1
|
Yuan C, Xu Y, Lu G, Hu Y, Mao W, Ke L, Tong Z, Xia Y, Ma S, Dong X, Xian X, Wu X, Liu G, Li B, Li W. AAV-mediated hepatic LPL expression ameliorates severe hypertriglyceridemia and acute pancreatitis in Gpihbp1 deficient mice and rats. Mol Ther 2024; 32:59-73. [PMID: 37974401 PMCID: PMC10787151 DOI: 10.1016/j.ymthe.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/13/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
GPIHBP1 plays an important role in the hydrolysis of triglyceride (TG) lipoproteins by lipoprotein lipases (LPLs). However, Gpihbp1 knockout mice did not develop hypertriglyceridemia (HTG) during the suckling period but developed severe HTG after weaning on a chow diet. It has been postulated that LPL expression in the liver of suckling mice may be involved. To determine whether hepatic LPL expression could correct severe HTG in Gpihbp1 deficiency, liver-targeted LPL expression was achieved via intravenous administration of the adeno-associated virus (AAV)-human LPL gene, and the effects of AAV-LPL on HTG and HTG-related acute pancreatitis (HTG-AP) were observed. Suckling Gpihbp1-/- mice with high hepatic LPL expression did not develop HTG, whereas Gpihbp1-/- rat pups without hepatic LPL expression developed severe HTG. AAV-mediated liver-targeted LPL expression dose-dependently decreased plasma TG levels in Gpihbp1-/- mice and rats, increased post-heparin plasma LPL mass and activity, decreased mortality in Gpihbp1-/- rat pups, and reduced the susceptibility and severity of both Gpihbp1-/- animals to HTG-AP. However, the muscle expression of AAV-LPL had no significant effect on HTG. Targeted expression of LPL in the liver showed no obvious adverse reactions. Thus, liver-targeted LPL expression may be a new therapeutic approach for HTG-AP caused by GPIHBP1 deficiency.
Collapse
Affiliation(s)
- Chenchen Yuan
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yao Xu
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Guotao Lu
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yuepeng Hu
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Wenjian Mao
- Department of Critical Care Medicine, Jinling Hospital, Nanjing Medical University, Nanjing 210008, China
| | - Lu Ke
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zhihui Tong
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yan Xia
- GeneCradle Therapeutics Inc, Beijing 100176, China
| | - Sisi Ma
- GeneCradle Therapeutics Inc, Beijing 100176, China
| | - Xiaoyan Dong
- GeneCradle Therapeutics Inc, Beijing 100176, China
| | - Xunde Xian
- Institute of Cardiovascular Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Xiaobing Wu
- GeneCradle Therapeutics Inc, Beijing 100176, China
| | - George Liu
- GeneCradle Therapeutics Inc, Beijing 100176, China.
| | - Baiqiang Li
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| | - Weiqin Li
- Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
2
|
Mehta N, Gilbert R, Chahal PS, Moreno MJ, Nassoury N, Coulombe N, Lytvyn V, Mercier M, Fatehi D, Lin W, Harvey EM, Zhang LH, Nazemi-Moghaddam N, Elahi SM, Ross CJD, Stanimirovic DB, Hayden MR. Preclinical Development and Characterization of Novel Adeno-Associated Viral Vectors for the Treatment of Lipoprotein Lipase Deficiency. Hum Gene Ther 2023; 34:927-946. [PMID: 37597209 DOI: 10.1089/hum.2023.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2023] Open
Abstract
Lipoprotein lipase deficiency (LPLD) results from mutations within the lipoprotein lipase (LPL) gene that lead to a complete lack of catalytically active LPL protein. Glybera was one of the first adeno-associated virus (AAV) gene replacement therapy to receive European Medicines Agency regulatory approval for the treatment of LPLD. However, Glybera is no longer marketed potentially due to a combination of economical, manufacturing, and vector-related issues. The aim of this study was to develop a more efficacious AAV gene therapy vector for LPLD. Following preclinical biodistribution, efficacy and non-Good Laboratory Practice toxicity studies with novel AAV1 and AAV8-based vectors in mice, we identified AAV8 pVR59. AAV8 pVR59 delivered a codon-optimized, human gain-of-function hLPLS447X transgene driven by a CAG promoter in an AAV8 capsid. AAV8 pVR59 was significantly more efficacious, at 10- to 100-fold lower doses, compared with an AAV1 vector based on Glybera, when delivered intramuscularly or intravenously, respectively, in mice with LPLD. Efficient gene transfer was observed within the injected skeletal muscle and liver following delivery of AAV8 pVR59, with long-term correction of LPLD phenotypes, including normalization of plasma triglycerides and lipid tolerance, for up to 6 months post-treatment. While intramuscular delivery of AAV8 pVR59 was well tolerated, intravenous administration augmented liver pathology. These results highlight the feasibility of developing a superior AAV vector for the treatment of LPLD and provide critical insight for initiating studies in larger animal models. The identification of an AAV gene therapy vector that is more efficacious at lower doses, when paired with recent advances in production and manufacturing technologies, will ultimately translate to increased safety and accessibility for patients.
Collapse
Affiliation(s)
- Neel Mehta
- Department of Medical Genetics, Center for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Rénald Gilbert
- Department of Production Platforms and Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, Canada
- Department of Bioengineering, McGill University, Montréal, Canada
| | - Parminder S Chahal
- Department of Production Platforms and Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, Canada
| | - Maria J Moreno
- Department of Translational Biosciences, Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, Canada
| | - Nasha Nassoury
- Department of Production Platforms and Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, Canada
| | - Nathalie Coulombe
- Department of Production Platforms and Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, Canada
| | - Viktoria Lytvyn
- Department of Production Platforms and Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, Canada
| | - Mario Mercier
- Department of Translational Biosciences, Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, Canada
| | - Dorothy Fatehi
- Department of Translational Biosciences, Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, Canada
| | - Wendy Lin
- Department of Medical Genetics, Center for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Emily M Harvey
- Department of Medical Genetics, Center for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Lin-Hua Zhang
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Nazila Nazemi-Moghaddam
- Department of Production Platforms and Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, Canada
| | - Seyyed Mehdy Elahi
- Department of Production Platforms and Analytics, Human Health Therapeutics Research Center, National Research Council Canada, Montréal, Canada
| | - Colin J D Ross
- Department of Medical Genetics, Center for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, Canada
| | - Danica B Stanimirovic
- Department of Translational Biosciences, Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, Canada
| | - Michael R Hayden
- Department of Medical Genetics, Center for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| |
Collapse
|
3
|
Leung CLK, Karunakaran S, Atser MG, Innala L, Hu X, Viau V, Johnson JD, Clee SM. Analysis of a genetic region affecting mouse body weight. Physiol Genomics 2023; 55:132-146. [PMID: 36717164 PMCID: PMC10042608 DOI: 10.1152/physiolgenomics.00137.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Genetic factors affect an individual's risk of developing obesity, but in most cases each genetic variant has a small effect. Discovery of genes that regulate obesity may provide clues about its underlying biological processes and point to new ways the disease can be treated. Preclinical animal models facilitate genetic discovery in obesity because environmental factors can be better controlled compared with the human population. We studied inbred mouse strains to identify novel genes affecting obesity and glucose metabolism. BTBR T+ Itpr3tf/J (BTBR) mice are fatter and more glucose intolerant than C57BL/6J (B6) mice. Prior genetic studies of these strains identified an obesity locus on chromosome 2. Using congenic mice, we found that obesity was affected by a ∼316 kb region, with only two known genes, pyruvate dehydrogenase kinase 1 (Pdk1) and integrin α 6 (Itga6). Both genes had mutations affecting their amino acid sequence and reducing mRNA levels. Both genes have known functions that could modulate obesity, lipid metabolism, insulin secretion, and/or glucose homeostasis. We hypothesized that genetic variation in or near Pdk1 or Itga6 causing reduced Pdk1 and Itga6 expression would promote obesity and impaired glucose tolerance. We used knockout mice lacking Pdk1 or Itga6 fed an obesigenic diet to test this hypothesis. Under the conditions we studied, we were unable to detect an individual contribution of either Pdk1 or Itga6 to body weight. During our studies, with conditions outside our control, we were unable to reproduce some of our previous body weight data. However, we identified a previously unknown role for Pdk1 in cardiac cholesterol metabolism providing the basis for future investigations. The studies described in this paper highlight the importance and the challenge using physiological outcomes to study obesity genes in mice.
