1
|
Borba LA, Freitas Filho GAD, Azevedo Cardoso TD, Arent CO, Niero FS, Pedro LC, Rodrigues CA, Cichella LR, Bagatini MD, Oliveira GGD, Silva GBD, Manica D, Ignácio ZM, Quevedo J, Ceretta LB, Réus GZ. Effects of COVID-19 and medication used for treatment and symptom prevention on the antioxidant status. Pharmacol Rep 2025; 77:490-499. [PMID: 39899256 DOI: 10.1007/s43440-025-00696-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND It is known that an inflammatory response plays a key role in COVID-19 pathogenesis. An exacerbated inflammatory response can increase oxidative stress in cells. This study aimed to investigate the effects of COVID-19 on parameters of oxidative stress including non-protein thiol antioxidants (NPSH), protein thiols (PSH), total antioxidant capacity (TAC), advanced oxidation protein products (AOPP), myeloperoxidase (MPO), thiobarbituric acid reactive substances (TBARS), ascorbic acid, and reactive oxygen species (ROS) in plasma collected four to six weeks after the diagnosis. METHODS This cross-sectional study included a sex-matched sample of 296 adult individuals with 112 positives (cases) and 184 negatives (controls) for COVID-19. Oxidative stress parameters were peripherally analyzed according to previous methods. RESULTS The results showed a decrease in NPSH (p = 0.004), TAC (p = 0.005), ROS (p < 0.001), and ascorbic acid (p < 0.001) in cases. TBARS were higher in moderate and severe cases of COVID-19 compared to asymptomatic and mild cases (p = 0.049). AOPP, PSH, and MPO were not significantly different between cases and controls. In the total sample, individuals who self-reported using medication to prevent or treat COVID-19 showed decreased NPSH (p = 0.034), TAC (p = 0.020), ascorbic acid (p = 0.010), and ROS (p = 0.001) compared to those who self-reported not using medication to prevent or treat COVID-19. CONCLUSIONS In conclusion, individuals with COVID-19 had decreased antioxidant status. Furthermore, disease severity was associated with more lipid damage. Antioxidant therapies may be essential to prevent the impacts of COVID-19.
Collapse
Affiliation(s)
- Laura A Borba
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Getúlio Antonio de Freitas Filho
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | | | - Camila O Arent
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Flávia S Niero
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Lucas C Pedro
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Caion A Rodrigues
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Lara R Cichella
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
| | - Margarete D Bagatini
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Chapecó, SC, Brazil
| | - Gabriela Gonçalves de Oliveira
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Chapecó, SC, Brazil
| | - Gilnei Bruno da Silva
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Chapecó, SC, Brazil
| | - Daiane Manica
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Chapecó, SC, Brazil
| | - Zuleide Maria Ignácio
- Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of the Southern Frontier, Chapecó, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Luciane B Ceretta
- Graduate Program in Public Health, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, 88806-000, Brazil.
| |
Collapse
|
2
|
Hasan Anber ZN, Oied Saleh B, Hassan Majed R. Assessment of Oxidative Stress Parameters in Iraqi Male Patients with Covid-19; A Case Control Study. Rep Biochem Mol Biol 2024; 13:167-173. [PMID: 39995639 PMCID: PMC11847586 DOI: 10.61186/rbmb.13.2.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/05/2024] [Indexed: 02/26/2025]
Abstract
Background SARS-CoV-2 infection can cause significant alterations in our lives. Oxidative stress (OS) has been proposed to play a major role in COVID-19 pathogenesis, and the determination of OS biomarkers provides insight into disease severity. Methods The study was conducted during the second wave of the pandemic in 2020. Fifty blood samples were collected from patients admitted to one of the COVID-19 isolation centers in Baghdad, Iraq. The samples were subdivided into 25 patients admitted to the intensive care unit (ICU) and 25 non-ICU patients, compared to 25 healthy controls. All participants were aged 35-52 years. Results The study showed that the mean (±SD) serum total oxidant status (TOS) and malondialdehyde (MDA) levels were significantly increased (p< 0.001) in the ICU group compared to the control and non-ICU groups. Conversely, the levels of serum total antioxidant capacity (TAC) and serum antioxidative enzymes superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase, and glutathione (GSH) were significantly decreased (p< 0.001) in the ICU group compared to both the control and non-ICU groups. Serum zinc levels were significantly decreased (p< 0.001) in both ICU and non-ICU groups compared to the control group, while serum selenium (Se), copper (Cu), and vitamins C and E were significantly decreased (p< 0.001) in the ICU group compared to both the control and non-ICU groups. Conclusions The presence of OS biomarkers in the sera of COVID-19 patients offers a potential new approach for the treatment of this disease.
Collapse
Affiliation(s)
| | - Basil Oied Saleh
- Department of Biochemistry, College of Medicine, University of Baghdad, Iraq.
| | | |
Collapse
|
3
|
Al-Kuraishy HM, Mazhar Ashour MH, Saad HM, Batiha GES. COVID-19 and β-thalassemia: in lieu of evidence and vague nexus. Ann Hematol 2024; 103:1423-1433. [PMID: 37405444 DOI: 10.1007/s00277-023-05346-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023]
Abstract
Coronavirus disease 19 (COVID-19) is an infectious disease caused by severe acute respiratory coronavirus 2 (SARS-CoV-2) causing acute systemic disorders and multi-organ damage. β-thalassemia (β-T) is an autosomal recessive disorder leading to the development of anemia. β-T may lead to complications such as immunological disorders, iron overload, oxidative stress, and endocrinopathy. β-T and associated complications may increase the risk of SARS-CoV-2, as inflammatory disturbances and oxidative stress disorders are linked with COVID-19. Therefore, the objective of the present review was to elucidate the potential link between β-T and COVID-19 regarding the underlying comorbidities. The present review showed that most of the β-T patients with COVID-19 revealed mild to moderate clinical features, and β-T may not be linked with Covid-19 severity. Though patients with transfusion-dependent β-T (TDT) develop less COVID-19 severity compared to non-transfusion-depend β-T(NTDT), preclinical and clinical studies are recommended in this regard.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, Al-Mustansiriyiah University, Box 14132, Baghdad, Iraq
| | | | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Damanhour, 22511, Egypt
| |
Collapse
|
4
|
Amegashie EA, Asamoah P, Ativi LEA, Adusei-Poku M, Bonney EY, Tagoe EA, Paintsil E, Torpey K, Quaye O. Clinical outcomes and immunological response to SARS-CoV-2 infection among people living with HIV. Exp Biol Med (Maywood) 2024; 249:10059. [PMID: 38628843 PMCID: PMC11020089 DOI: 10.3389/ebm.2024.10059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/22/2024] [Indexed: 04/19/2024] Open
Abstract
People living with HIV (PLWH) usually suffer from co-infections and co-morbidities including respiratory tract infections. SARS-CoV-2 has been reported to cause respiratory infections. There are uncertainties in the disease severity and immunological response among PLWH who are co-infected with COVID-19. This review outlines the current knowledge on the clinical outcomes and immunological response to SARS-CoV-2 among PLWH. Literature was searched in Google scholar, Scopus, PubMed, and Science Direct conforming with the Preferred Reporting Items for Systematic reviews and Meta-analyses (PRISMA) guidelines from studies published from January 2020 to June 2023. A total of 81 studies from 25 countries were identified, and RT-PCR was used in confirming COVID-19 in 80 of the studies. Fifty-seven studies assessed risk factors and clinical outcomes in HIV patients co-infected with COVID-19. Thirty-nine of the studies indicated the following factors being associated with severe outcomes in HIV/SARS-CoV-2: older age, the male sex, African American race, smoking, obesity, cardiovascular diseases, low CD4+ count, high viral load, tuberculosis, high levels of inflammatory markers, chronic kidney disease, hypertension, diabetes, interruption, and delayed initiation of ART. The severe outcomes are patients' hospitalization, admission at intensive care unit, mechanical ventilation, and death. Twenty (20) studies, however, reported no difference in clinical presentation among co-infected compared to mono-infected individuals. Immune response to SARS-CoV-2 infection was investigated in 25 studies, with some of the studies reporting high levels of inflammatory markers, T cell exhaustion and lower positive conversion rate of IgG in PLWH. There is scanty information on the cytokines that predisposes to severity among HIV/SARS-CoV-2 co-infected individuals on combined ART. More research work should be carried out to validate co-infection-related cytokines and/or immune markers to SARS-CoV-2 among PLWH.
Collapse
Affiliation(s)
- Esimebia Adjovi Amegashie
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Prince Asamoah
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Lawrencia Emefa Ami Ativi
- Department of Medical Microbiology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Mildred Adusei-Poku
- Department of Medical Microbiology, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Evelyn Yayra Bonney
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Emmanuel Ayitey Tagoe
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Elijah Paintsil
- Department of Paediatrics, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - Kwasi Torpey
- Department of Population, Family and Reproductive Health, School of Public Health, University of Ghana, Accra, Ghana
| | - Osbourne Quaye
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| |
Collapse
|
5
|
Alobaidy ASH, Elhelaly M, Amer ME, Shemies RS, Othman AI, El-Missiry MA. Angiotensin converting enzyme 2 gene expression and markers of oxidative stress are correlated with disease severity in patients with COVID-19. Mol Biol Rep 2023:10.1007/s11033-023-08515-0. [PMID: 37222866 DOI: 10.1007/s11033-023-08515-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND Oxidative stress is thought to play a significant role in the pathogenesis and severity of COVID-19. Additionally, angiotensin converting enzyme 2 (ACE2) expression may predict the severity and clinical course of COVID-19. Accordingly, the aim of the present study was to evaluate the association of oxidative stress and ACE2 expression with the clinical severity in patients with COVID-19. METHODS AND RESULTS The present study comprised 40 patients with COVID-19 and 40 matched healthy controls, recruited between September 2021 and March 2022. ACE 2 expression levels were measured using Hera plus SYBR Green qPCR kits with GAPDH used as an internal control. Serum melatonin (MLT) levels, serum malondialdehyde (MDA) levels, and total antioxidant capacity (TAC) were estimated using ELISA. The correlations between the levels of the studied markers and clinical indicators of disease severity were evaluated. Significantly, lower expression of ACE2 was observed in COVID-19 patients compared to controls. Patients with COVID-19 had lower serum levels of TAC and MLT but higher serum levels of MDA compared to normal controls. Serum MDA levels were correlated with diastolic blood pressure (DBP), Glasgow coma scale (GCS) scores, and serum potassium levels. Serum MLT levels were positively correlated with DBP, mean arterial pressure (MAP), respiratory rate, and serum potassium levels. TAC was correlated with GCS, mean platelet volume, and serum creatinine levels. Serum MLT levels were significantly lower in patients treated with remdesivir and inotropes. Receiver operating characteristic curve analysis demonstrates that all markers had utility in discriminating COVID-19 patients from healthy controls. CONCLUSIONS Increased oxidative stress and increased ACE2 expression were correlated with disease severity and poor outcomes in hospitalized patients with COVID-19 in the present study. Melatonin supplementation may provide a utility as an adjuvant therapy in decreasing disease severity and death in COVID-19 patients.
Collapse
Affiliation(s)
- Afraa S H Alobaidy
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Mona Elhelaly
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Maggie E Amer
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Rasha S Shemies
- Mansoura Nephrology and Dialysis Unit, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Azza I Othman
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
6
|
Uysal P, Yüksel A, Durmus S, Cuhadaroglu Ç, Gelisgen R, Uzun H. Can circulating oxidative stress-related biomarkers be used as an early prognostic marker for COVID-19? Front Med (Lausanne) 2023; 10:1041115. [PMID: 36844214 PMCID: PMC9948026 DOI: 10.3389/fmed.2023.1041115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Background Oxidative stress plays an important role in the pathogenesis of many diseases. This study aimed to investigate the relationship between nuclear factor kappa B (NF-κB) and oxidative stress and the severity of the disease in new COVID-19 patients, and, to compare the levels of NF-κB, oxidized LDL (oxLDL), and lectin-like oxidized-LDL receptor-1 (LOX-1) with oxygen saturation, which is an indicator of the severity parameters of the disease in COVID-19 patients. Methods In this prospective study, 100 COVID-19 patients and 100 healthy subjects were selected. Results LOX-1, NF-κB, and oxLDL were found to be higher in COVID-19 patients compared to the healthy subjects (p < 0.001 for all). According to the results of correlation analysis, it was found that there was no significant relationship between oxygen saturation and LOX-1, NF-κB and oxLDL parameters. There was significant relationship between oxLDL with LOX-1 and NF-κB in patients with COVID-19 disease. ROC analysis results of the highest discrimination power were oxLDL (AUC: 0.955, CI: 0.904-1.000; sensitivity: 77%, and specificity: 100%, for cutoff: 127.944 ng/l) indicating COVID-19. Conclusion Oxidative stress plays an essential role in COVID-19. NF-κB, oxLDL, and LOX-1 seem to represent good markers in COVID-19. Our study also showed that oxLDL has the highest power in distinguishing patients with COVID-19 from the healthy subjects.
Collapse
Affiliation(s)
- Pelin Uysal
- Department of Chest Diseases, Acibadem Mehmet Ali Aydinlar University Faculty of Medicine, Maslak Hospital, Istanbul, Turkey
| | - Arzu Yüksel
- Department of Biochemistry, Acibadem Mehmet Ali Aydinlar University Faculty of Medicine, Atakent Hospital, Istanbul, Turkey
| | - Sinem Durmus
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Çaglar Cuhadaroglu
- Department of Chest Diseases, Acibadem University Faculty of Medicine, Altunizade Hospital, Istanbul, Turkey
| | - Remise Gelisgen
- Department of Medical Biochemistry, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hafize Uzun
- Department of Medical Biochemistry, Faculty of Medicine, İstanbul Atlas University, Istanbul, Turkey,*Correspondence: Hafize Uzun, ✉
| |
Collapse
|
7
|
Mokhtari T, Azizi M, Sheikhbahaei F, Sharifi H, Sadr M. Plant-Derived Antioxidants for Management of COVID-19: A Comprehensive Review of Molecular Mechanisms. TANAFFOS 2023; 22:27-39. [PMID: 37920320 PMCID: PMC10618592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/09/2022] [Indexed: 11/04/2023]
Abstract
We aimed to review the literature to introduce some effective plant-derived antioxidants to prevent and treat COVID-19. Natural products from plants are excellent sources to be used for such discoveries. Among different plant-derived bioactive substances, components including luteolin, quercetin, glycyrrhizin, andrographolide, patchouli alcohol, baicalin, and baicalein were investigated for several viral infections as well as SARS-COV-2. The mechanisms of effects detected for these agents were related to their antiviral activity through inhibition of viral entry and/or suppuration of virus function. Also, the majority of components exert anti-inflammatory effects and reduce the cytokine storm induced by virus infection. The data from different studies confirmed that these agents may play a critical role against SARS-COVID-2 via direct (antiviral activity) and indirect (antioxidant and anti-inflammatory) mechanisms, suggesting that natural products are a potential option for management of patients with COVID-19 due to the lower side effects and high efficiency.
