1
|
Pharmacological prevention of intimal hyperplasia: A state-of-the-art review. Pharmacol Ther 2022; 235:108157. [PMID: 35183591 DOI: 10.1016/j.pharmthera.2022.108157] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023]
Abstract
Intimal hyperplasia (IH) occurs in a considerable number of cases of blood vessel reconstruction by stenting or balloon angioplasty, venous bypass grafting, and arteriovenous dialysis accesses. It is triggered by endothelial injury during the vascular intervention and leads to vessel restenosis with life-threatening consequences for patients. To date, the drugs used for IH prevention in clinics-paclitaxel and rapalog drugs-have been focusing primarily on the vascular smooth muscle cell (VSMC) proliferation pathway of IH development. Limitations, such as endothelial toxicity and inappropriate drug administration timing, have spurred the search for new and efficient pharmacological approaches to control IH. In this state-of-the-art review, we present the pathways of IH development, focusing on the key events and actors involved in IH. Subsequently, we discuss different drugs and drug combinations interfering with these pathways based on their effect on peripheral circulation IH models in animal studies, or on clinical reports. The reports were obtained through an extensive search of peer-reviewed publications in Pubmed, Embase, and Google Scholar, with search equations composed based on five concepts around IH and their various combinations. To improve vascular intervention outcomes, rethinking of conventional therapeutic approaches to IH prevention is needed. Exploring local application of drugs and drug combinations acting on different pathophysiological pathways of IH development has the potential to provide effective and safe restenosis prevention.
Collapse
|
2
|
Fan S, Wang C, Huang K, Liang M. Myricanol Inhibits Platelet Derived Growth Factor-BB-Induced Vascular Smooth Muscle Cells Proliferation and Migration in vitro and Intimal Hyperplasia in vivo by Targeting the Platelet-Derived Growth Factor Receptor-β and NF-κB Signaling. Front Physiol 2022; 12:790345. [PMID: 35185599 PMCID: PMC8850918 DOI: 10.3389/fphys.2021.790345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
The abnormal proliferation and migration of Vascular smooth muscle cells (VSMCs) are related to many cardiovascular diseases, including atherosclerosis, restenosis after balloon angioplasty, hypertension, etc. Myricanol is a diarylheptanoid that can be separated from the bark of Myrica rubra. It has been reported that myricanol can anti-inflammatory, anti-cancer, anti-neurodegenerative, promote autophagic clearance of tau and prevent muscle atrophy. But its potential role in the cardiovascular field remains unknown. In this study, we investigated the effect of myricanol on the proliferation and migration of VSMCs in vitro and on the intimal hyperplasia in vivo. In vitro experiments, we found myricanol can inhibit the proliferation and migration of VSMCs induced by PDGF-BB. In terms of mechanism, the preincubation of myricanol can suppress the PDGF-BB induced phosphorylation of PDGFRβ and its downstream such as PLCγ1, Src, and MAPKs. In addition, NF-kB p65 translocation was also suppressed by myricanol. In vivo experiments, we found myricanol can suppress the intimal hyperplasia after wire ligation of the carotid artery in mice. These results may provide a new strategy for the prevention and treatment of coronary atherosclerosis and post-stent stenosis in the future.
Collapse
Affiliation(s)
- Siyuan Fan
- Cardiovascular Center, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Wang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Cardiovascular Center, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Kai Huang,
| | - Minglu Liang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Minglu Liang,
| |
Collapse
|
3
|
Targeting and imaging of monocyte-derived macrophages in rat's injured artery following local delivery of liposomal quantum dots. J Control Release 2020; 318:145-157. [DOI: 10.1016/j.jconrel.2019.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/26/2019] [Accepted: 12/08/2019] [Indexed: 12/27/2022]
|
4
|
Gupta P, Garcia E, Sarkar A, Kapoor S, Rafiq K, Chand HS, Jayant RD. Nanoparticle Based Treatment for Cardiovascular Diseases. Cardiovasc Hematol Disord Drug Targets 2019; 19:33-44. [PMID: 29737265 DOI: 10.2174/1871529x18666180508113253] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/17/2017] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
Nanotechnology has gained increased attention for delivering therapeutic agents effectively to the cardiovascular system. Heart targeted nanocarrier based drug delivery is a new, effective and efficacious approach for treating various cardiac related disorders such as atherosclerosis, hypertension, and myocardial infarction. Nanocarrier based drug delivery system circumvents the problems associated with conventional drug delivery systems, including their nonspecificity, severe side effects and damage to the normal cells. Modification of physicochemical properties of nanocarriers such as size, shape and surface modifications can immensely alter its invivo pharmacokinetic and pharmacodynamic data and will provide better treatment strategy. Several nanocarriers such as lipid, phospholipid nanoparticles have been developed for delivering drugs to the target sites within the heart. This review summarizes and increases the understanding of the advanced nanosized drug delivery systems for treating cardiovascular disorders with the promising use of nanotechnology.
Collapse
Affiliation(s)
- Purnima Gupta
- Department of Immunology, Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, United States
| | - Evelyn Garcia
- Department of Immunology, Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, United States
| | - Amrita Sarkar
- Department of Medicine, Center of Translational Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Sumit Kapoor
- Beckman Coulter, Inc., 11800 SW 147th Ave, Miami, FL-33196, United States
| | - Khadija Rafiq
- Department of Medicine, Center of Translational Medicine, Thomas Jefferson University, Philadelphia, PA, United States
| | - Hitendra S Chand
- Department of Immunology, Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, United States
| | - Rahul Dev Jayant
- Department of Immunology, Center for Personalized Nanomedicine, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, United States
| |
Collapse
|
5
|
Foronjy RF, Majka SM. The potential for resident lung mesenchymal stem cells to promote functional tissue regeneration: understanding microenvironmental cues. Cells 2014; 1:874. [PMID: 23626909 PMCID: PMC3634590 DOI: 10.3390/cells1040874] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Tissue resident mesenchymal stem cells (MSCs) are important regulators of tissue repair or regeneration, fibrosis, inflammation, angiogenesis and tumor formation. Bone marrow derived mesenchymal stem cells (BM-MSCs) and endothelial progenitor cells (EPC) are currently being considered and tested in clinical trials as a potential therapy in patients with such inflammatory lung diseases including, but not limited to, chronic lung disease, pulmonary arterial hypertension (PAH), pulmonary fibrosis (PF), chronic obstructive pulmonary disease (COPD)/emphysema and asthma. However, our current understanding of tissue resident lung MSCs remains limited. This review addresses how environmental cues impact on the phenotype and function of this endogenous stem cell pool. In addition, it examines how these local factors influence the efficacy of cell-based treatments for lung diseases.
Collapse
Affiliation(s)
- Robert F. Foronjy
- Department of Medicine, St. Luke’s Roosevelt Health Sciences Center, Antenucci Building, 432 West 58th Street, Room 311, New York, NY 10019, USA; ; Tel.: +1-212-523-7265
| | - Susan M. Majka
- Department of Medicine, Vanderbilt University, 1161 21st. Ave S, T1218 MCN, Nashville, TN 37232, USA
- Author to whom correspondence should be addressed; ; Tel.: +1-303-883-8786
| |
Collapse
|
6
|
Ran C, Liu H, Hitoshi Y, Israel MA. Proliferation-independent control of tumor glycolysis by PDGFR-mediated AKT activation. Cancer Res 2013; 73:1831-43. [PMID: 23322009 DOI: 10.1158/0008-5472.can-12-2460] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The differences in glucose metabolism that distinguish most malignant and normal tissues have called attention to the importance of understanding the molecular mechanisms by which tumor energy metabolism is regulated. Receptor tyrosine kinase (RTK) pathways that are implicated in proliferation and transformation have been linked to several aspects of tumor glucose metabolism. However, the regulation of glycolysis has invariably been examined under conditions in which proliferation is concomitantly altered. To determine whether RTKs directly regulate glycolysis without prerequisite growth modulation, we first identified a specific RTK signaling pathway, platelet-derived growth factor (PDGF)/PDGF receptor (PDGFR) that regulates glycolysis in glioma-derived tumor stem-like cells from a novel mouse model. We determined that PDGF-regulated glycolysis occurs independent of PDGF-regulated proliferation but requires the activation of AKT, a known metabolic regulator in tumor. Our findings identifying a key characteristic of brain tumors, aerobic glycolysis, mediated by a pathway with multiple therapeutic targets suggests the possibility of inhibiting tumor energy metabolism while also treating with agents that target other pathways of pathologic significance.
Collapse
Affiliation(s)
- Cong Ran
- Department of Pediatrics and Genetics, Norris Cotton Cancer Center, Hanover, New Hampshire, USA
| | | | | | | |
Collapse
|
7
|
Fishbein I, Chorny M, Adamo RF, Forbes SP, Corrales RA, Alferiev IS, Levy RJ. Endovascular Gene Delivery from a Stent Platform: Gene- Eluting Stents. ACTA ACUST UNITED AC 2013. [PMID: 26225356 PMCID: PMC4516395 DOI: 10.4172/2329-9495.1000109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A synergistic impact of research in the fields of post-angioplasty restenosis, drug-eluting stents and vascular gene therapy over the past 15 years has shaped the concept of gene-eluting stents. Gene-eluting stents hold promise of overcoming some biological and technical problems inherent to drug-eluting stent technology. As the field of gene-eluting stents matures it becomes evident that all three main design modules of a gene-eluting stent: a therapeutic transgene, a vector and a delivery system are equally important for accomplishing sustained inhibition of neointimal formation in arteries treated with gene delivery stents. This review summarizes prior work on stent-based gene delivery and discusses the main optimization strategies required to move the field of gene-eluting stents to clinical translation.