Collapse
Affiliation(s)
- Connie L K Leung
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Subashini Karunakaran
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael G Atser
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leyla Innala
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiaoke Hu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Victor Viau
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - James D Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Susanne M Clee
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Liver-specific overexpression of lipoprotein lipase improves glucose metabolism in high-fat diet-fed mice. PLoS One 2022; 17:e0274297. [PMID: 36099304 PMCID: PMC9469954 DOI: 10.1371/journal.pone.0274297] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022] Open
Abstract
The liver is the main organ that regulates lipid and glucose metabolism. Ectopic lipid accumulation in the liver impairs insulin sensitivity and glucose metabolism. Lipoprotein lipase (LPL), mainly expressed in the adipose tissue and muscle, is a key enzyme that regulates lipid metabolism via the hydrolysis of triglyceride in chylomicrons and very-low-density lipoproteins. Here, we aimed to investigate whether the suppression level of hepatic lipid accumulation via overexpression of LPL in mouse liver leads to improved metabolism. To overexpress LPL in the liver, we generated an LPL-expressing adenovirus (Ad) vector using an improved Ad vector that exhibited considerably lower hepatotoxicity (Ad-LPL). C57BL/6 mice were treated with Ad vectors and simultaneously fed a high-fat diet (HFD). Lipid droplet formation in the liver decreased in Ad-LPL-treated mice relative to that in control Ad vector-treated mice. Glucose tolerance and insulin resistance were remarkably improved in Ad-LPL-treated mice compared to those in control Ad vector-treated mice. The expression levels of fatty acid oxidation-related genes, such as peroxisome proliferator-activated receptor α, carnitine palmitoyltransferase 1, and acyl-CoA oxidase 1, were 1.7–2.0-fold higher in Ad-LPL-treated mouse livers than that in control Ad-vector-treated mouse livers. Furthermore, hepatic LPL overexpression partly maintained mitochondrial content in HFD-fed mice. These results indicate that LPL overexpression in the livers of HFD-fed mice attenuates the accumulation of lipid droplets in the liver and improves glucose metabolism. These findings may enable the development of new drugs to treat metabolic syndromes such as type 2 diabetes mellitus and non-alcoholic fatty liver disease.
Collapse
|
5
|
Allen JN, Dey A, Cai J, Zhang J, Tian Y, Kennett M, Ma Y, Liang TJ, Patterson AD, Hankey-Giblin PA. Metabolic Profiling Reveals Aggravated Non-Alcoholic Steatohepatitis in High-Fat High-Cholesterol Diet-Fed Apolipoprotein E-Deficient Mice Lacking Ron Receptor Signaling. Metabolites 2020; 10:metabo10080326. [PMID: 32796650 PMCID: PMC7464030 DOI: 10.3390/metabo10080326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) represents the progressive sub-disease of non-alcoholic fatty liver disease that causes chronic liver injury initiated and sustained by steatosis and necroinflammation. The Ron receptor is a tyrosine kinase of the Met proto-oncogene family that potentially has a beneficial role in adipose and liver-specific inflammatory responses, as well as glucose and lipid metabolism. Since its discovery two decades ago, the Ron receptor has been extensively investigated for its differential roles on inflammation and cancer. Previously, we showed that Ron expression on tissue-resident macrophages limits inflammatory macrophage activation and promotes a repair phenotype, which can retard the progression of NASH in a diet-induced mouse model. However, the metabolic consequences of Ron activation have not previously been investigated. Here, we explored the effects of Ron receptor activation on major metabolic pathways that underlie the development and progression of NASH. Mice lacking apolipoprotein E (ApoE KO) and double knockout (DKO) mice that lack ApoE and Ron were maintained on a high-fat high-cholesterol diet for 18 weeks. We observed that, in DKO mice, the loss of ligand-dependent Ron signaling aggravated key pathological features in steatohepatitis, including steatosis, inflammation, oxidation stress, and hepatocyte damage. Transcriptional programs positively regulating fatty acid (FA) synthesis and uptake were upregulated in the absence of Ron receptor signaling, whereas lipid disposal pathways were downregulated. Consistent with the deregulation of lipid metabolism pathways, the DKO animals exhibited increased accumulation of FAs in the liver and decreased level of bile acids. Altogether, ligand-dependent Ron receptor activation provides protection from the deregulation of major metabolic pathways that initiate and aggravate non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Joselyn N. Allen
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Adwitia Dey
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Jingtao Zhang
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Yuan Tian
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Mary Kennett
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
| | - Yanling Ma
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20814, USA; (Y.M.); (T.J.L.)
| | - T. Jake Liang
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20814, USA; (Y.M.); (T.J.L.)
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
- Correspondence: (A.D.P.); (P.A.H.-G.); Tel.: +1-814-867-4565; (A.D.P.); +1-814-863-0128 (P.A.H.-G.)
| | - Pamela A. Hankey-Giblin
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA; (J.N.A.); (A.D.); (J.C.); (J.Z.); (Y.T.); (M.K.)
- Correspondence: (A.D.P.); (P.A.H.-G.); Tel.: +1-814-867-4565; (A.D.P.); +1-814-863-0128 (P.A.H.-G.)
| |
Collapse
|
6
|
Yang C, Tian W, Ma S, Guo M, Lin X, Gao F, Dong X, Gao M, Wang Y, Liu G, Xian X. AAV-Mediated ApoC2 Gene Therapy: Reversal of Severe Hypertriglyceridemia and Rescue of Neonatal Death in ApoC2-Deficient Hamsters. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:692-701. [PMID: 32802915 PMCID: PMC7424175 DOI: 10.1016/j.omtm.2020.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/10/2020] [Indexed: 11/25/2022]
Abstract
Apolipoprotein C2 (ApoC2) is a key activator of lipoprotein lipase for plasma triglyceride metabolism. ApoC2-deficient patients present with severe hypertriglyceridemia and recurrent acute pancreatitis, for whom the only effective treatment is the infusion of normal plasma containing ApoC2. However, since ApoC2 has a fast catabolic rate, a repeated infusion is required, which limits its clinical use. To explore a safe and efficient approach for ApoC2 deficiency, we herein established an adeno-associated virus expressing human ApoC2 (AAV-hApoC2) to evaluate the efficacy and safety of gene therapy in ApoC2-deficient hypertriglyceridemic hamsters. Administration of AAV-hApoC2 via jugular or orbital vein in adult and neonatal ApoC2-deficient hamsters, respectively, could prevent the neonatal death and effectively improve severe hypertriglyceridemia of ApoC2-deficient hamsters without side effects in a long-term manner. Our novel findings in the present study demonstrate that AAV-hApoC2-mediated gene therapy will be a promising therapeutic approach for clinical patients with severe hypertriglyceridemia caused by ApoC2 deficiency.
