1
|
Spiegelenberg JP, De Laat-Kremers R, Roest M, de Laat B, van Gelder MMHJ, Tuladhar AM, Middeldorp S, de Leeuw FE, Leentjens J. Low thrombin inactivation capacity is associated with an increased risk of recurrent ischemic events after ischemic stroke at a young age. J Thromb Haemost 2024:S1538-7836(24)00720-7. [PMID: 39672235 DOI: 10.1016/j.jtha.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Patients with ischemic stroke at a young age (18-50 years) have an increased long-term risk of recurrent ischemic events. Hypercoagulability may contribute to this high risk. OBJECTIVES To investigate the associations between in vivo and ex vivo hemostatic parameters and recurrent ischemic events after an ischemic stroke or transient ischemic attack (TIA) at a young age. METHODS We included patients with ischemic stroke or TIA between 1980 and 2010 from the prospective FUTURE cohort. Blood samples were collected in 2010, and patients were followed for recurrent ischemic events from 2010 to 2023. Pro- and anticoagulant markers and thrombin generation assay were measured. Thrombin dynamic analysis was used to study underlying pro- and anticoagulant processes. Hazard ratios (HRs) per standard deviation increase were assessed with cause-specific hazard models. RESULTS Of the initial cohort of 581 patients, 332 were eligible. The median time between the index event and 2010 was 7.6 years. During a mean follow-up of 6.5 years, 70 of 332 (21.1%) patients experienced a recurrent ischemic event. Lower antithrombin levels (adjusted HR, 0.77; 95% CI, 0.60-0.98) and higher fibrinogen levels (HR, 1.35; 95% CI, 1.04-1.73) were associated with higher risk of recurrent ischemic events. Plasma thrombin generation was not associated with recurrence. However, the thrombin decay constant (HR, 0.67; 95% CI, 0.51-0.87) was associated with a lower risk of recurrent ischemic events. CONCLUSION After an ischemic stroke or TIA at a young age, the thrombin decay constant, which reflects reduced protection against thrombin (low antithrombin) and decreased potential to inhibit thrombin (high fibrinogen), is associated with recurrent ischemic events.
Collapse
Affiliation(s)
- Janneke P Spiegelenberg
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, the Netherlands; Department of Internal Medicine, Radboud university medical center, Nijmegen, the Netherlands.
| | - Romy De Laat-Kremers
- Department of Data Analysis and Artificial Intelligence, Synapse Research Institute, Maastricht, the Netherlands
| | - Mark Roest
- Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, the Netherlands
| | - Bas de Laat
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, the Netherlands; Department of Data Analysis and Artificial Intelligence, Synapse Research Institute, Maastricht, the Netherlands; Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, the Netherlands
| | | | - Anil M Tuladhar
- Department of Neurology, Research Institute of Medical Innovation, Radboud university medical center, Donders Institute for Brain, Cognition and Behavior, Nijmegen, the Netherlands
| | - Saskia Middeldorp
- Department of Internal Medicine, Radboud university medical center, Nijmegen, the Netherlands
| | - Frank-Erik de Leeuw
- IQ Health Science Department, Radboud university medical center, Nijmegen, the Netherlands
| | - Jenneke Leentjens
- Department of Internal Medicine, Radboud university medical center, Nijmegen, the Netherlands
| |
Collapse
|
2
|
Willems RAL, Konings J, Huskens D, Middelveld H, Pepels-Aarts N, Verbeet L, de Groot PG, Heemskerk JWM, Ten Cate H, de Vos-Geelen J, de Laat B, Roest M. Altered whole blood thrombin generation and hyperresponsive platelets in patients with pancreatic cancer. J Thromb Haemost 2024; 22:1132-1144. [PMID: 38237861 DOI: 10.1016/j.jtha.2023.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 02/10/2024]
Abstract
BACKGROUND Thromboembolic disease is a major complication in patients with pancreatic ductal adenocarcinoma (PDAC). Patients with PDAC often have altered blood cell counts, which are associated with venous thromboembolism (VTE) development. The high thrombotic risk in patients with PDAC may be partially caused by procoagulant blood cells. OBJECTIVES The aim of this study was to compare blood cell-dependent coagulation between patients with PDAC (n = 18) and healthy controls matched for age and sex (n = 18). METHODS Thrombin generation (TG) was measured in whole blood (WB) and plasma. The capacity of platelets to release granules (PGRCs) was measured in WB. We explored the occurrence of thromboembolic events in patients with PDAC during a 6-month follow-up. RESULTS Patients showed an increased endogenous thrombin potential in WB compared with controls. This difference was not observed in plasma, indicating a procoagulant effect of blood cells. Both in WB and plasma, the lag time was prolonged in patients compared with controls. Patients had hyperresponsive platelets, with a shorter time to peak granule release. Of the 18 patients with PDAC, 4 developed a venous thromboembolism (22%) and 1 developed an arterial thrombosis (6%). A shorter lag time in WB, but not in plasma, and an increased PGRC were associated with thromboembolic events. CONCLUSION Patients with PDAC have an increased and delayed WB TG coagulation profile compared with controls. A shorter lag time in WB TG and increased PGRC are associated with the incidence of thromboembolic events. Platelets appear to be key players in thrombosis development. Measuring hemostasis in WB could improve thrombosis risk estimation in patients with PDAC.
Collapse
Affiliation(s)
- Ruth Anne Laura Willems
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, The Netherlands; Thrombosis Expert Center Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Internal Medicine, Division of Vascular Medicine, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Internal Medicine, Division of Medical Oncology, Maastricht University Medical Center, Maastricht, The Netherlands; Cardiovascular Research Institute Maastricht (CARIM), School for Cardiovascular Diseases, Maastricht, The Netherlands.
| | - Joke Konings
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, The Netherlands; Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, The Netherlands
| | - Dana Huskens
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, The Netherlands; Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, The Netherlands
| | - Harmen Middelveld
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, The Netherlands; Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, The Netherlands
| | - Nicol Pepels-Aarts
- Department of Internal Medicine, Division of Medical Oncology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lisa Verbeet
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, The Netherlands; Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, The Netherlands
| | - Phillip Gerrit de Groot
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, The Netherlands; Cardiovascular Research Institute Maastricht (CARIM), School for Cardiovascular Diseases, Maastricht, The Netherlands
| | - Johan Willem Marie Heemskerk
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, The Netherlands; Cardiovascular Research Institute Maastricht (CARIM), School for Cardiovascular Diseases, Maastricht, The Netherlands; Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, The Netherlands
| | - Hugo Ten Cate
- Thrombosis Expert Center Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands; Department of Internal Medicine, Division of Vascular Medicine, Maastricht University Medical Center, Maastricht, The Netherlands; Cardiovascular Research Institute Maastricht (CARIM), School for Cardiovascular Diseases, Maastricht, The Netherlands; Center of Thrombosis and Haemostasis, Gutenberg University Medical Center, Mainz, Germany
| | - Judith de Vos-Geelen
- Department of Internal Medicine, Division of Medical Oncology, Maastricht University Medical Center, Maastricht, The Netherlands; GROW, Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Bas de Laat
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, The Netherlands; Cardiovascular Research Institute Maastricht (CARIM), School for Cardiovascular Diseases, Maastricht, The Netherlands; Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, The Netherlands
| | - Mark Roest
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, The Netherlands; Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, The Netherlands
| |
Collapse
|
3
|
Zuardi LR, Silva CLA, Rego EM, Carneiro GV, Spriano S, Nanci A, de Oliveira PT. Influence of a Physiologically Formed Blood Clot on Pre-Osteoblastic Cells Grown on a BMP-7-Coated Nanoporous Titanium Surface. Biomimetics (Basel) 2023; 8:biomimetics8010123. [PMID: 36975353 PMCID: PMC10046195 DOI: 10.3390/biomimetics8010123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Titanium (Ti) nanotopography modulates the osteogenic response to exogenous bone morphogenetic protein 7 (BMP-7) in vitro, supporting enhanced alkaline phosphatase mRNA expression and activity, as well as higher osteopontin (OPN) mRNA and protein levels. As the biological effects of OPN protein are modulated by its proteolytic cleavage by serum proteases, this in vitro study evaluated the effects on osteogenic cells in the presence of a physiological blood clot previously formed on a BMP-7-coated nanostructured Ti surface obtained by chemical etching (Nano-Ti). Pre-osteoblastic MC3T3-E1 cells were cultured during 5 days on recombinant mouse (rm) BMP-7-coated Nano-Ti after it was implanted in adult female C57BI/6 mouse dorsal dermal tissue for 18 h. Nano-Ti without blood clot or with blood clot at time 0 were used as the controls. The presence of blood clots tended to inhibit the expression of key osteoblast markers, except for Opn, and rmBMP-7 functionalization resulted in a tendency towards relatively greater osteoblastic differentiation, which was corroborated by runt-related transcription factor 2 (RUNX2) amounts. Undetectable levels of OPN and phosphorylated suppressor of mothers against decapentaplegic (SMAD) 1/5/9 were noted in these groups, and the cleaved form of OPN was only detected in the blood clot immediately prior to cell plating. In conclusion, the strategy to mimic in vitro the initial interfacial in vivo events by forming a blood clot on a Ti nanoporous surface resulted in the inhibition of pre-osteoblastic differentiation, which was minimally reverted with an rmBMP-7 coating.