Collapse
Affiliation(s)
- Ilia Fishbein
- Dept of Pediatrics, Division of Cardiology, The Children's Hospital of Philadelphia, USA ; The University of Pennsylvania, USA
| | - Michael Chorny
- Dept of Pediatrics, Division of Cardiology, The Children's Hospital of Philadelphia, USA ; The University of Pennsylvania, USA
| | - Richard F Adamo
- Dept of Pediatrics, Division of Cardiology, The Children's Hospital of Philadelphia, USA
| | - Scott P Forbes
- Dept of Pediatrics, Division of Cardiology, The Children's Hospital of Philadelphia, USA
| | - Ricardo A Corrales
- Dept of Pediatrics, Division of Cardiology, The Children's Hospital of Philadelphia, USA
| | - Ivan S Alferiev
- Dept of Pediatrics, Division of Cardiology, The Children's Hospital of Philadelphia, USA ; The University of Pennsylvania, USA
| | - Robert J Levy
- Dept of Pediatrics, Division of Cardiology, The Children's Hospital of Philadelphia, USA ; The University of Pennsylvania, USA
| |
Collapse
|
8
|
Abstract
It has been appreciated over the past two decades that arterial remodelling, in addition to intimal hyperplasia, contributes significantly to the degree of restenosis that develops following revascularization procedures. Remodelling appears to be an adventitia-based process that is contributed to by multiple factors including cytokines and growth factors that regulate extracellular matrix or phenotypic transformation of vascular cells including myofibroblasts. In this review, we summarize the currently available information from animal models as well as clinical investigations regarding arterial remodelling. The factors that contribute to this process are presented with an emphasis on potential therapeutic methods to enhance favourable remodelling and prevent restenosis.
Collapse
Affiliation(s)
- Shakti A Goel
- Department of Surgery, University of Wisconsin, 1111 Highland Ave., Madison, WI 53705, USA
| | | | | | | |
Collapse
|
9
|
Zhuang D, Balani P, Pu Q, Thakran S, Hassid A. Suppression of PKG by PDGF or nitric oxide in differentiated aortic smooth muscle cells: obligatory role of protein tyrosine phosphatase 1B. Am J Physiol Heart Circ Physiol 2010; 300:H57-63. [PMID: 21057040 DOI: 10.1152/ajpheart.00225.2010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Treatment of aortic smooth muscle cells with PDGF induces the upregulation of protein tyrosine phosphatase 1B (PTP1B). PTP1B, in turn, decreases the function of several growth factor receptors, thus completing a negative feedback loop. Studies have reported that PDGF induces the downregulation of PKG as part of a repertoire of dedifferentiation of vascular smooth muscle cells. Other studies have reported that chronic nitric oxide (NO) treatment also induces the downregulation of PKG. In the present study, we tested the hypothesis that the downregulation of PKG by PDGF or NO in differentiated rat aortic smooth muscle cells can be attributed to the upregulation of PTP1B. We found that treatment with PDGF or NO induced an upregulation of PTP1B levels. Overexpression of PTP1B induced a marked downregulation of PKG mRNA and protein levels, whereas the expression of dominant negative PTP1B or short interfering RNA directed against PTP1B blocked the capacity of PDGF or NO to decrease PKG levels. We conclude that the upregulation of PTP1B by PDGF or NO is both necessary and sufficient to induce the downregulation of PKG via an effect on PKG mRNA levels.
Collapse
Affiliation(s)
- Daming Zhuang
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | | | | | | |
Collapse
|
10
|
Godin B, Sakamoto JH, Serda RE, Grattoni A, Bouamrani A, Ferrari M. Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends Pharmacol Sci 2010; 31:199-205. [PMID: 20172613 PMCID: PMC2862836 DOI: 10.1016/j.tips.2010.01.003] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 01/25/2010] [Accepted: 01/26/2010] [Indexed: 01/12/2023]
Abstract
Nanomedicine is an emerging field that utilizes nanotechnology concepts for advanced therapy and diagnostics. This convergent discipline merges research areas such as chemistry, biology, physics, mathematics and engineering. It therefore bridges the gap between molecular and cellular interactions, and has the potential to revolutionize medicine. This review presents recent developments in nanomedicine research poised to have an important impact on the treatment of cardiovascular disease. This will occur through improvement of the diagnosis and therapy of cardiovascular disorders as atherosclerosis, restenosis and myocardial infarction. Specifically, we discuss the use of nanoparticles for molecular imaging and advanced therapeutics, specially designed drug eluting stents and in vivo/ex vivo early detection techniques.
Collapse
Affiliation(s)
- Biana Godin
- University of Texas Health Science Center at Houston (UTHSC-H), Department of NanoMedicine and Biomedical Engineering, 1825 Pressler, Suite 537, Houston, TX 77030
| | - Jason H. Sakamoto
- University of Texas Health Science Center at Houston (UTHSC-H), Department of NanoMedicine and Biomedical Engineering, 1825 Pressler, Suite 537, Houston, TX 77030
| | - Rita E. Serda
- University of Texas Health Science Center at Houston (UTHSC-H), Department of NanoMedicine and Biomedical Engineering, 1825 Pressler, Suite 537, Houston, TX 77030
| | - Alessandro Grattoni
- University of Texas Health Science Center at Houston (UTHSC-H), Department of NanoMedicine and Biomedical Engineering, 1825 Pressler, Suite 537, Houston, TX 77030
| | - Ali Bouamrani
- University of Texas Health Science Center at Houston (UTHSC-H), Department of NanoMedicine and Biomedical Engineering, 1825 Pressler, Suite 537, Houston, TX 77030
| | - Mauro Ferrari
- University of Texas Health Science Center at Houston (UTHSC-H), Department of NanoMedicine and Biomedical Engineering, 1825 Pressler, Suite 537, Houston, TX 77030
- University of Texas MD Anderson Cancer Center, Department of Experimental Therapeutics, Unit 422, 1515 Holcombe Blvd., Houston, TX 77030
- Rice University, Department of Bioengineering, Houston, TX 77005
| |
Collapse
|
11
|
Birkenhauer P, Yang Z, Gander B. Preventing restenosis in early drug-eluting stent era: recent developments and future perspectives. J Pharm Pharmacol 2010; 56:1339-56. [PMID: 15525440 DOI: 10.1211/0022357044797] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
Restenosis is the major limitation of the successful therapy of percutaneous coronary intervention (PCI) for patients with coronary artery disease. The problem was appreciated in the late 1970s to early 1980s. Only in recent years, anti-restenotic therapy has achieved a breakthrough with the development of drug-eluting stents. Here, we provide an overview about pathological mechanisms of restenosis after PCI. Present therapeutic approaches to overcome restenosis and recent clinical results are revisited, and some major concerns in the post-drug-eluting stent era are discussed.
Collapse
Affiliation(s)
- Peter Birkenhauer
- Institute of Pharmaceutical Sciences, ETH Hönggerberg HCI, 8093 Zürich, Switzerland
| | | | | |
Collapse
|
12
|
Afergan E, Ben David M, Epstein H, Koroukhov N, Gilhar D, Rohekar K, Danenberg HD, Golomb G. Liposomal simvastatin attenuates neointimal hyperplasia in rats. AAPS JOURNAL 2010; 12:181-7. [PMID: 20143196 DOI: 10.1208/s12248-010-9173-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 01/04/2010] [Indexed: 01/12/2023]
Abstract
Monocytes, macrophages, and inflammation play a key role in the process of neointimal proliferation and restenosis. The present study evaluated whether systemic and transient depletion of monocytes could be obtained by a single intravenous (IV) injection of simvastatin liposomes, for the inhibition of neointima formation. Balloon-injured carotid artery rats (n = 30) were randomly assigned to treatment groups of free simvastatin, simvastatin in liposomes (3 mg/kg), and saline (control). Stenosis and neointima to media ratio (N/M) were determined 14 days following single IV injection at the time of injury by morphometric analysis. Depletion of circulating monocytes was determined by flow cytometry analyzes of blood specimens. Inhibition of RAW264.7, J774, and THP-1 proliferation by simvastatin-loaded liposomes and free simvastatin was determined by the 3-(4, 5-dimethylthiazolyl-2)-2, 5- diphenyltetrazolium bromide assay. Simvastatin liposomes were successfully formulated and were found to be 1.5-2 times more potent than the free drug in suppressing the proliferation of monocytes/macrophages in cell cultures of RAW 264.7, J774, and THP-1. IV injection of liposomal simvastatin to carotid-injured rats (3 mg/kg, n = 4) resulted in a transient depletion of circulating monocytes, significantly more prolonged than that observed following treatment with free simvastatin. Administration to balloon-injured rats suppressed neointimal growth. N/M at 14 days was 1.56 +/- 0.16 and 0.90 +/- 0.12, control and simvastatin liposomes, respectively. One single systemic administration of liposomal simvastatin at the time of injury significantly suppresses neointimal formation in the rat model of restenosis, mediated via a partial and transient depletion of circulating monocytes.