Collapse
Affiliation(s)
- Chun Yang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| | - Wenhong Tian
- Beijing FivePlus Molecular Medicine Institute Co. Ltd., Beijing 100176, China
| | - Sisi Ma
- Beijing FivePlus Molecular Medicine Institute Co. Ltd., Beijing 100176, China
| | - Mengmeng Guo
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| | - Xiao Lin
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| | - Fengying Gao
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| | - Xiaoyan Dong
- Beijing FivePlus Molecular Medicine Institute Co. Ltd., Beijing 100176, China
| | - Mingming Gao
- Laboratory of Lipid Metabolism, Institute of Basic Medicine, Hebei Medical University, Shijiazhuang 050017, China
| | - Yuhui Wang
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| | - George Liu
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| | - Xunde Xian
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Peking University, Beijing 100191, China
| |
Collapse
|
7
|
Ruiz M, Coderre L, Allen BG, Des Rosiers C. Protecting the heart through MK2 modulation, toward a role in diabetic cardiomyopathy and lipid metabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1864:1914-1922. [PMID: 28735097 DOI: 10.1016/j.bbadis.2017.07.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 12/20/2022]
Abstract
Various signaling pathways have been identified in the heart as important players during development, physiological adaptation or pathological processes. This includes the MAPK families, particularly p38MAPK, which is involved in several key cellular processes, including differentiation, proliferation, apoptosis, inflammation, metabolism and survival. Disrupted p38MAPK signaling has been associated with several diseases, including cardiovascular diseases (CVD) as well as diabetes and its related complications. Despite efforts to translate this knowledge into therapeutic avenues, p38 inhibitors have failed in clinical trials due to adverse effects. Inhibition of MK2, a downstream target of p38, appears to be a promising alternative strategy. Targeting MK2 activity may avoid the adverse effects linked to p38 inhibition, while maintaining its beneficial effects. MK2 was first considered as a therapeutic target in inflammatory diseases such as rheumatoid polyarthritis. A growing body of evidence now supports a key role of MK2 signaling in the pathogenesis of CVD, particularly ischemia/reperfusion injury, hypertrophy, and hypertension and that its inhibition or inactivation is associated with improved heart and vascular functions. More recently, MK2 was shown to be a potential player in diabetes and related complications, particularly in liver and heart, and perturbations in calcium handling and lipid metabolism. In this review, we will discuss recent advances in our knowledge of the role of MK2 in p38MAPK-mediated signaling and the benefits of its loss of function in CVD and diabetes, with an emphasis on the roles of MK2 in calcium handling and lipid metabolism. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers.
Collapse
Affiliation(s)
- Matthieu Ruiz
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada; Montreal Heart Institute, Research Center, 5000 Belanger Street, Montreal, Quebec, Canada
| | - Lise Coderre
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal, Quebec, Canada; Montreal Heart Institute, Research Center, 5000 Belanger Street, Montreal, Quebec, Canada
| | - Bruce Gordon Allen
- Department of Biochemistry, Université de Montréal, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal, Quebec, Canada; Montreal Heart Institute, Research Center, 5000 Belanger Street, Montreal, Quebec, Canada.
| | - Christine Des Rosiers
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal, Quebec, Canada; Montreal Heart Institute, Research Center, 5000 Belanger Street, Montreal, Quebec, Canada.
| |
Collapse
|
8
|
Sato D, Morino K, Nakagawa F, Murata K, Sekine O, Beppu F, Gotoh N, Ugi S, Maegawa H. Acute Effect of Metformin on Postprandial Hypertriglyceridemia through Delayed Gastric Emptying. Int J Mol Sci 2017. [PMID: 28621714 PMCID: PMC5486104 DOI: 10.3390/ijms18061282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Postprandial hypertriglyceridemia is a potential target for cardiovascular disease prevention in patients with diabetic dyslipidemia. Metformin has been reported to reduce plasma triglyceride concentrations in the postprandial states. However, little is known about the mechanisms underlying the triglyceride-lowering effect of metformin. Here, we examined the effects of metformin on lipid metabolism after olive oil-loading in 129S mice fed a high fat diet for three weeks. Metformin administration (250 mg/kg) for one week decreased postprandial plasma triglycerides. Pre-administration (250 mg/kg) of metformin resulted in a stronger triglyceride-lowering effect (approximately 45% lower area under the curve) than post-administration. A single administration (250 mg/kg) of metformin lowered plasma postprandial triglycerides comparably to administration for one week, suggesting an acute effect of metformin on postprandial hypertriglyceridemia. To explore whole body lipid metabolism after fat-loading, stomach size, fat absorption in the intestine, and fat oxidation (13C/12C ratio in expired CO2 after administration of glyceryl-1-13C tripalmitate) were measured with and without metformin (250 mg/kg) pre-treatment. In metformin-treated mice, larger stomach size, lower fat oxidation, and no change in lipid absorption were observed. In conclusion, metformin administration before fat loading reduced postprandial hypertriglyceridemia, most likely by delaying gastric emptying.
Collapse
Affiliation(s)
- Daisuke Sato
- Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Seta-Otsu 520-2192, Shiga, Japan.
| | - Katsutaro Morino
- Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Seta-Otsu 520-2192, Shiga, Japan.
| | - Fumiyuki Nakagawa
- Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Seta-Otsu 520-2192, Shiga, Japan.
- Nishiwaki Laboratory, Cimic Biopharma Corporation, Nishiwaki 677-0032, Hyogo, Japan.
| | - Koichiro Murata
- Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Seta-Otsu 520-2192, Shiga, Japan.
| | - Osamu Sekine
- Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Seta-Otsu 520-2192, Shiga, Japan.
| | - Fumiaki Beppu
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Minato-ku 108-8477, Tokyo, Japan.
| | - Naohiro Gotoh
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Minato-ku 108-8477, Tokyo, Japan.
| | - Satoshi Ugi
- Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Seta-Otsu 520-2192, Shiga, Japan.
| | - Hiroshi Maegawa
- Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Seta-Otsu 520-2192, Shiga, Japan.
| |
Collapse
|
9
|
Geldenhuys WJ, Lin L, Darvesh AS, Sadana P. Emerging strategies of targeting lipoprotein lipase for metabolic and cardiovascular diseases. Drug Discov Today 2016; 22:352-365. [PMID: 27771332 DOI: 10.1016/j.drudis.2016.10.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 09/17/2016] [Accepted: 10/12/2016] [Indexed: 12/12/2022]
Abstract
Although statins and other pharmacological approaches have improved the management of lipid abnormalities, there exists a need for newer treatment modalities especially for the management of hypertriglyceridemia. Lipoprotein lipase (LPL), by promoting hydrolytic cleavage of the triglyceride core of lipoproteins, is a crucial node in the management of plasma lipid levels. Although LPL expression and activity modulation is observed as a pleiotropic action of some the commonly used lipid lowering drugs, the deliberate development of drugs targeting LPL has not occurred yet. In this review, we present the biology of LPL, highlight the LPL modulation property of currently used drugs and review the novel emerging approaches to target LPL.
Collapse
Affiliation(s)
- Werner J Geldenhuys
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26505, USA
| | - Li Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Altaf S Darvesh
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA
| | - Prabodh Sadana
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272, USA.
| |
Collapse
|
10
|
Zheng A, Li Y, Tsang SH. Personalized therapeutic strategies for patients with retinitis pigmentosa. Expert Opin Biol Ther 2015; 15:391-402. [PMID: 25613576 DOI: 10.1517/14712598.2015.1006192] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Retinitis pigmentosa (RP) encompasses many different hereditary retinal degenerations that are caused by a vast array of different gene mutations and have highly variable disease presentations and severities. This heterogeneity poses a significant therapeutic challenge, although an answer may eventually be found through two recent innovations: induced pluripotent stem cells (iPSCs) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas genome editing. AREAS COVERED This review discusses the wide-ranging applications of iPSCs and CRISPR-including disease modelling, diagnostics and therapeutics - with an ultimate view towards understanding how these two technologies can come together to address disease heterogeneity and orphan genes in a novel personalized medicine platform. An extensive literature search was conducted in PubMed and Google Scholar, with a particular focus on high-impact research published within the last 1 - 2 years and centered broadly on the subjects of retinal gene therapy, iPSC-derived outer retina cells, stem cell transplantation and CRISPR/Cas gene editing. EXPERT OPINION For the retinal pigment epithelium, autologous transplantation of gene-corrected grafts derived from iPSCs may well be technically feasible in the near future. Photoreceptor transplantation faces more significant unresolved technical challenges but remains an achievable, if more distant, goal given the rapid pace of advancements in the field.