Collapse
Affiliation(s)
- Tahmineh Mokhtari
- Hubei Key Laboratory of Embryonic Stem Cell Research, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, People’s Republic of China
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, People’s Republic of China
| | - Maryam Azizi
- Department of Anatomy, School of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh Sheikhbahaei
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hooman Sharifi
- Tobacco Prevention and Control Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Makan Sadr
- Virology Research Center, NRITLD, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Jayashankar E, Khurana U, Kapoor N. Use of Nitroblue Tetrazolium Test: Revisited in Context of COVID-19. J Lab Physicians 2022. [DOI: 10.1055/s-0042-1757418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
| | - Ujjawal Khurana
- Department of Pathology and Lab Medicine, AIIMS Bhopal, Bhopal, Madhya Pradesh, India
| | - Neelkamal Kapoor
- Department of Pathology and Lab Medicine, AIIMS Bhopal, Bhopal, Madhya Pradesh, India
| |
Collapse
|
9
|
Begum R, Mamun-Or-Rashid ANM, Lucy TT, Pramanik MK, Sil BK, Mukerjee N, Tagde P, Yagi M, Yonei Y. Potential Therapeutic Approach of Melatonin against Omicron and Some Other Variants of SARS-CoV-2. Molecules 2022; 27:6934. [PMID: 36296527 PMCID: PMC9609612 DOI: 10.3390/molecules27206934] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
The Omicron variant (B.529) of COVID-19 caused disease outbreaks worldwide because of its contagious and diverse mutations. To reduce these outbreaks, therapeutic drugs and adjuvant vaccines have been applied for the treatment of the disease. However, these drugs have not shown high efficacy in reducing COVID-19 severity, and even antiviral drugs have not shown to be effective. Researchers thus continue to search for an effective adjuvant therapy with a combination of drugs or vaccines to treat COVID-19 disease. We were motivated to consider melatonin as a defensive agent against SARS-CoV-2 because of its various unique properties. Over 200 scientific publications have shown the significant effects of melatonin in treating diseases, with strong antioxidant, anti-inflammatory, and immunomodulatory effects. Melatonin has a high safety profile, but it needs further clinical trials and experiments for use as a therapeutic agent against the Omicron variant of COVID-19. It might immediately be able to prevent the development of severe symptoms caused by the coronavirus and can reduce the severity of the infection by improving immunity.
Collapse
Affiliation(s)
- Rahima Begum
- Department of Microbiology, Gono Bishwabidyalay, Dhaka 1344, Bangladesh
| | - A. N. M. Mamun-Or-Rashid
- Anti-Aging Medical Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 TataraMiyakodani, Kyoto 610-0394, Japan
- Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 Tatara Miyakodani, Kyoto 610-0394, Japan
- Department of Environmental & Occupational Health, School of Public Health, University of Pittsburgh, 130 De Soto Str., Pittsburgh, PA 15231, USA
| | - Tanzima Tarannum Lucy
- Anti-Aging Medical Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 TataraMiyakodani, Kyoto 610-0394, Japan
- Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 Tatara Miyakodani, Kyoto 610-0394, Japan
| | - Md. Kamruzzaman Pramanik
- Microbiology and Industrial Irradiation Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Savar 1349, Bangladesh
| | - Bijon Kumar Sil
- Department of Microbiology, Gono Bishwabidyalay, Dhaka 1344, Bangladesh
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata 700118, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Sydney 37729, Australia
| | - Priti Tagde
- Patel College of Pharmacy, Madhyanchal Professional University, Bhopal 462044, India
| | - Masayuki Yagi
- Anti-Aging Medical Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 TataraMiyakodani, Kyoto 610-0394, Japan
- Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 Tatara Miyakodani, Kyoto 610-0394, Japan
| | - Yoshikazu Yonei
- Anti-Aging Medical Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 TataraMiyakodani, Kyoto 610-0394, Japan
- Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 Tatara Miyakodani, Kyoto 610-0394, Japan
| |
Collapse
|
10
|
Muacevic A, Adler JR. Preliminary Experience in Post-COVID-19 Mycoses: A Pathologist's Perspective. Cureus 2022; 14:e30339. [PMID: 36407132 PMCID: PMC9663879 DOI: 10.7759/cureus.30339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2022] [Indexed: 01/25/2023] Open
Abstract
Background Coronavirus disease is caused by the severe acute respiratory syndrome coronavirus-19. Because of co-morbidities and indiscriminate use of steroids and antibiotics, the incidence of opportunistic fungal infections has increased in COVID-affected individuals. Aims and objectives The aim of the study is to analyze the various tissue reaction patterns of COVID-19-associated mucormycosis in the surgical debridement specimens using routine hematoxylin and eosin (H&E) stain and special stains like periodic acid-Schiff (PAS), Grocott-Gomori's methenamine silver (GMS), Masson trichrome (MT) and Prussian blue (PB), and to understand the pathogenesis of COVID-19 sequelae. Materials and methods This retrospective observational study was conducted after the approval from the Institute Human Ethical Committee (IHEC) on 45 tissue samples of COVID-associated mucormycosis using routine H&E and histochemical stains such as PAS, GMS, MT, and PB. Detailed demographic profiles, clinical information, radiological findings, and relevant microbiological data in available cases, like reports on potassium hydroxide (KOH) mount preparation, and fungal culture reports on Saboraud's Dextrose Agar (SDA) medium were collected. The different histomorphological tissue reaction patterns were observed and analyzed. Results All the surgical debridement specimens from post-COVID cases had histomorphology of mucormycosis displaying broad, aseptate, ribbon-like fungal hyphae with right-angle branching (45/45). Six of the 45 cases also reveal thin, narrow septate, acute angle branching hyphae, indicating co-existing Aspergillosis (6/45). The histological tissue reaction patterns observed were categorized as extensive tissue necrosis (100%), vascular proliferation (82%), angioinvasion (58%), giant cell reaction (53%), fibrin thrombi (47%), septic thrombi and angiodestruction (40%), fungal osteomyelitis (33%), necrotizing granulomas (31%). Conclusion This study infers that post-COVID-19 associated mucormycosis, alterations in the local tissue microenvironment are found to have a favorable effect on colonizing fungi and result in destructive tissue reactions such as angioinvasion, angiodestruction, necrosis, necrotizing granulomas, suppurative inflammation, and iron pigment deposition. The spectrum of morphological changes reflects the host's immune status.
Collapse
|
11
|
Essola NN, Takuissu GRN, Fonkoua M, Youovop Fotso JA, Mandob D, Ngondi JL, Gouado I. Effectiveness of 3 Polyherbal Formulations (EcXaPu, EcXa, and EcPu) on the Management of Oxidative Stress and Hyperglycemia. Nutr Metab Insights 2022; 15:11786388221118875. [PMID: 36003153 PMCID: PMC9393582 DOI: 10.1177/11786388221118875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Oxidative stress and hyperglycemia are major disorders involved in the occurrence and severity not only of chronic non-communicable diseases but also of infectious pathologies. This study aimed to evaluate the in vitro antioxidant and antihyperglycemic properties of EcXaPu, EcXa, and EcPu. The antioxidant properties were evaluated using 3 mechanisms: radical scavenging; reducing property, and metal chelating. Finally, the antihyperglycemic properties were evaluated by 2 mechanisms: glucose adsorption and cellular glucose capture. The different formulations showed their ability to scavenge DPPH, ABTS, and NO radicals with SC50 ranging from 2.75 to 3.51 mg/ml, from 2.6 to 2.76 mg/ml, and from 2.59 to 3.3 mg/ml, respectively. All the formulations also reduced MoO4 2+ and Fe3+ and chelated Cu2+ and Fe2+. The different formulations adsorbed the glucose with glucose adsorption rates ranging from 72.83% to 87.01%. The different formulations also stimulated cellular glucose uptake, with uptake rates ranging from 31.9% to 50.71% in yeast cells and from 21.81% to 39.45% in muscle cells. These formulations could be potential agents to prevent and/or protect against biological disorders associated with oxidative stress and hyperglycemia.
Collapse
Affiliation(s)
- Nadine Ndoe Essola
- Department of Biochemistry, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | - Guy Roussel Nguemto Takuissu
- Centre for Food, Food Security and Nutrition Research (CRASAN), Institute for Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Cameroon
| | - Martin Fonkoua
- Department of Biochemistry, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | | | - Damaris Mandob
- Department of Biochemistry, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | - Judith Laure Ngondi
- Centre for Food, Food Security and Nutrition Research (CRASAN), Institute for Medical Research and Medicinal Plant Studies (IMPM), Ministry of Scientific Research and Innovation, Cameroon
| | - Innocent Gouado
- Department of Biochemistry, Faculty of Science, University of Douala, Douala, Cameroon
| |
Collapse
|
12
|
Gonçalves SDO, Luz TMD, Silva AM, de Souza SS, Montalvão MF, Guimarães ATB, Ahmed MAI, Araújo APDC, Karthi S, Malafaia G. Can spike fragments of SARS-CoV-2 induce genomic instability and DNA damage in the guppy, Poecilia reticulate? An unexpected effect of the COVID-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153988. [PMID: 35192827 PMCID: PMC8857768 DOI: 10.1016/j.scitotenv.2022.153988] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 05/03/2023]
Abstract
The identification of SARS-CoV-2 particles in wastewater and freshwater ecosystems has raised concerns about its possible impacts on non-target aquatic organisms. In this particular, our knowledge of such impacts is still limited, and little attention has been given to this issue. Hence, in our study, we aimed to evaluate the possible induction of mutagenic (via micronucleus test) and genotoxic (via single cell gel electrophoresis assay, comet assay) effects in Poecilia reticulata adults exposed to fragments of the Spike protein of the new coronavirus at the level of 40 μg/L, denominated PSPD-2002. As a result, after 10 days of exposure, we have found that animals exposed to the peptides demonstrated an increase in the frequency of erythrocytic nuclear alteration (ENA) and all parameters assessed in the comet assay (length tail, %DNA in tail and Olive tail moment), suggesting that PSPD-2002 peptides were able to cause genomic instability and erythrocyte DNA damage. Besides, these effects were significantly correlated with the increase in lipid peroxidation processes [inferred by the high levels of malondialdehyde (MDA)] reported in the brain and liver of P. reticulata and with the reduction of the superoxide dismutase (SOD) and catalase (CAT) activity. Thus, our study constitutes a new insight and promising investigation into the toxicity associated with the dispersal of SARS-CoV-2 peptide fragments in freshwater environments.
Collapse
Affiliation(s)
- Sandy de Oliveira Gonçalves
- Laboratório de Pesquisas Biológicas, Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Urutaí, GO, Brazil
| | - Thiarlen Marinho da Luz
- Laboratório de Pesquisas Biológicas, Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Urutaí, GO, Brazil
| | - Abner Marcelino Silva
- Laboratório de Pesquisas Biológicas, Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Urutaí, GO, Brazil
| | - Sindoval Silva de Souza
- Programa de Pós-Graduação em Conservação de Recursos Naturais do Cerrado, Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Urutaí, GO, Brazil
| | - Mateus Flores Montalvão
- Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Universidade Federal de Uberlândia, MG, Brazil
| | | | | | | | - Sengodan Karthi
- Division of Biopesticides and Environmental Toxicology, Sri Paramakalyani Centre for Excellence in Environmental Sciences, Monomania Sundaranar University, Alwarkurichi 627 412, India
| | - Guilherme Malafaia
- Laboratório de Pesquisas Biológicas, Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Urutaí, GO, Brazil; Programa de Pós-Graduação em Conservação de Recursos Naturais do Cerrado, Instituto Federal de Educação, Ciência e Tecnologia Goiano - Campus Urutaí, GO, Brazil; Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Universidade Federal de Uberlândia, MG, Brazil; Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, GO, Brazil.
| |
Collapse
|
13
|
Malafaia G, Ahmed MAI, Souza SSD, Rezende FNE, Freitas ÍN, da Luz TM, da Silva AM, Charlie-Silva I, Braz HLB, Jorge RJB, Sanches PRS, Mendonça-Gomes JM, Cilli EM, Araújo APDC. Toxicological impact of SARS-CoV-2 on the health of the neotropical fish, Poecilia reticulata. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106104. [PMID: 35176694 PMCID: PMC8830931 DOI: 10.1016/j.aquatox.2022.106104] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 05/12/2023]
Abstract
There have been significant impacts of the current COVID-19 pandemic on society including high health and economic costs. However, little is known about the potential ecological risks of this virus despite its presence in freshwater systems. In this study, we aimed to evaluate the exposure of Poecilia reticulata juveniles to two peptides derived from Spike protein of SARS-CoV-2, which was synthesized in the laboratory (named PSPD-2002 and PSPD-2003). For this, the animals were exposed for 35 days to the peptides at a concentration of 40 µg/L and different toxicity biomarkers were assessed. Our data indicated that the peptides were able to induce anxiety-like behavior in the open field test and increased acetylcholinesterase (AChE) activity. The biometric evaluation also revealed that the animals exposed to the peptides displayed alterations in the pattern of growth/development. Furthermore, the increased activity of superoxide dismutase (SOD) and catalase (CAT) enzymes were accompanied by increased levels of malondialdehyde (MDA), reactive oxygen species (ROS) and hydrogen peroxide (H2O2), which suggests a redox imbalance induced by SARS-CoV-2 spike protein peptides. Moreover, molecular docking analysis suggested a strong interaction of the peptides with the enzymes AChE, SOD and CAT, allowing us to infer that the observed effects are related to the direct action of the peptides on the functionality of these enzymes. Consequently, our study provided evidence that the presence of SARS-CoV-2 viral particles in the freshwater ecosystems offer a health risk to fish and other aquatic organisms.
