1
|
Knauss EA, Guci J, Luc N, Disharoon D, Huang GH, Gupta AS, Nieman MT. Mice with reduced protease-activated receptor 4 reactivity show decreased venous thrombosis and platelet procoagulant activity. J Thromb Haemost 2025:S1538-7836(24)00780-3. [PMID: 39798922 DOI: 10.1016/j.jtha.2024.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/15/2025]
Abstract
BACKGROUND Hypercoagulation and thrombin generation are major risk factors for venous thrombosis. Sustained thrombin signaling through protease-activated receptor (PAR) 4 promotes platelet activation, phosphatidylserine exposure, and subsequent thrombin generation. A single nucleotide polymorphism in PAR4 (rs2227376) changes proline to leucine extracellular loop 3, which decreases PAR4 reactivity and is associated with a lower risk for venous thromboembolism (VTE) in a genome wide association studies meta-analysis. OBJECTIVES The goal of this study was to determine the mechanism for the association of rs2227376 with a reduced risk of VTE using mice with a homologous mutation (PAR4-P322L). METHODS Venous thrombosis was examined using our recently generated PAR4-P322L mice in the inferior vena cava stasis and stenosis models. Coagulation and clot stability were measured using rotational thromboelastometry. Thrombin-generating potential was measured in platelet-rich plasma. Phosphatidylserine surface expression and platelet-neutrophil aggregates were analyzed using flow cytometry. RESULTS Mice heterozygous (PAR4P/L) or homozygous (PAR4L/L) at position 310 had reduced sizes of venous clots at 48 hours. PAR4P/L and PAR4L/L platelets had progressively decreased phosphatidylserine in response to thrombin and convulxin, in addition to decreased thrombin generation and decreased PAR4-mediated platelet-neutrophil aggregation. CONCLUSION The leucine allele in extracellular loop 3, PAR4-322L, leads to fewer procoagulant platelets, decreased endogenous thrombin potential, and reduced platelet-neutrophil aggregation. This decreased ability to generate thrombin and bind to neutrophils offers a mechanism for PAR4's role in VTE, highlighting a key role for PAR4 signaling.
Collapse
Affiliation(s)
- Elizabeth A Knauss
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Johana Guci
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Norman Luc
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Dante Disharoon
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Grace H Huang
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA
| | - Marvin T Nieman
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.
| |
Collapse
|
2
|
Zhang T, Yang D, Tang L, Hu Y. Current development of severe acute respiratory syndrome coronavirus 2 neutralizing antibodies (Review). Mol Med Rep 2024; 30:148. [PMID: 38940338 PMCID: PMC11228696 DOI: 10.3892/mmr.2024.13272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
The coronavirus disease 2019 pandemic due to severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) seriously affected global public health security. Studies on vaccines, neutralizing antibodies (NAbs) and small molecule antiviral drugs are currently ongoing. In particular, NAbs have emerged as promising therapeutic agents due to their well‑defined mechanism, high specificity, superior safety profile, ease of large‑scale production and simultaneous application for both prevention and treatment of viral infection. Numerous NAb therapeutics have entered the clinical research stages, demonstrating promising therapeutic and preventive effects. These agents have been used for outbreak prevention and control under urgent authorization processes. The present review summarizes the molecular targets of SARS‑CoV‑2‑associated NAbs and screening and identification techniques for NAb development. Moreover, the current shortcomings and challenges that persist with the use of NAbs are discussed. The aim of the present review is to offer a reference for the development of NAbs for any future emergent infectious diseases, including SARS‑CoV‑2.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Di Yang
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Liang Tang
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu Hu
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
3
|
An O, Deppermann C. Platelet lifespan and mechanisms for clearance. Curr Opin Hematol 2024; 31:6-15. [PMID: 37905750 DOI: 10.1097/moh.0000000000000792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
PURPOSE OF REVIEW Activated or aged platelets are removed from circulation under (patho)physiologic conditions, the exact mechanism of platelet clearance under such conditions remains unclear and are currently being investigated. This review focuses on recent findings and controversies regarding platelet clearance and the disruption of platelet life cycle. RECENT FINDINGS The platelet life span is determined by glycosylation of platelet surface receptors with sialic acid. Recently, it was shown that platelet activation and granule release leads to desialylation of glycans and accelerated clearance of platelets under pathological conditions. This phenomenon was demonstrated to be a main reason for thrombocytopenia being a complication in several infections and immune disorders. SUMMARY Although we have recently gained some insight into how aged platelets are cleared from circulation, we are still not seeing the full picture. Further investigations of the platelet clearance pathways under pathophysiologic conditions are needed as well as studies to unravel the connection between platelet clearance and platelet production.
Collapse
Affiliation(s)
- Olga An
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | | |
Collapse
|
4
|
Imiela AM, Mikołajczyk TP, Guzik TJ, Pruszczyk P. Acute Pulmonary Embolism and Immunity in Animal Models. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0003. [PMID: 38299563 DOI: 10.2478/aite-2024-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/05/2023] [Indexed: 02/02/2024]
Abstract
Venous thromboembolism, encompassing acute pulmonary embolism (APE) and deep vein thrombosis (DVT), is a potentially fatal disease with complex pathophysiology. Traditionally, the Virchow triad provided a framework for understanding the pathogenic contributors to thrombus formation, which include endothelial dysfunction, alterations in blood flow and blood hypercoagulability. In the last years, it has become apparent that immunity plays a central role in thrombosis, interacting with classical prothrombotic mechanisms, oxidative stress and vascular factors. Thrombosis amplifies inflammation, and exaggerated inflammatory processes can trigger thrombosis mainly due to the activation of leukocytes, platelets, and endothelial cells. APE-related endothelium injury is a major trigger for immune system activation. Endothelium is also a key component mediating inflammatory reaction and it is relevant to maintain vascular permeability. Exaggerated right ventricular wall stress and overload, with coexisting systemic hypotension and hypoxemia, result in myocardial injury and necrosis. Hypoxia, tissue factor activation and cytokine storm are engaged in the thrombo-inflammatory processes. Thrombus development is characterized by inflammatory state vascular wall caused mainly by an early extravasation of leukocytes and intense selectins and cytokines production. Nevertheless, immunity of DVT is well described, little is known about potential chemokine and cellular differences between thrombus that develops in the vein and thrombus that detaches and lodges in the pulmonary circulation being a cause of APE. There is a paucity of data considering inflammatory state in the pulmonary artery wall during an acute episode of pulmonary embolism. The main aim of this review is to summarize the knowledge of immunity in acute phase of pulmonary embolism in experimental models.
Collapse
Affiliation(s)
- Anna M Imiela
- Department of Internal Medicine and Cardiology, Center for Venous Thromboembolism Disease, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz P Mikołajczyk
- Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, Krakow, Poland
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Tomasz J Guzik
- Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, Krakow, Poland
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
- BHF Centre for Research Excellence, Centre for Cardiovascular Sciences, The University of Edinburgh, Edinburgh, UK
| | - Piotr Pruszczyk
- Department of Internal Medicine and Cardiology, Center for Venous Thromboembolism Disease, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Kiouptsi K, Casari M, Mandel J, Gao Z, Deppermann C. Intravital Imaging of Thrombosis Models in Mice. Hamostaseologie 2023; 43:348-359. [PMID: 37857297 DOI: 10.1055/a-2118-2932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023] Open
Abstract
Intravital microscopy is a powerful tool to study thrombosis in real time. The kinetics of thrombus formation and progression in vivo is studied after inflicting damage to the endothelium through mechanical, chemical, or laser injury. Mouse models of atherosclerosis are also used to induce thrombus formation. Vessels of different sizes and from different vascular beds such as carotid artery or vena cava, mesenteric or cremaster arterioles, can be targeted. Using fluorescent dyes, antibodies, or reporter mouse strains allows to visualize key cells and factors mediating the thrombotic processes. Here, we review the latest literature on using intravital microscopy to study thrombosis as well as thromboinflammation following transient middle cerebral artery occlusion, infection-induced immunothrombosis, and liver ischemia reperfusion.
Collapse
Affiliation(s)
- Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Martina Casari
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Jonathan Mandel
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Zhenling Gao
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Carsten Deppermann
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
6
|
Han Z, Liu Q, Li H, Zhang M, You L, Lin Y, Wang K, Gou Q, Wang Z, Zhou S, Cai Y, Yuan L, Chen H. The role of monocytes in thrombotic diseases: a review. Front Cardiovasc Med 2023; 10:1113827. [PMID: 37332592 PMCID: PMC10272466 DOI: 10.3389/fcvm.2023.1113827] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Cardiovascular and cerebrovascular diseases are the number one killer threatening people's life and health, among which cardiovascular thrombotic events are the most common. As the cause of particularly serious cardiovascular events, thrombosis can trigger fatal crises such as acute coronary syndrome (myocardial infarction and unstable angina), cerebral infarction and so on. Circulating monocytes are an important part of innate immunity. Their main physiological functions are phagocytosis, removal of injured and senescent cells and their debris, and development into macrophages and dendritic cells. At the same time, they also participate in the pathophysiological processes of pro-coagulation and anticoagulation. According to recent studies, monocytes have been found to play a significant role in thrombosis and thrombotic diseases of the immune system. In this manuscript, we review the relationship between monocyte subsets and cardiovascular thrombotic events and analyze the role of monocytes in arterial thrombosis and their involvement in intravenous thrombolysis. Finally, we summarize the mechanism and therapeutic regimen of monocyte and thrombosis in hypertension, antiphospholipid syndrome, atherosclerosis, rheumatic heart disease, lower extremity deep venous thrombosis, and diabetic nephropathy.
Collapse
Affiliation(s)
- Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiong Liu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hongpeng Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meiqi Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Luling You
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Wang
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiaoyin Gou
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhanzhan Wang
- Lianyungang Clinical College of Nanjing Medical University, Lianyungang, China
| | - Shuwei Zhou
- Department of Radiology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - YiJin Cai
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Yuan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haoran Chen
- Science and Education Department, Chengdu Xinhua Hospital, Chengdu, China
| |
Collapse
|
7
|
Yang C, Fang H, Hu J, Li M, Wei C, Miao J, Huang W. Clinical application of three-dimensional T1-weighted BrainVIEW in magnetic resonance imaging of cerebral venous thrombosis: a case report and literature review. J Int Med Res 2023; 51:3000605231166277. [PMID: 37051621 PMCID: PMC10102947 DOI: 10.1177/03000605231166277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
To date, there is no clinical scoring system or laboratory indicator that can rule out cerebral venous thrombosis (CVT) or provide diagnostic proof for evaluating post-treatment thrombosis recanalization during follow-up. We therefore explored an imaging method for quantitative assessment of CVT and assessed thrombotic changes during follow-up. A patient presented with severe posterior occipital distension extending to the top of the forehead and an elevated plasma D-dimer (DD2) level. Computed tomography and pre-contrast-enhanced magnetic resonance imaging revealed only a small amount of cerebral hemorrhage. Three-dimensional (3D) T1-weighted (T1W) BrainVIEW pre-contrast-enhanced magnetic resonance scanning showed subacute thrombosis in the venous sinus, and the post-contrast-enhanced scan combined with volume rendering reconstruction showed cerebral thrombosis of the venous sinus and allowed for measurement of the thrombus volume. On days 30 and 60 of post-treatment follow-up, post-contrast-enhanced scans showed progressive reduction of the thrombus volume as well as recanalization and fibrotic flow voids in the chronic thrombosis. 3D T1W BrainVIEW was helpful to observe the size of the thrombi and the situation of venous sinus recanalization during the follow-up after clinical treatment of CVT. This technique can reflect the imaging manifestations of CVT throughout the whole process to guide clinical treatment decisions.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Radiology, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
| | - Huang Fang
- Department of Neurology, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
| | - Jun Hu
- Department of Radiology, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
| | - Mei Li
- Department of Radiology, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
| | - Chunxia Wei
- Department of Radiology, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
| | - Jinfei Miao
- Department of Radiology, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
| | - Wencai Huang
- Department of Radiology, General Hospital of Central Theater Command, Wuhan, Hubei Province, China
| |
Collapse
|
8
|
Obi AT, Sharma SB, Elfline MA, Luke CE, Dowling AR, Cai Q, Kimball AS, Hollinstat M, Stanger L, Moore BB, Jaffer FA, Henke PK. Experimental venous thrombus resolution is driven by IL-6 mediated monocyte actions. Sci Rep 2023; 13:3253. [PMID: 36828892 PMCID: PMC9951841 DOI: 10.1038/s41598-023-30149-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/16/2023] [Indexed: 02/26/2023] Open
Abstract
Deep venous thrombosis and residual thrombus burden correlates with circulating IL-6 levels in humans. To investigate the cellular source and role of IL-6 in thrombus resolution, Wild type C57BL/6J (WT), and IL-6-/- mice underwent induction of VT via inferior vena cava (IVC) stenosis or stasis. Vein wall (VW) and thrombus were analyzed by western blot, immunohistochemistry, and flow cytometry. Adoptive transfer of WT bone marrow derived monocytes was performed into IL6-/- mice to assess for rescue. Cultured BMDMs from WT and IL-6-/- mice underwent quantitative real time PCR and immunoblotting for fibrinolytic factors and matrix metalloproteinase activity. No differences in baseline coagulation function or platelet function were found between WT and IL-6-/- mice. VW and thrombus IL-6 and IL-6 leukocyte-specific receptor CD126 were elevated in a time-dependent fashion in both VT models. Ly6Clo Mo/MØ were the predominant leukocyte source of IL-6. IL-6-/- mice demonstrated larger, non-resolving stasis thrombi with less neovascularization, despite a similar number of monocytes/macrophages (Mo/MØ). Adoptive transfer of WT BMDM into IL-6-/- mice undergoing stasis VT resulted in phenotype rescue. Human specimens of endophlebectomized tissue showed co-staining of Monocyte and IL-6 receptor. Thrombosis matrix analysis revealed significantly increased thrombus fibronectin and collagen in IL-6-/- mice. MMP9 activity in vitro depended on endogenous IL-6 expression in Mo/MØ, and IL-6-/- mice exhibited stunted matrix metalloproteinase activity. Lack of IL-6 signaling impairs thrombus resolution potentially via dysregulation of MMP-9 leading to impaired thrombus recanalization and resolution. Restoring or augmenting monocyte-mediated IL-6 signaling in IL-6 deficient or normal subjects, respectively, may represent a non-anticoagulant target to improve thrombus resolution.