Collapse
Affiliation(s)
- Andrew Zheng
- Columbia University, College of Physicians and Surgeons , 50 Haven Ave, Box #123, Bard Hall, New York, NY 10032 , USA
| | | | | |
Collapse
|
11
|
|
12
|
Kastelein JJP, Ross CJD, Hayden MR. From mutation identification to therapy: discovery and origins of the first approved gene therapy in the Western world. Hum Gene Ther 2013; 24:472-8. [PMID: 23578007 DOI: 10.1089/hum.2013.063] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- John J P Kastelein
- Department of Vascular Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands.
| | | | | |
Collapse
|
13
|
Abstract
Despite three decades of huge progress in molecular genetics, in cloning of disease causative gene as well as technology breakthroughs in viral biotechnology, out of thousands of gene therapy clinical trials that have been initiated, only very few are now reaching regulatory approval. We shall review some of the major hurdles, and based on the current either positive or negative examples, we try to initiate drawing a learning curve from experience and possibly identify the major drivers for future successful achievement of human gene therapy trials.
Collapse
Affiliation(s)
- Patrice P Denèfle
- Translational Sciences, IPSEN, and Biotherapies, ParisTech Institute, Paris-Descartes University, Paris, France.
| |
Collapse
|
14
|
Kassim SH, Wilson JM, Rader DJ. Gene therapy for dyslipidemia: a review of gene replacement and gene inhibition strategies. CLINICAL LIPIDOLOGY 2010; 5:793-809. [PMID: 22505953 PMCID: PMC3324780 DOI: 10.2217/clp.10.73] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite numerous technological and pharmacological advances and more detailed knowledge of molecular etiologies, cardiovascular diseases remain the leading cause of morbidity and mortality worldwide claiming over 17 million lives a year. Abnormalities in the synthesis, processing and catabolism of lipoprotein particles can result in severe hypercholesterolemia, hypertriglyceridemia or low HDL-C. Although a plethora of antidyslipidemic pharmacological agents are available, these drugs are relatively ineffective in many patients with Mendelian lipid disorders, indicating the need for new and more effective interventions. In vivo somatic gene therapy is one such intervention. This article summarizes current strategies being pursued for the development of clinical gene therapy for dyslipidemias that cannot effectively be treated with existing drugs.
Collapse
Affiliation(s)
- Sadik H Kassim
- University of Pennsylvania School of Medicine, Gene Therapy Program, Department of Pathology & Laboratory Medicine, 125 South 31st Street (Suite 2000), PA 19104, USA
| | - James M Wilson
- University of Pennsylvania School of Medicine, Gene Therapy Program, Department of Pathology & Laboratory Medicine, 125 South 31st Street (Suite 2000), PA 19104, USA
| | - Daniel J Rader
- University of Pennsylvania School of Medicine, Gene Therapy Program, Department of Pathology & Laboratory Medicine, 125 South 31st Street (Suite 2000), PA 19104, USA
| |
Collapse
|
15
|
Evans K, Burdge GC, Wootton SA, Collins JM, Clark ML, Tan GD, Karpe F, Frayn KN. Tissue-specific stable isotope measurements of postprandial lipid metabolism in familial combined hyperlipidaemia. Atherosclerosis 2008; 197:164-70. [PMID: 17466309 DOI: 10.1016/j.atherosclerosis.2007.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 03/08/2007] [Accepted: 03/08/2007] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The metabolic defects underlying familial combined hyperlipidaemia (FCHL) are not clearly understood. We used stable isotope techniques combined with tissue-specific measurements in adipose tissue and forearm muscle to investigate fatty acid handling by these tissues in the fasting and postprandial states. RESULTS Patients were insulin resistant as shown by higher glucose and insulin concentrations and lower muscle glucose extraction than controls. Plasma triacylglycerol (TAG) concentrations were higher in patients. Adipose tissue TAG extraction was not lower in patients than controls, although TAG clearance was lower, probably representing saturation. Following a test meal, patients showed a greater increase in chylomicron-TAG concentrations. There were no differences between FCHL patients and controls in postprandial suppression of non-esterified fatty acid (NEFA) concentrations or postprandial NEFA release, but patients had greater trapping of exogenous fatty acids in adipose tissue. 3-Hydroxybutyrate concentrations were lower in patients indicative of decreased hepatic fatty acid oxidation. CONCLUSIONS In this group of patients with FCHL, the major defect appeared to be overproduction of TAG by the liver due to decreased fatty acid oxidation, with fatty acids directed to TAG synthesis. We found no evidence of decreased lipoprotein lipase action or impaired fatty acid re-esterification in adipose tissue.
Collapse
Affiliation(s)
- Kevin Evans
- Department of Clinical Chemistry, Staffordshire General Hospital, Stafford, UK.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ross CJD, Twisk J, Bakker AC, Miao F, Verbart D, Rip J, Godbey T, Dijkhuizen P, Hermens WTJMC, Kastelein JJP, Kuivenhoven JA, Meulenberg JM, Hayden MR. Correction of feline lipoprotein lipase deficiency with adeno-associated virus serotype 1-mediated gene transfer of the lipoprotein lipase S447X beneficial mutation. Hum Gene Ther 2006; 17:487-99. [PMID: 16716106 DOI: 10.1089/hum.2006.17.487] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human lipoprotein lipase (hLPL) deficiency, for which there currently exists no adequate treatment, leads to excessive plasma triglycerides (TGs), recurrent abdominal pain, and life-threatening pancreatitis. We have shown that a single intramuscular administration of adeno-associated virus (AAV) serotype 1 vector, encoding the human LPL(S447X) variant, results in complete, long-term normalization of dyslipidemia in LPL(/) mice. As a prelude to gene therapy for human LPL deficiency, we tested the efficacy of AAV1-LPL(S447X) in LPL(/) cats, which demonstrate hypertriglyceridemia (plasma TGs, >10,000 mg/dl) and clinical symptoms similar to LPL deficiency in humans, including pancreatitis. Male LPL(/) cats were injected intramuscularly with saline or AAV1-LPL(S447X) (1 x 10(11)-1.7 x 10(12) genome copies [GC]/kg), combined with oral doses of cyclophosphamide (0-200 mg/m(2) per week) to inhibit an immune response against hLPL. Within 3-7 days after administration of >or=5 x 10(11) GC of AAV1-LPL(S447X) per kilogram, the visible plasma lipemia was completely resolved and plasma TG levels were reduced by >99% to normal levels (10-20 mg/dl); intermediate efficacy (95% reduction) was achieved with 1 x 10(11) GC/kg. Injection in two sites, greatly limiting the amount of transduced muscle, was sufficient to completely correct the dyslipidemia. By varying the dose per site, linear LPL expression was demonstrated over a wide range of local doses (4 x 10(10)-1 x 10(12) GC/site). However, efficacy was transient, because of an anti-hLPL immune response blunting LPL expression. The level and duration of efficacy were significantly improved with cyclophosphamide immunosuppression. We conclude that AAV1-mediated delivery of LPL(S447X) in muscle is an effective means to correct the hypertriglyceridemia associated with feline LPL deficiency.
