza virus-infected chickens regulate antiviral immune responses of chicken immune cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 130:104368. [PMID: 35104460 DOI: 10.1016/j.dci.2022.104368] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Exosomes (membrane-derived vesicles) enable intracellular communication by delivering lipids, proteins, DNA, and RNA from one cell to another. Highly pathogenic avian influenza virus (HPAIV) H5N1 causes considerable economic loss in the poultry industry and poses a public health concern. The host innate immune system defends against H5N1 infection by activating antiviral immune responses. This study aimed to demonstrated that immunomodulatory effects of exosomes from HPAIV H5N1-infected White Leghorn chickens on chicken macrophages, fibroblasts, T cell, and B cell lines. The expression of type I interferons (IFN-α and -β) were highly upregulated in immune-related cell lines after treatment with exosomes derived from H5N1-infected chickens. Levels of pro-inflammatory cytokines, such as IFN-γ, IL-1β, and CXCL8, were also elevated by the exosomes. The mitogen-activated protein kinase (MAPK) signaling pathway was stimulated in immune-related cells by such exosomes via phosphorylation of extracellular regulated kinases 1/2 and p38 signaling molecules. Furthermore, the H5N1 viral proteins, nucleoprotein (NP) and non-structural protein (NS1), were packaged in exosomes and successfully transferred to non-infected immune-related cells. Therefore, exosomes from H5N1-infected chickens induced pro-inflammatory cytokine expression and stimulated the MAPK signaling pathway by delivering key viral proteins. These findings would aid better understanding of the mechanism underlying the modulation of antiviral immune responses of host immune-related cells by viral-protein-carrying exosomes and support their further application as a novel exosome-based H5N1 AIV vaccine platform.
Collapse
Affiliation(s)
- Yeojin Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Anh Duc Truong
- Department of Biochemistry and Immunology, National Institute of Veterinary Research, 86 Truong Chinh, Dong Da, Hanoi, 100000, Viet Nam
| | - Thi Hao Vu
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Sooyeon Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Jubi Heo
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Suyeon Kang
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hyun S Lillehoj
- Animal Biosciences and Biotechnology Laboratory, Agricultural Research Services, United States Department of Agriculture, Beltsville, MD, 20705, USA
| | - Yeong Ho Hong
- Department of Animal Science and Technology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
31
|
Oh SJ, Lee EN, Park JH, Lee JK, Cho GJ, Park IH, Shin OS. Anti-Viral Activities of Umbilical Cord Mesenchymal Stem Cell-Derived Small Extracellular Vesicles Against Human Respiratory Viruses. Front Cell Infect Microbiol 2022; 12:850744. [PMID: 35558099 PMCID: PMC9085650 DOI: 10.3389/fcimb.2022.850744] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
The endemic and pandemic caused by respiratory virus infection are a major cause of mortality and morbidity globally. Thus, broadly effective antiviral drugs are needed to treat respiratory viral diseases. Small extracellular vesicles derived from human umbilical cord mesenchymal stem cells (U-exo) have recently gained attention as a cell-free therapeutic strategy due to their potential for safety and efficacy. Anti-viral activities of U-exo to countermeasure respiratory virus-associated diseases are currently unknown. Here, we tested the antiviral activities of U-exo following influenza A/B virus (IFV) and human seasonal coronavirus (HCoV) infections in vitro. Cells were subject to IFV or HCoV infection followed by U-exo treatment. U-exo treatment significantly reduced IFV or HCoV replication and combined treatment with recombinant human interferon-alpha protein (IFN-α) exerted synergistically enhanced antiviral effects against IFV or HCoV. Interestingly, microRNA (miR)-125b, which is one of the most abundantly expressed small RNAs in U-exo, was found to suppress IFV replication possibly via the induction of IFN-stimulated genes (ISGs). Furthermore, U-exo markedly enhanced RNA virus-triggered IFN signaling and ISGs production. Similarly, human nasal epithelial cells cultured at the air-liquid interface (ALI) studies broadly effective anti-viral and anti-inflammatory activities of U-exo against IFV and HCoV, suggesting the potential role of U-exo as a promising intervention for respiratory virus-associated diseases.
