1
|
Xiao Y, Zhang R, Hua C, Wu M, Yuan Y, Zhang L, Guo F, Liu J, Yang Z, Liu G. P2Y12 receptor-independent antiplatelet mechanism of cryptotanshinone: Network pharmacology and experimental validation of multi-target signaling pathways. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119321. [PMID: 39755188 DOI: 10.1016/j.jep.2025.119321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/30/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cryptotanshinone serves as the principal bioactive constituent of Salvia miltiorrhiza Bunge, possesses a wide range of pharmacological activities. Salvia miltiorrhiza Bunge, a long-standing therapeutic agent in traditional Chinese medicine (TCM) practice, is renowned for its efficacy in enhancing blood circulation and alleviating blood stasis and infarction, thereby treating cardiovascular and cerebrovascular diseases. AIM OF THE STUDY Platelet activation, when excessive or aberrant, poses a significant risk, catalyzing the onset of various thrombotic disorders. Thus, this investigation is meticulously designed to assess the antiplatelet pharmacological activity of cryptotanshinone, delving into its mechanisms of action that operate independently of the P2Y12 receptor. MATERIALS AND METHODS We employed a combination of isolated human platelet functional analysis, network pharmacology, molecular docking, and animal experiments to explore the P2Y12 receptor-independent antiplatelet targets and the biological mechanisms by which cryptotanshinone improves thrombosis. RESULTS Utilizing the ADP-hydrolyzing enzyme apyrase, we isolated the direct effects of cryptotanshinone on platelet function. The findings reveal that cryptotanshinone can effectively inhibit platelet activation in a manner that is independent of the P2Y12 receptor, all the while maintaining normal tail bleeding times in murine models and not exacerbating mesenteric thrombosis. These effects appear to be mediated through intricate signaling pathways, including PI3K-AKT, MAPK, and STAT3. CONCLUSION This study compellingly confirms the capacity of cryptotanshinone to suppress platelet function independently of the P2Y12 receptor, establishing a robust theoretical foundation for innovative strategies in thrombosis prevention.
Collapse
Affiliation(s)
- Yi Xiao
- Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Rui Zhang
- School of Pharmacy, Guizhou Medical University, Guiyang, 561113, China
| | - Chaoying Hua
- Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Meng Wu
- Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Yujing Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Li Zhang
- School of Pharmacy, Guizhou Medical University, Guiyang, 561113, China
| | - Fang Guo
- Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China
| | - Jian Liu
- School of Laboratory Animal and Shandong Laboratory Animal Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China.
| | - Zhanzhan Yang
- School of Pharmacy, Guizhou Medical University, Guiyang, 561113, China.
| | - Gang Liu
- Department of Pharmacology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 561113, China; Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, 561113, China; Guizhou Provincial Engineering Technology Research Center for Chemical Drug RandD, Guizhou Medical University, Guiyang, 561113, China.
| |
Collapse
|
2
|
Gerónimo-Alonso M, Ortíz-Vázquez E, Rodríguez-Canto W, Chel-Guerrero L, Betancur-Ancona D. Antithrombotic and anticariogenic activity of peptide fractions from cowpea (Vigna unguiculata) protein hydrolysates. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:209-217. [PMID: 39139024 DOI: 10.1002/jsfa.13819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/03/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Protein-derived peptide fractions can play a key role in the physiological and metabolic regulation and modulation of the body, which suggests that they could be used as functional ingredients to improve health and to reduce the risk of disease. This work aimed to evaluate the in vitro antithrombotic and anticariogenic bioactivity of hydrolysates and protein fractions obtained from cowpea (Vigna unguiculata) by biocatalysis. RESULTS Cowpea protein concentrate was hydrolyzed by sequential action with two enzyme systems, Pepsin-Pancreatin or Alcalase-Flavourzyme. There was extensive enzymatic hydrolysis, with degrees of hydrolysis of 34.94% and 81.43% for Pepsin-Pancreatin and Alcalase-Flavourzyme, respectively. The degree of hydrolysis for the control treatments, without the addition of the enzymes Pepsin-Pancreatin and Alcalase-Flavourzyme was 1.1% and 1.2%, respectively. The hydrolysates were subjected to fractionation by ultrafiltration, with five cut-off points according to molecular weight (<1, 1-3, 3-5, 5-10 and >10 kDa). The Alcalase-Flavourzyme hydrolysate led to 100% inhibition of platelet aggregation, while the Pepsin-Pancreatin hydrolysate showed 77.41% inhibition, but this was approximately 100% in the ultrafiltered fractions. The highest anticariogenic activity was obtained with the Pepsin-Pancreatin system, with 61.55% and 56.07% for calcium and phosphorus demineralization, respectively. CONCLUSION Hydrolysates and their peptide fractions from Vigna unguiculata exhibited inhibition of platelet aggregation and protection of tooth enamel and have the potential for use in the development of functional products with beneficial health effects. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | - Wilbert Rodríguez-Canto
- Tecnológico Nacional de México/Instituto Tecnológico de Mérida, Mérida, Mexico
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Luis Chel-Guerrero
- Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Mérida, Mexico
| | | |
Collapse
|
3
|
Babkina AS, Pisarev MV, Grechko AV, Golubev AM. Arterial Thrombosis in Acute Respiratory Infections: An Underestimated but Clinically Relevant Problem. J Clin Med 2024; 13:6007. [PMID: 39408067 PMCID: PMC11477565 DOI: 10.3390/jcm13196007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
During the COVID-19 pandemic, there was increased interest in the issue of thrombotic complications of acute respiratory infections. Clinical reports and pathological studies have revealed that thrombus formation in COVID-19 may involve the venous and arterial vasculature. As thrombotic complications of infectious respiratory diseases are increasingly considered in the context of COVID-19, the fact that thrombosis in lung diseases of viral and bacterial etiology was described long before the pandemic is overlooked. Pre-pandemic studies show that bacterial and viral respiratory infections are associated with an increased risk of thrombotic complications such as myocardial infarction, ischemic stroke, pulmonary embolism, and other critical illnesses caused by arterial and venous thrombosis. This narrative review article aims to summarize the current evidence regarding thrombotic complications and their pathogenesis in acute lower respiratory tract infections.
Collapse
Affiliation(s)
- Anastasiya S. Babkina
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow 107031, Russia; (M.V.P.); (A.V.G.); (A.M.G.)
| | | | | | | |
Collapse
|
4
|
Galitzia A, Maccaferri M, Mauro FR, Murru R, Marasca R. Chronic Lymphocytic Leukemia: Management of Adverse Events in the Era of Targeted Agents. Cancers (Basel) 2024; 16:1996. [PMID: 38893115 PMCID: PMC11171383 DOI: 10.3390/cancers16111996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
The treatment landscape for CLL has undergone a profound transformation with the advent of targeted agents (TAs) like Bruton's Tyrosine Kinase inhibitors (BTKis) and BCL-2 inhibitors (BCL-2is). These agents target crucial cellular pathways in CLL, offering superior efficacy over traditional chemo-immunotherapy, which has led to improved progression-free and overall survival rates. This advancement promises enhanced disease control and potentially normal life expectancy for many patients. However, the journey is not without challenges, as these TAs are associated with a range of adverse events (AEs) that can impact treatment efficacy and patient quality of life. This review focuses on detailing the various AEs related to TA management in CLL, evaluating their frequency and clinical impact. The aim is to present a comprehensive guide to the effective management of these AEs, ensuring optimal tolerability and efficacy of TAs. By reviewing the existing literature and consolidating findings, we provide insights into AE management, which is crucial for maximizing patient outcomes in CLL therapy.
Collapse
Affiliation(s)
- Andrea Galitzia
- Hematology and Stem Cell Transplantation Unit, Ospedale San Francesco, 08100 Nuoro, Italy;
| | - Monica Maccaferri
- Hematology Unit, Department of Oncology and Hematology, A.O.U of Modena, Policlinico, 41125 Modena, Italy; (M.M.); (R.M.)
| | - Francesca Romana Mauro
- Hematology, Department of Translational and Precision Medicine, Sapienza University, 00185 Rome, Italy;
| | - Roberta Murru
- Hematology and Stem Cell Transplantation Unit, Ospedale Oncologico A. Businco, ARNAS G. Brotzu, 09134 Cagliari, Italy
| | - Roberto Marasca
- Hematology Unit, Department of Oncology and Hematology, A.O.U of Modena, Policlinico, 41125 Modena, Italy; (M.M.); (R.M.)
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, 41121 Modena, Italy
| |
Collapse
|
5
|
Alenazy FO, Harbi MH, Kavanagh DP, Price J, Brady P, Hargreaves O, Harrison P, Slater A, Tiwari A, Nicolson PLR, Connolly DL, Kirchhof P, Kalia N, Jandrot-Perrus M, Mangin PH, Watson SP, Thomas MR. Amplified inhibition of atherosclerotic plaque-induced platelet activation by glenzocimab with dual antiplatelet therapy. J Thromb Haemost 2023; 21:3236-3251. [PMID: 37541591 DOI: 10.1016/j.jtha.2023.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 06/23/2023] [Accepted: 07/16/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Aspirin and platelet P2Y12 inhibitors, such as ticagrelor, suboptimally inhibit microvascular thrombosis during ST-elevation myocardial infarction. Glycoprotein (GP) IIb/IIIa inhibitors may further inhibit this but cause excessive bleeding. OBJECTIVES We investigated whether combination of glenzocimab, a GPVI inhibitor, with aspirin and ticagrelor provides additional antithrombotic effects, as GPVI has a critical role in atherothrombosis but minimal involvement in hemostasis. METHODS We investigated the effects of glenzocimab (monoclonal antibody Fab fragment) using blood from healthy donors and patients with acute coronary syndrome treated with aspirin and ticagrelor. Platelets were stimulated with multiple agonists, including atherosclerotic plaque, from patients undergoing carotid endarterectomy. RESULTS Aspirin and ticagrelor partially inhibited atherosclerotic plaque-induced platelet aggregation by 48% compared with control (34 ± 3 vs 65 ± 4 U; P < .001). Plaque-induced platelet aggregation, adhesion, secretion, and activation were critically dependent on GPVI activation. Glenzocimab alone reduced plaque-induced aggregation by 75% compared with control (16 ± 4 vs 65 ± 4 U; P < .001) and by >95% when combined with aspirin and ticagrelor (3 ± 1 vs 65 ± 4 U; P < .001). Glenzocimab reduced platelet aggregation, adhesion, and thrombin generation when added to blood of aspirin- and ticagrelor-treated patients with acute coronary syndrome. Glenzocimab shared several antithrombotic effects with the GPIIb/IIIa inhibitor eptifibatide with less effect on general hemostasis assessed by rotational thromboelastometry. In a murine intravital model of ST-elevation myocardial infarction, genetic depletion of GPVI reduced microvascular thrombosis. CONCLUSION Addition of glenzocimab to aspirin and ticagrelor enhances platelet inhibition via multiple mechanisms of atherothrombosis. Compared with a GPIIb/IIIa inhibitor, glenzocimab shares multiple antithrombotic effects, with less inhibition of mechanisms involved in general hemostasis.
