1
|
Xu R, Zhang L, Pan H, Zhang Y. Retinoid X receptor heterodimers in hepatic function: structural insights and therapeutic potential. Front Pharmacol 2024; 15:1464655. [PMID: 39478961 PMCID: PMC11521896 DOI: 10.3389/fphar.2024.1464655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Nuclear receptors (NRs) are key regulators of multiple physiological functions and pathological changes in the liver in response to a variety of extracellular signaling changes. Retinoid X receptor (RXR) is a special member of the NRs, which not only responds to cellular signaling independently, but also regulates multiple signaling pathways by forming heterodimers with various other NR. Therefore, RXR is widely involved in hepatic glucose metabolism, lipid metabolism, cholesterol metabolism and bile acid homeostasis as well as hepatic fibrosis. Specific activation of particular dimers regulating physiological and pathological processes may serve as important pharmacological targets. So here we describe the basic information and structural features of the RXR protein and its heterodimers, focusing on the role of RXR heterodimers in a number of physiological processes and pathological imbalances in the liver, to provide a theoretical basis for RXR as a promising drug target.
Collapse
Affiliation(s)
- Renjie Xu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linyue Zhang
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Pan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Escudier O, Zhang Y, Whiting A, Chazot P. Evaluation of a Synthetic Retinoid, Ellorarxine, in the NSC-34 Cell Model of Motor Neuron Disease. Int J Mol Sci 2024; 25:9764. [PMID: 39337251 PMCID: PMC11431449 DOI: 10.3390/ijms25189764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/28/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease worldwide and is characterized by progressive muscle atrophy. There are currently two approved treatments, but they only relieve symptoms briefly and do not cure the disease. The main hindrance to research is the complex cause of ALS, with its pathogenesis not yet fully elucidated. Retinoids (vitamin A derivatives) appear to be essential in neuronal cells and have been implicated in ALS pathogenesis. This study explores 4-[2-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydroquinoxalin-2-yl)ethylnyl]benzoic acid (Ellorarxine, or DC645 or NVG0645), a leading synthetic retinoic acid, discussing its pharmacological mechanisms, neuroprotective properties, and relevance to ALS. The potential therapeutic effect of Ellorarxine was analyzed in vitro using the WT and SOD1G93A NSC-34 cell model of ALS at an administered concentration of 0.3-30 nM. Histological, functional, and biochemical analyses were performed. Elorarxine significantly increased MAP2 expression and neurite length, increased AMPA receptor GluA2 expression and raised intracellular Ca2+ baseline, increased level of excitability, and reduced Ca2+ spike during depolarization in neurites. Ellorarxine also displayed both antioxidant and anti-inflammatory effects. Overall, these results suggest Ellorarxine shows relevance and promise as a novel therapeutic strategy for treatment of ALS.
Collapse
Affiliation(s)
- Olivia Escudier
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK
- Department of Chemistry, Science Laboratories, Durham University, Durham DH1 3LE, UK
| | - Yunxi Zhang
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK
| | - Andrew Whiting
- Department of Chemistry, Science Laboratories, Durham University, Durham DH1 3LE, UK
| | - Paul Chazot
- Department of Biosciences, Wolfson Research Institute for Health and Wellbeing, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
3
|
Posadas-Sánchez R, López-Uribe ÁR, Fragoso JM, Vargas-Alarcón G. Interleukin 6 polymorphisms are associated with cardiovascular risk factors in premature coronary artery disease patients and healthy controls of the GEA Mexican study. Exp Mol Pathol 2024; 136:104886. [PMID: 38290570 DOI: 10.1016/j.yexmp.2024.104886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 01/04/2024] [Accepted: 01/26/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND AND AIMS Interleukin-6 (IL-6) is an acute-phase protein that plays an important role in the inflammatory response, vascular inflammation, and atherosclerosis process. The study aimed to establish whether IL-6 gene polymorphisms and IL-6 concentrations are associated with premature coronary artery disease (pCAD) and cardiovascular risk factors. METHODS The IL-6 concentrations and the rs2069827, rs1800796, and rs1800795 IL-6 polymorphisms were determined in 1150 pCAD patients and 1083 healthy controls (coronary artery calcium equal to zero determined by tomography). RESULTS The IL-6 polymorphisms studied were not associated with pCAD, but they were associated with cardiovascular risk factors in patients and controls. In controls, under the dominant model, the rs1800795 C allele and the rs2069827 T allele were associated with a low risk of central obesity (OR = 0.401, p = 0.017 and OR = 0.577, p = 0.031, respectively), hypoalphalipoproteinemia (OR = 0.581, p = 0.027 and OR = 0.700, p = 0.014, respectively) and hypertriglyceridemia (OR = 0.575, p = 0.030 and OR = 0.728, p = 0.033, respectively). In pCAD, the rs1800795 C allele was associated with an increased risk of hypoalphalipoproteinemia (OR = 1.370, padditive = 0.025) and increased C-reactive protein (CRP) concentrations (OR = 1.491, padditive = 0.007). pCAD patients had significantly higher serum IL-6 concentrations compared to controls (p = 0.002). In the total population, individuals carrying the rs1800795 GC + CC genotypes had higher levels of IL-6 than carriers of the GG genotype (p = 0.025). In control individuals carrying the C allele (CG + CC), an inverse correlation was observed between IL-6 and HDL-cholesterol levels (p = 0.003). CONCLUSIONS In summary, the IL-6 polymorphisms were not associated with pCAD, however, they were associated with cardiovascular risk factors in pCAD patients and healthy controls. Individuals carrying the rs1800795 GC + CC genotypes had higher levels of IL-6 than carriers of the GG genotype.
Collapse
Affiliation(s)
| | - Ángel Rene López-Uribe
- Department of Endocrinology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - José Manuel Fragoso
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Gilberto Vargas-Alarcón
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico; Research Direction, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico.
| |
Collapse
|
4
|
Wu Y, Huang T, Li X, Shen C, Ren H, Wang H, Wu T, Fu X, Deng S, Feng Z, Xiong S, Li H, Gao S, Yang Z, Gao F, Dong L, Cheng J, Cai W. Retinol dehydrogenase 10 reduction mediated retinol metabolism disorder promotes diabetic cardiomyopathy in male mice. Nat Commun 2023; 14:1181. [PMID: 36864033 PMCID: PMC9981688 DOI: 10.1038/s41467-023-36837-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/20/2023] [Indexed: 03/04/2023] Open
Abstract
Diabetic cardiomyopathy is a primary myocardial injury induced by diabetes with complex pathogenesis. In this study, we identify disordered cardiac retinol metabolism in type 2 diabetic male mice and patients characterized by retinol overload, all-trans retinoic acid deficiency. By supplementing type 2 diabetic male mice with retinol or all-trans retinoic acid, we demonstrate that both cardiac retinol overload and all-trans retinoic acid deficiency promote diabetic cardiomyopathy. Mechanistically, by constructing cardiomyocyte-specific conditional retinol dehydrogenase 10-knockout male mice and overexpressing retinol dehydrogenase 10 in male type 2 diabetic mice via adeno-associated virus, we verify that the reduction in cardiac retinol dehydrogenase 10 is the initiating factor for cardiac retinol metabolism disorder and results in diabetic cardiomyopathy through lipotoxicity and ferroptosis. Therefore, we suggest that the reduction of cardiac retinol dehydrogenase 10 and its mediated disorder of cardiac retinol metabolism is a new mechanism underlying diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Yandi Wu
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Tongsheng Huang
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Xinghui Li
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Conghui Shen
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Honglin Ren
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Haiping Wang
- Prenatal Diagnosis Center, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Teng Wu
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Xinlu Fu
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Shijie Deng
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Ziqi Feng
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Shijie Xiong
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Hui Li
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Saifei Gao
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Zhenyu Yang
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China
| | - Fei Gao
- Durbrain Medical Laboratory, Hangzhou, 310000, Zhejiang, China
| | - Lele Dong
- Durbrain Medical Laboratory, Hangzhou, 310000, Zhejiang, China
| | - Jianding Cheng
- Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.,Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Weibin Cai
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China. .,Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China. .,Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
5
|
Cassim Bawa FN, Gopoju R, Xu Y, Hu S, Zhu Y, Chen S, Jadhav K, Zhang Y. Retinoic Acid Receptor Alpha (RARα) in Macrophages Protects from Diet-Induced Atherosclerosis in Mice. Cells 2022; 11:3186. [PMID: 36291054 PMCID: PMC9600071 DOI: 10.3390/cells11203186] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 08/13/2023] Open
Abstract
Retinoic acid signaling plays an important role in regulating lipid metabolism and inflammation. However, the role of retinoic acid receptor alpha (RARα) in atherosclerosis remains to be determined. In the current study, we investigated the role of macrophage RARα in the development of atherosclerosis. Macrophages isolated from myeloid-specific Rarα-/- (RarαMac-/-) mice showed increased lipid accumulation and inflammation and reduced cholesterol efflux compared to Rarαfl/fl (control) mice. All-trans retinoic acid (AtRA) induced ATP-binding cassette subfamily A member 1 (Abca1) and Abcg1 expression and cholesterol efflux in both RarαMac-/- mice and Rarαfl/fl mice. In Ldlr-/- mice, myeloid ablation of RARα significantly reduced macrophage Abca1 and Abcg1 expression and cholesterol efflux, induced inflammatory genes, and aggravated Western diet-induced atherosclerosis. Our data demonstrate that macrophage RARα protects against atherosclerosis, likely via inducing cholesterol efflux and inhibiting inflammation.