Collapse
Affiliation(s)
- Soo-Jin Oh
- BK21 Graduate program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Eun-Na Lee
- Department of Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Joo-Hoo Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University, Seoul, South Korea
| | - Jae Kyung Lee
- BK21 Graduate program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Geum Joon Cho
- Department of Obstetrics and Gynecology, College of Medicine, Korea University Guro Hospital, Seoul, South Korea
| | - Il-Ho Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
- Upper Airway Chronic Inflammatory Diseases Laboratory, Korea University, Seoul, South Korea
- *Correspondence: Il-Ho Park, ; Ok Sarah Shin,
| | - Ok Sarah Shin
- BK21 Graduate program, Department of Biomedical Sciences, College of Medicine, Korea University Guro Hospital, Seoul, South Korea
- Department of Medicine, Korea University College of Medicine, Seoul, South Korea
- *Correspondence: Il-Ho Park, ; Ok Sarah Shin,
| |
Collapse
|
32
|
Kim SY, Gupta P, Johns SC, Zuniga EI, Teijaro JR, Fuster MM. Genetic alteration of heparan sulfate in CD11c + immune cells inhibits inflammation and facilitates pathogen clearance during influenza A virus infection. Sci Rep 2022; 12:5382. [PMID: 35354833 PMCID: PMC8968721 DOI: 10.1038/s41598-022-09197-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Survival from influenza A virus (IAV) infection largely depends on an intricate balance between pathogen clearance and immunomodulation in the lung. We demonstrate that genetic alteration of the glycan heparan sulfate (HS) in CD11c + cells via Ndst1f/f CD11cCre + mutation, which inhibits HS sulfation in a major antigen presenting cell population, reduces lung inflammation by A/Puerto Rico/8/1934(H1N1) influenza in mice. Mutation was also characterized by a reduction in lung infiltration by CD4+ regulatory T (Treg) cells in the late infection/effector phase, 9 days post inoculation (p.i.), without significant differences in lung CD8 + T cells, or Treg cells at an earlier point (day 5) following infection. Induction of under-sulfated HS via Ndst1 silencing in a model dendritic cell line (DC2.4) resulted in up-regulated basal expression of the antiviral cytokine interferon β (IFN-β) relative to control. Stimulating cells with the TLR9 ligand CpG resulted in greater nuclear factor-κB (NFκB) phosphorylation in Ndst1 silenced DC2.4 cells. While stimulating cells with CpG also modestly increased IFN-β expression, this did not lead to significant increases in IFN-β protein production. In further IFN-β protein response studies using primary bone marrow DCs from Ndst1f/f CD11cCre + mutant and Cre− control mice, while trace IFN-β protein was detected in response to CpG, stimulation with the TLR7 ligand R848 resulted in robust IFN-β production, with significantly higher levels associated with DC Ndst1 mutation. In vivo, improved pathogen clearance in Ndst1f/f CD11cCre + mutant mice was suggested by reduced IAV AA5H nucleoprotein in lung examined in the late/effector phase. Earlier in the course of infection (day 5 p.i.), mean viral load, as measured by viral RNA, was not significantly different among genotypes. These findings point to novel regulatory roles for DC HS in innate and adaptive immunity during viral infection. This may have therapeutic potential and guide DC targeted HS engineering platforms in the setting of IAV or other respiratory viruses.