Collapse
Affiliation(s)
- Eyal Afergan
- Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Liu Y, Li W, Ye C, Lin Y, Cheang TY, Wang M, Zhang H, Wang S, Zhang L, Wang S. Gambogic Acid Induces G0/G1 Cell Cycle Arrest and Cell Migration Inhibition Via Suppressing PDGF Receptor β Tyrosine Phosphorylation and Rac1 Activity in Rat Aortic Smooth Muscle Cells. J Atheroscler Thromb 2010; 17:901-13. [DOI: 10.5551/jat.3491] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Yong Liu
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - Wen Li
- Laboratory of Department of Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - CaiSheng Ye
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - Ying Lin
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - Tuck-Yun Cheang
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - Mian Wang
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - Hui Zhang
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - SanMing Wang
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - LongJuan Zhang
- Laboratory of Department of Surgery, The First Affiliated Hospital, Sun Yat-sen University
| | - ShenMing Wang
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University
| |
Collapse
|
14
|
Cohen-Sela E, Teitlboim S, Chorny M, Koroukhov N, Danenberg HD, Gao J, Golomb G. Single and double emulsion manufacturing techniques of an amphiphilic drug in PLGA nanoparticles: formulations of mithramycin and bioactivity. J Pharm Sci 2009; 98:1452-62. [PMID: 18704956 DOI: 10.1002/jps.21527] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Formulation of hydrophilic compounds in nanoparticles is problematic due to their escape to the external aqueous phase. The certain amphiphilic nature of mithramycin, utilized clinically in cancer, makes its incorporation into nanoparticles an interesting challenge, elucidating the formulation factors of amphiphilics in nanoparticles. We hypothesized that mithramycin nanoparticles could provide more effective therapy of restenosis due to its antiproliferating and potential monocyte inhibition properties. The nanoprecipitation technique (designed for lipophilic compounds) was found preferable, with better encapsulation efficiency, than the emulsification solvent diffusion (ESD) technique (79.3 +/- 3.1% and 40.8 +/- 1.1%, respectively). The double emulsion solvent diffusion (DESD) method, designed for hydrophilic compounds, yielded similar encapsulation efficiency (80%). Nanoparticles size was, 110 +/- 36, 130 +/- 30, and 160 +/- 31 nm, ESD, nanoprecipitation, and DESD techniques, respectively. Mithramycin solution and in nanoparticles significantly inhibited RAW264 macrophages and smooth muscle cells in a dose-dependent relationship, and reduced the number of circulating monocytes in rabbits. However, no inhibition of restenosis was obtained in the rat carotid model following i.v. administration of mithramycin nanoparticles. It can be concluded that PLGA-based polymeric nanoparticles of mithramycin can be formulated by techniques suitable for lipophilic/hydrophilic compounds. The ineffectiveness in the rat restenosis model is probably due to the short depletion period of circulating monocytes and lack of arterial targeting.
Collapse
Affiliation(s)
- Einat Cohen-Sela
- Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, P.O. Box 12065, Jerusalem 91120, Israel
| | | | | | | | | | | | | |
Collapse
|
15
|
Sparwel J, Vantler M, Caglayan E, Kappert K, Fries JWU, Dietrich H, Böhm M, Erdmann E, Rosenkranz S. Differential effects of red and white wines on inhibition of the platelet-derived growth factor receptor: impact of the mash fermentation. Cardiovasc Res 2008; 81:758-70. [PMID: 19074160 DOI: 10.1093/cvr/cvn340] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Moderate wine consumption is associated with a significant reduction of cardiovascular mortality. The molecular basis of this phenomenon remains unknown. Platelet-derived growth factor (PDGF) is an important contributor to atherogenesis. We investigated the effects of selected red and white wines on PDGF receptor (PDGFR) signalling in rat and human vascular smooth muscle cells (VSMCs). METHODS AND RESULTS All red wines concentration dependently inhibited the ligand-induced tyrosine phosphorylation of the PDGFR, downstream signalling events such as mitogen activated protein (MAP) kinase activation (Erk 1/2) and induction of immediate early genes (Egr-1, c-fos), and PDGF-induced cellular responses, whereas all white wines had no effect. At concentrations achieved after wine consumption in humans, all red wines completely abolished PDGF-dependent VSMC proliferation and migration. Red wines also inhibited PDGFR phosphorylation in vascular tissue, and in human coronary smooth muscle cells. Quantitative analyses of all tested wines and of samples collected at various time points (Days 0-16) of the 'mash fermentation', which is only performed for red wine, revealed that flavonoids of the catechin family, which potently inhibit PDGFR signalling, are extracted from grape seeds and skins during this process and therefore accumulate specifically in red wine. The accumulation of flavonoids correlated with the inhibitory potency of red wines on PDGFR signalling. Furthermore, this procedure could be imitated by incubation of wines with shredded grape seeds, and flavonoid-enriched white wine inhibited the PDGFR as potently as red wines. CONCLUSION Only red wines abrogate a critical pathogenic mechanism during atherogenesis, PDGFR signalling, in VSMCs. This effect is mediated by non-alcoholic constituents, which accumulate during the mash fermentation. Our findings offer a molecular explanation for the vasoprotective effects particularly of red wine. Therefore, future epidemiological studies should consider differential protective effects of red and white wine in vivo.
Collapse
Affiliation(s)
- Jan Sparwel
- Klinik III für Innere Medizin, Universität zu Köln, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cohen-Sela E, Chorny M, Koroukhov N, Danenberg HD, Golomb G. A new double emulsion solvent diffusion technique for encapsulating hydrophilic molecules in PLGA nanoparticles. J Control Release 2008; 133:90-5. [PMID: 18848962 DOI: 10.1016/j.jconrel.2008.09.073] [Citation(s) in RCA: 183] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 09/08/2008] [Accepted: 09/14/2008] [Indexed: 10/21/2022]
Abstract
The commonly utilized techniques for encapsulating hydrophilic molecules in NP suffer from low encapsulation efficiency because of the drug rapid partitioning to the external aqueous phase. We hypothesized that combining the double emulsion system with a partially water-soluble organic solvent, could result in better encapsulation yield of hydrophilic molecules in nano-sized NP, and the utilization of both biocompatible surfactants and solvents. As a model drug we used alendronate, a hydrophilic low MW bisphosphonate. The new NP preparation technique, double emulsion solvent diffusion (DES-D), resulted in improved formulation characteristics including smaller size, lower size distribution, higher encapsulation yield, and more biocompatible ingredients in comparison to classical methods. The utilization of partially water-miscible organic solvent (ethyl acetate) enabled rapid diffusion through the aqueous phase forming smaller NP. In addition, the formulated alendronate NP exhibited profound inhibition of raw 264 macrophages, depletion of rabbit's circulating monocytes, and inhibition of restenosis in the rat model. It is concluded that the new technique is advantageous in terms of smaller size, lower size distribution, higher encapsulation yield, and more biocompatible ingredients, with unaltered bioactivity.
Collapse
Affiliation(s)
- Einat Cohen-Sela
- Department of Pharmaceutics, Faculty of Medicine, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
17
|
Epstein H, Rabinovich L, Banai S, Elazar V, Gao J, Chorny M, Danenebrg HD, Golomb G. Predicting in vivo efficacy of potential restenosis therapies by cell culture studies: species-dependent susceptibility of vascular smooth muscle cells. Open Cardiovasc Med J 2008; 2:60-9. [PMID: 18949101 PMCID: PMC2570571 DOI: 10.2174/1874192400802010060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 07/10/2008] [Accepted: 07/14/2008] [Indexed: 11/25/2022] Open
Abstract
Although drug-eluting stents (DES) are successfully utilized for restenosis therapy, the development of local and systemic therapeutic means including nanoparticles (NP) continues. Lack of correlation between in vitro and in vivo studies is one of the major drawbacks in developing new drug delivery systems. The present study was designed to examine the applicability of the arterial explant outgrowth model, and of smooth muscle cells (SMC) cultures for prescreening of possible drugs. Elucidation of different species sensitivity (rat, rabbit, porcine and human) to diverse drugs (tyrphostins, heparin and bisphsophonates) and a delivery system (nanoparticles) could provide a valuable screening tool for further in vivo studies. The anticipated sensitivity ranking from the explant outgrowth model and SMC mitotic rates (porcine>rat>>rabbit>human) do not correlate with the observed relative sensitivity of those animals to antiproliferative therapy in restenosis models (rat≥rabbit>porcine>human). Similarly, the inhibitory profile of the various antirestenotic drugs in SMC cultures (rabbit>porcine>rat>>human) do not correlate with animal studies, the rabbit- and porcine-derived SMC being highly sensitive. The validity of in vitro culture studies for the screening of controlled release delivery systems such as nanoparticles is limited. It is suggested that prescreening studies of possible drug candidates for restenosis therapy should include both SMC cell cultures of rat and human, appropriately designed with a suitable serum.