Collapse
Affiliation(s)
- Fathima N. Cassim Bawa
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
- School of Biomedical Sciences, Kent State University, Kent, OH 44240, USA
| | - Raja Gopoju
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Yanyong Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Shuwei Hu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Yingdong Zhu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
- School of Biomedical Sciences, Kent State University, Kent, OH 44240, USA
| | - Shaoru Chen
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Kavita Jadhav
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| |
Collapse
|
6
|
Bachmann JC, Baumgart SJ, Uryga AK, Bosteen MH, Borghetti G, Nyberg M, Herum KM. Fibrotic Signaling in Cardiac Fibroblasts and Vascular Smooth Muscle Cells: The Dual Roles of Fibrosis in HFpEF and CAD. Cells 2022; 11:1657. [PMID: 35626694 PMCID: PMC9139546 DOI: 10.3390/cells11101657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 12/11/2022] Open
Abstract
Patients with heart failure with preserved ejection fraction (HFpEF) and atherosclerosis-driven coronary artery disease (CAD) will have ongoing fibrotic remodeling both in the myocardium and in atherosclerotic plaques. However, the functional consequences of fibrosis differ for each location. Thus, cardiac fibrosis leads to myocardial stiffening, thereby compromising cardiac function, while fibrotic remodeling stabilizes the atherosclerotic plaque, thereby reducing the risk of plaque rupture. Although there are currently no drugs targeting cardiac fibrosis, it is a field under intense investigation, and future drugs must take these considerations into account. To explore similarities and differences of fibrotic remodeling at these two locations of the heart, we review the signaling pathways that are activated in the main extracellular matrix (ECM)-producing cells, namely human cardiac fibroblasts (CFs) and vascular smooth muscle cells (VSMCs). Although these signaling pathways are highly overlapping and context-dependent, effects on ECM remodeling mainly act through two core signaling cascades: TGF-β and Angiotensin II. We complete this by summarizing the knowledge gained from clinical trials targeting these two central fibrotic pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Kate M. Herum
- Research and Early Development, Novo Nordisk A/S, Novo Nordisk Park, 2760 Maaloev, Denmark; (J.C.B.); (S.J.B.); (A.K.U.); (M.H.B.); (G.B.); (M.N.)
| |
Collapse
|
7
|
Su JH, Luo MY, Liang N, Gong SX, Chen W, Huang WQ, Tian Y, Wang AP. Interleukin-6: A Novel Target for Cardio-Cerebrovascular Diseases. Front Pharmacol 2021; 12:745061. [PMID: 34504432 PMCID: PMC8421530 DOI: 10.3389/fphar.2021.745061] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/09/2021] [Indexed: 12/18/2022] Open
Abstract
Cardio-Cerebrovascular Disease is a collective term for cardiovascular disease and cerebrovascular disease, being a serious threat to human health. A growing number of studies have proved that the content of inflammatory factors or mediators determines the stability of vascular plaque and the incidence of cardio-cerebrovascular event, and involves in the process of Cardio-Cerebrovascular Diseases. Interleukin-6 is a widely used cytokine that causes inflammation and oxidative stress, which would further result in cardiac and cerebral injury. The increased expression of interleukin-6 is closely related to atherosclerosis, myocardial infarction, heart failure and ischemic stroke. It is a key risk factor for these diseases by triggering inflammatory reaction and inducing other molecules release. Therefore, interleukin-6 may become a potential target for Cardio-Cerebrovascular Diseases in the future. This paper is aimed to discuss the expression changes and pathological mechanisms of interleukin-6 in Cardio-Cerebrovascular Diseases, and to provide a novel strategy for the prevention and treatment of Cardio-Cerebrovascular Diseases.
Collapse
Affiliation(s)
- Jian-Hui Su
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| | - Meng-Yi Luo
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| | - Na- Liang
- Department of Anesthesiology, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Shao-Xin Gong
- Department of Pathology, First Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Wei Chen
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| | - Wen-Qian Huang
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| | - Ying Tian
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, China
| | - Ai-Ping Wang
- Institute of Clinical Research, Affiliated Nanhua Hospital, Hengyang Medical College, University of South China, Hengyang, China
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Department of Physiology, Institute of Neuroscience Research, Hengyang Medical College, University of South China, Hengyang, China
| |
Collapse
|
8
|
Leo M, Schmitt LI, Kutritz A, Kleinschnitz C, Hagenacker T. Cisplatin-induced activation and functional modulation of satellite glial cells lead to cytokine-mediated modulation of sensory neuron excitability. Exp Neurol 2021; 341:113695. [PMID: 33727094 DOI: 10.1016/j.expneurol.2021.113695] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/01/2021] [Accepted: 03/11/2021] [Indexed: 12/23/2022]
Abstract
Cisplatin plays an essential role in the treatment of various cancers. Cisplatin exhibits high efficacy, but it often leads to severe neurotoxic side effects, such as chemotherapy-induced polyneuropathy (CIPN). The pathophysiology of CIPN is not fully understood. There is increasing evidence for damage to satellite glial cells (SGC) and dorsal root ganglion (DRG) neurons. We investigated the influence of cisplatin on the function of SGCs and the direct influence on DRGs. Satellite glial cells were isolated from DRG and exposed to 0.1, 1, 10, or 100 μM cisplatin for 2 h, 4 h, and 24 h. Using immunocytochemical staining and Western blot analysis, the expression of the glial fibrillary acid protein (GFAP), reactive oxygen species (ROS), and inward rectifier potassium channel 4.1 (Kir4.1) was determined. An increase in the immune reactivity (IR) and protein levels of GFAP and ROS was measured, and a reduction of IR and protein level of Kir4.1 was detected. A decrease in these channels' current density was observed using the whole-cell patch-clamp recording. The interleukin-6 (IL-6) and tumor necrosis factor α (TNFα) release of SGCs increased after cisplatin exposure as measured using ELISA, and interleukin-1β (IL-1β) decreased. The SGC-secreted factors in the supernatant after cisplatin treatment led to a modulation of cultured DRG neurons' excitability. Taken together, the modulation and function of different SGC proteins could be linked to a direct impact of cisplatin. Further, SGC-secreted factors influenced the excitability of sensory neurons. Overall, SGCs could be a potential target in preventing and treating chemotherapy-induced neuropathic pain.
Collapse
Affiliation(s)
- Markus Leo
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany.
| | - Linda-Isabell Schmitt
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Andrea Kutritz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Tim Hagenacker
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Hospital Essen, Hufelandstr. 55, 45147 Essen, Germany
| |
Collapse
|
9
|
Villar-Fincheira P, Sanhueza-Olivares F, Norambuena-Soto I, Cancino-Arenas N, Hernandez-Vargas F, Troncoso R, Gabrielli L, Chiong M. Role of Interleukin-6 in Vascular Health and Disease. Front Mol Biosci 2021; 8:641734. [PMID: 33786327 PMCID: PMC8004548 DOI: 10.3389/fmolb.2021.641734] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/01/2021] [Indexed: 01/08/2023] Open
Abstract
IL-6 is usually described as a pleiotropic cytokine produced in response to tissue injury or infection. As a pro-inflammatory cytokine, IL-6 activates innate and adaptative immune responses. IL-6 is released in the innate immune response by leukocytes as well as stromal cells upon pattern recognition receptor activation. IL-6 then recruits immune cells and triggers B and T cell response. Dysregulated IL-6 activity is associated with pathologies involving chronic inflammation and autoimmunity, including atherosclerosis. However, IL-6 is also produced and released under beneficial conditions, such as exercise, where IL-6 is associated with the anti-inflammatory and metabolic effects coupled with physical adaptation to intense training. Exercise-associated IL-6 acts on adipose tissue to induce lipogenesis and on arteries to induce adaptative vascular remodeling. These divergent actions could be explained by complex signaling networks. Classical IL-6 signaling involves a membrane-bound IL-6 receptor and glycoprotein 130 (gp130), while trans-signaling relies on a soluble version of IL-6R (sIL-6R) and membrane-bound gp130. Trans-signaling, but not the classical pathway, is regulated by soluble gp130. In this review, we discuss the similarities and differences in IL-6 cytokine and myokine signaling to explain the differential and opposite effects of this protein during inflammation and exercise, with a special focus on the vascular system.
Collapse
Affiliation(s)
- Paulina Villar-Fincheira
- Advanced Center for Chronic Diseases & CEMC, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Fernanda Sanhueza-Olivares
- Advanced Center for Chronic Diseases & CEMC, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases & CEMC, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Nicole Cancino-Arenas
- Advanced Center for Chronic Diseases & CEMC, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Felipe Hernandez-Vargas
- Advanced Center for Chronic Diseases & CEMC, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Rodrigo Troncoso
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Luigi Gabrielli
- Advanced Center for Chronic Diseases, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Luigi Gabrielli, ; Mario Chiong,
| | - Mario Chiong
- Advanced Center for Chronic Diseases & CEMC, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- *Correspondence: Luigi Gabrielli, ; Mario Chiong,
| |
Collapse
|
10
|
Schmitt LI, Leo M, Kutritz A, Kleinschnitz C, Hagenacker T. Activation and functional modulation of satellite glial cells by oxaliplatin lead to hyperexcitability of sensory neurons in vitro. Mol Cell Neurosci 2020; 105:103499. [PMID: 32389805 DOI: 10.1016/j.mcn.2020.103499] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/28/2020] [Accepted: 05/03/2020] [Indexed: 01/24/2023] Open
Abstract
Platinum-based chemotherapeutics still play an important role in cancer therapy, however, severe side effects, such as painful neuropathy, occur frequently. The pathophysiologic mechanisms depend on the applied chemotherapeutic agent and are still controversial. In addition to neuronal damage, disturbance of glial cell activity may contribute to neurotoxicity. Here, we focused on the effect of oxaliplatin on satellite glial cell (SGC) function and on the activity of the dorsal root ganglion (DRG) neurons. SGCs were isolated as high-purity cultures and treated with 1 and 10 μM oxaliplatin for 2, 4 and 24 h. Subsequently, glial fibrillary acid protein (GFAP), reactive oxygen species (ROS), Connexin-43 (Cx-43), and inward rectifier potassium channel 4.1 (Kir4.1) expression was determined by immunocytochemical staining (ICC) and Western blot analyses. Immunochemical staining and Western blot analysis showed an increase in the immune reactivity (IR) and protein levels of ROS, GFAP, and Cx-43. Furthermore, reduction of the IR and protein levels and current density were demonstrated using patch-clamp measurements, of Kir4.1 channels after oxaliplatin exposure. Cytokine release in SGCs was measured using enzyme-linked immunosorbent assays (ELISA) after oxaliplatin exposure and indicated an increased release of IL-6 and TNFα, while IL-1β was decreased. The direct influence of SGC-secreted factors in the supernatant after oxaliplatin treatment led to the hyperexcitability of cultured DRG neurons. In summary, oxaliplatin has a direct impact on the modulation and function of different SGC proteins. Furthermore, SGC-released factors influence the excitability of sensory neurons, qualifying SGCs as potential targets for the prevention and treatment of oxaliplatin-induced polyneuropathy.
Collapse
Affiliation(s)
| | - Markus Leo
- Department of Neurology, Neuroscience Lab, University Hospital Essen, Germany
| | - Andrea Kutritz
- Department of Neurology, Neuroscience Lab, University Hospital Essen, Germany
| | | | - Tim Hagenacker
- Department of Neurology, Neuroscience Lab, University Hospital Essen, Germany.
| |
Collapse
|
11
|
Jiang T, Jiang D, You D, Zhang L, Liu L, Zhao Q. Agonism of GPR120 prevents ox-LDL-induced attachment of monocytes to endothelial cells. Chem Biol Interact 2020; 316:108916. [PMID: 31870843 DOI: 10.1016/j.cbi.2019.108916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/20/2019] [Accepted: 12/05/2019] [Indexed: 12/13/2022]
Abstract
Oxidized low-density lipoprotein (ox-LDL)-induced endothelial inflammation plays an important role in the development of cardiovascular diseases. G protein-coupled receptors (GPCR) are gaining traction as potential treatment targets due to their roles in mediating a wide range of physiological processes. GPR120 is a recently identified omega-3 fatty acid receptor. We hypothesized that agonism of GPR120 might attenuate ox-LDL-induced endothelial dysfunction. In the present study, we tested the effects of two GPR120 agonists-GW9508 and TUG-891-in mitigating endothelial insult induced by ox-LDL in human aortic endothelial cells (HAECs). Real-time PCR, western blot, and ELISA analyses were used in our experiments. Our findings demonstrate that GPR120 is downregulated by exposure to ox-LDL, suggesting a role for GPR120 in mediating ox-LDL insult. Furthermore, we found that agonism of GPR120 could suppress oxidative stress and inflammation by inhibiting the production of reactive oxygen species and the expression of proinflammatory cytokines. Importantly, we show that agonism of GPR120 prevents the attachment of monocytes to endothelial cells by suppressing the expression of VCAM-1 and E-selectin. Finally, we show that agonism of GPR120 exerts a remarkable atheroprotective effect by elevating the expression level of Krüppel-like factor 2 (KLF2). Together, our results demonstrate a potential role for specific agonism of GPR120 in the prevention of endothelial damages induced by ox-LDL.
