1
|
Catassi G, Mateo SG, Occhionero AS, Esposito C, Giorgio V, Aloi M, Gasbarrini A, Cammarota G, Ianiro G. The importance of gut microbiome in the perinatal period. Eur J Pediatr 2024; 183:5085-5101. [PMID: 39358615 PMCID: PMC11527957 DOI: 10.1007/s00431-024-05795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024]
Abstract
This narrative review describes the settlement of the neonatal microbiome during the perinatal period and its importance on human health in the long term. Delivery methods, maternal diet, antibiotic exposure, feeding practices, and early infant contact significantly shape microbial colonization, influencing the infant's immune system, metabolism, and neurodevelopment. By summarizing two decades of research, this review highlights the microbiome's role in disease predisposition and explores interventions like maternal vaginal seeding and probiotic and prebiotic supplementation that may influence microbiome development. CONCLUSION The perinatal period is a pivotal phase for the formation and growth of the neonatal microbiome, profoundly impacting long-term health outcomes. WHAT IS KNOWN • The perinatal period is a critical phase for the development of the neonatal microbiome, with factors such as mode of delivery, maternal diet, antibiotic exposure, and feeding practices influencing its composition and diversity, which has significant implications for long-term health. • The neonatal microbiome plays a vital role in shaping the immune system, metabolism, and neurodevelopment of infants. WHAT IS NEW • Recent studies have highlighted the potential of targeted interventions, such as probiotic and prebiotic supplementation, and innovative practices like maternal vaginal seeding, to optimize microbiome development during the perinatal period. • Emerging evidence suggests that specific bacterial genera and species within the neonatal microbiome are associated with reduced risks of developing chronic conditions, indicating new avenues for promoting long-term health starting from early life.
Collapse
Affiliation(s)
- Giulia Catassi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Pediatric Gastroenterology and Liver Unit, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Sandra Garcia Mateo
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Department of Gastroenterology, Lozano Blesa University Hospital, 50009, Zaragossa, Spain
| | - Annamaria Sara Occhionero
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato DigerenteMedicina Interna E Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Chiara Esposito
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato DigerenteMedicina Interna E Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Valentina Giorgio
- Department of Woman and Child Health and Public Health, UOC Pediatria, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marina Aloi
- Pediatric Gastroenterology and Liver Unit, Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato DigerenteMedicina Interna E Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato DigerenteMedicina Interna E Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168, Rome, Italy.
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie Dell'Apparato DigerenteMedicina Interna E Gastroenterologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.
| |
Collapse
|
2
|
Tsuruoka Y, Kato T, Watanabe M, Taguchi-Atarashi N, Ohno H, Mori C, Sakurai K. Changes in the intestinal microbiota of Japanese children during the first 3.5 years of life. Sci Rep 2024; 14:29302. [PMID: 39592618 PMCID: PMC11599607 DOI: 10.1038/s41598-024-78844-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Human gut microbiota plays a crucial role in health and disease. Infancy is a critical period for gut microbiota maturation and immune system development and has the potential to affect long-term health. Understanding the development of gut microbiota in Japanese children is essential because of regional differences and the long-term health effects of the early gut microbiota. However, while several longitudinal studies in Japan have explored the development of the gut microbiota after birth, more extended follow-up periods are still needed. In this study, we aimed to analyze the gut microbiota of 106 Japanese mother-child pairs from the Chiba Study of Mother and Child Health, Japan, over 3.5 years. The results showed that the alpha diversity of the gut microbiota in children increased with age, and its composition began to resemble that of adults. We identified four distinct clusters of gut microbiota that reflected different maturation stages. The similarity between the maternal and child gut microbiota appeared to follow a bimodal-like distribution, suggesting that the presence of older siblings may enhance this similarity. This study highlights the dynamic nature of gut microbiota development in Japanese children and deepens our understanding of the similarities between maternal and child gut microbiota.
Collapse
Affiliation(s)
- Yuta Tsuruoka
- Department of Nutrition and Metabolic Medicine, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Tamotsu Kato
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Masahiro Watanabe
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Naoko Taguchi-Atarashi
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
- Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
- Laboratory for Immune Regulation, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Chiba, Japan
| | - Chisato Mori
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kenichi Sakurai
- Department of Nutrition and Metabolic Medicine, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan.
| |
Collapse
|
3
|
Toussaint Nguélé A, Mozzicafreddo M, Carrara C, Piersanti A, Salum SS, Ali SM, Miceli C. Interplay Between Helminth Infections, Malnutrition, and Gut Microbiota in Children and Mothers from Pemba, Tanzania: Potential of Microbiota-Directed Interventions. Nutrients 2024; 16:4023. [PMID: 39683417 DOI: 10.3390/nu16234023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Despite efforts within the framework of the Sustainable Development Goal to end malnutrition by 2030, malnutrition and soil-transmitted helminth infections persist in sub-Saharan Africa. A significant barrier to success is the inadequate understanding of effective intervention methods. Most research on the gut microbiota's role in health has been conducted in developed countries, leaving a critical gap in knowledge regarding low-income populations. This study addresses this gap by expanding research on the gut microbiota of underprivileged populations to help tackle these public health challenges. METHODS We employed 16S rDNA sequencing to assess the bacterial gut microbiota composition of 60 children (mean age: 26.63 ± 6.36 months) and their 58 mothers (mean age: 30.03 ± 6.31 years) in Pemba, with a focus on helminth infection and nutritional status. RESULTS Our differential abundance analysis identified bacterial taxa that were significantly negatively associated with both helminth infections and malnutrition, highlighting the potential for microbiota-directed interventions to address these health issues simultaneously. Notably, we identified Akkermansia, Blautia, Dorea, and Odoribacter as promising probiotic candidates for such interventions. In stunted children, positive co-occurrences were observed between Lactobacillus, Prevotella, and Bacteroides, while Escherichia/Shigella displayed negative co-abundance relationships with short-chain fatty acid (SCFA) producers in the gut microbiota. These findings suggest that administering Lactobacillus and SCFA-producing probiotics to children may foster the growth of beneficial bacteria like Prevotella and Bacteroides while reducing the relative abundance of Escherichia/Shigella, potentially enhancing overall health. CONCLUSIONS This study underscores the importance of microbiota-directed interventions in children and women of reproductive age as promising strategies, alongside established approaches, for combating helminth infections and malnutrition in vulnerable populations.
Collapse
Affiliation(s)
- Aristide Toussaint Nguélé
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
- Institut Supérieur des Sciences de la Santé, Université Adventiste Cosendai, Nanga Eboko 04, Cameroon
| | - Matteo Mozzicafreddo
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, 60126 Ancona, Italy
| | - Chiara Carrara
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Angela Piersanti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
- Department of Biology, University of Padova, 35121 Padova, Italy
| | - Salum Seif Salum
- School of Health and Medical Sciences, State University of Zanzibar, Zanzibar City 146, Tanzania
| | - Said M Ali
- Public Health Laboratory Ivo de Carneri, Chake Chake 122, Tanzania
| | - Cristina Miceli
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| |
Collapse
|
4
|
Narayanan P, Bertrand K, Waalen J, Chambers C, Ferran K, Bandoli G. The Effect of Cannabis Consumption During Lactation on the Macronutrient Concentrations in Breast Milk. Breastfeed Med 2024. [PMID: 39530127 DOI: 10.1089/bfm.2024.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Introduction: Human breast milk macronutrients play a vital role in the development of breastfed infants and are known to be influenced by several factors. There is limited information on the influence of cannabis use during lactation on these macronutrients. Given the rising use of cannabis among lactating women with its widespread legalization, this study aimed to examine the association of cannabis use during lactation on breast milk macronutrients. Materials and Methods: A cross-sectional study design was used and 637 breast milk samples with measured macronutrients were utilized. Of these, 165 samples that had detectable cannabis metabolites were defined as the study group, and 472 samples from mothers who did not report cannabis use and from mothers who reported cannabis use but did not have measurable metabolites of cannabis in their milk samples were defined as the control group. Multivariable linear regression models were used to assess the association of presence of cannabis metabolites with protein, carbohydrates, fat, and calories in breast milk. Results: Greater protein levels (95% confidence interval [CI]: 0.112-0.376; p < 0.001) and lower fat levels (95% CI: -0.217, -0.018; p = 0.020) were found in the milk exposed to cannabis compared with reported nonexposure. The presence of cannabis was associated with an increase of 0.244 mg/dL in protein and a reduction of 11% in fats in breast milk. The levels of energy and carbohydrates were not significantly different among the two groups. Conclusions: This study demonstrated a statistically significant association between the presence of metabolites of cannabis in breast milk and protein and fat concentrations in breath milk. Further studies are required toward building the body of evidence to determine safety of cannabis use during lactation.
Collapse
Affiliation(s)
| | - Kerri Bertrand
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Jill Waalen
- Herbert Wertheim School of Public Health & Human Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Christina Chambers
- Pediatrics, University of California San Diego, La Jolla, California, USA
| | - Karen Ferran
- School of Public Health, San Diego State university, San Diego, California, USA
| | - Gretchen Bandoli
- Pediatrics, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
5
|
Sha C, Jin Z, Ku SY, Kogosov AS, Yu S, Bergese SD, Hsieh H. Necrotizing Enterocolitis and Neurodevelopmental Impairments: Microbiome, Gut, and Brain Entanglements. Biomolecules 2024; 14:1254. [PMID: 39456187 PMCID: PMC11505939 DOI: 10.3390/biom14101254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
There is significant communication and interdependence among the gut, the microbiome, and the brain during development. Diseases, such as necrotizing enterocolitis (NEC), highlight how injury to the immature gastrointestinal tract leads to long-term neurological consequences, due to vulnerabilities of the brain in the early stages of life. A better understanding of the developing gut-microbiota-brain axis is needed to both prevent and treat the devastating consequences of these disease processes. The gut-microbiota-brain axis is a bidirectional communication pathway that includes metabolic, nervous, endocrine, and immune components. In this review, we discuss gut development, microbiome colonization and maturation, and the interactions that influence neurodevelopment in the context of NEC. We describe the components of the gut-brain axis and how the microbiome is an integral member of this relationship. Finally, we explore how derangements within the microbiome and gut-microbiota-brain axis affect the normal development and function of the other systems and long-term neurodevelopmental consequences for patients.