Collapse
Affiliation(s)
- Leonardo Raphael Zuardi
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | - Cleide Lúcia Araújo Silva
- Haematology Division, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14051-060, SP, Brazil
| | - Eduardo Magalhães Rego
- Haematology Division, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14051-060, SP, Brazil
| | - Giovana Vacilotto Carneiro
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | - Silvia Spriano
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Torino, Italy
| | - Antonio Nanci
- Faculté de médecine dentaire, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Paulo Tambasco de Oliveira
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
- Correspondence: ; Tel.: +55-16-99623-3663
| |
Collapse
|
4
|
Carlo A, Yan Q, Ten Cate H, De Laat-Kremers R, De Laat B, Ninivaggi M. Semi-automated thrombin dynamics applying the ST Genesia thrombin generation assay. Front Cardiovasc Med 2022; 9:912433. [PMID: 35958413 PMCID: PMC9360406 DOI: 10.3389/fcvm.2022.912433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/30/2022] [Indexed: 01/15/2023] Open
Abstract
Background The haemostatic balance is an equilibrium of pro- and anticoagulant factors that work synergistically to prevent bleeding and thrombosis. As thrombin is the central enzyme in the coagulation pathway, it is desirable to measure thrombin generation (TG) in order to detect possible bleeding or thrombotic phenotypes, as well as to investigate the capacity of drugs affecting the formation of thrombin. By investigating the underlying processes of TG (i.e., prothrombin conversion and inactivation), additional information is collected about the dynamics of thrombin formation. Objectives To obtain reference values for thrombin dynamics (TD) analysis in 112 healthy donors using an automated system for TG. Methods TG was measured on the ST Genesia, fibrinogen on the Start, anti-thrombin (AT) on the STA R Max and α2Macroglobulin (α2M) with an in-house chromogenic assay. Results TG was measured using STG-BleedScreen, STG-ThromboScreen and STG-DrugScreen. The TG data was used as an input for TD analysis, in combination with plasma levels of AT, α2M and fibrinogen that were 113% (108-118%), 2.6 μM (2.2 μM-3.1 μM) and 2.9 g/L (2.6-3.2 g/L), respectively. The maximum rate of the prothrombinase complex (PCmax) and the total amount of prothrombin converted (PCtot) increased with increasing tissue factor (TF) concentration. PCtot increased from 902 to 988 nM, whereas PCmax increased from 172 to 508 nM/min. Thrombin (T)-AT and T-α2M complexes also increased with increasing TF concentration (i.e., from 860 to 955 nM and from 28 to 33 nm, respectively). PCtot, T-AT and T-α2M complex formation were strongly inhibited by addition of thrombomodulin (-44%, -43%, and -48%, respectively), whereas PCmax was affected less (-24%). PCtot, PCmax, T-AT, and T-α2M were higher in women using oral contraceptives (OC) compared to men/women without OC, and inhibition by thrombomodulin was also significantly less in women on OC (p < 0.05). Conclusions TG measured on the ST Genesia can be used as an input for TD analysis. The data obtained can be used as reference values for future clinical studies as the balance between prothrombin conversion and thrombin inactivation has shown to be useful in several clinical settings.
Collapse
Affiliation(s)
- Audrey Carlo
- Diagnostica Stago S.A.S., Asnières-sur-Seine, France
| | - Qiuting Yan
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, Netherlands.,Department of Biochemistry, Maastricht University, Maastricht, Netherlands
| | - Hugo Ten Cate
- Department of Biochemistry, Maastricht University, Maastricht, Netherlands
| | - Romy De Laat-Kremers
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, Netherlands.,Department of Data Analysis and Artificial Intelligence, Synapse Research Institute, Maastricht, Netherlands
| | - Bas De Laat
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, Netherlands.,Department of Data Analysis and Artificial Intelligence, Synapse Research Institute, Maastricht, Netherlands
| | - Marisa Ninivaggi
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, Netherlands
| |
Collapse
|
5
|
de Laat B, Stragier H, de Laat-Kremers R, Ninivaggi M, Mesotten D, Thiessen S, Van Pelt K, Roest M, Penders J, Vanelderen P, Huskens D, De Jongh R, Laenen MV, Fivez T, ten Cate H, Heylen R, Heylen L, Steensels D. Population-wide persistent hemostatic changes after vaccination with ChAdOx1-S. Front Cardiovasc Med 2022; 9:966028. [PMID: 35966540 PMCID: PMC9372359 DOI: 10.3389/fcvm.2022.966028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Various vaccines were developed to reduce the spread of the Severe Acute Respiratory Syndrome Cov-2 (SARS-CoV-2) virus. Quickly after the start of vaccination, reports emerged that anti-SARS-CoV-2 vaccines, including ChAdOx1-S, could be associated with an increased risk of thrombosis. We investigated the hemostatic changes after ChAdOx1-S vaccination in 631 health care workers. Blood samples were collected 32 days on average after the second ChAdOx1-S vaccination, to evaluate hemostatic markers such as D-dimer, fibrinogen, α2-macroglobulin, FVIII and thrombin generation. Endothelial function was assessed by measuring Von Willebrand Factor (VWF) and active VWF. IL-6 and IL-10 were measured to study the activation of the immune system. Additionally, SARS-CoV-2 anti-nucleoside and anti-spike protein antibody titers were determined. Prothrombin and fibrinogen levels were significantly reduced after vaccination (-7.5% and -16.9%, p < 0.0001). Significantly more vaccinated subjects were outside the normal range compared to controls for prothrombin (42.1% vs. 26.4%, p = 0.026) and antithrombin (23.9% vs. 3.6%, p = 0.0010). Thrombin generation indicated a more procoagulant profile, characterized by a significantly shortened lag time (-11.3%, p < 0.0001) and time-to-peak (-13.0% and p < 0.0001) and an increased peak height (32.6%, p = 0.0015) in vaccinated subjects compared to unvaccinated controls. Increased VWF (+39.5%, p < 0.0001) and active VWF levels (+24.1 %, p < 0.0001) pointed toward endothelial activation, and IL-10 levels were significantly increased (9.29 pg/mL vs. 2.43 pg/mL, p = 0.032). The persistent increase of IL-10 indicates that the immune system remains active after ChAdOx1-S vaccination. This could trigger a pathophysiological mechanism causing an increased thrombin generation profile and vascular endothelial activation, which could subsequently result in and increased risk of thrombotic events.