Collapse
Affiliation(s)
- Fawaz O Alenazy
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Maan H Harbi
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom; Pharmacology and Toxicology Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Dean P Kavanagh
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Joshua Price
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul Brady
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom; Department of Cardiology, Sandwell and West Birmingham Hospitals National Health Service (NHS) Trust, Birmingham, United Kingdom
| | - Oscar Hargreaves
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul Harrison
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Alexandre Slater
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Alok Tiwari
- Department of Vascular Surgery, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Phillip L R Nicolson
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Derek L Connolly
- Department of Cardiology, Sandwell and West Birmingham Hospitals National Health Service (NHS) Trust, Birmingham, United Kingdom
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom; Department of Cardiology, University Heart and Vascular Center (UKE) Hamburg, Hamburg, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Germany
| | - Neena Kalia
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | - Pierre H Mangin
- UMR_S1255, INSERM, Etablissement Francais du Sang-Alsace, Strasbourg, France
| | - Steve P Watson
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom; Centre of Membrane Proteins and Receptors (COMPARE), The Universities of Birmingham and Nottingham, The Midlands, United Kingdom
| | - Mark R Thomas
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom; Department of Cardiology, Sandwell and West Birmingham Hospitals National Health Service (NHS) Trust, Birmingham, United Kingdom; Department of Cardiology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.
| |
Collapse
|
6
|
Fragopoulou E, Gkotsi K, Petsini F, Gioti K, Kalampaliki AD, Lambrinidis G, Kostakis IK, Tenta R. Synthesis and Biological Evaluation of Resveratrol Methoxy Derivatives. Molecules 2023; 28:5547. [PMID: 37513418 PMCID: PMC10386404 DOI: 10.3390/molecules28145547] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Resveratrol, a naturally occurring stilbene, exhibits numerous beneficial health effects. Various studies have demonstrated its diverse biological actions, including anti-oxidant, anti-inflammatory, and anti-platelet properties, thereby supporting its potential for cardio protection, neuroprotection, and anti-cancer activity. However, a significant limitation of resveratrol is its weak bioavailability. To overcome this challenge, multiple research groups have investigated the synthesis of new resveratrol derivatives to enhance bioavailability and pharmacological activities. Nevertheless, there are limited data on the effects of resveratrol derivatives on platelet function. Therefore, the objective of this study was to synthesize resveratrol methoxy derivatives and evaluate their anti-platelet and anti-proliferative activity. Platelet-rich plasma (PRP) obtained from healthy volunteers was utilized to assess the derivatives' ability to inhibit platelet aggregation induced by platelet activating factor (PAF), adenosine diphosphate (ADP), and thrombin receptor activating peptide (TRAP). Additionally, the derivatives' anti-tumor activity was evaluated against the proliferation of PC-3 and HCT116 cells. The results revealed that some methoxy derivatives of resveratrol exhibited comparable or even superior anti-platelet activity compared to the original compound. The most potent derivative was the 4'-methoxy derivative, which demonstrated approximately 2.5 orders of magnitude higher anti-platelet activity against TRAP-induced platelet aggregation, indicating its potential as an anti-platelet agent. Concerning in silico studies, the 4'-methyl group of 4'-methoxy derivative is oriented similarly to the fluorophenyl-pyridyl group of Vorapaxar, buried in a hydrophobic cavity. In terms of their anti-tumor activity, 3-MRESV exhibited the highest potency in PC-3 cells, while 3,4'-DMRESV and TMRESV showed the greatest efficacy in HCT116 cells. In conclusion, methoxy derivatives of resveratrol possess similar or improved anti-platelet and anti-cancer effects, thereby holding potential as bioactive compounds in various pathological conditions.
Collapse
Affiliation(s)
- Elizabeth Fragopoulou
- Department of Nutrition and Dietetics, Harokopio University, 70 Eleftheriou Venizelou Avenue Kallithea, 17676 Athens, Greece
| | - Katerina Gkotsi
- Department of Nutrition and Dietetics, Harokopio University, 70 Eleftheriou Venizelou Avenue Kallithea, 17676 Athens, Greece
| | - Filio Petsini
- Department of Nutrition and Dietetics, Harokopio University, 70 Eleftheriou Venizelou Avenue Kallithea, 17676 Athens, Greece
| | - Katerina Gioti
- Department of Nutrition and Dietetics, Harokopio University, 70 Eleftheriou Venizelou Avenue Kallithea, 17676 Athens, Greece
| | - Amalia D Kalampaliki
- Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - George Lambrinidis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Ioannis K Kostakis
- Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Roxane Tenta
- Department of Nutrition and Dietetics, Harokopio University, 70 Eleftheriou Venizelou Avenue Kallithea, 17676 Athens, Greece
| |
Collapse
|
7
|
Jha V, Xiong B, Kumari T, Brown G, Wang J, Kim K, Lee J, Asquith N, Gallagher J, Asherman L, Lambert T, Bai Y, Du X, Min JK, Sah R, Javaheri A, Razani B, Lee JM, Italiano JE, Cho J. A Critical Role for ERO1α in Arterial Thrombosis and Ischemic Stroke. Circ Res 2023; 132:e206-e222. [PMID: 37132383 PMCID: PMC10213138 DOI: 10.1161/circresaha.122.322473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/12/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Platelet adhesion and aggregation play a crucial role in arterial thrombosis and ischemic stroke. Here, we identify platelet ERO1α (endoplasmic reticulum oxidoreductase 1α) as a novel regulator of Ca2+ signaling and a potential pharmacological target for treating thrombotic diseases. METHODS Intravital microscopy, animal disease models, and a wide range of cell biological studies were utilized to demonstrate the pathophysiological role of ERO1α in arteriolar and arterial thrombosis and to prove the importance of platelet ERO1α in platelet activation and aggregation. Mass spectrometry, electron microscopy, and biochemical studies were used to investigate the molecular mechanism. We used novel blocking antibodies and small-molecule inhibitors to study whether ERO1α can be targeted to attenuate thrombotic conditions. RESULTS Megakaryocyte-specific or global deletion of Ero1α in mice similarly reduced platelet thrombus formation in arteriolar and arterial thrombosis without affecting tail bleeding times and blood loss following vascular injury. We observed that platelet ERO1α localized exclusively in the dense tubular system and promoted Ca2+ mobilization, platelet activation, and aggregation. Platelet ERO1α directly interacted with STIM1 (stromal interaction molecule 1) and SERCA2 (sarco/endoplasmic reticulum Ca2+-ATPase 2) and regulated their functions. Such interactions were impaired in mutant STIM1-Cys49/56Ser and mutant SERCA2-Cys875/887Ser. We found that ERO1α modified an allosteric Cys49-Cys56 disulfide bond in STIM1 and a Cys875-Cys887 disulfide bond in SERCA2, contributing to Ca2+ store content and increasing cytosolic Ca2+ levels during platelet activation. Inhibition of Ero1α with small-molecule inhibitors but not blocking antibodies attenuated arteriolar and arterial thrombosis and reduced infarct volume following focal brain ischemia in mice. CONCLUSIONS Our results suggest that ERO1α acts as a thiol oxidase for Ca2+ signaling molecules, STIM1 and SERCA2, and enhances cytosolic Ca2+ levels, promoting platelet activation and aggregation. Our study provides evidence that ERO1α may be a potential target to reduce thrombotic events.
Collapse
Affiliation(s)
- Vishwanath Jha
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bei Xiong
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Tripti Kumari
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gavriel Brown
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jinzhi Wang
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kyungho Kim
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea
| | - Jingu Lee
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nathan Asquith
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - John Gallagher
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lillian Asherman
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Taylor Lambert
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yanyan Bai
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago College of Medicine, IL 60612, USA
| | - Xiaoping Du
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago College of Medicine, IL 60612, USA
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Rajan Sah
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- John Cochran VA Medical Center, St. Louis, MO 63106, USA
| | - Ali Javaheri
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Babak Razani
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- John Cochran VA Medical Center, St. Louis, MO 63106, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jin-Moo Lee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph E. Italiano
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Jaehyung Cho
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
González-Jiménez P, Méndez R, Latorre A, Piqueras M, Balaguer-Cartagena MN, Moscardó A, Alonso R, Hervás D, Reyes S, Menéndez R. Neutrophil Extracellular Traps and Platelet Activation for Identifying Severe Episodes and Clinical Trajectories in COVID-19. Int J Mol Sci 2023; 24:ijms24076690. [PMID: 37047662 PMCID: PMC10094814 DOI: 10.3390/ijms24076690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
The role of NETs and platelet activation in COVID-19 is scarcely known. We aimed to evaluate the role of NETs (citrullinated histone H3 [CitH3], cell-free DNA [cfDNA]) and platelet activation markers (soluble CD40 ligand [CD40L] and P-selectin) in estimating the hazard of different clinical trajectories in patients with COVID-19. We performed a prospective study of 204 patients, categorized as outpatient, hospitalized and ICU-admitted. A multistate model was designed to estimate probabilities of clinical transitions across varying states, such as emergency department (ED) visit, discharge (outpatient), ward admission, ICU admission and death. Levels of cfDNA, CitH3 and P-selectin were associated with the severity of presentation and analytical parameters. The model showed an increased risk of higher levels of CitH3 and P-selectin for ED-to-ICU transitions (Hazard Ratio [HR]: 1.35 and 1.31, respectively), as well as an elevated risk of higher levels of P-selectin for ward-to-death transitions (HR: 1.09). Elevated levels of CitH3 (HR: 0.90), cfDNA (HR: 0.84) and P-selectin (HR: 0.91) decreased the probability of ward-to-discharge transitions. A similar trend existed for elevated levels of P-selectin and ICU-to-ward transitions (HR 0.40); In conclusion, increased NET and P-selectin levels are associated with more severe episodes and can prove useful in estimating different clinical trajectories.
Collapse
Affiliation(s)
- Paula González-Jiménez
- Pneumology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Respiratory Infections, Health Research Institute La Fe, 46026 Valencia, Spain
- Medicine Department, University of Valencia, 46010 Valencia, Spain
| | - Raúl Méndez
- Pneumology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Respiratory Infections, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Ana Latorre
- Respiratory Infections, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Mónica Piqueras
- Medicine Department, University of Valencia, 46010 Valencia, Spain
- Laboratory Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
| | | | - Antonio Moscardó
- Platelet Function Unit, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Ricardo Alonso
- Laboratory Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
| | - David Hervás
- Data Science, Biostatistics & Bioinformatics, Health Research Institute La Fe, 46026 Valencia, Spain
- Department of Applied Statistics and Operational Research and Quality, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Soledad Reyes
- Pneumology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Respiratory Infections, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Rosario Menéndez
- Pneumology Department, La Fe University and Polytechnic Hospital, 46026 Valencia, Spain
- Respiratory Infections, Health Research Institute La Fe, 46026 Valencia, Spain
- Medicine Department, University of Valencia, 46010 Valencia, Spain
- Center for Biomedical Research Network in Respiratory Diseases (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
9
|
Eptifibatide, an Older Therapeutic Peptide with New Indications: From Clinical Pharmacology to Everyday Clinical Practice. Int J Mol Sci 2023; 24:ijms24065446. [PMID: 36982519 PMCID: PMC10049647 DOI: 10.3390/ijms24065446] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023] Open
Abstract
Therapeutic peptides are oligomers or short polymers of amino acids used for various medical purposes. Peptide-based treatments have evolved considerably due to new technologies, stimulating new research interests. They have been shown to be beneficial in a variety of therapeutic applications, notably in the treatment of cardiovascular disorders such as acute coronary syndrome (ACS). ACS is characterized by coronary artery wall damage and consequent formation of an intraluminal thrombus obstructing one or more coronary arteries, leading to unstable angina, non-ST elevated myocardial infarction, and ST-elevated myocardial infarction. One of the promising peptide drugs in the treatment of these pathologies is eptifibatide, a synthetic heptapeptide derived from rattlesnake venom. Eptifibatide is a glycoprotein IIb/IIIa inhibitor that blocks different pathways in platelet activation and aggregation. In this narrative review, we summarized the current evidence on the mechanism of action, clinical pharmacology, and applications of eptifibatide in cardiology. Additionally, we illustrated its possible broader usage with new indications, including ischemic stroke, carotid stenting, intracranial aneurysm stenting, and septic shock. Further research is, however, required to fully evaluate the role of eptifibatide in these pathologies, independently and in comparison to other medications.
Collapse
|
10
|
Brechko A, Jiroutek MR, Jones K, Brenseke B, Maharty DC, Cappola J, Holly SP. Retrospective Study of Thrombosis in Hospitalized Patients with COVID-19 in Rural North Carolina. N C Med J 2023; 84:127-133. [PMID: 39302334 DOI: 10.18043/001c.73024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Background Some patients with COVID-19 develop life-threatening thrombotic complications including myocardial infarction, deep vein thrombosis, pulmonary embolism, disseminated intravascular coagulation, and ischemic stroke. These inflammatory and hypercoagulable states have been well documented in patient cohorts from metropolitan areas, but not in more rural populations, nor has a data-driven treatment plan been developed for thrombotic COVID-19 patients. Methods We undertook a retrospective case-control study of COVID-19-positive patients to analyze the impact of thrombosis on various clinical endpoints including terminal diagnosis and disease severity. Prevalence and impact of thrombosis were determined using medical records from 2237 COVID-19-positive patients hospitalized in Cumberland County, North Carolina. Odds ratios for terminal diagnosis, death, ICU admission, and ventilation were calculated based on thrombosis status, D-dimer level, or type of antithrombotic treatment. Results Terminal diagnosis [OR 1.81; 95% CI (1.10, 2.98)], ICU admission [2.25; (1.33, 3.81)], and ventilation [2.46; (1.45, 4.18)] were all more likely in thrombotic patients (N = 97) compared to nonthrombotic patients (N = 2140) after adjusting for age. D-dimer levels were associated with death overall, but not among thrombotic patients. Treatments that combined antiplatelet and anticoagulant drugs appeared to be more efficacious than anticoagulants alone in preventing death and severe disease. Limitations Patient medical history prior to hospitalization was not evaluated. Conclusion In this cohort, those with thrombosis are at increased risk for adverse outcomes including death and severe disease. Antithrombotic therapy that includes antiplatelet drugs provides improved outcomes. Higher-powered prospective trials will be necessary to confirm any potential merits of antiplatelet therapy.