Collapse
|
33
|
Wu W, Tian L, Zhang W, Booth JL, Ritchey JW, Wu S, Xu C, Brown BR, Metcalf JP. Early IFN-β administration protects cigarette smoke exposed mice against lethal influenza virus infection without increasing lung inflammation. Sci Rep 2022; 12:4080. [PMID: 35260752 PMCID: PMC8902729 DOI: 10.1038/s41598-022-08066-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/25/2022] [Indexed: 11/21/2022] Open
Abstract
During influenza A virus (IAV) infection, it is unclear whether type I interferons (IFNs) have defensive antiviral effects or contribute to immunopathology in smokers. We treated nonsmoking (NS) and cigarette smoke (CS)-exposed mice intranasally with early (prophylactic) or late (therapeutic) IFN-β. We compared the mortality and innate immune responses of the treated mice following challenge with IAV. In NS mice, both early and late IFN-β administration decreased the survival rate in mice infected with IAV, with late IFN-β administration having the greatest effect on survival. In contrast, in CS-exposed mice, early IFN-β administration significantly increased survival during IAV infection while late IFN-β administration did not alter mortality. With regards to inflammation, in NS mice, IFN-β administration, especially late administration, significantly increased IAV-induced inflammation and lung injury. Early IFN-β administration to CS-exposed mice did not increase IAV-induced inflammation and lung injury as occurred in NS mice. Our results demonstrate, although IFN-β administration worsens the susceptibility of NS mice to influenza infection with increased immunopathology, early IFN-β administration to CS-exposed mice, which have suppression of the intrinsic IFN response, improved outcomes during influenza infection.
Collapse
Affiliation(s)
- Wenxin Wu
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA.
| | - Lili Tian
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA
| | - Wei Zhang
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA
| | - J Leland Booth
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA
| | - Jerry William Ritchey
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK, USA
| | - Shuhua Wu
- Division of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Chao Xu
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Brent R Brown
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA
| | - Jordan P Metcalf
- Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Oklahoma Health Sciences Center, Room 425, RP1, 800 N. Research Pkwy., Oklahoma City, OK, 73104, USA.
- Veterans Affairs Medical Center, Oklahoma City, OK, USA.
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
34
|
Razzuoli E, Armando F, De Paolis L, Ciurkiewicz M, Amadori M. The Swine IFN System in Viral Infections: Major Advances and Translational Prospects. Pathogens 2022; 11:175. [PMID: 35215119 PMCID: PMC8875149 DOI: 10.3390/pathogens11020175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023] Open
Abstract
Interferons (IFNs) are a family of cytokines that play a pivotal role in orchestrating the innate immune response during viral infections, thus representing the first line of defense in the host. After binding to their respective receptors, they are able to elicit a plethora of biological activities, by initiating signaling cascades which lead to the transcription of genes involved in antiviral, anti-inflammatory, immunomodulatory and antitumoral effector mechanisms. In hindsight, it is not surprising that viruses have evolved multiple IFN escape strategies toward efficient replication in the host. Hence, in order to achieve insight into preventive and treatment strategies, it is essential to explore the mechanisms underlying the IFN response to viral infections and the constraints thereof. Accordingly, this review is focused on three RNA and three DNA viruses of major importance in the swine farming sector, aiming to provide essential data as to how the IFN system modulates the antiviral immune response, and is affected by diverse, virus-driven, immune escape mechanisms.
Collapse
Affiliation(s)
- Elisabetta Razzuoli
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D’Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, Italy;
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (F.A.); (M.C.)
| | - Livia De Paolis
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle D’Aosta, Piazza Borgo Pila 39/24, 16129 Genoa, Italy;
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, 30559 Hannover, Germany; (F.A.); (M.C.)