Collapse
Affiliation(s)
- Hila Epstein
- Dept. of Pharmaceutics, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhuang D, Pu Q, Ceacareanu B, Chang Y, Dixit M, Hassid A. Chronic insulin treatment amplifies PDGF-induced motility in differentiated aortic smooth muscle cells by suppressing the expression and function of PTP1B. Am J Physiol Heart Circ Physiol 2008; 295:H163-73. [PMID: 18456732 DOI: 10.1152/ajpheart.01105.2007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperinsulinemia plays a major role in the pathogenesis of vascular disease. Restenosis occurs at an accelerated rate in hyperinsulinemia and is dependent on increased vascular smooth muscle cell movement from media to neointima. PDGF plays a critical role in mediating neointima formation in models of vascular injury. We have reported that PDGF increases the levels of protein tyrosine phosphatase PTP1B and that PTP1B suppresses PDGF-induced motility in cultured cells and that it attenuates neointima formation in injured carotid arteries. Others have reported that insulin enhances the mitogenic and motogenic effects of PDGF in cultured smooth muscle cells and that hyperinsulinemia promotes vascular remodeling. In the present study, we tested the hypothesis that insulin amplifies PDGF-induced cell motility by suppressing the expression and function of PTP1B. We found that chronic but not acute treatment of cells with insulin enhances PDGF-induced motility in differentiated cultured primary rat aortic smooth muscle cells and that it suppresses PDGF-induced upregulation of PTP1B protein. Moreover, insulin suppresses PDGF-induced upregulation of PTP1B mRNA levels, PTP1B enzyme activity, and binding of PTP1B to the PDGF receptor-beta, and it enhances PDGF-induced PDGF receptor phosphotyrosylation. Treatment with insulin induces time-dependent upregulation of phosphatidylinositol 3-kinase (PI3-kinase)-delta and activation of Akt, an enzyme downstream of PI3-kinase. Finally, inhibition of PI3-kinase activity, or its function, by pharmacological or genetic means rescues PTP1B activity in insulin-treated cells. These observations uncover novel mechanisms that explain how insulin amplifies the motogenic capacity of the pivotal growth factor PDGF.
Collapse
Affiliation(s)
- Daming Zhuang
- Dept. of Physiology, Univ. of Tennessee, Memphis, TN 38163, USA
| | | | | | | | | | | |
Collapse
|
19
|
Effects of pentoxifylline on the vascular response to injury after angioplasty in rabbit iliac arteries. Basic Res Cardiol 2007; 103:257-64. [DOI: 10.1007/s00395-007-0694-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 11/22/2007] [Indexed: 10/22/2022]
|
20
|
Charron T, Nili N, Strauss BH. The cell cycle: a critical therapeutic target to prevent vascular proliferative disease. Can J Cardiol 2007; 22 Suppl B:41B-55B. [PMID: 16498512 PMCID: PMC2780832 DOI: 10.1016/s0828-282x(06)70986-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Percutaneous coronary intervention is the preferred revascularization approach for most patients with coronary artery disease. However, this strategy is limited by renarrowing of the vessel by neointimal hyperplasia within the stent lumen (in-stent restenosis). Vascular smooth muscle cell proliferation is a major component in this healing process. This process is mediated by multiple cytokines and growth factors, which share a common pathway in inducing cell proliferation: the cell cycle. The cell cycle is highly regulated by numerous mechanisms ensuring orderly and coordinated cell division. The present review discusses current concepts related to regulation of the cell cycle and new therapeutic options that target aspects of the cell cycle.
Collapse
Affiliation(s)
| | | | - Bradley H Strauss
- Correspondence: Dr Bradley H Strauss, St Michael’s Hospital, 30 Bond Street, Toronto, Ontario M5B IW8. Telephone 416-864-5913, fax 416-864-5978, e-mail
| |
Collapse
|
21
|
Pestana IA, Vazquez-Padron RI, Aitouche A, Pham SM. Nicotinic and PDGF-receptor function are essential for nicotine-stimulated mitogenesis in human vascular smooth muscle cells. J Cell Biochem 2006; 96:986-95. [PMID: 16149045 DOI: 10.1002/jcb.20564] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cigarette smoking is implicated in the formation of occlusive vascular diseases. Nicotine's role in this process is incompletely understood. Nicotine's effect on human aortic vascular smooth muscle cells (HaVSMC) and the role of the nicotinic receptor (nAChR), platelet-derived growth factor (PDGF), and the PDGF-receptor (PDGF-R) in this response were studied. Nicotine's mitogenic effect was characterized by three methods: thymidine incorporation, a viability/proliferation assay based on metabolic conversion of tetrazolium salt to formazan dye and cell counting. Nicotine administration (10(-6) M) stimulated cell cycle entry marked by increased DNA synthesis, PCNA and cyclin D1 production, and increased cell division. Nicotinic receptor blockade with d-tubocurarine, a nicotinic AchR blocker, decreased nicotine-induced DNA synthesis, and cell division (0.33 +/- 0.04, 0.77 +/- 0.31-fold decrease, respectively). Nicotine increased cellular PDGF-BB transcript levels and protein release (ELISA: 1.6 +/- 0.5-fold increase) but not PDGF-AA or PDGF-AB release. Nicotine increased PDGFbeta-receptor protein content. PDGF inactivation with anti-PDGF antibody abolished nicotine-induced DNA synthesis (1.9 +/- 0.08-fold decrease). PDGF-R blockade with the PDGF-R antagonist tyrphostin AG 1295 decreased nicotine-induced DNA synthesis and cell division (0.25 +/- 0.01, 0.44 +/- 0.2-fold decrease, respectively). PDGF-R blockade reversed nicotine-stimulated increases in PDGF release, PDGF-BB transcripts, and PDGF-receptor levels (0.68 +/- 0.34; 0.46 +/- 0.01; 0.28 +/- 0.01-fold decrease, respectively). In conclusion, nicotine-mediated activation of nAChRs increases PDGF-BB transcription and protein production as well as PDGF beta-receptor levels. PDGF-BB/PDGF-R interaction is vital in nicotine's mitogenic actions on human aortic smooth muscle cells.
Collapse
MESH Headings
- Adult
- Aged
- Aorta/drug effects
- Aorta/metabolism
- Becaplermin
- Blotting, Western
- Cell Cycle
- Cell Division
- Cell Line
- Cell Proliferation
- Cell Survival
- Cells, Cultured
- Culture Media, Conditioned/pharmacology
- Cyclin D1/metabolism
- DNA/chemistry
- Humans
- Indicators and Reagents/pharmacology
- Ligands
- Male
- Middle Aged
- Mitogens
- Models, Statistical
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Nicotine/metabolism
- Nicotine/pharmacology
- Nicotinic Antagonists/pharmacology
- Nitroblue Tetrazolium/pharmacology
- Platelet-Derived Growth Factor/metabolism
- Proliferating Cell Nuclear Antigen/metabolism
- Proto-Oncogene Proteins c-sis
- RNA, Messenger/metabolism
- Receptors, Cholinergic/metabolism
- Receptors, Nicotinic/metabolism
- Receptors, Platelet-Derived Growth Factor/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Smoking
- Thymidine/metabolism
- Time Factors
- Tubocurarine/pharmacology
Collapse
Affiliation(s)
- Ivo A Pestana
- Department of Surgery, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | | | |
Collapse
|
22
|
Chen Z, Lee FY, Bhalla KN, Wu J. Potent inhibition of platelet-derived growth factor-induced responses in vascular smooth muscle cells by BMS-354825 (dasatinib). Mol Pharmacol 2006; 69:1527-33. [PMID: 16436588 DOI: 10.1124/mol.105.020172] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abnormal migration and proliferation of vascular smooth muscle cells (VSMCs) are key events in the pathogenesis of restenosis that undermine the long-term benefit of widely performed balloon angioplasty and stenting procedures. Platelet-derived growth factor (PDGF) is a potent mitogen and motogen for VSMCs and is known to play a prominent role in the intimal accumulation of smooth muscle cells. In this study, we analyzed the effects of a novel protein tyrosine kinase inhibitor, BMS-354825 (dasatinib), on PDGF-stimulated VSMCs. BMS-354825 is an orally bioavailable dual Src/Bcr-Abl tyrosine kinase inhibitor currently undergoing clinical trials in cancer patients. We found that BMS-354825 inhibited PDGF-stimulated activation of PDGF receptor (PDGFR), STAT3, Akt, and Erk2 in rat A10 VSMCs and in primary cultures of human aortic smooth muscle cells (AoSMCs) at low nanomolar concentrations. The 50% inhibition of the PDGFRbeta tyrosine kinase activity in vitro by BMS-354825 was observed at 4 nM. Direct comparison of BMS-354825 and another PDGFR inhibitor, imatinib (Gleevec, STI571), in VSMCs indicated that BMS-354825 is 67-fold more potent than imatinib in inhibition of PDGFR activation. BMS-354825 also inhibited Src tyrosine kinase in A10 cells. At the cell level, PDGF stimulated migration and proliferation of A10 cells and human AoSMCs, both of which were inhibited by BMS-354825 in a concentration dependent manner in the low nanomolar range. These results suggest that BMS-354825 is a potent inhibitor of PDGF-stimulated VSMC activities and a potential agent for the development of a new therapy for vascular obstructive diseases such as restenosis.
Collapse
Affiliation(s)
- Zhengming Chen
- Molecular Oncology Program, SRB-3, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, and the Department of Interdisciplinary Oncology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
23
|
Abstract
The introduction and widespread use of coronary stents have been the most important advancement in the percutaneous treatment of coronary artery disease since the introduction of balloon angioplasty. Coronary artery stents reduce the rate of angiographic and clinical restenosis compared to balloon angioplasty. This angiographic restenosis was further reduced with the introduction of drug-eluting stents and hence further reduction in the frequency of major adverse cardiac events. Herein we present a comprehensive and up-to-date review about the use of drug-eluting stents in the treatment of coronary artery disease.