Collapse
Affiliation(s)
| | | | - Kyla Jones
- Jerry M. Wallace School of Osteopathic Medicine, Campbell University
| | - Bonnie Brenseke
- Jerry M. Wallace School of Osteopathic Medicine, Campbell University
| | - Donald C Maharty
- Jerry M. Wallace School of Osteopathic Medicine, Campbell University
- Cape Fear Valley Medical Center
| | - James Cappola
- Jerry M. Wallace School of Osteopathic Medicine, Campbell University
| | | |
Collapse
|
11
|
Li D, Son Y, Jang M, Wang S, Zhu W. Nanoparticle Based Cardiac Specific Drug Delivery. BIOLOGY 2023; 12:biology12010082. [PMID: 36671774 PMCID: PMC9856055 DOI: 10.3390/biology12010082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Heart failure secondary to myocardial injuries is a leading cause of death worldwide. Recently, a growing number of novel therapies have emerged for injured myocardium repairment. However, delivering therapeutic agents specifically to the injured heart remains a significant challenge. Nanoparticles are the most commonly used vehicles for targeted drug delivery. Various nanoparticles have been synthesized to deliver drugs and other therapeutic molecules to the injured heart via passive or active targeting approaches, and their targeting specificity and therapeutic efficacies have been investigated. Here, we summarized nanoparticle-based, cardiac-specific drug delivery systems, their potency for treating heart diseases, and the mechanisms underlying these cardiac-targeting strategies. We also discussed the clinical studies that have employed nanoparticle-based cardiac-specific drug delivery.
Collapse
Affiliation(s)
- Dong Li
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
- Department of Cardiology, Dongfang Hospital, The Second Affiliated Hospital of Beijing University of Chinese Medicine, Beijing 100078, China
| | - Yura Son
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Michelle Jang
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
- Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85281, USA
| | - Shu Wang
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
- Correspondence: (S.W.); (W.Z.)
| | - Wuqiang Zhu
- Department of Cardiovascular Diseases, Physiology and Biomedical Engineering, Center for Regenerative Medicine, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
- Correspondence: (S.W.); (W.Z.)
| |
Collapse
|
12
|
Pang X, He X, Qiu Z, Zhang H, Xie R, Liu Z, Gu Y, Zhao N, Xiang Q, Cui Y. Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduct Target Ther 2023; 8:1. [PMID: 36588107 PMCID: PMC9805914 DOI: 10.1038/s41392-022-01259-6] [Citation(s) in RCA: 281] [Impact Index Per Article: 140.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 01/03/2023] Open
Abstract
Integrins are considered the main cell-adhesion transmembrane receptors that play multifaceted roles as extracellular matrix (ECM)-cytoskeletal linkers and transducers in biochemical and mechanical signals between cells and their environment in a wide range of states in health and diseases. Integrin functions are dependable on a delicate balance between active and inactive status via multiple mechanisms, including protein-protein interactions, conformational changes, and trafficking. Due to their exposure on the cell surface and sensitivity to the molecular blockade, integrins have been investigated as pharmacological targets for nearly 40 years, but given the complexity of integrins and sometimes opposite characteristics, targeting integrin therapeutics has been a challenge. To date, only seven drugs targeting integrins have been successfully marketed, including abciximab, eptifibatide, tirofiban, natalizumab, vedolizumab, lifitegrast, and carotegrast. Currently, there are approximately 90 kinds of integrin-based therapeutic drugs or imaging agents in clinical studies, including small molecules, antibodies, synthetic mimic peptides, antibody-drug conjugates (ADCs), chimeric antigen receptor (CAR) T-cell therapy, imaging agents, etc. A serious lesson from past integrin drug discovery and research efforts is that successes rely on both a deep understanding of integrin-regulatory mechanisms and unmet clinical needs. Herein, we provide a systematic and complete review of all integrin family members and integrin-mediated downstream signal transduction to highlight ongoing efforts to develop new therapies/diagnoses from bench to clinic. In addition, we further discuss the trend of drug development, how to improve the success rate of clinical trials targeting integrin therapies, and the key points for clinical research, basic research, and translational research.
Collapse
Affiliation(s)
- Xiaocong Pang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Xu He
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiwei Qiu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Hanxu Zhang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Ran Xie
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiyan Liu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Yanlun Gu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Nan Zhao
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| |
Collapse
|
13
|
Looking beyond the Skin: Pathophysiology of Cardiovascular Comorbidity in Psoriasis and the Protective Role of Biologics. Pharmaceuticals (Basel) 2022; 15:ph15091101. [PMID: 36145322 PMCID: PMC9503011 DOI: 10.3390/ph15091101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Psoriasis is a chronic systemic inflammatory disease associated with a higher incidence of cardiovascular disease, especially in patients with moderate to severe psoriasis. It has been estimated that severe psoriasis confers a 25% increase in relative risk of cardiovascular disease, regardless of traditional risk factors. Although the underlying pathogenic mechanisms relating psoriasis to increased cardiovascular risk are not clear, atherosclerosis is emerging as a possible link between skin and vascular affection. The hypothesis that the inflammatory cascade activated in psoriasis contributes to the atherosclerotic process provides the underlying basis to suggest that an anti-inflammatory therapy that improved atherosclerosis would also reduce the risk of MACEs. In this sense, the introduction of biological drugs which specifically target cytokines implicated in the inflammatory cascade have increased the expectations of control over the cardiovascular comorbidity present in psoriasis patients, however, their role in vascular damage processes remains controversial. The aim of this paper is to review the mechanistic link between psoriasis and cardiovascular disease development, as well as analyzing which of the biological treatments could also reduce the cardiovascular risk in these patients, fueling a growing debate on the modification of the general algorithm of treatment.
Collapse
|
14
|
Levy BE, Oldenburg AL. Elastometry of clot phantoms via magnetomotive ultrasound-based resonant acoustic spectroscopy. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac7ea5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/05/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. An ultrasound-based system capable of both imaging thrombi against a dark field and performing quantitative elastometry could allow for fast and cost-effective thrombosis diagnosis, staging, and treatment monitoring. This study investigates a contrast-enhanced approach for measuring the Young’s moduli of thrombus-mimicking phantoms. Approach. Magnetomotive ultrasound (MMUS) has shown promise for lending specific contrast to thrombi by applying a temporally modulated force to magnetic nanoparticle (MNP) contrast agents and measuring resulting tissue displacements. However, quantitative elastometry has not yet been demonstrated in MMUS, largely due to difficulties inherent in measuring applied magnetic forces and MNP densities. To avoid these issues, in this work magnetomotive resonant acoustic spectroscopy (MRAS) is demonstrated for the first time in ultrasound. Main results. The resonance frequencies of gelatin thrombus-mimicking phantoms are shown to agree within one standard deviation with finite element simulations over a range of phantom sizes and Young’s moduli with less than 16% error. Then, in a proof-of-concept study, the Young’s moduli of three phantoms are measured using MRAS and are shown to agree with independent compression testing results. Significance. The MRAS results were sufficiently precise to differentiate between thrombus phantoms with clinically relevant Young’s moduli. These findings demonstrate that MRAS has potential for thrombus staging.
Collapse
|
15
|
Stendahl JC, Kwan JM, Pucar D, Sadeghi MM. Radiotracers to Address Unmet Clinical Needs in Cardiovascular Imaging, Part 2: Inflammation, Fibrosis, Thrombosis, Calcification, and Amyloidosis Imaging. J Nucl Med 2022; 63:986-994. [PMID: 35772956 PMCID: PMC9258561 DOI: 10.2967/jnumed.121.263507] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/22/2022] [Indexed: 01/03/2023] Open
Abstract
Cardiovascular imaging is evolving in response to systemwide trends toward molecular characterization and personalized therapies. The development of new radiotracers for PET and SPECT imaging is central to addressing the numerous unmet diagnostic needs that relate to these changes. In this 2-part review, we discuss select radiotracers that may help address key unmet clinical diagnostic needs in cardiovascular medicine. Part 1 examined key technical considerations pertaining to cardiovascular radiotracer development and reviewed emerging radiotracers for perfusion and neuronal imaging. Part 2 covers radiotracers for imaging cardiovascular inflammation, thrombosis, fibrosis, calcification, and amyloidosis. These radiotracers have the potential to address several unmet needs related to the risk stratification of atheroma, detection of thrombi, and the diagnosis, characterization, and risk stratification of cardiomyopathies. In the first section, we discuss radiotracers targeting various aspects of inflammatory responses in pathologies such as myocardial infarction, myocarditis, sarcoidosis, atherosclerosis, and vasculitis. In a subsequent section, we discuss radiotracers for the detection of systemic and device-related thrombi, such as those targeting fibrin (e.g., 64Cu-labeled fibrin-binding probe 8). We also cover emerging radiotracers for the imaging of cardiovascular fibrosis, such as those targeting fibroblast activation protein (e.g., 68Ga-fibroblast activation protein inhibitor). Lastly, we briefly review radiotracers for imaging of cardiovascular calcification (18F-NaF) and amyloidosis (e.g., 99mTc-pyrophosphate and 18F-florbetapir).
Collapse
Affiliation(s)
- John C Stendahl
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Jennifer M Kwan
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Darko Pucar
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, Connecticut; and
| | - Mehran M Sadeghi
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Connecticut;
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| |
Collapse
|
16
|
Shao B, Hoover C, Shi H, Kondo Y, Lee RH, Chen J, Shan X, Song J, McDaniel JM, Zhou M, McGee S, Vanhoorelbeke K, Bergmeier W, López JA, George JN, Xia L. Deletion of platelet CLEC-2 decreases GPIbα-mediated integrin αIIbβ3 activation and decreases thrombosis in TTP. Blood 2022; 139:2523-2533. [PMID: 35157766 PMCID: PMC9029097 DOI: 10.1182/blood.2021012896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022] Open
Abstract
Microvascular thrombosis in patients with thrombotic thrombocytopenic purpura (TTP) is initiated by GPIbα-mediated platelet binding to von Willebrand factor (VWF). Binding of VWF to GPIbα causes activation of the platelet surface integrin αIIbβ3. However, the mechanism of GPIbα-initiated activation of αIIbβ3 and its clinical importance for microvascular thrombosis remain elusive. Deletion of platelet C-type lectin-like receptor 2 (CLEC-2) did not prevent VWF binding to platelets but specifically inhibited platelet aggregation induced by VWF binding in mice. Deletion of platelet CLEC-2 also inhibited αIIbβ3 activation induced by the binding of VWF to GPIbα. Using a mouse model of TTP, which was created by infusion of anti-mouse ADAMTS13 monoclonal antibodies followed by infusion of VWF, we found that deletion of platelet CLEC-2 decreased pulmonary arterial thrombosis and the severity of thrombocytopenia. Importantly, prophylactic oral administration of aspirin, an inhibitor of platelet activation, and therapeutic treatment of the TTP mice with eptifibatide, an integrin αIIbβ3 antagonist, reduced pulmonary arterial thrombosis in the TTP mouse model. Our observations demonstrate that GPIbα-mediated activation of integrin αIIbβ3 plays an important role in the formation of thrombosis in TTP. These observations suggest that prevention of platelet activation with aspirin may reduce the risk for thrombosis in patients with TTP.