Collapse
Affiliation(s)
- Cuilee Sha
- Department of Pharmacological Sciences, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA;
- Center for Nervous System Disorders, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Zhaosheng Jin
- Department of Anesthesiology, Stony Brook Medicine, 101 Nicolls Road, Stony Brook, NY 11794, USA;
| | - Stella Y. Ku
- Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Ann S. Kogosov
- Renaissance School of Medicine, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Sun Yu
- Department of Surgery, Stony Brook Medicine, 101 Nicolls Road, Stony Brook, NY 11794, USA
| | - Sergio D. Bergese
- Department of Anesthesiology, Stony Brook Medicine, 101 Nicolls Road, Stony Brook, NY 11794, USA;
| | - Helen Hsieh
- Center for Nervous System Disorders, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
- Department of Surgery, Stony Brook Medicine, 101 Nicolls Road, Stony Brook, NY 11794, USA
| |
Collapse
|
6
|
Tesfaw G, Siraj DS, Abdissa A, Jakobsen RR, Johansen ØH, Zangenberg M, Hanevik K, Mekonnen Z, Langeland N, Bjørang O, Safdar N, Mapes AC, Kates A, Krych L, Castro-Mejía JL, Nielsen DS. Gut microbiota patterns associated with duration of diarrhea in children under five years of age in Ethiopia. Nat Commun 2024; 15:7532. [PMID: 39223134 PMCID: PMC11369280 DOI: 10.1038/s41467-024-51464-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Diarrhea claims >500,000 lives annually among children under five years of age in low- and middle-income countries. Mortality due to acute diarrhea (<7 days' duration) is decreasing, but prolonged (7-13 days) and persistent (≥14 days of duration) diarrhea remains a massive challenge. Here, we use a case-control study to decipher if fecal gut microbiota compositional differences between Ethiopian children with acute (n=554) or prolonged/persistent (n=95) diarrhea and frequency-matched non-diarrheal controls (n=663) are linked to diarrheal etiology. We show that diarrhea cases are associated with lower bacterial diversity and enriched in Escherichia spp., Campylobacter spp., and Streptococcus spp. Further, diarrhea cases are depleted in gut commensals such as Prevotella copri, Faecalibacterium prausnitzii, and Dialister succinatiphilus, with depletion being most pronounced in prolonged/persistent cases, suggesting that prolonged duration of diarrhea is accompanied by depletion of gut commensals and that re-establishing these via e.g., microbiota-directed food supplements offer a potential treatment strategy.
Collapse
Affiliation(s)
- Getnet Tesfaw
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark.
- School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia.
| | - Dawd S Siraj
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Alemseged Abdissa
- School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | - Øystein H Johansen
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Vestfold Hospital Trust, Tønsberg, Norway
- Microbiology Laboratory, Southern Health and Social Care Trust, Portadown, Northern Ireland
| | - Mike Zangenberg
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| | - Kurt Hanevik
- Department of Clinical Science, University of Bergen, Bergen, Norway
- National Center for Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Zeleke Mekonnen
- School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
| | - Nina Langeland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- National Center for Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ola Bjørang
- Department of Microbiology, Vestfold Hospital Trust, Tønsberg, Norway
| | - Nasia Safdar
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Abigail C Mapes
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Ashley Kates
- Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Lukasz Krych
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Dennis S Nielsen
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Martínez A, Velázquez L, Díaz R, Huaiquipán R, Pérez I, Muñoz A, Valdés M, Sepúlveda N, Paz E, Quiñones J. Impact of Novel Foods on the Human Gut Microbiome: Current Status. Microorganisms 2024; 12:1750. [PMID: 39338424 PMCID: PMC11433882 DOI: 10.3390/microorganisms12091750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The microbiome is a complex ecosystem of microorganisms that inhabit a specific environment. It plays a significant role in human health, from food digestion to immune system strengthening. The "Novel Foods" refer to foods or ingredients that have not been consumed by humans in the European Union before 1997. Currently, there is growing interest in understanding how "Novel Foods" affect the microbiome and human health. The aim of this review was to assess the effects of "Novel Foods" on the human gut microbiome. Research was conducted using scientific databases, focusing on the literature published since 2000, with an emphasis on the past decade. In general, the benefits derived from this type of diet are due to the interaction between polyphenols, oligosaccharides, prebiotics, probiotics, fibre content, and the gut microbiome, which selectively promotes specific microbial species and increases microbial diversity. More research is being conducted on the consumption of novel foods to demonstrate how they affect the microbiome and, thus, human health. Consumption of novel foods with health-promoting properties should be further explored to maintain the diversity and functionality of the gut microbiome as a potential tool to prevent the onset and progression of chronic diseases.
Collapse
Affiliation(s)
- Ailín Martínez
- Doctoral Program in Science Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4800000, Chile;
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
| | - Lidiana Velázquez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rommy Díaz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rodrigo Huaiquipán
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Isabela Pérez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Alex Muñoz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Marcos Valdés
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Néstor Sepúlveda
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Erwin Paz
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| | - John Quiñones
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| |
Collapse
|
8
|
Ottria R, Xynomilakis O, Casati S, Ciuffreda P. Pre- to Postbiotics: The Beneficial Roles of Pediatric Dysbiosis Associated with Inflammatory Bowel Diseases. Microorganisms 2024; 12:1582. [PMID: 39203424 PMCID: PMC11356122 DOI: 10.3390/microorganisms12081582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/03/2024] Open
Abstract
Probiotics are "live microorganisms which, when administered in adequate amount, confer health benefits on the host". They can be found in certain foods like yogurt and kefir and in dietary supplements. The introduction of bacterial derivatives has not only contributed to disease control but has also exhibited promising outcomes, such as improved survival rates, immune enhancement, and growth promotion effects. It is interesting to note that the efficacy of probiotics goes beyond the viability of the bacteria, giving rise to concepts like paraprobiotics, non-viable forms of probiotics, and postbiotics. Paraprobiotics offer various health benefits in children with intestinal dysbiosis, contributing to improved digestive health, immune function, and overall well-being. In this review, the potential of these therapeutic applications as alternatives to pharmacological agents for treating pediatric intestinal dysbiosis will be thoroughly evaluated. This includes an analysis of their efficacy, safety, long-term benefits, and their ability to restore gut microbiota balance, improve digestive health, enhance immune function, and reduce inflammation. The aim is to determine if these non-pharmacological interventions can effectively and safely manage intestinal dysbiosis in children, reducing the need for conventional medications and their side effects.
Collapse
Affiliation(s)
- Roberta Ottria
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, 20157 Milan, Italy; (O.X.); (S.C.); (P.C.)
| | | | | | | |
Collapse
|
9
|
Matharu D, Ponsero AJ, Lengyel M, Meszaros-Matwiejuk A, Kolho KL, de Vos WM, Molnar-Gabor D, Salonen A. Human milk oligosaccharide composition is affected by season and parity and associates with infant gut microbiota in a birth mode dependent manner in a Finnish birth cohort. EBioMedicine 2024; 104:105182. [PMID: 38838470 PMCID: PMC11215963 DOI: 10.1016/j.ebiom.2024.105182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/05/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Human milk oligosaccharides (HMOs), their determinants, infant gut microbiota and health are under extensive research; however, seldom jointly addressed. Leveraging data from the HELMi birth cohort, we investigated them collectively, considering maternal and infant secretor status. METHODS HMO composition in breastmilk collected 3 months postpartum (n = 350 mothers) was profiled using high-performance liquid chromatography. Infant gut microbiota taxonomic and functional development was studied at 3, 6, and 12 months (n = 823 stool samples) via shotgun metagenomic sequencing, focusing on HMO metabolism via glycoside hydrolase (GH) analysis. Maternal and infant secretor statuses were identified through phenotyping and genotyping, respectively. Child health, emphasizing allergies and antibiotics as proxies for infectious diseases, was recorded until 2 years. FINDINGS Mother's parity, irritable bowel syndrome, gestational diabetes, and season of milk collection associated with HMO composition. Neither maternal nor infant secretor status associated with infant gut microbiota, except for a few taxa linked to individual HMOs. Analysis stratified for birth mode revealed distinct patterns between the infant gut microbiota and HMOs. Child health parameters were not associated to infant or maternal secretor status. INTERPRETATION This comprehensive exploration unveils intricate links between secretor genotype, maternal factors, HMO composition, infant microbiota, and child health. Understanding these nuanced relationships is paramount for refining strategies to optimize early life nutrition and its enduring impact on long-term health. FUNDING Sweet Crosstalk EU H2020 MSCA ITN, Academy of Finland, Mary and Georg C. Ehrnrooth Foundation, Päivikki and Sakari Sohlberg Foundation, and Tekes.
Collapse
Affiliation(s)
- Dollwin Matharu
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alise J Ponsero
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Marton Lengyel
- DSM-Firmenich, (Formerly: Glycom A/S), Hørsholm, Denmark
| | | | - Kaija-Leena Kolho
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Children's Hospital, University of Helsinki and HUS, Helsinki, Finland
| | - Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Laboratory of Microbiology, Wageningen University, the Netherlands
| | | | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
10
|
Lordan C, Roche AK, Delsing D, Nauta A, Groeneveld A, MacSharry J, Cotter PD, van Sinderen D. Linking human milk oligosaccharide metabolism and early life gut microbiota: bifidobacteria and beyond. Microbiol Mol Biol Rev 2024; 88:e0009423. [PMID: 38206006 PMCID: PMC10966949 DOI: 10.1128/mmbr.00094-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Abstract
SUMMARYHuman milk oligosaccharides (HMOs) are complex, multi-functional glycans present in human breast milk. They represent an intricate mix of heterogeneous structures which reach the infant intestine in an intact form as they resist gastrointestinal digestion. Therefore, they confer a multitude of benefits, directly and/or indirectly, to the developing neonate. Certain bifidobacterial species, being among the earliest gut colonizers of breast-fed infants, have an adapted functional capacity to metabolize various HMO structures. This ability is typically observed in infant-associated bifidobacteria, as opposed to bifidobacteria associated with a mature microbiota. In recent years, information has been gleaned regarding how these infant-associated bifidobacteria as well as certain other taxa are able to assimilate HMOs, including the mechanistic strategies enabling their acquisition and consumption. Additionally, complex metabolic interactions occur between microbes facilitated by HMOs, including the utilization of breakdown products released from HMO degradation. Interest in HMO-mediated changes in microbial composition and function has been the focal point of numerous studies, in recent times fueled by the availability of individual biosynthetic HMOs, some of which are now commonly included in infant formula. In this review, we outline the main HMO assimilatory and catabolic strategies employed by infant-associated bifidobacteria, discuss other taxa that exhibit breast milk glycan degradation capacity, and cover HMO-supported cross-feeding interactions and related metabolites that have been described thus far.