Collapse
Affiliation(s)
- Andrea T Obi
- Conrad Jobst Vascular Research Laboratories, University of Michigan Medical School, Ann Arbor, USA.
- University of Michigan Health System, 1500 E. Medical Center Drive, Cardiovascular Center - 5463, Ann Arbor, MI, 48109-5867, USA.
| | - Sriganesh B Sharma
- Conrad Jobst Vascular Research Laboratories, University of Michigan Medical School, Ann Arbor, USA
| | - Megan A Elfline
- Conrad Jobst Vascular Research Laboratories, University of Michigan Medical School, Ann Arbor, USA
| | - Catherine E Luke
- Conrad Jobst Vascular Research Laboratories, University of Michigan Medical School, Ann Arbor, USA
| | - Abigail R Dowling
- Conrad Jobst Vascular Research Laboratories, University of Michigan Medical School, Ann Arbor, USA
| | - Qing Cai
- Conrad Jobst Vascular Research Laboratories, University of Michigan Medical School, Ann Arbor, USA
| | - Andrew S Kimball
- Section of Vascular Surgery, University of Alabama Division of Vascular Surgery, University of Michigan Medical School, Ann Arbor, USA
| | - Mike Hollinstat
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, USA
| | - Livia Stanger
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, USA
| | - Bethany B Moore
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, USA
- Cardiovascular Research Center, Cardiology Division, Department of Medicine, University of Michigan Medical School, Ann Arbor, USA
| | - Farouc A Jaffer
- Section of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Peter K Henke
- Conrad Jobst Vascular Research Laboratories, University of Michigan Medical School, Ann Arbor, USA
| |
Collapse
|
9
|
DeRoo E, Zhou T, Yang H, Stranz A, Henke P, Liu B. A vein wall cell atlas of murine venous thrombosis determined by single-cell RNA sequencing. Commun Biol 2023; 6:130. [PMID: 36721040 PMCID: PMC9889765 DOI: 10.1038/s42003-023-04492-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/16/2023] [Indexed: 02/02/2023] Open
Abstract
Deep vein thrombosis (DVT) is a common clinical problem, but its cellular and molecular mechanisms remain incompletely understood. In this study, we performed single-cell RNA sequencing on mouse inferior vena cava (IVC) 24 h after thrombus-inducing IVC ligation or sham operation. 9 cell types composed of multiple subpopulations were identified. Notable transcriptomic changes induced by DVT included a marked inflammatory response, elevated hypoxia, and globally reduced myogenesis. Analysis of individual cell populations revealed increased inflammation and reduced extracellular matrix production across smooth muscle cells and fibroblasts, juxtaposed against an early phenotypic shift in smooth muscle cell populations away from a contractile state. By characterizing the transcriptomic changes in the vein wall during acute venous thrombosis at the single-cell level, this work provides novel insights into early pathological events in the vein wall that may potentiate thrombus formation and result in long term adverse venous remodeling.
Collapse
Affiliation(s)
- Elise DeRoo
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Ting Zhou
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Huan Yang
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Amelia Stranz
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Peter Henke
- Department of Surgery, Division of Vascular Surgery, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Bo Liu
- Department of Surgery, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Cellular and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
10
|
Abstract
Despite effective therapeutic and preventive strategies, atherosclerosis and its complications still represent a substantial health burden. Leukocytes and inflammatory mechanisms are increasingly recognized as drivers of atherosclerosis. Neutrophil granulocytes within the circulation were recently shown to undergo neutrophil extracellular trap (NET) formation, linking innate immunity with acute complications of atherosclerosis. In this chapter, we summarize mechanisms of NET formation, evidence for their involvement in atherosclerosis and thrombosis, and potential therapeutic regimens specifically targeting NET components.
Collapse
|
11
|
Zhou Y, Tao W, Shen F, Du W, Xu Z, Liu Z. The Emerging Role of Neutrophil Extracellular Traps in Arterial, Venous and Cancer-Associated Thrombosis. Front Cardiovasc Med 2021; 8:786387. [PMID: 34926629 PMCID: PMC8674622 DOI: 10.3389/fcvm.2021.786387] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/29/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophils play a vital role in the formation of arterial, venous and cancer-related thrombosis. Recent studies have shown that in a process known as NETosis, neutrophils release proteins and enzymes complexed to DNA fibers, collectively called neutrophil extracellular traps (NETs). Although NETs were originally described as a way for the host to capture and kill bacteria, current knowledge indicates that NETs also play an important role in thrombosis. According to recent studies, the destruction of vascular microenvironmental homeostasis and excessive NET formation lead to pathological thrombosis. In vitro experiments have found that NETs provide skeletal support for platelets, red blood cells and procoagulant molecules to promote thrombosis. The protein components contained in NETs activate the endogenous coagulation pathway to promote thrombosis. Therefore, NETs play an important role in the formation of arterial thrombosis, venous thrombosis and cancer-related thrombosis. This review will systematically summarize and explain the study of NETs in thrombosis in animal models and in vivo experiments to provide new targets for thrombosis prevention and treatment.
Collapse
Affiliation(s)
- Yilu Zhou
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weimin Tao
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fuyi Shen
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Weijia Du
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhendong Xu
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiqiang Liu
- Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
12
|
Tutwiler V, Maksudov F, Litvinov RI, Weisel JW, Barsegov V. Strength and deformability of fibrin clots: Biomechanics, thermodynamics, and mechanisms of rupture. Acta Biomater 2021; 131:355-369. [PMID: 34233219 DOI: 10.1016/j.actbio.2021.06.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 01/19/2023]
Abstract
Fibrin is the major determinant of the mechanical stability and integrity of blood clots and thrombi. To explore the rupture of blood clots, emulating thrombus breakage, we stretched fibrin gels with single-edge cracks of varying size. Ultrastructural alterations of the fibrin network correlated with three regimes of stress vs. strain profiles: the weakly non-linear regime due to alignment of fibrin fibers; linear regime owing to further alignment and stretching of fibers; and the rupture regime for large deformations reaching the critical strain and stress, at which irreversible breakage of fibers ahead of the crack tip occurs. To interpret the stress-strain curves, we developed a new Fluctuating Spring model, which maps the fibrin alignment at the characteristic strain, network stretching with the Young modulus, and simultaneous cooperative rupture of coupled fibrin fibers into a theoretical framework to obtain the closed-form expressions for the strain-dependent stress profiles. Cracks render network rupture stochastic, and the free energy change for fiber deformation and rupture decreases with the crack length, making network rupture more spontaneous. By contrast, mechanical cooperativity due to the presence of inter-fiber contacts strengthens fibrin networks. The results obtained provide a fundamental understanding of blood clot breakage that underlies thrombotic embolization. STATEMENT OF SIGNIFICANCE: Fibrin, a naturally occurring biomaterial, is the major determinant of mechanical stability and integrity of blood clots and obstructive thrombi. We tested mechanically fibrin gels with single-edge cracks and followed ultrastructural alterations of the fibrin network. Rupture of fibrin gel involves initial alignment and elastic stretching of fibers followed by their eventual rupture for deformations reaching the critical level. To interpret the stress-strain curves, we developed Fluctuating Spring model, which showed that cracks render rupture of fibrin networks more spontaneous; yet, coupled fibrin fibers reinforce cracked fibrin networks. The results obtained provide fundamental understanding of blood clot breakage that underlies thrombotic embolization. Fluctuating Spring model can be applied to other protein networks with cracks and to interpret the stress-strain profiles.
Collapse
|
13
|
de Perrot M, Gopalan D, Jenkins D, Lang IM, Fadel E, Delcroix M, Benza R, Heresi GA, Kanwar M, Granton JT, McInnis M, Klok FA, Kerr KM, Pepke-Zaba J, Toshner M, Bykova A, Armini AMD, Robbins IM, Madani M, McGiffin D, Wiedenroth CB, Mafeld S, Opitz I, Mercier O, Uber PA, Frantz RP, Auger WR. Evaluation and management of patients with chronic thromboembolic pulmonary hypertension - consensus statement from the ISHLT. J Heart Lung Transplant 2021; 40:1301-1326. [PMID: 34420851 DOI: 10.1016/j.healun.2021.07.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 02/08/2023] Open
Abstract
ISHLT members have recognized the importance of a consensus statement on the evaluation and management of patients with chronic thromboembolic pulmonary hypertension. The creation of this document required multiple steps, including the engagement of the ISHLT councils, approval by the Standards and Guidelines Committee, identification and selection of experts in the field, and the development of 6 working groups. Each working group provided a separate section based on an extensive literature search. These sections were then coalesced into a single document that was circulated to all members of the working groups. Key points were summarized at the end of each section. Due to the limited number of comparative trials in this field, the document was written as a literature review with expert opinion rather than based on level of evidence.
Collapse
Affiliation(s)
- Marc de Perrot
- Division of Thoracic Surgery, Toronto General Hospital, Toronto, Ontario, Canada.
| | - Deepa Gopalan
- Department of Radiology, Imperial College Healthcare NHS Trust, London & Cambridge University Hospital, Cambridge, UK
| | - David Jenkins
- National Pulmonary Endarterectomy Service, Department of Cardiothoracic Surgery, Papworth Hospital, Cambridge, UK
| | - Irene M Lang
- Department of Cardiology, Pulmonary Hypertension Unit, Medical University of Vienna, Vienna, Austria
| | - Elie Fadel
- Department of Thoracic and Vascular Surgery and Heart Lung Transplantation, Marie-Lannelongue Hospital, Paris Saclay University, Le Plessis-Robinson, France
| | - Marion Delcroix
- Clinical Department of Respiratory Diseases, Pulmonary Hypertension Centre, UZ Leuven, Leuven, Belgium; Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), Department of Chronic Diseases and Metabolism (CHROMETA), KU, Leuven, Belgium
| | - Raymond Benza
- Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio
| | - Gustavo A Heresi
- Department of Pulmonary and Critical Care Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio
| | - Manreet Kanwar
- Cardiovascular Institute, Allegheny Health Network, Pittsburgh, Pennsylvania
| | - John T Granton
- Division of Respirology, University Health Network, Toronto, Ontario, Canada
| | - Micheal McInnis
- Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
| | - Frederikus A Klok
- Department of Medicine, Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, The Netherlands
| | - Kim M Kerr
- University of California San Diego Medical Health, Division of Pulmonary Critical Care and Sleep Medicine, San Diego, California
| | - Joanna Pepke-Zaba
- Pulmonary Vascular Disease Unit, Royal Papworth Hospital NHS foundation Trust, Cambridge, Cambridgeshire, UK
| | - Mark Toshner
- Pulmonary Vascular Disease Unit, Royal Papworth Hospital NHS foundation Trust, Cambridge, Cambridgeshire, UK; Heart Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Anastasia Bykova
- Division of Thoracic Surgery, Toronto General Hospital, Toronto, Ontario, Canada
| | - Andrea M D' Armini
- Unit of Cardiac Surgery, Intrathoracic-Trasplantation and Pulmonary Hypertension, University of Pavia, Foundation I.R.C.C.S. Policlinico San Matteo, Pavia, Italy
| | - Ivan M Robbins
- Division of Allergy, Pulmonary, and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Michael Madani
- Department of Cardiovascular and Thoracic Surgery, University of California San Diego, La Jolla, California
| | - David McGiffin
- Department of Cardiothoracic Surgery, The Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Christoph B Wiedenroth
- Department of Thoracic Surgery, Campus Kerckhoff of the University of Giessen, Kerckhoff Heart and Thorax Center, Bad Nauheim, Germany
| | - Sebastian Mafeld
- Division of Vascular and Interventional Radiology, Joint Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada
| | - Isabelle Opitz
- Department of Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Olaf Mercier
- Department of Thoracic and Vascular Surgery and Heart Lung Transplantation, Marie-Lannelongue Hospital, Paris Saclay University, Le Plessis-Robinson, France
| | - Patricia A Uber
- Pauley Heart Center, Virginia Commonwealth University Health System, Richmond, Virginia
| | - Robert P Frantz
- Department of Cardiovascular Disease, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - William R Auger
- Pulmonary Hypertension and CTEPH Research Program, Temple Heart and Vascular Institute, Temple University, Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Elevated plasma concentration of complement factor C5 is associated with risk of future venous thromboembolism. Blood 2021; 138:2129-2137. [PMID: 34339498 DOI: 10.1182/blood.2021010822] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 07/05/2021] [Indexed: 11/20/2022] Open
Abstract
The role of complement in the pathogenesis of venous thromboembolism (VTE) is unclear. We aimed to (i) investigate whether plasma complement component C5 levels are influenced by genetic variants or chronic inflammation, and (ii) investigate the association between plasma C5 and risk of future VTE in a nested case-control study with 415 VTE patients and 848 age- and sex-matched controls derived from the Tromsø study. Plasma C5 levels were measured at inclusion. Odds ratios (ORs) with 95% confidence intervals (95% CI) for provoked and unprovoked VTE across tertiles of C5 concentrations were estimated using logistic regression. C-reactive protein (CRP) was adjusted for as a proxy for general inflammation. Whole exome sequencing and protein quantitative trait loci analyses were performed to assess genetic influence on C5 concentrations. There was no association between genome-wide or C5-related gene variants and C5 levels. The association between plasma C5 levels and VTE risk displayed a threshold effect, where subjects with C5 levels above the lowest tertile had increased VTE risk. Subjects in tertile 3 (highest C5 levels) had an age and sex-adjusted OR of 1.45 (95% CI 1.07-1.96) compared to tertile 1 (lowest). This was more pronounced for unprovoked VTE (OR 1.70, 95% CI 1.11-2.60). Adjustments for body mass index and CRP had minor impact on risk estimates. The ORs increased substantially with shorter time between blood sampling and VTE event. In conclusion, plasma C5 was associated with risk of future VTE. C5 levels were not genetically regulated and only slightly influenced by chronic inflammation.