Collapse
Affiliation(s)
- Tiechao Jiang
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China; Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, 130033, China
| | - Dongli Jiang
- Department of Pharmacy, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Dong You
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Lirong Zhang
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Long Liu
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China; Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, 130033, China.
| | - Qini Zhao
- Department of Cardiovascular Medicine, China-Japan Union Hospital of Jilin University, Changchun, 130033, China; Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, 130033, China.
| |
Collapse
|
12
|
Efficacy of Terpenoid in Attenuating Aortic Atherosclerosis in Apolipoprotein-E Deficient Mice: A Meta-Analysis of Animal Studies. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2931831. [PMID: 31392210 PMCID: PMC6662500 DOI: 10.1155/2019/2931831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/10/2019] [Accepted: 06/17/2019] [Indexed: 12/09/2022]
Abstract
Background The apolipoprotein E knockout (ApoE -/-) mouse model is well established for the study of terpenoids in the prevention of atherosclerosis. Studies investigating the clinical benefit of terpenoids in humans are scarce. This systematic review and meta-analysis evaluated the effects of terpenoid administration on atherosclerotic lesion area in ApoE -/- mice. Methods A comprehensive literature search using PubMed, Embase, and the Cochrane Library databases was performed to identify studies that assessed the effects of terpenoids on atherosclerosis in ApoE -/- mice. The primary outcome was atherosclerotic lesion area, and study quality was estimated using SYRCLE's risk of bias tool. Results The meta-analysis included 25 studies. Overall, terpenoids significantly reduced atherosclerotic lesion area when compared to vehicle control (P<0.00001; SMD: -0.55; 95% CI: -0.72, -0.39). In terpenoid type and dose subgroup analyses, sesquiterpenoid (P=0.002; SMD -0.93; 95% CI: -1.52, -0.34), diterpenoid (P=0.01; SMD: -0.30; 95% CI: -0.54, -0.06), triterpenoid (P<0.00001; SMD: -0.66; 95% CI: -0.94, -0.39), tetraterpenoid (P<0.0001; SMD: -1.81; 95% CI: -2.70, -0.91), low dose (P=0.0001; SMD: -0.51; 95% CI: -0.76, -0.25), medium dose (P<0.0001; SMD: -0.48; 95% CI: -0.72, -0.24), and high dose (P=0.002; SMD: -1.07; 95% CI: -1.74, -0.40) significantly decreased atherosclerotic lesion area when compared to vehicle control. PROSPERO register number is CRD42019121176. Conclusion Sesquiterpenoid, diterpenoid, triterpenoid, and tetraterpenoid have potential as antiatherosclerotic agents with a wide range of doses. This systematic review provides a reference for research programs aimed at the development of terpenoid-based clinical drugs.
Collapse
|
13
|
Thelenota ananas saponin extracts attenuate the atherosclerosis in apoE−/− mice by modulating lipid metabolism. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.04.065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
14
|
Kyotani Y, Takasawa S, Yoshizumi M. Proliferative Pathways of Vascular Smooth Muscle Cells in Response to Intermittent Hypoxia. Int J Mol Sci 2019; 20:ijms20112706. [PMID: 31159449 PMCID: PMC6600262 DOI: 10.3390/ijms20112706] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/20/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by intermittent hypoxia (IH) and is a risk factor for cardiovascular diseases (e.g., atherosclerosis) and chronic inflammatory diseases (CID). The excessive proliferation of vascular smooth muscle cells (VSMCs) plays a pivotal role in the progression of atherosclerosis. Hypoxia-inducible factor-1 and nuclear factor-κB are thought to be the main factors involved in responses to IH and in regulating adaptations or inflammation pathways, however, further evidence is needed to demonstrate the underlying mechanisms of this process in VSMCs. Furthermore, few studies of IH have examined smooth muscle cell responses. Our previous studies demonstrated that increased interleukin (IL)-6, epidermal growth factor family ligands, and erbB2 receptor, some of which amplify inflammation and, consequently, induce CID, were induced by IH and were involved in the proliferation of VSMCs. Since IH increased IL-6 and epiregulin expression in VSMCs, the same phenomenon may also occur in other smooth muscle cells, and, consequently, may be related to the incidence or progression of several diseases. In the present review, we describe how IH can induce the excessive proliferation of VSMCs and we develop the suggestion that other CID may be related to the effects of IH on other smooth muscle cells.
Collapse
Affiliation(s)
- Yoji Kyotani
- Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan.
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University School of Medicine, Kashihara 634-8521, Japan.
| | - Masanori Yoshizumi
- Department of Pharmacology, Nara Medical University School of Medicine, Kashihara 634-8521, Japan.
| |
Collapse
|
15
|
The Novel Nutraceutical KJS018A Prevents Hepatocarcinogenesis Promoted by Inflammation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3909434. [PMID: 30154906 PMCID: PMC6093067 DOI: 10.1155/2018/3909434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/04/2018] [Accepted: 07/24/2018] [Indexed: 01/17/2023]
Abstract
Inflammation is tightly associated with carcinogenesis at both the initiation and development of tumor. Many reports indicated that Cox-2 substantially contributes to inflammation and tumorigenesis. The novel nutraceutical KJS018A (BRM270 Function Enhanced Products) is the extract mixture from 8 herbal plants, which have been used to inhibit cancers and inflammation. The aim of the present study is to examine the inhibitory effects of KJS018A mixture to hepatocarcinogenesis and inflammation. The results showed that KJS018A significantly inhibited the proliferation of hepatic malignant cells and downregulated levels of IL-6 and Cox-2. Furthermore, KJS018A diminished the effect of PMA, an inflammatory inducer via IL-6/STAT3/Cox-2 pathway. Furthermore, KJS018A suppressed metastatic traits of hepatic malignant cells via downregulating Twist, N-cadherin, and MMP-9 while restoring E-cadherin expression. KJS018A also restrained tumor growth and levels of IL-6 and Cox-2 in immunohistochemistry staining. Taken together, these data suggest potential application of KJS018A in prevention of hepatocarcinogenesis promoted by inflammation.
Collapse
|
16
|
Multiple myeloma-derived Jagged ligands increases autocrine and paracrine interleukin-6 expression in bone marrow niche. Oncotarget 2018; 7:56013-56029. [PMID: 27463014 PMCID: PMC5302893 DOI: 10.18632/oncotarget.10820] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/06/2016] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma cell growth relies on intrinsic aggressiveness, due to a high karyotypic instability, or on the support from bone marrow (BM) niche. We and other groups have provided evidences that Notch signaling is related to tumor cell growth, pharmacological resistance, localization/recirculation in the BM and bone disease. This study indicates that high gene expression levels of Notch signaling members (JAG1, NOTCH2, HES5 and HES6) correlate with malignant progression or high-risk disease, and Notch signaling may participate in myeloma progression by increasing the BM levels of interleukin-6 (IL-6), a major player in myeloma cell growth and survival. Indeed, in vitro results, confirmed by correlation analysis on gene expression profiles of myeloma patients and immunohistochemical studies, demonstrated that Notch signaling controls IL-6 gene expression in those myeloma cells capable of IL-6 autonomous production as well as in surrounding BM stromal cells. In both cases Notch signaling activation may be triggered by myeloma cell-derived Jagged ligands. The evidence that Notch signaling positively controls IL-6 in the myeloma-associated BM makes this pathway a key mediator of tumor-directed reprogramming of the bone niche. This work strengthens the rationale for a novel Notch-directed therapy in multiple myeloma based on the inhibition of Jagged ligands.
Collapse
|
17
|
Majerczyk M, Choręza P, Bożentowicz-Wikarek M, Brzozowska A, Arabzada H, Owczarek A, Mossakowska M, Grodzicki T, Zdrojewski T, Więcek A, Olszanecka-Glinianowicz M, Chudek J. Increased plasma RBP4 concentration in older hypertensives is related to the decreased kidney function and the number of antihypertensive drugs-results from the PolSenior substudy. ACTA ACUST UNITED AC 2016; 11:71-80. [PMID: 28038989 DOI: 10.1016/j.jash.2016.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/26/2016] [Accepted: 11/29/2016] [Indexed: 12/28/2022]
Abstract
Increased plasma retinol-binding protein 4 (RBP4), a novel adipokine, has been associated in previous studies with obesity, type 2 diabetes, dyslipidemia, hypertension (HT), atherosclerosis, and coronary artery disease. This study aimed to analyze the relationship between HT occurrence and its treatment, and plasma RBP4 concentrations in the older polish population. The study sample consisted of 1728 (890 men and 838 women) PolSenior study participants aged 65 years and older with available plasma samples and NT-proBNP values below 2000 pg/mL. The analysis included body mass index, waist circumference, blood pressure, antihypertensive medication, estimated glomerular filtration rate, serum glucose and insulin (and the homeostatic model assessment of insulin resistance), and plasma RBP4 levels. RBP4 plasma concentrations were higher in hypertensive (N = 645) than normotensive (N = 236) men (43.4 [30.4-64.8] vs. 38.1 [27.1-54.4] ng/mL, respectively; P < .01) but not in women (44.6 [29.6-63.5] vs. 40.7 [29.1-58.1] ng/mL, respectively; P = .21). In the subanalysis, higher plasma RBP4 levels were observed in women with treated than untreated HT and in subjects taking four of more antihypertensive drugs. The linear regression shown that estimated glomerular filtration rate (β = -0.015), thiazide diuretics (β = 0.041), and α-blockers (β = 0.049) were explaining log10RBP4 plasma levels variability in the study group. Older male Caucasians with HT are characterized by elevated plasma RBP4 levels. This increase is proportional to the number of antihypertensive drugs and decreased glomerular filtration rate. Among the antihypertensive drugs, only thiazide diuretics and α-blockers had a significant influence on RBP4 levels.