Collapse
Affiliation(s)
- Cathy Lordan
- Teagasc Food Research Centre, Fermoy, Co Cork, Ireland
| | - Aoife K. Roche
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | | | - Arjen Nauta
- FrieslandCampina, Amersfoort, the Netherlands
| | | | - John MacSharry
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Fermoy, Co Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Douwe van Sinderen
- APC Microbiome Ireland, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
11
|
Olson M, Toffoli S, Vander Wyst KB, Zhou F, Reifsnider E, Petrov ME, Whisner CM. Associations of Infant Feeding, Sleep, and Weight Gain with the Toddler Gut Microbiome. Microorganisms 2024; 12:549. [PMID: 38543600 PMCID: PMC10972346 DOI: 10.3390/microorganisms12030549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/02/2024] [Accepted: 03/08/2024] [Indexed: 05/05/2024] Open
Abstract
This study examines how feeding, sleep, and growth during infancy impact the gut microbiome (GM) in toddlers. The research was conducted on toddlers (n = 36), born to Latina women of low-income with obesity. Their mothers completed retrospective feeding and sleeping questionnaires at 1, 6, and 12 months; at 36 months, fecal samples were collected. Sequencing of the 16S rRNA gene (V4 region) revealed that breastfeeding for at least 1 month and the introduction of solids before 6 months differentiated the GM in toddlerhood (Bray-Curtis, pseudo-F = 1.805, p = 0.018, and pseudo-F = 1.651, p = 0.044, respectively). Sleep had an effect across time; at 1 and 6 months of age, a lower proportion of nighttime sleep (relative to 24 h total sleep) was associated with a richer GM at three years of age (Shannon H = 4.395, p = 0.036 and OTU H = 5.559, p = 0.018, respectively). Toddlers experiencing rapid weight gain from birth to 6 months had lower phylogenetic diversity (Faith PD H = 3.633, p = 0.057). These findings suggest that early life nutrition, sleeping patterns, and growth rate in infancy may influence the GM composition. Further verification of these results with objective sleep data and a larger sample is needed.
Collapse
Affiliation(s)
- Magdalena Olson
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (M.O.); (S.T.); (K.B.V.W.); (F.Z.)
- Center for Health Through Microbiomes, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Samantha Toffoli
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (M.O.); (S.T.); (K.B.V.W.); (F.Z.)
| | - Kiley B. Vander Wyst
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (M.O.); (S.T.); (K.B.V.W.); (F.Z.)
| | - Fang Zhou
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (M.O.); (S.T.); (K.B.V.W.); (F.Z.)
| | - Elizabeth Reifsnider
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ 85004, USA; (E.R.); (M.E.P.)
| | - Megan E. Petrov
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ 85004, USA; (E.R.); (M.E.P.)
| | - Corrie M. Whisner
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; (M.O.); (S.T.); (K.B.V.W.); (F.Z.)
- Center for Health Through Microbiomes, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
12
|
Gough EK, Edens TJ, Carr L, Robertson RC, Mutasa K, Ntozini R, Chasekwa B, Geum HM, Baharmand I, Gill SK, Mutasa B, Mbuya MNN, Majo FD, Tavengwa N, Francis F, Tome J, Evans C, Kosek M, Prendergast AJ, Manges AR. Bifidobacterium longum modifies a nutritional intervention for stunting in Zimbabwean infants. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.18.24301438. [PMID: 38293149 PMCID: PMC10827232 DOI: 10.1101/2024.01.18.24301438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Child stunting is an indicator of chronic undernutrition and reduced human capital. However, it remains a poorly understood public health problem. Small-quantity lipid-based nutrient supplements (SQ-LNS) have been widely tested to reduce stunting, but have modest effects. The infant intestinal microbiome may contribute to stunting, and is partly shaped by mother and infant histo-blood group antigens (HBGA). We investigated whether mother-infant fucosyltransferase status, which governs HBGA, and the infant gut microbiome modified the impact of SQ-LNS on stunting at age 18 months among Zimbabwean infants in the SHINE Trial ( NCT01824940 ). We found that mother-infant fucosyltransferase discordance and Bifidobacterium longum reduced SQ-LNS efficacy. Infant age-related microbiome shifts in B. longum subspecies dominance from infantis , a proficient human milk oligosaccharide utilizer, to suis or longum , proficient plant-polysaccharide utilizers, were partly influenced by discordance in mother-infant FUT2+/FUT3- phenotype, suggesting that a "younger" microbiome at initiation of SQ-LNS reduces its benefits on stunting.
Collapse
|
13
|
Catassi G, Aloi M, Giorgio V, Gasbarrini A, Cammarota G, Ianiro G. The Role of Diet and Nutritional Interventions for the Infant Gut Microbiome. Nutrients 2024; 16:400. [PMID: 38337684 PMCID: PMC10857663 DOI: 10.3390/nu16030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The infant gut microbiome plays a key role in the healthy development of the human organism and appears to be influenced by dietary practices through multiple pathways. First, maternal diet during pregnancy and infant nutrition significantly influence the infant gut microbiota. Moreover, breastfeeding fosters the proliferation of beneficial bacteria, while formula feeding increases microbial diversity. The timing of introducing solid foods also influences gut microbiota composition. In preterm infants the gut microbiota development is influenced by multiple factors, including the time since birth and the intake of breast milk, and interventions such as probiotics and prebiotics supplementation show promising results in reducing morbidity and mortality in this population. These findings underscore the need for future research to understand the long-term health impacts of these interventions and for further strategies to enrich the gut microbiome of formula-fed and preterm infants.
Collapse
Affiliation(s)
- Giulia Catassi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.C.); (A.G.); (G.C.)
- Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Umberto I Hospital, 00161 Rome, Italy;
| | - Marina Aloi
- Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Umberto I Hospital, 00161 Rome, Italy;
| | - Valentina Giorgio
- Department of Woman and Child Health and Public Health, UOC Pediatria, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.C.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.C.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.C.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
14
|
Oliphant K, Cruz Ayala W, Ilyumzhinova R, Mbayiwa K, Sroka A, Xie B, Andrews B, Keenan K, Claud EC. Microbiome function and neurodevelopment in Black infants: vitamin B 12 emerges as a key factor. Gut Microbes 2024; 16:2298697. [PMID: 38303501 PMCID: PMC10841033 DOI: 10.1080/19490976.2023.2298697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/20/2023] [Indexed: 02/03/2024] Open
Abstract
The early life gut microbiome affects the developing brain, and therefore may serve as a target to support neurodevelopment of children living in stressful and under-resourced environments, such as Black youth living on the South Side of Chicago, for whom we observe racial disparities in health. Microbiome compositions/functions key to multiple neurodevelopmental facets have not been studied in Black children, a vulnerable population due to racial disparities in health; thus, a subsample of Black infants living in urban, low-income neighborhoods whose mothers participated in a prenatal nutrition study were recruited for testing associations between composition and function of the gut microbiome (16S rRNA gene sequencing, shotgun metagenomics, and targeted metabolomics of fecal samples) and neurodevelopment (developmental testing, maternal report of temperament, and observed stress regulation). Two microbiome community types, defined by high Lachnospiraceae or Enterobacteriaceae abundance, were discovered in this cohort from 16S rRNA gene sequencing analysis; the Enterobacteriaceae-dominant community type was significantly negatively associated with cognition and language scores, specifically in male children. Vitamin B12 biosynthesis emerged as a key microbiome function from shotgun metagenomics sequencing analysis, showing positive associations with all measured developmental skills (i.e., cognition, language, motor, surgency, effortful control, and observed stress regulation). Blautia spp. also were identified as substantial contributors of important microbiome functions, including vitamin B12 biosynthesis and related vitamin B12-dependent microbiome functions, anti-inflammatory microbial surface antigens, competitive mechanisms against pathobionts, and production of antioxidants. The results are promising with respect to the potential for exploring therapeutic candidates, such as vitamin B12 nutritional or Blautia spp. probiotic supplementation, to support the neurodevelopment of infants at risk for experiencing racial disparities in health.
Collapse
Affiliation(s)
| | | | - Rimma Ilyumzhinova
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, USA
| | - Kimberley Mbayiwa
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, USA
| | - Anna Sroka
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, USA
| | - Bingqing Xie
- Department of Medicine, University of Chicago, Chicago, USA
| | - Bree Andrews
- Department of Pediatrics, University of Chicago, Chicago, USA
| | - Kate Keenan
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, USA
| | - Erika C. Claud
- Department of Pediatrics, University of Chicago, Chicago, USA
- Department of Medicine, University of Chicago, Chicago, USA
| |
Collapse
|
15
|
Mokhtari P, Holzhausen EA, Chalifour BN, Schmidt KA, Babaei M, Machle CJ, Adise S, Alderete TL, Goran MI. Associations between Dietary Sugar and Fiber with Infant Gut Microbiome Colonization at 6 Mo of Age. J Nutr 2024; 154:152-162. [PMID: 37717629 PMCID: PMC10808822 DOI: 10.1016/j.tjnut.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023] Open
Abstract
BACKGROUND The taxonomic composition of the gut microbiome undergoes rapid development during the first 2-3 y of life. Poor diet during complementary feeding has been associated with alterations in infant growth and compromised bone, immune system, and neurodevelopment, but how it may affect gut microbial composition is unknown. OBJECTIVES This cross-sectional study aimed to examine the associations between early-life nutrition and the developing infant gut microbiota at 6 mo of age. METHODS Latino mother-infant pairs from the Mother's Milk Study (n = 105) were included. Infant gut microbiota and dietary intake were analyzed at 6 mo of age using 16S ribosomal RNA amplicon sequencing and 24-h dietary recalls, respectively. Poisson generalized linear regression analysis was performed to examine associations between dietary nutrients and microbial community abundance while adjusting for infants' mode of delivery, antibiotics, infant feeding type, time of introduction of solid foods, energy intake, and body weight. A P value of <0.05 was used to determine the statistical significance in the study. RESULTS Infants with higher consumption of total sugar exhibited a lower relative abundance of the genera Bacteroides (β = -0.01; 95% CI: -0.02, -0.00; P = 0.03) and genus Clostridium belonging to the Lachnospiraceae family (β = -0.02; 95% CI: -0.03, -0.00; P = 0.01). In addition, a higher intake of free sugar (which excludes sugar from milk, dairy, and whole fruit) was associated with several bacteria at the genus level, including Parabacteroides genus (β = 0.03; 95% CI: 0.01, 0.05; P = 0.001). Total insoluble fiber intake was associated with favorable bacteria at the genus level such as Faecalibacterium (β = 0.28; 95% CI: 0.03, 0.52; P = 0.02) and Coprococcus (β = 0.28; 95% CI: 0.02, 0.52; P = 0.03). CONCLUSION These findings demonstrate that early-life dietary intake at 6 mo impacts the developing gut microbiome associated with the presence of both unfavorable gut microbes and dietary fiber-associated commensal microbes.