Collapse
|
15
|
Oliveira C, Valois MV, Ottaiano TF, Miranda A, Hansen D, Sampaio MU, Oliva MLV, de Abreu Maffei FH. The recombinant plant Bauhinia bauhinioides elastase inhibitor reduces rat thrombus without alterations in hemostatic parameters. Sci Rep 2021; 11:13475. [PMID: 34188079 PMCID: PMC8241853 DOI: 10.1038/s41598-021-92745-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/10/2021] [Indexed: 11/26/2022] Open
Abstract
The anti-inflammatory effects of the plant protease inhibitor BbCI (Bauhinia bauhinioides cruzipain inhibitor), which blocks elastase, cathepsin G, and L, and proteinase 3 has been demonstrated. Here, we investigated the recombinant rBbCI-His(6) (containing a histidine tail) in an experimental venous thrombosis model of vena cava (VC) ligature in rats, comparing to heparin. We evaluate the effects of the inhibitors (native or recombinant) or heparin on the activated partial thromboplastin time (aPTT) and prothrombin time (PT) in human and rat plasmas. The rats undergoing treatment received a saline solution or increasing concentrations of rBbCI-His(6), heparin, or a mixture of both. After 4 h of ligature VC, thrombus, if present was removed and weighed. aPTT, PT, and cytokines were measured in blood collected by cardiac puncture. aPTT, PT, and bleeding time (BT) were also measured at the time of VC (vena cava) ligature. rBbCI-His(6) (0.45 or 1.40 mg/kg) does not alter aPTT, PT or BT. No differences in coagulation parameters were detected in rBbCI-His(6) treated rats at the time of VC ligature or when the thrombus was removed. There was a significant decrease in the weight of thrombus in the animals of the groups treated with the rBbCI-His(6) (1.40 mg/kg), with the rBbCI-His(6) mixture (1.40 mg/kg) + heparin (50 IU/kg) and heparin (100 IU/kg) in relation to control group (saline). The growth-related oncogene/keratinocyte chemoattractant (GRO/KC) serum levels in rats treated with rBbCI-His(6) (1.40 mg/kg) or heparin (200 IU/kg) were reduced. In the experimental model used, rBbCI-His(6) alone had an antithrombotic effect, not altering blood clotting or bleeding time.
Collapse
Affiliation(s)
- Cleide Oliveira
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, 04044-020, Brazil
| | - Mayara Vioto Valois
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, 04044-020, Brazil
| | - Tatiana Fontes Ottaiano
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, 04044-020, Brazil
| | - Antonio Miranda
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, SP, 04044-020, Brazil
| | - Daiane Hansen
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, 04044-020, Brazil
| | - Misako Uemura Sampaio
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, 04044-020, Brazil
| | - Maria Luiza Vilela Oliva
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua Três de Maio, 100, São Paulo, SP, 04044-020, Brazil.
| | | |
Collapse
|
16
|
Wu X, Sun J, Chen Z, Ding Y, Meng R. Magnetic resonance black-blood thrombus imaging can confirm chronic cerebral venous thrombosis: a case report and literature review. J Int Med Res 2021; 49:3000605211017001. [PMID: 34013759 PMCID: PMC8142535 DOI: 10.1177/03000605211017001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background Cerebral venous thrombosis (CVT) is easily missed or misdiagnosed in clinical settings because of its high variability in terms of symptoms and radiological findings. Herein, we aimed to explore a promising modality for confirming presumed CVT in the hope to uncover its superior diagnostic performance to conventional imaging modalities. Case presentation: The patient complained of intolerable pain in her forehead and left eye. Her lumbar puncture opening pressure was 140 mmH2O, and her cerebrospinal fluid composition was normal. No marked abnormalities were observed in routine brain images, including non-contrast computed tomography, magnetic resonance imaging, and contrast-enhanced magnetic resonance venography. However, chronic mural thrombi in the lumen of the left cortical veins, transverse/sigmoid sinus, and superior sagittal sinus were identified in magnetic resonance black-blood thrombus imaging (MRBTI) maps. Conclusions MRBTI can be used to directly and non-invasively visualize thrombi, and may thus be a promising tool over alternative routine techniques for confirming the diagnosis of CVT.
Collapse
Affiliation(s)
- Xiaoqin Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jingkun Sun
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhiying Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuchuan Ding
- Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Department of China-America Institute of Neuroscience, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Blanch-Ruiz MA, Ortega-Luna R, Martínez-Cuesta MÁ, Álvarez Á. The Neutrophil Secretome as a Crucial Link between Inflammation and Thrombosis. Int J Mol Sci 2021; 22:4170. [PMID: 33920656 PMCID: PMC8073391 DOI: 10.3390/ijms22084170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular diseases are a leading cause of death. Blood-cell interactions and endothelial dysfunction are fundamental in thrombus formation, and so further knowledge of the pathways involved in such cellular crosstalk could lead to new therapeutical approaches. Neutrophils are secretory cells that release well-known soluble inflammatory signaling mediators and other complex cellular structures whose role is not fully understood. Studies have reported that neutrophil extracellular vesicles (EVs) and neutrophil extracellular traps (NETs) contribute to thrombosis. The objective of this review is to study the role of EVs and NETs as key factors in the transition from inflammation to thrombosis. The neutrophil secretome can promote thrombosis due to the presence of different factors in the EVs bilayer that can trigger blood clotting, and to the release of soluble mediators that induce platelet activation or aggregation. On the other hand, one of the main pathways by which NETs induce thrombosis is through the creation of a scaffold to which platelets and other blood cells adhere. In this context, platelet activation has been associated with the induction of NETs release. Hence, the structure and composition of EVs and NETs, as well as the feedback mechanism between the two processes that causes pathological thrombus formation, require exhaustive analysis to clarify their role in thrombosis.
Collapse
Affiliation(s)
- María Amparo Blanch-Ruiz
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.)
| | - Raquel Ortega-Luna
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.)
| | - María Ángeles Martínez-Cuesta
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.)
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), 46010 Valencia, Spain
| | - Ángeles Álvarez
- Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010 Valencia, Spain; (M.A.B.-R.); (R.O.-L.)
- Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBERehd), 46010 Valencia, Spain
| |
Collapse
|
18
|
Weisel JW, Litvinov RI. Visualizing thrombosis to improve thrombus resolution. Res Pract Thromb Haemost 2021; 5:38-50. [PMID: 33537528 PMCID: PMC7845077 DOI: 10.1002/rth2.12469] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/05/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022] Open
Abstract
The severity, course, and outcomes of thrombosis are determined mainly by the size and location of the thrombus, but studying thrombus structure and composition has been an important but challenging task. The substantial progress in determination of thrombus morphology has become possible due to new intravital imaging methodologies in combination with mechanical thrombectomy, which allows extraction of a fresh thrombus from a patient followed by microscopy. Thrombi have been found to contain various structural forms of fibrin along with platelet aggregates, leukocytes, and red blood cells, many of which acquire a polyhedral shape (polyhedrocytes) as a result of intravital platelet-driven contraction. The relative volume fractions of thrombus components and their structural forms vary substantially, depending on the clinical and pathogenic characteristics. This review summarizes recent research that describes quantitative and qualitative morphologic characteristics of arterial and venous thrombi that are relevant for the pathogenesis, prophylaxis, diagnosis, and treatment of thrombosis.
Collapse
Affiliation(s)
- John W. Weisel
- Department of Cell and Developmental BiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| | - Rustem I. Litvinov
- Department of Cell and Developmental BiologyUniversity of Pennsylvania Perelman School of MedicinePhiladelphiaPAUSA
| |
Collapse
|
19
|
Henke P, Sharma S, Wakefield T, Myers D, Obi A. Insights from experimental post-thrombotic syndrome and potential for novel therapies. Transl Res 2020; 225:95-104. [PMID: 32442728 PMCID: PMC7487018 DOI: 10.1016/j.trsl.2020.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/20/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
Abstract
Post-thrombotic syndrome (PTS) is an end stage manifestation of deep vein thrombosis. This is an inherently inflammatory process, with consequent fibrosis. Multiple cellular types are involved, and are likely driven by leukocytes. Herein, we review the current gaps in therapy, and insights from rodent models of venous thrombosis that suggest possible targets to treat and prevent PTS.
Collapse
Affiliation(s)
- Peter Henke
- From the University of Michigan Health System, Frankel Cardiovascular Center, Ann Arbor, MI.
| | - Sriganesh Sharma
- From the University of Michigan Health System, Frankel Cardiovascular Center, Ann Arbor, MI
| | - Thomas Wakefield
- From the University of Michigan Health System, Frankel Cardiovascular Center, Ann Arbor, MI
| | - Dan Myers
- From the University of Michigan Health System, Frankel Cardiovascular Center, Ann Arbor, MI
| | - Andrea Obi
- From the University of Michigan Health System, Frankel Cardiovascular Center, Ann Arbor, MI
| |
Collapse
|
20
|
Du X, Hu N, Yu H, Hong L, Ran F, Huang D, Zhou M, Li C, Li X. miR-150 regulates endothelial progenitor cell differentiation via Akt and promotes thrombus resolution. Stem Cell Res Ther 2020; 11:354. [PMID: 32787969 PMCID: PMC7425584 DOI: 10.1186/s13287-020-01871-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/24/2020] [Accepted: 08/03/2020] [Indexed: 01/22/2023] Open
Abstract
Background Deep venous thrombosis (DVT) constitutes a major global disease burden. Endothelial progenitor cells (EPCs) have been described in association with recanalization of venous thrombus. Furthermore, emerging evidence suggests microRNAs are involved in this progression. The goal of this study was to investigate the influence of miR-150 on the behavior of EPCs and its potential contribution in venous thrombosis resolution. Methods We isolated and cultured EPCs from healthy adults. Next, early EPCs or endothelial colony-forming cells (ECFCs or late EPCs) were transfected with miR-150 agomir and antagomir. Gene expression profiles, proliferation, cytokine secretion, and angiogenic capacity of early EPCs and ECFCs were examined. The effects of miR-150 on c-Myb expression and Akt/FOXO1 signaling were also evaluated. Furthermore, a rat model of venous thrombosis was constructed to determine the in vivo function of EPCs. Results Our results showed that miR-150 overexpression in early EPCs significantly promoted differentiation to ECFCs and contributed to proliferation and tube formation. However, suppression of miR-150 in late EPCs inhibited proliferation and tube formation. Moreover, we identified that this progression is regulated by inhibition of c-Myb and activation of the Akt/FOXO1 pathway. Our findings also showed that miR-150 led to the enhanced resolution ability of EPCs in a rat venous thrombosis model. Conclusions In this study, we present a novel mechanism of miRNA-mediated regulation of EPCs and Akt activation in thrombus resolution.