Collapse
Affiliation(s)
- Marcin Majerczyk
- Pathophysiology Unit, Department of Pathophysiology, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland; Department of Cardiology, District Hospital in Zakopane, Poland
| | - Piotr Choręza
- Division of Statistics, Department of Instrumental Analysis, Faculty of Pharmacy and Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Maria Bożentowicz-Wikarek
- Pathophysiology Unit, Department of Pathophysiology, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aniceta Brzozowska
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland
| | - Habibullah Arabzada
- Pathophysiology Unit, Department of Pathophysiology, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aleksander Owczarek
- Division of Statistics, Department of Instrumental Analysis, Faculty of Pharmacy and Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | | | - Tomasz Grodzicki
- Department of Internal Medicine and Gerontology, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz Zdrojewski
- Department of Preventive Medicine and Education, Medical University of Gdansk, Gdansk, Poland
| | - Andrzej Więcek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Katowice, Poland
| | - Magdalena Olszanecka-Glinianowicz
- Health Promotion and Obesity Management Unit, Department of Pathophysiology, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland
| | - Jerzy Chudek
- Pathophysiology Unit, Department of Pathophysiology, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland; Department of Internal Medicine and Oncological Chemotherapy, Medical Faculty in Katowice, Medical University of Silesia, Katowice, Poland.
| |
Collapse
|
18
|
Qiu HN, Liu B, Liu W, Liu S. Interleukin-27 enhances TNF-α-mediated activation of human coronary artery endothelial cells. Mol Cell Biochem 2015; 411:1-10. [PMID: 26386872 DOI: 10.1007/s11010-015-2563-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/03/2015] [Indexed: 12/22/2022]
Abstract
Immune cells and inflammatory mediators play important roles in the development of atherosclerotic vascular inflammation. IL-27 is a member of the IL-6/IL-12 family that can promote Th1 responses and augment the release of inflammatory mediators from human mast cells and monocytes. However, the direct effect of IL-27 on human coronary artery endothelial cells was unclear. In this study, the effects of IL-27 and TNF-α on the cell surface expression of adhesion molecules, inflammatory cytokines, and chemokines were investigated. Results showed that IL-27 alone could significantly promote the release of chemokine CXCL10. However, IL-27 could further significantly enhance the TNF-α-mediated upregulation of adhesion molecules ICAM-1 and VCAM-1, inflammatory cytokine IL-6, as well as chemokines CCL5 and CXCL10 from human coronary artery endothelial cells. The release of IL-6, CCL5, and CXCL10 were significantly suppressed by specific signaling molecule inhibitors, implying that the induction of these mediators from the human coronary artery endothelial cells could be differentially regulated by the c-Jun N-terminal kinase, p38 mitogen-activated protein kinase, and nuclear factor-κB pathways. These results provided new insights into the effect of IL-27 on the TNF-α mediated activation of human coronary artery endothelial cells in atherosclerotic vascular inflammation.
Collapse
Affiliation(s)
- Huai-Na Qiu
- Guangzhou Institute of Cardiovascular Disease, The Second Hospital Affiliated to Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Bin Liu
- Guangzhou Institute of Cardiovascular Disease, The Second Hospital Affiliated to Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Weihua Liu
- Guangzhou Institute of Cardiovascular Disease, The Second Hospital Affiliated to Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Shiming Liu
- Guangzhou Institute of Cardiovascular Disease, The Second Hospital Affiliated to Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
19
|
The inhibition of macrophage foam cell formation by 9-cis β-carotene is driven by BCMO1 activity. PLoS One 2015; 10:e0115272. [PMID: 25629601 PMCID: PMC4309590 DOI: 10.1371/journal.pone.0115272] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/23/2014] [Indexed: 01/04/2023] Open
Abstract
Atherosclerosis is a major cause of morbidity and mortality in developed societies, and begins when activated endothelial cells recruit monocytes and T-cells from the bloodstream into the arterial wall. Macrophages that accumulate cholesterol and other fatty materials are transformed into foam cells. Several epidemiological studies have demonstrated that a diet rich in carotenoids is associated with a reduced risk of heart disease; while previous work in our laboratory has shown that the 9-cis β-carotene rich alga Dunaliella inhibits atherogenesis in mice. The effect of 9-cis β-carotene on macrophage foam cell formation has not yet been investigated. In the present work, we sought to study whether the 9-cis β-carotene isomer, isolated from the alga Dunaliella, can inhibit macrophage foam cell formation upon its conversion to retinoids. The 9-cis β-carotene and Dunaliella lipid extract inhibited foam cell formation in the RAW264.7 cell line, similar to 9-cis retinoic acid. Furthermore, dietary enrichment with the algal powder in mice resulted in carotenoid accumulation in the peritoneal macrophages and in the inhibition of foam cell formation ex-vivo and in-vivo. We also found that the β-carotene cleavage enzyme β-carotene 15,15’-monooxygenase (BCMO1) is expressed and active in macrophages. Finally, 9-cis β-carotene, as well as the Dunaliella extract, activated the nuclear receptor RXR in hepa1-6 cells. These results indicate that dietary carotenoids, such as 9-cis β-carotene, accumulate in macrophages and can be locally cleaved by endogenous BCMO1 to form 9-cis retinoic acid and other retinoids. Subsequently, these retinoids activate the nuclear receptor RXR that, along with additional nuclear receptors, can affect various metabolic pathways, including those involved in foam cell formation and atherosclerosis.
Collapse
|
20
|
Sato A, Watanabe K, Kaneko K, Murakami Y, Ishido M, Miyasaka N, Nanki T. The effect of synthetic retinoid, Am80, on T helper cell development and antibody production in murine collagen-induced arthritis. Mod Rheumatol 2014. [DOI: 10.3109/s10165-009-0265-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Kiss M, Czimmerer Z, Nagy L. The role of lipid-activated nuclear receptors in shaping macrophage and dendritic cell function: From physiology to pathology. J Allergy Clin Immunol 2013; 132:264-86. [PMID: 23905916 DOI: 10.1016/j.jaci.2013.05.044] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/16/2013] [Accepted: 05/30/2013] [Indexed: 02/06/2023]
Abstract
Nuclear receptors are ligand-activated transcription factors linking lipid signaling to the expression of the genome. There is increasing appreciation of the involvement of this receptor network in the metabolic programming of macrophages and dendritic cells (DCs), essential members of the innate immune system. In this review we focus on the role of retinoid X receptor, retinoic acid receptor, peroxisome proliferator-associated receptor γ, liver X receptor, and vitamin D receptor in shaping the immune and metabolic functions of macrophages and DCs. We also provide an overview of the contribution of macrophage- and DC-expressed nuclear receptors to various immunopathologic conditions, such as rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythematosus, asthma, and some others. We suggest that systematic analyses of the roles of these receptors and their activating lipid ligands in immunopathologies combined with complementary and focused translational and clinical research will be crucial for the development of new therapies using the many molecules available to target nuclear receptors.
Collapse
Affiliation(s)
- Mate Kiss
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary
| | | | | |
Collapse
|
22
|
Kotake D, Sato T, Hirasawa N. Retinoid signaling in pathological remodeling related to cardiovascular disease. Eur J Pharmacol 2013; 729:144-7. [PMID: 24056119 DOI: 10.1016/j.ejphar.2013.09.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/02/2013] [Indexed: 02/04/2023]
Abstract
Retinoids, the active derivatives of vitamin A, are critical signaling molecules in crucial biological processes such as embryonic development, the maintenance of immune function, and cellular differentiation and proliferation. Preclinical studies have shown that retinoids also regulate morphological changes during the progression of cardiovascular disease (CVD). CVD is complexly formed in a mutual chain reaction of various modern lifestyle-related risk factors such as dyslipidemia, hypertension, diabetes, and obesity. These factors induce the pathological remodeling of adipose tissue, the vasculature, and the ventricles, which are a potential target for retinoid signaling. This perspective highlights emerging topics and future prospectives on the relationship between CVD and retinoid signaling.
Collapse
Affiliation(s)
- Daisuke Kotake
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Tohoku University, 6-3 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Taiki Sato
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Tohoku University, 6-3 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Noriyasu Hirasawa
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Tohoku University, 6-3 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| |
Collapse
|
23
|
Zetterqvist AV, Berglund LM, Blanco F, Garcia-Vaz E, Wigren M, Dunér P, Andersson AMD, To F, Spegel P, Nilsson J, Bengtsson E, Gomez MF. Inhibition of nuclear factor of activated T-cells (NFAT) suppresses accelerated atherosclerosis in diabetic mice. PLoS One 2013; 8:e65020. [PMID: 23755169 PMCID: PMC3670844 DOI: 10.1371/journal.pone.0065020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/21/2013] [Indexed: 01/13/2023] Open
Abstract
Objective of the Study Diabetic patients have a much more widespread and aggressive form of atherosclerosis and therefore, higher risk for myocardial infarction, peripheral vascular disease and stroke, but the molecular mechanisms leading to accelerated damage are still unclear. Recently, we showed that hyperglycemia activates the transcription factor NFAT in the arterial wall, inducing the expression of the pro-atherosclerotic protein osteopontin. Here we investigate whether NFAT activation may be a link between diabetes and atherogenesis. Methodology and Principal Findings Streptozotocin (STZ)-induced diabetes in apolipoprotein E−/− mice resulted in 2.2 fold increased aortic atherosclerosis and enhanced pro-inflammatory burden, as evidenced by elevated blood monocytes, endothelial activation- and inflammatory markers in aorta, and pro-inflammatory cytokines in plasma. In vivo treatment with the NFAT blocker A-285222 for 4 weeks completely inhibited the diabetes-induced aggravation of atherosclerosis, having no effect in non-diabetic mice. STZ-treated mice exhibited hyperglycemia and higher plasma cholesterol and triglycerides, but these were unaffected by A-285222. NFAT-dependent transcriptional activity was examined in aorta, spleen, thymus, brain, heart, liver and kidney, but only augmented in the aorta of diabetic mice. A-285222 completely blocked this diabetes-driven NFAT activation, but had no impact on the other organs or on splenocyte proliferation or cytokine secretion, ruling out systemic immunosuppression as the mechanism behind reduced atherosclerosis. Instead, NFAT inhibition effectively reduced IL-6, osteopontin, monocyte chemotactic protein 1, intercellular adhesion molecule 1, CD68 and tissue factor expression in the arterial wall and lowered plasma IL-6 in diabetic mice. Conclusions Targeting NFAT signaling may be a novel and attractive approach for the treatment of diabetic macrovascular complications.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Apolipoproteins E/deficiency
- Apolipoproteins E/metabolism
- Atherosclerosis/blood
- Atherosclerosis/complications
- Atherosclerosis/pathology
- Biomarkers/metabolism
- Blood Glucose/metabolism
- Body Weight/drug effects
- Cholesterol/blood
- Diabetes Mellitus, Experimental/blood
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Disease Progression
- Inflammation/pathology
- Interleukin-6/blood
- Mice, Inbred C57BL
- Monocytes/metabolism
- NFATC Transcription Factors/antagonists & inhibitors
- NFATC Transcription Factors/metabolism
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Pyrazoles/pharmacokinetics
- Pyrazoles/pharmacology
- Signal Transduction/drug effects
- Transcription, Genetic/drug effects
Collapse
Affiliation(s)
| | - Lisa M. Berglund
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Fabiana Blanco
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Eliana Garcia-Vaz
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Maria Wigren
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Pontus Dunér
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | | | - Fong To
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Peter Spegel
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Jan Nilsson
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Eva Bengtsson
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Maria F. Gomez
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
- * E-mail:
| |
Collapse
|
24
|
Kurakula K, Hamers AAJ, de Waard V, de Vries CJM. Nuclear Receptors in atherosclerosis: a superfamily with many 'Goodfellas'. Mol Cell Endocrinol 2013; 368:71-84. [PMID: 22664910 DOI: 10.1016/j.mce.2012.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/23/2012] [Accepted: 05/25/2012] [Indexed: 01/07/2023]
Abstract
Nuclear Receptors form a superfamily of 48 transcription factors that exhibit a plethora of functions in steroid hormone signaling, regulation of metabolism, circadian rhythm and cellular differentiation. In this review, we describe our current knowledge on the role of Nuclear Receptors in atherosclerosis, which is a multifactorial disease of the vessel wall. Various cell types are involved in this chronic inflammatory pathology in which multiple cellular processes and numerous genes are dysregulated. Systemic risk factors for atherosclerosis are among others adverse blood lipid profiles, enhanced circulating cytokine levels, as well as increased blood pressure. Since many Nuclear Receptors modulate lipid profiles or regulate blood pressure they indirectly affect atherosclerosis. In the present review, we focus on the functional involvement of Nuclear Receptors within the atherosclerotic vessel wall, more specifically on their modulation of cellular functions in endothelial cells, smooth muscle cells and macrophages. Collectively, this overview shows that most of the Nuclear Receptors are athero-protective in atherosclerotic lesions.