Collapse
Affiliation(s)
- Pari Mokhtari
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Elizabeth A Holzhausen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Bridget N Chalifour
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Kelsey A Schmidt
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Mahsa Babaei
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Christopher J Machle
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Shana Adise
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Tanya L Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, United States
| | - Michael I Goran
- Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
16
|
Mohanan A, Harilal SL, Plakkot B, Pottakkat B, Kanakkaparambil R. Nutritional Epigenetics and Gut Microbiome. EPIGENETICS AND HUMAN HEALTH 2024:121-159. [DOI: 10.1007/978-3-031-54215-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
17
|
Giannì ML, Morniroli D, Mosca F, Rescigno M. Can Postbiotics Represent a New Strategy for NEC? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1449:43-57. [PMID: 39060730 DOI: 10.1007/978-3-031-58572-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Intestinal bacteria, also known as gut microbiota, are a rich ecology of microorganisms found in the human digestive tract. Extensive study has highlighted their critical relevance in preserving human health. New research has revealed that bacterial viability is not invariably necessary to induce health benefits. Postbiotics (defined soluble substances produced as a byproduct of the metabolic processes of living microbes) have thus emerged as an important topic of research. They contribute to shaping the gut microbiota, exert immune-modulation activity, and improve the integrity of the gut barrier.Alterations in preterm gut colonization associated with intestinal barrier immaturity and the increased reactivity of the intestinal mucosa to colonizing bacteria have been implicated in the pathogenesis of necrotizing enterocolitis. Postbiotics have shown promising outcomes in reducing the risk of developing NEC, lowering inflammation, encouraging the development of good bacteria, and strengthening the intestinal barrier. This is an important advancement in newborn care and highlights the potential of postbiotics to avoid severe intestinal disorders.
Collapse
Affiliation(s)
- Maria Lorella Giannì
- Fondazione I.R.C.C.S. Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
- Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| | - Daniela Morniroli
- Fondazione I.R.C.C.S. Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy
- Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| | - Fabio Mosca
- Fondazione I.R.C.C.S. Ca' Granda Ospedale Maggiore Policlinico, Neonatal Intensive Care Unit, Milan, Italy.
- Department of Clinical Science and Community Health, University of Milan, Milan, Italy.
| | | |
Collapse
|
18
|
Zhou DT, Mudhluli TE, Hall LJ, Manasa J, Munyati S. A Scoping Review of Gut Microbiome and Bifidobacterium Research in Zimbabwe: Implications for Future Studies. Pediatric Health Med Ther 2023; 14:483-496. [PMID: 38145055 PMCID: PMC10743709 DOI: 10.2147/phmt.s414766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/13/2023] [Indexed: 12/26/2023] Open
Abstract
Background Gut microbiota play a key role in host health, with certain Bifidobacterium strains critical for immune development. The healthy gut of breastfed infants is dominated by these pioneer microbes, especially the strains that feed on human milk oligosaccharides. Objective This is a scoping review of gut microbiome research from Zimbabwe. It focuses on distribution and dynamic changes of bifidobacteria, and milk components that promote growth of microbes in infants, together with the distribution of associated gut microbes in adults. Design Online databases were searched for publications from 2000 to 2023. Results and Analysis Fourteen publications on microbiota of infants and adults were included in this scoping review. Most were cross-sectional, while three were clinical trials/cohort protocols. Publications focused on pediatrics (78.5%), pregnant women (14.3%), and men (7.2%). Zimbabwe has a high burden of HIV; hence 35.7% of study populations were delineated by HIV status. The laboratory methods used included shotgun metagenomics (62%) or 16S rRNA gene amplicon sequencing. Almost 85% of the studies focused on total microbiome profiles and rarely reported the distribution of different Bifidobacterium species and variants. None of the papers studied human breast milk composition. There were reports of reduced abundance of beneficial genera in pregnant women, children, and adolescents living with HIV. Additionally, gut microbiota was reported to be poorly predictive of child growth and vaccine response, though this was not conclusive. Conclusion There are few studies that characterize the gut microbiome by Zimbabwe-based researchers. However, studies on strain level diversity of Bifidobacterium and other key microbes, and their role in health during and beyond infancy, lag behind in Zimbabwe and other low- and middle-income countries. Such cohorts are needed to inform future mechanistic studies and downstream translational work such as next-generation probiotics and prebiotics.
Collapse
Affiliation(s)
- Danai T Zhou
- Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Taona E Mudhluli
- Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe, Harare, Zimbabwe
- Department of Biochemistry, Midlands State University, Gweru, Zimbabwe
| | - Lindsay J Hall
- Gut Microbes & Health, Quadram Institute Bioscience, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
- Intestinal Microbiome, Technical University of Munich, Freising, Germany
| | - Justen Manasa
- Department of Laboratory Diagnostic and Investigative Sciences, University of Zimbabwe, Harare, Zimbabwe
- Department of Laboratory Sciences, Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Shungu Munyati
- Department of Laboratory Sciences, Biomedical Research and Training Institute, Harare, Zimbabwe
| |
Collapse
|
19
|
Fredriksson E, Bodén S, Domellöf M, West CE. Fruit Pouch Consumption Does Not Associate with Early Manifestations of Allergic Disease. Nutrients 2023; 15:4318. [PMID: 37892394 PMCID: PMC10609626 DOI: 10.3390/nu15204318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Consumption of acidic fruit pouches in infancy may damage the epithelial barrier in the gastrointestinal tract and is suggested to increase allergy risk. We aimed to explore if a high fruit pouch consumption is associated with a higher incidence of early allergic manifestations. We included 2959 parent-child dyads from the Swedish prospective, population-based NorthPop birth cohort study with parentally reported data on frequency of fruit pouch consumption at 9 months of age, as well as parentally reported eczema, wheeze, physician-diagnosed asthma, and food allergy in the first 18 months of life. Immunoglobulin E levels (IgE) in serum (n = 1792), as response to a food mix and an inhalant mix, were determined at age 18 months. Compared with no consumption, daily consumption of one or more pouches at 9 months of age was associated with inhalant sensitization (odds ratio (OR) 2.27, 95% confidence interval (CI) 1.06-4.87, n = 1792) but did not remain significant in the multivariable adjusted model (aOR 2.08, 95% CI 0.95-4.53, n = 1679). There were no associations between fruit pouch consumption and allergic manifestations at this young age. This study suggests that fruit pouch consumption is not associated with allergic phenotypes or IgE sensitization in early childhood.
Collapse
Affiliation(s)
| | | | | | - Christina E. West
- Department of Clinical Sciences, Pediatrics, Umeå University, SE 90185 Umeå, Sweden; (E.F.); (S.B.); (M.D.)
| |
Collapse
|
20
|
Tremblay A, Bronner S, Binda S. Review and Perspectives on Bifidobacterium lactis for Infants' and Children's Health. Microorganisms 2023; 11:2501. [PMID: 37894159 PMCID: PMC10609373 DOI: 10.3390/microorganisms11102501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The influence of microbiota dysbiosis in early life is increasingly recognized as a risk factor for the development of several chronic diseases later in life, including an increased risk of asthma, eczema, allergies, obesity, and neurodevelopmental disorders. The question whether the potential lifelong consequences of early life dysbiosis could be mitigated by restoring microbiota composition remains unresolved. However, the current evidence base suggests that protecting the normal development of the microbiome during this critical developmental window could represent a valuable public health strategy to curb the incidence of chronic and lifestyle-related diseases. Probiotic Bifidobacteria are likely candidates for this purpose in newborns and infants considering the natural dominance of this genus on microbiota composition in early life. Moreover, the most frequently reported microbiota composition alteration in association with newborn and infant diseases, including necrotizing enterocolitis and diarrhea, is a reduction in Bifidobacteria levels. Several studies have assessed the effects of B. animalis subsp. lactis strains in newborns and infants, but recent expert opinions recommend analyzing their efficacy at the strain-specific level. Hence, using the B94 strain as an example, this review summarizes the clinical evidence available in infants and children in various indications, discussing the safety and potential modes of actions while providing perspectives on the concept of "non-infant-type" probiotics for infants' health.
Collapse
Affiliation(s)
- Annie Tremblay
- Rosell Institute for Microbiome and Probiotics, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (S.B.)
| | - Stéphane Bronner
- Rosell Institute for Microbiome and Probiotics, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (S.B.)
| | - Sylvie Binda
- Rosell Institute for Microbiome and Probiotics, 6100 Royalmount Avenue, Montreal, QC H4P 2R2, Canada; (A.T.); (S.B.)
- Lallemand Health Solutions, 19 Rue des Briquetiers, BP 59, 31702 Toulouse, France
| |
Collapse
|
21
|
Theophilus RJ, Taft DH. Antimicrobial Resistance Genes (ARGs), the Gut Microbiome, and Infant Nutrition. Nutrients 2023; 15:3177. [PMID: 37513595 PMCID: PMC10383493 DOI: 10.3390/nu15143177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
The spread of antimicrobial resistance genes (ARGs) is a major public health crisis, with the ongoing spread of ARGs leading to reduced efficacy of antibiotic treatments. The gut microbiome is a key reservoir for ARGs, and because diet shapes the gut microbiome, diet also has the potential to shape the resistome. This diet-gut microbiome-resistome relationship may also be important in infants and young children. This narrative review examines what is known about the interaction between the infant gut microbiome, the infant resistome, and infant nutrition, including exploring the potential of diet to mitigate infant ARG carriage. While more research is needed, diet has the potential to reduce infant and toddler carriage of ARGs, an important goal as part of maintaining the efficacy of available antibiotics and preserving infant and toddler health.