Collapse
Affiliation(s)
- Guilherme Malafaia
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Rodovia Geraldo Silva Nascimento, 2,5km, Zona Rural CEP, Urutaí, GO 75790-000, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, GO, Brazil; Post-Graduation Program in Ecology and Conservation of Natural Resources, Federal University of Uberlândia, Uberlândia MG, Brazil.
| | | | - Sindoval Silva de Souza
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Rodovia Geraldo Silva Nascimento, 2,5km, Zona Rural CEP, Urutaí, GO 75790-000, Brazil
| | - Fernanda Neves Estrela Rezende
- Post-Graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, GO, Brazil
| | - Ítalo Nascimento Freitas
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Rodovia Geraldo Silva Nascimento, 2,5km, Zona Rural CEP, Urutaí, GO 75790-000, Brazil
| | - Thiarlen Marinho da Luz
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Rodovia Geraldo Silva Nascimento, 2,5km, Zona Rural CEP, Urutaí, GO 75790-000, Brazil
| | - Abner Marcelino da Silva
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Rodovia Geraldo Silva Nascimento, 2,5km, Zona Rural CEP, Urutaí, GO 75790-000, Brazil
| | - Ives Charlie-Silva
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, SP, Brazil
| | - Helyson Lucas Bezerra Braz
- Drug Research and Development Center, Federal University of Ceará, CE, Brazil; Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, CE, Brazil
| | - Roberta Jeane Bezerra Jorge
- Drug Research and Development Center, Federal University of Ceará, CE, Brazil; Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, CE, Brazil
| | - Paulo R S Sanches
- Instituto de Química, Universidade Estadual Paulista, Araraquara, SP, Brazil
| | | | - Eduardo M Cilli
- Instituto de Química, Universidade Estadual Paulista, Araraquara, SP, Brazil
| | | |
Collapse
|
14
|
Melekoğlu R, Yaşar Ş, Zeyveli Çelik N, Özdemir H. Evaluation of dyslipidemia in preeclamptic pregnant women and determination of the predictive value of the hemato-lipid profile: A prospective, cross-sectional, case-control study. Turk J Obstet Gynecol 2022; 19:7-20. [PMID: 35343215 PMCID: PMC8966325 DOI: 10.4274/tjod.galenos.2022.36744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective: In this study, we examined the serum hematologic and lipid parameters of pregnant women with preeclampsia and an age- and gestational-age matched normotensive control group. We also compared the ratios of hemato-lipid parameters defined as systemic inflammatory markers and determined the predictive value of these values in preeclampsia. Materials and Methods: All patients diagnosed with late-onset preeclampsia or severe preeclampsia between 34 and 40 weeks of gestation at Inonu University Faculty of Medicine between March 2019 and October 2020 were included. Results: A total of 253 pregnant women were included in the study period. When the study groups were compared in terms of hematological and blood lipid profile; while serum lymphocyte, triglyceride, and total cholesterol levels were significantly higher in the preeclampsia group than in the control group (p<0.001, p<0.001, p=0.013, respectively); high-density lipoprotein (HDL)-cholesterol levels were found to be significantly lower (p=0.017). The cut-off value for the monocyte/HDL ratio in predicting severe preeclampsia was 16.65 with 59.0% sensitivity and 85.4% specificity [the area under the receiver operating characteristic 0.756, 95% confidence interval (CI) 0.681-0.821, p<0.001]. Multivariate analysis showed that the monocyte/HDL ratio was independently associated with both preeclampsia and severe preeclampsia [odds ratio (OR): 1.094; 95% CI 1.009-1.185 and OR: 1.731; 95% CI 1.218-2.459, respectively]. Conclusion: This study demonstrated that serum triglyceride and total cholesterol levels were significantly higher and serum HDL-cholesterol levels were significantly lower in pregnant women with late-onset preeclampsia compared to normotensive pregnant women. Additionally, this study revealed that the measurement of monocyte/HDL ratio in the pregnant population could be a useful clinical tool for predicting preeclampsia.
Collapse
|
15
|
Oxidative Stress-Related Mechanisms in SARS-CoV-2 Infections. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5589089. [PMID: 35281470 PMCID: PMC8906126 DOI: 10.1155/2022/5589089] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/11/2021] [Accepted: 02/07/2022] [Indexed: 12/18/2022]
Abstract
The COVID-19 pandemic caused relatively high mortality in patients, especially in those with concomitant diseases (i.e., diabetes, hypertension, and chronic obstructive pulmonary disease (COPD)). In most of aforementioned comorbidities, the oxidative stress appears to be an important player in their pathogenesis. The direct cause of death in critically ill patients with COVID-19 is still far from being elucidated. Although some preliminary data suggests that the lung vasculature injury and the loss of the functioning part of pulmonary alveolar population are crucial, the precise mechanism is still unclear. On the other hand, at least two classes of medications used with some clinical benefits in COVID-19 treatment seem to have a major influence on ROS (reactive oxygen species) and RNS (reactive nitrogen species) production. However, oxidative stress is one of the important mechanisms in the antiviral immune response and innate immunity. Therefore, it would be of interest to summarize the data regarding the oxidative stress in severe COVID-19. In this review, we discuss the role of oxidative and antioxidant mechanisms in severe COVID-19 based on available studies. We also present the role of ROS and RNS in other viral infections in humans and in animal models. Although reactive oxygen and nitrogen species play an important role in the innate antiviral immune response, in some situations, they might have a deleterious effect, e.g., in some coronaviral infections. The understanding of the redox mechanisms in severe COVID-19 disease may have an impact on its treatment.
Collapse
|
16
|
Zhang Y, Zhang J, Fu Z. Molecular hydrogen is a potential protective agent in the management of acute lung injury. Mol Med 2022; 28:27. [PMID: 35240982 PMCID: PMC8892414 DOI: 10.1186/s10020-022-00455-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome, which is a more severe form of ALI, are life-threatening clinical syndromes observed in critically ill patients. Treatment methods to alleviate the pathogenesis of ALI have improved to a great extent at present. Although the efficacy of these therapies is limited, their relevance has increased remarkably with the ongoing pandemic caused by the novel coronavirus disease 2019 (COVID-19), which causes severe respiratory distress syndrome. Several studies have demonstrated the preventive and therapeutic effects of molecular hydrogen in the various diseases. The biological effects of molecular hydrogen mainly involve anti-inflammation, antioxidation, and autophagy and cell death modulation. This review focuses on the potential therapeutic effects of molecular hydrogen on ALI and its underlying mechanisms and aims to provide a theoretical basis for the clinical treatment of ALI and COVID-19.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Jin Zhang
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Zhiling Fu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
17
|
Bi X, Liu W, Ding X, Liang S, Zheng Y, Zhu X, Quan S, Yi X, Xiang N, Du J, Lyu H, Yu D, Zhang C, Xu L, Ge W, Zhan X, He J, Xiong Z, Zhang S, Li Y, Xu P, Zhu G, Wang D, Zhu H, Chen S, Li J, Zhao H, Zhu Y, Liu H, Xu J, Shen B, Guo T. Proteomic and metabolomic profiling of urine uncovers immune responses in patients with COVID-19. Cell Rep 2022; 38:110271. [PMID: 35026155 PMCID: PMC8712267 DOI: 10.1016/j.celrep.2021.110271] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/15/2021] [Accepted: 12/23/2021] [Indexed: 12/19/2022] Open
Abstract
The utility of the urinary proteome in infectious diseases remains unclear. Here, we analyzed the proteome and metabolome of urine and serum samples from patients with COVID-19 and healthy controls. Our data show that urinary proteins effectively classify COVID-19 by severity. We detect 197 cytokines and their receptors in urine, but only 124 in serum using TMT-based proteomics. The decrease in urinary ESCRT complex proteins correlates with active SARS-CoV-2 replication. The downregulation of urinary CXCL14 in severe COVID-19 cases positively correlates with blood lymphocyte counts. Integrative multiomics analysis suggests that innate immune activation and inflammation triggered renal injuries in patients with COVID-19. COVID-19-associated modulation of the urinary proteome offers unique insights into the pathogenesis of this disease. This study demonstrates the added value of including the urinary proteome in a suite of multiomics analytes in evaluating the immune pathobiology and clinical course of COVID-19 and, potentially, other infectious diseases.
Collapse
Affiliation(s)
- Xiaojie Bi
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Wei Liu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Westlake Omics (Hangzhou) Biotechnology, Hangzhou 310024, China
| | - Xuan Ding
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Shuang Liang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Yufen Zheng
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xiaoli Zhu
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Sheng Quan
- Calibra Lab at DIAN Diagnostics, 329 Jinpeng Street, Hangzhou 310030, Zhejiang Province, China
| | - Xiao Yi
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Westlake Omics (Hangzhou) Biotechnology, Hangzhou 310024, China
| | - Nan Xiang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China; Westlake Omics (Hangzhou) Biotechnology, Hangzhou 310024, China
| | - Juping Du
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Haiyan Lyu
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Die Yu
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Chao Zhang
- Calibra Lab at DIAN Diagnostics, 329 Jinpeng Street, Hangzhou 310030, Zhejiang Province, China
| | - Luang Xu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Weigang Ge
- Westlake Omics (Hangzhou) Biotechnology, Hangzhou 310024, China
| | - Xinke Zhan
- Westlake Omics (Hangzhou) Biotechnology, Hangzhou 310024, China
| | - Jiale He
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Zi Xiong
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Shun Zhang
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, China
| | - Yanchang Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Guangjun Zhu
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Donglian Wang
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Hongguo Zhu
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shiyong Chen
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Jun Li
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Haihong Zhao
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Yi Zhu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| | - Huafen Liu
- Calibra Lab at DIAN Diagnostics, 329 Jinpeng Street, Hangzhou 310030, Zhejiang Province, China.
| | - Jiaqin Xu
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.
| | - Bo Shen
- Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai, Zhejiang, China.
| | - Tiannan Guo
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Center for Infectious Disease Research, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
Lage SL, Amaral EP, Hilligan KL, Laidlaw E, Rupert A, Namasivayan S, Rocco J, Galindo F, Kellogg A, Kumar P, Poon R, Wortmann GW, Shannon JP, Hickman HD, Lisco A, Manion M, Sher A, Sereti I. Persistent Oxidative Stress and Inflammasome Activation in CD14 highCD16 - Monocytes From COVID-19 Patients. Front Immunol 2022; 12:799558. [PMID: 35095880 PMCID: PMC8795739 DOI: 10.3389/fimmu.2021.799558] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/22/2021] [Indexed: 01/26/2023] Open
Abstract
The poor outcome of the coronavirus disease-2019 (COVID-19), caused by SARS-CoV-2, is associated with systemic hyperinflammatory response and immunopathology. Although inflammasome and oxidative stress have independently been implicated in COVID-19, it is poorly understood whether these two pathways cooperatively contribute to disease severity. Herein, we found an enrichment of CD14highCD16- monocytes displaying inflammasome activation evidenced by caspase-1/ASC-speck formation in severe COVID-19 patients when compared to mild ones and healthy controls, respectively. Those cells also showed aberrant levels of mitochondrial superoxide and lipid peroxidation, both hallmarks of the oxidative stress response, which strongly correlated with caspase-1 activity. In addition, we found that NLRP3 inflammasome-derived IL-1β secretion by SARS-CoV-2-exposed monocytes in vitro was partially dependent on lipid peroxidation. Importantly, altered inflammasome and stress responses persisted after short-term patient recovery. Collectively, our findings suggest oxidative stress/NLRP3 signaling pathway as a potential target for host-directed therapy to mitigate early COVID-19 hyperinflammation and also its long-term outcomes.
Collapse
Affiliation(s)
- Silvia Lucena Lage
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Eduardo Pinheiro Amaral
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kerry L. Hilligan
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Immune Cell Biology Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Elizabeth Laidlaw
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Adam Rupert
- AIDS Monitoring Laboratory, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | - Sivaranjani Namasivayan
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Joseph Rocco
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Frances Galindo
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Anela Kellogg
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | - Princy Kumar
- Division of Infectious Diseases and Tropical Medicine, Georgetown University Medical Center, Washington, DC, United States
| | - Rita Poon
- Division of Infectious Diseases and Travel Medicine, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Glenn W. Wortmann
- Section of Infectious Diseases, MedStar Washington Hospital Center, Washington, DC, United States
| | - John P. Shannon
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Heather D. Hickman
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Andrea Lisco
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Maura Manion
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alan Sher
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Irini Sereti
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
19
|
Zainuddin A, Hidayat IW, Kurnia D, Ramadhanty ZF, Padilah R. Prediction of the mechanism of action of catechin as superoxide anion antioxidants and natural antivirals for COVID-19 infection with in silico study. J Adv Pharm Technol Res 2022; 13:191-196. [PMID: 35935692 PMCID: PMC9355057 DOI: 10.4103/japtr.japtr_67_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
Coronavirus disease-2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus-2 attacking the lungs, which contain the most oxygen. The involvement of oxidative stress in the body and the role of antioxidant compounds, namely catechins, are thought to be able to prevent various diseases, including the COVID-19 infection virus. An in silico approach was employed between the catechins and the protein NADPH oxidase (Nox), followed by the coronavirus protease protein, to limit the generation of reactive oxygen species. This research using the in silico method seeks to predict the mechanism of action of catechin as a superoxide radical anion inhibitor and as an antiviral for COVID-19. This study carried out molecular docking simulations of catechin compounds against Nox and coronavirus proteases and then compared them with positive controls GKT136901 and remdesivir. The binding energy of catechin and Nox in a docking simulation is - 8.30 kcal/mol, which is somewhat lower than GKT136901's binding value of - 8.72 kcal/mol. Catechin and coronavirus proteases had binding energy of - 7.89 kcal/mol, which was greater than remdesivir's binding energy of - 7.50 kcal/mol. Based on in silico data, catechin as an antioxidant compound can be antiviral for COVID-19.