Collapse
Affiliation(s)
- Bas de Laat
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, Netherlands
- Department of Data Analysis and Artificial Intelligence, Synapse Research Institute, Maastricht, Netherlands
| | - Hendrik Stragier
- Department of Anesthesiology, Intensive Care Medicine, Emergency Medicine and Pain Therapy, Hospital Oost-Limburg, Genk, Belgium
- CARIM School for Cardiovascular Diseases, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Romy de Laat-Kremers
- Department of Data Analysis and Artificial Intelligence, Synapse Research Institute, Maastricht, Netherlands
| | - Marisa Ninivaggi
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, Netherlands
| | - Dieter Mesotten
- Department of Anesthesiology, Intensive Care Medicine, Emergency Medicine and Pain Therapy, Hospital Oost-Limburg, Genk, Belgium
- UHasselt, Faculty of Medicine and Life Sciences, Diepenbeek, Belgium
| | - Steven Thiessen
- Department of Anesthesiology, Intensive Care Medicine, Emergency Medicine and Pain Therapy, Hospital Oost-Limburg, Genk, Belgium
| | - Kristien Van Pelt
- Department of Laboratory Medicine, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Mark Roest
- Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, Netherlands
| | - Joris Penders
- UHasselt, Faculty of Medicine and Life Sciences, Diepenbeek, Belgium
- Department of Laboratory Medicine, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Pascal Vanelderen
- Department of Anesthesiology, Intensive Care Medicine, Emergency Medicine and Pain Therapy, Hospital Oost-Limburg, Genk, Belgium
- UHasselt, Faculty of Medicine and Life Sciences, Diepenbeek, Belgium
| | - Dana Huskens
- Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, Netherlands
| | - Raf De Jongh
- Department of Anesthesiology, Intensive Care Medicine, Emergency Medicine and Pain Therapy, Hospital Oost-Limburg, Genk, Belgium
| | - Margot Vander Laenen
- Department of Anesthesiology, Intensive Care Medicine, Emergency Medicine and Pain Therapy, Hospital Oost-Limburg, Genk, Belgium
| | - Tom Fivez
- Department of Anesthesiology, Intensive Care Medicine, Emergency Medicine and Pain Therapy, Hospital Oost-Limburg, Genk, Belgium
| | - Hugo ten Cate
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, Netherlands
- Thrombosis Expertise Center, Department of Internal Medicine, Maastricht University Medical Center, Maastricht, Netherlands
| | - Rene Heylen
- Department of Anesthesiology, Intensive Care Medicine, Emergency Medicine and Pain Therapy, Hospital Oost-Limburg, Genk, Belgium
- Department of Cardiovascular Sciences, Section Anesthesiology and Algology KULeuven, Leuven, Belgium
| | - Line Heylen
- UHasselt, Faculty of Medicine and Life Sciences, Diepenbeek, Belgium
- Department of Nephrology, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Deborah Steensels
- Department of Laboratory Medicine, Ziekenhuis Oost-Limburg, Genk, Belgium
- Université Libre de Bruxelles, Faculty of Medicine, Brussels, Belgium
| |
Collapse
|
6
|
de Laat-Kremers R, Di Castelnuovo A, van der Vorm L, Costanzo S, Ninivaggi M, Cerletti C, Huskens D, De Curtis A, Gialluisi A, Bai C, de Gaetano G, Yin D, Donati MB, de Laat B, Iacoviello L. Increased BMI and Blood Lipids Are Associated With a Hypercoagulable State in the Moli-sani Cohort. Front Cardiovasc Med 2022; 9:897733. [PMID: 35783839 PMCID: PMC9243635 DOI: 10.3389/fcvm.2022.897733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The coagulation system can be assessed by the thrombin generation (TG) assay, and increased TG peak height, endogenous thrombin potential (ETP), and velocity index are associated with an increased risk of thrombosis. Obesity had been reported to increase TG and is associated with dyslipidemia, which also predisposes to atherosclerotic cardiovascular disease (CVD). However, the effect of the blood lipid profile on TG has not been studied extensively. To gain more insight into the associations of TG, body mass index (BMI) and lipid profile, we studied TG in relation to these parameters in a large Italian population cohort, the Moli-sani study (N = 22,546; age ≥ 35 years; 48% men). TG was measured in plasma samples collected at the enrollment of subjects in the Moli-sani study. TG was triggered with 1 or 5 pM tissue factor, and TG parameters lag time, peak, ETP, time-to-peak (TTP) and velocity index (VI). Additionally, thrombomodulin was added to assess the function of the activated protein C system during TG. In both women and men, overweight (BMI 25–30 kg/m2) and obesity (BMI > 30 kg/m2) were significantly associated with higher ETP, peak and VI (all p < 0.001). High total cholesterol, triglycerides and LDL-cholesterol levels were significantly associated with increased ETP and peak (all p < 0.001). Linear regression analysis revealed that the ETP is positively associated with both plasma LDL and HDL cholesterol levels, whereas the velocity index is positively associated with HDL cholesterol. Additionally, ETP, peak and VI were significantly associated with the plasma triglycerides content. In conclusion, our study shows significant associations of high BMI and blood lipid levels with increased TG parameters, and this hypercoagulability may partly explain the increased risk of CVD in individuals with obesity and/or dyslipidemia.
Collapse
Affiliation(s)
- Romy de Laat-Kremers
- Department of Data Analysis and Artificial Intelligence, Synapse Research Institute, Maastricht, Netherlands
- *Correspondence: Romy de Laat-Kremers
| | | | - Lisa van der Vorm
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, Netherlands
| | - Simona Costanzo
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy
| | - Marisa Ninivaggi
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, Netherlands
| | - Chiara Cerletti
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy
| | - Dana Huskens
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, Netherlands
- Department of Platelet Pathophysiology, Synapse Research Institute, Maastricht, Netherlands
| | - Amalia De Curtis
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy
| | - Alessandro Gialluisi
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy
- Research Center in Epidemiology and Preventive Medicine (EPIMED), Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Cuicui Bai
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, Netherlands
- Department of Protein Engineering, Synapse Research Institute, Maastricht, Netherlands
| | | | - Dongmei Yin
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, Netherlands
| | | | - Bas de Laat
- Department of Data Analysis and Artificial Intelligence, Synapse Research Institute, Maastricht, Netherlands
- Department of Functional Coagulation, Synapse Research Institute, Maastricht, Netherlands
- Department of Protein Engineering, Synapse Research Institute, Maastricht, Netherlands
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS Neuromed, Pozzilli, Italy
- Research Center in Epidemiology and Preventive Medicine (EPIMED), Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | | |
Collapse
|
7
|
Lagrange J, Lecompte T, Knopp T, Lacolley P, Regnault V. Alpha-2-macroglobulin in hemostasis and thrombosis: An underestimated old double-edged sword. J Thromb Haemost 2022; 20:806-815. [PMID: 35037393 DOI: 10.1111/jth.15647] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/27/2022]
Abstract
Antiproteinases such as alpha-2-macroglobulin (A2M) play a role in hemostasis. A2M is highly conserved throughout evolution and is a high molecular weight homo-tetrameric glycoprotein. A2M proteinase inhibitor activity is possible via a unique cage structure leading to proteinase entrapment without direct enzymatic activity inhibition. Following this entrapment, proteinase clearance is possible through A2M binding to the low-density lipoprotein receptor-related protein 1. A2M synthesis is regulated by pro-inflammatory cytokines and increases during several chronic or acute inflammatory diseases and varies with age. For instance, A2M plasma levels are known to be increased in patients with diabetes mellitus, nephrotic syndrome, or sepsis. Concerning hemostasis, A2M can trap many proteinases involved in coagulation and fibrinolysis. Because of its pleiotropic effects A2M can be seen as both anti- and pro-hemostatic. A2M can inhibit thrombin, factor Xa, activated protein C, plasmin, tissue-plasminogen activator, and urokinase. Through its many different functions A2M is generally put apart in the balanced regulation of hemostasis. In addition, the fact that A2M plasma levels are differently regulated during inflammatory-related diseases and that A2M can neutralize cytokines that also modify hemostasis could explain why it is difficult to link common proteins and parameters of hemostasis with the mechanisms of thrombosis in such diseases. Thus, we propose in the present review to summarize known functions of A2M, give a brief overview about diseases, and then to focus on the roles of this antiproteinase in hemostasis and thrombosis.
