1
|
Castillo JI, Navarro-Becerra JA, Angelini I, Kokoshinskiy M, Borden MA. Frequency-Selective Microbubble Targeting In Vitro: A Step Toward Multicolor Ultrasound Molecular Imaging. ACS APPLIED BIO MATERIALS 2025; 8:2128-2140. [PMID: 39939120 PMCID: PMC12017267 DOI: 10.1021/acsabm.4c01699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Ultrasound molecular imaging (USMI) utilizing targeted microbubbles (tMBs) and primary acoustic radiation force (Frad) pulses has demonstrated enhanced sensitivity in recent studies. However, current USMI techniques are limited to a single ligand-receptor pair per imaging scan. With the advent of the buried-ligand architecture (BLA), "cloaked" ligand-receptor binding and tMB adhesion can be activated by Frad pulses, enabling multicolor USMI. This approach permits the selective activation of two or more tMB species, each binding to its cognate receptors based on distinct resonance frequencies (f0) tuned by Frad pulses. The goal of this study was to demonstrate frequency-selective tMB adhesion to receptor-bearing microvessel tubes in vitro. Size-isolated BLA tMBs of 1 and 5 μm diameter were synthesized with f0 equal to 7 and 4 MHz, respectively (within the frequency limits of our ultrasound probe). The 1 μm tMBs were conjugated with IELLQAR peptide for P-selectin targeting, while the 5 μm tMBs were conjugated with cyclo-RGD peptide for αvβ3 integrin targeting. The MB gas volume fraction (φMB) was used to unify size and concentration into a single parameter. Frequency-selective tMB binding was quantified using fluorescence microscopy. Specific targeting was evaluated by comparing RGD- or IELLQAR-MB attachment to control RAD- or nonligand-bearing MBs, respectively. The results confirmed specific frequency-selective targeting of the two tMB species to their cognate receptors when activated by Frad pulses at their respective f0, both individually and in a cocktail. In the cocktail population, φMB of RGD-MB targeting increased 18-fold at 4 MHz compared to 7 MHz, while IELLQAR-MB targeting φMB increased 5-fold at 7 MHz compared to 4 MHz. In conclusion, this study presents the first demonstration of frequency-selective targeting of two different receptor species by two different tMB species, representing a significant step toward multicolor USMI and the potential for simultaneous imaging of multiple biomarkers in vivo within a single scan.
Collapse
Affiliation(s)
- Jair I. Castillo
- Biomedical Engineering Program, University of Colorado Boulder, USA
| | | | - Ilaria Angelini
- Biomedical Engineering Program, University of Colorado Boulder, USA
- Chemistry Department, University of Rome Tor Vergata, Rome, Italy
| | | | - Mark A. Borden
- Biomedical Engineering Program, University of Colorado Boulder, USA
- Mechanical Engineering Department, University of Colorado Boulder, USA
| |
Collapse
|
2
|
Chen C, Li S, Matsunaga TO, Pacella JJ, Everbach EC, Xie F, Porter TR, Villanueva FS, Chen X. Ischemia/Reperfusion Injury Enhances Accumulation of Perfluoropropane Droplets. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:336-340. [PMID: 39523168 PMCID: PMC11744877 DOI: 10.1016/j.ultrasmedbio.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE Perfluoropropane droplets (PD) are nanometer-sized particles that can be formulated from commercially available contrast agents. The preferential retention of PDs in diseased microvascular beds can be detected by ultrasound imaging techniques after acoustic activation and offers an opportunity for the detection of such processes as scar formation or inflammation. We hypothesized that in the presence of ischemia/reperfusion (I/R) injury, retention of intravenously injected PDs would be enhanced. METHODS Using an established intravital microscopy model of rat cremaster microcirculation, we determined the retention and subsequent acoustic activation behavior of PDs in exteriorized rat cremaster tissue. DiI-labeled droplets (200 µL) were administered intravenously. Acoustic activation was achieved with a clinical ultrasound system at two ultrasound frequencies (1.5 and 7 MHz). RESULTS Fluorescent microbubbles could be detected in the microvasculature after intravenous injection of PDs and subsequent acoustic activation. Increased retention of PDs was observed in the I/R group compared with control group with both ultrasound frequencies (p < 0.05). Using higher-resolution microscopy, we found evidence that some droplets extravasate to the outside of the endothelial border or are potentially engulfed by leukocytes. CONCLUSION Our data indicate that targeted imaging of the developing scar zones might be possible with ultrasound activation of intravenously injected PDs, and a method of targeting therapies to these same regions could be developed.