Collapse
Affiliation(s)
- Achmad Zainuddin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Ika Wiani Hidayat
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Dikdik Kurnia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia,Address for correspondence: Prof. Dikdik Kurnia, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia. E-mail:
| | - Zenika Febian Ramadhanty
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| | - Rizal Padilah
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
20
|
A Comprehensive Review of the Potential Use of Green Tea Polyphenols in the Management of COVID-19. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7170736. [PMID: 34899956 PMCID: PMC8664505 DOI: 10.1155/2021/7170736] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/17/2021] [Indexed: 01/18/2023]
Abstract
Green tea is produced from Camellia sinensis (L.) buds and leaves that have not gone through the oxidation and withering processes used to produce black and oolong teas. It was originated in China, but its cultivation and production have expanded to other Eastern Asian countries. Several polyphenolic compounds, including flavandiols, flavonols, flavonoids, and phenolic acids, are found in green tea and may constitute greater than 30% of the dry weight. Flavonols, especially catechins, represent the majority of green tea polyphenols. Green tea polyphenolic compounds have been reported to confer several health benefits. This review describes the potential use of green tea polyphenols in the management of coronavirus disease 2019 (COVID-19). The immunomodulatory, antibacterial, antioxidant, and anti-inflammatory effects of green tea polyphenols have also been considered in this review. In addition to describing the bioactivities associated with green tea polyphenols, this review discusses the potential delivery of these biomolecules using a nanoparticle drug delivery system. Moreover, the bioavailability and toxicity of green tea polyphenols are also evaluated.
Collapse
|
21
|
Deligiorgi MV, Siasos G, Vakkas L, Trafalis DT. Charting the Unknown Association of COVID-19 with Thyroid Cancer, Focusing on Differentiated Thyroid Cancer: A Call for Caution. Cancers (Basel) 2021; 13:5785. [PMID: 34830939 PMCID: PMC8616091 DOI: 10.3390/cancers13225785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Conceived of as the "silver lining" of the dark cloud of the coronavirus disease 2019 (COVID-19) pandemic, lessons taught by this catastrophe should be leveraged by medical authorities and policy makers to optimize health care globally. A major lesson is that resilient health systems should absorb sudden shocks incited by overwhelming health emergencies without compromising the continuum of care of chronic diseases, especially of cancer. METHODS The present review dissects the association between COVID-19 and thyroid cancer (TC), especially with differentiated TC (DTC), focusing on available data, knowledge gaps, current challenges, and future perspectives. RESULTS Obesity has been incriminated in terms of both COVID-19 severity and a rising incidence of TC, especially of DTC. The current conceptualization of the pathophysiological landscape of COVID-19-(D)TC association implicates an interplay between obesity, inflammation, immunity, and oxidative stress. Whether COVID-19 could aggravate the health burden posed by (D)TC or vice versa has yet to be clarified. Improved understanding and harnessing of the pathophysiological landscape of the COVID-19-(D)TC association will empower a mechanism-guided, safe, evidence-based, and risk-stratified management of (D)TC in the COVID-19 era and beyond. CONCLUSION A multidisciplinary patient-centered decision-making will ensure high-quality (D)TC care for patients, with or without COVID-19.
Collapse
Affiliation(s)
- Maria V. Deligiorgi
- Clinical Pharmacology Unit–Department of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias St., 11527 Athens, Greece; (L.V.); (D.T.T.)
| | - Gerasimos Siasos
- First Department of Cardiology, Hippokration General Hospital of Athens, Faculty of Mediine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Lampros Vakkas
- Clinical Pharmacology Unit–Department of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias St., 11527 Athens, Greece; (L.V.); (D.T.T.)
| | - Dimitrios T. Trafalis
- Clinical Pharmacology Unit–Department of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias St., 11527 Athens, Greece; (L.V.); (D.T.T.)
| |
Collapse
|
22
|
Alam MS, Czajkowsky DM. SARS-CoV-2 infection and oxidative stress: Pathophysiological insight into thrombosis and therapeutic opportunities. Cytokine Growth Factor Rev 2021; 63:44-57. [PMID: 34836751 PMCID: PMC8591899 DOI: 10.1016/j.cytogfr.2021.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 01/08/2023]
Abstract
The current coronavirus disease 2019 (COVID-19) pandemic has presented unprecedented challenges to global health. Although the majority of COVID-19 patients exhibit mild-to-no symptoms, many patients develop severe disease and need immediate hospitalization, with most severe infections associated with a dysregulated immune response attributed to a cytokine storm. Epidemiological studies suggest that overall COVID-19 severity and morbidity correlate with underlying comorbidities, including diabetes, obesity, cardiovascular diseases, and immunosuppressive conditions. Patients with such comorbidities exhibit elevated levels of reactive oxygen species (ROS) and oxidative stress caused by an increased accumulation of angiotensin II and by activation of the NADPH oxidase pathway. Moreover, accumulating evidence suggests that oxidative stress coupled with the cytokine storm contribute to COVID-19 pathogenesis and immunopathogenesis by causing endotheliitis and endothelial cell dysfunction and by activating the blood clotting cascade that results in blood coagulation and microvascular thrombosis. In this review, we survey the mechanisms of how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces oxidative stress and the consequences of this stress on patient health. We further shed light on aspects of the host immunity that are crucial to prevent the disease during the early phase of infection. A better understanding of the disease pathophysiology as well as preventive measures aimed at lowering ROS levels may pave the way to mitigate SARS-CoV-2-induced complications and decrease mortality.
Collapse
Affiliation(s)
- Mohammad Shah Alam
- Department of Anatomy and Histology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh.
| | - Daniel M Czajkowsky
- Bio-ID Centre, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
23
|
Saha P, Bose S, Srivastava AK, Chaudhary AA, Lall R, Prasad S. Jeopardy of COVID-19: Rechecking the Perks of Phytotherapeutic Interventions. Molecules 2021; 26:6783. [PMID: 34833873 PMCID: PMC8621307 DOI: 10.3390/molecules26226783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 01/31/2023] Open
Abstract
The novel coronavirus disease (COVID-19), the reason for worldwide pandemic, has already masked around 220 countries globally. This disease is induced by Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2). Arising environmental stress, increase in the oxidative stress level, weak immunity and lack of nutrition deteriorates the clinical status of the infected patients. Though several researches are at its peak for understanding and bringing forward effective therapeutics, yet there is no promising solution treating this disease directly. Medicinal plants and their active metabolites have always been promising in treating many clinical complications since time immemorial. Mother nature provides vivid chemical structures, which act multi-dimensionally all alone or synergistically in mitigating several diseases. Their unique antioxidant and anti-inflammatory activity with least side effects have made them more effective candidate for pharmacological studies. These medicinal plants inhibit attachment, encapsulation and replication of COVID-19 viruses by targeting various signaling molecules such as angiotensin converting enzyme-2, transmembrane serine protease 2, spike glycoprotein, main protease etc. This property is re-examined and its potency is now used to improve the existing global health crisis. This review is an attempt to focus various antiviral activities of various noteworthy medicinal plants. Moreover, its implications as prophylactic or preventive in various secondary complications including neurological, cardiovascular, acute kidney disease, liver disease are also pinpointed in the present review. This knowledge will help emphasis on the therapeutic developments for this novel coronavirus where it can be used as alone or in combination with the repositioned drugs to combat COVID-19.
Collapse
Affiliation(s)
- Priyanka Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, WB, India; (P.S.); (S.B.); (A.K.S.)
| | - Subhankar Bose
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, WB, India; (P.S.); (S.B.); (A.K.S.)
| | - Amit Kumar Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, WB, India; (P.S.); (S.B.); (A.K.S.)
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSUI), Riyadh 11623, Saudi Arabia;
| | - Rajiv Lall
- Noble Pharma, LLC, 4602 Domain Drive, Menomonie, WI 54751, USA;
| | - Sahdeo Prasad
- Noble Pharma, LLC, 4602 Domain Drive, Menomonie, WI 54751, USA;
| |
Collapse
|
24
|
Atanasovska E, Petrusevska M, Zendelovska D, Spasovska K, Stevanovikj M, Kasapinova K, Gjorgjievska K, Labachevski N. Vitamin D levels and oxidative stress markers in patients hospitalized with COVID-19. Redox Rep 2021; 26:184-189. [PMID: 34727009 PMCID: PMC8567917 DOI: 10.1080/13510002.2021.1999126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background COVID-19 is characterized by the presence of oxidative stress. Vitamin D status has been reviewed as one of the factors that may affect disease severity. The aim of this study was to assess the relationship between serum vitamin D levels, oxidative stress markers and disease severity in hospitalized COVID-19 patients. Methods Vitamin D levels were measured in 33 patients with COVID-19. The total antioxidant power and plasma peroxides were determined in serum. Results Severe COVID-19 patients have lower vitamin D levels (18.39 ± 2.29 ng/mL vs. 28.47 ± 3.05 ng/mL, p < .05) and higher oxidative stress compared to the moderate group. When divided according to serum vitamin D levels, significantly higher values of LDH (604.8 ± 76.98 IU/mL vs. 261.57 ± 47.33 IU/mL) and D-dimer (5978 ± 2028ng/mL vs. 977.7 ± 172 ng/mL) were obtained in the group with vitamin D below 30 ng/mL, followed with significantly higher levels of plasma peroxides (d-ROMs: 414.9 ± 15.82 U.Carr vs. 352.4 ± 18.77 U.Carr; p < .05) and oxidative stress index (OSI: 92.25 ± 6.60 vs. 51.89 ± 6.45; p < .001). Conclusion The presented data provide a justification to consider vitamin D as an important factor that could ameliorate disease severity through its anti-inflammatory and antioxidant effects.
Collapse
Affiliation(s)
- Emilija Atanasovska
- Faculty of Medicine, University of Ss Cyril and Methodius, Institute of Preclinical and Clinical Pharmacology and Toxicology, Skopje, Republic of North Macedonia
| | - Marija Petrusevska
- Faculty of Medicine, University of Ss Cyril and Methodius, Institute of Preclinical and Clinical Pharmacology and Toxicology, Skopje, Republic of North Macedonia
| | - Dragica Zendelovska
- Faculty of Medicine, University of Ss Cyril and Methodius, Institute of Preclinical and Clinical Pharmacology and Toxicology, Skopje, Republic of North Macedonia
| | - Katerina Spasovska
- Intensive Care Unit, University Clinic for Infectious Diseases and Febrile Conditions, Skopje, Republic of North Macedonia
| | - Milena Stevanovikj
- Intensive Care Unit, University Clinic for Infectious Diseases and Febrile Conditions, Skopje, Republic of North Macedonia
| | - Katerina Kasapinova
- Intensive Care Unit, University Surgery Clinic 'St.Naum Ohridski', Skopje, Republic of North Macedonia
| | - Kalina Gjorgjievska
- Faculty of Medicine, University of Ss Cyril and Methodius, Institute of Preclinical and Clinical Pharmacology and Toxicology, Skopje, Republic of North Macedonia
| | - Nikola Labachevski
- Faculty of Medicine, University of Ss Cyril and Methodius, Institute of Preclinical and Clinical Pharmacology and Toxicology, Skopje, Republic of North Macedonia
| |
Collapse
|
25
|
Shen Y, Anwar TB, Mulchandani A. Current status, advances, challenges and perspectives on biosensors for COVID-19 diagnosis in resource-limited settings. SENSORS AND ACTUATORS REPORTS 2021; 3:100025. [PMID: 35047829 PMCID: PMC7831652 DOI: 10.1016/j.snr.2021.100025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 05/07/2023]
Abstract
As the COVID-19 pandemic has profoundly impacted human life, prompt diagnostic tests are becoming an essential part of the social activities. However, the expensive and time-consuming laboratory-based traditional methods do not suffice the enormous needs for massive number of tests, especially in resource-limited settings. Therefore, more affordable, rapid, sensitive and specific field-practical diagnostic devices play an important role in the fight against the disease. In this review, we present the current status and advances in the biosensing technologies for diagnosing COVID-19, ranging from commercial achievements to research developments. Starting from a brief introduction to the disease biomarkers, this review summarizes the working principles of the biosensing technologies, followed by a review of the commercial products and research advances in academia. We recapitulate the literatures with a wide scope of bio/marker detections, embracing nucleic acids, viral proteins, human immune responses, and other potential bio/markers. Further, the challenges and perspectives for their employment in future point-of-care applications are discussed, with an extended appraisal on the practical strategies to enlarge the testing capability without high cost. This critical review provides a comprehensive insight into the diagnostic tools for COVID-19 and will encourage the industry and academia in the field of diagnostic biosensing for future evolvement to large-scale point-of-care screening of COVID-19.