Collapse
Affiliation(s)
- Jeremy Lagrange
- Faculté de Médecine, INSERM U1116, Vandœuvre-lès-Nancy, France
- Université de Lorraine, Nancy, France
- CHRU Nancy, Médecine Vasculaire, Vandœuvre-lès-Nancy, France
| | - Thomas Lecompte
- Université de Lorraine, Nancy, France
- CHRU Nancy, Médecine Vasculaire, Vandœuvre-lès-Nancy, France
- Unité d'hémostase, Département de Médecine, Hôpitaux Universitaires de Genève, Faculté de Médecine - GpG, Université de Genève, Geneva, Switzerland
| | - Tanja Knopp
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
- Institute for Molecular Medicine, University Medical Center Mainz, Mainz, Germany
| | - Patrick Lacolley
- Faculté de Médecine, INSERM U1116, Vandœuvre-lès-Nancy, France
- Université de Lorraine, Nancy, France
- CHRU Nancy, Médecine Vasculaire, Vandœuvre-lès-Nancy, France
| | - Véronique Regnault
- Faculté de Médecine, INSERM U1116, Vandœuvre-lès-Nancy, France
- Université de Lorraine, Nancy, France
- CHRU Nancy, Médecine Vasculaire, Vandœuvre-lès-Nancy, France
| |
Collapse
|
8
|
High fibrinogen γ' levels in patient plasma increase clot formation at arterial and venous shear. Blood Adv 2021; 5:3468-3477. [PMID: 34438442 DOI: 10.1182/bloodadvances.2020003346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/26/2021] [Indexed: 12/27/2022] Open
Abstract
Fibrinogen γ' accounts for 3% to 40% of plasma fibrinogen. Earlier studies indicated that fibrinogen γ' forms altered fibrin clots under static conditions, whereas clinically, altered plasma γ' levels are associated with arterial and venous thrombosis. However, the effects of static vs flow conditions on the role of γ' throughout the pathophysiological range is unknown. This study explores the effects of γ' levels on clot formation and structure in static and flow conditions. Coagulation of plasma samples with low (n = 41; 3%), normal (n = 45; 10%), or high (n = 33; 30%) γ' levels were compared with that of purified fibrinogen mixtures with increasing ratios of γ' (3%, 10%, 30%). Clots were analyzed by confocal microscopy, permeation, turbidity, and lysis techniques. In a novel 2-step flow-perfusion model, fibrinogen-deficient plasma repleted with increasing ratios of γ' (3%, 10%, 30%) or plasmas with low (n = 5, 3%) or high (n = 5, 30%) γ' were flowed over preformed platelet aggregates at arterial (500 s-1) and venous (150 s-1) shear rates. Increasing γ' percentages within the pathophysiological range (3%-30%) did not result in any change in clot-formation rates; however, it led to significantly higher clot density, thinner fibers, and slower lysis in static conditions. Under flow at arterial shear, high γ' (30%) led to faster (+44.1%-75.3%) and increased (+104%-123%) fibrin deposition, with clots exhibiting a larger volume (+253%-655%) and height (+130%-146%). These trends were magnified at venous shear. Overall, our findings demonstrate the significant impact of pathophysiological fibrinogen γ' levels on clot structure and provide new flow-dependent mechanisms to explain how γ' increases thrombosis risk.
Collapse
|
9
|
Vascular activation is a strong predictor of mortality in coronavirus disease 2019 patients on the ICU. Blood Coagul Fibrinolysis 2021; 32:290-293. [PMID: 33443932 DOI: 10.1097/mbc.0000000000001007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Respiratory failure in coronavirus disease 2019 (COVID-19) patients is one of the most frequent causes for referral to the ICU. A significant percentage of these patients does not survive the infection due to thromboembolic complications. Furthermore, the vascular system seems also to be involved in the pathogenesis. To investigate the role of hemostasis and endothelium on the outcome of COVID-19 patients admitted to the ICU. Blood was drawn from 16 ICU COVID-19 patients for hemostatic analysis. Patients were followed-up till discharge (n = 11) or death (n = 5). Parameters related to both coagulation and fibrinolysis, though disturbed, were not associated with mortality. Contrarily, activated Von Willebrand factor was increased and ADAMTS13 levels were decreased by two-fold in nonsurvivors compared with survivors. Our data established the involvement of the Von Willebrand factor-ADAMTS13 axis in the COVID-19 pathogenesis, thereby demonstrating that these plasma proteins seem to be strong predictors for ICU mortality.
Collapse
|
10
|
Hulshof AM, Hemker HC, Spronk HMH, Henskens YMC, ten Cate H. Thrombin-Fibrin(ogen) Interactions, Host Defense and Risk of Thrombosis. Int J Mol Sci 2021; 22:2590. [PMID: 33806700 PMCID: PMC7961882 DOI: 10.3390/ijms22052590] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
Fibrinogen is a well-known risk factor for arterial and venous thrombosis. Its function is not restricted to clot formation, however, as it partakes in a complex interplay between thrombin, soluble plasma fibrinogen, and deposited fibrin matrices. Fibrinogen, like thrombin, participates predominantly in hemostasis to maintain vascular integrity, but executes some important pleiotropic effects: firstly, as observed in thrombin generation experiments, fibrin removes thrombin from free solution by adsorption. The adsorbed thrombin is protected from antithrombins, notably α2-macroglobulin, and remains physiologically active as it can activate factors V, VIII, and platelets. Secondly, immobilized fibrinogen or fibrin matrices activate monocytes/macrophages and neutrophils via Mac-1 interactions. Immobilized fibrin(ogen) thereby elicits a pro-inflammatory response with a reciprocal stimulating effect of the immune system on coagulation. In contrast, soluble fibrinogen prohibits recruitment of these immune cells. Thus, while fibrin matrices elicit a procoagulant response, both directly by protecting thrombin and indirectly through the immune system, high soluble fibrinogen levels might protect patients due to its immune diminutive function. The in vivo influence of the 'protective' plasma fibrinogen versus the 'pro-thrombotic' fibrin matrices on thrombosis should be explored in future research.