| | - Massimo Amadori
- National Network of Veterinary Immunology (RNIV), Via Istria 3, 25125 Brescia, Italy;
| |
Collapse
|
35
|
Layton DS, Mara K, Dai M, Malaver-Ortega LF, Gough TJ, Bruce K, Jenkins KA, Bean AGD. Interferon Signaling in Chickens Plays a Crucial Role in Inhibiting Influenza Replication in DF1 Cells. Microorganisms 2022; 10:133. [PMID: 35056582 PMCID: PMC8781551 DOI: 10.3390/microorganisms10010133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 01/17/2023] Open
Abstract
Influenza A viruses (IAV) pose a constant threat to human and poultry health. Of particular interest are the infections caused by highly pathogenic avian influenza (HPAI) viruses, such as H5N1, which cause significant production issues. In response to influenza infection, cells activate immune mechanisms that lead to increased interferon (IFN) production. To investigate how alterations in the interferon signaling pathway affect the cellular response to infection in the chicken, we used CRISPR/Cas9 to generate a chicken cell line that lacks a functional the type I interferon receptor (IFNAR1). We then assessed viral infections with the WSN strain of influenza. Cells lacking a functional IFNAR1 receptor showed reduced expression of the interferon stimulated genes (ISG) such as Protein Kinase R (PKR) and Myxovirus resistance (Mx) and were more susceptible to viral infection with WSN. We further investigated the role or IFNAR1 on low pathogenicity avian influenza (LPAI) strains (H7N9) and a HPAI strain (H5N1). Intriguingly, Ifnar-/- cells appeared more resistant than WT cells when infected with HPAI virus, potentially indicating a different interaction between H5N1 and the IFN signaling pathway. Our findings support that ChIFNAR1 is a key component of the chicken IFN signaling pathway and these data add contributions to the field of host-avian pathogen interaction and innate immunity in chickens.
Collapse
Affiliation(s)
- Daniel S. Layton
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness (ACDP), Geelong, VIC 3220, Australia; (K.M.); (M.D.); (T.J.G.); (K.B.); (K.A.J.); (A.G.D.B.)
| | - Kostlend Mara
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness (ACDP), Geelong, VIC 3220, Australia; (K.M.); (M.D.); (T.J.G.); (K.B.); (K.A.J.); (A.G.D.B.)
| | - Meiling Dai
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness (ACDP), Geelong, VIC 3220, Australia; (K.M.); (M.D.); (T.J.G.); (K.B.); (K.A.J.); (A.G.D.B.)
| | - Luis Fernando Malaver-Ortega
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Clayton Campus, Monash University, Clayton, VIC 3800, Australia;
| | - Tamara J. Gough
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness (ACDP), Geelong, VIC 3220, Australia; (K.M.); (M.D.); (T.J.G.); (K.B.); (K.A.J.); (A.G.D.B.)
| | - Kerri Bruce
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness (ACDP), Geelong, VIC 3220, Australia; (K.M.); (M.D.); (T.J.G.); (K.B.); (K.A.J.); (A.G.D.B.)
| | - Kristie A. Jenkins
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness (ACDP), Geelong, VIC 3220, Australia; (K.M.); (M.D.); (T.J.G.); (K.B.); (K.A.J.); (A.G.D.B.)
| | - Andrew G. D. Bean
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness (ACDP), Geelong, VIC 3220, Australia; (K.M.); (M.D.); (T.J.G.); (K.B.); (K.A.J.); (A.G.D.B.)
| |
Collapse
|
36
|
Abstract
Toll-like receptors were discovered as proteins playing a crucial role in the dorsoventral patterning during embryonic development in the Drosophila melanogaster (D. melanogaster) almost 40 years ago. Subsequently, further research also showed a role of the Toll protein or Toll receptor in the recognition of Gram-positive bacterial and fungal pathogens infecting D. melanogaster. In 1997, the human homolog was reported and the receptor was named the Toll-like receptor 4 (TLR4) that recognizes lipopolysaccharide (LPS) of the Gram-negative bacteria as a pathogen-associated molecular pattern (PAMP). Identification of TLR4 in humans filled the long existing gap in the field of infection and immunity, addressing the mystery surrounding the recognition of foreign pathogens/microbes by the immune system. It is now known that mammals (mice and humans) express 13 different TLRs that are expressed on the outer cell membrane or intracellularly, and which recognize different PAMPs or microbe-associated molecular patterns (MAMPs) and death/damage-associated molecular patterns (DAMPs) to initiate the protective immune response. However, their dysregulation generates profound and prolonged pro-inflammatory immune responses responsible for different inflammatory and immune-mediated diseases. This chapter provides an overview of TLRs in the control of the immune response, their association with different diseases, including TLR single nucleotide polymorphisms (SNPs), interactions with microRNAs (miRs), use in drug development and vaccine design, and expansion in neurosciences to include pain, addiction, metabolism, reproduction, and wound healing.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA.
| | - James E Barrett
- Drexel University College of Medicine, Philadelphia, PA, USA.