Collapse
Affiliation(s)
- Colin J D Ross
- Department of Medical Genetics, University of British Columbia, and Centre for Molecular Medicine and Therapeutics, Vancouver, BC, Canada V5Z 4H4
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Correction of Feline Lipoprotein Lipase Deficiency with Adeno-Associated Virus Serotype 1-Mediated Gene Transfer of the Lipoprotein Lipase S447X Beneficial Mutation. Hum Gene Ther 2006. [DOI: 10.1089/hum.2006.17.ft-198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
18
|
Rip J, Nierman MC, Sierts JA, Petersen W, Van den Oever K, Van Raalte D, Ross CJD, Hayden MR, Bakker AC, Dijkhuizen P, Hermens WT, Twisk J, Stroes E, Kastelein JJP, Kuivenhoven JA, Meulenberg JM. Gene therapy for lipoprotein lipase deficiency: working toward clinical application. Hum Gene Ther 2006; 16:1276-86. [PMID: 16259561 DOI: 10.1089/hum.2005.16.1276] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lipoprotein lipase (LPL) deficiency causes hypertriglyceridemia and recurrent, potentially life-threatening pancreatitis. There currently is no adequate treatment for this disease. Previously, we showed that intramuscular administration of an adeno-associated virus serotype 1 (AAV1) vector encoding the human LPL(S447X) variant cDNA (AAV1-LPL(S447X)) normalized the dyslipidemia of LPL-/- mice for more than 1 year. In preparation for a clinical trial, we evaluated the safety and biodistribution of AAV1-LPL(S447X) in wild-type mice and fully characterized six LPL-deficient patients. Toxicological analysis in mice showed that intramuscular administration was well tolerated. Acute inflammatory response markers were transiently increased, and anti- AAV1 antibodies were generated. Histological analyses indicated a dose-dependent reversible spleen hyperplasia, and myositis at the injection sites. Biodistribution data showed short-term vector leakage from injection sites into the circulation, followed by liver-mediated clearance. Persistence of vector DNA was limited to the injected muscle and draining lymph nodes, and spread to reproductive organs was limited. Characterization of LPL-deficient patients showed that all patients presented with hypertriglyceridemia and recurrent pancreatitis. LPL catalytic activity was absent, but LPL protein levels were 20-100% of normal. Myoblasts derived from skeletal muscle biopsies of these patients were efficiently transduced by AAV1-LPL(S447X) and secreted active LPL. These data support the initiation of a clinical trial in LPL-deficient patients, for which regulatory approval has been granted.
Collapse
Affiliation(s)
- Jaap Rip
- Department of Vascular Medicine, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Existing approaches to the treatment of refractory hypercholesterolaemia, severe hypertriglyceridaemia, low levels of high-density lipoprotein cholesterol and certain inherited disorders of intracellular lipid metabolism are ineffective in a substantial number of patients. Somatic gene therapy is considered to be a potential approach to the therapy of several of these lipid disorders. In many cases preclinical proof-of-principle studies have already been performed, and in one (homozygous familial hypercholesterolaemia) a clinical trial has been conducted. Other clinical gene therapy trials for dyslipidaemia are likely to be initiated within the next several years.
Collapse
Affiliation(s)
- Uli C Broedl
- University of Munich, Department of InternalMedicine II, Marchioninistr. 15, 81377 Munich, Germany.
| | | |
Collapse
|
20
|
Rip J, Nierman MC, Sierts JA, Petersen W, Den Oever KV, Raalte DV, Ross CJ, Hayden MR, Bakker AC, Dijkhuizen P, Hermens WT, Twisk J, Stroes E, Kastelein JJP, Kuivenhoven JA, Meulenberg JM. Gene Therapy for Lipoprotein Lipase Deficiency: Working Toward Clinical Application. Hum Gene Ther 2005. [DOI: 10.1089/hum.2005.16.ft-138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
21
|
|
22
|
Berbée JFP, van der Hoogt CC, Sundararaman D, Havekes LM, Rensen PCN. Severe hypertriglyceridemia in human APOC1 transgenic mice is caused by apoC-I-induced inhibition of LPL. J Lipid Res 2005; 46:297-306. [PMID: 15576844 DOI: 10.1194/jlr.m400301-jlr200] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Studies in humans and mice have shown that increased expression of apolipoprotein C-I (apoC-I) results in combined hyperlipidemia with a more pronounced effect on triglycerides (TGs) compared with total cholesterol (TC). The aim of this study was to elucidate the main reason for this effect using human apoC-I-expressing (APOC1) mice. Moderate plasma human apoC-I levels (i.e., 4-fold higher than human levels) caused a 12-fold increase in TG, along with a 2-fold increase in TC, mainly confined to VLDL. Cross-breeding of APOC1 mice on an apoE-deficient background resulted in a marked 55-fold increase in TG, confirming that the apoC-I-induced hyperlipidemia cannot merely be attributed to blockade of apoE-recognizing hepatic lipoprotein receptors. The plasma half-life of [3H]TG-VLDL-mimicking particles was 2-fold increased in APOC1 mice, suggesting that apoC-I reduces the lipolytic conversion of VLDL. Although total postheparin plasma LPL activity was not lower in APOC1 mice compared with controls, apoC-I was able to dose-dependently inhibit the LPL-mediated lipolysis of [3H]TG-VLDL-mimicking particles in vitro with a 60% efficiency compared with the main endogenous LPL inhibitor apoC-III. Finally, purified apoC-I impaired the clearance of [3H]TG-VLDL-mimicking particles independent of apoE-mediated hepatic uptake in lactoferrin-treated mice. Therefore, we conclude that apoC-I is a potent inhibitor of LPL-mediated TG-lipolysis.
Collapse
Affiliation(s)
- Jimmy F P Berbée
- Netherlands Organization for Applied Scientific Research-Prevention and Health, Gaubius Laboratory, 2301 CE Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
23
|
Abstract
Atherosclerosis and related diseases are the leading cause of death in Western world. The disease process begins with the formation of fatty streaks already during the first decade of life but does not manifest clinically until several decades later. Gene therapy is a potential new way to target multiple factors playing a role in the development and progression of atherosclerosis. A great number of genes involved in the development of atherosclerosis have been identified and have been tested both in vitro and in vivo as potential new targets for therapy. Pre-clinical experiments have shown the feasibility and safety of several gene therapy applications for the treatment of atherosclerosis and clinical trials have also provided evidence for the applicability of gene therapy for the treatment of cardiovascular diseases. In this review we discuss vectors and potential gene therapy approaches for intervention and therapy of atherosclerosis.
Collapse
Affiliation(s)
- E Vähäkangas
- Department of Biotechnology and Molecular Medicine, AI Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | | |
Collapse
|
24
|
Liu E, Kitajima S, Higaki Y, Morimoto M, Sun H, Watanabe T, Yamada N, Fan J. High lipoprotein lipase activity increases insulin sensitivity in transgenic rabbits. Metabolism 2005; 54:132-8. [PMID: 15562391 DOI: 10.1016/j.metabol.2004.07.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Lipoprotein lipase (LPL) is the rate-limiting enzyme in the hydrolysis of triglyceride-rich lipoproteins and plays an important role in glucose metabolism. To examine the hypothesis that increased LPL activity may alter insulin sensitivity, we investigated glucose metabolism and insulin sensitivity in transgenic (Tg) rabbits expressing the human LPL gene under the control of a I(2) -actin promoter. An intravenous glucose tolerance test showed that the plasma glucose clearance rate was not significantly different between Tg and non-Tg rabbits; however, the area under the curve for insulin and free fatty acids in Tg rabbits was significantly reduced compared with that of non-Tg rabbits (P < .05). Using the intravenous insulin tolerance test, we found that the area of under the curve of glucose of Tg rabbits was also significantly reduced (P < .01). Furthermore, euglycemic-hyperinsulinemic clamp test revealed that the mean glucose infusion rate in Tg rabbits was significantly higher than in non-Tg rabbits (P < .05). These results demonstrate that systemic overexpression of LPL increases whole-body insulin sensitivity and genetic manipulation of LPL genes may be a potential target for the treatment of diabetic patients.