Collapse
Affiliation(s)
- Kondababu Kurakula
- Department of Medical Biochemistry, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
25
|
Huk DJ, Hammond HL, Kegechika H, Lincoln J. Increased dietary intake of vitamin A promotes aortic valve calcification in vivo. Arterioscler Thromb Vasc Biol 2012. [PMID: 23202364 DOI: 10.1161/atvbaha.112.300388] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Calcific aortic valve disease (CAVD) is a major public health problem with no effective treatment available other than surgery. We previously showed that mature heart valves calcify in response to retinoic acid (RA) treatment through downregulation of the SRY transcription factor Sox9. In this study, we investigated the effects of excess vitamin A and its metabolite RA on heart valve structure and function in vivo and examined the molecular mechanisms of RA signaling during the calcification process in vitro. METHODS AND RESULTS Using a combination of approaches, we defined calcific aortic valve disease pathogenesis in mice fed 200 IU/g and 20 IU/g of retinyl palmitate for 12 months at molecular, cellular, and functional levels. We show that mice fed excess vitamin A develop aortic valve stenosis and leaflet calcification associated with increased expression of osteogenic genes and decreased expression of cartilaginous markers. Using a pharmacological approach, we show that RA-mediated Sox9 repression and calcification is regulated by classical RA signaling and requires both RA and retinoid X receptors. CONCLUSIONS Our studies demonstrate that excess vitamin A dietary intake promotes heart valve calcification in vivo. Therefore suggesting that hypervitaminosis A could serve as a new risk factor of calcific aortic valve disease in the human population.
Collapse
Affiliation(s)
- Danielle J Huk
- Center for Cardiovascular and Pulmonary Research, Columbus, OH, USA
| | | | | | | |
Collapse
|
26
|
Nagy L, Szanto A, Szatmari I, Széles L. Nuclear hormone receptors enable macrophages and dendritic cells to sense their lipid environment and shape their immune response. Physiol Rev 2012; 92:739-89. [PMID: 22535896 DOI: 10.1152/physrev.00004.2011] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A key issue in the immune system is to generate specific cell types, often with opposing activities. The mechanisms of differentiation and subtype specification of immune cells such as macrophages and dendritic cells are critical to understand the regulatory principles and logic of the immune system. In addition to cytokines and pathogens, it is increasingly appreciated that lipid signaling also has a key role in differentiation and subtype specification. In this review we explore how intracellular lipid signaling via a set of transcription factors regulates cellular differentiation, subtype specification, and immune as well as metabolic homeostasis. We introduce macrophages and dendritic cells and then we focus on a group of transcription factors, nuclear receptors, which regulate gene expression upon receiving lipid signals. The receptors we cover are the ones with a recognized physiological function in these cell types and ones which heterodimerize with the retinoid X receptor. These are as follows: the receptor for a metabolite of vitamin A, retinoic acid: retinoic acid receptor (RAR), the vitamin D receptor (VDR), the fatty acid receptor: peroxisome proliferator-activated receptor γ (PPARγ), the oxysterol receptor liver X receptor (LXR), and their obligate heterodimeric partner, the retinoid X receptor (RXR). We discuss how they can get activated and how ligand is generated and eliminated in these cell types. We also explore how activation of a particular target gene contributes to biological functions and how the regulation of individual target genes adds up to the coordination of gene networks. It appears that RXR heterodimeric nuclear receptors provide these cells with a coordinated and interrelated network of transcriptional regulators for interpreting the lipid milieu and the metabolic changes to bring about gene expression changes leading to subtype and functional specification. We also show that these networks are implicated in various immune diseases and are amenable to therapeutic exploitation.
Collapse
Affiliation(s)
- Laszlo Nagy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Medical and Health Science Center, Egyetem tér 1, Debrecen, Hungary.
| | | | | | | |
Collapse
|
27
|
Porter KM, Sutliff RL. HIV-1, reactive oxygen species, and vascular complications. Free Radic Biol Med 2012; 53:143-59. [PMID: 22564529 PMCID: PMC3377788 DOI: 10.1016/j.freeradbiomed.2012.03.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/16/2012] [Accepted: 03/18/2012] [Indexed: 02/07/2023]
Abstract
Over 1 million people in the United States and 33 million individuals worldwide suffer from HIV/AIDS. Since its discovery, HIV/AIDS has been associated with an increased susceptibility to opportunistic infection due to immune dysfunction. Highly active antiretroviral therapies restore immune function and, as a result, people infected with HIV-1 are living longer. This improved survival of HIV-1 patients has revealed a previously unrecognized risk of developing vascular complications, such as atherosclerosis and pulmonary hypertension. The mechanisms underlying these HIV-associated vascular disorders are poorly understood. However, HIV-induced elevations in reactive oxygen species (ROS), including superoxide and hydrogen peroxide, may contribute to vascular disease development and progression by altering cell function and redox-sensitive signaling pathways. In this review, we summarize the clinical and experimental evidence demonstrating HIV- and HIV antiretroviral therapy-induced alterations in reactive oxygen species and how these effects are likely to contribute to vascular dysfunction and disease.
Collapse
Affiliation(s)
- Kristi M Porter
- Pulmonary, Allergy and Critical Care Division, Emory University School of Medicine/Atlanta VA Medical Center, 1670 Clairmont Road, Mailstop 151P, Decatur, GA 30033, USA.
| | | |
Collapse
|
28
|
Krivospitskaya O, Elmabsout AA, Sundman E, Söderström LA, Ovchinnikova O, Gidlöf AC, Scherbak N, Norata GD, Samnegård A, Törmä H, Abdel-Halim SM, Jansson JH, Eriksson P, Sirsjö A, Olofsson PS. A CYP26B1 polymorphism enhances retinoic acid catabolism and may aggravate atherosclerosis. Mol Med 2012; 18:712-8. [PMID: 22415012 DOI: 10.2119/molmed.2012.00094] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 03/02/2012] [Indexed: 01/08/2023] Open
Abstract
All-trans retinoic acid, controlled by cytochrome P450, family 26 (CYP26) enzymes, potentially has beneficial effects in atherosclerosis treatment. This study investigates CYP26 subfamily B, polypeptide 1 (CYP26B1) in atherosclerosis and the effects of a genetic polymorphism in CYP26B1 on retinoid catabolism. We found that CYP26B1 mRNA was induced by retinoic acid in human atherosclerotic arteries, and CYP26B1 and the macrophage marker CD68 were colocalized in human atherosclerotic lesions. In mice, Cyp26B1 mRNA was higher in atherosclerotic arteries than in normal arteries. Databases were queried for nonsynonymous CYP26B1 single nucleotide polymorphisms (SNPs) and rs2241057 selected for further studies. Constructs of the CYP26B1 variants were created and used for production of purified proteins and transfection of macrophagelike cells. The minor variant catabolized retinoic acid with significantly higher efficiency, indicating that rs2241057 is functional and suggesting reduced retinoid availability in tissues with the minor variant. rs2241057 was investigated in a Stockholm Coronary Atherosclerosis Risk Factor (SCARF) subgroup. The minor allele was associated with slightly larger lesions, as determined by angiography. In summary, this study identifies the first CYP26B1 polymorphism that alters CYP26B1 capacity to metabolize retinoic acid. CYP26B1 was expressed in macrophage-rich areas of human atherosclerotic lesions, induced by retinoic acid and increased in murine atherosclerosis. Taken together, the results indicate that CYP26B1 capacity is genetically regulated and suggest that local CYP26B1 activity may influence atherosclerosis.
Collapse
Affiliation(s)
- Olesya Krivospitskaya
- Department of Clinical Medicine, School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sharma G, She ZG, Valenta DT, Stallcup WB, Smith JW. TARGETING OF MACROPHAGE FOAM CELLS IN ATHEROSCLEROTIC PLAQUE USING OLIGONUCLEOTIDE-FUNCTIONALIZED NANOPARTICLES. ACTA ACUST UNITED AC 2012; 1:207-214. [PMID: 23125876 DOI: 10.1142/s1793984410000183] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Macrophage foam cells are key components of atherosclerotic plaque and play an important role in the progression of atherosclerosis leading to plaque rupture and thrombosis. Foam cells are emerging as attractive targets for therapeutic intervention and for imaging the progression of disease. Therefore, designing nanoparticles (NPs) targeted to macrophage foam cells in plaque is of considerable therapeutic significance. Here we report the construction of an oligonucleotide functionalized NP system with high affinity for foam cells. Nanoparticles functionalized with a 23-mer poly-Guanine (polyG) oligonucleotide are specifically recognized by the scavenger receptors on lipid-laden foam cells in vitro and ex vivo. The enhanced uptake of polyG-functionalized NPs by foam cells is inhibited in the presence of acetylated-LDL, a known ligand of scavenger receptors. Since polyG oligonucleotides are stable in serum and are unlikely to induce an immune response, their use for scavenger receptor-mediated targeting of macrophage foam cells provides a strategy for targeting atherosclerotic lesions.