- Department of Neural Sciences, Centre for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
37
|
Kwon EB, Oh YC, Hwang YH, Li W, Park SM, Kong R, Kim YS, Choi JG. A Herbal Mixture Formula of OCD20015-V009 Prophylactic Administration to Enhance Interferon-Mediated Antiviral Activity Against Influenza A Virus. Front Pharmacol 2021; 12:764297. [PMID: 34899320 PMCID: PMC8651992 DOI: 10.3389/fphar.2021.764297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/29/2021] [Indexed: 11/15/2022] Open
Abstract
OCD20015-V009 is an herbal mix of water-extracted Ginseng Radix, Poria (Hoelen), Rehmanniae Radix, Adenophorae Radix, Platycodi Radix, Crataegii Fructus, and Astragali Radix. In this study, its in vitro and in vivo antiviral activity and mechanisms against the influenza A virus were evaluated using a GFP-tagged influenza A virus (A/PR/8/34-GFP) to infect murine macrophages. We found that OCD20015-V009 pre-treatment substantially reduced A/PR/8/34-GFP replication. Also, OCD20015-V009 pre-treatment increased the phosphorylation of type-I IFN-related proteins TBK-1 and STAT1 and the secretion of pro-inflammatory cytokines TNF-α and IL-6 by murine macrophages. Moreover, OCD20015-V009 prophylactic administration increased IFN-stimulated genes-related 15, 20, and 56 and IFN-β mRNA in vitro. Thus, OCD20015-V009 likely modulates murine innate immune response via macrophages. This finding is potentially useful for developing prophylactics or therapeutics against the influenza A virus. Furthermore, pre-treatment with OCD20015-V009 decreased the mortality of the mice exposed to A/PR/8/34-GFP by 20% compared to that in the untreated animals. Thus, OCD20015-V009 stimulates the antiviral response in murine macrophages and mice to viral infections. Additionally, we identified chlorogenic acid and ginsenoside Rd as the antiviral components in OCD20015-V009. Further investigations are needed to elucidate the protective effects of active components of OCD20015-V009 against influenza A viruses.
Collapse
Affiliation(s)
- Eun-Bin Kwon
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| | - You-Chang Oh
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| | - Youn-Hwan Hwang
- Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea
| | - Wei Li
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| | | | | | - Young Soo Kim
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| | - Jang-Gi Choi
- Korean Medicine (KM) Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu, South Korea
| |
Collapse
|
38
|
Hulme KD, Noye EC, Short KR, Labzin LI. Dysregulated Inflammation During Obesity: Driving Disease Severity in Influenza Virus and SARS-CoV-2 Infections. Front Immunol 2021; 12:770066. [PMID: 34777390 PMCID: PMC8581451 DOI: 10.3389/fimmu.2021.770066] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022] Open
Abstract
Acute inflammation is a critical host defense response during viral infection. When dysregulated, inflammation drives immunopathology and tissue damage. Excessive, damaging inflammation is a hallmark of both pandemic influenza A virus (IAV) infections and Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) infections. Chronic, low-grade inflammation is also a feature of obesity. In recent years, obesity has been recognized as a growing pandemic with significant mortality and associated costs. Obesity is also an independent risk factor for increased disease severity and death during both IAV and SARS-CoV-2 infection. This review focuses on the effect of obesity on the inflammatory response in the context of viral respiratory infections and how this leads to increased viral pathology. Here, we will review the fundamentals of inflammation, how it is initiated in IAV and SARS-CoV-2 infection and its link to disease severity. We will examine how obesity drives chronic inflammation and trained immunity and how these impact the immune response to IAV and SARS-CoV-2. Finally, we review both medical and non-medical interventions for obesity, how they impact on the inflammatory response and how they could be used to prevent disease severity in obese patients. As projections of global obesity numbers show no sign of slowing down, future pandemic preparedness will require us to consider the metabolic health of the population. Furthermore, if weight-loss alone is insufficient to reduce the risk of increased respiratory virus-related mortality, closer attention must be paid to a patient’s history of health, and new therapeutic options identified.