Collapse
Affiliation(s)
- Enqi Liu
- Analytical Rsearch Center for Experimental Sciences, Saga University, Saga 849-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Ross CJD, Twisk J, Meulenberg JM, Liu G, van den Oever K, Moraal E, Hermens WT, Rip J, Kastelein JJP, Kuivenhoven JA, Hayden MR. Long-term correction of murine lipoprotein lipase deficiency with AAV1-mediated gene transfer of the naturally occurring LPL(S447X) beneficial mutation. Hum Gene Ther 2004; 15:906-19. [PMID: 15353045 DOI: 10.1089/hum.2004.15.906] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human lipoprotein lipase (LPL) deficiency causes profound hypertriglyceridemia and life-threatening pancreatitis. We recently developed an adult murine model for LPL deficiency: LPL -/- mice display grossly elevated plasma triglyceride (TG) levels (>200-fold) and very low high-density lipoprotein cholesterol (HDL-C < 10% of normal). We used this animal model to test the efficacy of adeno-associated virus-mediated expression of hLPL(S447X) (AAV1-LPL(S447X)) in muscle for the treatment of LPL deficiency. Intramuscular administration of AAV1-LPL(S447X) resulted in dose-dependent expression of hLPL protein and LPL activity (up to 33% of normal murine levels) in postheparin plasma. Remarkably, visible hyperlipidemia was resolved within 1 week; plasma TG was reduced to near-normal levels (from 99.0 to 1.8 mmol/L), and plasma HDL-C was increased 6-fold (from 0.2 to 1.1 mmol/L). At 8 months after administration of AAV1-LPL(S447X), an intravenous lipid challenge showed efficient, near-normal clearance of plasma TG. Histologic analyses of injected muscle further indicated that abnormal muscle morphology observed in LPL -/- mice was reversed after treatment. Expression of therapeutic levels of LPL(S447X), and the subsequent beneficial effect on plasma lipid levels, has lasted for more than 1 year. We therefore conclude that AAV1-mediated transfer of LPL(S447X) into murine skeletal muscle results in long-term near-correction of dyslipidemia associated with LPL deficiency.
Collapse
Affiliation(s)
- Colin J D Ross
- Department of Medical Genetics, University of British Columbia (UBC), Centre for Molecular Medicine and Therapeutics, Vancouver, B.C., Canada, V5Z-4H4
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Koike T, Liang J, Wang X, Ichikawa T, Shiomi M, Liu G, Sun H, Kitajima S, Morimoto M, Watanabe T, Yamada N, Fan J. Overexpression of Lipoprotein Lipase in Transgenic Watanabe Heritable Hyperlipidemic Rabbits Improves Hyperlipidemia and Obesity. J Biol Chem 2004; 279:7521-9. [PMID: 14660566 DOI: 10.1074/jbc.m311514200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipoprotein lipase (LPL) is the rate-limiting enzyme for the hydrolysis of the triglyceride-rich lipoproteins and plays a critical role in lipoprotein and free fatty acid metabolism. Genetic manipulation of LPL may be beneficial in the treatment of hypertriglyceridemias, but it is unknown whether increased LPL activity may be effective in lowering plasma cholesterol and improving insulin resistance in familial hypercholesterolemic patients. To test the hypothesis that stimulation of LPL expression may be used as an adjunctive therapy for treatment of homozygous familial hypercholesterolemia, we have generated transgenic (Tg) Watanabe heritable hyperlipidemic (WHHL) rabbits that overexpress the human LPL transgene and compared their plasma lipid levels, glucose metabolism, and body fat accumulation with those of non-Tg WHHL rabbits. Overexpression of LPL dramatically ameliorated hypertriglyceridemia in Tg WHHL rabbits. Furthermore, increased LPL activity in male Tg WHHL rabbits also corrected hypercholesterolemia (544 +/- 52 in non-Tg versus 227 +/- 29 mg/dl in Tg, p < 0.01) and reduced body fat accumulation by 61% (323 +/- 27 in non-Tg versus 125 +/- 21ginTg, p < 0.01), suggesting that LPL plays an important role in mediating plasma cholesterol homeostasis and adipose accumulation. In addition, overexpression of LPL significantly suppressed high fat diet-induced obesity and insulin resistance in Tg WHHL rabbits. These results imply that systemic elevation of LPL expression may be potentially useful for the treatment of hyperlipidemias, obesity, and insulin resistance.
Collapse
Affiliation(s)
- Tomonari Koike
- Cardiovascular Disease Laboratory, Department of Pathology, Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba 305-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Fischer TH, Brittain J, Trabalzini L, Banes AJ, White GC, Smith CJ, Nichols TC. The ras-binding domain of ral GDS-like protein-2 as a ras inhibitor in smooth muscle cells. Biochem Biophys Res Commun 2003; 305:934-40. [PMID: 12767920 DOI: 10.1016/s0006-291x(03)00878-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study was undertaken to determine whether the response of smooth muscle cells to mitogens can be inhibited by inactivating ras with the ral GDS like protein-2 ras-binding domain (RGL2-RBD). RGL2 is a member of the ral GDS family of proteins that contains a carboxy terminal ras-binding domain which binds the GTP ligated form of ras and rap and a CDC25 homology domain with the structural features of a guanine nucleotide exchange factor. The effect of ras signaling on the smooth muscle cell growth factor response was studied using rat aortic A10 smooth muscle cells transfected with a plasmid that encoded the RGL2-RBD. RGL2-RBD transfection resulted in a 12-fold reduction in the number of clonal colonies that were obtained after selection, and dramatically slowed cell cycle progression. RGBL2-RBD reduced DNA synthesis and inhibited platelet derived growth factor (PDGF)-mediated activation of the MAPK pathway. These findings indicated that interfering with ras signaling inhibits smooth muscle cell proliferation and raise the possibility that ras signaling inhibition might be used therapeutically to control smooth muscle proliferation after vascular injury.
Collapse
Affiliation(s)
- Thomas H Fischer
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Strauss JG, Frank S, Kratky D, Hämmerle G, Hrzenjak A, Knipping G, von Eckardstein A, Kostner GM, Zechner R. Adenovirus-mediated rescue of lipoprotein lipase-deficient mice. Lipolysis of triglyceride-rich lipoproteins is essential for high density lipoprotein maturation in mice. J Biol Chem 2001; 276:36083-90. [PMID: 11432868 DOI: 10.1074/jbc.m104430200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lipoprotein lipase (LPL) is the rate-limiting enzyme for the hydrolysis of triglycerides and the subsequent uptake of free fatty acids in extrahepatic tissues. Deficiency of LPL in humans (Type I hyperlipoproteinemia) is associated with massive chylomicronemia, low high density lipoprotein (HDL) cholesterol levels, and recurrent attacks of pancreatitis when not controlled by a strict diet. In contrast to humans, homozygous LPL knock-out mice (L0) do not survive suckling and die between 18 and 24 h after birth. In this study, an adenovirus-based protocol was utilized for the transient expression of LPL during the suckling period in an effort to rescue L0 mice. After a single intraperitoneal injection of 5x10(9) plaque-forming units of LPL-expressing virus immediately after birth, more than 90% of L0 mice survived the first days of life. 3% of L0 mice survived the entire suckling period and lived for up to 20 months, although LPL activity in mouse tissues and postheparin plasma was undetectable in all animals after 6 weeks of age. Adult LPL-deficient mice were smaller than their littermates until 2-3 months of age and exhibited very high triglyceride levels in the fed (4997 +/- 1102 versus 113.4 +/- 18.7 mg/dl) and fasted state (2007 +/- 375 versus 65.5 +/- 7.4 mg/dl). Plasma total cholesterol levels, free fatty acids, and ketone bodies were elevated in L0 mice, whereas plasma glucose was normal. Most strikingly, L0 mice lacked apoA-I-containing prebeta-HDL particles as well as mature HDL resulting in undetectable HDL cholesterol and HDL-apoA-I levels. HDL deficiency in plasma was evident despite normal apoA-I mRNA levels in the liver and normal apoA-I protein levels in plasma, which were predominantly found in the chylomicron fraction. The absence of prebeta-HDL and mature HDL particles supports the concept that the lipolysis of triglyceride-rich lipoproteins is an essential step for HDL maturation.