Collapse
Affiliation(s)
- Yu Shen
- Chemical and Environmental Engineering Department, University of California Riverside, Riverside, CA, 92521 USA
| | - Touhid Bin Anwar
- Chemical and Environmental Engineering Department, University of California Riverside, Riverside, CA, 92521 USA
| | - Ashok Mulchandani
- Chemical and Environmental Engineering Department, University of California Riverside, Riverside, CA, 92521 USA
- Center for Environmental Research and Technology (CE-CERT), University of California Riverside, Riverside, CA, 92507 USA
| |
Collapse
|
26
|
Al-Kuraishy HM, Al-Gareeb AI, Faidah H, Alexiou A, Batiha GES. Testosterone in COVID-19: An Adversary Bane or Comrade Boon. Front Cell Infect Microbiol 2021; 11:666987. [PMID: 34568081 PMCID: PMC8455954 DOI: 10.3389/fcimb.2021.666987] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022] Open
Abstract
COVID-19 is a pandemic disease caused by severe acute respiratory coronavirus 2 (SARS-CoV-2), which leads to pulmonary manifestations like acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In addition, COVID-19 may cause extra-pulmonary manifestation such as testicular injury. Both high and low levels of testosterone could affect the severity of COVID-19. Herein, there is substantial controversy regarding the potential role of testosterone in SARS-CoV-2 infection and COVID-19 severity. Therefore, the present study aimed to review and elucidate the assorted view of preponderance regarding the beneficial and harmful effects of testosterone in COVID-19. A related literature search in PubMed, Scopus, Web of Science, Google Scholar, and Science Direct was done. All published articles related to the role of testosterone and COVID-19 were included in this mini-review. The beneficial effects of testosterone in COVID-19 are through inhibition of pro-inflammatory cytokines, augmentation of anti-inflammatory cytokines, modulation of the immune response, attenuation of oxidative stress, and endothelial dysfunction. However, its harmful effects in COVID-19 are due to augmentation of transmembrane protease serine 2 (TMPRSS2), which is essential for cleaving and activating SARS-CoV-2 spike protein during acute SARS-CoV-2 infection. Most published studies illustrated that low testosterone levels are linked to COVID-19 severity. A low testosterone level in COVID-19 is mainly due to testicular injury, the primary source of testosterone.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Hani Faidah
- Faculty of Medicine, Umm Al Qura University, Mecca, Saudi Arabia
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, Australia.,AFNP Med Austria, Wien, Austria
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
27
|
Abdrabbo M, Birch CM, Brandt M, Cicigoi KA, Coffey SJ, Dolan CC, Dvorak H, Gehrke AC, Gerzema AEL, Hansen A, Henseler EJ, Huelsbeck AC, LaBerge B, Leavens CM, Le CN, Lindquist AC, Ludwig RK, Reynolds JH, Severson NJ, Sherman BA, Sillman HW, Smith MA, Smith MA, Snortheim MJ, Svaren LM, Vanderpas EC, Wackett MJ, Wozney AJ, Bhattacharyya S, Hati S. Vitamin D and COVID-19: A review on the role of vitamin D in preventing and reducing the severity of COVID-19 infection. Protein Sci 2021; 30:2206-2220. [PMID: 34558135 PMCID: PMC8521296 DOI: 10.1002/pro.4190] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus‐2 (SARS‐CoV‐2) is a pathogenic coronavirus causing COVID‐19 infection. The interaction between the SARS‐CoV‐2 spike protein and the human receptor angiotensin‐converting enzyme 2, both of which contain several cysteine residues, is impacted by the disulfide‐thiol balance in the host cell. The host cell redox status is affected by oxidative stress due to the imbalance between the reactive oxygen/nitrogen species and antioxidants. Recent studies have shown that Vitamin D supplementation could reduce oxidative stress. It has also been proposed that vitamin D at physiological concentration has preventive effects on many viral infections, including COVID‐19. However, the molecular‐level picture of the interplay of vitamin D deficiency, oxidative stress, and the severity of COVID‐19 has remained unclear. Herein, we present a thorough review focusing on the possible molecular mechanism by which vitamin D could alter host cell redox status and block viral entry, thereby preventing COVID‐19 infection or reducing the severity of the disease.
Collapse
Affiliation(s)
- Mobeen Abdrabbo
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Cole M Birch
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Michael Brandt
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Kelsey A Cicigoi
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Stephen J Coffey
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Connor C Dolan
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Hannah Dvorak
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Ava C Gehrke
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Audrey E L Gerzema
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Abby Hansen
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Ethan J Henseler
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Alyssa C Huelsbeck
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Ben LaBerge
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Caterra M Leavens
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Christine N Le
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Allison C Lindquist
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Rickaela K Ludwig
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Jacob H Reynolds
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Nathaniel J Severson
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Brandon A Sherman
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Hunter W Sillman
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Michael A Smith
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Macey A Smith
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Marissa J Snortheim
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Levi M Svaren
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Emily C Vanderpas
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Miles J Wackett
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Alec J Wozney
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Sudeep Bhattacharyya
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Sanchita Hati
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| |
Collapse
|
28
|
Tagde P, Tagde S, Tagde P, Bhattacharya T, Monzur SM, Rahman MH, Otrisal P, Behl T, ul Hassan SS, Abdel-Daim MM, Aleya L, Bungau S. Nutraceuticals and Herbs in Reducing the Risk and Improving the Treatment of COVID-19 by Targeting SARS-CoV-2. Biomedicines 2021; 9:biomedicines9091266. [PMID: 34572452 PMCID: PMC8468567 DOI: 10.3390/biomedicines9091266] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/23/2022] Open
Abstract
The worldwide transmission of acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a deadly or devastating disease is known to affect thousands of people every day, many of them dying all over the planet. The main reason for the massive effect of COVID-19 on society is its unpredictable spread, which does not allow for proper planning or management of this disease. Antibiotics, antivirals, and other prescription drugs, necessary and used in therapy, obviously have side effects (minor or significant) on the affected person, there are still not clear enough studies to elucidate their combined effect in this specific treatment, and existing protocols are sometimes unclear and uncertain. In contrast, it has been found that nutraceuticals, supplements, and various herbs can be effective in reducing the chances of SARS-CoV-2 infection, but also in alleviating COVID-19 symptoms. However, not enough specific details are yet available, and precise scientific studies to validate the approved benefits of natural food additives, probiotics, herbs, and nutraceuticals will need to be standardized according to current regulations. These alternative treatments may not have a direct effect on the virus or reduce the risk of infection with it, but these products certainly stimulate the human immune system so that the body is better prepared to fight the disease. This paper aims at a specialized literary foray precisely in the field of these “cures” that can provide real revelations in the therapy of coronavirus infection
Collapse
Affiliation(s)
- Priti Tagde
- Bhabha Pharmacy Research Institute, Bhabha University, Bhopal 462026, India
- PRISAL Foundation, Pharmaceutical Royal International Society, Bhopal 462042, India;
- Correspondence: (P.T.); (M.H.R.); (S.B.)
| | - Sandeep Tagde
- PRISAL Foundation, Pharmaceutical Royal International Society, Bhopal 462042, India;
| | - Pooja Tagde
- Practice of Medicine Department, Government Homeopathic Medical College, Bhopal 462003, India;
| | - Tanima Bhattacharya
- School of Chemistry and Chemical Engineering, Hubei University, Hubei 430062, China;
- Techno India NJR Institute of Technology, Udaipur 313003, India
| | | | - Md. Habibur Rahman
- Department of Pharmacy, Jagannath University, Sadarghat, Dhaka 1100, Bangladesh
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
- Correspondence: (P.T.); (M.H.R.); (S.B.)
| | - Pavel Otrisal
- Faculty of Physical Culture, Palacký University Olomouc, 77111 Olomouc, Czech Republic;
| | - Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China;
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Batterjee Medical College, P.O. Box 6231, Jedah 21442, Saudi Arabia;
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Lotfi Aleya
- Chrono-Environment CNRS 6249, Université de Franche-Comté, 25000 Besançon, France;
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
- Correspondence: (P.T.); (M.H.R.); (S.B.)
| |
Collapse
|
29
|
Vargas-Mendoza N, García-Machorro J, Angeles-Valencia M, Martínez-Archundia M, Madrigal-Santillán EO, Morales-González Á, Anguiano-Robledo L, Morales-González JA. Liver disorders in COVID-19, nutritional approaches and the use of phytochemicals. World J Gastroenterol 2021; 27:5630-5665. [PMID: 34629792 PMCID: PMC8473593 DOI: 10.3748/wjg.v27.i34.5630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/19/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), has affected millions of people globally. It was declared a pandemic by the World Health Organization in March 2020. The hyperinflammatory response to the entry of SARS-CoV-2 into the host through angiotensin-converting enzyme 2 is the result of a "cytokine storm" and the high oxidative stress responsible for the associated symptomatology. Not only respiratory symptoms are reported, but gastrointestinal symptoms (diarrhea, vomiting, and nausea) and liver abnormalities (high levels of aspartate aminotransferase, alanine aminotransferase transaminases, and bilirubin) are observed in at least 30% of patients. Reduced food intake and a delay in medical services may lead to malnutrition, which increases mortality and poor outcomes. This review provides some strategies to identify malnutrition and establishes nutritional approaches for the management of COVID-19 and liver injury, taking energy and nutrient requirements and their impact on the immune response into account. The roles of certain phytochemicals in the prevention of the disease or as promising target drugs in the treatment of this disease are also considered.
Collapse
Affiliation(s)
- Nancy Vargas-Mendoza
- Laboratorio de Medicina de Conservacion, Instituto Politécnico Nacional, México 11340, Mexico
| | - Jazmín García-Machorro
- Laboratorio de Medicina de Conservacion, Instituto Politécnico Nacional, México 11340, Mexico
| | | | - Marlet Martínez-Archundia
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotécnológica, Instituto Politécnico Nacional, México 11340, Mexico
| | | | | | | | - José A Morales-González
- Laboratorio Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México 11340, Mexico
| |
Collapse
|
30
|
Petrushevska M, Zendelovska D, Atanasovska E, Eftimov A, Spasovska K. Presentation of cytokine profile in relation to oxidative stress parameters in patients with severe COVID-19: a case-control pilot study. F1000Res 2021; 10:719. [PMID: 34868558 PMCID: PMC8603313 DOI: 10.12688/f1000research.55166.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 01/12/2023] Open
Abstract
Introduction: COVID-19 can be worsened by hyper-production of cytokines accompanied by increased level of oxidative stress. The aim of this study was to investigate the correlation between a set of cytokines and the markers of the oxidative stress. Methods: The levels of cytokines IL-2, IL-4, IL-6, IL8, IL-10, VEGF, IFN-γ, TNF-α, IL-1α, MCP-1 and EGF were determined by using High Sensitivity Evidence Investigator™ Biochip Array technology. The oxidative stress parameters (d-ROM, PAT, OS index) were measured in serum on FRAS5 analytical photometric system. Results: IL-6, IL-8, IL-10, VEGF, MCP-1 and EGF were significantly higher (p<0.05) in the patients with severe COVID-19 with increased levels of IL-2, IFN-y, TNF-α and IL-1α. The d-ROM, OS index, and PAT were significantly higher (p<0.05) in severe COVID-19 patients. IL-6 demonstrated the strongest correlation with all of the markers of the oxidative stress, d-ROM (r=0.9725, p=0.0001), PAT (r=0.5000, p=0.0001) and OS index (r=0.9593, p=0.012). Similar behavior was evidenced between IFN-y and d-ROM (r=0.4006, p=0.0001), PAT (r=0.6030, p=0.0001) and OS index (r=0.4298, p=0.012). Conclusion: The oxidative stress markers show good correlation with the tested cytokines which can be measured at the beginning of the disease in a primary care setting to predict the course of COVID-19.
Collapse
Affiliation(s)
- Marija Petrushevska
- Institute of preclinical and clinical pharmacology and toxicology, University of Ss Cyril and Methodius, Faculty of Medicine, Skopje, Macedonia
| | - Dragica Zendelovska
- Institute of preclinical and clinical pharmacology and toxicology, University of Ss Cyril and Methodius, Faculty of Medicine, Skopje, Macedonia
| | - Emilija Atanasovska
- Institute of preclinical and clinical pharmacology and toxicology, University of Ss Cyril and Methodius, Faculty of Medicine, Skopje, Macedonia
| | - Aleksandar Eftimov
- Institute of pathology, University of Ss Cyril and Methodius, Faculty of Medicine, Skopje, Macedonia
| | - Katerina Spasovska
- University Clinic for Infectious Diseases and Febrile Conditions, Faculty of Medicine, University of Ss Cyril and Methodius, Skopje, Macedonia
| |
Collapse
|
31
|
Petrushevska M, Zendelovska D, Atanasovska E, Eftimov A, Spasovska K. Presentation of cytokine profile in relation to oxidative stress parameters in patients with severe COVID-19: an observational pilot study. F1000Res 2021; 10:719. [PMID: 34868558 PMCID: PMC8603313 DOI: 10.12688/f1000research.55166.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 09/22/2023] Open
Abstract
Introduction: COVID-19 can be worsened by hyper-production of cytokines accompanied by increased level of oxidative stress. The aim of this study was to investigate the correlation between a set of cytokines and the markers of the oxidative stress. Methods: The levels of cytokines IL-2, IL-4, IL-6, IL8, IL-10, VEGF, IFN-γ, TNF-α, IL-1α, MCP-1 and EGF were determined by using High Sensitivity Evidence Investigator™ Biochip Array technology. The oxidative stress parameters (d-ROM, PAT, OS index) were measured in serum on FRAS5 analytical photometric system. Results: IL-6, IL-8, IL-10, VEGF, MCP-1 and EGF were significantly higher (p<0.05) in the patients with severe COVID-19 with increased levels of IL-2, IFN-g, TNF-a and IL-1α. The d-ROM, OS index, and PAT were significantly higher (p<0.05) in severe COVID-19 patients. IL-6 demonstrated the strongest correlation with all of the markers of the oxidative stress, d-ROM (r=0.9725, p=0.0001), PAT (r=0.5000, p=0.0001) and OS index (r=0.9593, p=0.012). Similar behavior was evidenced between IFN-g and d-ROM (r=0.4006, p=0.0001), PAT (r=0.6030, p=0.0001) and OS index (r=0.4298, p=0.012). Conclusion: The oxidative stress markers show good correlation with the tested cytokines which can be measured at the beginning of the disease in a primary care setting to predict the course of COVID-19.
Collapse
Affiliation(s)
- Marija Petrushevska
- Institute of preclinical and clinical pharmacology and toxicology, University of Ss Cyril and Methodius, Faculty of Medicine, Skopje, Macedonia
| | - Dragica Zendelovska
- Institute of preclinical and clinical pharmacology and toxicology, University of Ss Cyril and Methodius, Faculty of Medicine, Skopje, Macedonia
| | - Emilija Atanasovska
- Institute of preclinical and clinical pharmacology and toxicology, University of Ss Cyril and Methodius, Faculty of Medicine, Skopje, Macedonia
| | - Aleksandar Eftimov
- Institute of pathology, University of Ss Cyril and Methodius, Faculty of Medicine, Skopje, Macedonia
| | - Katerina Spasovska
- University Clinic for Infectious Diseases and Febrile Conditions, Faculty of Medicine, University of Ss Cyril and Methodius, Skopje, Macedonia
| |
Collapse
|
32
|
Nalimu F, Oloro J, Kahwa I, Ogwang PE. Review on the phytochemistry and toxicological profiles of Aloe vera and Aloe ferox. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:145. [PMID: 34307697 PMCID: PMC8294304 DOI: 10.1186/s43094-021-00296-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022] Open
Abstract
Background Aloe vera and Aloe ferox have over the years been among the most sought-after Aloe species in the treatment of ailments worldwide. This review provides categorized literature on the phytochemical and scientifically proven toxicological profiles of A. vera and A. ferox to facilitate their exploitation in therapy. Main body of the abstract Original full-text research articles were searched in PubMed, ScienceDirect, Research gate, Google Scholar, and Wiley Online Library using specific phrases. Phenolic acids, flavonoids, tannins, and anthraquinones were the main phytochemical classes present in all the two Aloe species. Most of the phytochemical investigations and toxicity studies have been done on the leaves. Aloe vera and Aloe ferox contain unique phytoconstituents including anthraquinones, flavonoids, tannins, sterols, alkaloids, and volatile oils. Aloe vera hydroalcoholic leaf extract showed a toxic effect on Kabir chicks at the highest doses. The methanolic, aqueous, and supercritical carbon dioxide extracts of A. vera leaf gel were associated with no toxic effects. The aqueous leaf extract of A. ferox is well tolerated for short-term management of ailments but long-term administration may be associated with organ toxicity. Long-term administration of the preparations from A. vera leaves and roots was associated with toxic effects. Short conclusion This review provides beneficial information about the phytochemistry and toxicity of A. vera and A. ferox and their potential in the treatment of COVID-19 which up to date has no definite cure. Clinical trials need to be carried out to clearly understand the toxic effects of these species.