Collapse
Affiliation(s)
- Xiaolong Du
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Nan Hu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Huiying Yu
- Department of Vascular Surgery, Jining No. 1 People's Hospital, Jining Medical College, Jining, 272000, China
| | - Lei Hong
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Feng Ran
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Dian Huang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Min Zhou
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Chenglong Li
- Department of Vascular Surgery, The Second Affiliated Hospital to Soochow University, Soochow University, Suzhou, 215000, China.
| | - Xiaoqiang Li
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
21
|
Oxidative Stress and Thrombosis during Aging: The Roles of Oxidative Stress in RBCs in Venous Thrombosis. Int J Mol Sci 2020; 21:ijms21124259. [PMID: 32549393 PMCID: PMC7352981 DOI: 10.3390/ijms21124259] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 01/17/2023] Open
Abstract
Mid-life stage adults are at higher risk of developing venous thrombosis (VT)/thromboembolism (VT/E). Aging is characterized by an overproduction of reactive oxygen species (ROS), which could evoke a series of physiological changes involved in thrombosis. Here, we focus on the critical role of ROS within the red blood cell (RBC) in initiating venous thrombosis during aging. Growing evidence has shifted our interest in the role of unjustifiably unvalued RBCs in blood coagulation. RBCs can be a major source of oxidative stress during aging, since RBC redox homeostasis is generally compromised due to the discrepancy between prooxidants and antioxidants. As a result, ROS accumulate within the RBC due to the constant endogenous hemoglobin (Hb) autoxidation and NADPH oxidase activation, and the uptake of extracellular ROS released by other cells in the circulation. The elevated RBC ROS level affects the RBC membrane structure and function, causing loss of membrane integrity, and decreased deformability. These changes impair RBC function in hemostasis and thrombosis, favoring a hypercoagulable state through enhanced RBC aggregation, RBC binding to endothelial cells affecting nitric oxide availability, RBC-induced platelet activation consequently modulating their activity, RBC interaction with and activation of coagulation factors, increased RBC phosphatidylserine exposure and release of microvesicles, accelerated aging and hemolysis. Thus, RBC oxidative stress during aging typifies an ultimate mechanism in system failure, which can affect major processes involved in the development of venous thrombosis in a variety of ways. The reevaluated concept of the critical role of RBC ROS in the activation of thrombotic events during aging will help identify potential targets for novel strategies to prevent/reduce the risk for VT/E or VT/E recurrences in mid-life stage adults.
Collapse
|
22
|
Tepelenis K, Papathanakos G, Barbouti A, Paraskevas G, Kitsouli A, Alexandra Kefala M, Tepelenis N, Kanavaros P, Kitsoulis P. Phlebosclerosis in lower extremities veins - a systematic review. VASA 2020; 49:349-358. [PMID: 32323629 DOI: 10.1024/0301-1526/a000868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phlebosclerosis is a venous wall degenerative disease which has gained little popularity in the literature due to its uncertain clinical significance. The objective of this review is to evaluate the epidemiology, etiology and clinical significance of phlebosclerosis in lower extremities veins, particularly the effect of preexisting phlebosclerosis of the great saphenous vein on vein graft patency. Medline was searched from inception until November 1, 2019. Reference lists of included studies were scanned. Only articles published after 1949 were included. Two reviewers independently screened titles/abstracts and full-text papers for any study design in relation to phlebosclerosis in lower extremities veins and abstracted data. A total of 16 Cohort studies and one case-control study (3708 participants, mean age 61.8 years, 59.3 % men, and 40.7 % women) were included after screening 317 titles and abstracts, and 80 full-text articles. The incidence of phlebosclerosis ranged from 1.5-9.7 % depending on the radiological features. On the contrary, the incidence of the phlebosclerotic great saphenous vein prior to its use as a vein graft was 26.9-91 % on histological examination. The small saphenous vein was the most common location of phlebosclerosis followed by the great saphenous vein. There is a link between phlebosclerosis and age, venous insufficiency and haemodialysis. As for the vein graft patency seven studies demonstrated a correlation between preexisting phlebosclerosis and vein graft stenosis, whereas three studies failed to prove any association. In conclusion, the radiological incidence of phlebosclerosis depended on the ultrasound findings. Its presence in the great saphenous vein prior to its use as a vein graft is established on histological examination. The small saphenous vein is mainly affected. Risk factors included age, haemodialysis, and venous insufficiency. Preexisting wall thickness of the great saphenous vein graft seemed to affect negatively its patency in bypass surgery.
Collapse
Affiliation(s)
- Kostas Tepelenis
- Department of Surgery, General Hospital of Filiates, Thesprotia, Greece
| | | | - Alexandra Barbouti
- Anatomy - Histology - Embryology, University of Ioannina, Ioannina, Greece
| | | | | | | | | | | | - Panagiotis Kitsoulis
- Anatomy - Histology - Embryology, University of Ioannina, Ioannina, Greece.,Orthopaedics, University of Ioannina, Ioannina, Greece
| |
Collapse
|
23
|
Depletion of CD4 and CD8 Positive T Cells Impairs Venous Thrombus Resolution in Mice. Int J Mol Sci 2020; 21:ijms21051650. [PMID: 32121269 PMCID: PMC7084232 DOI: 10.3390/ijms21051650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 01/22/2023] Open
Abstract
Resolution of deep venous thrombosis involves coordinated inflammatory processes. T cells regulate inflammation in vivo and modulate vascular remodeling in other settings, but their role in venous thrombus resolution remains undefined. To determine the role of T cells in venous thrombus resolution in vivo, stasis induced thrombi were created by vena cava ligation in outbred CD-1 mice. CD4 and CD8 positive T cells, as determined by flow cytometry, were present in thrombi both during thrombus formation and resolution. Depletion of the CD4 and CD8 positive T cells by antibody treatment selectively impaired thrombus resolution compared to animals treated with isotype control antibodies, without an effect on venous thrombus formation. Quantitation of intra-thrombus macrophage numbers, fibrinolytic marker expression, and gelatinolytic activity by zymography revealed that T cell depletion decreased the number of macrophages, reduced the expression of fibrinolytic marker urokinase plasminogen activator (uPA), and decreased the activity of matrix metalloprotinease-9 (MMP-9). These data implicate CD4 and CD8 positive T cells in functionally contributing to venous thrombus resolution, thus representing a potential therapeutic target, but also underscoring potential risks involved in T cell depletion used clinically for solid organ and hematopoietic transplantation procedures.
Collapse
|
24
|
Nosaka M, Ishida Y, Kimura A, Kuninaka Y, Taruya A, Ozaki M, Tanaka A, Mukaida N, Kondo T. Crucial Involvement of IL-6 in Thrombus Resolution in Mice via Macrophage Recruitment and the Induction of Proteolytic Enzymes. Front Immunol 2020; 10:3150. [PMID: 32117207 PMCID: PMC7019028 DOI: 10.3389/fimmu.2019.03150] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/30/2019] [Indexed: 01/08/2023] Open
Abstract
After the ligation of the inferior vena cava (IVC) of wild-type (WT) mice, venous thrombi formed and grew progressively until 5 days and resolved thereafter. Concomitantly, intrathrombotic gene expression of Il6 was enhanced later than 5 days after IVC ligation. IL-6 protein expression was detected mainly in F4/80-positive macrophages in thrombus. When Il6-deficient (Il6−/−) mice were treated in the same manner, thrombus mass was significantly larger than in WT mice. Moreover, the recovery of thrombosed IVC blood flow was markedly delayed in Il6−/− compared with WT mice. F4/80-positive macrophages in thrombus expressed proteolytic enzymes such as matrix metalloproteinase (Mmp) 2, Mmp9, and urokinase-type plasminogen activator (Plau); and their mRNA expression was significantly reduced in Il6−/− mice. Consistently, the administration of anti-IL-6 antibody delayed the thrombus resolution in WT mice, whereas IL-6 administration accelerated thrombus resolution in WT and Il6−/− mice. Moreover, IL-6 in vitro enhanced Mmp2, Mmp9, and Plau mRNA expression in WT-derived peritoneal macrophages in a dose-dependent manner; and the enhancement was abrogated by a specific Stat3 inhibitor, Stattic. Thus, IL-6/Stat3 signaling pathway can promote thrombus resolution by enhancing Mmp2, Mmp9, and Plau expression in macrophages.
Collapse
Affiliation(s)
- Mizuho Nosaka
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yuko Ishida
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Akihiko Kimura
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Yumi Kuninaka
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| | - Akira Taruya
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Mitsunori Ozaki
- Department of Neurological Surgery, Wakayama Medical University, Wakayama, Japan
| | - Atushi Tanaka
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
25
|
Poredoš P, Poredoš P, Jezovnik MK. Factors influencing recanalization of thrombotic venous occlusions. VASA 2020; 49:17-22. [DOI: 10.1024/0301-1526/a000800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Summary. The outcome of a thrombotic vessel occlusion is related to the resolution of thrombus and restitution of blood flow. Thrombus formation simultaneously activates an enzymatic process that mediates endogenous fibrinolysis to maintain vessel patency. The balance between coagulation and fibrinolysis determines the extent of thrombus formation, its resolution, and clinical outcome. Endogenic fibrinolysis is frequently unable to overcome coagulation and to resolve the thrombus. Therefore, for a complete resolution of thrombus in an acute phase, exogenic fibrinolytic agents are needed. Currently, tissue plasminogen activator (tPA) is most frequently used for therapeutic thrombolysis. Also, heparins, particularly low-molecular-weight heparins and direct oral anticoagulants which are known as anticoagulant drugs, have some pro-fibrinolytic properties. Besides the extent and age of a clot, different other factors influence the lysis of thrombus. Thrombus structure is one of the most important determinants of thrombus lysis. The concentration of thrombolytic agent (tPA) around and inside of thrombus importantly determines clot lysis velocity. Further, flow-induced mechanical forces which stimulate the transport of thrombolytic agent into the clot influence thrombolysis. Inflammation most probably represents a basic pathogenetic mechanism of activation of coagulation and influences the activity of the fibrinolytic system. Inflammation increases tissue factor release, platelet activity, fibrinogen concentration and inhibits fibrinolysis by increasing plasminogen activator inhibitor 1. Therefore, recanalization of a thrombotic vessel occlusion is inversely related to levels of some circulating inflammatory agents. Consequently, inhibition of inflammation with anti-inflammatory drugs may improve the efficacy of prevention of thromboembolic events and stimulate recanalization of thrombotic occlusions of veins.
Collapse
Affiliation(s)
- Pavel Poredoš
- Department of Vascular Disease, University Medical Centre Ljubljana, Slovenia
| | - Peter Poredoš
- Department of Anesthesiology and Perioperative Intensive Care, University Medical Centre Ljubljana, Slovenia
| | - Mateja Kaja Jezovnik
- Department of Advanced Cardiopulmonary Therapies and Transplantation, University of Texas Health Science Centre Houston, Texas, USA
| |
Collapse
|
26
|
Peshkova AD, Malyasyov DV, Bredikhin RA, Le Minh G, Andrianova IA, Tutwiler V, Nagaswami C, Weisel JW, Litvinov RI. Reduced Contraction of Blood Clots in Venous Thromboembolism Is a Potential Thrombogenic and Embologenic Mechanism. TH OPEN 2018; 2:e104-e115. [PMID: 31249934 PMCID: PMC6524864 DOI: 10.1055/s-0038-1635572] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/08/2018] [Indexed: 12/12/2022] Open
Abstract
Contraction (retraction) of the blood clot is a part of the clotting process driven by activated platelets attached to fibrin that can potentially modulate the obstructiveness and integrity of thrombi. The aim of this work was to reveal the pathogenic importance of contraction of clots and thrombi in venous thromboembolism (VTE). We investigated the kinetics of clot contraction in the blood of 55 patients with VTE. In addition, we studied the ultrastructure of ex vivo venous thrombi as well as the morphology and functionality of isolated platelets. Thrombi from VTE patients contained compressed polyhedral erythrocytes, a marker for clot contraction in vivo. The extent and rate of contraction were reduced by twofold in clots from the blood of VTE patients compared with healthy controls. The contraction of clots from the blood of patients with pulmonary embolism was significantly impaired compared with that of those with isolated venous thrombosis, suggesting that less compacted thrombi are prone to embolization. The reduced ability of clots to contract correlated with continuous platelet activation followed by their partial refractoriness. Morphologically, 75% of platelets from VTE patients were spontaneously activated (with filopodia) compared with only 21% from healthy controls. At the same time, platelets from VTE patients showed a 1.4-fold reduction in activation markers expressed in response to chemical activation when compared with healthy individuals. The results obtained suggest that the impaired contraction of thrombi is an underappreciated pathogenic mechanism in VTE that may regulate the obstructiveness and embologenicity of venous thrombi.