Collapse
Affiliation(s)
- J G Strauss
- Institute of Molecular Biology, Biochemistry, and Microbiology, University of Graz, Graz A-8010, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sprecher DL. Targeting triglycerides as prognostic indicators and determining lowest values for patient benefit. Curr Cardiol Rep 2001; 3:424-32. [PMID: 11504580 DOI: 10.1007/s11886-001-0060-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A number of reports demonstrate the importance of serum triglyceride values in predicting the clinical onset of vascular disease. However, adjustment for measurements highly correlated with triglyceride (TG) levels, such as history of diabetes, body mass index, and high-density lipoprotein cholesterol (HDL-C), lessen if not remove the TG contribution to outcomes. More recently, improved analytic approaches have more persuasively implicated triglycerides as independently relevant to the onset of cardiovascular disease. Elevated TG values are the consequence of larger TG-rich particles, including very low density lipoprotein and atherogenic intermediate particles, which are in turn associated with dense low-density lipoprotein. It has been observed that a reduction in TG concentrations often proceeds in parallel with improved clinical outcomes; however, direct correlation between the two has been elusive. This has been demonstrated in multiple pharmacologic trials. However, an improvement in these relationships has been observed when TG-correlated measurements of intermediate particles, low-density lipoprotein density, and HDL-C have been made. National guidelines for cholesterol treatment have now incorporated a TG greater than 200 mg/dL as a secondary treatment trigger, which targets apolipoprotein B-related particles, represented by non-HDL-C (total cholesterol minus HDL-C), as the suggested goal of therapy.
Collapse
Affiliation(s)
- D L Sprecher
- Preventive Cardiology, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
30
|
Abstract
The new therapeutic options available to clinicians treating dyslipidaemia in the last decade have enabled effective treatment for many patients. The development of the HMG-CoA reductase inhibitors (statins) have been a major advance in that they possess multiple pharmacological effects (pleiotropic effects) resulting in potent reductions of low density lipoproteins (LDL) and prevention of the atherosclerotic process. More recently, the newer fibric acid derivatives have also reduced LDL to levels comparable to those achieved with statins, have reduced triglycerides, and gemfibrozil has been shown to increase high density lipoprotein (HDL) levels. Nicotinic acid has been made tolerable with sustained-release formulations, and is still considered an excellent choice in elevating HDL cholesterol and is potentially effective in reducing lipoprotein(a) [Lp(a)] levels, an emerging risk factor for coronary heart disease (CHD). Furthermore, recent studies have reported positive lipid-lowering effects from estrogen and/or progestogen in postmenopausal women but there are still conflicting reports on the use of these agents in dyslipidaemia and in females at risk for CHD. In addition to lowering lipid levels, these antihyperlipidaemic agents may have directly or indirectly targeted thrombogenic, fibrinolytic and atherosclerotic processes which may have been unaccounted for in their overall success in clinical trials. Although LDL cholesterol is still the major target for therapy, it is likely that over the next several years other lipid/lipoprotein and nonlipid parameters will become more generally accepted targets for specific therapeutic interventions. Some important emerging lipid/lipoprotein parameters that have been associated with CHD include elevated triglyceride, oxidised LDL cholesterol and Lp(a) levels, and low HDL levels. The nonlipid parameters include elevated homocysteine and fibrinogen, and decreased endothelial-derived nitric oxide production. Among the new investigational agents are inhibitors of squalene synthetase, acylCoA: cholesterol acyltransferase, cholesteryl ester transfer protein, monocyte-macrophages and LDL cholesterol oxidation. Future applications may include thyromimetic therapy, cholesterol vaccination, somatic gene therapy, and recombinant proteins, in particular, apolipoproteins A-I and E. Non-LDL-related targets such as peroxisome proliferator-activating receptors, matrix metalloproteinases and scavenger receptor class B type I may also have clinical significance in the treatment of atherosclerosis in the near future. Before lipid-lowering therapy, dietary and lifestyle modification is and should be the first therapeutic intervention in the management of dyslipidaemia. Although current recommendations from the US and Europe are slightly different, adherence to these recommendations is essential to lower the risk of atherosclerotic vascular disease, more specifically CHD. New guidelines that are expected in the near future will encompass global opinions from the expert scientific community addressing the issue of target LDL goal (aggressive versus moderate lowering) and the application of therapy for newer emerging CHD risk factors.
Collapse
Affiliation(s)
- P H Chong
- College of Pharmacy, University of Illinois, and Cook County Hospital, Chicago 60612-3785, USA.
| | | |
Collapse
|
31
|
Clee SM, Bissada N, Miao F, Miao L, Marais AD, Henderson HE, Steures P, McManus J, McManus B, LeBoeuf RC, Kastelein JJ, Hayden MR. Plasma and vessel wall lipoprotein lipase have different roles in atherosclerosis. J Lipid Res 2000. [DOI: 10.1016/s0022-2275(20)32399-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
32
|
Abstract
Vascular gene transfer potentially offers new treatments for cardiovascular diseases. It can be used to overexpress therapeutically important proteins and correct genetic defects, and to test experimentally the effects of various genes in a local vascular compartment. Vascular endothelial growth factor (VEGF) and fibroblast growth factor (FGF) gene transfers have improved blood flow and collateral development in ischaemic limb and myocardium. Promising therapeutic effects have been obtained in animal models of restenosis or vein-graft thickening with the transfer of genes coding for VEGF, nitric-oxide synthase, thymidine kinase, retinoblastoma, growth arrest homoeobox, tissue inhibitor of metalloproteinases, cyclin or cyclin-dependent kinase inhibitors, fas ligand and hirudin, and antisense oligonucleotides against transcription factors or cell-cycle regulatory proteins. First experiences of VEGF gene transfer and decoy oligonucleotides in human beings have been reported. However, further developments in gene-transfer vectors, gene-delivery techniques and identification of effective treatment genes will be required before the full therapeutic potential of gene therapy in cardiovascular disease can be assessed.
Collapse
Affiliation(s)
- S Ylä-Herttuala
- A I Virtanen Institute and Department of Medicine, University of Kuopio, Finland.
| | | |
Collapse
|
33
|
Liu G, Ashbourne Excoffon KJ, Wilson JE, McManus BM, Rogers QR, Miao L, Kastelein JJ, Lewis ME, Hayden MR. Phenotypic correction of feline lipoprotein lipase deficiency by adenoviral gene transfer. Hum Gene Ther 2000; 11:21-32. [PMID: 10646636 DOI: 10.1089/10430340050016120] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previous studies have revealed that adenovirus-mediated ectopic liver expression of human LPL (huLPL) can efficiently mediate plasma triacylglycerol (TG) catabolism in mice despite its native expression in adipose and muscle tissue. We aimed to explore the feasibility of liver-directed gene transfer and enzyme replacement for human LPL deficiency in a larger, naturally occurring feline animal model of complete LPL deficiency that is remarkably similar in phenotype to the human disorder. A cohort of LPL-deficient (LPL -/-) cats was given an intravenous injection of 8 x 10(9) PFU/kg of a CMV promoter/enhancer-driven, E1/E3-deleted adenoviral (Ad) vector containing a 1.36-kb huLPL cDNA (Ad-LPL) or reporter alkaline phosphatase gene (Ad-AP). After Ad-LPL administration, active, heparin-releasable huLPL was readily detected along with a 10-fold reduction in plasma TGs, disappearance of plasma TG-rich lipoproteins up to day 14, and enhanced clearance of an excess intravenous fat load on day 9. However, antibody against the huLPL protein was detected on day 14 in cats receiving Ad-LPL and adenovirus-specific neutralizing antibody was present 7 days after gene transfer in both cat cohorts. Tissue-specific expression of the huLPL transgene relative to controls was confirmed by RT-PCR. While huLPL expression was evident in the liver, other tissues including spleen and lung expressed huLPL message, in direct correlation with histological evidence of increased Oil red O (ORO)-positive neutral lipid influx. In contrast, intravenous LPL enzyme replacement therapy (ERT) led to rapid disappearance of 9000 mU/kg of active bovine LPL enzyme from the circulation, with t1/2 occurring at <10 min in two LPL-/- cats. Heparin injection 1 hr later released <10% of the original bovine LPL, further indicating its rapid systemic clearance, inactivation, or degradation as well as its ineffectiveness as a viable therapeutic alternative for complete LPL deficiency. Although LPL gene transfer and expression via this first-generation Ad vector was limited by the immune response against both the human LPL protein and adenovirus our results clearly provide a key advance supporting further development of LPL gene therapy as a viable therapeutic option for clinical LPL deficiency.