Collapse
|
24
|
Kappert K, Caglayan E, Huntgeburth M, Bäumer AT, Sparwel J, Uebel M, Rosenkranz S. 17Beta-estradiol attenuates PDGF signaling in vascular smooth muscle cells at the postreceptor level. Am J Physiol Heart Circ Physiol 2005; 290:H538-46. [PMID: 16227346 DOI: 10.1152/ajpheart.00240.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Estrogens are known to display significant vasoprotective effects in premenopausal women. PDGF is an important mediator of vascular smooth muscle cell (VSMC) migration and proliferation, and thus atherogenesis. We analyzed the effects of 17beta-estradiol (E2) on beta-PDGF receptor (beta-PDGFR) expression/activation and PDGF-dependent VSMC proliferation, migration, and downstream signaling events. Pretreatment of VSMCs with E2 (0.3 microM-0.1 mM) for 24 h concentration-dependently inhibited PDGF-induced proliferation and migration up to 85.5 +/- 15.8% and 79.4 +/- 9.8%, respectively (both P < 0.05). These effects were prevented by coincubation with the ER antagonist ICI-182780. E2 did not alter beta-PDGFR expression, nor did it impair the ligand-induced tyrosine phosphorylation of the beta-PDGFR and consecutive binding of the receptor-associated signaling molecules Src homology region 2-containing phosphatase-2, PLC-gamma, phosphatidylinositol 3-kinase, and RasGAP. Thus estrogens inhibited PDGF-induced cellular responses at the postreceptor level. Although stimulation of VSMCs with PDGF-BB led to a transient increase of rac-1 activity, pretreatment with E2 for 24 h concentration-dependently inhibited PDGF-induced rac-1 activation. Furthermore, inhibition of rac-1 by Clostridium sordellii lethal toxin or overexpression of dominant-negative rac-1 (rac-N17) significantly inhibited PDGF-induced VSMC migration, indicating that rac-1 activity is essential for PDGF-dependent cellular responses. E2 did not further reduce PDGF-induced migration in rac-N17-overexpressing cells, suggesting that it diminishes VSMC migration by altering rac-1 activity. We conclude that E2 attenuates PDGF-dependent cellular functions of VSMCs downstream of the beta-PDGFR via inhibition of rac-1. These observations offer a molecular explanation for the vasoprotective effects of estrogens.
Collapse
MESH Headings
- Animals
- Cell Cycle/drug effects
- Cell Movement/physiology
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cells, Cultured
- Chemotaxis/drug effects
- Chemotaxis/physiology
- Estradiol/pharmacology
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/physiology
- Platelet-Derived Growth Factor/metabolism
- Rats
- Rats, Inbred WKY
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Receptors, Estrogen/physiology
- Signal Transduction/drug effects
- rac1 GTP-Binding Protein/metabolism
- rac1 GTP-Binding Protein/physiology
Collapse
Affiliation(s)
- Kai Kappert
- Klinik III für Innere Medizin der Universität zu Köln, Kerpener Str. 62, 50924 Köln, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Kiyan J, Kiyan R, Haller H, Dumler I. Urokinase-induced signaling in human vascular smooth muscle cells is mediated by PDGFR-beta. EMBO J 2005; 24:1787-97. [PMID: 15889147 PMCID: PMC1142599 DOI: 10.1038/sj.emboj.7600669] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2004] [Accepted: 03/31/2005] [Indexed: 11/09/2022] Open
Abstract
Urokinase (uPA)-induced signaling in human vascular smooth muscle cells (VSMC) elicits important cellular functional responses, such as cell migration and proliferation. However, how intracellular signaling is linked to glycolipid-anchored uPA receptor (uPAR) is unknown. We provide evidence that uPAR activation by uPA induces its association with platelet-derived growth factor receptor (PDGFR)-beta. The interaction results in PDGF-independent PDGFR-beta activation by phosphorylation of cytoplasmic tyrosine kinase domains and receptor dimerization. Association of the receptors as well as the tyrosine kinase activity of PDGFR-beta are decisive in mediating uPA-induced downstream signaling that regulates VSMC migration and proliferation. These findings provide a molecular basis for mechanisms VSMC use to induce uPAR- and PDGFR-directed signaling. The processes may be relevant to VSMC function and vascular remodeling.
Collapse
Affiliation(s)
- Julia Kiyan
- Nephrology Department, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany.
| | | | | | | |
Collapse
|
26
|
Linde J, Strauss BH. Pharmacological treatment for prevention of restenosis. Expert Opin Emerg Drugs 2005; 6:281-302. [PMID: 15989527 DOI: 10.1517/14728214.6.2.281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Coronary artery disease (CAD) is the leading cause of mortality and morbidity among adults in the Western world. Coronary artery bypass grafting and percutaneous coronary interventions (PCI) have gained widespread acceptance for the treatment of symptomatic CAD. There has been an explosive growth worldwide in the utilisation of PCI, such as balloon angioplasty and stenting, which now accounts for over 50% of coronary revascularisation. Despite the popularity of PCI, the problem of recurrent narrowing of the dilated artery (restenosis) continues to vex investigators. In recent years, significant advances have occurred in the understanding of restenosis. Two processes seem to contribute to restenosis: remodelling (vessel size changes) and intimal hyperplasia (vascular smooth muscle cell [VSMC] proliferation and extracellular matrix [ECM] deposition). Despite considerable efforts, pharmacological approaches to decrease restenosis have been largely unsuccessful and the only currently applied modality to reduce the restenosis rate is stenting. However, stenting only prevents remodelling and does not inhibit intimal hyperplasia. Several potential targets for inhibiting restenosis are currently under investigation including platelet activation, the coagulation cascade, VSMC proliferation and migration, and ECM synthesis. In addition, new approaches for local drug therapy, such as drug eluting stents, are currently being evaluated in preclinical and clinical studies. In this article, we critically review the current status of drugs that are being evaluated for restenosis at various stages of development (in vitro, preclinical animal models and human trials).
Collapse
Affiliation(s)
- J Linde
- The Roy and Ann Foss Interventional Cardiology Research Program, Terrence Donnelly Heart Center, 30 Bond Street, St. Michael's Hospital, Toronto, Ontario, M5B 1W8, Canada
| | | |
Collapse
|
27
|
Banai S, Chorny M, Gertz SD, Fishbein I, Gao J, Perez L, Lazarovichi G, Gazit A, Levitzki A, Golomb G. Locally delivered nanoencapsulated tyrphostin (AGL-2043) reduces neointima formation in balloon-injured rat carotid and stented porcine coronary arteries. Biomaterials 2005; 26:451-61. [PMID: 15275819 DOI: 10.1016/j.biomaterials.2004.02.040] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 02/10/2004] [Indexed: 11/30/2022]
Abstract
Local delivery of antiproliferative drugs encapsulated in biodegradable nanoparticles (NP) has shown promise as an experimental strategy for preventing restenosis development. A novel PDGFRbeta-specific tyrphostin, AGL-2043, was formulated in polylactide-based nanoparticles and was administered intraluminally to the wall of balloon-injured rat carotid and stented pig coronary arteries. The disposition and elimination kinetics within the vessel wall, as well as the antirestenotic potential of the novel drug and delivery system, were evaluated. The efficacy and the local drug elimination kinetics were affected by the size of the NP and the drug-carrier binding mode. Despite similar arterial drug levels 90 min after delivery in rats, small NP were more efficacious in comparison to large NP (90 and 160 nm, respectively). AGL-2043 selectively inhibited vascular SMC in a dose-dependent manner. The antiproliferative effect of nanoencapsulated tyrphostin was considerably higher than that of surface-adsorbed drug. In the pig model, intramural delivery of AGL-2043 resulted in reduced in-stent neointima formation in the coronary arteries over control despite similar degrees of wall injury. The results of this study suggest that locally delivered tyrphostin AGL-2043 formulated in biodegradable NP may be applicable for antirestenotic therapy independent of stent design or type of injury.