Collapse
Affiliation(s)
- Alina D Peshkova
- Department of Biochemistry and Biotechnology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Dmitry V Malyasyov
- Department of Vascular Surgery, Inter-Regional Clinical Diagnostic Center, Kazan, Russian Federation
| | - Roman A Bredikhin
- Department of Vascular Surgery, Inter-Regional Clinical Diagnostic Center, Kazan, Russian Federation
| | - Giang Le Minh
- Department of Biochemistry and Biotechnology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Izabella A Andrianova
- Department of Biochemistry and Biotechnology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Valerie Tutwiler
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States
| | - Chandrasekaran Nagaswami
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States
| | - Rustem I Litvinov
- Department of Biochemistry and Biotechnology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.,Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States
| |
Collapse
|
27
|
Schönfelder T, Brandt M, Kossmann S, Knopp T, Münzel T, Walter U, Karbach SH, Wenzel P. Lack of T-bet reduces monocytic interleukin-12 formation and accelerates thrombus resolution in deep vein thrombosis. Sci Rep 2018; 8:3013. [PMID: 29445199 PMCID: PMC5813037 DOI: 10.1038/s41598-018-21273-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 02/01/2018] [Indexed: 12/11/2022] Open
Abstract
The role of leukocytes in deep vein thrombosis (DVT) resolution is incompletely understood. We determined how depletion of lysozyme positive (LysM+) cells and a switched-off type 1 immune response influences thrombus resolution. DVT was induced in 12-week-old male mice by inferior vena cava (IVC) stenosis. Toxin mediated depletion of myeloid cells improved thrombus resolution in mice with Cre-inducible expression of the diphtheria toxin receptor in LysM+ cells. This correlated with decreased CD45+ cells, a population shift of Gr-1+ to Gr-1- CD11b+ myelomonocytic cells (flow cytometry) and an increase in CC-chemokine ligand 2, interleukin-4 and interleukin-10 mRNA expressions. Tbx21-/- mice (lacking transcription factor T-bet and marked by an attenuated type 1 immune response) with DVT had faster thrombus resolution, a reduction of pro-inflammatory Ly6Chi monocytes in thrombi and decreased interleukin-12p40 mRNA expression than control mice resulting in increased vascular endothelial growth factor mRNA expression and improved neovascularization of thrombotic veins. Transfer of Tbx21-/- bone marrow into irradiated Tbx21+/+ recipients lead to accelerated thrombus resolution with lower T-bet-dependent interleukin-12p40 mRNA levels following IVC-stenosis. We conclude that inhibition of Tbet+ interleukin-12 forming myelomonocytic cells accelerated thrombus resolution. Modulating the inflammatory immune response might be an approach to improve therapy of DVT.
Collapse
Affiliation(s)
| | - Moritz Brandt
- Center for Thrombosis and Hemostasis Mainz, Mainz, Germany.,Center for Cardiology-Cardiology I, Mainz, Germany.,Deutsches Zentrum für Herzkreislaufforschung (DZHK)-Partner site Rhine-Main, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Sabine Kossmann
- Center for Thrombosis and Hemostasis Mainz, Mainz, Germany.,Center for Cardiology-Cardiology I, Mainz, Germany
| | - Tanja Knopp
- Center for Thrombosis and Hemostasis Mainz, Mainz, Germany
| | - Thomas Münzel
- Center for Thrombosis and Hemostasis Mainz, Mainz, Germany.,Center for Cardiology-Cardiology I, Mainz, Germany.,Deutsches Zentrum für Herzkreislaufforschung (DZHK)-Partner site Rhine-Main, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Ulrich Walter
- Center for Thrombosis and Hemostasis Mainz, Mainz, Germany.,Deutsches Zentrum für Herzkreislaufforschung (DZHK)-Partner site Rhine-Main, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Susanne H Karbach
- Center for Thrombosis and Hemostasis Mainz, Mainz, Germany.,Center for Cardiology-Cardiology I, Mainz, Germany
| | - Philip Wenzel
- Center for Thrombosis and Hemostasis Mainz, Mainz, Germany. .,Center for Cardiology-Cardiology I, Mainz, Germany. .,Deutsches Zentrum für Herzkreislaufforschung (DZHK)-Partner site Rhine-Main, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
28
|
van Montfoort M, Meijers J. Anticoagulation beyond direct thrombin and factor Xa inhibitors: indications for targeting the intrinsic pathway? Thromb Haemost 2017; 110:223-32. [DOI: 10.1160/th12-11-0803] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 05/07/2013] [Indexed: 11/05/2022]
Abstract
SummaryAntithrombotic drugs like vitamin K antagonists and heparin have been the gold standard for the treatment and prevention of thromboembolic disease for many years. Unfortunately, there are several disadvantages of these antithrombotic drugs: they are accompanied by serious bleeding problems, it is necessary to monitor the therapeutic window, and there are various interactions with food and other drugs. This has led to the development of new oral anticoagulants, specifically inhibiting either thrombin or factor Xa. In terms of effectiveness, these drugs are comparable to the currently available anticoagulants; however, they are still associated with issues such as bleeding, reversal of the drug and complicated laboratory monitoring. Vitamin K antagonists, heparin, direct thrombin and factor Xa inhibitors have in common that they target key proteins of the haemostatic system. In an attempt to overcome these difficulties we investigated whether the intrinsic coagulation factors (VIII, IX, XI, XII, prekallikrein and high-molecular-weight kininogen) are superior targets for anticoagulation. We analysed epidemiological data concerning thrombosis and bleeding in patients deficient in one of the intrinsic pathway proteins. Furthermore, we discuss several thrombotic models in intrinsic coagulation factor-deficient animals. The combined results suggest that intrinsic coagulation factors could be suitable targets for anticoagulant drugs.
Collapse
|
29
|
Wagenhäuser MU, Sadat H, Dueppers P, Meyer-Janiszewski YK, Spin JM, Schelzig H, Duran M. Open surgery for iliofemoral deep vein thrombosis with temporary arteriovenous fistula remains valuable. Phlebology 2017; 33:600-609. [PMID: 29065779 DOI: 10.1177/0268355517736437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective We assessed outcomes of open surgical venous thrombectomy with temporary arteriovenous fistula, and the procedure's effect on health-related quality of life. Method We retrospectively analyzed 48 (26 at long-term) patient medical records. Mortality rates, patency, and risk of post-thrombotic syndrome were analyzed using Kaplan-Meier estimation. The association between risk factors/coagulation disorders and patency/post-thrombotic syndrome along with patient health-related quality of life at long-term was analyzed employing various statistical methods. Results Patient one-year survival rate was 93 ± 4% and primary one-year patency rate was 89 ± 5% (secondary one-year patency rate 97 ± 3%). Freedom from post-thrombotic syndrome after eight years was 80 ± 12% (post-thrombotic syndrome rate 20 ± 12%). Health-related quality of life was impaired vs. normative data in the physical and social subscales, and in the mental component score ( p < .05). Conclusions Open surgical venous thrombectomy appears safe compared with literature-reported outcomes in similar patients using alternative approaches. Iliofemoral deep vein thrombosis impairs physical, social, and mental health-related quality of life.
Collapse
Affiliation(s)
- Markus U Wagenhäuser
- 1 Department of Vascular and Endovascular Surgery, University Hospital of Düsseldorf, Düsseldorf, Germany.,2 Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Hellai Sadat
- 1 Department of Vascular and Endovascular Surgery, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Philip Dueppers
- 1 Department of Vascular and Endovascular Surgery, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Yvonne K Meyer-Janiszewski
- 1 Department of Vascular and Endovascular Surgery, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Joshua M Spin
- 2 Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Hubert Schelzig
- 1 Department of Vascular and Endovascular Surgery, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Mansur Duran
- 1 Department of Vascular and Endovascular Surgery, University Hospital of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
30
|
Cytokine Signature in End-Stage Renal Disease Patients on Hemodialysis. DISEASE MARKERS 2017; 2017:9678391. [PMID: 28819334 PMCID: PMC5551539 DOI: 10.1155/2017/9678391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/09/2017] [Accepted: 06/14/2017] [Indexed: 11/17/2022]
Abstract
Hemodialysis is a modality of blood filtration in which accumulated toxins and water are removed from the body. This treatment is indicated for patients at the end stage of renal disease. Vascular access complications are responsible for 20–25% of all hospitalizations in dialyzed patients. The occurrence of thrombosis in the vascular access is a serious problem that may severely compromise or even make the hemodialysis impossible, which is vital for the patient. The aim of this study was to investigate inflammatory profile in patients undergoing hemodialysis as well as the association between these alterations and vascular access thrombosis. A total of 195 patients undergoing hemodialysis have been evaluated; of which, 149 patients had not experienced vascular access thrombosis (group I) and 46 patients had previously presented this complication (group II). Plasma levels of cytokines including interleukin (IL-) 2, IL-4, IL-5, IL-10, TNF-α, and IFN-γ were measured by cytometric bead array. Our results showed that patients with previous thrombotic events (group II) had higher levels of the IL-2, IL-4, IL-5, and IFN-γ when compared to those in group I. Furthermore, a different cytokine signature was detected in dialyzed patients according to previous occurrences or not of thrombotic events, suggesting that elevated levels of T-helper 1 and T-helper 2 cytokines might, at least in part, contribute to this complication.
Collapse
|
31
|
Liu X, Li N, Wen C. Effect of pathological heterogeneity on shear wave elasticity imaging in the staging of deep venous thrombosis. PLoS One 2017; 12:e0179103. [PMID: 28614362 PMCID: PMC5470690 DOI: 10.1371/journal.pone.0179103] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 05/24/2017] [Indexed: 11/27/2022] Open
Abstract
Background We aimed to observe the relationship between the pathological components of a deep venous thrombus (DVT), which was divided into three parts, and the findings on quantitative ultrasonic shear wave elastography (SWE) to increase the accuracy of thrombus staging in a rabbit model. Methods A flow stenosis-induced vein thrombosis model was used, and the thrombus was divided into three parts (head, body and tail), which were associated with corresponding observation points. Elasticity was quantified in vivo using SWE over a 2-week period. A quantitative pathologic image analysis (QPIA) was performed to obtain the relative percentages of the components of the main clots. Results DVT maturity occurred at 2 weeks, and the elasticity of the whole thrombus and the three parts (head, body and tail) showed an increasing trend, with the Young's modulus values varying from 2.36 ± 0.41 kPa to 13.24 ± 1.71 kPa; 2.01 ± 0.28 kPa to 13.29 ± 1.48 kPa; 3.27 ± 0.57 kPa to 15.91 ± 2.05 kPa; and 1.79 ± 0.36 kPa to 10.51 ± 1.61 kPa, respectively. Significant increases occurred on different days for the different parts: the head showed significant increases on days 4 and 6; the body showed significant increases on days 4 and 7; and the tail showed significant increases on days 3 and 6. The QPIA showed that the thrombus composition changed dynamically as the thrombus matured, with the fibrin and calcium salt deposition gradually increasing and the red blood cells (RBCs) and platelet trabecula gradually decreasing. Significant changes were observed on days 4 and 7, which may represent the transition points for acute, sub-acute and chronic thrombi. Significant heterogeneity was observed between and within the thrombi. Conclusions Variations in the thrombus components were generally consistent between the SWE and QPIA. Days 4 and 7 after thrombus induction may represent the transition points for acute, sub-acute and chronic thrombi in rabbit models. A dynamic examination of the same part of the thrombus may be helpful for improving the sensitivity and reproducibility of SWE for DVT diagnosis and staging.
Collapse
Affiliation(s)
- Xiaona Liu
- Chinese PLA (People's Liberation Army) Medical School, Beijing, P.R. China
- Department of Ultrasound, Binzhou Medical University Hospital, Binzhou, Shandong, P.R. China
| | - Na Li
- Chinese PLA (People's Liberation Army) Medical School, Beijing, P.R. China
- Department of Auxiliary Diagnosis, The 463rd Hospital of Shenyang Military Region, Shenyang, Liaoning, P.R. China
| | - Chaoyang Wen
- Chinese PLA (People's Liberation Army) Medical School, Beijing, P.R. China
- Department of Ultrasound, The First Affiliated Hospital of Chinese PLA General Hospital, Beijing, P.R. China
- * E-mail:
| |
Collapse
|
32
|
Sharma S, Lang IM. Current understanding of the pathophysiology of chronic thromboembolic pulmonary hypertension. Thromb Res 2017. [PMID: 28624155 DOI: 10.1016/j.thromres.2017.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a unique form of pulmonary hypertension arising from fibrotic obliteration of major pulmonary arteries. Pro-thrombotic states, large clot burden and impaired dissolution are believed to contribute to the occurrence and progression of thrombosis after an acute pulmonary embolic event. Recent data utilizing several models have facilitated the understanding of clot resolution. This review summarizes current knowledge on pathophysiological mechanisms of major vessel occlusion in CTEPH.