Collapse
Affiliation(s)
- Cheng Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shouqiang Li
- Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Terry O Matsunaga
- Department of Biomedical Engineering and Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - John J Pacella
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Feng Xie
- Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Thomas R Porter
- Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Flordeliza S Villanueva
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xucai Chen
- Center for Ultrasound Molecular Imaging and Therapeutics, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Garg PP, Weis VG, Shenberger J, Weis JA, McDonald A, Garg PM. Bedside Utilization of Intestinal Pathology in Preterm Infants with Surgical Necrotizing Enterocolitis. Am J Perinatol 2024. [PMID: 39586982 DOI: 10.1055/a-2483-5736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Necrotizing enterocolitis (NEC) is one of the most common conditions requiring emergency surgery in the neonatal intensive care unit and is associated with multiorgan dysfunction, multiple systemic morbidities, and mortality. The resected bowel commonly shows evidence of coagulative necrosis, inflammation, interstitial hemorrhages, and reparative changes on the pathology examination. The severity of these pathological abnormalities may correlate with the disease's severity and pace of progression and may assist in the prediction of clinical outcomes. This review presents current evidence about the clinical utility of intestinal pathology in bedside decision-making, accurate diagnosing, prediction of outcomes, and the prognostication of preterm infants with surgical NEC. Developing refined and validated noninvasive methods to diagnose the extent of bowel injury and monitoring tissue repair throughout disease progression is paramount to mitigate the long-term morbidities in preterm infants with surgical NEC. Improved imaging methods such as targeted bowel ultrasound capable of assessing the inflammation and necrosis in real time will greatly advance care and provide focus for the temporal framework of surgical interventions. KEY POINTS: · The degree and severity of intestinal pathological changes are associated with different outcomes.. · Bedside utilization of the intestinal pathological changes may help improve outcomes.. · Targeted noninvasive methods to diagnose the extent of bowel injury in real time are greatly needed..
Collapse
Affiliation(s)
- Padma P Garg
- Department of Pediatrics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Victoria G Weis
- Wake Forest Institute for Regenerative Medicine, Atrium Health Wake Forest Baptist, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jeffrey Shenberger
- Department of Pediatrics/Neonatology, Connecticut Children's, Hartford, Connecticut
| | - Jared A Weis
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Anna McDonald
- Department of Pathology, Atrium Health Wake Forest Baptist, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Parvesh M Garg
- Department of Pediatrics/Neonatology, Atrium Health Wake Forest Baptist, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
4
|
Brans V, Gray MD, Sezgin E, Stride EPJ. Protein-Decorated Microbubbles for Ultrasound-Mediated Cell Surface Manipulation. ACS APPLIED BIO MATERIALS 2023; 6:5746-5758. [PMID: 38048163 PMCID: PMC10731656 DOI: 10.1021/acsabm.3c00861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Delivering cargo to the cell membranes of specific cell types in the body is a major challenge for a range of treatments, including immunotherapy. This study investigates employing protein-decorated microbubbles (MBs) and ultrasound (US) to "tag" cellular membranes of interest with a specific protein. Phospholipid-coated MBs were produced and functionalized with a model protein using a metallochelating complex through an NTA(Ni) and histidine residue interaction. Successful "tagging" of the cellular membrane was observed using microscopy in adherent cells and was promoted by US exposure. Further modification of the MB surface to enable selective binding to target cells was then achieved by functionalizing the MBs with a targeting protein (transferrin) that specifically binds to a receptor on the target cell membrane. Attachment and subsequent transfer of material from MBs functionalized with transferrin to the target cells significantly increased, even in the absence of US. This work demonstrates the potential of these MBs as a platform for the noninvasive delivery of proteins to the surface of specific cell types.
Collapse
Affiliation(s)
- Veerle
A. Brans
- Department
of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DL, U.K.
| | - Michael D. Gray
- Department
of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DL, U.K.
| | - Erdinc Sezgin
- Science
for Life Laboratory, Department of Women’s and Children’s
Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Eleanor P. J. Stride
- Department
of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford OX3 7DL, U.K.