Collapse
MESH Headings
- Angioplasty, Balloon, Coronary/adverse effects
- Animals
- Blood Vessel Prosthesis/adverse effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Coated Materials, Biocompatible/administration & dosage
- Coated Materials, Biocompatible/chemistry
- Coated Materials, Biocompatible/pharmacokinetics
- Coronary Restenosis/pathology
- Coronary Restenosis/prevention & control
- Dose-Response Relationship, Drug
- Drug Delivery Systems/methods
- Endothelial Cells/drug effects
- Endothelial Cells/pathology
- Graft Occlusion, Vascular/pathology
- Graft Occlusion, Vascular/prevention & control
- Injections
- Male
- Materials Testing
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Nanotubes/chemistry
- Pharmaceutical Vehicles/administration & dosage
- Pharmaceutical Vehicles/chemistry
- Polyesters/chemistry
- Polyesters/pharmacokinetics
- Rats
- Stents/adverse effects
- Swine
- Treatment Outcome
- Tyrphostins/administration & dosage
- Tyrphostins/pharmacokinetics
Collapse
Affiliation(s)
- Shmuel Banai
- Heiden Department of Cardiology, Bikur Cholim Hospital, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Danenberg HD, Fishbein I, Epstein H, Waltenberger J, Moerman E, Mönkkönen J, Gao J, Gathi I, Reichi R, Golomb G. Systemic depletion of macrophages by liposomal bisphosphonates reduces neointimal formation following balloon-injury in the rat carotid artery. J Cardiovasc Pharmacol 2004; 42:671-9. [PMID: 14576517 DOI: 10.1097/00005344-200311000-00014] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Macrophage depletion by liposomal clodronate inhibits neointimal formation after balloon-injury. The present study examined bisphosphonates (BPs) potency-effect relationship and the role of systemic versus local monocytes in vascular repair. METHODS AND RESULTS Liposomal preparations of clodronate, pamidronate, alendronate, and ISA-13-1 inhibited RAW-264 macrophages growth in a dose-response manner. Administration to balloon-injured rats suppressed neointimal growth. Neointima to media ratio (N/M) at 14 days was reduced from 1.35 +/- 0.22 (control) to 0.4 +/- 0.1 and 0.9 +/- 0.17 by liposomal alendronate (1.5 mg/kg, i.v.) and liposomal ISA-13-1 (15 mg/kg), respectively (n = 8-10, P < 0.05). Suppression of neointimal formation was preserved at 30 days. Subcutaneous administration of liposomal BP (LBP) was also effective in suppressing neointimal formation, while short local intraluminal application had no effect. Immunostaining for ED-1 and ED-2 revealed no resident macrophages in the arterial wall, and reduced macrophage infiltration in LBP-treated animals. Arterial PDGF-B chain and PDGF-beta receptor activation were reduced in LBP-treated animals and up-regulation of the PDGF receptor was noted. CONCLUSIONS Systemic transient inactivation of monocytes and macrophages by LBPs reduced macrophage infiltration and neointimal formation in the rat carotid injury model. The findings demonstrate a BP potency-effect relationship, and highlight the role of circulating monocytes in vascular injury and repair.
Collapse
Affiliation(s)
- Haim D Danenberg
- Department of Cardiology, Hadassah-Hebrew University Hospital, Jerusalem, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cohen-Sacks H, Elazar V, Gao J, Golomb A, Adwan H, Korchov N, Levy RJ, Berger MR, Golomb G. Delivery and expression of pDNA embedded in collagen matrices. J Control Release 2004; 95:309-20. [PMID: 14980779 DOI: 10.1016/j.jconrel.2003.11.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Accepted: 11/04/2003] [Indexed: 11/17/2022]
Abstract
Collagen matrices can be used as non-viral biocompatible gene carriers for localized implantable gene therapy. Collagen matrices embedding pDNA with enhanced binding through condensing agent linkage to the matrix or to the pDNA have been formulated, and characterized in various systems. pDNA and condensed pDNA were released intact from the matrices within 1-2 days. In vitro transfection with collagen matrices containing pDNA (luciferase encoding), pDNA in liposome (LIP), and pDNA with polyethylenimine (PEI) resulted in significantly higher expression levels in comparison to naked pDNA. pDNA-LIP matrices exhibited a dose response transfection of NIH 3T3, 293, MDA-MB-231 and smooth muscle cells (SMCs) in cell cultures. Subdermal implantations of collagen-polylysine-pDNA matrices in rats resulted in significantly higher gene expression levels in comparison to non-condensed pDNA matrices. Perivascular treatment with pDNA matrix and of naked pDNA solution in balloon-injured rat carotid arteries resulted in significant expression. In conclusion, a facile method for embedding cationic formulations of pDNA in collagen matrices was developed. These bioactive matrices seem to be suitable for tissue engineering and local gene therapy strategies.
Collapse
Affiliation(s)
- Hagit Cohen-Sacks
- Department of Pharmaceutics, Faculty of Medicine, School of Pharmacy, The Hebrew University of Jerusalem, Post Office Box 12065, 91120 Jerusalem, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kopp CW, Hölzenbein T, Steiner S, Marculescu R, Bergmeister H, Seidinger D, Mosberger I, Kaun C, Cejna M, Horvat R, Wojta J, Maurer G, Binder BR, Breuss JM, Ecker RC, de Martin R, Minar E. Inhibition of restenosis by tissue factor pathway inhibitor: in vivo and in vitro evidence for suppressed monocyte chemoattraction and reduced gelatinolytic activity. Blood 2004; 103:1653-61. [PMID: 14592830 DOI: 10.1182/blood-2003-04-1148] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractActivation of inflammatory and procoagulant mechanisms is thought to contribute significantly to the initiation of restenosis, a common complication after balloon angioplasty of obstructed arteries. During this process, expression of tissue factor (TF) represents one of the major physiologic triggers of coagulation that results in thrombus formation and the generation of additional signals leading to vascular smooth muscle cell (VSMC) proliferation and migration. In this study, we have investigated the mechanisms by which inhibition of coagulation at an early stage through overexpression of tissue factor pathway inhibitor (TFPI), an endogenous inhibitor of TF, might reduce restenosis. In a rabbit femoral artery model, percutaneous delivery of TFPI using a recombinant adenoviral vector resulted in a significant reduction of the intimamedia ratio 21 days after injury. Investigating several markers of inflammation and coagulation, we found reduced neointimal expression of monocyte chemoattractant protein-1 (MCP-1), lesional monocyte infiltration, and expression of vascular TF, matrix metalloproteinase-2 (MMP-2), and MMP-9. Moreover, overexpression of TFPI suppressed the autocrine release of platelet-derived growth factor BB (PDGF-BB), MCP-1, and MMP-2 in response to factors VIIa and Xa from VSMCs in vitro and inhibited monocyte TF activity. These results suggest that TFPI exerts its action in vivo through not only thrombotic, but also nonthrombotic mechanisms.
Collapse
Affiliation(s)
- Christoph W Kopp
- 2nd Department of Medicine, Division of Angiology, University of Vienna Medical School, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kappert K, Caglayan E, Bäumer AT, Südkamp M, Fätkenheuer G, Rosenkranz S. Ritonavir exhibits anti-atherogenic properties on vascular smooth muscle cells. AIDS 2004; 18:403-11. [PMID: 15090791 DOI: 10.1097/00002030-200402200-00005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES HIV protease inhibitors (PI) such as ritonavir have dramatically decreased HIV-related morbidity and mortality. However they exhibit significant side-effects such as hyperlipidemia, hyperglycemia with or without lipodystrophy, which may increase patients' risk for atherosclerosis. Direct effects of PI on the vascular wall have not been investigated. Platelet-derived growth factor (PDGF) is a major contributor to atherogenesis. DESIGN In the present study the effects of ritonavir on PDGF-BB-induced responses of vascular smooth muscle cells (VSMCs) were evaluated. METHODS PDGF-induced proliferation of VSMCs was measured by BrdU-incorporation, and chemotaxis was assessed by utilizing modified Boyden chambers. Cytotoxicity and apoptosis were quantified using LDH-release- and apoptosis-kits. Immunoprecipitation and Western blot analyses were performed to evaluate betaPDGF receptor (betaPDGFR) expression and phosphorylation, and to monitor intracellular signaling. RESULTS Pretreatment of VSMCs with ritonavir resulted in a significant concentration-dependent inhibition of PDGF-BB-induced cellular responses. At a therapeutic concentration (10 microg/ml), ritonavir significantly reduced PDGF-induced DNA synthesis and chemotaxis by 46.8 +/- 5.5% and 37.2 +/- 3.3%, respectively (P < 0.05 each). In addition it significantly inhibited PDGF-dependent downstream signaling, such as Erk activation. These inhibitory effects were not due to cytotoxicity or apoptosis. Instead, ritonavir inhibited the ligand-induced tyrosine phosphorylation of the betaPDGFR, whereas it did not alter betaPDGFR expression. CONCLUSIONS Ritonavir has direct effects on VSMCs at clinically relevant concentrations in vitro, as it inhibits betaPDGFR activation and PDGF-dependent proliferation and migration of VSMCs. Although ritonavir may increase the risk of vascular disease by its metabolic side effects, it may exhibit anti-atherogenic properties on the cellular level.
Collapse
Affiliation(s)
- Kai Kappert
- Klinik III für Innere Medizin, the Abteilung für Herzchirurgie der Universität zu Köln, Joseph-Stelzmann-Str. 9, 50924 Köln, Klinik I für Innere Medizin, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Chen X, Ren S, Ma MG, Dharmalingam S, Lu L, Xue M, Ducas J, Shen GX. Hirulog-like peptide reduces restenosis and expression of tissue factor and transforming growth factor-beta in carotid artery of atherosclerotic rabbits. Atherosclerosis 2003; 169:31-40. [PMID: 12860248 DOI: 10.1016/s0021-9150(03)00105-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Restenosis is responsible to approximately 30% of long-term failure following therapeutic vascular procedures. Thrombosis plays a key role in the development of restenosis. Thrombin-specific inhibitors have been considered as one type of candidates for the prevention of restenosis. Previous studies by our group demonstrated that a novel thrombin-specific inhibitor, hirulog-like peptide (HLP), reduced balloon catheter-induced neointima formation in rat carotid arteries. The present study examined the effect of HLP on angioplasty-induced restenosis in carotid arteries of atherosclerotic rabbits. New Zealand white rabbits were subject to air desiccation of the lumen of the right carotid arteries, then received high cholesterol/fat diet for 3 weeks. The rabbits were intravenously infused with HLP (1.6 mg/(kg/h)) or saline (n=7 per group) for 4 h started before angioplasty which dilated atherosclerotic lesions in right common carotid artery. Four weeks after the angioplasty, neointimal area, stenosis and neointima/media ratio in injured carotid arteries were reduced in atherosclerotic rabbits treated with HLP compared to saline controls by 62, 39 and 59% (P<0.05). The expression of tissue factor (TF) and transforming growth factor (TGF)-beta in the neointima of carotid arteries of rabbits treated with HLP was significantly weaker than saline controls (P<0.05 or <0.01). Activated partial thromboplastin time and bleeding time in HLP-treated rabbits were not significantly prolonged compared to controls. The results of the present study suggest that HLP may substantially reduce angioplasty-induced restenosis in atherosclerotic rabbits without increasing bleeding tendency. The inhibition on the expression of TF and TGF-beta in the neointima of the arterial wall may contribute to the preventive effect of HLP on restenosis in atherosclerotic rabbits.