Collapse
Affiliation(s)
- Smriti Sharma
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Irene M Lang
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
33
|
Myeloid p53 regulates macrophage polarization and venous thrombus resolution by inflammatory vascular remodeling in mice. Blood 2017; 129:3245-3255. [PMID: 28320710 DOI: 10.1182/blood-2016-07-727180] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 03/01/2017] [Indexed: 12/15/2022] Open
Abstract
Deep venous thrombosis (DVT) remains a common and serious cardiovascular problem with both fatal and long-term consequences. The consequences of DVT include the development of postthrombotic syndrome in 25% to 60% of DVT patients. Despite the clinical importance of venous thrombus resolution, the cellular and molecular mediators involved are poorly understood, and currently there is no molecular therapy to accelerate this process. Several lines of evidence suggest that a complex and interrelated array of molecular signaling processes are involved in the inflammatory vascular remodeling associated with the resolution of DVT. Here, we have identified a role for the tumor suppressor gene p53 in regulating venous thrombus resolution. Using the stasis model of venous thrombosis and resolution in mice, we found that genetic deficiency of p53 or pharmacologic inhibition by pifithrin impairs thrombus resolution and is associated with increased fibrosis and altered expression of matrix metalloproteinase-2. The effect of p53 loss was mediated by cells of the myeloid lineage, resulting in enhanced polarization of the cytokine milieu toward an M1-like phenotype. Furthermore, augmentation of p53 activity using the pharmacological agonist of p53, quinacrine, accelerates venous thrombus resolution in a p53-dependent manner, even after establishment of thrombosis. Together, these studies define mechanisms by which p53 regulates thrombus resolution by increasing inflammatory vascular remodeling of venous thrombi in vivo, and the potential therapeutic application of a p53 agonist as a treatment to accelerate this process in patients with DVT.
Collapse
|
34
|
Wang Q, Shi G, Teng Y, Li X, Xie J, Shen Q, Zhang C, Ni S, Tang Z. Successful reduction of inflammatory responses and arachidonic acid-cyclooxygenase 2 pathway in human pulmonary artery endothelial cells by silencing adipocyte fatty acid-binding protein. JOURNAL OF INFLAMMATION-LONDON 2017; 14:8. [PMID: 28331434 PMCID: PMC5359915 DOI: 10.1186/s12950-017-0155-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/16/2017] [Indexed: 01/12/2023]
Abstract
Background Adipocyte fatty acid-binding protein, also known as aP2 or fatty acid-binding protein 4 (FABP4), plays an important role in inflammatory and metabolic responses in adipocytes and macrophages. Recent work has demonstrated that macrophage FABP4 integrates inflammatory and lipid metabolic responses, thereby contributing to the development of insulin resistance and atherosclerosis. However, it is not known whether FABP4 in human pulmonary artery endothelial cells(HPAECs) modulates inflammation. Results Here, we demonstrate that FABP4 and inflammatory cytokines are upregulated in lipopolysaccharide(LPS)-stimulated HPAECs. In addition, LPS increases the expression of molecules in the arachidonic acid(AA)–cyclooxygenase (COX) 2 signaling pathway in FABP4-expressing, but not FABP4-deficient, HPAECs. Conclusions Our findings demonstrate that silencing FABP4 could decrease inflammatory cytokines, which were reported to be expressed via the AA–COX2 pathway, in HPAECs. In addition, silencing FABP4 could inhibit the expression of molecules in the AA–COX2 pathways. So we speculate silencing FABP4 could decrease the inflammatory response in HPAECs, which involves in the AA–COX2 signaling pathway. Our study suggests that FABP4 could be a potential biomarker and intervention point for the inflammation-related disease in HPAECs such as pulmonary thromboembolism.
Collapse
Affiliation(s)
- Qian Wang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu China
| | - Guanglin Shi
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu China
| | - Ying Teng
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu China
| | - Xia Li
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu China
| | - Jin Xie
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu China
| | - Qin Shen
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu China
| | - Caixin Zhang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu China
| | - Songshi Ni
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu China
| | - Zhiyuan Tang
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, 226001 Jiangsu China
| |
Collapse
|
35
|
Culmer DL, Dunbar ML, Hawley AE, Sood S, Sigler RE, Henke PK, Wakefield TW, Magnani JL, Myers DD. E-selectin inhibition with GMI-1271 decreases venous thrombosis without profoundly affecting tail vein bleeding in a mouse model. Thromb Haemost 2017; 117:1171-1181. [PMID: 28300869 DOI: 10.1160/th16-04-0323] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 02/21/2017] [Indexed: 12/31/2022]
Abstract
Selectins, such as E-selectin (CD62E), function in venous thrombosis by binding and activating immune cells to initiate the coagulation cascade. GMI-1271 is a small molecule antagonist that inhibits E-selectin activity. Here we determine whether inhibition of E-selectin is sufficient to decrease acute venous thrombosis and associated inflammatory events in both prophylactic and treatment protocols without significantly affecting haemostasis. Male C57BL/6 mice underwent surgery for experimental thrombosis induction and were harvested at peak thrombus formation in our animal model, two days post induction. Groups included non-thrombosed true controls, shams, controls, and prophylactic or treatment groups of GMI-1271 (10 mg/kg intraperitoneal BID (twice a day) and low-molecular-weight heparin (LMWH, Lovenox 6 mg/kg subcutaneously (SC), once a day (SID). Compared with control animals, prophylaxis or treatment with LMWH and GMI-1271 in a dose-dependent manner significantly decreased thrombosis. GMI-1271 significantly lowered tail bleeding times when compared to LMWH. GMI-1271 and LMWH prophylactically administered significantly decreased vein wall neutrophil cell extravasation. However, all treatment and prophylactic therapies significantly decreased vein wall monocyte extravasation versus controls. GMI-1271 prophylactic therapy significantly decreased intra-thrombus cell counts versus control animals and other treatment groups. Immunohistochemistry confirmed that both treatments with GMI-1271 and LMWH significantly decreased activated leukocyte migration. GMI-1271 therapy significantly decreased thrombus weight and resulted in significantly lower bleeding times than LMWH. GMI-1271 treated mice showed decreased local and systemic inflammatory effects while modulating neutrophil activation, suggesting that GMI-1271 is a viable therapeutic candidate for venous thrombosis prophylaxis and treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Daniel D Myers
- Daniel D. Myers, Jr., DVM, MPH, DACLAM, University of Michigan, North Campus Research Complex, Building 26, Room 263N, 2800 Plymouth Road, Ann Arbor, MI 48109-2800, USA, Tel.: +1 734 763 0940, E-mail:
| |
Collapse
|
36
|
Cui Y, Zhao F, Liu J, Wang X, Du J, Shi D, Chen K. Zedoary Guaiane-Type Sesquiterpenes-Eluting Stents Accelerate Endothelial Healing Without Neointimal Hyperplasia in a Porcine Coronary Artery Model. J Cardiovasc Pharmacol Ther 2017; 22:476-484. [PMID: 28269995 DOI: 10.1177/1074248417696819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Objective: The effects of zedoary guaiane-type sesquiterpenes (ZGS)-based eluting stent (ZES) in accelerating reendothelialization and inhibiting neointimal hyperplasia were examined in a porcine coronary artery model. Methods: The ZES was prepared by polymer-free 316L stainless metal stents. Sirolimus-eluting stents (SES) and bare metal stents (BMS) with identical platforms were used as controls. Stents with 15 mm in length and 2.0 to 3.5 mm in diameter were implanted in porcine coronary arteries. Scanning electron microscopy (SEM) and histopathology were performed to assess the reendothelialization and neointimal hyperplasia. The 3-(4, 5-dimethylthiazol-2yl)-2, 5-diphenyl-2H-tetrazoliumbromide assay and flow cytometry were used to assess the influence of ZGS on human umbilical vascular endothelial cells (HUVECs). Results: At 7 days, SEM showed that percentage of endothelial coverage area was 94.04% ± 5.01% for ZES, 47.59% ± 19.91% for SES ( P < .01 for ZES vs SES), and 59.58% ± 19.61% for BMS ( P < .05 for ZES vs BMS). At 28 days, the percentage of coverage area was 98.51% ± 1.86% for ZES, 86.18% ± 8.16% for SES ( P < .05 for ZES vs SES), and 94.26% ± 5.58% for BMS. Neointimal area and stenosis were significantly lower in ZES (1.07 ± 0.48 mm2, 27.66% ± 12.20%) compared to BMS (1.73 ± 0.69 mm2, 44.08% ± 15.03%, both P < .01, respectively), with no difference in SES (0.94 ± 0.12 mm2, 28.87% ± 6.00%, both P > .05, respectively). The ZGS also promoted HUVECs viability and improved HUVECs proliferation compared to sirolimus. Conclusion: The ZES accelerated reendothelialization and suppressed neointimal hyperplasia in a porcine coronary artery model, with beneficial effects on HUVECs.
Collapse
Affiliation(s)
- Yuanyuan Cui
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fuhai Zhao
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiangang Liu
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xin Wang
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jianpeng Du
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dazhuo Shi
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Keji Chen
- Cardiovascular Diseases Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Heart Institute of Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
37
|
Obi AT, Andraska E, Kanthi Y, Kessinger CW, Elfline M, Luke C, Siahaan TJ, Jaffer FA, Wakefield TW, Henke PK. Endotoxaemia-augmented murine venous thrombosis is dependent on TLR-4 and ICAM-1, and potentiated by neutropenia. Thromb Haemost 2016; 117:339-348. [PMID: 27975098 DOI: 10.1160/th16-03-0218] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 10/19/2016] [Indexed: 12/29/2022]
Abstract
Venous thromboembolism is a major cause of death during and immediately post-sepsis. Venous thrombosis (VT) is mediated by cell adhesion molecules and leukocytes, including neutrophil extracellular traps (NETs). Sepsis, or experimentally, endotoxaemia, shares similar characteristics and is modulated via toll like receptor 4 (TLR4). This study was undertaken to determine if endotoxaemia potentiates early stasis thrombogenesis, and secondarily to determine the role of VT TLR4, ICAM-1 and neutrophils (PMNs). Wild-type (WT), ICAM-1-/- and TLR4-/- mice underwent treatment with saline or LPS (10 mg/kg i. p.) alone, or followed by inferior vena cava (IVC) ligation to generate stasis VT. In vivo microscopy of leukocyte trafficking was performed in non-thrombosed mice, and tissue and plasma were harvested during early VT formation. Pre-thrombosis, circulating ICAM-1 was elevated and increased leukocyte adhesion and rolling occurred on the IVC of LPS-treated mice. Post-thrombosis, endotoxaemic mice formed larger, platelet-poor thrombi. Endotoxaemic TLR4-/- mice did not have an augmented thrombotic response and exhibited significantly decreased circulating ICAM-1 compared to endotoxaemic WT controls. Endotoxaemic ICAM-1-/- mice had significantly smaller thrombi compared to controls. Hypothesising that PMNs localised to the inflamed endothelium were promoting thrombosis, PMN depletion using anti-Ly6G antibody was performed. Paradoxically, VT formed without PMNs was amplified, potentially related to endotoxaemia induced elevation of PAI-1 and circulating FXIII, and decreased uPA. Endotoxaemia enhanced early VT occurs in a TLR-4 and ICAM-1 dependent fashion, and is potentiated by neutropenia. ICAM-1 and/or TLR-4 inhibition may be a unique strategy to prevent sepsis-associated VT.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Peter K Henke
- Peter K. Henke, MD, University of Michigan Health System, 1500 E. Medical Center Drive, Cardiovascular Center - 5463, Ann Arbor, MI 48109-5867, USA, Tel.: +1 734 763 0250, Fax: +1 734 647 9867, E-mail:
| |
Collapse
|
38
|
Serum from Varicose Patients Induces Senescence-Related Dysfunction of Vascular Endothelium Generating Local and Systemic Proinflammatory Conditions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2069290. [PMID: 27994710 PMCID: PMC5141312 DOI: 10.1155/2016/2069290] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/25/2016] [Accepted: 11/01/2016] [Indexed: 11/17/2022]
Abstract
Although the role of endothelium in varicose vein development is indisputable, the effect of the pathology on biological properties of endothelial cells remains unclear. Here we examined if the presence of varicose veins affects senescence of endothelial cells (HUVECs) and, if so, what will be the local and systemic outcome of this effect. Experiments showed that HUVECs subjected to serum from varicose patients display improved proliferation, increased expression of senescence marker, SA-β-Gal, and increased generation of reactive oxygen species (ROS), as compared with serum from healthy donors. Both increased SA-β-Gal activity and ROS release were mediated by TGF-β1, the concentration of which in varicose serum was elevated and the activity of which in vitro was prevented using specific neutralizing antibody. Senescent HUVECs exposed to varicose serum generated increased amounts of ICAM-1, VCAM-1, P-selectin, uPA, PAI-1, and ET-1. Direct comparison of sera from varicose and healthy donors showed that pathological serum contained increased level of ICAM-1, VCAM-1, P-selectin, uPA, and ET-1. Calendar age of healthy subjects correlated positively with serum uPA and negatively with P-selectin. Age of varicose patients correlated positively with ICAM-1, VCAM-1, and ET-1. Collectively, our findings indicate that the presence of varicose veins causes a senescence-related dysfunction of vascular endothelium, which leads to the development of local and systemic proinflammatory environment.