Collapse
Affiliation(s)
- Anne-Marije Hulshof
- Central Diagnostic Laboratory, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands;
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - H. Coenraad Hemker
- Synapse Research Institute, Cardiovascular Research Institute Maastricht, Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Henri M. H. Spronk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
| | - Yvonne M. C. Henskens
- Central Diagnostic Laboratory, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands;
| | - Hugo ten Cate
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6200 MD Maastricht, The Netherlands;
- Thrombosis Expert Centre Maastricht and Department of Internal Medicine, Section Vascular Medicine, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
11
|
Ninivaggi M, de Laat‐Kremers RMW, Carlo A, de Laat B. ST Genesia reference values of 117 healthy donors measured with STG-BleedScreen, STG-DrugScreen and STG-ThromboScreen reagents. Res Pract Thromb Haemost 2021; 5:187-196. [PMID: 33537543 PMCID: PMC7845068 DOI: 10.1002/rth2.12455] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION The ST Genesia is a benchtop, fully automated thrombin generation (TG) device. It is completely standardized and ensures a uniform heat distribution throughout the measurement. We aimed to determine reference values and to compare TG in men and women with and without the use of oral contraceptives (OCs). MATERIALS AND METHODS Plasma from 117 healthy donors was measured on the ST Genesia with the available reagent kits: STG-BleedScreen, STG-DrugScreen, and STG-ThromboScreen. All kits include at least two quality controls and a reference plasma to normalize data. STG-ThromboScreen has a second trigger containing thrombomodulin (TM) to include the effect on the protein C pathway. Means were compared with one-way analysis of variance and reference ranges were established with 2.5th to 97.5th percentiles on absolute TG parameters. RESULTS Mean age of the donors was 35 years (SD ± 12); 49.6% were men, 37.6% women without OCs, and 12.8% women with OCs. Men and women without OCs had, respectively, a mean peak height of 167 nM and 164 nM with STG-BleedScreen, 335 nM and 351 nM with STG-DrugScreen, and 192 nM and 198 nM with STG-ThromboScreen. Women taking OCs had a mean peak height of 263 nM, 473 nM, and 312nM, respectively (P < .05 compared to men/women without OCs). TM decreased endogenous thrombin potential by 54% in men, 47% in women without OCs, and only 25% in women with OCs (P < .05 compared to men/women without OCs). CONCLUSIONS TG in men and women without OCs was similar; however, women taking OCs had significantly higher TG values, and the effect of TM was also less pronounced in these women.
Collapse
Affiliation(s)
| | | | | | - Bas de Laat
- Synapse Research InstituteMaastrichtThe Netherlands
| |
Collapse
|
12
|
Farrell DH, Rick EA, Dewey EN, Schreiber MA, Rowell SE. γ' fibrinogen levels are associated with blood clot strength in traumatic brain injury patients. Am J Surg 2020; 220:459-463. [PMID: 31948701 PMCID: PMC7641475 DOI: 10.1016/j.amjsurg.2019.12.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/20/2019] [Accepted: 12/23/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND γ' fibrinogen is an alternatively-spliced fibrinogen variant that displays different coagulation parameters in vitro than the major form of fibrinogen. Purified γ' fibrinogen has slower clotting kinetics than unfractionated fibrinogen, but forms clots that are stronger and resistant to fibrinolysis. However, these properties have only been investigated in human populations in a limited number of studies. We therefore performed a retrospective analysis to test the hypothesis that γ' fibrinogen levels influence coagulation in vivo. METHODS In the present study, we utilized blood samples that were collected from traumatic brain injury patients to probe the relationship between γ' fibrinogen levels and traditional coagulation parameters. RESULTS The results show that the levels of γ' fibrinogen were inversely associated with clotting kinetics, indicated by a shortened INR. In addition, the levels of γ' fibrinogen were associated with stronger clots by thrombelastography. However, these changes were not associated with significant changes in hemorrhage progression. CONCLUSIONS These findings verify that γ' fibrinogen properties observed in purified systems result in similar properties in a clinical setting, and may affect coagulation.
Collapse
Affiliation(s)
- David H Farrell
- Division of Trauma, Critical Care and Acute Care Surgery, Department of Surgery, Oregon Health & Science University, Portland, OR, USA.
| | - Elizabeth A Rick
- Division of Trauma, Critical Care and Acute Care Surgery, Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Elizabeth N Dewey
- Division of Trauma, Critical Care and Acute Care Surgery, Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Martin A Schreiber
- Division of Trauma, Critical Care and Acute Care Surgery, Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Susan E Rowell
- Division of Trauma, Critical Care and Acute Care Surgery, Department of Surgery, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
13
|
Yan Q, Ninivaggi M, de Laat B, de Laat-Kremers RMW. Reference values for thrombin dynamics in platelet rich plasma. Platelets 2020; 32:251-258. [PMID: 32272866 DOI: 10.1080/09537104.2020.1742310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Thrombin generation (TG) is a better determinant of the overall function of the hemostatic system than routinely used clotting time-based assays and can be studied more in detail by thrombin dynamics analysis. Platelet poor plasma is often used to measure TG, however, measuring the contribution of the platelets is also important as patients with a low platelet count or with dysfunctional platelets have an increased risk of developing bleeding. In this study, platelet rich plasma (PRP) was collected from 117 healthy individuals. PRP was measured undiluted and diluted to a varying platelet concentration of 10*109/L to 400*109/L. Prothrombin conversion and thrombin inactivation were calculated from the data obtained by the TG parameters and coagulation factor levels (antithrombin, α2Macroglobulin (α2M) and fibrinogen). Reference ranges of TG and thrombin dynamics in PRP of 117 healthy individuals were established. Peak, velocity index and the maximum rate of prothrombin conversion increased linearly with platelet count, but endogenous thrombin potential reached a maximum at 150*109/L as seen in a subset population (n = 20). More extensive analysis revealed that a platelet count below 50*109/L did not affect TG parameters (except for the ETP). Correlation analysis indicated that the platelet count mainly affected the rate of prothrombin conversion. Inhibition of thrombin by antithrombin and α2M increased with increasing TG, but the ratio of inhibition by antithrombin or α2M remained the same independently of the total thrombin formed. In conclusion, TG and thrombin dynamics were assessed in PRP of healthy donors to provide reference values for future TG studies in PRP. Increasing the platelet count mainly affected the rate of prothrombin conversion and TG, rather than the total amount of thrombin formed.
Collapse
Affiliation(s)
- Qiuting Yan
- Department of Funtional Coagulation, Synapse Research Institute, Maastricht, The Netherlands.,Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
| | - Marisa Ninivaggi
- Department of Funtional Coagulation, Synapse Research Institute, Maastricht, The Netherlands.,Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
| | - Bas de Laat
- Department of Funtional Coagulation, Synapse Research Institute, Maastricht, The Netherlands.,Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands
| | - Romy M W de Laat-Kremers
- Department of Biochemistry, CARIM, Maastricht University, Maastricht, The Netherlands.,Department of Data Analysis and Artificial Intelligence, Synapse Research Institute, Maastricht, The Netherlands
| |
Collapse
|
14
|
Fibrinography: A Multiwavelength Light-Scattering Assay of Fibrin Structure. Hemasphere 2019; 3:e166. [PMID: 31723805 PMCID: PMC6745935 DOI: 10.1097/hs9.0000000000000166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
We have previously developed a fibrin structural assay dedicated to purified fibrinogen-thrombin system. Here, we extend the pertinence of this test, called Fibrinography, to tissue factor-triggered plasma coagulation. We show that Fibrinography determines quantitatively the structure of fibrin fibers in plasma with an excellent reproducibility. We compare this assay with the commonly used single wavelength turbidity method, showing that the latter is not a proper structural assay, but determines essentially the fibrinogen content in plasma. In addition, we also show, in model plasmas, that Fibrinography is able to discriminate normal and hypocoagulant plasmas, and even between hypercoagulant plasmas. Therefore, Fibrinography, by measuring the final step of the coagulation cascade, may be used to evaluate patients’ plasma in hypo- or hypercoagulant diseases.