Collapse
Affiliation(s)
- Rufus J Theophilus
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| | - Diana Hazard Taft
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
22
|
Kartjito MS, Yosia M, Wasito E, Soloan G, Agussalim AF, Basrowi RW. Defining the Relationship of Gut Microbiota, Immunity, and Cognition in Early Life-A Narrative Review. Nutrients 2023; 15:2642. [PMID: 37375546 DOI: 10.3390/nu15122642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/22/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Recently, the immune system has been identified as one of the possible main bridges which connect the gut-brain axis. This review aims to examine available evidence on the microbiota-immunity-cognitive relationship and its possible effects on human health early in life. This review was assembled by compiling and analyzing various literature and publications that document the gut microbiota-immune system-cognition interaction and its implications in the pediatric population. This review shows that the gut microbiota is a pivotal component of gut physiology, with its development being influenced by a variety of factors and, in return, supports the development of overall health. Findings from current research focus on the complex relationship between the central nervous system, gut (along with gut microbiota), and immune cells, highlighting the importance of maintaining a balanced interaction among these systems for preserving homeostasis, and demonstrating the influence of gut microbes on neurogenesis, myelin formation, the potential for dysbiosis, and alterations in immune and cognitive functions. While limited, evidence shows how gut microbiota affects innate and adaptive immunity as well as cognition (through HPA axis, metabolites, vagal nerve, neurotransmitter, and myelination).
Collapse
Affiliation(s)
| | - Mikhael Yosia
- Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | - Erika Wasito
- Medical and Science Affairs Division, Danone Specialized Nutrition Indonesia, Jakarta 12950, Indonesia
| | - Garry Soloan
- Faculty of Medicine, Universitas Indonesia, Jakarta 10430, Indonesia
| | | | - Ray Wagiu Basrowi
- Medical and Science Affairs Division, Danone Specialized Nutrition Indonesia, Jakarta 12950, Indonesia
| |
Collapse
|
23
|
Bosnar LM, Shindler AE, Wood J, Patch C, Franks AE. Attempts to limit sporulation in the probiotic strain Bacillus subtilis BG01-4 TM through mutation accumulation and selection. Access Microbiol 2023; 5:acmi000419. [PMID: 37323944 PMCID: PMC10267654 DOI: 10.1099/acmi.0.000419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/16/2023] [Indexed: 06/17/2023] Open
Abstract
The use of bacterial spores in probiotics over viable loads of bacteria has many advantages, including the durability of spores, which allows spore-based probiotics to effectively traverse the various biochemical barriers present in the gastrointestinal tract. However, the majority of spore-based probiotics developed currently aim to treat adults, and there is a litany of differences between the adult and infant intestinal systems, including the immaturity and low microbial species diversity observed within the intestines of infants. These differences are only further exacerbated in premature infants with necrotizing enterocolitis (NEC) and indicates that what may be appropriate for an adult or even a healthy full-term infant may not be suited for an unhealthy premature infant. Complications from using spore-based probiotics for premature infants with NEC may involve the spores remaining dormant and adhering to the intestinal epithelia, the out-competing of commensal bacteria by spores, and most importantly the innate antibiotic resistance of spores. Also, the ability of Bacillus subtilis to produce spores under duress may result in less B. subtilis perishing within the intestines and releasing membrane branched-chain fatty acids. The isolate B. subtilis BG01-4TM is a proprietary strain developed by Vernx Biotechnology through accumulating mutations within the BG01-4TM genome in a serial batch culture. Strain BG01-4TM was provided as a non-spore-forming B. subtilis , but a positive sporulation status for BG01-4TM was confirmed through in vitro testing and suggested that selection for the sporulation defective genes could occur within an environment that would select against sporulation. The durability of key sporulation genes was ratified in this study, as the ability of BG01-4TM to produce spores was not eliminated by the attempts to select against sporulation genes in BG01-4TM by the epigenetic factors of high glucose and low pH. However, a variation in the genes in isolate BG01-4-8 involved in the regulation of sporulation is believed to have occurred during the mutation selection from the parent strain BG01-4TM. An alteration in selected sporulation regulation genes is expected to have occurred from BG01-4TM to BG01-4-8, with BG01-4-8 producing spores within 24 h, ~48 h quicker than BG01-4TM.
Collapse
Affiliation(s)
- Luke M. Bosnar
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Anya E. Shindler
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Jennifer Wood
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Craig Patch
- School of Allied Health, Human Services, and Sport, La Trobe University, Melbourne, Victoria 3086, Australia
- Vernx Pty Ltd, Level 17, 40 City Road, Southbank, Victoria 3066, Australia
| | - Ashley E. Franks
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
24
|
Kapoor B, Gulati M, Gupta R, Singla RK. Microbiota dysbiosis and myasthenia gravis: Do all roads lead to Rome? Autoimmun Rev 2023; 22:103313. [PMID: 36918089 DOI: 10.1016/j.autrev.2023.103313] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023]
Abstract
Dysregulated immune system with a failure to recognize self from non-self-antigens is one of the common pathogeneses seen in autoimmune diseases. The complex interplay of genetic and environmental factors is important for the occurrence and development of the disease. Among the environmental factors, disturbed gut microbiota (gut dysbiosis) has recently attracted particular attention, especially with advancement in human microbiome research. Although the alterations in microbiota have been seen in various autoimmune diseases, including those of nervous system, there is paucity of information on neuromuscular system diseases. Myasthenia gravis (MG) is one such rare autoimmune disease of neuromuscular junction, and is caused by generation of pathogenic autoantibodies to components of the postsynaptic muscle endplate. In the recent years, accumulating evidences have endorsed the key role of host microbiota, particularly those of gut, in the pathogenesis of MG. Differential microbiota composition, characterized by increased abundance of Fusobacteria, Bacteroidetes, and Proteobacteria, and decreased abundance of Actinobacteria and Firmicutes, has been seen in MG patients in comparison to healthy subjects. Disturbance of microbiota composition, particularly reduced ratio of Firmicutes/Bacteroidetes, alter the gut permeability, subsequently triggering the immunological response. Resultant reduction in levels of short chain fatty acids (SCFAs) is another factor contributing to the immunological response in MG patients. Modulation of gut microbiota via intervention of probiotics, prebiotics, synbiotics, postbiotics (metabiotics), and fecal microbiota transplantation (FMT) is considered to be the futuristic approach for the management of MG. This review summarizes the role of gut microbiota and their metabolites (postbiotics) in the progression of MG. Also, various bacteriotherapeutic approaches involving gut microbiota are discussed for the prevention of MG progression.
Collapse
Affiliation(s)
- Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, NSW 2007, Australia.
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road, 2222, Chengdu, Sichuan, China; iGlobal Research and Publishing Foundation, New Delhi, India
| |
Collapse
|
25
|
Breastfeeding enrichment of B. longum subsp. infantis mitigates the effect of antibiotics on the microbiota and childhood asthma risk. MED 2023; 4:92-112.e5. [PMID: 36603585 DOI: 10.1016/j.medj.2022.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/09/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Early antibiotic exposure is linked to persistent disruption of the infant gut microbiome and subsequent elevated pediatric asthma risk. Breastfeeding acts as a primary modulator of the gut microbiome during early life, but its effect on asthma development has remained unclear. METHODS We harnessed the CHILD cohort to interrogate the influence of breastfeeding on antibiotic-associated asthma risk in a subset of children (n = 2,521). We then profiled the infant microbiomes in a subset of these children (n = 1,338) using shotgun metagenomic sequencing and compared human milk oligosaccharide and fatty acid composition from paired maternal human milk samples for 561 of these infants. FINDINGS Children who took antibiotics without breastfeeding had 3-fold higher asthma odds, whereas there was no such association in children who received antibiotics while breastfeeding. This benefit was associated with widespread "re-balancing" of taxonomic and functional components of the infant microbiome. Functional changes associated with asthma protection were linked to enriched Bifidobacterium longum subsp. infantis colonization. Network analysis identified a selection of fucosylated human milk oligosaccharides in paired maternal samples that were positively associated with B. infantis and these broader functional changes. CONCLUSIONS Our data suggest that breastfeeding and antibiotics have opposing effects on the infant microbiome and that breastfeeding enrichment of B. infantis is associated with reduced antibiotic-associated asthma risk. FUNDING This work was supported in part by the Canadian Institutes of Health Research; the Allergy, Genes and Environment Network of Centres of Excellence; Genome Canada; and Genome British Columbia.
Collapse
|
26
|
Zhao G, Qi M, Wang Q, Hu C, Li X, Chen Y, Yang J, Yu H, Chen H, Guo A. Gut microbiome variations in Rhinopithecus roxellanae caused by changes in the environment. BMC Genomics 2023; 24:62. [PMID: 36737703 PMCID: PMC9896789 DOI: 10.1186/s12864-023-09142-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The snub-nosed monkey (Rhinopithecus roxellanae) is an endangered animal species mainly distributed in China and needs to be protected. Gut microbiome is an important determinant of animal health and population survival as it affects the adaptation of the animals to different foods and environments under kinetic changes of intrinsic and extrinsic factors. Therefore, this study aimed to elucidate gut fecal microbiome profiles of snub-nosed monkeys affected by several extrinsic and intrinsic factors, including raising patterns (captive vs. wild), age, sex, and diarrheal status to provide a reference for making protection strategies. RESULTS The 16S rRNA gene sequencing was firstly used to pre-check clustering of 38 fecal samples from the monkeys including 30 wild and 8 captive (5 healthy and 3 diarrheal) from three Regions of Shennongjia Nature Reserve, Hubei Province, China. Then the 24 samples with high-quality DNA from 18 wild and 6 captive (4 healthy and 2 diarrheal) monkeys were subjected to shotgun metagenomic sequencing to characterize bacterial gut microbial communities. We discovered that the raising pattern (captive and wild) rather than age and sex was the predominant factor attributed to gut microbiome structure and proportionality. Wild monkeys had significantly higher bacterial diversity and lower Bacteroidetes/Firmicutes ratios than captive animals. Moreover, the gut microbiomes in wild healthy monkeys were enriched for the genes involved in fatty acid production, while in captive animals, genes were enriched for vitamin biosynthesis and metabolism and amino acid biosynthesis from carbohydrate intermediates. Additionally, a total of 37 antibiotic resistant genes (ARG) types were detected. Unlike the microbiome diversity, the captive monkeys have a higher diversity of ARG than the wild animals. CONCLUSION Taken together, we highlight the importance of self-reprogramed metabolism in the snub-nosed monkey gut microbiome to help captive and wild monkeys adapt to different intrinsic and extrinsic environmental change.