Collapse
Affiliation(s)
- Bojing Shao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Christopher Hoover
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Huiping Shi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Yuji Kondo
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Robert H Lee
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Xindi Shan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Jianhua Song
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - J Michael McDaniel
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Meixiang Zhou
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Samuel McGee
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, Katholieke Universiteit Leuven Campus Kulak Kortrijk, Kortrijk, Belgium; and
| | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - James N George
- Hematology-Oncology Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
17
|
Chiang YC, Wu YS, Kang YF, Wang HC, Tsai MC, Wu CC. 3,5,2′,4′-Tetramethoxystilbene, a fully methylated resveratrol analog, prevents platelet aggregation and thrombus formation by targeting the protease-activated receptor 4 pathway. Chem Biol Interact 2022; 357:109889. [DOI: 10.1016/j.cbi.2022.109889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/01/2022] [Accepted: 03/09/2022] [Indexed: 12/30/2022]
|
18
|
Berry J, Harper MT. Protease-activated receptor antagonists prevent thrombosis when dual antiplatelet therapy is insufficient in an occlusive thrombosis microfluidic model. Res Pract Thromb Haemost 2022; 6:e12703. [PMID: 35434469 PMCID: PMC9001860 DOI: 10.1002/rth2.12703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/11/2022] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
Background Platelet activation and arterial thrombosis on a ruptured atherosclerotic plaque is a major cause of myocardial infarction. Dual antiplatelet therapy (DAPT), the combination of platelet aggregation inhibitors, aspirin and a P2Y12 antagonist, is used to prevent arterial thrombosis. However, many people continue to have arterial thrombosis and myocardial infarction despite DAPT, indicating that additional therapies are required where DAPT is insufficient. Objectives To determine whether antagonists of protease-activated receptors (PARs) can prevent occlusive thrombosis under conditions where DAPT is insufficient. Methods We used human whole blood in a microfluidic model of occlusive thrombosis to compare conditions under which DAPT is effective to those under which DAPT was not. Cangrelor (a P2Y12 antagonist) and aspirin were used to mimic DAPT. We then investigated whether the PAR1 antagonist vorapaxar or the PAR4 antagonist BMS 986120, alone or in combination with DAPT, prevented occlusive thrombosis. Results and Conclusions A ruptured plaque exposes collagen fibers and is often rich in tissue factor, triggering activation of platelets and coagulation. Occlusive thrombi formed on type I collagen in the presence or absence of tissue factor (TF). However, although DAPT prevented occlusive thrombosis in the absence of TF, DAPT had little effect when TF was also present. Under these conditions, PAR antagonism was also ineffective. However, occlusive thrombosis was prevented by combining DAPT with PAR antagonism. These data demonstrate that PAR antagonists may be a useful addition to DAPT in some patients and further demonstrate the utility of in vitro models of occlusive thrombosis.
Collapse
Affiliation(s)
- Jess Berry
- Department of PharmacologyUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
19
|
N-Acetylcysteine Inhibits Platelet Function through the Regeneration of the Non-Oxidative Form of Albumin. Antioxidants (Basel) 2022; 11:antiox11030445. [PMID: 35326096 PMCID: PMC8944739 DOI: 10.3390/antiox11030445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
N-acetylcysteine (NAC) is able to break down protein disulfides, generating free thiols. This mechanism occurs on mixed disulfides of albumin (HSA) to form mercaptoalbumin (HMA), the main antioxidant species in the plasma. Circulating HSA exists in two main forms: the reduced form (HMA), and the oxidized forms, whose predominant modification is cystenylation (HSA-Cys). Increased levels of oxidized HSA have been detected in several diseases associated with oxidative stress. This study showed that NAC inhibits platelet aggregation by restoring HMA. In addition, the regeneration of HMA by NAC inhibits platelet functions such as intracellular calcium mobilization, reactive oxygen species generation, arachidonic acid metabolites synthesis, and adhesion to the collagen matrix. In our conditions, the exposure of platelets to NAC did not increase GSH levels. However, the inhibition of platelet aggregation was also detected following treatment of platelet-rich plasma with GSH, which, similarly to NAC, reduced HSA-Cys levels. Furthermore, this study showed that cysteine, another compound able to restore HMA by reducing the HSA-Cys content, inhibited platelet aggregation to a similar extent as NAC. The results obtained in this study suggest a new mechanism by which NAC can modulate platelet activation and suggest its possible use as an antiplatelet drug in conditions associated with oxidative stress.
Collapse
|
20
|
Fitilev SB, Glukhov YF, Lukyanov SV, Vozzhaev AV, Shkrebniova II, Kazey VI, Bondareva IB. Safety, pharmacokinetics and pharmacodynamics of an original glycoprotein IIb/IIIa inhibitor in healthy volunteers: results of the clinical trial. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2022. [DOI: 10.15829/1728-8800-2022-3033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Aim. To study the tolerability, safety, pharmacokinetics (PK) and pharmacodynamics of single intravenous infusions of Angipur in healthy male volunteers.Material and methods. The Phase I trial included 20 healthy male volunteers (mean age, 30,8±7,7 years; mean body weight, 77,4±12,1 kg). Angipur (0,02% concentrate for solution for infusion) was administered to every subject in single doses 0,015, 0,05, 0,09 mg/kg for 3 consecutive days. Volunteers were divided in 6 groups (1, 1, 3, 5, 5, 5); every following group was recruited only after the previous one finished the study. The following were assessed: rate and severity of adverse events (AEs), key PK parameters of Angipur and its antiplatelet activity by impedance aggregometry.Results. No moderate or severe AEs, as well as no serious AEs were reported according to obtained data of clinical and laboratory monitoring of healthy subjects. Totally 6 mild AEs were registered in 4 subjects. Four AEs (mild hematological deviations and episode of nose bleed) were classified as possibly related to study drug and 1 AE (positive fecal occult blood test) — probably related. Key PK parameters of Angipur in single intravenous doses 0,015, 0,05 и 0,09 mg/kg were determined as follows: Cmax — 12,44±4,689, 46,10±14,295, 92,48±33,896 ng/ml; Vd — 304,01±55,300, 299,67±64,244, 252,96±47,790 l; T1/2 — 6,72±1,290, 6,84±2,341, 6,06±2,287 h; Cl — 32,19±6,919, 32,29±8,357, 31,55±10,113 l/h, respectively. Dose proportionality (linear PK) for parameters Cmax, AUC0-t and AUC0-∞ was established. Dose-dependent reduction of ADP-induced platelet aggregation degree and area under curve was revealed at period of 15 min to 2-4 h after Angipur infusion in doses 0,05 and 0,09 mg/kg.Conclusion. Results of phase I clinical trial demonstrated good tolerability of single intravenous infusions of Angipur (0,015, 0,05 и 0,09 mg/kg) in healthy subjects. We determined key PK parameters and indicated dose-dependent antiplatelet activity of Angipur.
Collapse
|
21
|
Marcinkowska M, Kubacka M, Zagorska A, Jaromin A, Fajkis-Zajaczkowska N, Kolaczkowski M. Exploring the antiplatelet activity of serotonin 5-HT 2A receptor antagonists bearing 6-fluorobenzo[d]isoxazol-3-yl)propyl) motif- as potential therapeutic agents in the prevention of cardiovascular diseases. Biomed Pharmacother 2021; 145:112424. [PMID: 34785417 DOI: 10.1016/j.biopha.2021.112424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/30/2021] [Accepted: 11/10/2021] [Indexed: 01/19/2023] Open
Abstract
Small drug-like molecules that can block the function of serotonin 5-HT2A receptors have garnered considerable attention due to their ability to inhibit platelet aggregation and the possible prevention of atherosclerotic lesions. Although clinical data provided compelling evidence for the efficacy of this approach in the prevention of various cardiovascular conditions, the chemical space of 5-HT2A receptor antagonists is limited to ketanserin and sarpogrelate. To expand the portfolio of novel chemical motifs with potential antiplatelet activity, we evaluated the antiplatelet activity of a series of 6-fluorobenzo[d]isoxazole derivatives that possess a high affinity for 5-HT2A receptor. Here we describe in vitro studies showing that 6-fluorobenzo[d]isoxazole derivatives exert promising antiplatelet activity in three various in vitro models of platelet aggregation, as well as limit serotonin-induced vasoconstriction. Compound AZ928 showed in vitro activity greater than the clinically approved drug sarpogrelate. In addition to promising antiplatelet activity, the novel series was characterized by a favorable safety profile. Our findings show that the novel series exerts promising antiplatelet efficacy while being deprived of potential side effects, such as hemolytic activity, which render these compounds as potential substances for further investigation in the field of cardiovascular research.
Collapse
Affiliation(s)
- Monika Marcinkowska
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland.
| | - Monika Kubacka
- Chair of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland.
| | - Agnieszka Zagorska
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Jaromin
- Department of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Nikola Fajkis-Zajaczkowska
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Marcin Kolaczkowski
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
22
|
Janus-Bell E, Yakusheva A, Scandola C, Receveur N, Ahmed UM, Mouriaux C, Bourdon C, Loubière C, Eckly A, Senis YA, Panteleev MA, Gachet C, Mangin PH. Characterization of the Role of Integrin α5β1 in Platelet Function, Hemostasis, and Experimental Thrombosis. Thromb Haemost 2021; 122:767-776. [PMID: 34598304 PMCID: PMC9197593 DOI: 10.1055/a-1659-6214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Objective
Integrins are key regulators of various platelet functions. The pathophysiological importance of most platelet integrins has been investigated, with the exception of α5β1, a receptor for fibronectin. The aim of this study was to characterize the role of α5β1 in megakaryopoiesis, platelet function, and to determine its importance in hemostasis and arterial thrombosis.
Approach and Results
We generated a mouse strain deficient for integrin α5β1 on megakaryocytes and platelets (PF4Cre-α5
−/−
). PF4Cre-α5
−/−
mice were viable, fertile, and presented no apparent signs of abnormality. Megakaryopoiesis appears unaltered as evidence by a normal megakaryocyte morphology and development, which is in agreement with a normal platelet count. Expression of the main platelet receptors and the response of PF4Cre-α5
−/−
platelets to a series of agonists were all completely normal. Adhesion and aggregation of PF4Cre-α5
−/−
platelets under shear flow on fibrinogen, laminin, or von Willebrand factor were unimpaired. In contrast, PF4Cre-α5
−/−
platelets displayed a marked decrease in adhesion, activation, and aggregation on fibrillar cellular fibronectin and collagen. PF4Cre-α5
−/−
mice presented no defect in a tail-bleeding time assay and no increase in inflammatory bleeding in a reverse passive Arthus model and a lipopolysaccharide pulmonary inflammation model. Finally, no defects were observed in three distinct experimental models of arterial thrombosis based on ferric chloride-induced injury of the carotid artery, mechanical injury of the abdominal aorta, or laser-induced injury of mesenteric vessels.
Conclusion
In summary, this study shows that platelet integrin α5β1 is a key receptor for fibrillar cellular fibronectin but is dispensable in hemostasis and arterial thrombosis.
Collapse
Affiliation(s)
- Emily Janus-Bell
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Strasbourg, France
| | - Alexandra Yakusheva
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Strasbourg, France.,Center for Theoretical Problems of Physicochemical Pharmacology, Cellular Hemostasis Lab, Moscow, Russia
| | - Cyril Scandola
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Strasbourg, France
| | - Nicolas Receveur
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Strasbourg, France
| | - Usman Muhammad Ahmed
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Strasbourg, France
| | - Clarisse Mouriaux
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Strasbourg, France
| | - Catherine Bourdon
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Strasbourg, France
| | - Cécile Loubière
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Strasbourg, France
| | - Anita Eckly
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Strasbourg, France
| | - Yotis A Senis
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Strasbourg, France
| | - Mikhail A Panteleev
- Center for Theoretical Problems of Physicochemical Pharmacology, Cellular Hemostasis Lab, Moscow, Russia
| | - Christian Gachet
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Strasbourg, France
| | - Pierre H Mangin
- Université de Strasbourg, INSERM, EFS Grand-Est, BPPS UMR-S1255, FMTS, Strasbourg, France
| |
Collapse
|
23
|
Obermann WMJ, Brockhaus K, Eble JA. Platelets, Constant and Cooperative Companions of Sessile and Disseminating Tumor Cells, Crucially Contribute to the Tumor Microenvironment. Front Cell Dev Biol 2021; 9:674553. [PMID: 33937274 PMCID: PMC8085416 DOI: 10.3389/fcell.2021.674553] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Although platelets and the coagulation factors are components of the blood system, they become part of and contribute to the tumor microenvironment (TME) not only within a solid tumor mass, but also within a hematogenous micrometastasis on its way through the blood stream to the metastatic niche. The latter basically consists of blood-borne cancer cells which are in close association with platelets. At the site of the primary tumor, the blood components reach the TME via leaky blood vessels, whose permeability is increased by tumor-secreted growth factors, by incomplete angiogenic sprouts or by vasculogenic mimicry (VM) vessels. As a consequence, platelets reach the primary tumor via several cell adhesion molecules (CAMs). Moreover, clotting factor VII from the blood associates with tissue factor (TF) that is abundantly expressed on cancer cells. This extrinsic tenase complex turns on the coagulation cascade, which encompasses the activation of thrombin and conversion of soluble fibrinogen into insoluble fibrin. The presence of platelets and their release of growth factors, as well as fibrin deposition changes the TME of a solid tumor mass substantially, thereby promoting tumor progression. Disseminating cancer cells that circulate in the blood stream also recruit platelets, primarily by direct cell-cell interactions via different receptor-counterreceptor pairs and indirectly by fibrin, which bridges the two cell types via different integrin receptors. These tumor cell-platelet aggregates are hematogenous micrometastases, in which platelets and fibrin constitute a particular TME in favor of the cancer cells. Even at the distant site of settlement, the accompanying platelets help the tumor cell to attach and to grow into metastases. Understanding the close liaison of cancer cells with platelets and coagulation factors that change the TME during tumor progression and spreading will help to curb different steps of the metastatic cascade and may help to reduce tumor-induced thrombosis.