Collapse
Affiliation(s)
- Katina D Hulme
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Ellesandra C Noye
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Larisa I Labzin
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
39
|
Successive Inoculations of Pigs with Porcine Reproductive and Respiratory Syndrome Virus 1 (PRRSV-1) and Swine H1N2 Influenza Virus Suggest a Mutual Interference between the Two Viral Infections. Viruses 2021; 13:v13112169. [PMID: 34834975 PMCID: PMC8625072 DOI: 10.3390/v13112169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/03/2021] [Accepted: 10/26/2021] [Indexed: 12/11/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) and swine influenza A virus (swIAV) are major pathogens of the porcine respiratory disease complex, but little is known on their interaction in super-infected pigs. In this study, we investigated clinical, virological and immunological outcomes of successive infections with PRRSV-1 and H1N2 swIAV. Twenty-four specific pathogen-free piglets were distributed into four groups and inoculated either with PRRSV at study day (SD) 0, or with swIAV at SD8, or with PRRSV and swIAV one week apart at SD0 and SD8, respectively, or mock-inoculated. In PRRSV/swIAV group, the clinical signs usually observed after swIAV infection were attenuated while higher levels of anti-swIAV antibodies were measured in lungs. Concurrently, PRRSV multiplication in lungs was significantly affected by swIAV infection, whereas the cell-mediated immune response specific to PRRSV was detected earlier in blood, as compared to PRRSV group. Moreover, levels of interferon (IFN)-α measured from SD9 in the blood of super-infected pigs were lower than those measured in the swIAV group, but higher than in the PRRSV group at the same time. Correlation analyses suggested an important role of IFN-α in the two-way interference highlighted between both viral infections.
Collapse
|
40
|
A Murine Model for Enhancement of Streptococcus pneumoniae Pathogenicity upon Viral Infection and Advanced Age. Infect Immun 2021; 89:e0047120. [PMID: 34031128 DOI: 10.1128/iai.00471-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae (pneumococcus) resides asymptomatically in the nasopharynx (NP) but can progress from benign colonizer to lethal pulmonary or systemic pathogen. Both viral infection and aging are risk factors for serious pneumococcal infections. Previous work established a murine model that featured the movement of pneumococcus from the nasopharynx to the lung upon nasopharyngeal inoculation with influenza A virus (IAV) but did not fully recapitulate the severe disease associated with human coinfection. We built upon this model by first establishing pneumococcal nasopharyngeal colonization, then inoculating both the nasopharynx and lungs with IAV. In young (2-month-old) mice, coinfection triggered bacterial dispersal from the nasopharynx into the lungs, pulmonary inflammation, disease, and mortality in a fraction of mice. In aged mice (18 to 24 months), coinfection resulted in earlier and more severe disease. Aging was not associated with greater bacterial burdens but rather with more rapid pulmonary inflammation and damage. Both aging and IAV infection led to inefficient bacterial killing by neutrophils ex vivo. Conversely, aging and pneumococcal colonization also blunted alpha interferon (IFN-α) production and increased pulmonary IAV burden. Thus, in this multistep model, IAV promotes pneumococcal pathogenicity by modifying bacterial behavior in the nasopharynx, diminishing neutrophil function, and enhancing bacterial growth in the lung, while pneumococci increase IAV burden, likely by compromising a key antiviral response. Thus, this model provides a means to elucidate factors, such as age and coinfection, that promote the evolution of S. pneumoniae from asymptomatic colonizer to invasive pathogen, as well as to investigate consequences of this transition on antiviral defense.