Collapse
|
39
|
Middleton EA, Weyrich AS, Zimmerman GA. Platelets in Pulmonary Immune Responses and Inflammatory Lung Diseases. Physiol Rev 2016; 96:1211-59. [PMID: 27489307 PMCID: PMC6345245 DOI: 10.1152/physrev.00038.2015] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Platelets are essential for physiological hemostasis and are central in pathological thrombosis. These are their traditional and best known activities in health and disease. In addition, however, platelets have specializations that broaden their functional repertoire considerably. These functional capabilities, some of which are recently discovered, include the ability to sense and respond to infectious and immune signals and to act as inflammatory effector cells. Human platelets and platelets from mice and other experimental animals can link the innate and adaptive limbs of the immune system and act across the immune continuum, often also linking immune and hemostatic functions. Traditional and newly recognized facets of the biology of platelets are relevant to defensive, physiological immune responses of the lungs and to inflammatory lung diseases. The emerging view of platelets as blood cells that are much more diverse and versatile than previously thought further predicts that additional features of the biology of platelets and of megakaryocytes, the precursors of platelets, will be discovered and that some of these will also influence pulmonary immune defenses and inflammatory injury.
Collapse
Affiliation(s)
- Elizabeth A Middleton
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Andrew S Weyrich
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| | - Guy A Zimmerman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, and the Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
40
|
Mercier O, Arthur Ataam J, Langer NB, Dorfmüller P, Lamrani L, Lecerf F, Decante B, Dartevelle P, Eddahibi S, Fadel E. Abnormal pulmonary endothelial cells may underlie the enigmatic pathogenesis of chronic thromboembolic pulmonary hypertension. J Heart Lung Transplant 2016; 36:305-314. [PMID: 27793518 DOI: 10.1016/j.healun.2016.08.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 06/30/2016] [Accepted: 08/17/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Chronic thromboembolic pulmonary hypertension results from chronic mechanical obstruction of the pulmonary arteries after acute venous thromboembolism. However, the mechanisms that result in the progression from unresolved thrombus to fibrotic vascular remodeling are unknown. We hypothesized that pulmonary artery endothelial cells contribute to this phenomenon via paracrine growth factor and cytokine signaling. METHODS Using enzyme-linked immunosorbent assay and cell migration assays, we investigated the circulating growth factors and cytokines of chronic thromboembolic pulmonary hypertension patients as well as the cross talk between pulmonary endothelial cells and pulmonary artery smooth muscle cells and monocytes from patients with chronic thromboembolic pulmonary hypertension in vitro. RESULTS Culture medium from the pulmonary endothelial cells of chronic thromboembolic pulmonary hypertension patients contained higher levels of growth factors (fibroblast growth factor 2), inflammatory cytokines (interleukin 1β, interleukin 6, monocyte chemoattractant protein 1), and cell adhesion molecules (vascular cell adhesion molecule 1 and intercellular adhesion molecule 1). Furthermore, exposure to the culture medium of pulmonary endothelial cells from patients with chronic thromboembolic pulmonary hypertension elicited marked pulmonary artery smooth muscle cell growth and monocyte migration. CONCLUSIONS These findings implicate pulmonary endothelial cells as key regulators of pulmonary artery smooth muscle cell and monocyte behavior in chronic thromboembolic pulmonary hypertension and suggest a potential mechanism for the progression from unresolved thrombus to fibrotic vascular remodeling.
Collapse
Affiliation(s)
- Olaf Mercier
- Research and Innovation Unit, INSERM U999, DHU TORINO, Paris Sud University, Marie Lannelongue Hospital, Le Plessis Robinson, France; Departments of Thoracic and Vascular Surgery and Heart-Lung Transplantation, Marie Lannelongue Hospital, Le Plessis Robinson, France.
| | - Jennifer Arthur Ataam
- Research and Innovation Unit, INSERM U999, DHU TORINO, Paris Sud University, Marie Lannelongue Hospital, Le Plessis Robinson, France
| | - Nathaniel B Langer
- Research and Innovation Unit, INSERM U999, DHU TORINO, Paris Sud University, Marie Lannelongue Hospital, Le Plessis Robinson, France; Departments of Thoracic and Vascular Surgery and Heart-Lung Transplantation, Marie Lannelongue Hospital, Le Plessis Robinson, France
| | - Peter Dorfmüller
- Research and Innovation Unit, INSERM U999, DHU TORINO, Paris Sud University, Marie Lannelongue Hospital, Le Plessis Robinson, France; Pathology, Marie Lannelongue Hospital, Le Plessis Robinson, France
| | - Lilia Lamrani
- Research and Innovation Unit, INSERM U999, DHU TORINO, Paris Sud University, Marie Lannelongue Hospital, Le Plessis Robinson, France
| | - Florence Lecerf
- Research and Innovation Unit, INSERM U999, DHU TORINO, Paris Sud University, Marie Lannelongue Hospital, Le Plessis Robinson, France
| | - Benoit Decante
- Research and Innovation Unit, INSERM U999, DHU TORINO, Paris Sud University, Marie Lannelongue Hospital, Le Plessis Robinson, France
| | - Philippe Dartevelle
- Research and Innovation Unit, INSERM U999, DHU TORINO, Paris Sud University, Marie Lannelongue Hospital, Le Plessis Robinson, France; Departments of Thoracic and Vascular Surgery and Heart-Lung Transplantation, Marie Lannelongue Hospital, Le Plessis Robinson, France
| | - Saadia Eddahibi
- Research and Innovation Unit, INSERM U999, DHU TORINO, Paris Sud University, Marie Lannelongue Hospital, Le Plessis Robinson, France; INSERM U1046, CNRS UMR 9214, Université de Montpellier, CHU Arnaud de Villeneuve Montpellier, Montpellier, France
| | - Elie Fadel
- Research and Innovation Unit, INSERM U999, DHU TORINO, Paris Sud University, Marie Lannelongue Hospital, Le Plessis Robinson, France; Departments of Thoracic and Vascular Surgery and Heart-Lung Transplantation, Marie Lannelongue Hospital, Le Plessis Robinson, France
| |
Collapse
|
41
|
Caimi G, Canino B, Ferrara F, Montana M, Lo Presti R. Polymorphonuclear Leukocyte Integrinsin Deep Venous Thrombosis. Clin Appl Thromb Hemost 2016; 11:95-7. [PMID: 15678279 DOI: 10.1177/107602960501100112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The polymorphonuclear leukocytes (PMN) have a role in the pathophysiology of deep venous thrombosis (DVT). We examined the phenotypical expression of PMN beta2-integrins (CD l l a, CDl l b, CD 11c) in a group of 19 subjects with leg DVT. PMN cells were incubated with fluorescent monoclonal antibodies against CD11a, CD11b, CD11c, and the evaluation was made by flow cytofluorimetry. The same integrins were determined after in vitro activation with 4-phorbol 12-myristate 13-acetate (PMA) and N-formylmethionyl-leucyl-phenylalanine (fMLP). In DVT subjects, at baseline, the phenotypical expression of CD11b was decreased and that of CD11c increased when compared with normal controls. In normal subjects PMN activation with PMA and fMLP led to a constant increase of all PMN adhesion molecules, while in DVT subjects the CDl l a did not show any change. These data might have therapeutical ap plications, especially with the aim of preventing post-thrombotic deterioration of vein function.
Collapse
Affiliation(s)
- G Caimi
- Department of Internal Medicine, Cardiovascular and Renal Diseases, Università di Palermo, Palermo, Italy
| | | | | | | | | |
Collapse
|
42
|
Abstract
In recent years, the traditional view of the hemostatic system as being regulated by a coagulation factor cascade coupled with platelet activation has been increasingly challenged by new evidence that activation of the immune system strongly influences blood coagulation and pathological thrombus formation. Leukocytes can be induced to express tissue factor and release proinflammatory and procoagulant molecules such as granular enzymes, cytokines, and damage-associated molecular patterns. These mediators can influence all aspects of thrombus formation, including platelet activation and adhesion, and activation of the intrinsic and extrinsic coagulation pathways. Leukocyte-released procoagulant mediators increase systemic thrombogenicity, and leukocytes are actively recruited to the site of thrombus formation through interactions with platelets and endothelial cell adhesion molecules. Additionally, phagocytic leukocytes are involved in fibrinolysis and thrombus resolution, and can regulate clearance of platelets and coagulation factors. Dysregulated activation of leukocyte innate immune functions thus plays a role in pathological thrombus formation. Modulation of the interactions between leukocytes or leukocyte-derived procoagulant materials and the traditional hemostatic system is an attractive target for the development of novel antithrombotic strategies.
Collapse
|
43
|
Henke PK. Plasmin and Matrix Metalloproteinase System in Deep Venous Thrombosis Resolution. Vascular 2016; 15:366-71. [DOI: 10.2310/6670.2007.00050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Deep venous thrombosis (DVT) is a common event in hospitalized medical and surgical patients. Outside of anticoagulation, few good options exist for decreasing the vein wall damage that results after natural thrombolysis. DVT resolution is complex and involves chemokines, leukocytes, and native vein wall cells. Herein some aspects of DVT resolution related to the intersection of inflammation, the plasminogen and matrix metalloproteinase systems, and their respective inhibitors are reviewed. Ultimately, better knowledge of these natural thrombolytic systems may allow local, directed, and specific acceleration of DVT resolution and decreased vein wall damage.
Collapse
Affiliation(s)
- Peter K. Henke
- * Section of Vascular Surgery, Jobst Vascular Research Laboratory, University of Michigan, Ann Arbor, MI
| |
Collapse
|
44
|
Martirosyan A, Petrek M, Kishore A, Manukyan G. Immunomodulatory effects of therapeutic plasma exchange on monocytes in antiphospholipid syndrome. Exp Ther Med 2016; 12:1189-1195. [PMID: 27446342 DOI: 10.3892/etm.2016.3441] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 02/18/2016] [Indexed: 11/06/2022] Open
Abstract
Antiphospholipid syndrome (APS) is a systemic autoimmune disorder characterized by thrombosis and recurrent fetal loss, with the persistent presence of antiphospholipid antibodies (aPLs). aPLs exert their pathogenic effect via the overproduction of tissue factor and activation of complement and several cell types, including endothelial cells, platelets and notably monocytes. As a result, a hypercoagulable state develops leading to APS-associated obstetric complications and fetal loss. Despite being far from optimal, treatment of APS usually includes heparin and low dose aspirin. Recently, plasma exchange (PE) therapy was successfully used in patients with APS with obstetric complications who did not respond to the standard treatment. Therefore, the present study investigated the mechanism underlying PE action, and aimed to determine whether PE affects the functional activity of APS monocytes by examining the expression of 11 mRNA transcripts encoding cytokines, signaling molecules and transcription factors. Monocytes were collected prior to and following the PE treatment from women with APS who experienced recurrent pregnancy losses, as well as from healthy volunteers. Compared with control cells, APS monocytes showed deregulated expression of interleukin (IL)-1β, IL-6, IL-23, chemokine (C-C motif) ligand 2 (CCL2), C-X-C motif chemokine 10 (CXCL10), toll-like receptor 2, and signal transducer and activator of transcription 3. PE treatment resulted in increased IL-1β, IL-6, IL-23, CCL2, P2X7 and tumor necrosis factor-α mRNA transcripts in APS monocytes, restoring the mRNA expression levels to within normal ranges. Furthermore, PE therapy counterbalanced the expression levels of CCL2 and CXCL10, the levels of which are indicative of T helper cell 1/2 balance. The results of the present study indicate that the altered transcriptional profile in APS monocytes was restored by the immunomodulatory effect of plasmapheresis.
Collapse
Affiliation(s)
- Anush Martirosyan
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University, Olomouc 77520, Czech Republic; Group of Molecular and Cellular Immunology, Institute of Molecular Biology, National Academy of Sciences, Yerevan 0014, Armenia
| | - Martin Petrek
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University, Olomouc 77520, Czech Republic
| | - Amit Kishore
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University, Olomouc 77520, Czech Republic
| | - Gayane Manukyan
- Department of Pathological Physiology, Faculty of Medicine and Dentistry, Palacky University, Olomouc 77520, Czech Republic; Group of Molecular and Cellular Immunology, Institute of Molecular Biology, National Academy of Sciences, Yerevan 0014, Armenia
| |
Collapse
|
45
|
Aykan AÇ, Hatem E, Kalaycıoğlu E, Gökdeniz T, Karabay CY. Assessment of arterial stiffness in patients with venous thromboembolism: Separate or continuous circuits? Phlebology 2016; 32:316-321. [PMID: 27235413 DOI: 10.1177/0268355516652033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Objectives The aim of this study is to evaluate the association of venous thromboembolism with arterial stiffness by cardio-ankle vascular index method. Method We included 52 patients with a documented lower extremity venous thromboembolism within the last six months and 52 healthy subjects to this cross sectional observational study. Results Cardio-ankle vascular index (8.58 ± 1.60 versus 7.05 ± 1.44, p < 0.001, respectively) and systolic blood pressure (128.02 ± 7.13 mmHg versus 123.94 ± 8.12 mmHg, p = 0.008, respectively) were significantly higher among patients with venous thromboembolism than controls. Cardio-ankle vascular index was an independent predictor of venous thromboembolism in multivariate logistic regression analysis (p < 0.001, odds ratio = 1.864, 95% confidence interval = 1.370-2.536). Cardio-ankle vascular index value > 7.8 had a sensitivity of 82.7% and a specificity of 80.8% for predicting venous thromboembolism (area under curve = 0.789, 95% confidence interval = 0.698-0.863, p < 0.001) in receiver operating characteristic curve analysis. Conclusion We found that arterial stiffness was increased in patients with venous thromboembolism which highlights the fact that arterial and venous circulation is in continuum and an insult may affect both of these circuits.