Collapse
Affiliation(s)
| | | | - Johannes A. Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, Germany
| |
Collapse
|
24
|
von Hundelshausen P, Siess W. Bleeding by Bruton Tyrosine Kinase-Inhibitors: Dependency on Drug Type and Disease. Cancers (Basel) 2021; 13:1103. [PMID: 33806595 PMCID: PMC7961939 DOI: 10.3390/cancers13051103] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Bruton tyrosine kinase (Btk) is expressed in B-lymphocytes, myeloid cells and platelets, and Btk-inhibitors (BTKi) are used to treat patients with B-cell malignancies, developed against autoimmune diseases, have been proposed as novel antithrombotic drugs, and been tested in patients with severe COVID-19. However, mild bleeding is frequent in patients with B-cell malignancies treated with the irreversible BTKi ibrutinib and the recently approved 2nd generation BTKi acalabrutinib, zanubrutinib and tirabrutinib, and also in volunteers receiving in a phase-1 study the novel irreversible BTKi BI-705564. In contrast, no bleeding has been reported in clinical trials of other BTKi. These include the brain-penetrant irreversible tolebrutinib and evobrutinib (against multiple sclerosis), the irreversible branebrutinib, the reversible BMS-986142 and fenebrutinib (targeting rheumatoid arthritis and lupus erythematodes), and the reversible covalent rilzabrutinib (against pemphigus and immune thrombocytopenia). Remibrutinib, a novel highly selective covalent BTKi, is currently in clinical studies of autoimmune dermatological disorders. This review describes twelve BTKi approved or in clinical trials. By focusing on their pharmacological properties, targeted disease, bleeding side effects and actions on platelets it attempts to clarify the mechanisms underlying bleeding. Specific platelet function tests in blood might help to estimate the probability of bleeding of newly developed BTKi.
Collapse
Affiliation(s)
- Philipp von Hundelshausen
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University (LMU), 80336 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Wolfgang Siess
- Institute for Cardiovascular Prevention, Ludwig-Maximilians University (LMU), 80336 Munich, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
25
|
Tsai HJ, Cheng JC, Kao ML, Chiu HP, Chiang YH, Chen DP, Rau KM, Liao HR, Tseng CP. Integrin αIIbβ3 outside-in signaling activates human platelets through serine 24 phosphorylation of Disabled-2. Cell Biosci 2021; 11:32. [PMID: 33557943 PMCID: PMC7869483 DOI: 10.1186/s13578-021-00532-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 01/05/2021] [Indexed: 11/29/2022] Open
Abstract
Background Bidirectional integrin αIIbβ3 signaling is essential for platelet activation. The platelet adaptor protein Disabled-2 (Dab2) is a key regulator of integrin signaling and is phosphorylated at serine 24 in eukaryotic cells. However, the mechanistic insight and function of Dab2-serine 24 phosphorylation (Dab2-pSer24) in platelet biology are barely understood. This study aimed to define whether and how Dab2 is phosphorylated at Ser24 during platelet activation and to investigate the effect of Dab2-pSer24 on platelet function. Results An antibody with confirmed specificity for Dab2-pSer24 was generated. By using this antibody as a tool, we showed that protein kinase C (PKC)-mediated Dab2-pSer24 was a conservative signaling event when human platelets were activated by the platelet agonists such as thrombin, collagen, ADP, 12-O-tetradecanoylphorbol-13-acetate, and the thromboxane A2 activator U46619. The agonists-stimulated Dab2-pSer24 was attenuated by pretreatment of platelets with the RGDS peptide which inhibits integrin outside-in signaling by competitive binding of integrin αIIb with fibrinogen. Direct activation of platelet integrin outside-in signaling by combined treatment of platelets with manganese dichloride and fibrinogen or by spreading of platelets on fibrinogen also resulted in Dab2-pSer24. These findings implicate that Dab2-pSer24 was associated with the outside-in signaling of integrin. Further analysis revealed that Dab2-pSer24 was downstream of Src-PKC-axis and phospholipase D1 underlying the integrin αIIbβ3 outside-in signaling. A membrane penetrating peptide R11-Ser24 which contained 11 repeats of arginine linked to the Dab2-Ser24 phosphorylation site and its flanking sequences (RRRRRRRRRRR19APKAPSKKEKK29) and the R11-S24A peptide with Ser24Ala mutation were designed to elucidate the functions of Dab2-pSer24. R11-Ser24 but not R11-S24A inhibited agonists-stimulated Dab2-pSer24 and consequently suppressed platelet spreading on fibrinogen, with no effect on platelet aggregation and fibrinogen binding. Notably, Ser24 and the previously reported Ser723 phosphorylation (Dab2-pSer723) occurred exclusively in a single Dab2 molecule and resulted in distinctive subcellular distribution and function of Dab2. Dab2-pSer723 was mainly distributed in the cytosol of activated platelets and associated with integrin inside-out signaling, while Dab2-pSer24 was mainly distributed in the membrane fraction of activated platelets and associated with integrin outside-in signaling. Conclusions These findings demonstrate for the first time that Dab2-pSer24 is conservative in integrin αIIbβ3 outside-in signaling during platelet activation and plays a novel role in the control of cytoskeleton reorganization and platelet spreading on fibrinogen.
Collapse
Affiliation(s)
- Hui-Ju Tsai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Ju-Chien Cheng
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, 404, Taiwan, Republic of China
| | - Man-Leng Kao
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Hung-Pin Chiu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Yi-Hsuan Chiang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China
| | - Ding-Ping Chen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China.,Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan, Republic of China
| | - Kun-Ming Rau
- Department of Hematology-Oncology, E-Da Cancer Hospital, Kaohsiung, 824, Taiwan, Republic of China.,School of Medicine, College of Medicine, I-Shou University, Kaohsiung, 824, Taiwan, Republic of China
| | - Hsiang-Ruei Liao
- Graduate institute of Natural Products, College of Medicine, Chang-Gung University, Taoyuan, 333, Taiwan, Republic of China.,Graduate institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan, Republic of China
| | - Ching-Ping Tseng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China. .,Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan, Republic of China. .,Graduate institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China. .,Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan, Republic of China.
| |
Collapse
|
26
|
Nurden P, Stritt S, Favier R, Nurden AT. Inherited platelet diseases with normal platelet count: phenotypes, genotypes and diagnostic strategy. Haematologica 2021; 106:337-350. [PMID: 33147934 PMCID: PMC7849565 DOI: 10.3324/haematol.2020.248153] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/12/2020] [Indexed: 12/16/2022] Open
Abstract
Inherited platelet disorders resulting from platelet function defects and a normal platelet count cause a moderate or severe bleeding diathesis. Since the description of Glanzmann thrombasthenia resulting from defects of ITGA2B and ITGB3, new inherited platelet disorders have been discovered, facilitated by the use of high throughput sequencing and genomic analyses. Defects of RASGRP2 and FERMT3 responsible for severe bleeding syndromes and integrin activation have illustrated the critical role of signaling molecules. Important are mutations of P2RY12 encoding the major ADP receptor causal for an inherited platelet disorder with inheritance characteristics that depend on the variant identified. Interestingly, variants of GP6 encoding the major subunit of the collagen receptor GPVI/FcRγ associate only with mild bleeding. The numbers of genes involved in dense granule defects including Hermansky-Pudlak and Chediak Higashi syndromes continue to progress and are updated. The ANO6 gene encoding a Ca2+-activated ion channel required for phospholipid scrambling is responsible for the rare Scott syndrome and decreased procoagulant activity. A novel EPHB2 defect in a familial bleeding syndrome demonstrates a role for this tyrosine kinase receptor independent of the classical model of its interaction with ephrins. Such advances highlight the large diversity of variants affecting platelet function but not their production, despite the difficulties in establishing a clear phenotype when few families are affected. They have provided insights into essential pathways of platelet function and have been at the origin of new and improved therapies for ischemic disease. Nevertheless, many patients remain without a diagnosis and requiring new strategies that are now discussed.
Collapse
Affiliation(s)
| | - Simon Stritt
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala
| | - Remi Favier
- French National Reference Center for Inherited Platelet Disorders, Armand Trousseau Hospital, Assistance Publique-Hôpitaux de Paris, Paris
| | | |
Collapse
|
27
|
Bouck EG, de la Fuente M, Zunica ER, Li W, Mumaw MM, Nieman MT. Murine cadherin-6 mediates thrombosis in vivo in a platelet-independent manner. Res Pract Thromb Haemost 2021; 5:125-131. [PMID: 33537536 PMCID: PMC7845066 DOI: 10.1002/rth2.12458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Platelet adhesion is the critical process mediating stable thrombus formation. Previous reports of cadherin-6 on human platelets have demonstrated its role in platelet aggregation and thrombus formation. OBJECTIVES We aimed to further characterize the importance of cadherin-6 in thrombosis in vivo. METHODS Cadherin-6 platelet expression was evaluated by western blotting, flow cytometry, and immunoprecipitation. Thrombosis was evaluated using the FeCl3 and Rose Bengal carotid artery models in C57Bl6 mice treated with anti-cadherin-6 or IgG and wild-type or Cdh6-/- mice. Platelet function was compared in wild-type and Cdh6-/- mice using tail-clip assays, aggregometry, and flow cytometry. RESULTS Human platelet expression of cadherin-6 was confirmed at ~3000 copies per platelet. Cdh6-/- mice or those treated with anti-cadherin-6 antibody showed an increased time to occlusion in both thrombosis models. Cadherin-6 was not expressed on mouse platelets, and there were no differences in tail bleeding times, platelet aggregation, or platelet activation in wild-type versus Cdh6-/- mice. CONCLUSIONS Cadherin-6 plays an essential role in thrombosis in vivo. However, cadherin-6 is not expressed on murine platelets. These data are in contrast to human platelets, which express a functional cadherin-6/catenin complex. The essential, platelet-independent role for cadherin-6 in hemostasis may allow it to be an effective and safe therapeutic target.
Collapse
Affiliation(s)
- Emma G. Bouck
- Department of PharmacologyCase Western Reserve UniversityClevelandOHUSA
| | | | | | - Wei Li
- Deparmtent of Biomedical SciencesMarshall University Joan C. Edwards School of MedicineHuntingtonWVUSA
| | - Michele M. Mumaw
- Department of PharmacologyCase Western Reserve UniversityClevelandOHUSA
| | - Marvin T. Nieman
- Department of PharmacologyCase Western Reserve UniversityClevelandOHUSA
| |
Collapse
|
28
|
Hu Y, Qi FX, Yu LN, Geng W. Effects of etibatide combined with emergency percutaneous coronary intervention on blood perfusion and cardiac function in patients with acute myocardial infarction. Pak J Med Sci 2020; 37:185-190. [PMID: 33437274 PMCID: PMC7794116 DOI: 10.12669/pjms.37.1.2950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Objectives: To investigate the effects of etibatide combined with emergency percutaneous coronary intervention (PCI) on blood perfusion and cardiac function in acute myocardial infarction (AMI) patients. Methods: This was a prospective, randomized, controlled study. From November 2015 to June 2019, 196 patients with ST-segment elevation myocardial infarction (STEMI) undergoing emergency PCI admitted to Baoding First Central Hospital were enrolled. The 196 STEMI patients were randomly divided into experimental group and control group. In the experimental group, STEMI patients were treated with emergency PCI + etibatide; while in the control group, only PCI was performed. Observation indexes included: general data, myocardial perfusion and cardiac function indexes and major adverse cardiac events (MACE). Results: There was no significant difference in general data between the two groups (P > 0.05). The rate of ST-segment resolution (STR) in the experimental group was better than that in the control group (P < 0.05). In myocardial contrast echocardiography (MCE), higher peak intensity (PI) and shorter time-to-peak (TP) were observed in the experimental group compared with the control group (P < 0.05). The platelet aggregation rate was compared between the two group at the time points of before PCI, after PCI and two hour after drug withdrawal, and there was no significant change in the platelet aggregation rate of the control group between different time points (before PCI, after PCI and two hour after drug withdrawal); while the platelet aggregation rate of the experimental group was significantly lower after PCI and two hour after drug withdrawal than that before PCI (P < 0.05), and an obviously decreased platelet aggregation rate was found in the experimental group(P < 0.05). After three months of follow-up, there was one case of MACE in the experimental group and 1 case of MACE in the control group, without any difference in the incidence of MACE between the two groups (P > 0.05). Conclusion: Etibatide combined with emergency PCI could improve myocardial reperfusion and cardiac function in patients with acute STEMI without increasing the incidence of MACE.