Collapse
|
15
|
Use of DOAC Stop for elimination of anticoagulants in the thrombin generation assay. Thromb Res 2018; 170:97-101. [DOI: 10.1016/j.thromres.2018.08.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 11/18/2022]
|
16
|
Bosch YPJ, Bloemen S, de Laat B, Weerwind PW, Mochtar B, Maessen JG, Wagenvoord RJ, Al Dieri R, Coenraad Hemker H, Kremers RMW. A reduction of prothrombin conversion by cardiac surgery with cardiopulmonary bypass shifts the haemostatic balance towards bleeding. Thromb Haemost 2017; 116:442-51. [DOI: 10.1160/th16-02-0094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 03/31/2016] [Indexed: 11/05/2022]
Abstract
SummaryCardiac surgery with cardiopulmonary bypass (CPB) is associated with blood loss and post-surgery thrombotic complications. The process of thrombin generation is disturbed during surgery with CPB because of haemodilution, coagulation factor consumption and heparin administration. We aimed to investigate the changes in thrombin generation during cardiac surgery and its underlying pro- and anticoagulant processes, and to explore the clinical consequences of these changes using in silico experimentation. Plasma was obtained from 29 patients undergoing surgery with CPB before heparinisation, after heparinisation, after haemodilution, and after protamine administration. Thrombin generation was measured and prothrombin conversion and thrombin inactivation were quantified. In silico experimentation was used to investigate the reaction of patients to the administration of procoagulant factors and/or anticoagulant factors. Surgery with CPB causes significant coagulation factor consumption and a reduction of thrombin generation. The total amount of prothrombin converted and the rate of prothrombin conversion decreased during surgery. As the surgery progressed, the relative contribution of α2-macroglobulin-dependent thrombin inhibition increased, at the expense of antithrombin-dependent inhibition. In silico restoration of post-surgical prothrombin conversion to pre-surgical levels increased thrombin generation excessively, whereas co-administration of antithrombin resulted in the normalisation of post-surgical thrombin generation. Thrombin generation is reduced during surgery with cardiopulmonary bypass because of a balance shift between prothrombin conversion and thrombin inactivation. According to in silico predictions of thrombin generation, this new balance increases the risk of thrombotic complications with prothrombin complex concentrate administration, but not if antithrombin is co-administered.
Collapse
|
17
|
Didelot M, Docq C, Wahl D, Lacolley P, Regnault V, Lagrange J. Platelet aggregation impacts thrombin generation assessed by calibrated automated thrombography. Platelets 2017; 29:156-161. [PMID: 29022492 DOI: 10.1080/09537104.2017.1356452] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A calibrated automated thrombogram (CAT) is performed usually with human platelet-free plasma (PFP) but may be more relevant with platelet-rich plasma (PRP). In this case, platelets are not stimulated by subendothelial molecules like collagen. Our aim was to assess the consequence of strong (collagen) or weak (ADP) induction of platelet release and aggregation on thrombin generation. Platelet aggregation in PRP was triggered with 10 µg/mL collagen or 10 µM ADP using a lumi-aggregometer. Thrombin generation curves were monitored by CAT in different conditions: PRP, PRP with activated platelets (actPRP), aggregated PRP (agPRP), aggregated platelets resuspended in autologous PFP (resPRP), PFP and PFP obtained after aggregation (agPFP). We found a 3-fold shortening of the lag time and time to peak and a marked increase in velocity and thrombin peak without changes in endogenous thrombin potential (ETP) in agPRP with both agonists compared with PRP. The same holds true in agPFP but with a marked increase in ETP compared with PFP. Similar changes in the kinetics of thrombin generation were observed with actPRP-collagen and to a lesser extent in resPRP-collagen compared with PRP. By contrast, there were no modifications of the thrombin generation curves in actPRP-ADP. Alpha-2-macroglobin-thrombin complexes were unchanged in the different PRP conditions but were increased in PFP prepared from agPFP compared to control PFP. Platelet aggregation during activation by agonists other than thrombin did not increase thrombin generation but accelerated its kinetics mainly via platelet content release and platelet-derived extracellular vesicules formation. In diseases characterized by altered platelet granule content or release as well as altered platelet activation, a platelet aggregation step prior to CAT analysis may be clinically relevant to improve laboratory estimation of the bleeding/thrombotic balance.
Collapse
Affiliation(s)
- Mélusine Didelot
- a INSERM, U1116 , Faculté de Médecine , Vandoeuvre-les-Nancy , France.,b Université de Lorraine , Nancy , France
| | - Clémence Docq
- a INSERM, U1116 , Faculté de Médecine , Vandoeuvre-les-Nancy , France.,b Université de Lorraine , Nancy , France
| | - Denis Wahl
- a INSERM, U1116 , Faculté de Médecine , Vandoeuvre-les-Nancy , France.,b Université de Lorraine , Nancy , France.,c CHRU Nancy , Vandœuvre-lès-Nancy , France
| | - Patrick Lacolley
- a INSERM, U1116 , Faculté de Médecine , Vandoeuvre-les-Nancy , France.,b Université de Lorraine , Nancy , France.,c CHRU Nancy , Vandœuvre-lès-Nancy , France
| | - Véronique Regnault
- a INSERM, U1116 , Faculté de Médecine , Vandoeuvre-les-Nancy , France.,b Université de Lorraine , Nancy , France.,c CHRU Nancy , Vandœuvre-lès-Nancy , France
| | - Jérémy Lagrange
- a INSERM, U1116 , Faculté de Médecine , Vandoeuvre-les-Nancy , France.,b Université de Lorraine , Nancy , France.,d Center for Thrombosis and Hemostasis , University Medical Center Mainz , Mainz , Germany
| |
Collapse
|
18
|
Bloemen S, Huskens D, Konings J, Kremers RM, Miszta A, de Laat B, Kelchtermans H. Interindividual Variability and Normal Ranges of Whole Blood and Plasma Thrombin Generation. ACTA ACUST UNITED AC 2017; 2:150-164. [DOI: 10.1373/jalm.2017.023630] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/02/2017] [Indexed: 11/06/2022]
|
19
|
Decreased prothrombin conversion and reduced thrombin inactivation explain rebalanced thrombin generation in liver cirrhosis. PLoS One 2017; 12:e0177020. [PMID: 28472132 PMCID: PMC5417641 DOI: 10.1371/journal.pone.0177020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/20/2017] [Indexed: 02/06/2023] Open
Abstract
Impaired coagulation factor synthesis in cirrhosis causes a reduction of most pro- and anticoagulant factors. Cirrhosis patients show no clear bleeding or thrombotic phenotype, although they are at risk for both types of hemostatic event. Thrombin generation (TG) is a global coagulation test and its outcome depends on underlying pro- and anticoagulant processes (prothrombin conversion and thrombin inactivation). We quantified the prothrombin conversion and thrombin inactivation during TG in 30 healthy subjects and 52 Child-Pugh (CP-) A, 15 CP-B and 6 CP-C cirrhosis patients to test the hypothesis that coagulation is rebalanced in liver cirrhosis patients. Both prothrombin conversion and thrombin inactivation are reduced in cirrhosis patients. The effect on pro- and anticoagulant processes partially cancel each other out and as a result TG is comparable at 5 pM tissue factor between healthy subjects and patients. This supports the hypothesis of rebalanced hemostasis, as TG in cirrhosis patients remains within the normal range, despite large changes in prothrombin conversion and thrombin inactivation. Nevertheless, in silico analysis shows that normalization of either prothrombin conversion or thrombin inactivation to physiological levels, by for example the administration of prothrombin complex concentrates would cause an elevation of TG, whereas the normalization of both simultaneously maintains a balanced TG. Therefore, cirrhosis patients might require adapted hemostatic treatment.