Collapse
Affiliation(s)
- Gang Zhao
- State Key Laboratory of Agricultural Microbiology, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137Hubei Hongshan Laboratory, Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137Shennongjia Science & Technology Innovation Center, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137National Professional Laboratory for Animal Tuberculosis (Wuhan), Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Mingpu Qi
- State Key Laboratory of Agricultural Microbiology, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Qiankun Wang
- State Key Laboratory of Agricultural Microbiology, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Changmin Hu
- grid.35155.370000 0004 1790 4137College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Xiang Li
- grid.35155.370000 0004 1790 4137Shennongjia Science & Technology Innovation Center, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137Hubei Hongshan Laboratory, Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137Shennongjia Science & Technology Innovation Center, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137National Professional Laboratory for Animal Tuberculosis (Wuhan), Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Jingyuan Yang
- Hubei Key Laboratory of Conservation Biology of Shennongjia Golden Monkey (Shennongjia National Park Administration), Shennongjia Forest Ecosystem Research Station, Shennongjia, 442411 China
| | - Huiliang Yu
- Hubei Key Laboratory of Conservation Biology of Shennongjia Golden Monkey (Shennongjia National Park Administration), Shennongjia Forest Ecosystem Research Station, Shennongjia, 442411 China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137Hubei Hongshan Laboratory, Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137Shennongjia Science & Technology Innovation Center, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137National Professional Laboratory for Animal Tuberculosis (Wuhan), Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137Hubei Hongshan Laboratory, Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070 Hubei China ,grid.35155.370000 0004 1790 4137Shennongjia Science & Technology Innovation Center, Huazhong Agricultural University, Wuhan, 430070 China ,grid.35155.370000 0004 1790 4137National Professional Laboratory for Animal Tuberculosis (Wuhan), Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, 430070 Hubei China
| |
Collapse
|
27
|
Nuzhat S, Hasan SMT, Palit P, Islam MR, Mahfuz M, Islam MM, Alam MA, Flannery RL, Kyle DJ, Sarker SA, Ahmed T. Effects of probiotic and synbiotic supplementation on ponderal and linear growth in severely malnourished young infants in a randomized clinical trial. Sci Rep 2023; 13:1845. [PMID: 36725893 PMCID: PMC9890433 DOI: 10.1038/s41598-023-29095-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/30/2023] [Indexed: 02/03/2023] Open
Abstract
Severe acute malnutrition (SAM) is a major global public health problem. We aimed to assess the effects of probiotic and synbiotic supplementation on rate of weight gain and change in length in young SAM infants. This study was substudy of a single-blind randomized clinical trial (NCT0366657). During nutritional rehabilitation, 67 <6 months old SAM infants were enrolled and randomized to receive either probiotic (Bifidobacterium. infantis EVC001) or synbiotic (B. infantis EVC001 + Lacto-N-neotetraose [LNnT]) or placebo (Lactose) for four weeks and were followed for four more weeks after supplementation. In multivariable linear regression model, the mean rate of weight gain in the probiotic arm compared to placebo was higher by 2.03 unit (P < 0.001), and 1.13 unit (P = 0.030) in the synbiotic arm. In linear mixed-effects model, mean WAZ was higher by 0.57 unit (P = 0.018) in probiotic arm compared to placebo. Although not statistically significant, delta length for age z score (LAZ) trended to be higher among children in probiotc (β = 0.25) and synbiotic (β = 0.26) arms compared to placebo in multivariable linear regression model. Our study describes that young SAM infants had a higher rate of weight gain when supplemented with probiotic alone, compared to their counterparts with either synbiotic or placebo.
Collapse
Affiliation(s)
- Sharika Nuzhat
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - S M Tafsir Hasan
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh.
| | - Parag Palit
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Md Ridwan Islam
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Mustafa Mahfuz
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - M Munirul Islam
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Md Ashraful Alam
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | | | | | - Shafiqul A Sarker
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Tahmeed Ahmed
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| |
Collapse
|
28
|
Inflammatory Response: A Crucial Way for Gut Microbes to Regulate Cardiovascular Diseases. Nutrients 2023; 15:nu15030607. [PMID: 36771313 PMCID: PMC9921390 DOI: 10.3390/nu15030607] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Gut microbiota is the largest and most complex microflora in the human body, which plays a crucial role in human health and disease. Over the past 20 years, the bidirectional communication between gut microbiota and extra-intestinal organs has been extensively studied. A better comprehension of the alternative mechanisms for physiological and pathophysiological processes could pave the way for health. Cardiovascular disease (CVD) is one of the most common diseases that seriously threatens human health. Although previous studies have shown that cardiovascular diseases, such as heart failure, hypertension, and coronary atherosclerosis, are closely related to gut microbiota, limited understanding of the complex pathogenesis leads to poor effectiveness of clinical treatment. Dysregulation of inflammation always accounts for the damaged gastrointestinal function and deranged interaction with the cardiovascular system. This review focuses on the characteristics of gut microbiota in CVD and the significance of inflammation regulation during the whole process. In addition, strategies to prevent and treat CVD through proper regulation of gut microbiota and its metabolites are also discussed.
Collapse
|
29
|
Roager HM, Stanton C, Hall LJ. Microbial metabolites as modulators of the infant gut microbiome and host-microbial interactions in early life. Gut Microbes 2023; 15:2192151. [PMID: 36942883 PMCID: PMC10038037 DOI: 10.1080/19490976.2023.2192151] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
The development of infant gut microbiome is a pivotal process affecting the ecology and function of the microbiome, as well as host health. While the establishment of the infant microbiome has been of interest for decades, the focus on gut microbial metabolism and the resulting small molecules (metabolites) has been rather limited. However, technological and computational advances are now enabling researchers to profile the plethora of metabolites in the infant gut, allowing for improved understanding of how gut microbial-derived metabolites drive microbiome community structuring and host-microbial interactions. Here, we review the current knowledge on development of the infant gut microbiota and metabolism within the first year of life, and discuss how these microbial metabolites are key for enhancing our basic understanding of interactions during the early life developmental window.
Collapse
Affiliation(s)
- Henrik M. Roager
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Catherine Stanton
- APC Microbiome Ireland, Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland
| | - Lindsay J. Hall
- Gut Microbes & Health, Quadram Institute Biosciences, Norwich, UK
- Intestinal Microbiome, School of Life Sciences, ZIEL – Institute for Food & Health, Technical University of Munich, Freising, Germany
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
30
|
Prolonged Breastfeeding and the Risk of Plasmodium vivax Infection and Clinical Malaria in Early Childhood: A Birth Cohort Study. Pediatr Infect Dis J 2022; 41:793-799. [PMID: 35763695 DOI: 10.1097/inf.0000000000003618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Relatively few Amazonian infants have clinical malaria diagnosed, treated and notified before their first birthday, either because they are little exposed to an infection or remain asymptomatic once infected. Here we measure the proportion of children who have experienced Plasmodium vivax infection and malaria by 2 years of age in the main transmission hotspot of Amazonian Brazil. METHODS We measured IgG antibodies to 3 blood-stage P. vivax antigens at the 1- and 2-year follow-up assessment of 435 participants in a population-based birth cohort. Children's malaria case notifications were retrieved from the electronic database of the Ministry of Health. We used multiple Poisson regression models to identify predictors of serologically proven P. vivax infection and clinical vivax malaria during the first 2 years of life. RESULTS Overall, 23 [5.3%; 95% confidence interval (CI): 3.5-7.8%) children had antibodies to ≥2 antigens detected during at least one follow-up assessment, consistent with past P. vivax infection(s). Fifteen (3.4%; 95% CI: 2.1-5.6%) children had clinical vivax episodes notified during the first 2 years of life; 7 of them were seronegative. We estimate that half of the infections remained unnotified. Children born to women who experienced P. vivax infection during pregnancy were more likely to be infected and develop clinical vivax malaria, while those breast-fed for ≥12 months had their risk of being P. vivax -seropositive (which we take as evidence of blood-stage P. vivax infection during the first 2 years of life) decreased by 79.8% (95% CI: 69.3-86.7%). CONCLUSION P. vivax infections in early childhood are underreported in the Amazon, are associated with anemia at 2 years of age, and appear to be partially prevented by prolonged breastfeeding.
Collapse
|
31
|
Eow SY, Gan WY, Jiang T, Loh SP, Lee LJ, Chin YS, Than LTL, How KN, Thong PL, Liu Y, Zhao J, Chen L. MYBIOTA: A birth cohort on maternal and infant microbiota and its impact on infant health in Malaysia. Front Nutr 2022; 9:994607. [PMID: 36238465 PMCID: PMC9552002 DOI: 10.3389/fnut.2022.994607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/12/2022] [Indexed: 11/15/2022] Open
Abstract
Background The microbiota plays a key role in early immunity maturation that affects infant health and is associated with the development of non-communicable diseases and allergies in later life. Objective The MYBIOTA is a prospective mother-infant cohort study in Malaysia aiming to determine the association between gut microbiota with infant health (temperament, gastrointestinal disorders, eczema, asthma, and developmental delays) in Selangor, Malaysia. Methods Pregnant mothers will be enrolled in their first trimester of pregnancy, and follow-ups will be done for infants during their first year of life. Maternal-infant biological samples (blood, feces, saliva, urine, and breast milk), anthropometric, dietary, and clinical information will be collected at different time points from early pregnancy to 12 months postpartum. Discussion This study could provide a better understanding of the colonization and development of the gut microbiome during early life and its impact on infant health. Clinical trial registration https://clinicaltrials.gov/, identifier NCT04919265.