Collapse
Affiliation(s)
- G Liu
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kawashiri MA, Rader DJ. Gene therapy for lipid disorders. CURRENT CONTROLLED TRIALS IN CARDIOVASCULAR MEDICINE 2000; 1:120-127. [PMID: 11714424 PMCID: PMC59613 DOI: 10.1186/cvm-1-2-120] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/18/2000] [Accepted: 09/24/2000] [Indexed: 12/27/2022]
Abstract
Lipid disorders are associated with atherosclerotic vascular disease, and therapy is associated with a substantial reduction in cardiovascular events. Current approaches to the treatment of lipid disorders are ineffective in a substantial number of patients. New therapies for refractory hypercholesterolemia, severe hypertriglyceridemia, and low levels of high-density lipoprotein cholesterol are needed: somatic gene therapy is one viable approach. The molecular etiology and pathophysiology of most of the candidate diseases are well understood. Animal models exist for the diseases and in many cases preclinical proof-of-principle studies have already been performed. There has been progress in the development of vectors that provide long-term gene expression. New clinical gene therapy trials for lipid disorders are likely to be initiated within the next few years.
Collapse
Affiliation(s)
| | - Daniel J Rader
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
35
|
Williams RR, Hopkins PN, Stephenson S, Wu L, Hunt SC. Primordial prevention of cardiovascular disease through applied genetics. Prev Med 1999; 29:S41-9. [PMID: 10641817 DOI: 10.1006/pmed.1999.0513] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Primordial prevention might be considered prevention of the development of disease at its earliest stages or early intervention on risk factors to eliminate increased risk in the first place. In this review we consider how knowledge of genetic causes of early cardiovascular disease can lead to directed screening and better treatment of high risk individuals. While gene therapy would be the most "primordial" approach to prevention of some diseases such as familial hypercholesterolemia, its practical application remains on the horizon. Nevertheless, there is much we can do now to prevent early deaths in genetically high risk patients. Here we consider epidemiology as the parent discipline for applied genetics and as integral to primordial prevention. With new knowledge of special susceptibility and new understanding of the interaction of genetics and exposures, prevention of individual high-risk in the first place is realizable. We summarize here the known and candidate genes influencing atherosclerosis, hypertension, and thrombosis; their diagnosis; and some useful preventive approaches. MEDPED, an international scheme for detection of risk in medical pedigrees, is described, along with the cost and social implications of its application as a preventive strategy.
Collapse
Affiliation(s)
- R R Williams
- Cardiovascular Genetics Research Clinic, University of Utah, Salt Lake City 84108, USA
| | | | | | | | | |
Collapse
|
36
|
Belalcazar M, Chan L. Somatic gene therapy for dyslipidemias. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 1999; 134:194-214. [PMID: 10482304 DOI: 10.1016/s0022-2143(99)90199-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Somatic gene transfer is a valuable tool for the in vivo evaluation of lipoprotein metabolism. It has been used to dissect metabolic pathways, to establish structure-function relationships of various gene products, and to evaluate conventional lipid-lowering and novel therapeutic genes for the treatment of lipoprotein disorders. In this article we review some general aspects of somatic gene therapy and the different vehicles used for the delivery of therapeutic genes. We highlight some recent advances in adenoviral vector development that make this vector an attractive system for clinical trials.
Collapse
Affiliation(s)
- M Belalcazar
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
37
|
Pakkanen T, Ylä-Herttuala S. Gene therapy for atherosclerosis and atherosclerosis-related diseases. Curr Atheroscler Rep 1999; 1:123-30. [PMID: 11122701 DOI: 10.1007/s11883-999-0008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gene therapy for atherosclerosis-related disorders of lipoprotein metabolism is primarily directed to liver and aims at long-lasting correction of familial hypercholesterolemia, lipoprotein / hepatic lipase deficiency, and Apolipoprotein A, B, or E -related diseases. Treatment of complications of atherosclerosis (eg, restenosis, ischemia) requires local gene transfer to arterial wall or ischemic muscle with transient gene expression. Catheter-mediated approach or direct injections have been used in clinical trials for the treatment of restenosis and for the induction of angiogenesis in ischaemic limb and myocardium. Other possible applications of local gene transfer include antithrombotic treatment and stabilization of vulnerable plaques.
Collapse
Affiliation(s)
- T Pakkanen
- A.I. Virtanen Institute and Department of Medicine, University of Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | | |
Collapse
|
38
|
Abstract
Current approaches to the treatment of lipid disorders are inadequate for a substantial number of patients with severe hyperlipoproteinemia, isolated low high-density lipoprotein (HDL) cholesterol levels, or other molecular disorders of lipoprotein metabolism. Therefore, dyslipidemias remain important targets for the development of novel therapies. Gene therapy is a logical therapeutic approach to monogenic lipoprotein disorders, such as homozygous familial hypercholesterolemia, familial lipoprotein lipase deficiency, familial lecithin-cholesterol acyltransferase deficiency, and abetalipoproteinemia, for which current therapies are inadequate. Gene therapy could also be used to increase expression of certain proteins, such as apolipoprotein A-I as a strategy to raise HDL cholesterol levels or apoE as a strategy for severe combined hyperlipidemia. With further progress in the development of vectors, gene therapy for severe dyslipidemia is likely to become a clinical reality.
Collapse
Affiliation(s)
- D J Rader
- Department of Medicine and Pathology and Laboratory Medicine, University of Pennsylvania Health System, Philadelphia, PA 19104-6100, USA
| | | |
Collapse
|
39
|
Abstract
Triglyceride has not traditionally been considered the cornerstone of lipid risk factors for coronary artery disease. Yet emerging evidence from epidemiologic, clinical, cellular, genetic, and molecular studies suggests otherwise, namely, that levels of triglyceride and triglyceride-rich lipoproteins such as very-low-density lipoprotein (VLDL) are indeed independent risk factors for coronary artery disease. Further, triglyceride metabolism is associated with atherogenesis, and diminishing triglyceride levels is pivotal in decreasing the incidence of coronary artery disease, particularly in early-evolving atherosclerotic lesions.
Collapse
Affiliation(s)
- D L Sprecher
- Department of Cardiology, The Cleveland Clinic Foundation, Ohio 44195, USA
| |
Collapse
|
40
|
Abstract
Local gene transfer into the vascular wall offers a promising alternative to treat atherosclerosis-related diseases at cellular and molecular levels. Blood vessels are among the easiest targets for gene therapy because of novel percutaneous, catheter-based treatment methods. On the other hand, gene transfer to the artery wall can also be accomplished from adventitia, and in some situations intramuscular gene delivery is also a possibility. In most conditions, such as postangioplasty restenosis, only a temporary expression of the transfected gene will be required. Promising therapeutic effects have been obtained in animal models of restenosis with the transfer of genes for vascular endothelial growth factor, fibroblast growth factor, thymidine kinase, p53, bcl-x, nitric oxide synthase and retinoblastoma. Also, growth arrest homeobox gene and antisense oligonucleotides against transcription factors or cell cycle regulatory proteins have produced beneficial therapeutic effects. Angiogenesis is an emerging new target for gene therapy of ischemic diseases. In addition, hyperlipoproteinemias may be improved by transferring functional lipoprotein-receptor genes into hepatocytes of affected individuals. First experiences of gene transfer methods in the human vascular system have been reported. However, further studies regarding gene delivery methods, vectors and safety of the procedures are needed before a full therapeutic potential of gene therapy in vascular diseases can be evaluated.
Collapse
Affiliation(s)
- M Laitinen
- A.I. Virtanen Institute, University of Kuopio, Finland
| | | |
Collapse
|
41
|
Semenkovich CF, Coleman T, Daugherty A. Effects of heterozygous lipoprotein lipase deficiency on diet-induced atherosclerosis in mice. J Lipid Res 1998. [DOI: 10.1016/s0022-2275(20)32538-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|