Collapse
Affiliation(s)
- Gaurav Sharma
- Program for Excellence in Nanomedicine, Sanford-Burnham Medical Research Institute 10901 N. Torrey Pines Road, La Jolla, CA, USA 92037
| | | | | | | | | |
Collapse
|
30
|
Synthetic retinoid Am80 ameliorates chronic graft-versus-host disease by down-regulating Th1 and Th17. Blood 2011; 119:285-95. [PMID: 22077062 DOI: 10.1182/blood-2011-01-332478] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chronic GVHD (cGVHD) is a main cause of late death and morbidity after allogeneic hematopoietic cell transplantation, but its pathogenesis remains unclear. We investigated the roles of Th subsets in cGVHD with the use of a well-defined mouse model of cGVHD. In this model, development of cGVHD was associated with up-regulated Th1, Th2, and Th17 responses. Th1 and Th2 responses were up-regulated early after BM transplantation, followed by a subsequent up-regulation of Th17 cells. Significantly greater numbers of Th17 cells were infiltrated in the lung and liver from allogeneic recipients than those from syngeneic recipients. We then evaluated the roles of Th1 and Th17 in cGVHD with the use of IFN-γ-deficient and IL-17-deficient mice as donors. Infusion of IFN-γ(-/-) or IL-17(-/-) T cells attenuated cGVHD in the skin and salivary glands. Am80, a potent synthetic retinoid, regulated both Th1 and Th17 responses as well as TGF-β expression in the skin, resulting in an attenuation of cutaneous cGVHD. These results suggest that Th1 and Th17 contribute to the development of cGVHD and that targeting Th1 and Th17 may therefore represent a promising therapeutic strategy for preventing and treating cGVHD.
Collapse
|
31
|
Lammers B, Zhao Y, Hoekstra M, Hildebrand RB, Ye D, Meurs I, Van Berkel TJC, Van Eck M. Augmented atherogenesis in LDL receptor deficient mice lacking both macrophage ABCA1 and ApoE. PLoS One 2011; 6:e26095. [PMID: 22022523 PMCID: PMC3191178 DOI: 10.1371/journal.pone.0026095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 09/19/2011] [Indexed: 11/18/2022] Open
Abstract
AIM ABCA1 protects against atherosclerosis by facilitating cholesterol efflux from macrophage foam cells in the arterial wall to extracellular apolipoprotein (apo) A-I. In contrast to apoA-I, apoE is secreted by macrophages and can, like apoA-I, induce ABCA1-mediated cholesterol efflux. Yet, the combined effect of macrophage ABCA1 and apoE on lesion development is unexplored. METHODS AND RESULTS LDL receptor knockout (KO) mice were transplanted with bone marrow from ABCA1/apoE double KO (dKO) mice, their respective single KO's, and wild-type (WT) controls and were challenged with a high-fat/high-cholesterol diet for 9 weeks. In vitro cholesterol efflux experiments showed no differences between ABCA1 KO and dKO macrophages. The serum non-HDL/HDL ratio in dKO transplanted mice was 1.7-fold and 2.4-fold (p<0.01) increased compared to WT and ABCA1 KO transplanted mice, respectively. The atherosclerotic lesion area in dKO transplanted animals (650±94×10(3) µm(2)), however, was 1.9-fold (p<0.01) and 1.6-fold (p<0.01) increased compared to single knockouts (ABCA1 KO: 341±20×10(3) µm(2); apoE KO: 402±78×10(3) µm(2), respectively) and 3.1-fold increased (p<0.001) compared to WT (211±20×10(3) µm(2)). When normalized for serum cholesterol exposure, macrophage ABCA1 and apoE independently protected against atherosclerotic lesion development (p<0.001). Moreover, hepatic expression levels of TNFα and IL-6 were highly induced in dKO transplanted animals (3.0-fold; p<0.05, and 4.3-fold; p<0.001, respectively). In agreement, serum IL-6 levels were also enhanced in ABCA1 KO transplanted mice (p<0.05) and even further enhanced in dKO transplanted animals (3.1-fold as compared to ABCA1 KO transplanted animals; p<0.05). CONCLUSIONS Combined deletion of macrophage ABCA1 and apoE results in a defect in cholesterol efflux and, compared to ABCA1 KO transplanted mice, elevated serum total cholesterol levels. Importantly, these mice also suffer from enhanced systemic and hepatic inflammation, together resulting in the observed augmented atherosclerotic lesion development.
Collapse
Affiliation(s)
- Bart Lammers
- Division of Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Gorlaeus Laboratories, Leiden University, Leiden, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Loppnow H, Zhang L, Buerke M, Lautenschläger M, Chen L, Frister A, Schlitt A, Luther T, Song N, Hofmann B, Rose-John S, Silber RE, Müller-Werdan U, Werdan K. Statins potently reduce the cytokine-mediated IL-6 release in SMC/MNC cocultures. J Cell Mol Med 2011; 15:994-1004. [PMID: 20158569 PMCID: PMC3922683 DOI: 10.1111/j.1582-4934.2010.01036.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Inflammatory pathways are involved in the development of atherosclerosis. Interaction of vessel wall cells and invading monocytes by cytokines may trigger local inflammatory processes. 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) are standard medications used in cardiovascular diseases. They are thought to have anti-inflammatory capacities, in addition to their lipid-lowering effects. We investigated the anti-inflammatory effect of statins in the cytokine-mediated-interaction-model of human vascular smooth muscle cells (SMC) and human mononuclear cells (MNC). In this atherosclerosis-related inflammatory model LPS (lipopolysaccharide, endotoxin), as well as high mobility group box 1 stimulation resulted in synergistic (i.e. over-additive) IL-6 (interleukin-6) production as measured in ELISA. Recombinant IL-1, tumour necrosis factor-α and IL-6 mediated the synergistic IL-6 production. The standard anti-inflammatory drugs aspirin and indomethacin (Indo) reduced the synergistic IL-6 production by 60%. Simvastatin, atorvastatin, fluvastatin or pravastatin reduced the IL-6 production by 53%, 50%, 64% and 60%, respectively. The inhibition by the statins was dose dependent. Combination of statins with aspirin and/or Indo resulted in complete inhibition of the synergistic IL-6 production. The same inhibitors blocked STAT3 phosphorylation, providing evidence for an autocrine role of IL-6 in the synergism. MNC from volunteers after 5 day aspirin or simvastatin administration showed no decreased IL-6 production, probably due to drug removal during MNC isolation. Taken together, the data show that anti-inflammatory functions (here shown for statins) can be sensitively and reproducibly determined in this novel SMC/MNC coculture model. These data implicate that statins have the capacity to affect atherosclerosis by regulating cytokine-mediated innate inflammatory pathways in the vessel wall.
Collapse
Affiliation(s)
- Harald Loppnow
- Universitätsklinik und Poliklinik für Innere Medizin III, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rhee EJ, Nallamshetty S, Plutzky J. Retinoid metabolism and its effects on the vasculature. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:230-40. [PMID: 21810483 DOI: 10.1016/j.bbalip.2011.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/15/2011] [Accepted: 07/06/2011] [Indexed: 12/16/2022]
Abstract
Retinoids, the metabolically-active structural derivatives of vitamin A, are critical signaling molecules in many fundamental biological processes including cell survival, proliferation and differentiation. Emerging evidence, both clinical and molecular, implicates retinoids in atherosclerosis and other vasculoproliferative disorders such as restenosis. Although the data from clinical trials examining effect of vitamin A and vitamin precursors on cardiac events have been contradictory, this data does suggest that retinoids do influence fundamental processes relevant to atherosclerosis. Preclinical animal model and cellular studies support these concepts. Retinoids exhibit complex effects on proliferation, growth, differentiation and migration of vascular smooth muscle cells (VSMC), including responses to injury and atherosclerosis. Retinoids also appear to exert important inhibitory effects on thrombosis and inflammatory responses relevant to atherogenesis. Recent studies suggest retinoids may also be involved in vascular calcification and endothelial function, for example, by modulating nitric oxide pathways. In addition, established retinoid effects on lipid metabolism and adipogenesis may indirectly influence inflammation and atherosclerosis. Collectively, these observations underscore the scope and complexity of retinoid effects relevant to vascular disease. Additional studies are needed to elucidate how context and metabolite-specific retinoid effects affect atherosclerosis. This article is part of a Special Issue entitled: Retinoid and Lipid Metabolism.
Collapse
Affiliation(s)
- Eun-Jung Rhee
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
34
|
Loppnow H, Buerke M, Werdan K, Rose-John S. Contribution of vascular cell-derived cytokines to innate and inflammatory pathways in atherogenesis. J Cell Mol Med 2011; 15:484-500. [PMID: 21199323 PMCID: PMC3922371 DOI: 10.1111/j.1582-4934.2010.01245.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 12/21/2010] [Indexed: 01/22/2023] Open
Abstract
Inflammation is a central element of atherogenesis. Innate pathways contribute to vascular inflammation. However, the initial molecular process(es) starting atherogenesis remain elusive. The various risk factors, represented by particular compounds (activators), may cause altered cellular functions in the endothelium (e.g. vascular endothelial cell activation or -dysfunction), in invading cells (e.g. inflammatory mediator production) or in local vessel wall cells (e.g. inflammatory mediators, migration), thereby triggering the innate inflammatory process. The cellular components of innate immunology include granulocytes, natural killer cells and monocytes. Among the molecular innate constituents are innate molecules, such as the toll-like receptors or innate cytokines. Interleukin-1 (IL-1) and IL-6 are among the innate cytokines. Cytokines are potent activators of a great number of cellular functions relevant to maintain or commove homeostasis of the vessel wall. Within the vessel wall, vascular smooth muscle cells (SMCs) can significantly contribute to the cytokine-dependent inflammatory network by: (i) production of cytokines, (ii) response to cytokines and (iii) cytokine-mediated interaction with invading leucocytes. The cytokines IL-1 and IL-6 are involved in SMC-leucocyte interaction. The IL-6 effects are proposed to be mediated by trans-signalling. Dysregulated cellular functions resulting from dysregulated cytokine production may be the cause of cell accumulation, subsequent low-density lipoprotein accumulation and deposition of extracellular matrix (ECM). The deposition of ECM, increased accumulation of leucocytes and altered levels of inflammatory mediators may constitute an 'innate-immunovascular-memory' resulting in an ever-growing response to anew invasion. Thus, SMC-fostered inflammation, promoted by invading innate cells, may be a potent component for development and acceleration of atherosclerosis.