Collapse
Affiliation(s)
- Shiang Yen Eow
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wan Ying Gan
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Tiemin Jiang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
- South Asia Branch of National Engineering Center of Dairy for Maternal and Child Health, Guilin University of Technology, Guilin, China
| | - Su Peng Loh
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ling Jun Lee
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yit Siew Chin
- Department of Nutrition, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Research Center of Excellence, Nutrition and Non-communicable Diseases, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Leslie Thian Lung Than
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Kang Nien How
- Unit of Dermatology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Pui Ling Thong
- Department of Pediatrics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yanpin Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
| | - Lijun Chen
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
- Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Yinghai, Beijing, China
| |
Collapse
|
32
|
Epidemiological Studies of Children's Gut Microbiota: Validation of Sample Collection and Storage Methods and Microbiota Analysis of Toddlers' Feces Collected from Diapers. Nutrients 2022; 14:nu14163315. [PMID: 36014821 PMCID: PMC9416069 DOI: 10.3390/nu14163315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
The composition of human gut microbiota influences human health and disease over the long term. Since the flora in specimens can easily change at ambient temperature outside the body, epidemiological studies need feasible methods of stool specimen collection and storage to be established. We aimed to validate two methods: feces frozen-stored in tubes containing guanidine thiocyanate solution for two months after collection (Method B), and feces excreted in diapers and frozen-stored (Method C). Validation was by comparison with a gold standard Method A. Bacterial flora of five adults were sampled and stored by all three methods. Bacterial composition was examined by amplicon sequencing analysis. Bland-Altman analyses showed that Methods B and C might change relative abundances of certain bacterial flora. Thereafter, we analyzed the bacterial flora of 76 toddlers (two age groups) in stools sampled and processed by Method C. The diversity indices of toddlers' flora were less than those of adults. The relative abundance of some bacteria differed significantly between children aged 1.5 and 3 years. The specimen collection and storage methods validated in this study are worth adopting in large-scale epidemiological studies, especially for small children, provided the limited accuracy for some specific bacteria is understood.
Collapse
|
33
|
Di Profio E, Magenes VC, Fiore G, Agostinelli M, La Mendola A, Acunzo M, Francavilla R, Indrio F, Bosetti A, D’Auria E, Borghi E, Zuccotti G, Verduci E. Special Diets in Infants and Children and Impact on Gut Microbioma. Nutrients 2022; 14:nu14153198. [PMID: 35956374 PMCID: PMC9370825 DOI: 10.3390/nu14153198] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota is a complex system that starts to take shape early in life. Several factors influence the rise of microbial gut colonization, such as term and mode of delivery, exposure to antibiotics, maternal diet, presence of siblings and family members, pets, genetics, local environment, and geographical location. Breastfeeding, complementary feeding, and later dietary patterns during infancy and toddlerhood are major players in the proper development of microbial communities. Nonetheless, if dysbiosis occurs, gut microbiota may remain impaired throughout life, leading to deleterious consequences, such as greater predisposition to non-communicable diseases, more susceptible immune system and altered gut–brain axis. Children with specific diseases (i.e., food allergies, inborn errors of metabolism, celiac disease) need a special formula and later a special diet, excluding certain foods or nutrients. We searched on PubMed/Medline, Scopus and Embase for relevant pediatric studies published over the last twenty years on gut microbiota dietary patterns and excluded case reports or series and letters. The aim of this review is to highlight the changes in the gut microbiota in infants and children fed with special formula or diets for therapeutic requirements and, its potential health implications, with respect to gut microbiota under standard diets.
Collapse
Affiliation(s)
- Elisabetta Di Profio
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Vittoria Carlotta Magenes
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Giulia Fiore
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Marta Agostinelli
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Alice La Mendola
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Miriam Acunzo
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Ruggiero Francavilla
- Pediatric Section, Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70121 Bari, Italy
| | - Flavia Indrio
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Alessandra Bosetti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
| | - Enza D’Auria
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
- Correspondence:
| | - Elisa Borghi
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, 20144 Milan, Italy
- Pediatric Clinical Research Center, Fondazione Romeo ed Enrica Invernizzi, University of Milan, 20122 Milan, Italy
| | - Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children’s Hospital, Università di Milano, 20154 Milan, Italy
- Department of Health Sciences, University of Milan, 20142 Milan, Italy
| |
Collapse
|
34
|
Wells JM, Gao Y, de Groot N, Vonk MM, Ulfman L, van Neerven RJJ. Babies, Bugs, and Barriers: Dietary Modulation of Intestinal Barrier Function in Early Life. Annu Rev Nutr 2022; 42:165-200. [PMID: 35697048 DOI: 10.1146/annurev-nutr-122221-103916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The intestinal barrier is essential in early life to prevent infection, inflammation, and food allergies. It consists of microbiota, a mucus layer, an epithelial layer, and the immune system. Microbial metabolites, the mucus, antimicrobial peptides, and secretory immunoglobulin A (sIgA) protect the intestinal mucosa against infection. The complex interplay between these functionalities of the intestinal barrier is crucial in early life by supporting homeostasis, development of the intestinal immune system, and long-term gut health. Exclusive breastfeeding is highly recommended during the first 6 months. When breastfeeding is not possible, milk-based infant formulas are the only safe alternative. Breast milk contains many bioactive components that help to establish the intestinal microbiota and influence the development of the intestinal epithelium and the immune system. Importantly, breastfeeding lowers the risk for intestinal and respiratory tract infections. Here we review all aspects of intestinal barrier function and the nutritional components that impact its functionality in early life, such as micronutrients, bioactive milk proteins, milk lipids, and human milk oligosaccharides. These components are present in breast milk and can be added to milk-based infant formulas to support gut health and immunity. Expected final online publication date for the Annual Review of Nutrition, Volume 42 is August 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jerry M Wells
- Host Microbe Interactomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Yifan Gao
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, The Netherlands
| | | | | | | | - R J Joost van Neerven
- Cell Biology and Immunology, Wageningen University and Research, Wageningen, The Netherlands.,FrieslandCampina, Amersfoort, The Netherlands;
| |
Collapse
|
35
|
Cakebread J, Wallace OA, Henderson H, Jauregui R, Young W, Hodgkinson A. The impacts of bovine milk, soy beverage, or almond beverage on the growing rat microbiome. PeerJ 2022; 10:e13415. [PMID: 35573176 PMCID: PMC9104089 DOI: 10.7717/peerj.13415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/19/2022] [Indexed: 01/14/2023] Open
Abstract
Background Milk, the first food of mammals, helps to establish a baseline gut microbiota. In humans, milk and milk products are consumed beyond infancy, providing comprehensive nutritional value. Non-dairy beverages, produced from plant, are increasingly popular as alternatives to dairy milk. The nutritive value of some plant-based products continues to be debated, whilst investigations into impacts on the microbiome are rare. The aim of this study was to compare the impact of bovine milk, soy and almond beverages on the rat gut microbiome. We previously showed soy and milk supplemented rats had similar bone density whereas the almond supplemented group had compromised bone health. There is an established link between bone health and the microbiota, leading us to hypothesise that the microbiota of groups supplemented with soy and milk would be somewhat similar, whilst almond supplementation would be different. Methods Three-week-old male Sprague Dawley rats were randomly assigned to five groups (n = 10/group) and fed ad libitum for four weeks. Two control groups were fed either standard diet (AIN-93G food) or AIN-93G amino acids (AA, containing amino acids equivalent to casein but with no intact protein) and with water provided ad libitum. Three treatment groups were fed AIN-93G AA and supplemented with either bovine ultra-heat treatment (UHT) milk or soy or almond UHT beverages as their sole liquid source. At trial end, DNA was extracted from caecum contents, and microbial abundance and diversity assessed using high throughput sequencing of the V3 to V4 variable regions of the 16S ribosomal RNA gene. Results Almost all phyla (91%) differed significantly (FDR < 0.05) in relative abundance according to treatment and there were distinct differences seen in community structure between treatment groups at this level. At family level, forty taxa showed significantly different relative abundance (FDR < 0.05). Bacteroidetes (Bacteroidaceae) and Firmicutes populations (Lactobacillaceae, Clostridiaceae and Peptostreptococcaceae) increased in relative abundance in the AA almond supplemented group. Supplementation with milk resulted in increased abundance of Actinobacteria (Coriobacteriaceae and Bifidobacteriaceae) compared with other groups. Soy supplementation increased abundance of some Firmicutes (Lactobacilliaceae) but not Actinobacteria, as previously reported by others. Conclusion Supplementation with milk or plant-based drinks has broad impacts on the intestinal microbiome of young rats. Changes induced by cow milk were generally in line with previous reports showing increased relative abundance of Bifidobacteriacea, whilst soy and almond beverage did not. Changes induced by soy and almond drink supplementation were in taxa commonly associated with carbohydrate utilisation. This research provides new insight into effects on the microbiome of three commercially available products marketed for similar uses.
Collapse
Affiliation(s)
- Julie Cakebread
- Food and Biobased Products, AgResearch Ltd., Hamilton, New Zealand,Smart Foods Innovation Centre of Excellence, AgResearch Ltd., Palmerston North, New Zealand
| | | | - Harold Henderson
- Food and Biobased Products, AgResearch Ltd., Hamilton, New Zealand
| | - Ruy Jauregui
- Digital Agriculture Innovation Centre of Excellence, AgResearch Ltd., Palmerston North, New Zealand
| | - Wayne Young
- Smart Foods Innovation Centre of Excellence, AgResearch Ltd., Palmerston North, New Zealand
| | | |
Collapse
|
36
|
Nutrition during Pregnancy and Lactation: Epigenetic Effects on Infants’ Immune System in Food Allergy. Nutrients 2022; 14:nu14091766. [PMID: 35565735 PMCID: PMC9103859 DOI: 10.3390/nu14091766] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022] Open
Abstract
Food allergies are an increasing health problem worldwide. They are multifactorial diseases, in which the genome alone does not explain the development of the disease, but a genetic predisposition and various environmental factors contribute to their onset. Environmental factors, in particular nutritional factors, in the early stages of life are recognized as key elements in the etiology of food allergies. There is growing evidence advising that nutrition can affect the risk of developing food allergies through epigenetic mechanisms elicited by the nutritional factors themselves or by modulating the gut microbiota and its functional products. Gut microbiota and postbiotics can in turn influence the risk of food allergy development through epigenetic mechanisms. Epigenetic programming accounts not only for the short-term effects on the individual’s health status, but also for those observed in adulthood. The first thousand days of life represent an important window of susceptibility in which environmental factors, including nutritional ones, can influence the risk of developing allergies through epigenetic mechanisms. From this point of view, it represents an interesting window of opportunity and intervention. This review reports the main nutritional factors that in the early stages of life can influence immune oral tolerance through the modulation of epigenetic mechanisms.