Collapse
Affiliation(s)
- Xing Chen
- Department of Internal Medicine, University of Manitoba, Winnipeg, Man, Canada R3E 3P4
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Chan AK, Kalmes A, Hawkins S, Daum G, Clowes AW. Blockade of the epidermal growth factor receptor decreases intimal hyperplasia in balloon-injured rat carotid artery. J Vasc Surg 2003; 37:644-9. [PMID: 12618705 DOI: 10.1067/mva.2003.92] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HYPOTHESIS Arterial intimal hyperplasia is induced by injury and is frequently the cause of luminal narrowing after vascular reconstruction. Smooth muscle cells (SMC) respond to injury by proliferating and migrating into the intima. This process is regulated by thrombin, endothelin, and angiotensin II, all ligands of G protein-coupled receptors. Signal transduction from these receptors in cultured cells depends in part on transactivation of epidermal growth factor receptor (EGFR). We hypothesize that EGFR has a substantial role in activation of SMC in vivo and development of intimal hyperplasia. METHODS Intimal hyperplasia was induced in rat carotid arteries by passage of a balloon catheter. Animals were given a monoclonal blocking antibody to rat EGFR, matched mouse immunoglobulin G (IgG) control antibody, or saline solution. RESULTS Blocking EGFR antibody inhibited medial SMC proliferation, as determined by 5-bromo-2'-deoxyuridine labeling at 2 days (IgG control, 8.0% +/- 2.0%; anti-EGFR, 3.2% +/- 0.8%) and intimal hyperplasia at 14 days (intimal area: IgG control, 0.07 +/- 0.01 mm(2); anti-EGFR, 0.04 +/- 0.01 mm(2)). CONCLUSION Activation of EGFR is important for early induction of SMC proliferation and subsequent intimal thickening.
Collapse
Affiliation(s)
- Allen K Chan
- Department of Surgery, University of Washington, 1959 Pacific Street NE, Seattle, WA 98195-6410, USA
| | | | | | | | | |
Collapse
|
34
|
Rosenkranz S, Knirel D, Dietrich H, Flesch M, Erdmann E, Böhm M. Inhibition of the PDGF receptor by red wine flavonoids provides a molecular explanation for the "French paradox". FASEB J 2002; 16:1958-60. [PMID: 12397093 DOI: 10.1096/fj.02-0207fje] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The mortality rate from coronary artery disease (CAD) in France is approximately 50% compared to other European countries and the United States ("French paradox"). Epidemiological studies indicate an inverse relationship between moderate wine consumption and CAD mortality. Here, we demonstrate that preincubation of vascular smooth muscle cells (VSMCs) with red wine, but not white wine, inhibits ligand binding and the subsequent tyrosine phosphorylation of the platelet-derived growth factor beta receptor (betaPDGFR), which plays a critical role in the pathogenesis of atherosclerosis. As a consequence, red wine abrogates the ligand-induced recruitment of betaPDGFR-associated signaling molecules (RasGAP, SHP-2, PI3K, PLCgamma), PDGF-dependent downstream events such as Erk activation and induction of immediate early genes, and VSMC proliferation and migration. Wine analysis revealed flavonoids of the catechin family as major constituents of red wine, and these were identified as potent inhibitors of betaPDGFR signaling. Importantly, the concentrations of red wine/catechins shown to inhibit the PDGFR in vitro correlate with the serum levels after red wine consumption in humans. We conclude that nonalcoholic constituents of red wine, which accumulate during the "mash fermentation," inhibit betaPDGFR activation and PDGF-dependent cellular responses in VSMCs. Therefore, catechin-mediated inhibition of betaPDGFR signaling offers a molecular explanation for the "French paradox."
Collapse
|
35
|
Cohen-Sacks H, Najajreh Y, Tchaikovski V, Gao G, Elazer V, Dahan R, Gati I, Kanaan M, Waltenberger J, Golomb G. Novel PDGFbetaR antisense encapsulated in polymeric nanospheres for the treatment of restenosis. Gene Ther 2002; 9:1607-16. [PMID: 12424613 DOI: 10.1038/sj.gt.3301830] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2002] [Accepted: 06/16/2002] [Indexed: 11/09/2022]
Abstract
Nanospheres composed of the biocompatible and biodegradable polymer, poly-DL-lactide/glycolide and containing platelet-derived growth factor beta-receptor antisense (PDGFbetaR-AS) have been formulated and examined in vitro and in vivo in balloon-injured rat restenosis model. The nanospheres (approximately 300 nm) of homogenous size distribution exhibited high encapsulation efficiency (81%), and a sustained release of PDGFbetaR-AS (phosphorothioated). Cell internalization was visualized, and the inhibitory effect on SMC was observed. Partially phosphorothioated antisense sequences were found to be more specific than the fully phosphorothioated analogs. A significant antirestenotic effect of the naked AS sequence and the AS-NP (nanoparticles) was observed in the rat carotid in vivo model. The extent of mean neointimal formation 14 days after injection of AS-NP, measured as a percentage of luminal stenosis, was 32.21 +/- 4.75% in comparison to 54.89 +/- 8.84 and 53.84 +/- 5.58% in the blank-NP and SC-NP groups, respectively. It is concluded that PLGA nanospheres containing phosphorothioated oligodeoxynucleotide antisense could serve as an effective gene delivery systems for the treatment of restenosis.
Collapse
Affiliation(s)
- H Cohen-Sacks
- Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Karck M, Meliss R, Hestermann M, Mengel M, Pethig K, Levitzki A, Banai S, Golomb G, Fishbein I, Chorny M, Haverich A. Inhibition of aortic allograft vasculopathy by local delivery of platelet-derived growth factor receptor tyrosine-kinase blocker AG-1295. Transplantation 2002; 74:1335-41. [PMID: 12451275 DOI: 10.1097/00007890-200211150-00023] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
BACKGROUND Signal transduction through the platelet-derived growth factor (PDGF)/PDGF-receptor (PDGFR) system has been linked to vascular smooth muscle cell migration and proliferation leading to allograft vasculopathy. This study describes the effect of the tyrphostin AG-1295, a specific PDGFR tyrosine-kinase inhibitor, on neointimal formation in this disease. METHODS AND RESULTS Rat aortic allografts transplanted from dark agouti (RT1 ) donors to Wistar-Furth (RT1 ) recipients were assessed in a new treatment model for local drug delivery from polymeric carrier matrices precoated with AG-1295. Matrices were wrapped around the graft immediately after transplantation. The recipients received no background immunosuppression. At day 80 posttransplantation, intimal thickness in AG-1295-treated grafts was reduced when compared to controls (11.8+/-9.1% intimal thickness vs. 23.7+/-6.4% intimal thickness; P=0.042). This finding corresponded to inhibition of intimal PDGFR-beta expression in AG-1295-treated grafts at day 20 posttransplantation (P =0.029 vs. allogeneic controls). CONCLUSIONS The tyrphostin AG-1295 reduces neointimal formation in aortic allograft vasculopathy by inhibition of PDGFR-beta-triggered tyrosine phosphorylation. Local drug release of specific tyrosine-kinase inhibitors from perivascularly co-implanted polymeric carrier matrices is effective in the prophylaxis of allograft vasculopathy under selected experimental conditions.
Collapse
Affiliation(s)
- Matthias Karck
- Department of Cardiothoracic Surgery, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chorny M, Fishbein I, Danenberg HD, Golomb G. Study of the drug release mechanism from tyrphostin AG-1295-loaded nanospheres by in situ and external sink methods. J Control Release 2002; 83:401-14. [PMID: 12387948 DOI: 10.1016/s0168-3659(02)00210-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present study focused on in vitro release of polylactide-nanoencapsulated tyrphostin AG-1295, a potential agent for local therapy of restenosis. The drug was formulated in matrix-type nanoparticles, termed nanospheres (NS) using the nanoprecipitation method. AG-1295 is a model for low-molecular weight lipophilic compounds, the release behavior of which cannot be adequately characterized by existing methods. An in vitro release technique suitable for optimizing the nanoparticulate formulation release behavior was developed through a novel external sink method and an in situ release method utilizing the environmental sensitivity of the AG-1295 fluorescence spectrum. Similar tendencies were demonstrated by both methods in drug release studied as a function of selected NS preparation variables. The release properties of the drug fractions varying in their binding mode to the carrier particles were studied by the external sink method. The NS surface-adsorbed drug exhibited a significantly higher release rate compared to the drug entrapped in the polymeric matrix. The in situ release of the encapsulated drug was analyzed using the diffusion models of release from a matrix-type sphere. The release was shown to be a composite process, with a burst phase attributed largely to the rapid dissociation of the surface-bound AG-1295. The diffusion-controlled phase exhibited an alteration in kinetic pattern obviously due to the drug distribution between polymeric matrix compartments differing in their permeability. Drug in vitro release investigation may be effectively used to characterize the drug-carrier interaction and internal carrier structure in nanoparticulate formulations, as well as optimize the release behavior in respect to their therapeutic application.