Collapse
Affiliation(s)
- Harald Loppnow
- Department of Internal Medicine III, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
| | | | | | | |
Collapse
|
35
|
COX-2 Inhibition and Inhibition of Cytosolic Phospholipase A2 Increase CD36 Expression and Foam Cell Formation in THP-1 Cells. Lipids 2010; 46:131-42. [DOI: 10.1007/s11745-010-3502-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 11/04/2010] [Indexed: 10/18/2022]
|
36
|
Tsai JY, Su KH, Shyue SK, Kou YR, Yu YB, Hsiao SH, Chiang AN, Wu YL, Ching LC, Lee TS. EGb761 ameliorates the formation of foam cells by regulating the expression of SR-A and ABCA1: role of haem oxygenase-1. Cardiovasc Res 2010; 88:415-23. [PMID: 20615914 DOI: 10.1093/cvr/cvq226] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIMS Accumulation of foam cells in the intima is a hallmark of early-stage atherosclerotic lesions. Ginkgo biloba extract (EGb761) has been reported to exert anti-oxidative and anti-inflammatory properties in atherosclerosis, yet the significance and the molecular mechanisms of action of EGb761 in the formation of macrophage foam cells are not fully understood. METHODS AND RESULTS Treatment with EGb761 resulted in a dose-dependent decrease in oxidized low-density lipoprotein (oxLDL)-mediated cholesterol accumulation in macrophages, a consequence that was due to a decrease in cholesterol uptake and an increase in cholesterol efflux. Additionally, EGb761 significantly down-regulated the mRNA and protein expression of class A scavenger receptor (SR-A) by decreasing expression of activator protein 1 (AP-1); however, EGb761 increased the protein stability of ATP-binding cassette transporter A1 (ABCA1) by reducing calpain activity without affecting ABCA1 mRNA expression. Small interfering RNA (siRNA) targeting haem oxygenase-1 (HO-1) abolished the EGb761-induced protective effects on the expression of AP-1, SR-A, ABCA1, and calpain activity. Accordingly, EGb761-mediated suppression of lipid accumulation in foam cells was also abrogated by HO-1 siRNA. Moreover, the lesion size of atherosclerosis was smaller in EGb761-treated, apolipoprotein E-deficient mice compared with the vehicle-treated mice, and the expression of HO-1, SR-A, and ABCA1 in aortas was modulated similar to that observed in macrophages. CONCLUSION These findings suggest that EGb761 confers a protection from the formation of foam cells by a novel HO-1-dependent regulation of cholesterol homeostasis in macrophages.
Collapse
Affiliation(s)
- Jin-Yi Tsai
- Department of Physiology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Tacke R, Müller V, Büttner MW, Lippert WP, Bertermann R, Daiss JO, Khanwalkar H, Furst A, Gaudon C, Gronemeyer H. Synthesis and pharmacological characterization of Disila-AM80 (Disila-tamibarotene) and Disila-AM580, silicon analogues of the RARalpha-selective retinoid agonists AM80 (Tamibarotene) and AM580. ChemMedChem 2010; 4:1797-802. [PMID: 19790202 DOI: 10.1002/cmdc.200900257] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Reinhold Tacke
- Universität Würzburg, Institut für Anorganische Chemie, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rho YH, Chung CP, Oeser A, Solus J, Asanuma Y, Sokka T, Pincus T, Raggi P, Gebretsadik T, Shintani A, Stein CM. Inflammatory mediators and premature coronary atherosclerosis in rheumatoid arthritis. ACTA ACUST UNITED AC 2010; 61:1580-5. [PMID: 19877084 DOI: 10.1002/art.25009] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is an inflammatory disease associated with premature atherosclerosis. We hypothesized that mediators of inflammation associated with atherosclerosis in other populations (interleukin-6 [IL-6], tumor necrosis factor alpha [TNFalpha], serum amyloid A [SAA], vascular endothelial growth factor, neutrophil count, IL-1alpha, E-selectin, intercellular adhesion molecule 1 [ICAM-1], myeloperoxidase [MPO], matrix metalloproteinase 9, and vascular cell adhesion molecule 1) would be increased and associated with the severity of coronary atherosclerosis in patients with RA. METHODS Clinical variables, concentrations of inflammatory mediators, and coronary artery calcification were measured in 169 patients with RA and 92 control subjects. Differences in concentrations of inflammatory mediators were compared using median quantile regression. The relationship of inflammatory mediators with the severity of coronary calcification in RA and control subjects was examined using proportional odds logistic regression, allowing for interaction with disease status. Models were adjusted for traditional cardiovascular risk factors. RESULTS Median serum concentrations of IL-6, SAA, ICAM-1, E-selectin, TNFalpha, and MPO and peripheral blood neutrophil count were higher in patients with RA than controls (all P < 0.05), independent of Framingham risk score and diabetes mellitus (DM). IL-6 (main effect odds ratio [OR] 1.72; 95% confidence interval [95% CI] 1.12, 2.66) and TNFalpha (main effect OR 1.49; 95% CI 1.16, 1.90) concentrations were significantly associated with higher amounts of coronary calcium, independent of Framingham risk score and DM, and such main effects significantly differed from controls (P = 0.001 and 0.03 for interaction, respectively). CONCLUSION TNFalpha and IL-6 are significantly associated with the severity of subclinical atherosclerosis, independent of Framingham risk score, in RA.
Collapse
Affiliation(s)
- Young Hee Rho
- Vanderbilt University, Nashville, Tennessee 37232-6602, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sato A, Watanabe K, Kaneko K, Murakami Y, Ishido M, Miyasaka N, Nanki T. The effect of synthetic retinoid, Am80, on T helper cell development and antibody production in murine collagen-induced arthritis. Mod Rheumatol 2009; 20:244-51. [PMID: 20039185 DOI: 10.1007/s10165-009-0265-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 11/30/2009] [Indexed: 12/01/2022]
Abstract
Retinoids are known to promote T helper (Th)2 and regulatory T cell (Treg) differentiation, and suppress Th1 and Th17 in vitro. Am80, a synthetic retinoid, is reported to ameliorate collagen-induced arthritis (CIA). The aims of this study are to determine the effects of Am80 on CIA in detail, and on Th development and antibody (Ab) production in vivo. Murine CIA was induced by immunization with bovine type II collagen (CII) at days 1 and 22. Treatment with Am80 from day 1 to 35 significantly lowered clinical arthritis score, suppressed cellular infiltration and bone destruction in the joint, decreased interleukin (IL)-17 and increased interferon (IFN)-gamma production by CII-stimulated splenocytes, and decreased proportion of Foxp3(+) splenic CD4 T cells and serum anti-CII Ab levels. Thus, Am80 inhibited Th17 and Treg and enhanced Th1 differentiation in vivo. In contrast, Am80 applied from day 15 to 35 did not alter arthritis score, IL-17 or IFN-gamma production by CII-stimulated splenocytes, but decreased the proportion of Foxp3(+) splenic CD4 T cells and serum anti-CII Ab levels. Am80 exhibits inhibitory effects on CIA and might regulate both Th development and Ab production in vivo. Decreased Th17 by treatment with Am80 might be responsible for the attenuation of arthritis.
Collapse
Affiliation(s)
- Aya Sato
- Department of Medicine and Rheumatology, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Oz HS, Zhong J, de Villiers WJS. Pattern recognition scavenger receptors, SR-A and CD36, have an additive role in the development of colitis in mice. Dig Dis Sci 2009; 54:2561-7. [PMID: 19117124 PMCID: PMC3072447 DOI: 10.1007/s10620-008-0673-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 12/08/2008] [Indexed: 01/02/2023]
Abstract
The multifunctional pattern recognition scavenger receptors, SR-A and CD36, are predominantly expressed by lamina propria macrophages and considered important in innate immunity. We examined the role of these receptors in the pathophysiology of inflammatory bowel disease. Colitis was induced in wild type (WT), SRA(-/-), CD36(-/-), and SR-A/CD36 double deficient mice by administering DSS. DSS-induced moderately severe colitis in WT mice was manifested by weight loss, reduced hematocrit, and pathology. SR-A/CD36 double deficient mice developed significantly more severe colitis as indicated by anemia (P<0.01), decreased colonic length due to inflammation (P<0.01), and lesions when compared with WT and single deficient animals. Serum amyloid A was significantly more elevated in SR-A/CD36(-/-) mice (P<0.01) compared with WT and single deficient animals. However, the spleens of WT mice (P<0.05) were significantly enlarged. Inflammatory cytokine levels were considerably increased in WT mice (IL-6 P<0.001, TNFα P<0.01). In contrast, SR-A deficient mice maintained more normal body and splenic weight and developed less severe colonic lesions compared to other groups. In conclusion, our data indicate that SR-A/CD36 double deficiency leads to more severe colonic lesions and dysregulated inflammatory response as compared with single SR-A or CD36 deficiency in colitis, suggesting additive effects between these two receptors in this model.
Collapse
Affiliation(s)
- Helieh S. Oz
- Center for Oral Health Research, College of Dentistry, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536, USA. Department of Internal Medicine, University of Kentucky Medical Center, Lexington, KY, USA
| | - Jian Zhong
- Department of Internal Medicine, University of Kentucky Medical Center, Lexington, KY, USA. Division of Digestive Diseases, University of Kentucky Medical Center, Lexington, KY, USA
| | - Willem J. S. de Villiers
- Department of Internal Medicine, University of Kentucky Medical Center, Lexington, KY, USA. Division of Digestive Diseases, University of Kentucky Medical Center, Lexington, KY, USA
| |
Collapse
|
41
|
Satoh T, Higuchi Y, Kawakami S, Hashida M, Kagechika H, Shudo K, Yokoyama M. Encapsulation of the synthetic retinoids Am80 and LE540 into polymeric micelles and the retinoids' release control. J Control Release 2009; 136:187-95. [DOI: 10.1016/j.jconrel.2009.02.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2008] [Revised: 02/18/2009] [Accepted: 02/27/2009] [Indexed: 10/21/2022]
|
42
|
Takenaga M, Ohta Y, Tokura Y, Hamaguchi A, Shudo K, Okano H, Igarashi R. The effect of Am-80, a synthetic retinoid, on spinal cord injury-induced motor dysfunction in rats. Biol Pharm Bull 2009; 32:225-31. [PMID: 19182380 DOI: 10.1248/bpb.32.225] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study investigated the effect of 4[(5,6,7,8-tetrahydro-5,5,8,8,-tetramethyl-2-naphthalenyl)carbamoyl] benzoic acid (Am-80), a synthetic retinoid, on spinal cord injury (SCI) in rats. Treatment with Am-80 (orally and subcutaneously) significantly promoted recovery from SCI-induced motor dysfunction. On day 28 after injury, the lesion cavity was markedly reduced, while the expression of myelin basic protein (MBP; myelin), betaIIItubulin (neuron), and glial fibrillary acidic protein (GFAP; astrocyte) was increased, in comparison with SCI controls. Interestingly, expression of neurotrophin receptor, tyrosine kinase B (TrkB) was over 3-fold higher after Am-80 treatment than in SCI controls. A lot of TrkB-positive cells as well as brain-derived neurotrophic factor (BDNF)-positive ones were observed around the injured site. Am-80 (10 microM) combined with BDNF (100 ng/ml) promoted extensive neurite outgrowth and TrkB gene expression by cultured SH-SY5Y cells, as did all-trans retinoic acid (ATRA). Thymidine incorporation was dramatically suppressed, but there was little effect on cell viability. These findings suggest that Am-80 has the potential to be used for treating neurodegenerative disorders, including SCI. Its efficacy may be partly ascribed to promotion of cell viability and differentiation of neural stem cells through increased TrkB expression.