Collapse
Affiliation(s)
- Ahmet Çağrı Aykan
- 1 Department of Cardiology, Ahi Evren Chest and Cardiovascular Surgery Education and Research Hospital, Trabzon, Turkey
| | - Engin Hatem
- 1 Department of Cardiology, Ahi Evren Chest and Cardiovascular Surgery Education and Research Hospital, Trabzon, Turkey
| | - Ezgi Kalaycıoğlu
- 1 Department of Cardiology, Ahi Evren Chest and Cardiovascular Surgery Education and Research Hospital, Trabzon, Turkey
| | - Tayyar Gökdeniz
- 1 Department of Cardiology, Ahi Evren Chest and Cardiovascular Surgery Education and Research Hospital, Trabzon, Turkey
| | - Can Yucel Karabay
- 2 Department of Cardiology, Koşuyolu Heart and Research Hospital, Istanbul, Turkey
| |
Collapse
|
46
|
Li X, de Boer OJ, Ploegmaker H, Teeling P, Daemen MJ, de Winter RJ, van der Wal AC. Granulocytes in coronary thrombus evolution after myocardial infarction--time-dependent changes in expression of matrix metalloproteinases. Cardiovasc Pathol 2015; 25:40-6. [PMID: 26490693 DOI: 10.1016/j.carpath.2015.09.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/20/2015] [Accepted: 09/22/2015] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND Remodeling of extracellular matrix is a key process during wound healing, which is strictly regulated by matrix metalloproteinases (MMPs) and their tissue inhibitors [tissue inhibitors of metalloproteinases (TIMPs)]. In this study, we evaluated intrathrombotic MMPs and TIMPs and their cellular origin during thrombus evolution after disruption of coronary atherosclerotic plaque. MATERIALS AND METHODS Thrombectomy materials (N=120) obtained from patients with acute myocardial infarction were histologically classified in three groups based on thrombus age: fresh (<1day), lytic (1-5days), or organized (>5days) thrombi; materials showing a heterogeneous composition were classified according to oldest part. Presence and cellular origin of MMPs (MMP-1, MMP-2, MMP-8, MMP-9, and MMP-14) and TIMPs (TIMP-1, TIMP-2, and TIMP-3) was evaluated with immunostains (double) and with polymerase chain reaction. RESULTS AND CONCLUSION MMPs and TIMPs were present in all the thrombectomy samples. A distinct temporal change in extent and cellular origin of MMPs and TIMPs during thrombus evolution was observed. In the early (fresh and lytic) stages of thrombus, high numbers of neutrophilic granulocytes occupy the thrombus mass and produce large amounts of MMPs and TIMPs. However, with progression of thrombus evolution (organizing stage) and diminishment of neutrophil granulocytes, there is disappearance of MMP-8 and MMP-9, steep decline of MMP-1 and TIMP-2, and progressive decrease of TIMP-3. In contrast, intrathrombotic MMP-2 and MMP-14 are present at a constant high level during the entire process of thrombus evolution. These temporal changes indicate a complex time-dependent function of MMPs, which are largely granulocyte derived, in the healing process of thrombus after plaque disruption.
Collapse
Affiliation(s)
- Xiaofei Li
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1012WX Amsterdam, The Netherlands
| | - Onno J de Boer
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1012WX Amsterdam, The Netherlands
| | - Hanneke Ploegmaker
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1012WX Amsterdam, The Netherlands
| | - Peter Teeling
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1012WX Amsterdam, The Netherlands
| | - Mat Jap Daemen
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1012WX Amsterdam, The Netherlands
| | - Robbert J de Winter
- Department of Cardiology, Academic Medical Center, University of Amsterdam, 1012WX Amsterdam, The Netherlands
| | - Allard C van der Wal
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1012WX Amsterdam, The Netherlands.
| |
Collapse
|
47
|
Matrix Metalloproteinase 9 (MMP-9) Regulates Vein Wall Biomechanics in Murine Thrombus Resolution. PLoS One 2015; 10:e0139145. [PMID: 26406902 PMCID: PMC4583298 DOI: 10.1371/journal.pone.0139145] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 09/08/2015] [Indexed: 12/02/2022] Open
Abstract
Objective Deep venous thrombosis is a common vascular problem with long-term complications including post-thrombotic syndrome. Post-thrombotic syndrome consists of leg pain, swelling and ulceration that is related to incomplete or maladaptive resolution of the venous thrombus as well as loss of compliance of the vein wall. We examine the role of metalloproteinase-9 (MMP-9), a gene important in extracellular remodeling in other vascular diseases, in mediating thrombus resolution and biomechanical changes of the vein wall. Methods and Results The effects of targeted deletion of MMP-9 were studied in an in vivo murine model of thrombus resolution using the FVB strain of mice. MMP-9 expression and activity significantly increased on day 3 after DVT. The lack of MMP-9 impaired thrombus resolution by 27% and this phenotype was rescued by the transplantation of wildtype bone marrow cells. Using novel biomechanical techniques, we demonstrated that the lack of MMP-9 significantly decreased thrombus-induced loss of vein wall compliance. Biomechanical analysis of the contribution of individual structural components showed that MMP-9 affected the elasticity of the extracellular matrix and collagen-elastin fibers. Biochemical and histological analyses correlated with these biomechanical effects as thrombi of mice lacking MMP-9 had significantly fewer macrophages and collagen as compared to those of wildtype mice. Conclusions MMP-9 mediates thrombus-induced loss of vein wall compliance by increasing stiffness of the extracellular matrix and collagen-elastin fibers during thrombus resolution. MMP-9 also mediates macrophage and collagen content of the resolving thrombus and bone-marrow derived MMP-9 plays a role in resolution of thrombus mass. These disparate effects of MMP-9 on various aspects of thrombus illustrate the complexity of individual protease function on biomechanical and morphometric aspects of thrombus resolution.
Collapse
|
48
|
Rabinovich A, Cohen JM, Cushman M, Kahn SR. Association between inflammation biomarkers, anatomic extent of deep venous thrombosis, and venous symptoms after deep venous thrombosis. J Vasc Surg Venous Lymphat Disord 2015; 3:347-353.e1. [PMID: 26992609 DOI: 10.1016/j.jvsv.2015.04.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 04/28/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Inflammation may play a role in pathogenesis of venous thromboembolism, but the nature of this relationship is not yet understood. The objective of this study was to assess whether inflammation marker levels measured at diagnosis of deep venous thrombosis (DVT) and change in levels during the first month after DVT are associated with anatomic extent of DVT and severity of venous signs and symptoms at baseline and 1 month. METHODS The BioSOX study is a biomarker substudy of the Compression Stockings to Prevent the Post-Thrombotic Syndrome (SOX) trial, a multicenter, randomized controlled trial that included patients with a first, acute, symptomatic, proximal DVT. Blood samples were collected from participants at baseline and 1 month, and C-reactive protein (CRP), intercellular adhesion molecule 1, interleukin (IL)-6, and IL-10 were measured by established assays. Linear regression was used to assess the association between continuous log-transformed baseline biomarker levels and anatomic extent of DVT, classified as iliac or common femoral DVT vs femoral or popliteal DVT (reference). Proportional odds ordinal logistic regression models were used to analyze the association between biomarker level and Villalta score (as a measure of severity of venous signs and symptoms) at baseline and 1 month. RESULTS Among 717 patients, 60.2% were male, and the mean age was 55.2 years. There was a significant association between more extensive DVT (common femoral or iliac) and levels of CRP and IL-6 at DVT diagnosis. Median (interquartile range) CRP level was 11.6 mg/L (3.84-39.5) in patients with common femoral or iliac DVT vs 6.86 mg/L (3.11-22) in patients with popliteal or femoral DVT, and median IL-6 level was 6.36 pg/mL (1.09-14.37) vs 4.40 pg/mL (2.35-8.27), respectively. These differences were statistically significant in linear regression analyses. In addition, compared with those in the lowest quartile, each higher quartile of baseline CRP concentration was associated with an odds ratio of 2.89 (1.93-4.33) for having a more severe Villalta category at baseline and 1.98 (1.28-3.08) for having a more severe Villalta category 1 month after DVT. Higher baseline levels of IL-6 were associated with Villalta severity category at baseline (odds ratio, 2.40 [1.61-3.59]). Change in biomarker levels during the first month after DVT was not strongly associated with the 1-month Villalta score. CONCLUSIONS Levels of CRP and IL-6 at DVT diagnosis were associated with thrombotic disease burden, as measured by DVT extent, and severity of DVT symptoms and signs. Further studies are required to more fully elucidate the role of inflammation in DVT and its clinical course.
Collapse
Affiliation(s)
- Anat Rabinovich
- Center for Clinical Epidemiology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | - Jacqueline M Cohen
- Center for Clinical Epidemiology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada; Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Mary Cushman
- Departments of Medicine and Pathology, Cardiovascular Research Institute, University of Vermont College of Medicine, Burlington, Vt
| | - Susan R Kahn
- Center for Clinical Epidemiology, Jewish General Hospital, McGill University, Montreal, Quebec, Canada; Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, Quebec, Canada; Division of Internal Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada.
| | | |
Collapse
|
49
|
Wolberg AS, Rosendaal FR, Weitz JI, Jaffer IH, Agnelli G, Baglin T, Mackman N. Venous thrombosis. Nat Rev Dis Primers 2015; 1:15006. [PMID: 27189130 DOI: 10.1038/nrdp.2015.6] [Citation(s) in RCA: 213] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Venous thromboembolism (VTE) encompasses deep-vein thrombosis (DVT) and pulmonary embolism. VTE is the leading cause of lost disability-adjusted life years and the third leading cause of cardiovascular death in the world. DVT leads to post-thrombotic syndrome, whereas pulmonary embolism can cause chronic pulmonary hypertension, both of which reduce quality of life. Genetic and acquired risk factors for thrombosis include non-O blood groups, factor V Leiden mutation, oral contraceptive use, hormone replacement therapy, advanced age, surgery, hospitalization and long-haul travel. A combination of blood stasis, plasma hypercoagulability and endothelial dysfunction is thought to trigger thrombosis, which starts most often in the valve pockets of large veins. Animal studies have revealed pathogenic roles for leukocytes, platelets, tissue factor-positive microvesicles, neutrophil extracellular traps and factors XI and XII. Diagnosis of VTE requires testing and exclusion of other pathologies, and typically involves laboratory measures (such as D-dimer) and diagnostic imaging. VTE is treated with anticoagulants and occasionally with thrombolytics to prevent thrombus extension and to reduce thrombus size. Anticoagulants are also used to reduce recurrence. New therapies with improved safety profiles are needed to prevent and treat venous thrombosis. For an illustrated summary of this Primer, visit: http://go.nature.com/8ZyCuY.
Collapse
Affiliation(s)
- Alisa S Wolberg
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 819 Brinkhous-Bullitt Building, Chapel Hill, North Carolina 27599-7525, USA.,McAllister Heart Institute, University of North Carolina at Chapel Hill, USA
| | - Frits R Rosendaal
- Department of Clinical Epidemiology and Department of Thrombosis and Hemostasis, Leiden University Medical Center, The Netherlands.,K.G. Jensen Thrombosis Research and Expertise Center, University of Tromsø, Norway
| | - Jeffrey I Weitz
- Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, and Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - Iqbal H Jaffer
- Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, and Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - Giancarlo Agnelli
- Division of Internal and Cardiovascular Medicine, Stroke Unit, University of Perugia, Italy
| | - Trevor Baglin
- Department of Haematology, Addenbrooke's Hospital, Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Nigel Mackman
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, 819 Brinkhous-Bullitt Building, Chapel Hill, North Carolina 27599-7525, USA.,McAllister Heart Institute, University of North Carolina at Chapel Hill, USA.,K.G. Jensen Thrombosis Research and Expertise Center, University of Tromsø, Norway.,Department of Medicine, University of North Carolina at Chapel Hill, USA
| |
Collapse
|
50
|
Comerota AJ, Oostra C, Fayad Z, Gunning W, Henke P, Luke C, Lynn A, Lurie F. A histological and functional description of the tissue causing chronic postthrombotic venous obstruction. Thromb Res 2015; 135:882-7. [DOI: 10.1016/j.thromres.2015.02.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/20/2015] [Accepted: 02/22/2015] [Indexed: 12/30/2022]
|