Collapse
|
20
|
Pitkänen HH, Jouppila A, Lemponen M, Ilmakunnas M, Ahonen J, Lassila R. Factor XIII deficiency enhances thrombin generation due to impaired fibrin polymerization - An effect corrected by Factor XIII replacement. Thromb Res 2016; 149:56-61. [PMID: 27902939 DOI: 10.1016/j.thromres.2016.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/31/2016] [Accepted: 11/12/2016] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Factor XIII (FXIII) cross-links fibrin, completing blood coagulation. Congenital FXIII deficiency is managed with plasma-derived FXIII (pdFXIII) or recombinant FXIII (rFXIII) concentrates. AIM As the mechanisms protecting patients with low FXIII levels (<5IU/dL) from spontaneous bleeds remain unknown we assessed the interplay between thrombin generation (TG), fibrin formation and clot kinetics before and after FXIII administration in three patients with FXIII deficiency. METHODS Patients received initially rFXIII (35IU/kg, A-subunit) following with pdFXIII at 1250IU or 2500IU (12-30IU/kg) monthly. TG (CAT), thromboelastometry (ROTEM), prothrombin fragments F1+2, fibrinogen and FXIII activity (FXIII:C) were measured at baseline and one-hour recovery. RESULTS FXIII was at the target level of 20±6IU/dL at the 4-week trough. rFXIII corrected FXIII to 98±15 and high-dose pdFXIII to a level of 90±6, whereas low-dose/half dose pdFXIII reached 45±4IU/dL. Although fibrinogen (Clauss Method) was normal, coagulation in FIBTEM was impaired, which FXIII administration tended to correct. CAT implied 1.6- to 1.9-fold enhanced TG, which FXIII administration normalized. Inhibition of fibrin polymerization by Gly-Pro-Arg-Pro peptide mimicked FXIII deficiency in CAT by enhancing TG both in control and FXIII recovery plasma. Antithrombin, α2-macroblobulin-thrombin complex and prothrombin were normal, whereas F1+2 were elevated compatible with in vivo TG. DISCUSSION FXIII deficiency impairs fibrinogen function and fibrin formation simultaneously enhancing TG on the poorly polymerizing fibrin strands, when fibrin's antithrombin I -like function is absent. Our study suggests an inverse link between low FXIII levels and enhanced TG modifying structure-function relationship of fibrin to support hemostasis.
Collapse
Affiliation(s)
- Hanna H Pitkänen
- Helsinki University Hospital Research Institute, Helsinki, Finland; Helsinki University, Division of Anaesthesiology, Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Annukka Jouppila
- Helsinki University Hospital Research Institute, Helsinki, Finland
| | - Marja Lemponen
- Coagulation Disorders Unit, Department of Haematology, Comprehensive Cancer Center, and HUSLAB and Laboratory Services HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Minna Ilmakunnas
- Helsinki University, Division of Anaesthesiology, Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Jouni Ahonen
- Helsinki University, Division of Anaesthesiology, Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Maternity Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Riitta Lassila
- Coagulation Disorders Unit, Department of Haematology, Comprehensive Cancer Center, and HUSLAB and Laboratory Services HUSLAB, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
21
|
Duval C, Ariëns RAS. Fibrinogen splice variation and cross-linking: Effects on fibrin structure/function and role of fibrinogen γ' as thrombomobulin II. Matrix Biol 2016; 60-61:8-15. [PMID: 27784620 DOI: 10.1016/j.matbio.2016.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 09/30/2016] [Indexed: 11/29/2022]
Abstract
Fibrin is an important matrix protein that provides the backbone to the blood clot, promoting tissue repair and wound healing. Its precursor fibrinogen is one of the most heterogeneous proteins, with an estimated 1 million different forms due to alterations in glycosylation, oxidation, single nucleotide polymorphisms, splice variation and other variations. Furthermore, ligation by transglutaminase factor XIII (cross-linking) adds to the complexity of the fibrin network. The structure and function of the fibrin network is in part determined by this natural variation in the fibrinogen molecule, with major effects from splice variation and cross-linking. This mini-review will discuss the direct effects of fibrinogen αEC and fibrinogen γ' splice variation on clot structure and function and also discuss the additional role of fibrinogen γ' as thrombomodulin II. Furthermore, the effects of cross-linking on clot function will be described. Splice variation and cross-linking are major determinants of the structure and function of fibrin and may therefore impact on diseases affecting bleeding, thrombosis and tissue repair.
Collapse
Affiliation(s)
- Cédric Duval
- Thrombosis and Tissue Repair Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK
| | - Robert A S Ariëns
- Thrombosis and Tissue Repair Group, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK.
| |
Collapse
|
22
|
Hugenholtz GCG, Macrae F, Adelmeijer J, Dulfer S, Porte RJ, Lisman T, Ariëns RAS. Procoagulant changes in fibrin clot structure in patients with cirrhosis are associated with oxidative modifications of fibrinogen. J Thromb Haemost 2016; 14:1054-66. [PMID: 26833718 DOI: 10.1111/jth.13278] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 01/12/2016] [Indexed: 12/11/2022]
Abstract
UNLABELLED Essentials Patients with cirrhosis have hemostatic changes, which may contribute to a risk of thrombosis. This in vitro study compares clot formation and structure between patients and healthy subjects. Clot formation is delayed in patients; ultimately, however, clot permeability is decreased. The thrombogenic structure of fibrin clots may contribute to the thrombotic risk in cirrhosis. ABSTRACT Background and Objectives Patients with cirrhosis can be at risk of thrombotic complications due to an imbalance between hemostatic components. However, little is known on how the disease affects clot generation or how alterations in the structure of fibrin clots may affect the hemostatic function of these patients. Methods We investigated the formation and structure of clots generated with plasma and purified fibrinogen of 42 patients with cirrhosis. Clots generated with plasma and fibrinogen of 29 healthy volunteers were studied for comparison. Clot formation and structure were assessed by turbidity, permeation studies, confocal laser and scanning electron microscopy (SEM). The extent of fibrinogen oxidation was assessed by measuring the carbonyl content of purified fibrinogen samples. Results Tissue factor and thrombin-induced clotting of plasma was delayed in patients. The clotting rate was also decreased, but change in turbidity, fibrin density and fiber thickness were largely comparable to healthy volunteers. Conversely, clot permeability was significantly decreased in patients. When clots were generated with purified fibrinogen, differences in clot formation and structure similar to those in plasma were found. The carbonyl content was increased in patient fibrinogen and correlated with disease severity and clot permeability. Conclusions Delayed clot formation in cirrhosis ultimately results in decreased clot permeability. Similar alterations in clots generated with purified fibrinogen suggest that modifications of the molecule are (partly) responsible. Taken together, these findings are indicative of hypercoagulable features of clots of patients with cirrhosis, which may explain the increased risk of thrombosis associated with this condition.