Collapse
Affiliation(s)
- Mitsuko Takenaga
- Institute of Medical Science, St. Marianna University School of Medicine, Kawasaki, Japan.
| | | | | | | | | | | | | |
Collapse
|
43
|
Loppnow H, Werdan K, Buerke M. Vascular cells contribute to atherosclerosis by cytokine- and innate-immunity-related inflammatory mechanisms. Innate Immun 2008; 14:63-87. [PMID: 18713724 DOI: 10.1177/1753425908091246] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases are the human diseases with the highest death rate and atherosclerosis is one of the major underlying causes of cardiovascular diseases. Inflammatory and innate immune mechanisms, employing monocytes, innate receptors, innate cytokines, or chemokines are suggested to be involved in atherogenesis. Among the inflammatory pathways the cytokines are central players. Plasma levels of cytokines and related proteins, such as CRP, have been investigated in cardiovascular patients, tissue mRNA expression was analyzed and correlations to vascular diseases established. Consistent with these findings the generation of cytokine-deficient animals has provided direct evidence for a role of cytokines in atherosclerosis. In vitro cell culture experiments further support the suggestion that cytokines and other innate mechanisms contribute to atherogenesis. Among the initiation pathways of atherogenesis are innate mechanisms, such as toll-like-receptors (TLRs), including the endotoxin receptor TLR4. On the other hand, innate cytokines, such as IL-1 or TNF, or even autoimmune triggers may activate the cells. Cytokines potently activate multiple functions relevant to maintain or spoil homeostasis within the vessel wall. Vascular cells, not least smooth muscle cells, can actively contribute to the inflammatory cytokine-dependent network in the blood vessel wall by: (i) production of cytokines; (ii) response to these potent cell activators; and (iii) cytokine-mediated interaction with invading cells, such as monocytes, T-cells, or mast cells. Activation of these pathways results in accumulation of cells and increased LDL- and ECM-deposition which may serve as an 'immunovascular memory' resulting in an ever-growing response to subsequent invasions. Thus, vascular cells may potently contribute to the inflammatory pathways involved in development and acceleration of atherosclerosis.
Collapse
Affiliation(s)
- Harald Loppnow
- Martin-Luther-Universität Halle-Wittenberg, Universitätsklinik und Poliklinik für Innere Medizin , Halle (Saale), Germany.
| | | | | |
Collapse
|
44
|
Ocaya P, Gidlöf AC, Olofsson PS, Törmä H, Sirsjö A. CYP26 Inhibitor R115866 Increases Retinoid Signaling in Intimal Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2007; 27:1542-8. [PMID: 17510468 DOI: 10.1161/atvbaha.106.138602] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Intimal smooth muscle cells (SMCs) are dedifferentiated SMCs that have a powerful ability to proliferate and migrate. This cell-type is responsible for the development of intimal hyperplasia after vascular angioplasty. Retinoids, especially all-trans retinoid acid, are known to regulate many processes activated at sites of vascular injury, including modulation of SMC phenotype and inhibition of SMC proliferation. Intracellular levels of active retinoids are under firm control. A key enzyme is the all-trans retinoic acid-degrading enzyme cytochrome p450 isoform 26 (CYP26). Thus, an alternative approach to exogenous retinoid administration could be to increase the intracellular level of all-trans retinoic acid by blocking CYP26-mediated degradation of retinoids. METHODS AND RESULTS Vascular intimal and medial SMCs expressed CYP26A1 and B1 mRNA. Although medial cells remained unaffected, treatment with the CYP26-inhibitor R115866 significantly increased cellular levels of all-trans retinoic acid in intimal SMCs. The increased levels of all-trans retinoic acid induced retinoid-regulated genes and decreased mitogenesis. CONCLUSIONS Blocking of the CYP26-mediated catabolism mimics the effects of exogenously administrated active retinoids on intimal SMCs. Therefore, CYP26-inhibitors offer a potential new therapeutic approach to vascular proliferative disorders.
Collapse
Affiliation(s)
- Pauline Ocaya
- Division of Biomedicine, Department of Clinical Medicine, University of Orebro, 701 82 Orebro, Sweden
| | | | | | | | | |
Collapse
|
45
|
Matsumoto A, Mizukami H, Mizuno S, Umegaki K, Nishikawa JI, Shudo K, Kagechika H, Inoue M. beta-Cryptoxanthin, a novel natural RAR ligand, induces ATP-binding cassette transporters in macrophages. Biochem Pharmacol 2007; 74:256-64. [PMID: 17521617 DOI: 10.1016/j.bcp.2007.04.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 04/13/2007] [Accepted: 04/16/2007] [Indexed: 10/23/2022]
Abstract
Despite its serious adverse effects, recent accumulating evidence suggests that a physiological retinoic acid receptor (RAR) agonist, all-trans retinoic acid (atRA), exhibits preventive effects on atherogenesis. Therefore, the present study was designed to explore novel natural RAR ligands with anti-atherogenic effects in order to identify and develop a drug without severe side effects. Among xanthophylls and carotenoids studied, beta-cryptoxanthin and lutein exhibited RAR ligand activity in yeast two-hybrid system that was found to be completely abolished by the RAR pan-antagonist LE540. Furthermore, these molecules can bind the RAR ligand-binding domain in the CoA-BAP system but not RXR ligand-binding domain. These results indicate that both beta-cryptoxanthin and lutein serve as ligands for RAR, but not RXR, although their binding affinity was three orders of magnitude lower than that of atRA. Additionally, when applied to macrophages, beta-cryptoxanthin indeed was found to induce the ATP-binding cassette transporter A1 (ABCA1) and ABCG1 mRNAs, which exert anti-atherosclerotic effects by preventing cholesteryl ester accumulation in macrophages. The induction of ABCA1 proteins by beta-cryptoxanthin as well as atRA was abrogated by LE540. In summary, beta-cryptoxanthin appears to be more an efficient provitamin A source than other carotenoids and xanthophylls including beta-carotene, since beta-cryptoxanthin can act not only as a RAR agonist but also a source of vitamin A. Taking into account that the pharmacodynamics difference between beta-cryptoxanthin and atRA, beta-cryptoxanthin appears to exert beneficial effects on atherogenesis through RAR activation in the manner different from atRA.
Collapse
Affiliation(s)
- Akira Matsumoto
- Laboratory of Medicinal Resources, School of Pharmacy, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Saito A, Sugawara A, Uruno A, Kudo M, Kagechika H, Sato Y, Owada Y, Kondo H, Sato M, Kurabayashi M, Imaizumi M, Tsuchiya S, Ito S. All-trans retinoic acid induces in vitro angiogenesis via retinoic acid receptor: possible involvement of paracrine effects of endogenous vascular endothelial growth factor signaling. Endocrinology 2007; 148:1412-23. [PMID: 17170094 DOI: 10.1210/en.2006-0900] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A natural retinoid all-trans retinoic acid (ATRA) regulates a variety of important cellular functions via retinoic acid receptor (RAR). ATRA has therapeutically been used against various malignancies including acute promyelocytic leukemia. Recently ATRA has also been recognized to be beneficial against atherosclerotic vascular disorders. However, its effects on angiogenesis remain controversial. We therefore examined ATRA effects on in vitro angiogenesis in terms of capillary-like tube formation using human umbilical vein endothelial cells (HUVECs)/normal human dermal fibroblast (NHDF) coculture. ATRA as well as RAR agonist Am80 significantly induced capillary-like tube formation. The ATRA-induced tube formation was inhibited by coincubation with RAR antagonist LE540/LE135. HUVEC proliferation, but not its migration, was also induced by ATRA. The ATRA-induced tube formation was completely abolished by coincubation with vascular endothelial growth factor (VEGF) neutralizing antibody or with VEGF receptor (VEGFR)-2 (KDR) neutralizing antibody, but not VEGFR-1 (Flt-1) neutralizing antibody. ATRA and Am80 induced VEGF secretion in the coculture as well as VEGF secretion/mRNA expression in NHDFs. Transcription activity of human VEGF gene promoter in NHDFs was stimulated by ATRA, which was augmented by RAR overexpression. ATRA also induced VDGFR-2/KDR mRNA expression in HUVECs. Moreover, ATRA-induced secretion of hepatocyte growth factor as well as angiopoietin-2 in the coculture. Taken together, ATRA may have induced angiogenesis via RAR mainly by stimulation of HUVEC proliferation and enhancement of endogenous VEGF signaling and in part by induction of hepatocyte growth factor and angiopoietin-2 production. Retinoids may therefore be potential candidates for therapeutic angiogenesis against ischemic vascular disorders.
Collapse
Affiliation(s)
- Akiko Saito
- Department of Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-cho, Aoba-ku, Sendai 980-8574, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Haraguchi G, Suzuki JI, Kosuge H, Ogawa M, Koga N, Muto S, Itai A, Kagechika H, Shudo K, Isobe M. A new RXR agonist, HX630, suppresses intimal hyperplasia in a mouse blood flow cessation model. J Mol Cell Cardiol 2006; 41:885-92. [PMID: 16963076 DOI: 10.1016/j.yjmcc.2006.07.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 06/22/2006] [Accepted: 07/31/2006] [Indexed: 11/20/2022]
Abstract
The nuclear receptor retinoid X receptor (RXR) forms heterodimers with other nuclear receptors and exerts anti-inflammatory effects. RXR is implicated in the progression of arteriosclerosis; however, the effects of selective RXR activation on smooth muscle cell (SMC) proliferation are unknown. We synthesized a novel RXR agonist, HX630, and examined its effect on vascular SMC (VSMC) proliferation. Male C57BL/6 mice (n=15) were subjected to ligation of the left carotid artery and fed 5 or 10 mg/kg/day HX630 for 4 weeks. HX630-fed mice showed significantly suppressed intimal hyperplasia progression compared to that in control mice (0.286+/-0.093 vs. 1.022+/-0.134 intima/media ratio, P<0.05). Immunohistochemistry of the carotid artery showed that HX630 suppressed cytokine and adhesion molecule staining in lesions undergoing intimal thickening. Interleukin (IL)-1beta-induced VSMC proliferation was inhibited by HX630 and the expression of IL-6 mRNA and protein in VSMCs was suppressed. The RXR agonist HX630 exerts antiproliferative effects in VSMCs in vivo and in vitro. Thus, the RXR may serve as a therapeutic target for vascular injury and intimal thickening.
Collapse
Affiliation(s)
- Go Haraguchi
- Department of Cardiovascular Medicine, Tokyo, Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|