Collapse
|
37
|
Vacca M, Raspini B, Calabrese FM, Porri D, De Giuseppe R, Chieppa M, Liso M, Cerbo RM, Civardi E, Garofoli F, Cena H, De Angelis M. The establishment of the gut microbiota in 1-year-aged infants: from birth to family food. Eur J Nutr 2022; 61:2517-2530. [PMID: 35211851 PMCID: PMC9279275 DOI: 10.1007/s00394-022-02822-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022]
Abstract
Purpose With the aim of characterizing the gastrointestinal (GI) microbiota and contextually determine how different prenatal, perinatal, and postnatal factors affected its composition in early childhood, infants were enrolled in a longitudinal-prospective study named “A.MA.MI.” (Alimentazione MAmma e bambino nei primi MIlle giorni; NCT04122612, October 2019). Methods Forty-five fecal samples were collected at 12 months of infants’ age, identified as the 3rd follow-up (T3). The evaluated variables were pre-gestational weight and weight gain during pregnancy, delivery mode, feeding, timing of weaning, and presence/absence of older siblings. Fecal alpha and beta-diversities were analyzed. Noteworthy, to determine the impact of the influencing factors, multivariate analyses were conducted. Results At T3, all prenatal and perinatal variables did not result to be significant whereas, among the postnatal variables, type of milk-feeding and weaning showed the greatest contribution in shaping the microbiota. Although aged 1 year, infants exclusively breastfed until 6 months were mainly colonized by Lactobacillaceae and Enterobacteriaceae. Differently, Bacteroidaceae characterized the microbiota of infants that were never breastfed in an exclusive way. Moreover, although an early introduction of solid foods determined higher values of Faith’s PD, high abundances of Ruminococcaceae and Faecalibacterium mainly associated with infants weaned after the 4th month of age. Conclusion The microbial colonization during the first year of life is likely affected by a simultaneous effect of multiple variables playing a significant role at different times. Therefore, these data contribute to add evidence concerning the complex multifactorial interaction between GI microbiota and various stimuli affecting infants during the early stages of life. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-022-02822-1.
Collapse
Affiliation(s)
- Mirco Vacca
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| | - Benedetta Raspini
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | | | - Debora Porri
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Rachele De Giuseppe
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Marcello Chieppa
- Institute of Research, National Institute of Gastroenterology "S. de Bellis", Castellana Grotte, Italy
| | - Marina Liso
- Institute of Research, National Institute of Gastroenterology "S. de Bellis", Castellana Grotte, Italy
| | - Rosa Maria Cerbo
- Neonatal Unit and Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elisa Civardi
- Neonatal Unit and Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesca Garofoli
- Neonatal Unit and Neonatal Intensive Care Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Hellas Cena
- Laboratory of Dietetics and Clinical Nutrition, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy. .,Unit of Internal Medicine and Endocrinology, Clinical Nutrition and Dietetics Service, ICS Maugeri IRCCS, Pavia, Italy.
| | - Maria De Angelis
- Department of Soil, Plant and Food Science, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
38
|
Metabolic Disease, NAD Metabolism, Nicotinamide Riboside, and the Gut Microbiome: Connecting the Dots from the Gut to Physiology. mSystems 2022; 7:e0122321. [PMID: 35076274 PMCID: PMC8788318 DOI: 10.1128/msystems.01223-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The effort to use nutrients as interventions to treat human disease has been important to medicine. A current example in this vein pertains to NAD+ boosters, such as nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN), which are in many clinical trials in a variety of disease conditions. Independent laboratories have shown that ingested NR (or NMN) has mitigating effects on metabolic syndrome in mice. V. V. Lozada-Fernández, O. deLeon, S. L. Kellogg, F. L. Saravia, et al. (mSystems 7:e00230-21, 2022, https://doi.org/10.1128/mSystems.00230-21) show that NR shifts gut microbiome contents and that the transplantation of an NR-conditioned microbiome by fecal transfer reproduces some effects of NR in mice on a high-fat diet. The involvement of the gut microbiome as a factor in NR effects is linked to changes to the gut microbiome and its activity to transform NR and downstream catabolites. This commentary draws attention to these findings and focuses on some puzzling aspects of NAD+ boosters, exploring the still murky interactions between NAD+ metabolism, energy homeostasis, and the gut microbiome.
Collapse
|
39
|
Parkar SG, Gopal PK. Gut Microbiota and Metabolism in Different Stages of Life and Health. Microorganisms 2022; 10:microorganisms10020474. [PMID: 35208928 PMCID: PMC8876188 DOI: 10.3390/microorganisms10020474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 01/27/2023] Open
Affiliation(s)
| | - Pramod K. Gopal
- New Zealand Institute for Plant and Food Research, Palmerston North 4442, New Zealand;
- Riddet Institute, Massey University, Palmerston North 4442, New Zealand
| |
Collapse
|
40
|
Socha-Banasiak A, Pawłowska M, Czkwianianc E, Pierzynowska K. From Intrauterine to Extrauterine Life-The Role of Endogenous and Exogenous Factors in the Regulation of the Intestinal Microbiota Community and Gut Maturation in Early Life. Front Nutr 2022; 8:696966. [PMID: 34977104 PMCID: PMC8718557 DOI: 10.3389/fnut.2021.696966] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Differentiation of the digestive tube and formation of the gut unit as a whole, are regulated by environmental factors through epigenetic modifications which enhance cellular plasticity. The critical period of DNA imprinting lasts from conception until approximately the 1,000th day of human life. During pregnancy, besides agents that may directly promote epigenetic programming (e.g., folate, zinc, and choline supplementation), some factors (e.g., antibiotic use, dietary components) can affect the composition of the mother's microbiota, in turn affecting the fetal microbiome which interacts with the offspring's intestinal epithelial cells. According to available literature that confirms intrauterine microbial colonization, the impact of the microbiome and its metabolites on the genome seems to be key in fetal development, including functional gut maturation and the general health status of the offspring, as well as later on in life. Although the origin of the fetal microbiome is still not well-understood, the bacteria may originate from both the vagina, as the baby is born, as well as from the maternal oral cavity/gut, through the bloodstream. Moreover, the composition of the fetal gut microbiota varies depending on gestational age, which in turn possibly affects the regulation of the immune system at the barrier between mother and fetus, leading to differences in the ability of microorganisms to access and survive in the fetal environment. One of the most important local functions of the gut microbiota during the prenatal period is their exposure to foreign antigens which in turn contributes to immune system and tissue development, including fetal intestinal Innate Lymphoid Cells (ILCs). Additional factors that determine further infant microbiome development include whether the infant is born premature or at term, the method of delivery, maternal antibiotic use, and the composition of the mother's milk, among others. However, the latest findings highlight the fact that a more diverse infant gut microbiome at birth facilitates the proliferation of stem cells by microbial metabolites and accelerates infant development. This phenomenon confirms the unique role of microbiome. This review emphasizes the crucial perinatal and postnatal factors that may influence fetal and neonatal microbiota, and in turn gut maturation.
Collapse
Affiliation(s)
- Anna Socha-Banasiak
- Department of Gastroenterology, Allergology and Pediatrics, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland
| | - Malwina Pawłowska
- Department of Gastroenterology, Allergology and Pediatrics, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland
| | - Elżbieta Czkwianianc
- Department of Gastroenterology, Allergology and Pediatrics, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland
| | - Kateryna Pierzynowska
- Department of Biology, Lund University, Lund, Sweden.,Department of Animal Physiology, The Kielanowski Institute of Animal Nutrition and Physiology Polish Academy of Sciences, Jablonna, Poland
| |
Collapse
|
41
|
Dilena R, Pozzato M, Baselli L, Chidini G, Barbieri S, Scalfaro C, Finazzi G, Lonati D, Locatelli CA, Cappellari A, Anniballi F. Infant Botulism: Checklist for Timely Clinical Diagnosis and New Possible Risk Factors Originated from a Case Report and Literature Review. Toxins (Basel) 2021; 13:toxins13120860. [PMID: 34941698 PMCID: PMC8703831 DOI: 10.3390/toxins13120860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022] Open
Abstract
Infant botulism is a rare and underdiagnosed disease caused by BoNT-producing clostridia that can temporarily colonize the intestinal lumen of infants less than one year of age. The diagnosis may be challenging because of its rareness, especially in patients showing atypical presentations or concomitant coinfections. In this paper, we report the first infant botulism case associated with Cytomegalovirus coinfection and transient hypogammaglobulinemia and discuss the meaning of these associations in terms of risk factors. Intending to help physicians perform the diagnosis, we also propose a practical clinical and diagnostic criteria checklist based on the revision of the literature.
Collapse
Affiliation(s)
- Robertino Dilena
- Unità di Neurofiopatologia, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.B.); (A.C.)
- Correspondence:
| | - Mattia Pozzato
- Neurology Unit & MS Centre, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Lucia Baselli
- Pediatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Giovanna Chidini
- Pediatric Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Sergio Barbieri
- Unità di Neurofiopatologia, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.B.); (A.C.)
| | - Concetta Scalfaro
- National Reference Centre for Botulism, Nutrition and Veterinary Public Health, Department of Food Safety, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.S.); (F.A.)
| | - Guido Finazzi
- Department of Food Control, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, 25124 Brescia, Italy;
| | - Davide Lonati
- Toxicology Unit, Laboratory of Clinical and Experimental Toxicology, and Poison Control Centre and National Toxicology Information Centre, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (D.L.); (C.A.L.)
| | - Carlo Alessandro Locatelli
- Toxicology Unit, Laboratory of Clinical and Experimental Toxicology, and Poison Control Centre and National Toxicology Information Centre, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (D.L.); (C.A.L.)
| | - Alberto Cappellari
- Unità di Neurofiopatologia, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.B.); (A.C.)
| | - Fabrizio Anniballi
- National Reference Centre for Botulism, Nutrition and Veterinary Public Health, Department of Food Safety, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.S.); (F.A.)
| |
Collapse
|
42
|
Szajewska H. Gut Microbiota: No Longer the Forgotten Organ. ANNALS OF NUTRITION & METABOLISM 2021; 77:1-2. [PMID: 34510036 DOI: 10.1159/000519223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Hania Szajewska
- The Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|