Collapse
|
41
|
Interleukin-7 Reverses Lymphopenia and Improves T-Cell Function in Coronavirus Disease 2019 Patient With Inborn Error of Toll-Like Receptor 3: A Case Report. Crit Care Explor 2021; 3:e0500. [PMID: 34345826 PMCID: PMC8322565 DOI: 10.1097/cce.0000000000000500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND: Immunotherapy treatment for coronavirus disease 2019 combined with antiviral therapy and supportive care remains under intense investigation. However, the capacity to distinguish patients who would benefit from immunosuppressive or immune stimulatory therapies remains insufficient. Here, we present a patient with severe coronavirus disease 2019 with a defective immune response, treated successfully with interleukin-7 on compassionate basis with resultant improved adaptive immune function. CASE SUMMARY: A previously healthy 43-year-old male developed severe acute respiratory distress syndrome due to the severe acute respiratory syndrome coronavirus 2 virus with acute hypoxemic respiratory failure and persistent, profound lymphopenia. Functional analysis demonstrated depressed lymphocyte function and few antigen-specific T cells. Interleukin-7 administration resulted in reversal of lymphopenia and improved T-cell function. Respiratory function and clinical status rapidly improved, and he was discharged home. Whole exome sequencing identified a deleterious autosomal dominant mutation in TICAM1, associated with a dysfunctional type I interferon antiviral response with increased severity of coronavirus disease 2019 disease. CONCLUSIONS: Immunoadjuvant therapies to boost host immunity may be efficacious in life-threatening severe coronavirus disease 2019 infections, particularly by applying a precision medicine approach in selecting patients expressing an immunosuppressive phenotype.
Collapse
|
42
|
Singh L, Bajaj S, Gadewar M, Verma N, Ansari MN, Saeedan AS, Kaithwas G, Singh M. Modulation of Host Immune Response Is an Alternative Strategy to Combat SARS-CoV-2 Pathogenesis. Front Immunol 2021; 12:660632. [PMID: 34305892 PMCID: PMC8296981 DOI: 10.3389/fimmu.2021.660632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/24/2021] [Indexed: 01/04/2023] Open
Abstract
The novel SARS-CoV-2virus that caused the disease COVID-19 is currently a pandemic worldwide. The virus requires an alveolar type-2 pneumocyte in the host to initiate its life cycle. The viral S1 spike protein helps in the attachment of the virus on toACE-2 receptors present on type-2 pneumocytes, and the S2 spike protein helps in the fusion of the viral membrane with the host membrane. Fusion of the SARS-CoV-2virus and host membrane is followed by entry of viral RNA into the host cells which is directly translated into the replicase-transcriptase complex (RTC) following viral RNA and structural protein syntheses. As the virus replicates within type-2 pneumocytes, the host immune system is activated and alveolar macrophages start secreting cytokines and chemokines, acting as an inflammatory mediator, and chemotactic neutrophils, monocytes, natural NK cells, and CD8+ T cells initiate the local phagocytosis of infected cells. It is not the virus that kills COVID-19 patients; instead, the aberrant host immune response kills them. Modifying the response from the host immune system could reduce the high mortality due to SARS-CoV-2 infection. The present study examines the viral life cycle intype-2 pneumocytes and resultant host immune response along with possible therapeutic targets.