Collapse
Affiliation(s)
- Florence Nalimu
- Pharm-Bio Technology and Traditional Medicine Centre of Excellence, Mbarara University of Science and Technology, Mbarara, Uganda.,Department of Pharmaceutical Sciences, Faculty of Medicine, Mbarara University of Science and Technology, P.O. Box 1410, Mbarara, Uganda
| | - Joseph Oloro
- Pharm-Bio Technology and Traditional Medicine Centre of Excellence, Mbarara University of Science and Technology, Mbarara, Uganda.,Department of Pharmacology and Therapeutics, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Ivan Kahwa
- Pharm-Bio Technology and Traditional Medicine Centre of Excellence, Mbarara University of Science and Technology, Mbarara, Uganda.,Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Patrick Engeu Ogwang
- Pharm-Bio Technology and Traditional Medicine Centre of Excellence, Mbarara University of Science and Technology, Mbarara, Uganda.,Department of Pharmacy, Faculty of Medicine, Mbarara University of Science and Technology, Mbarara, Uganda
| |
Collapse
|
33
|
Mehri F, Rahbar AH, Ghane ET, Souri B, Esfahani M. The comparison of oxidative markers between Covid-19 patients and healthy subjects. Arch Med Res 2021; 52:843-849. [PMID: 34154831 PMCID: PMC8180845 DOI: 10.1016/j.arcmed.2021.06.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/21/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
Aim and Background Covid-19 has been as an important human infectious disease that has affected several countries. Cytokine storm has major role is Covid-19 pathogenesis. The association between inflammation and oxidative stress is well stablished. In this article, we aim to assess oxidative stress markers in Covid-19 patients compare to the healthy subjects. Method A total of 48 persons (24 with Covid-19 and 24 controls) were evaluated in this research. Serum oxidative stress markers including Malondialdehyde (MDA), total oxidant status (TOS), activity of catalase (CAT) and super oxide dismutase (SOD) were measured alongside routine laboratory tests. Results Patients group were divided into ICU and Non-ICU groups. ESR, CRP and serum level of ferritin were significantly higher in case group. Serum level of albumin was significantly lower in Covid-19 patients. Serum MDA and TOS was significantly increased in Covid-19 patients. Also, Covid-19 patients had higher serum activity of CAT and GPX. Conclusion Oxidative stress markers are significantly elevated in Covid-19 patients. This may have significant role in mechanism of disease development. In the fight against Covid-19, as a global struggle, all possible treatments demand more attention. So, Covid-19 patients may benefit from strategies for reducing or preventing oxidative stress.
Collapse
Affiliation(s)
- Fereshteh Mehri
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | | | | | - Bahram Souri
- Department of Infectious Disease, Ayatollah Bahari Hospital, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Maryam Esfahani
- Nutrition Health Research Center, Hamadan University of Medical Sciences. Hamadan, Iran.
| |
Collapse
|
34
|
Gholami M, Safari S, Ulloa L, Motaghinejad M. Neuropathies and neurological dysfunction induced by coronaviruses. J Neurovirol 2021; 27:380-396. [PMID: 33983506 PMCID: PMC8117458 DOI: 10.1007/s13365-021-00977-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/23/2021] [Accepted: 04/05/2021] [Indexed: 02/03/2023]
Abstract
During the recent years, viral epidemic due to coronaviruses, such as SARS (Severe Acute Respiratory Syndrome), Middle East Respiratory Coronavirus Syndrome (MERS), and COVID-19 (coronavirus disese-19), has become a global problem. In addition to causing cardiovascular and respiratory lethal dysfunction, these viruses can cause neurodegeneration leading to neurological disorders. Review of the current scientific literature reveals the multiple neuropathies and neuronal dysfunction associated with these viruses. Here, we review the major findings of these studies and discuss the main neurological sequels and outcomes of coronavirus infections with SARS, MERS, and COVID-19. This article analyzes and discusses the main mechanisms of coronavirus-induced neurodegeneration according to the current experimental and clinical studies. Coronaviruses can damage the nerves directly through endovascular dysfunctions thereby affecting nerve structures and synaptic connections. Coronaviruses can also induce neural cell degeneration indirectly via mitochondrial dysfunction inducing oxidative stress, inflammation, and apoptosis. Thus, coronaviruses can cause neurological disorders by inducing neurovascular dysfunction affecting nerve structures and synaptic connections, and by inducing inflammation, oxidative stress, and apoptosis. While some of these mechanisms are similar to other RNA viruses, the neurotoxic mechanisms of COVID-19, MERS, and SARS-CoV viruses are unknown and need detailed clinical and experimental studies.
Collapse
Affiliation(s)
- Mina Gholami
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Safari
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, NC, 27710, Durham, USA.
| | - Majid Motaghinejad
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
35
|
Samad N, Dutta S, Sodunke TE, Fairuz A, Sapkota A, Miftah ZF, Jahan I, Sharma P, Abubakar AR, Rowaiye AB, Oli AN, Charan J, Islam S, Haque M. Fat-Soluble Vitamins and the Current Global Pandemic of COVID-19: Evidence-Based Efficacy from Literature Review. J Inflamm Res 2021; 14:2091-2110. [PMID: 34045883 PMCID: PMC8149275 DOI: 10.2147/jir.s307333] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022] Open
Abstract
The outbreak of pneumonia caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), later named COVID-19 by the World Health Organization (WHO), was initiated at Wuhan, Hubei, China, and there was a rapid spread of novel SARS-CoV-2 and the disease COVID-19 in late 2019. The entire world is now experiencing the challenge of COVID-19 infection. However, still very few evidence-based treatment options are available for the prevention and treatment of COVID-19 disease. The present review aims to summarize the publicly available information to give a comprehensive yet balanced scientific overview of all the fat-soluble vitamins concerning their role in SARS-CoV-2 virus infection. The roles of different fat-soluble vitamins and micronutrients in combating SARS-CoV-2 infection have been recently explored in several studies. There are various hypotheses to suggest their use to minimize the severity of COVID-19 infection. These vitamins are pivotal in the maintenance and modulation of innate and cell-mediated, and antibody-mediated immune responses. The data reported in recent literature demonstrate that deficiency in one or more of these vitamins compromises the patients' immune response and makes them more vulnerable to viral infections and perhaps worse disease prognosis. Vitamins A, D, E, and K boost the body's defense mechanism against COVID-19 infection and specifically prevent its complications such as cytokine storm and other inflammatory processes, leading to increased morbidity and mortality overemphasis. However, more detailed randomized double-blind clinical pieces of evidence are required to define the use of these supplements in preventing or reducing the severity of the COVID-19 infection.
Collapse
Affiliation(s)
- Nandeeta Samad
- Department of Public Health, North South University, Dhaka, 1229, Bangladesh
| | - Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | | | - Adiba Fairuz
- Department of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Ashmita Sapkota
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | | | - Iffat Jahan
- Department of Physiology, Eastern Medical College, Cumilla, Bangladesh
| | - Paras Sharma
- Department of Pharmacognosy, BVM College of Pharmacy, Gwalior, India
| | - Abdullahi Rabiu Abubakar
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Bayero University, Kano, Nigeria
| | - Adekunle Babajide Rowaiye
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Angus Nnamdi Oli
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
| | - Jaykaran Charan
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Salequl Islam
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, Malaysia
| |
Collapse
|
36
|
Karkhanei B, Talebi Ghane E, Mehri F. Evaluation of oxidative stress level: total antioxidant capacity, total oxidant status and glutathione activity in patients with COVID-19. New Microbes New Infect 2021; 42:100897. [PMID: 34026228 PMCID: PMC8127525 DOI: 10.1016/j.nmni.2021.100897] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), as a dangerous global pandemic, has led to high morbidity and mortality in all countries. There is a lot of evidence for the possible role of oxidative stress in COVID-19. In the present study, we aimed to measure the levels of glutathione (GSH), total antioxidant capacity (TAC) and total oxidant status (TOS) in the serum of patients with COVID-19. A total of 96 individuals with and without COVID-19 were enrolled and divided into four groups, including hospitalised group in non–intensive care units (non-ICU) (n = 35), hospitalised group in intensive care units with endotracheal intubation (EI) (ICU with EI) (n = 19), hospitalised group in intensive care units without endotracheal intubation (ICU without EI) (n = 24) and healthy people without COVID-19 disease as our control group (n = 18). The present study revealed that the TOS level was significantly lower in the group of control (p = 0.001), and level of GSH remarkably increased in the patients' groups (p < 0.001). TAC activity in non-ICU group of patients had no significant difference in comparison with the control group. However, in hospitalised patients' groups in the ICU with and without EI this activity was significantly different from the control group (p < 0.001). Moreover, there was a significant relationship between the levels of TOS, GSH and TAC with blood oxygen saturation (SpO2), fever, duration of hospitalisation and the prognosis of this disease (p < 0.001). Area under the curve (CI, 95%) of TOS, TAC and GSH-C to predict death among patients were, respectively, 0.907 (0.841, 0.973), 0.735 (0.626, 0.843) and 0.820 (0.725, 0.914). Receiver operating characteristic curve analysis showed that TOS, TAC and GSH-C have the potential specificity and sensitivity to distinguish between alive and dead patients. We found that elevated levels of oxidative stress and reduction of antioxidant indices can aggravate disease's severity in hospitalised patients with COVID-19. Therefore, it can be suggested to apply antioxidant agents as one of the effective therapeutic strategies in these groups.
Collapse
Affiliation(s)
- B Karkhanei
- Department of Anesthesiology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - E Talebi Ghane
- Modeling of Noncommunicable Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - F Mehri
- Nutrition Health Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
37
|
Sharma A, Shah M, Lakshmi S, Sane H, Captain J, Gokulchandran N, Khubchandani P, Pradeep MK, Gote P, Tuppekar B, Kulkarni P, Paranjape A, Pradhan R, Varghese R, Kasekar S, Nair V, Khanbande U. A pilot study for treatment of COVID-19 patients in moderate stage using intravenous administration of ozonized saline as an adjuvant treatment-registered clinical trial. Int Immunopharmacol 2021; 96:107743. [PMID: 33984718 PMCID: PMC8084612 DOI: 10.1016/j.intimp.2021.107743] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/15/2021] [Accepted: 04/27/2021] [Indexed: 12/27/2022]
Abstract
Objective Ozone therapy has tremendous therapeutic potential owing to its antiviral, anti-inflammatory and antioxidant properties, and potential to improve oxygenation. A pilot clinical trial was conducted to evaluate the safety and efficacy of intravenous ozonised saline treatment in patients with moderate COVID-19 pneumonia. Patients and Methods 10 patients were administered 200 ml freshly prepared ozonised saline intravenously over 1 h once a day for 8 days along with standard medical treatment. Clinical symptoms were monitored everyday and laboratory biomarkers, radiological findings at 1,3,6,10 days. Telephonic follow up was done for all after discharge till Day 14. 7 out of 10 patients required oxygen supplementation at recruitment. Results There was severe adverse event recorded in the study group. All patients improved from moderate to mild category in average 8 days and were discharged in average 9.7 days. None deteriorated to severe stage. All clinical symptoms resolved within 6 days and oxygen supplementation requirement reduced to none within 4.1 days. There was statistically significant reduction in CRP (p = 0.003), D-Dimer (p = 0.049), IL6 (p = 0.002) and statistically significant improvement (p = 0.001) in SpO2/FiO2 ratio. Change in LDH was borderline statistically not significant (p = 0.058). All patients showed significant resolution of bilateral interstitial infiltrates at the end of 10 days. Conclusion Resolved clinical symptoms, improved oxygenation, clearance of infiltrates on Chest X-ray and improvement in biomarkers in a short period with non-progression of the disease showed that IV ozonised saline therapy was safe and effective to prevent disease progression in COVID-19, making it an effective novel therapeutic tool.