Collapse
Affiliation(s)
- Ying Hu
- Ying Hu, Department of Cardiology, Baoding First Central Hospital, Baoding 071000, Baoding, China
| | - Fan-Xing Qi
- Fan-xing Qi, Department of Neurology, Baoding First Central Hospital, Baoding 071000, Baoding, China
| | - Li-Na Yu
- Li-na Yu, Department of Cardiology, Baoding First Central Hospital, Baoding 071000, Baoding, China
| | - Wei Geng
- Wei Geng, Department of Cardiology, Baoding First Central Hospital, Baoding 071000, Baoding, China
| |
Collapse
|
29
|
Zenych A, Fournier L, Chauvierre C. Nanomedicine progress in thrombolytic therapy. Biomaterials 2020; 258:120297. [DOI: 10.1016/j.biomaterials.2020.120297] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/10/2020] [Accepted: 08/01/2020] [Indexed: 12/11/2022]
|
30
|
Zhou J, Yang RP, Song W, Xu HM, Wang YH. Antiplatelet Activity of Tussilagone via Inhibition of the GPVI Downstream Signaling Pathway in Platelets. Front Med (Lausanne) 2020; 7:380. [PMID: 32850895 PMCID: PMC7403204 DOI: 10.3389/fmed.2020.00380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022] Open
Abstract
Tussilagone is a sesquiterpenoid extracted from Tussilago farfara and is used as an oriental medicine for asthma and bronchitis. Although previous studies have shown that tussilagone has an inhibitory effect on platelet aggregation, no studies have been performed to investigate its precise effect on platelets, and the underlying mechanism remains unclear. In the present study, we showed that tussilagone inhibited platelet aggregation induced by collagen, thrombin and ADP, as well as platelet release induced by collagen and thrombin, in mice. Tussilagone decreased P-selectin expression and αIIbβ3 activation (JON/A binding) in activated platelets, which indicated that tussilagone inhibited platelet activation. Moreover, tussilagone suppressed platelet spreading on fibrinogen and clot retraction. The levels of phosphorylated Syk, PLCγ2, Akt, GSK3β, and MAPK (ERK1/2 and P38) and molecules associated with GPVI downstream signaling were downregulated in the presence of tussilagone. In addition, tussilagone prolonged the occlusion time in a mouse model of FeCl3-induced carotid artery thrombosis and had no effect on mouse tail bleeding time. These results indicate that tussilagone inhibits platelet function in vitro and in vivo and that the underlying mechanism involves the Syk/PLCγ2-PKC/MAPK and PI3K-Akt-GSK3β signaling pathways downstream of GPVI. This research suggests that tussilagone is a potential candidate antiplatelet drug for the prevention of thrombosis.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Pharmacy, Zhumadian Central Hospital, Zhumadian, China
| | - Ru-Ping Yang
- Department of Pharmacy, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Wei Song
- Department of Pharmacy, Renmin Hospital, Wuhan University, Wuhan, China
| | - Hui-Min Xu
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong-Hui Wang
- Department of Pharmacy, Zhumadian Central Hospital, Zhumadian, China
| |
Collapse
|
31
|
Parra-Izquierdo I, Bradley R, Aslan JE. Platelets get gutted by PAG. Platelets 2020; 31:618-620. [PMID: 32348162 PMCID: PMC7332399 DOI: 10.1080/09537104.2020.1759793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 01/21/2023]
Affiliation(s)
- Iván Parra-Izquierdo
- Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Ryan Bradley
- Helfgott Research Institute, National University of Natural Medicine, Portland, OR, USA
- Department of Family Medicine and Public Health, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Joseph E. Aslan
- Knight Cardiovascular Institute, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
32
|
Millington-Burgess SL, Bonna AM, Rahman T, Harper MT. Ethaninidothioic acid (R5421) is not a selective inhibitor of platelet phospholipid scramblase activity. Br J Pharmacol 2020; 177:4007-4020. [PMID: 32496597 PMCID: PMC7429475 DOI: 10.1111/bph.15152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/16/2022] Open
Abstract
Background and Purpose Ethaninidothioic acid (R5421) has been used as a scramblase inhibitor to determine the role of phospholipid scrambling across a range of systems including platelet procoagulant activity. The selectivity of R5421 has not been thoroughly studied. Here, we characterised the effects of R5421 on platelet function and its suitability for use as a scramblase inhibitor. Experimental Approach Human platelet activation was measured following pretreatment with R5421 and stimulation with a range of agonists. Phosphatidylserine exposure was measured using annexin V binding. Integrin αIIbβ3 activation and α‐granule release were measured by flow cytometry. Cytosolic Ca2+ signals were measured using Cal520 fluorescence. An in silico ligand‐based screen identified 16 compounds which were tested in these assays. Key Results R5421 inhibited A23187‐induced phosphatidylserine exposure in a time‐ and temperature‐dependent manner. R5421 inhibited Ca2+ signalling from the PAR1, PAR4 and glycoprotein VI receptors as well as platelet αIIbβ3 integrin activation and α‐granule release. R5421 is therefore not a selective inhibitor of platelet scramblase activity. An in silico screen identified the pesticide thiodicarb as similar to R5421. It also inhibited platelet phosphatidylserine exposure, Ca2+ signalling from the PAR1 and glycoprotein VI, αIIbβ3 activation and α‐granule release. Thiodicarb additionally disrupted Ca2+ homeostasis in unstimulated platelets. Conclusion and Implications R5421 is not a selective inhibitor of platelet scramblase activity. We have identified the pesticide thiodicarb, which had similar effects on platelet function to R5421 as well as additional disruption of Ca2+ signalling which may underlie some of thiodicarb's toxicity.
Collapse
Affiliation(s)
| | | | - Taufiq Rahman
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
33
|
Saito H, Hayakawa M, Kamoshita N, Yasumoto A, Suzuki-Inoue K, Yatomi Y, Ohmori T. Establishment of a megakaryoblastic cell line for conventional assessment of platelet calcium signaling. Int J Hematol 2020; 111:786-794. [PMID: 32180119 DOI: 10.1007/s12185-020-02853-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/28/2020] [Accepted: 03/01/2020] [Indexed: 10/24/2022]
Abstract
Platelet function tests utilizing agonists or patient serum are generally performed to assess platelet activation ex vivo. However, inter-individual differences in platelet reactivity and donor requirements make it difficult to standardize these tests. Here, we established a megakaryoblastic cell line for the conventional assessment of platelet activation. We first compared intracellular signaling pathways using CD32 crosslinking in several megakaryoblastic cell lines, including CMK, UT-7/TPO, and MEG-01 cells. We confirmed that CD32 was abundantly expressed on the cell surface, and that intracellular calcium mobilization and tyrosine phosphorylation occurred after CD32 crosslinking. We next employed GCaMP6s, a highly sensitive calcium indicator, to facilitate the detection of calcium mobilization by transducing CMK and MEG-01 cells with a plasmid harboring GCaMP6s under the control of the human elongation factor-1α promoter. Cells that stably expressed GCaMP6s emitted enhanced green fluorescent protein fluorescence in response to intracellular calcium mobilization following agonist stimulation in the absence of pretreatment. In summary, we have established megakaryoblastic cell lines that mimic platelets by mobilizing intracellular calcium in response to several agonists. These cell lines can potentially be utilized in high-throughput screening assays for the discovery of new antiplatelet drugs or diagnosis of disorders caused by platelet-activating substances.
Collapse
Affiliation(s)
- Hiroshi Saito
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, 329-0498, Japan
| | - Morisada Hayakawa
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, 329-0498, Japan
| | - Nobuhiko Kamoshita
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, 329-0498, Japan
| | - Atsushi Yasumoto
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Katsue Suzuki-Inoue
- Department of Clinical and Laboratory Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Tsukasa Ohmori
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, 329-0498, Japan.
| |
Collapse
|
34
|
Asada Y, Yamashita A, Sato Y, Hatakeyama K. Pathophysiology of atherothrombosis: Mechanisms of thrombus formation on disrupted atherosclerotic plaques. Pathol Int 2020; 70:309-322. [PMID: 32166823 PMCID: PMC7317428 DOI: 10.1111/pin.12921] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022]
Abstract
Atherothrombosis is a leading cause of cardiovascular mortality and morbidity worldwide. The underlying mechanisms of atherothrombosis comprise plaque disruption and subsequent thrombus formation. Arterial thrombi are thought to mainly comprise aggregated platelets as a result of high blood velocity. However, thrombi that develop on disrupted plaques comprise not only aggregated platelets, but also large amounts of fibrin, because plaques contain large amount of tissue factor that activate the coagulation cascade. Since not all thrombi grow large enough to occlude the vascular lumen, the propagation of thrombi is also critical in the onset of adverse vascular events. Various factors such as vascular wall thrombogenicity, local hemorheology, systemic thrombogenicity and fibrinolytic activity modulate thrombus formation and propagation. Although the activation mechanisms of platelets and the coagulation cascade have been intensively investigated, the underlying mechanisms of occlusive thrombus formation on disrupted plaques remain obscure. Pathological findings derived from humans and animal models of human atherothrombosis have uncovered pathophysiological processes during thrombus formation and propagation after plaque disruption, and novel factors have been identified that modulate the activation of platelets and the coagulation cascade. These findings have also provided insights into the development of novel drugs for atherothrombosis.
Collapse
Affiliation(s)
- Yujiro Asada
- Pathophysiology Section, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Atsushi Yamashita
- Pathophysiology Section, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yuichiro Sato
- Department of Diagnostic Pathology, University of Miyazaki Hospital, University of Miyazaki, Miyazaki, Japan
| | - Kinta Hatakeyama
- Department of Diagnostic Pathology, Nara Medical University, Nara, Japan
| |
Collapse
|
35
|
Heo JH, Nam HS, Kim YD, Choi JK, Kim BM, Kim DJ, Kwon I. Pathophysiologic and Therapeutic Perspectives Based on Thrombus Histology in Stroke. J Stroke 2020; 22:64-75. [PMID: 32027792 PMCID: PMC7005358 DOI: 10.5853/jos.2019.03440] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/23/2020] [Indexed: 01/04/2023] Open
Abstract
Recent advances in endovascular thrombectomy have enabled the histopathologic analysis of fresh thrombi in patients with acute stroke. Histologic analysis has shown that the thrombus composition is very heterogeneous between patients. However, the distribution pattern of each thrombus component often differs between patients with cardiac thrombi and those with arterial thrombi, and the efficacy of endovascular thrombectomy is different according to the thrombus composition. Furthermore, the thrombus age is related to the efficacy of reperfusion therapy. Recent studies have shown that neutrophils and neutrophil extracellular traps contribute to thrombus formation and resistance to reperfusion therapy. Histologic features of thrombi in patients with stroke may provide some clues to stroke etiology, which is helpful for determining the strategy of stroke prevention. Research on thrombus may also be helpful for improving reperfusion therapy, including the development of new thrombolytic agents.