Collapse
Affiliation(s)
- Lakhveer Singh
- School of Medical and Allied Sciences, KR Mangalam University, Gurgaon, India
| | - Sakshi Bajaj
- Chaudhary Devi Lal College of Pharmacy, Yamuna Nagar, India
| | - Manoj Gadewar
- School of Medical and Allied Sciences, KR Mangalam University, Gurgaon, India
| | - Nitin Verma
- School of Medical and Allied Sciences, KR Mangalam University, Gurgaon, India
| | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulaziz S. Saeedan
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Assam Central University, Silchar, India
| |
Collapse
|
43
|
Herwald H, Egesten A. Once Upon a Time. J Innate Immun 2021; 13:195-196. [PMID: 34107491 DOI: 10.1159/000517261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 11/19/2022] Open
|
44
|
McKellar J, Rebendenne A, Wencker M, Moncorgé O, Goujon C. Mammalian and Avian Host Cell Influenza A Restriction Factors. Viruses 2021; 13:522. [PMID: 33810083 PMCID: PMC8005160 DOI: 10.3390/v13030522] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/27/2022] Open
Abstract
The threat of a new influenza pandemic is real. With past pandemics claiming millions of lives, finding new ways to combat this virus is essential. Host cells have developed a multi-modular system to detect incoming pathogens, a phenomenon called sensing. The signaling cascade triggered by sensing subsequently induces protection for themselves and their surrounding neighbors, termed interferon (IFN) response. This response induces the upregulation of hundreds of interferon-stimulated genes (ISGs), including antiviral effectors, establishing an antiviral state. As well as the antiviral proteins induced through the IFN system, cells also possess a so-called intrinsic immunity, constituted of antiviral proteins that are constitutively expressed, creating a first barrier preceding the induction of the interferon system. All these combined antiviral effectors inhibit the virus at various stages of the viral lifecycle, using a wide array of mechanisms. Here, we provide a review of mammalian and avian influenza A restriction factors, detailing their mechanism of action and in vivo relevance, when known. Understanding their mode of action might help pave the way for the development of new influenza treatments, which are absolutely required if we want to be prepared to face a new pandemic.
Collapse
Affiliation(s)
- Joe McKellar
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Antoine Rebendenne
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Mélanie Wencker
- Centre International de Recherche en Infectiologie, INSERM/CNRS/UCBL1/ENS de Lyon, 69007 Lyon, France;
| | - Olivier Moncorgé
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| | - Caroline Goujon
- Institut de Recherche en Infectiologie de Montpellier, CNRS, Université de Montpellier, CEDEX 5, 34293 Montpellier, France; (J.M.); (A.R.)
| |
Collapse
|
45
|
Latino I, Gonzalez SF. Spatio-temporal profile of innate inflammatory cells and mediators during influenza virus infection. CURRENT OPINION IN PHYSIOLOGY 2021. [DOI: 10.1016/j.cophys.2020.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
46
|
Mazewski C, Perez RE, Fish EN, Platanias LC. Type I Interferon (IFN)-Regulated Activation of Canonical and Non-Canonical Signaling Pathways. Front Immunol 2020; 11:606456. [PMID: 33329603 PMCID: PMC7719805 DOI: 10.3389/fimmu.2020.606456] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
For several decades there has been accumulating evidence implicating type I interferons (IFNs) as key elements of the immune response. Therapeutic approaches incorporating different recombinant type I IFN proteins have been successfully employed to treat a diverse group of diseases with significant and positive outcomes. The biological activities of type I IFNs are consequences of signaling events occurring in the cytoplasm and nucleus of cells. Biochemical events involving JAK/STAT proteins that control transcriptional activation of IFN-stimulated genes (ISGs) were the first to be identified and are referred to as "canonical" signaling. Subsequent identification of JAK/STAT-independent signaling pathways, critical for ISG transcription and/or mRNA translation, are denoted as "non-canonical" or "non-classical" pathways. In this review, we summarize these signaling cascades and discuss recent developments in the field, specifically as they relate to the biological and clinical implications of engagement of both canonical and non-canonical pathways.
Collapse
Affiliation(s)
- Candice Mazewski
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
- Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Ricardo E. Perez
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
- Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Eleanor N. Fish
- Toronto General Hospital Research Institute, University Health Network and Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, United States
- Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, United States
| |
Collapse
|
47
|
Herwald H, Egesten A. Who is WHO? J Innate Immun 2020; 12:435-436. [PMID: 33152742 DOI: 10.1159/000512553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022] Open
|