Collapse
Affiliation(s)
- Alok Sharma
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| | - Mili Shah
- Training and Education, Ozone Forum of India, Mumbai, India
| | - Satya Lakshmi
- National Institute of Naturopathy, Ministry of AYUSH, Pune, India
| | - Hemangi Sane
- Department of Research & Development, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| | | | - Nandini Gokulchandran
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| | - Pallavi Khubchandani
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| | | | - Prakash Gote
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| | - Balaji Tuppekar
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| | - Pooja Kulkarni
- Department of Research & Development, NeuroGen Brain & Spine Institute, Navi Mumbai, India.
| | - Amruta Paranjape
- Department of Research & Development, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| | - Radhika Pradhan
- Department of Research & Development, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| | - Ritu Varghese
- Department of Research & Development, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| | - Sushil Kasekar
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| | - Vivek Nair
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| | - Ummeammara Khanbande
- Department of Medical Services and Clinical Research, NeuroGen Brain & Spine Institute, Navi Mumbai, India
| |
Collapse
|
38
|
Cekerevac I, Turnic TN, Draginic N, Andjic M, Zivkovic V, Simovic S, Susa R, Novkovic L, Mijailovic Z, Andjelkovic M, Vukicevic V, Vulovic T, Jakovljevic V. Predicting Severity and Intrahospital Mortality in COVID-19: The Place and Role of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6615787. [PMID: 33854695 PMCID: PMC8019372 DOI: 10.1155/2021/6615787] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/16/2021] [Accepted: 03/11/2021] [Indexed: 01/08/2023]
Abstract
SARS-CoV-2 virus causes infection which led to a global pandemic in 2020 with the development of severe acute respiratory syndrome. Therefore, this study was aimed at examining its possible role in predicting severity and intrahospital mortality of COVID-19, alongside with other laboratory and biochemical procedures, clinical signs, symptoms, and comorbidity. This study, approved by the Ethical Committee of Clinical Center Kragujevac, was designed as an observational prospective cross-sectional clinical study which was conducted on 127 patients with diagnosed respiratory COVID-19 viral infection from April to August 2020. The primary goals were to determine the predictors of COVID-19 severity and to determine the predictors of the negative outcome of COVID-19 infection. All patients were divided into three categories: patients with a mild form, moderate form, and severe form of COVID-19 infection. All biochemical and laboratory procedures were done on the first day of the hospital admission. Respiratory (p < 0.001) and heart (p = 0.002) rates at admission were significantly higher in patients with a severe form of COVID-19. From all observed hematological and inflammatory markers, only white blood cell count (9.43 ± 4.62, p = 0.001) and LDH (643.13 ± 313.3, p = 0.002) were significantly higher in the severe COVID-19 group. We have observed that in the severe form of SARS-CoV-2, the levels of superoxide anion radicals were substantially higher than those in two other groups (11.3 ± 5.66, p < 0.001) and the nitric oxide level was significantly lower in patients with the severe disease (2.66 ± 0.45, p < 0.001). Using a linear regression model, TA, anosmia, ageusia, O2 -, and the duration at the ICU are estimated as predictors of severity of SARS-CoV-2 disease. The presence of dyspnea and a higher heart rate were confirmed as predictors of a negative, fatal outcome. Results from our study show that presence of hypertension, anosmia, and ageusia, as well as the duration of ICU stay, and serum levels of O2 - are predictors of COVID-19 severity, while the presence of dyspnea and an increased heart rate on admission were predictors of COVID-19 mortality.
Collapse
Affiliation(s)
- Ivan Cekerevac
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Serbia
- Clinic for Pulmonology, Clinical Center Kragujevac, Kragujevac, Serbia
| | - Tamara Nikolic Turnic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Nevena Draginic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Marijana Andjic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Vladimir Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Stefan Simovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Serbia
- Clinic for Cardiology, Clinical Center Kragujevac, Serbia
| | - Romana Susa
- Clinic for Pulmonology, Clinical Center Kragujevac, Kragujevac, Serbia
| | - Ljiljana Novkovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Serbia
- Clinic for Pulmonology, Clinical Center Kragujevac, Kragujevac, Serbia
| | - Zeljko Mijailovic
- Department of Infectious Diseases, Faculty of Medical Sciences, University of Kragujevac, Serbia
- Clinic for Infectious Diseases, Clinical Center Kragujevac, Serbia
| | - Marija Andjelkovic
- Department of Biochemistry, Faculty of Medical Sciences, University of Kragujevac, Serbia
- Center for Laboratory Diagnostics, Clinical Center Kragujevac, Serbia
| | - Vladimir Vukicevic
- Center for Anesthesiology and Resuscitation, Clinical Center Kragujevac, Serbia
| | - Tatjana Vulovic
- Center for Anesthesiology and Resuscitation, Clinical Center Kragujevac, Serbia
- Department of Surgery, Faculty of Medical Sciences, University of Kragujevac, Serbia
| | - Vladimir Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Serbia
- Department of Hyman Pathology, IM Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
39
|
Adeleye OA, Femi-Oyewo MN, Bamiro OA, Bakre LG, Alabi A, Ashidi JS, Balogun-Agbaje OA, Hassan OM, Fakoya G. Ethnomedicinal herbs in African traditional medicine with potential activity for the prevention, treatment, and management of coronavirus disease 2019. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021; 7:72. [PMID: 33778086 PMCID: PMC7980728 DOI: 10.1186/s43094-021-00223-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ethnomedicine, a study of traditional medicine, is significant in drug discovery and development. African traditional medicine has been in existence for several thousands of years, and several drugs have been discovered and developed from it. MAIN TEXT The deadly coronavirus disease 2019 (COVID-19) caused by a novel coronavirus known as SARS-CoV-2 has widely spread globally with high mortality and morbidity. Its prevention, treatment and management still pose a serious challenge. A drug for the cure of this disease is yet to be developed. The clinical management at present is based on symptomatic treatment as presented by individuals infected and this is by combination of more than two drugs such as antioxidants, anti-inflammatory, anti-pyretic, and anti-microbials. Literature search was performed through electronic searches of PubMed, Google Scholar, and several research reports including WHO technical documents and monographs. CONCLUSION Drug discovery from herbs is essential and should be exploited for the discovery of drugs for the management of COVID-19. This review is aimed at identifying ethnomedicinal herbs available in Africa that could be used for the discovery and development of a drug for the prevention, treatment, and management of the novel coronavirus disease 2019.
Collapse
Affiliation(s)
- Olutayo Ademola Adeleye
- Department of Pharmaceutics and Pharmaceutical Technology, Federal University Oye Ekiti, Oye-Ekiti, Ekiti State Nigeria
| | - Mbang Nyong Femi-Oyewo
- Department of Pharmaceutics and Pharmaceutical Technology, Olabisi Onabanjo University, Ago-Iwoye, Ogun State Nigeria
| | - Oluyemisi Adebowale Bamiro
- Department of Pharmaceutics and Pharmaceutical Technology, Olabisi Onabanjo University, Ago-Iwoye, Ogun State Nigeria
| | - Lateef Gbenga Bakre
- Department of Pharmaceutics and Pharmaceutical Technology, Olabisi Onabanjo University, Ago-Iwoye, Ogun State Nigeria
| | - Akinyinka Alabi
- Department of Pharmacology, Olabisi Onabanjo University, Ago-Iwoye, Ogun State Nigeria
| | - Joseph Senu Ashidi
- Department of Plant Science, Olabisi Onabanjo University, Ago-Iwoye, Ogun State Nigeria
| | | | - Oluwakemi Mary Hassan
- Department of Pharmaceutical Microbiology, Olabisi Onabanjo University, Ago-Iwoye, Ogun State Nigeria
| | - Gbemisola Fakoya
- Department of Pharmacology, University of Lagos, Lagos, Lagos State Nigeria
| |
Collapse
|
40
|
Samad N, Sodunke TE, Abubakar AR, Jahan I, Sharma P, Islam S, Dutta S, Haque M. The Implications of Zinc Therapy in Combating the COVID-19 Global Pandemic. J Inflamm Res 2021; 14:527-550. [PMID: 33679136 PMCID: PMC7930604 DOI: 10.2147/jir.s295377] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
The global pandemic from COVID-19 infection has generated significant public health concerns, both health-wise and economically. There is no specific pharmacological antiviral therapeutic option to date available for COVID-19 management. Also, there is an urgent need to discover effective medicines, prevention, and control methods because of the harsh death toll from this novel coronavirus infection. Acute respiratory tract infections, significantly lower respiratory tract infections, and pneumonia are the primary cause of millions of deaths worldwide. The role of micronutrients, including trace elements, boosted the human immune system and was well established. Several vitamins such as vitamin A, B6, B12, C, D, E, and folate; microelement including zinc, iron, selenium, magnesium, and copper; omega-3 fatty acids as eicosapentaenoic acid and docosahexaenoic acid plays essential physiological roles in promoting the immune system. Furthermore, zinc is an indispensable microelement essential for a thorough enzymatic physiological process. It also helps regulate gene-transcription such as DNA replication, RNA transcription, cell division, and cell activation in the human biological system. Subsequently, zinc, together with natural scavenger cells and neutrophils, are also involved in developing cells responsible for regulating nonspecific immunity. The modern food habit often promotes zinc deficiency; as such, quite a few COVID-19 patients presented to hospitals were frequently diagnosed as zinc deficient. Earlier studies documented that zinc deficiency predisposes patients to a viral infection such as herpes simplex, common cold, hepatitis C, severe acute respiratory syndrome coronavirus (SARS-CoV-1), the human immunodeficiency virus (HIV) because of reducing antiviral immunity. This manuscript aimed to discuss the various roles played by zinc in the management of COVID-19 infection.
Collapse
Affiliation(s)
- Nandeeta Samad
- Department of Public Health, North South University, Dhaka, 1229, Bangladesh
| | | | - Abdullahi Rabiu Abubakar
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Bayero University, Kano, 700233, Nigeria
| | - Iffat Jahan
- Department of Physiology, Eastern Medical College, Cumilla, Bangladesh
| | - Paras Sharma
- Department of Pharmacognosy, BVM College of Pharmacy, Gwalior, India
| | - Salequl Islam
- Department of Microbiology, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mainul Haque
- The Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, Malaysia
| |
Collapse
|
41
|
Safe IP, Amaral EP, Araújo-Pereira M, Lacerda MVG, Printes VS, Souza AB, Beraldi-Magalhães F, Monteiro WM, Sampaio VS, Barreto-Duarte B, Andrade AMS, Spener-Gomes R, Costa AG, Cordeiro-Santos M, Andrade BB. Adjunct N-Acetylcysteine Treatment in Hospitalized Patients With HIV-Associated Tuberculosis Dampens the Oxidative Stress in Peripheral Blood: Results From the RIPENACTB Study Trial. Front Immunol 2021; 11:602589. [PMID: 33613521 PMCID: PMC7889506 DOI: 10.3389/fimmu.2020.602589] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Tuberculosis (TB) still causes significant morbidity and mortality worldwide, especially in persons living with human immunodeficiency virus (HIV). This disease is hallmarked by persistent oxidative stress and systemic inflammation. N-acetylcysteine (NAC), a glutathione (GSH) precursor, has been shown in experimental models to limit Mycobacterium tuberculosis infection and disease both by suppression of the host oxidative response and through direct antimicrobial activity. In a recent phase II randomized clinical trial (RIPENACTB study), use of NAC as adjunct therapy during the first two months of anti-TB treatment was safe. Whether adjunct NAC therapy of patients with TB-HIV coinfection in the context of anti-TB treatment could directly affect pro-oxidation and systemic inflammation has not been yet formally demonstrated. To test this hypothesis, we leveraged existing data and biospecimens from the RIPENACTB trial to measure a number of surrogate markers of oxidative stress and of immune activation in peripheral blood of the participants at pre-treatment and at the day 60 of anti-TB treatment. Upon initiation of therapy, we found that the group of patients undertaking NAC exhibited significant increase in GSH levels and in total antioxidant status while displaying substantial reduction in lipid peroxidation compared to the control group. Only small changes in plasma concentrations of cytokines were noted. Pharmacological improvement of the host antioxidant status appears to be a reasonable strategy to reduce TB-associated immunopathology.
Collapse
Affiliation(s)
- Izabella P Safe
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Eduardo P Amaral
- Immunobiology Section, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mariana Araújo-Pereira
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
| | - Marcus V G Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil.,Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz, Manaus, Brazil
| | - Vitoria S Printes
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Alexandra B Souza
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | | | - Wuelton M Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Vanderson S Sampaio
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Beatriz Barreto-Duarte
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Curso de Medicina, Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil
| | - Alice M S Andrade
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil
| | - Renata Spener-Gomes
- Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil.,Curso de Medicina, Universidade Federal do Amazonas, Manaus, Brazil
| | - Allyson Guimarães Costa
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Marcelo Cordeiro-Santos
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, Brazil.,Curso de Medicina, Universidade Nilton Lins, Manaus, Brazil
| | - Bruno B Andrade
- Laboratório de Inflamação e Biomarcadores, Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil.,Multinational Organization Network Sponsoring Translational and Epidemiological Research (MONSTER) Initiative, Salvador, Brazil.,Curso de Medicina, Universidade Salvador (UNIFACS), Laureate Universities, Salvador, Brazil.,Curso de Medicina, Faculdade de Tecnologia e Ciências (UniFTC), Salvador, Brazil.,Curso de Medicina, Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador, Brazil
| |
Collapse
|
42
|
Muhammad Y, Kani YA, Iliya S, Muhammad JB, Binji A, El-Fulaty Ahmad A, Kabir MB, Umar Bindawa K, Ahmed A. Deficiency of antioxidants and increased oxidative stress in COVID-19 patients: A cross-sectional comparative study in Jigawa, Northwestern Nigeria. SAGE Open Med 2021; 9:2050312121991246. [PMID: 33614035 PMCID: PMC7871282 DOI: 10.1177/2050312121991246] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The COVID-19 is a pandemic caused by SARS-CoV-2 which has infected over 74 million people, killing more than 1,600,000 million people around the world as of 17th December 2020. Accumulation of free radicals coupled by weakened antioxidant system leads to oxidative stress, which will further worsen respiratory diseases, COVID-19 inclusive. This study aimed to examine the levels of some antioxidants and oxidative stress markers in COVID-19 patients. METHODS This was a cross-sectional comparative study in which 50 COVID-19 symptomatic patients who were on admission at the COVID-19 isolation center in Jigawa, Northwestern Nigeria, were recruited. Twenty one (21) apparently healthy individuals were included as controls. Levels of antioxidant trace elements (Se, Zn, Mg, Cu and Cr), 8-isoprostaglandin F2 alpha and malondialdehyde in the plasma and erythrocytes activity of glutathione, glutathione peroxidase, superoxide dismutase and catalase were determined. RESULTS The plasma concentrations of vitamins A, C and E were significantly lower (p < 0.001) in COVID-19 patients than controls. Activities of glutathione, glutathione peroxidase, catalase and superoxide dismutase were lower in COVID-19 subjects than controls (p < 0.001). The concentrations of Se, Zn, Mg and Cu were significantly lower (p < 0.001; p = 0.039; p < 0.001; and p < 0.001), respectively, in COVID-19 patients than controls, while chromium showed no significant difference (p = 0.605). Oxidative stress marker, 8-isoprostaglandin F2 alpha, was significantly higher (p = 0.049), while malondialdehyde was lower (p < 0.001) in COVID-19 patients than controls. CONCLUSION In conclusion, COVID-19 patients are prone to depleted levels of antioxidant substances due to their increase utilization in counterbalancing the negative effect of free radicals. Furthermore, COVID-19 infection with other comorbidities, such as malaria, hypertension and diabetes, are at higher risk of developing oxidative stress.