Collapse
Affiliation(s)
- Michael Chorny
- Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, POB 12065, Israel
| | | | | | | |
Collapse
|
38
|
Margolin L, Fishbein I, Banai S, Golomb G, Reich R, Perez LS, Gertz SD. Metalloproteinase inhibitor attenuates neointima formation and constrictive remodeling after angioplasty in rats: augmentative effect of alpha(v)beta(3) receptor blockade. Atherosclerosis 2002; 163:269-77. [PMID: 12052473 DOI: 10.1016/s0021-9150(02)00035-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Release of matrix metalloproteinases (MMP) from smooth muscle and foam cells following arterial injury facilitates cell migration, neointimal hyperplasia, and vessel wall remodeling. Inhibition of MMP activity using the hydroxamate, zinc-chelating mimicers of collagen, Batimastat and Marimastat, has shown efficacy in reducing constrictive vascular remodeling 6 weeks after experimental angioplasty but not intimal hyperplasia. Vitronectin receptor (alpha(v)beta(3)) blockade interferes with binding of this integrin to MMP-2 and proteolyzed collagen, thereby reducing cell invasion. This study tests the effect of MMP inhibition, with and without vitronectin receptor (alpha(v)beta(3)) blockade, on neointima formation and arterial remodeling in a long-term model (up to 212 months) of balloon injury in vivo. Male Sabra rats were treated with Batimastat (BB-94, British Biotech Pharmaceuticals Ltd., 30 mg/kg, intraperitoneally) and/or the alpha(v)beta(3) receptor inhibiting RGD peptide, G-Pen-GRGDSPCA (GIBCO BRL, 0.1 micromol), administered as a perivascular gel to the common carotid artery after balloon injury. Animals were sacrificed 3, 14, 25, and 75 days (n=21, 23, 22, and 21) after injury. Animals treated with BB-94, peptide, or both had markedly increased absolute luminal area with markedly reduced luminal cross-sectional-area narrowing by neointima and intima-to-media area ratio at all time points except for 3 days after balloon injury versus non-treated, ballooned animals. Combined treatment was significantly more effective than either one alone. Constrictive remodeling, most marked 212 months after balloon injury, was prevented at this time point in all treated animals. The pattern of reduction in luminal narrowing, neointimal formation, and constrictive remodeling across treatment groups correlated very significantly with the reduction in tissue MMP activity as determined by zymography at 3 days. Confirmation of the efficacy of this strategy in larger animals should be the next step toward testing the applicability of this novel approach to the interventional setting.
Collapse
Affiliation(s)
- Leon Margolin
- Department of Anatomy and Cell Biology, The Hebrew University, Hadassah Medical School, POB 12272, Jerusalem 91120, Israel
| | | | | | | | | | | | | |
Collapse
|
39
|
Chamberlain J. Transforming growth factor-beta: a promising target for anti-stenosis therapy. CARDIOVASCULAR DRUG REVIEWS 2002; 19:329-44. [PMID: 11830751 DOI: 10.1111/j.1527-3466.2001.tb00074.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transforming growth factor-beta (TGF-beta) is the general name for a family of cytokines which have widespread effects on many aspects of growth and development. The TGF-beta isoforms are produced by most cell types and exert a wide range of effects in a context-dependent autocrine, paracrine or endocrine fashion via interactions with distinct receptors on the cell surface. TGF-beta is involved in the wound healing process and, thus plays a significant role in the formation of a restenotic lesion after percutaneous transluminal coronary angioplasty (PTCA) or stenting. Perhaps because of its wide-ranging effects, TGF-beta is usually released from cells in a latent form, and its activation and signaling are complex. Manipulation of the TGF-beta1, TGF-beta2, and TGF-beta3 isoforms by inhibiting their expression, activation, or signaling reduces scarring and fibrosis in animal models. However, to date, few have reached clinical trial. This review summarizes current knowledge on the activation and signaling of TGF-beta, and focuses on the anti-TGF-beta strategies which may lead to clinical applications in the prevention of restenosis following PTCA or stenting.
Collapse
Affiliation(s)
- J Chamberlain
- Cardiovascular Research Group, Section of Medicine, University of Sheffield, Clinical Sciences Centre, Northern General Hospital, Herries Road, Sheffield, S5 7AU, UK.
| |
Collapse
|
40
|
Pham D, Jeng AY, Plante S, Escher E, Battistini B. Inhibition of endothelin-converting enzyme for protection against neointimal proliferation following balloon angioplasty of the rat carotid artery. Can J Physiol Pharmacol 2002; 80:450-7. [PMID: 12056552 DOI: 10.1139/y02-059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Clinical success of percutaneous transluminal coronary angioplasty is limited by restenosis within months of the initial intervention. A number of vasoactive mediators and growth factors have been reported to participate in this process. The aim of the present experiments was to examine the effects of nonselective neutral endopeptidase (NEPi)/endothelin-converting enzyme (ECEi) inhibitors against neointimal proliferation (NIP) following balloon angioplasty of the left carotid artery of Sprague-Dawley rats with the right vessel serving as the uninjured control. The rats were divided in several groups: group 1, nontreated (vehicle); group 2, treated with a selective NEPi i.p.; groups 3-7, treated with nonselective NEPi/ECEi either i.p., s.c., i.v., or p.o. at various doses. After 2 weeks, cross-sectional histopathological and morphometrical examination of the left carotids revealed a severe NIP in vehicle-treated angioplastic rats compared with the control uninjured right carotid of the same rats. The selective NEPi CGS 24592 had no significant effect on restenosis, nor did the dual NEPi/ECEi CGS 26303 at 5 mg x kg(-1) x day(-1) i.p. Both s.c and i.v. NEPi/ECEi treatment (10 mg x kg(-1) x day(-1) b.i.d. s.c. or 10 mg x kg(-1) x day(-1) i.v.) reduced NIP by up to 35%. The prodrug CGS 26393 (p.o.) also attenuated NIP by 23%. Plasma concentrations of these compounds correlated with the degree of inhibition. These data support the participation of the endothelin system in the rat model of balloon angioplasty and suggest that selective ECEi may be effective.
Collapse
Affiliation(s)
- Dung Pham
- Laval Hospital Research Center, Department of Medicine, Laval University, Sainte-Foy, QC, Canada
| | | | | | | | | |
Collapse
|
41
|
Fishbein I, Brauner R, Chorny M, Gao J, Chen X, Laks H, Golomb G. Local delivery of mithramycin restores vascular reactivity and inhibits neointimal formation in injured arteries and vascular grafts. J Control Release 2001; 77:167-81. [PMID: 11733085 DOI: 10.1016/s0168-3659(01)00472-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Arterial restenosis is responsible for the high failure rates of vascular reconstruction procedures. Local sustained drug delivery has shown promise in the prevention of restenosis. The drug release rate from mithramycin-loaded EVA matrices (0.1%) was evaluated, and their antirestenotic effect was studied in the rat carotid model and rabbit model of vascular grafts. The modulation of c-myc expression by mithramycin treatment was examined by immunohistochemistry in the rat carotid model. The proliferative response of injured rat arteries was studied by bromdeoxyuridine (BrdU) immunostaining. The impact of mithramycin treatment on vasomotor responses of the venous segments grafted into arterial circulation was studied ex vivo using vasoreactive compounds. Mithramycin was released exponentially from EVA matrices in PBS. Matrices co-formulated with PEG-4600 revealed enhanced release kinetics. The perivascular implantation of drug-loaded EVA-PEG matrices led to 50% reduction of neointimal formation, and reduced the c-myc expression and BrdU labeling in comparison to control implants. Decreased sensitivity of mithramycin-treated grafts to serotonin-induced vasoconstriction was observed. Local perivascular mithramycin treatment limits the functional alteration caused by the grafting of venous segments in high-pressure arterial environment, and potently inhibits stenosis secondary to grafting and angioplasty injury. The antirestenotic effect is associated with reduced c-myc expression and with subsequent decrease in SMC proliferation.
Collapse
Affiliation(s)
- I Fishbein
- Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, POB 12065, 91120, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
42
|
Meliss RR, Pethig K, Schmidt A, Heublein B, Harringer W, Karck M, Choritz H, Haverich A. Cardiac allograft vasculopathy: adventitial immunoreactivity for PDGF-B and PDGFr-beta in extra- versus intramural coronary arteries. Transplant Proc 2001; 33:1579-80. [PMID: 11267427 DOI: 10.1016/s0041-1345(00)02600-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- R R Meliss
- Department of Thoracic, Leibniz Research Laboratories for Biotechnology and Arteficial Organs, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Affiliation(s)
- Ilia Fishbein
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael Chorny
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gershon Golomb
- School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|