Collapse
Affiliation(s)
- G C G Hugenholtz
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - F Macrae
- Thrombosis Research Group, Division of Cardiovascular and Diabetes Research, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds, UK
| | - J Adelmeijer
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - S Dulfer
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - R J Porte
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - T Lisman
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - R A S Ariëns
- Thrombosis Research Group, Division of Cardiovascular and Diabetes Research, Leeds Institute of Genetics, Health and Therapeutics, University of Leeds, Leeds, UK
| |
Collapse
|
23
|
Kelchtermans H, Pelkmans L, Bouwhuis A, Schurgers E, Lindhout T, Huskens D, Miszta A, Hemker HC, Lancé MD, de Laat B. Simultaneous measurement of thrombin generation and fibrin formation in whole blood under flow conditions. Thromb Haemost 2016; 116:134-45. [PMID: 27074907 DOI: 10.1160/th15-10-0801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/28/2016] [Indexed: 11/05/2022]
Abstract
Assays based on the formation of thrombin and fibrin are frequently used, and results are considered exchangeable in research/clinical settings. However, thrombin generation and fibrin formation do not always go hand in hand and flow profoundly influences thrombus formation. We describe the technical/clinical evaluation of an assay to simultaneously measure thrombin generation and fibrin formation under conditions of flow. Introduction of a fluorometer into a 'cone and base principle'-based rheometer allowed the measurement of thrombin generation (using a thrombin-sensitive substrate) and fibrin formation (changes in viscosity), while applying a linear shear flow. Increasing shear rates inversely related with thrombin generation and fibrin formation. Increasing fibrinogen concentrations in defibrinated plasma resulted in increased thrombin generation and fibrin formation. In pre-operative samples of 70 patients undergoing cardiothoracic surgery, fibrin formation and thrombin generation parameters correlated with fibrinogen content, rotational thromboelastometry (ROTEM) and whole blood Calibrated Automated Thrombinography (CAT) parameters, respectively. Upon dividing patients into two groups based on the median clot strength, a significant difference in perioperative/total blood loss was established. In conclusion, we clinically evaluated a method capable of simultaneously measuring thrombin generation and fibrin formation in plasma/whole blood under continuous flow, rendering our method one step closer to physiology. Importantly, our test proved to be indicative for the amount of blood loss during/after cardiothoracic surgery.
Collapse
Affiliation(s)
- Hilde Kelchtermans
- Hilde Kelchtermans, Oxfordlaan 70, Maastricht 6229EV, The Netherlands, Tel.: +31 43 388 58 94, Fax: +31 43 388 45 70, E-mail:
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Huskens D, Roest M, Remijn JA, Konings J, Kremers RMW, Bloemen S, Schurgers E, Selmeczi A, Kelchtermans H, van Meel R, Meex SJ, Kleinegris MC, de Groot PG, Urbanus RT, Ninivaggi M, de Laat B. Strenuous exercise induces a hyperreactive rebalanced haemostatic state that is more pronounced in men. Thromb Haemost 2016; 115:1109-19. [PMID: 26864794 DOI: 10.1160/th15-10-0821] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/07/2016] [Indexed: 11/05/2022]
Abstract
Physical exercise is recommended for a healthy lifestyle. Strenuous exercise, however, may trigger the haemostatic system, increasing the risk of vascular thrombotic events and the incidence of primary cardiac arrest. Our goal was to study the effects of strenuous exercise on risk factors of cardiovascular disease. Blood was collected from 92 healthy volunteers who participated in the amateur version of the pro-tour Amstel Gold cycling race, before and directly after the race. Thrombin generation showed a shortening of the lag time and time to peak and an increase of the velocity index. Interestingly, the endogenous thrombin potential measured in plasma decreased due to reduced prothrombin conversion. Platelet reactivity increased and this effect was stronger in men than in women. Lower fibrinogen and higher D-dimer levels after exercise indicated higher fibrin formation. On the other hand, fibrinolysis was also elevated as indicated by a shortening of the clot lysis time. Exercise activated the endothelium (von Willebrand factor (VWF) and active VWF levels were elevated) and the immune system (concentrations IL-6, IL-8, MCP-1, RANTES and PDGF increased). Additionally, an increased cardiac troponin T level was measured post-exercise. Strenuous exercise induces a temporary hyperreactive state in the body with enhanced pro- and anticoagulant responses. As strenuous exercise has a more pronounced effect on platelet function in male subjects, this gives a possible explanation for the higher incidence of sudden cardiac death during exercise compared to women. This trial is registered at www.clinicaltrials.gov as NCT02048462.
Collapse
Affiliation(s)
- Dana Huskens
- Dana Huskens, Oxfordlaan 70, Maastricht 6229EV, The Netherlands, Tel.: +31 43 388 58 96, Fax: +31 43 388 45 70, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sarenac Vulovic TS, Pavlovic SM, Zdravkovic NS. Proinflammatory Cytokines Induce XFG Development. Ocul Immunol Inflamm 2015; 24:671-677. [PMID: 26651123 DOI: 10.3109/09273948.2015.1063672] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE To reveal the roles of proinflammatory cytokines within the process of pseudoexfoliation (PEX) production. METHODS Our study included 120 patients referred to cataract surgery (early and late stage of pseudoexfoliation syndrome (XFS), pseudoexfoliation glaucoma (XFG), and control group). Serum and humor levels of cytokines were measured in a sample with high sensitivity enzyme-linked immunosorbent assay (ELISA) kit. RESULTS Our findings revealed that TNF-α and IL-17, overlooked by IL-6 action in the early stage and in the phase of glaucoma, played the main role in the inflammation activation in the tissue in the early and late stage of XFS and in XFG. CONCLUSIONS Local conditions cause chronic inflammation in the eye, subsequently activating fibrotic process with fibrotic tissue deposits in the eye.
Collapse
Affiliation(s)
| | - Sladjana M Pavlovic
- b Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| | - Nemanja S Zdravkovic
- b Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| |
Collapse
|
27
|
Kremers RMW, Peters TC, Wagenvoord RJ, Hemker HC. The balance of pro- and anticoagulant processes underlying thrombin generation. J Thromb Haemost 2015; 13:437-47. [PMID: 25421744 DOI: 10.1111/jth.12798] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/16/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND The generation of thrombin in time is the combined effect of the processes of prothrombin conversion and thrombin inactivation. Measurement of prothrombin consumption used to provide valuable information on hemostatic disorders, but is no longer used, due to its elaborate nature. OBJECTIVES Because thrombin generation (TG) curves are easily obtained with modern techniques, we developed a method to extract the prothrombin conversion curve from the TG curve, using a computational model for thrombin inactivation. METHODS Thrombin inactivation was modelled computationally by a reaction scheme with antithrombin, α(2) Macroglobulin and fibrinogen, taking into account the presence of the thrombin substrate ZGGR-AMC used to obtain the experimental data. The model was validated by comparison with data obtained from plasma as well as from a reaction mixture containing the same reactants as plasma. RESULTS The computational model fitted experimental data within the limits of experimental error. Thrombin inactivation curves were predicted within 2 SD in 96% of healthy subjects. Prothrombin conversion was calculated in 24 healthy subjects and validated by comparison with the experimental consumption of prothrombin during TG. The endogenous thrombin potential (ETP) mainly depends on the total amount of prothrombin converted and the thrombin decay capacity, and the peak height is determined by the maximum prothrombin conversion rate and the thrombin decay capacity. CONCLUSIONS Thrombin inactivation can be accurately predicted by the proposed computational model and prothrombin conversion can be extracted from a TG curve using this computational prediction. This additional computational analysis of TG facilitates the analysis of the process of disturbed TG.
Collapse
Affiliation(s)
- R M W Kremers
- Synapse bv, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | | | | | | |
Collapse
|
28
|
Marchi R, Marcos L, Paradisi I. Comparison by sex between thrombin generation and fibrin network characteristics in a healthy population. Clin Chim Acta 2015; 441:86-9. [DOI: 10.1016/j.cca.2014.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 11/25/2022]
|