Collapse
Affiliation(s)
- Yahaya Muhammad
- Department of Chemical Pathology,
Rasheed Shekoni Teaching Hospital Dutse, Dutse, Nigeria
| | - Yamuna Aminu Kani
- College of Medicine and Health Sciences,
Federal University Dutse, Dutse, Nigeria
| | - Sani Iliya
- Department of Biological Sciences,
School of Pure and Applied Sciences, Mount Kenya University, Thika, Kenya
| | - Jafaru Bunza Muhammad
- Department of Chemical Pathology, School
of Medical Laboratory Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
| | | | | | - Muhd Bashir Kabir
- Department of Biotechnology, Federal
University Dutse, Jigawa, Nigeria
| | - Kabir Umar Bindawa
- Department of Medical Laboratory
Science, Ahmadu Bello University Zaria, Zaria, Nigeria
| | - Armaya’u Ahmed
- Department of Chemical Pathology, Usmanu
Danfodiyo University Teaching Hospital Sokoto, Sokoto, Nigeria
| |
Collapse
|
43
|
Genetic Exchange of Lung-Derived Exosome to Brain Causing Neuronal Changes on COVID-19 Infection. Mol Neurobiol 2021; 58:5356-5368. [PMID: 34312772 PMCID: PMC8313419 DOI: 10.1007/s12035-021-02485-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
The pandemic of novel coronavirus 2 (SARS-CoV-2) has made global chaos for normal human living. Despite common COVID-19 symptoms, variability in clinical phenotypes was reported worldwide. Reports on SARS-CoV-2 suggest causing neurological manifestation. In addition, the susceptibility of SARS-CoV-2 in patients with neurodegenerative diseases and its complexity are largely unclear. Here, we aimed to demonstrate the possible transport of exosome from SARS-CoV-2-infected lungs to the brain regions associated with neurodegenerative diseases using multiple transcriptome datasets of SARS-CoV-2-infected lungs, RNA profiles from lung exosome, and gene expression profiles of the human brain. Upon transport, the transcription factors localized in the exosome regulate genes at lateral substantia nigra, medial substantia nigra, and superior frontal gyrus regions of Parkinson's disease (PD) and frontal cortex, hippocampus, and temporal cortex of Alzheimer's disease (AD). On SARS-CoV-2 infection, BCL3, JUND, MXD1, IRF2, IRF9, and STAT1 transcription factors in the exosomes influence the neuronal gene regulatory network and accelerate neurodegeneration. STAT1 transcription factor regulates 64 PD genes at lateral substantia nigra, 65 at superior frontal gyrus, and 19 at medial substantia nigra. Similarly, in AD, STAT1 regulates 74 AD genes at the temporal cortex, 40 genes at the hippocampus, and 16 genes at the frontal cortex. We further demonstrate that dysregulated neuronal genes showed involvement in immune response, signal transduction, apoptosis, and stress response process. In conclusion, SARS-CoV-2 may dysregulate neuronal gene regulatory network through exosomes that attenuate disease severity of neurodegeneration.
Collapse
|
44
|
Witika BA, Makoni PA, Mweetwa LL, Ntemi PV, Chikukwa MTR, Matafwali SK, Mwila C, Mudenda S, Katandula J, Walker RB. Nano-Biomimetic Drug Delivery Vehicles: Potential Approaches for COVID-19 Treatment. Molecules 2020; 25:E5952. [PMID: 33339110 PMCID: PMC7765509 DOI: 10.3390/molecules25245952] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
The current COVID-19 pandemic has tested the resolve of the global community with more than 35 million infections worldwide and numbers increasing with no cure or vaccine available to date. Nanomedicines have an advantage of providing enhanced permeability and retention and have been extensively studied as targeted drug delivery strategies for the treatment of different disease. The role of monocytes, erythrocytes, thrombocytes, and macrophages in diseases, including infectious and inflammatory diseases, cancer, and atherosclerosis, are better understood and have resulted in improved strategies for targeting and in some instances mimicking these cell types to improve therapeutic outcomes. Consequently, these primary cell types can be exploited for the purposes of serving as a "Trojan horse" for targeted delivery to identified organs and sites of inflammation. State of the art and potential utilization of nanocarriers such as nanospheres/nanocapsules, nanocrystals, liposomes, solid lipid nanoparticles/nano-structured lipid carriers, dendrimers, and nanosponges for biomimicry and/or targeted delivery of bioactives to cells are reported herein and their potential use in the treatment of COVID-19 infections discussed. Physicochemical properties, viz., hydrophilicity, particle shape, surface charge, composition, concentration, the use of different target-specific ligands on the surface of carriers, and the impact on carrier efficacy and specificity are also discussed.
Collapse
Affiliation(s)
- Bwalya A. Witika
- Department of Pharmacy, DDT College of Medicine, P.O. Box 70587, Gaborone 00000, Botswana; (B.A.W.); (L.L.M.)
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| | - Pedzisai A. Makoni
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| | - Larry L. Mweetwa
- Department of Pharmacy, DDT College of Medicine, P.O. Box 70587, Gaborone 00000, Botswana; (B.A.W.); (L.L.M.)
| | - Pascal V. Ntemi
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| | - Melissa T. R. Chikukwa
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| | - Scott K. Matafwali
- Department of Basic Sciences, School of Medicine, Copperbelt University, Ndola 10101, Zambia;
| | - Chiluba Mwila
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia; (C.M.); (S.M.)
| | - Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia; (C.M.); (S.M.)
| | - Jonathan Katandula
- Department of Biosciences and Chemistry, Faculty of Health and Wellbeing, Sheffield Hallam University, Sheffield S1 1WB, UK;
| | - Roderick B. Walker
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa; (P.A.M.); (P.V.N.); (M.T.R.C.)
| |
Collapse
|
45
|
Kumari K, Chainy GB, Subudhi U. Prospective role of thyroid disorders in monitoring COVID-19 pandemic. Heliyon 2020; 6:e05712. [PMID: 33344794 PMCID: PMC7733548 DOI: 10.1016/j.heliyon.2020.e05712] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/01/2020] [Accepted: 12/10/2020] [Indexed: 01/08/2023] Open
Abstract
COVID-19 pandemic has affected more than 200 countries and 1.3 million individuals have deceased within eleven months. Intense research on COVID-19 occurrence and prevalence enable us to understand that comorbidities play a crucial role in spread and severity of SARS-CoV-2 infection. Chronic kidney disease, diabetes, respiratory diseases and hypertension are among the various morbidities that are prevalent in symptomatic COVID-19 patients. However, the effect of altered thyroid-driven disorders cannot be ignored. Since thyroid hormone critically coordinate and regulate the major metabolism and biochemical pathways, this review is on the potential role of prevailing thyroid disorders in SARS-CoV-2 infection. Direct link of thyroid hormone with several disorders such as diabetes, vitamin D deficiency, obesity, kidney and liver disorders etc. suggests that the prevailing thyroid conditions may affect SARS-CoV-2 infection. Further, we discuss the oxidative stress-induced aging is associated with the degree of SARS-CoV-2 infection. Importantly, ACE2 protein which facilitates the host-cell entry of SARS-CoV-2 using the spike protein, are highly expressed in individuals with abnormal level of thyroid hormone. Altogether, we report that the malfunction of thyroid hormone synthesis may aggravate SARS-CoV-2 infection and thus monitoring the thyroid hormone may help in understanding the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Kanchan Kumari
- CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India
- Department of Molecular Biology, Umea University, Sweden
| | - Gagan B.N. Chainy
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Umakanta Subudhi
- CSIR-Institute of Minerals & Materials Technology, Bhubaneswar 751013, Odisha, India
- Academy of Scientific & Innovative Research (AcSIR), New Delhi 110025, India
| |
Collapse
|
46
|
Suhail S, Zajac J, Fossum C, Lowater H, McCracken C, Severson N, Laatsch B, Narkiewicz-Jodko A, Johnson B, Liebau J, Bhattacharyya S, Hati S. Role of Oxidative Stress on SARS-CoV (SARS) and SARS-CoV-2 (COVID-19) Infection: A Review. Protein J 2020; 39:644-656. [PMID: 33106987 PMCID: PMC7587547 DOI: 10.1007/s10930-020-09935-8] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
Novel coronavirus disease 2019 (COVID-19) has resulted in a global pandemic and is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several studies have suggested that a precise disulfide-thiol balance is crucial for viral entry and fusion into the host cell and that oxidative stress generated from free radicals can affect this balance. Here, we reviewed the current knowledge about the role of oxidative stress on SARS-CoV and SARS-CoV-2 infections. We focused on the impact of antioxidants, like NADPH and glutathione, and redox proteins, such as thioredoxin and protein disulfide isomerase, that maintain the disulfide-thiol balance in the cell. The possible influence of these biomolecules on the binding of viral protein with the host cell angiotensin-converting enzyme II receptor protein as well as on the severity of COVID-19 infection was discussed.
Collapse
Affiliation(s)
- Shanzay Suhail
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Jonathan Zajac
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Carl Fossum
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Harrison Lowater
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Cailin McCracken
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Nathaniel Severson
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Bethany Laatsch
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Alex Narkiewicz-Jodko
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Benjamin Johnson
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Jessica Liebau
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Sudeep Bhattacharyya
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, USA
| | - Sanchita Hati
- Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, Eau Claire, USA.
| |
Collapse
|
47
|
Mrityunjaya M, Pavithra V, Neelam R, Janhavi P, Halami PM, Ravindra PV. Immune-Boosting, Antioxidant and Anti-inflammatory Food Supplements Targeting Pathogenesis of COVID-19. Front Immunol 2020; 11:570122. [PMID: 33117359 PMCID: PMC7575721 DOI: 10.3389/fimmu.2020.570122] [Citation(s) in RCA: 179] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/25/2020] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 is an acute and contagious disease characterized by pneumonia and ARDS. The disease is caused by SARS-CoV-2, which belongs to the family of Coronaviridae along with MERS-CoV and SARS-CoV-1. The virus has the positive-sense RNA as its genome encoding for ~26 proteins that work together for the virus survival, replication, and spread in the host. The virus gets transmitted through the contact of aerosol droplets from infected persons. The pathogenesis of COVID-19 is highly complex and involves suppression of host antiviral and innate immune response, induction of oxidative stress followed by hyper inflammation described as the "cytokine storm," causing the acute lung injury, tissue fibrosis, and pneumonia. Currently, several vaccines and drugs are being evaluated for their efficacy, safety, and for determination of doses for COVID-19 and this requires considerable time for their validation. Therefore, exploring the repurposing of natural compounds may provide alternatives against COVID-19. Several nutraceuticals have a proven ability of immune-boosting, antiviral, antioxidant, anti-inflammatory effects. These include Zn, vitamin D, vitamin C, curcumin, cinnamaldehyde, probiotics, selenium, lactoferrin, quercetin, etc. Grouping some of these phytonutrients in the right combination in the form of a food supplement may help to boost the immune system, prevent virus spread, preclude the disease progression to severe stage, and further suppress the hyper inflammation providing both prophylactic and therapeutic support against COVID-19.
Collapse
Affiliation(s)
- M. Mrityunjaya
- Department of Biochemistry, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - V. Pavithra
- Department of Biochemistry, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - R. Neelam
- Department of Biochemistry, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysuru, India
| | - P. Janhavi
- Department of Biochemistry, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - P. M. Halami
- Department of Microbiology and Fermentation Technology, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysuru, India
| | - P. V. Ravindra
- Department of Biochemistry, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysuru, India
| |
Collapse
|
48
|
Implications of Oxidative Stress and Potential Role of Mitochondrial Dysfunction in COVID-19: Therapeutic Effects of Vitamin D. Antioxidants (Basel) 2020; 9:antiox9090897. [PMID: 32967329 PMCID: PMC7555731 DOI: 10.3390/antiox9090897] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/13/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Due to its high degree of contagiousness and like almost no other virus, SARS-CoV-2 has put the health of the world population on alert. COVID-19 can provoke an acute inflammatory process and uncontrolled oxidative stress, which predisposes one to respiratory syndrome, and in the worst case, death. Recent evidence suggests the mechanistic role of mitochondria and vitamin D in the development of COVID-19. Indeed, mitochondrial dynamics contribute to the maintenance of cellular homeostasis, and its uncoupling involves pathological situations. SARS-CoV-2 infection is associated with altered mitochondrial dynamics with consequent oxidative stress, pro-inflammatory state, cytokine production, and cell death. Furthermore, vitamin D deficiency seems to be associated with increased COVID-19 risk. In contrast, vitamin D can normalize mitochondrial dynamics, which would improve oxidative stress, pro-inflammatory state, and cytokine production. Furthermore, vitamin D reduces renin–angiotensin–aldosterone system activation and, consequently, decreases ROS generation and improves the prognosis of SARS-CoV-2 infection. Thus, the purpose of this review is to deepen the knowledge about the role of mitochondria and vitamin D directly involved in the regulation of oxidative stress and the inflammatory state in SARS-CoV-2 infection. As future prospects, evidence suggests enhancing the vitamin D levels of the world population, especially of those individuals with additional risk factors that predispose to the lethal consequences of SARS-CoV-2 infection.
Collapse
|
49
|
Górski A, Międzybrodzki R, Żaczek M, Borysowski J. Phages in the fight against COVID-19? Future Microbiol 2020; 15:1095-1100. [PMID: 32845164 PMCID: PMC7451411 DOI: 10.2217/fmb-2020-0082] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Andrzej Górski
- Bacteriophage Laboratory & Phage Therapy Unit, Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, 53–114 Wroclaw, Poland
- Department of Clinical Immunology, Infant Jesus Clinical Hospital, 02–006 Warsaw, Poland
| | - Ryszard Międzybrodzki
- Bacteriophage Laboratory & Phage Therapy Unit, Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, 53–114 Wroclaw, Poland
- Department of Clinical Immunology, The Medical University of Warsaw, 02–006 Warsaw, Poland
| | - Maciej Żaczek
- Bacteriophage Laboratory & Phage Therapy Unit, Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, 53–114 Wroclaw, Poland
| | - Jan Borysowski
- Department of Clinical Immunology, The Medical University of Warsaw, 02–006 Warsaw, Poland
| |
Collapse
|
50
|
A putative AOP for pneumonia related to COVID-19. Arch Toxicol 2020; 94:3343-3345. [PMID: 32691074 PMCID: PMC7369467 DOI: 10.1007/s00204-020-02860-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/15/2020] [Indexed: 12/24/2022]
|