Collapse
Affiliation(s)
- Ji Hoe Heo
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.,Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Hyo Suk Nam
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.,Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Young Dae Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.,Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Kyo Choi
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Byung Moon Kim
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea.,Department of Radiology, Yonsei University College of Medicine, Seoul, Korea
| | - Dong Joon Kim
- Department of Radiology, Yonsei University College of Medicine, Seoul, Korea
| | - Il Kwon
- Integrative Research Center for Cerebrovascular and Cardiovascular Diseases, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
36
|
Schwarz PEH, Pinter A, Melzer N, Barteczek P, Reinhardt M. ERAPSO: Revealing the High Burden of Obesity in German Psoriasis Patients. Dermatol Ther (Heidelb) 2019; 9:579-587. [PMID: 31297711 PMCID: PMC6704194 DOI: 10.1007/s13555-019-0314-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Indexed: 12/26/2022] Open
Abstract
INTRODUCTION Plaque psoriasis is a chronic, systemic-inflammatory disease characterized by skin erythema, plaques and scaling, and is associated with different comorbidities like psoriatic arthritis, obesity, and cardiometabolic diseases. Obesity aggravates cardiovascular risk in psoriasis patients and can negatively affect psoriasis disease severity with proinflammatory adipocytokine production by adipocytes and infiltrated immune cells. METHODS An online survey on nutrition and physical activity in psoriasis participants (ERAPSO) collected cross-sectional data about eating behavior, physical activity, and prevalence of obesity and metabolic syndrome components from 9940 psoriasis participants in Germany. RESULTS ERAPSO revealed a high burden of obesity in German psoriasis participants with 66.9% overweight or obese (body mass index [BMI] ≥ 25 kg/m2), compared to approximately 50% of the German general population. Affected body surface area (BSA), cardiovascular risk factors, and cardiovascular event frequency increased with increasing BMI. Severe psoriasis was more frequent in overweight participants and impaired engagement in weight loss diets and physical activity. Most German psoriasis participants (90.2%) with BMI ≥ 25 kg/m2 perceived themselves as overweight. A minority (21.2%) were currently exercising with the aim of losing weight, and 12.6% were currently on a weight loss diet. In overweight participants, just 13.3% stated that their physicians and/or health insurance offered specific weight loss programs. CONCLUSION ERAPSO revealed inadequate medical care of obese psoriasis participants with insufficient support for weight loss through diet or increased physical activity. Although psoriasis participants showed an intact self-perception of obesity, they seemed to lack intrinsic motivation to lose weight, highlighting the need for external support in losing weight via tailored programs. Since psoriasis severity correlates with impairment in diets and sports, treating psoriasis adequately may allow participants to follow weight loss programs more successfully. FUNDING Novartis Pharma GmbH, Nuremberg, DE.
Collapse
Affiliation(s)
| | - Andreas Pinter
- University Hospital Frankfurt, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
37
|
Palasubramaniam J, Wang X, Peter K. Myocardial Infarction-From Atherosclerosis to Thrombosis. Arterioscler Thromb Vasc Biol 2019; 39:e176-e185. [PMID: 31339782 DOI: 10.1161/atvbaha.119.312578] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jathushan Palasubramaniam
- From the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia (J.P., X.W., K.P.).,Department of Medicine, Monash University, Melbourne, Australia (J.P., X.W., K.P.).,Department of Cardiology, Alfred Hospital, Melbourne, Australia (J.P., K.P.)
| | - Xiaowei Wang
- From the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia (J.P., X.W., K.P.).,Department of Medicine, Monash University, Melbourne, Australia (J.P., X.W., K.P.)
| | - Karlheinz Peter
- From the Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia (J.P., X.W., K.P.).,Department of Medicine, Monash University, Melbourne, Australia (J.P., X.W., K.P.).,Department of Cardiology, Alfred Hospital, Melbourne, Australia (J.P., K.P.)
| |
Collapse
|
38
|
Analyzing pharmacological intervention points: A method to calculate external stimuli to switch between steady states in regulatory networks. PLoS Comput Biol 2019; 15:e1007075. [PMID: 31310618 PMCID: PMC6660093 DOI: 10.1371/journal.pcbi.1007075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 07/26/2019] [Accepted: 05/07/2019] [Indexed: 11/21/2022] Open
Abstract
Once biological systems are modeled by regulatory networks, the next step is to include external stimuli, which model the experimental possibilities to affect the activity level of certain network’s nodes, in a mathematical framework. Then, this framework can be interpreted as a mathematical optimal control framework such that optimization algorithms can be used to determine external stimuli which cause a desired switch from an initial state of the network to another final state. These external stimuli are the intervention points for the corresponding biological experiment to obtain the desired outcome of the considered experiment. In this work, the model of regulatory networks is extended to controlled regulatory networks. For this purpose, external stimuli are considered which can affect the activity of the network’s nodes by activation or inhibition. A method is presented how to calculate a selection of external stimuli which causes a switch between two different steady states of a regulatory network. A software solution based on Jimena and Mathworks Matlab is provided. Furthermore, numerical examples are presented to demonstrate application and scope of the software on networks of 4 nodes, 11 nodes and 36 nodes. Moreover, we analyze the aggregation of platelets and the behavior of a basic T-helper cell protein-protein interaction network and its maturation towards Th0, Th1, Th2, Th17 and Treg cells in accordance with experimental data. Organisms can be seen as molecular networks being able to react on external stimuli. Experiments are performed to understand the underlying regulating mechanisms within the molecular network. A common purpose for these efforts is to reveal mechanisms with which the molecular networks can be affected to achieve a desired behavior. To cover the complexity of life these models of molecular networks often need to be quite huge and need to have many cross connections between the different agents of the network that regulate the behavior of the network. A useful tool to structure this complexity are mathematical methods. Once the model based on experiments is set up the experimental data can be further processed by mathematical methods. As experiments are cumbersome, the present work provides a framework that can be used to systematically figure out intervention points in molecular networks to cause a desired effect. In this way promising intervention strategies can be obtained. For instance the process of obtaining new drugs for pharmacological modulation can be shortened as in the best case the calculated intervention strategy just has to be validated with one experiment and the time consuming procedure of searching an intervention strategy with several experiments can be saved.
Collapse
|
39
|
Developments in inhibiting platelet aggregation based on different design strategies. Future Med Chem 2019; 11:1757-1775. [PMID: 31288579 DOI: 10.4155/fmc-2018-0345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Platelet aggregation is the central event in hemostasis and thrombosis. Up to now, many agents inhibiting platelet aggregation have been approved for the treatment of thrombotic disorders. In this review, we mainly summarized the progress in the research of platelet aggregation inhibitors based on different design strategies. The advantage and challenge of corresponding targets are also discussed in this article. We hope more platelet aggregation inhibitors with efficacy and safety will be discovered in the future.
Collapse
|
40
|
Kuo YJ, Chung CH, Huang TF. From Discovery of Snake Venom Disintegrins to A Safer Therapeutic Antithrombotic Agent. Toxins (Basel) 2019; 11:toxins11070372. [PMID: 31247995 PMCID: PMC6669693 DOI: 10.3390/toxins11070372] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/22/2019] [Accepted: 06/24/2019] [Indexed: 12/31/2022] Open
Abstract
Snake venoms affect blood coagulation and platelet function in diverse ways. Some venom components inhibit platelet function, while other components induce platelet aggregation. Among the platelet aggregation inhibitors, disintegrins have been recognized as unique and potentially valuable tools for examining cell–matrix and cell–cell interactions and for the development of antithrombotic and antiangiogenic agents according to their anti-adhesive and anti-migration effect on tumor cells and antiangiogenesis activities. Disintegrins represent a family of low molecular weight, cysteine-rich, Arg-Gly-Asp(RGD)/Lys-Gly-Asp(KGD)-containing polypeptides, which inhibit fibrinogen binding to integrin αIIbβ3 (i.e., platelet glycoprotein IIb/IIIa), as well as ligand binding to integrins αvβ3, and α5β1 expressed on cells (i.e., fibroblasts, tumor cells, and endothelial cells). This review focuses on the current efforts attained from studies using disintegrins as a tool in the field of arterial thrombosis, angiogenesis, inflammation, and tumor metastasis, and briefly describes their potential therapeutic applications and side effects in integrin-related diseases. Additionally, novel R(K)GD-containing disintegrin TMV-7 mutants are being designed as safer antithrombotics without causing thrombocytopenia and bleeding.
Collapse
Affiliation(s)
- Yu-Ju Kuo
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Ching-Hu Chung
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan
| | - Tur-Fu Huang
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan.
- Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
| |
Collapse
|
41
|
Nurden AT. Acquired Glanzmann thrombasthenia: From antibodies to anti-platelet drugs. Blood Rev 2019; 36:10-22. [PMID: 31010659 DOI: 10.1016/j.blre.2019.03.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 02/06/2023]
Abstract
In contrast to the inherited platelet disorder given by mutations in the ITGA2B and ITGB3 genes, mucocutaneous bleeding from a spontaneous inhibition of normally expressed αIIbβ3 characterizes acquired Glanzmann thrombasthenia (GT). Classically, it is associated with autoantibodies or paraproteins that block platelet aggregation without causing a fall in platelet count. However, inhibitory antibodies to αIIbβ3 are widely associated with primary immune thrombocytopenia (ITP), occur in secondary ITP associated with leukemia and related disorders, solid cancers and myeloma, other autoimmune diseases, following organ transplantation while cytoplasmic dysregulation of αIIbβ3 function features in myeloproliferative and myelodysplastic syndromes. Antibodies to αIIbβ3 occur during viral and bacterial infections, while drug-dependent antibodies reacting with αIIbβ3 are a special case. Direct induction of acquired GT is a feature of therapies that block platelets in coronary artery disease. This review looks at these conditions, emphasizing molecular mechanisms, therapy, patient management and future directions for research.
Collapse
Affiliation(s)
- Alan T Nurden
- Institut de Rhythmologie et de Modélisation Cardiaque, Plateforme Technologique d'Innovation Biomédicale, Hôpital Xavier Arnozan, Pessac, France.
| |
Collapse
|
42
|
Huang J, Li X, Shi X, Zhu M, Wang J, Huang S, Huang X, Wang H, Li L, Deng H, Zhou Y, Mao J, Long Z, Ma Z, Ye W, Pan J, Xi X, Jin J. Platelet integrin αIIbβ3: signal transduction, regulation, and its therapeutic targeting. J Hematol Oncol 2019; 12:26. [PMID: 30845955 PMCID: PMC6407232 DOI: 10.1186/s13045-019-0709-6] [Citation(s) in RCA: 219] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Integrins are a family of transmembrane glycoprotein signaling receptors that can transmit bioinformation bidirectionally across the plasma membrane. Integrin αIIbβ3 is expressed at a high level in platelets and their progenitors, where it plays a central role in platelet functions, hemostasis, and arterial thrombosis. Integrin αIIbβ3 also participates in cancer progression, such as tumor cell proliferation and metastasis. In resting platelets, integrin αIIbβ3 adopts an inactive conformation. Upon agonist stimulation, the transduction of inside-out signals leads integrin αIIbβ3 to switch from a low- to high-affinity state for fibrinogen and other ligands. Ligand binding causes integrin clustering and subsequently promotes outside-in signaling, which initiates and amplifies a range of cellular events to drive essential platelet functions such as spreading, aggregation, clot retraction, and thrombus consolidation. Regulation of the bidirectional signaling of integrin αIIbβ3 requires the involvement of numerous interacting proteins, which associate with the cytoplasmic tails of αIIbβ3 in particular. Integrin αIIbβ3 and its signaling pathways are considered promising targets for antithrombotic therapy. This review describes the bidirectional signal transduction of integrin αIIbβ3 in platelets, as well as the proteins responsible for its regulation and therapeutic agents that target integrin αIIbβ3 and its signaling pathways.
Collapse
Affiliation(s)
- Jiansong Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xia Li
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofeng Shi
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mark Zhu
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shujuan Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Huang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huafeng Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Ling Li
- Department of Hematological Malignancies Translational Science, Gehr Family Center for Leukemia Research, Hematologic Malignancies and Stem Cell Transplantation Institute, Beckman Research Institute, City of Hope Medical Center, Duarte, CA, 91010, USA
| | - Huan Deng
- Department of Pathology, The Fourth Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yulan Zhou
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianhua Mao
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Sino-French Research Centre for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhangbiao Long
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhixin Ma
- Clinical Prenatal Diagnosis Center, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenle Ye
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jiajia Pan
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China.,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaodong Xi
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Collaborative Innovation Center of Hematology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Sino-French Research Centre for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. .,Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang, China. .,Institute of Hematology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
43
|
Lip GYH, Collet JP, Haude M, Byrne R, Chung EH, Fauchier L, Halvorsen S, Lau D, Lopez-Cabanillas N, Lettino M, Marin F, Obel I, Rubboli A, Storey RF, Valgimigli M, Huber K, Potpara T, Blomström Lundqvist C, Crijns H, Steffel J, Heidbüchel H, Stankovic G, Airaksinen J, Ten Berg JM, Capodanno D, James S, Bueno H, Morais J, Sibbing D, Rocca B, Hsieh MH, Akoum N, Lockwood DJ, Gomez Flores JR, Jardine R. 2018 Joint European consensus document on the management of antithrombotic therapy in atrial fibrillation patients presenting with acute coronary syndrome and/or undergoing percutaneous cardiovascular interventions: a joint consensus document of the European Heart Rhythm Association (EHRA), European Society of Cardiology Working Group on Thrombosis, European Association of Percutaneous Cardiovascular Interventions (EAPCI), and European Association of Acute Cardiac Care (ACCA) endorsed by the Heart Rhythm Society (HRS), Asia-Pacific Heart Rhythm Society (APHRS), Latin America Heart Rhythm Society (LAHRS), and Cardiac Arrhythmia Society of Southern Africa (CASSA). Europace 2018; 21:192-193. [DOI: 10.1093/europace/euy174] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Affiliation(s)
- Gregory Y H Lip
- Institute of Cardiovascular Sciences, University of Birmingham, UK
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool, UK
- Department of Clinical Medicine, Aalborg Thrombosis Research Unit, Aalborg University, Aalborg, Denmark
| | - Jean-Phillippe Collet
- Sorbonne Université Paris 6, ACTION Study Group (www.action-coeur.org), Institut de Cardiologie Hôpital Pitié-Salpêtrière (APHP), INSERM UMRS, Paris, France
| | - Michael Haude
- Städtische Kliniken Neuss Lukaskrankenhaus Gmbh Kardiologie, Nephrologie, Pneumologie, Neuss, Germany
| | - Robert Byrne
- Deutsches Herzzentrum Muenchen, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Eugene H Chung
- University of North Carolina at Chapel Hill, Medicine, Cardiology, Electrophysiology, Chapel Hill, NC, USA
| | - Laurent Fauchier
- Centre Hospitalier Universitaire Trousseau et Faculté de Médecine—Université François Rabelais, Tours, France
| | - Sigrun Halvorsen
- Department of Cardiology, Oslo University Hospital Ulleval, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dennis Lau
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, Australia
| | | | - Maddalena Lettino
- Cardiology Department, Humanitas Research Hospital, Rozzano, MI, Italy
| | - Francisco Marin
- Department of Cardiology, Hospital Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Israel Obel
- Milpark Hospital, Cardiology Unit, Johannesburg, South Africa
| | - Andrea Rubboli
- Division of Cardiology, Laboratory of Interventional Cardiology, Ospedale Maggiore, Bologna, Italy
| | - Robert F Storey
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | | | - Kurt Huber
- 3rd Department of Medicine, Cardiology and Intensive Care Medicine, Wilhelminenhospital Vienna, Vienna, Austria
| | - Tatjana Potpara
- School of Medicine, Belgrade University, Cardiology Clinic, Clinical Centre of Serbia, Belgrade, Serbia
| | | | - Harry Crijns
- Cardiology Department, Maastricht UMC+, Maastricht, Netherlands
| | - Jan Steffel
- University Heart Center Zurich, Zurich, Switzerland
| | - Hein Heidbüchel
- Antwerp University and University Hospital, Antwerp, Belgium
| | - Goran Stankovic
- Department of Cardiology, Clinical Center of Serbia, Belgrade, Serbia
| | - Juhani Airaksinen
- Turku University Hospital, Cardiology, Department of Internal Medicine, Turku, Finland
| | | | - Davide Capodanno
- Ferrarotto Hospital, Azienda Ospedaliero-Univ, Policlinico-Vittorio Emanuele, University of Catania, Cardiologia Department, University of Catania, Catania, Italy
| | - Stefan James
- Department of Medical Sciences and Uppsala Clinical Research Center, Uppsala University, Senior Interventional Cardiologist, Uppsala University Hospital, Uppsala, Sweden
| | - Hector Bueno
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernandez Almagro, Madrid, Spain
- Department of Cardiology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Joao Morais
- Department of Cardiology, Leiria Hospital Centre, Portugal
| | - Dirk Sibbing
- Oberarzt, Medizinische Klinik und Poliklinik I, Ludwig-Maximilians-Universität (LMU), Campus Großhadern, München, Germany
| | - Bianca Rocca
- Department of Pharmacology, Catholic University School of Medicine, Rome, Italy
| | | | - Nazem Akoum
- Cardiology Department, University of Washington, Seattle, USA
| | | | | | | | | |
Collapse
|
44
|
Asada Y, Yamashita A, Sato Y, Hatakeyama K. Thrombus Formation and Propagation in the Onset of Cardiovascular Events. J Atheroscler Thromb 2018; 25:653-664. [PMID: 29887539 PMCID: PMC6099067 DOI: 10.5551/jat.rv17022] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Ischemic cardiovascular disease is a major cause of morbidity and mortality worldwide and thrombus formation on disrupted atherosclerotic plaques is considered to trigger its onset. Although the activation of platelets and coagulation pathways has been investigated intensively, the mechanisms of thrombus formation on disrupted plaques have not been understood in detail. Platelets are thought to play a central role in the formation of arterial thrombus because of rapid flow conditions; however, thrombus that develops on disrupted plaques consistently includes large amounts of fibrin in addition to aggregated platelets. While, thrombus does not always become large enough to completely occlude the vascular lumen, indicating that the propagation of thrombus is also critical for the onset of cardiovascular events. Various factors, such as vascular wall thrombogenicity, altered blood flow and imbalanced blood hemostasis, modulate thrombus formation and propagation on disrupted plaques. Pathological findings derived from humans and experimental animal models of atherothrombosis have identified important factors that affect thrombus formation and propagation, namely platelets, extrinsic and intrinsic coagulation factors, proinflammatory factors, plaque hypoxia and blood flow alteration. These findings might provide insight into the mechanisms of thrombus formation and propagation on disrupted plaques that lead to the onset of cardiovascular events.
Collapse
Affiliation(s)
- Yujiro Asada
- Department of Pathology, Faculty of Medicine, University of Miyazaki
| | - Atsushi Yamashita
- Department of Pathology, Faculty of Medicine, University of Miyazaki
| | - Yuichiro Sato
- Department of Diagnostic Pathology, University of Miyazaki Hospital, University of Miyazaki
| | | |
Collapse
|
45
|
Boehncke WH. Systemic Inflammation and Cardiovascular Comorbidity in Psoriasis Patients: Causes and Consequences. Front Immunol 2018; 9:579. [PMID: 29675020 PMCID: PMC5895645 DOI: 10.3389/fimmu.2018.00579] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 03/07/2018] [Indexed: 11/26/2022] Open
Abstract
Psoriasis is a common inflammatory skin disease characterized by the appearance of red scaly plaques that can affect any part of the body. High prevalence, chronicity, disfiguration, disability, and associated comorbidity make it a challenge for clinicians of multiple specialties. Likewise, its complex pathogenesis, comprising inflammation, hyperproliferation, and angioneogenesis, intrigues numerous scientific disciplines, namely, immunology. From a clinical perspective, the severity of psoriasis is highlighted by its increased mortality, with cardiovascular diseases contributing the highest excess risk. From a scientific point of view, psoriasis has to be considered a systemic inflammatory condition, as blood biomarkers of inflammation are elevated and imaging techniques document sites of inflammation beyond the skin. While the association of psoriasis with cardiovascular diseases is now widely accepted, causes and consequences of this association are controversially discussed. This review comments on epidemiologic, genetic, and mechanistic studies that analyzed the relation between psoriasis and cardiovascular comorbidity. The hypothesis of psoriasis potentially being an independent cardiovascular risk factor, driving atherosclerosis via inflammation-induced endothelial dysfunction, will be discussed. Finally, consequences for the management of psoriasis with the objective to reduce the patients’ excess cardiovascular risk will be pointed out.
Collapse
Affiliation(s)
- Wolf-Henning Boehncke
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Dermatology and Venereology, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
46
|
Peripheral artery disease and antiplatelet treatment. Curr Opin Pharmacol 2018; 39:43-52. [PMID: 29471161 DOI: 10.1016/j.coph.2018.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/18/2022]
|
47
|
Gardiner EE. Proteolytic processing of platelet receptors. Res Pract Thromb Haemost 2018; 2:240-250. [PMID: 30046726 PMCID: PMC6055504 DOI: 10.1002/rth2.12096] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 03/01/2018] [Indexed: 12/17/2022] Open
Abstract
Platelets have a major role in hemostasis and an emerging role in biological processes including inflammation and immunity. Many of these processes require platelet adhesion and localization at sites of tissue damage or infection and regulated platelet activation, mediated by platelet adheso-signalling receptors, glycoprotein (GP) Ib-IX-V and GPVI. Work from a number of laboratories has demonstrated that levels of these receptors are closely regulated by metalloproteinases of the A Disintegrin And Metalloproteinase (ADAM) family, primarily ADAM17 and ADAM10. It is becoming increasingly evident that platelets have important roles in innate immunity, inflammation, and in combating infection that extends beyond processes of hemostasis. This overview will examine the molecular events that regulate levels of platelet receptors and then assess ramifications for these events in settings where hemostasis, inflammation, and infection processes are triggered.
Collapse
Affiliation(s)
- Elizabeth E. Gardiner
- ACRF Department of Cancer Biology and TherapeuticsJohn Curtin School of Medical ResearchThe Australian National UniversityCanberraACTAustralia
| |
Collapse
|
48
|
Oral Bruton tyrosine kinase inhibitors selectively block atherosclerotic plaque-triggered thrombus formation in humans. Blood 2018; 131:2605-2616. [PMID: 29559479 DOI: 10.1182/blood-2017-09-808808] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 03/14/2018] [Indexed: 11/20/2022] Open
Abstract
Interaction of von Willebrand factor (VWF) with platelet glycoprotein Ib (GPIb) and interaction of collagen with GPVI are essential for thrombus formation on ruptured or eroded atherosclerotic plaques (atherothrombosis). GPIb and GPVI signal through Bruton tyrosine kinase (Btk), which can be blocked irreversibly by oral application of ibrutinib, an established therapy for chronic lymphocytic leukemia (CLL) with long-term safety. We found that ibrutinib and the novel Btk inhibitors acalabrutinib and ONO/GS-4059 block GPVI-dependent static platelet aggregation in blood exposed to human plaque homogenate and collagen but not to ADP or arachidonic acid. Moreover, Btk inhibitors prevented platelet thrombus formation on human atherosclerotic plaque homogenate and plaque tissue sections from arterially flowing blood, whereas integrin α2β1 and VWF-dependent platelet adhesion to collagen, which is important for physiologic hemostasis, was not affected. This plaque-selective platelet inhibition was also observed in CLL patients taking 450 mg of ibrutinib and in volunteers after much lower and intermittent dosing of the drug. We conclude that Btk inhibitors, by targeting GPIb and GPVI signal transduction, suppress platelet thrombus accretion from flowing blood on atherosclerotic plaque but spare hemostatic platelet function. Btk inhibitors hold promise as the first culprit lesion-focused oral antiplatelet drugs and are effective at low doses.
Collapse
|
49
|
Morikawa Y, Kato H, Kashiwagi H, Nishiura N, Akuta K, Honda S, Kanakura Y, Tomiyama Y. Protease-activated receptor-4 (PAR4) variant influences on platelet reactivity induced by PAR4-activating peptide through altered Ca 2+ mobilization and ERK phosphorylation in healthy Japanese subjects. Thromb Res 2018; 162:44-52. [DOI: 10.1016/j.thromres.2017.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/09/2017] [Accepted: 12/22/2017] [Indexed: 11/29/2022]
|
50
|
Platelet-neutrophil interactions as drivers of inflammatory and thrombotic disease. Cell Tissue Res 2017; 371:567-576. [PMID: 29178039 PMCID: PMC5820397 DOI: 10.1007/s00441-017-2727-4] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023]
Abstract
Neutrophils are well known for their role in infection and inflammatory disease and are first responders at sites of infection or injury. Platelets have an established role in hemostasis and thrombosis and are first responders at sites of vascular damage. However, neutrophils are increasingly recognized for their role in thrombosis, while the immunemodulatory properties of platelets are being increasingly studied. Platelets and neutrophils interact during infection, inflammation and thrombosis and modulate each other’s functions. This review will discuss the consequences of platelet–neutrophil interactions in infection, thrombosis, atherosclerosis and tissue injury and repair.
Collapse
|