| |
Collapse
|
5
|
Rodriguez Betancourt A, Samal A, Chan HL, Kripfgans OD. Overview of Ultrasound in Dentistry for Advancing Research Methodology and Patient Care Quality with Emphasis on Periodontal/Peri-implant Applications. Z Med Phys 2023; 33:336-386. [PMID: 36922293 PMCID: PMC10517409 DOI: 10.1016/j.zemedi.2023.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/20/2022] [Accepted: 01/11/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND Ultrasound is a non-invasive, cross-sectional imaging technique emerging in dentistry. It is an adjunct tool for diagnosing pathologies in the oral cavity that overcomes some limitations of current methodologies, including direct clinical examination, 2D radiographs, and cone beam computerized tomography. Increasing demand for soft tissue imaging has led to continuous improvements on transducer miniaturization and spatial resolution. The aims of this study are (1) to create a comprehensive overview of the current literature of ultrasonic imaging relating to dentistry, and (2) to provide a view onto investigations with immediate, intermediate, and long-term impact in periodontology and implantology. METHODS A rapid literature review was performed using two broad searches conducted in the PubMed database, yielding 576 and 757 citations, respectively. A rating was established within a citation software (EndNote) using a 5-star classification. The broad search with 757 citations allowed for high sensitivity whereas the subsequent rating added specificity. RESULTS A critical review of the clinical applications of ultrasound in dentistry was provided with a focus on applications in periodontology and implantology. The role of ultrasound as a developing dental diagnostic tool was reviewed. Specific uses such as soft and hard tissue imaging, longitudinal monitoring, as well as anatomic and physiological evaluation were discussed. CONCLUSIONS Future efforts should be directed towards the transition of ultrasonography from a research tool to a clinical tool. Moreover, a dedicated effort is needed to introduce ultrasonic imaging to dental education and the dental community to ultimately improve the quality of patient care.
Collapse
Affiliation(s)
| | - Ankita Samal
- Department of Radiology, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Hsun-Liang Chan
- Department of Periodontology and Oral Medicine, Dental School, University of Michigan, Ann Arbor, MI, USA
| | - Oliver D Kripfgans
- Department of Radiology, Medical School, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Boswell-Patterson CA, Hétu MF, Pang SC, Herr JE, Zhou J, Jain S, Bambokian A, Johri AM. Novel theranostic approaches to neovascularized atherosclerotic plaques. Atherosclerosis 2023; 374:1-10. [PMID: 37149970 DOI: 10.1016/j.atherosclerosis.2023.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/05/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023]
Abstract
As the global burden of atherosclerotic cardiovascular disease continues to rise, there is an increased demand for improved imaging techniques for earlier detection of atherosclerotic plaques and new therapeutic targets. Plaque lesions, vulnerable to rupture and thrombosis, are thought to be responsible for the majority of cardiovascular events, and are characterized by a large lipid core, a thin fibrous cap, and neovascularization. In addition to supplying the plaque core with increased inflammatory factors, these pathological neovessels are tortuous and leaky, further increasing the risk of intraplaque hemorrhage. Clinically, plaque neovascularization has been shown to be a significant and independent predictor of adverse cardiovascular outcomes. Microvessels can be detected through contrast-enhanced ultrasound (CEUS) imaging, however, clinical assessment in vivo is generally limited to qualitative measures of plaque neovascularization. There is no validated standard for quantitative assessment of the microvessel networks found in plaques. Advances in our understanding of the pathological mechanisms underlying plaque neovascularization and its significant role in the morbidity and mortality associated with atherosclerosis have made it an attractive area of research in translational medicine. Current areas of research include the development of novel therapeutic and diagnostic agents to target plaque neovascularization stabilization. With recent progress in nanotechnology, nanoparticles have been investigated for their ability to specifically target neovascularization. Contrast microbubbles have been similarly engineered to carry loads of therapeutic agents and can be visualized using CEUS. This review summarizes the pathogenesis, diagnosis, clinical significance of neovascularization, and importantly the emerging areas of theranostic tool development.
Collapse
Affiliation(s)
| | - Marie-France Hétu
- Department of Medicine, Cardiovascular Imaging Network at Queen's (CINQ), Queen's University, Canada
| | - Stephen C Pang
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Julia E Herr
- Department of Medicine, Cardiovascular Imaging Network at Queen's (CINQ), Queen's University, Canada
| | - Jianhua Zhou
- Department of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Shagun Jain
- Department of Medicine, Cardiovascular Imaging Network at Queen's (CINQ), Queen's University, Canada
| | - Alexander Bambokian
- Department of Medicine, Cardiovascular Imaging Network at Queen's (CINQ), Queen's University, Canada
| | - Amer M Johri
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada; Department of Medicine, Cardiovascular Imaging Network at Queen's (CINQ), Queen's University, Canada.
| |
Collapse
|
7
|
Pistritu DV, Vasiliniuc AC, Vasiliu A, Visinescu EF, Visoiu IE, Vizdei S, Martínez Anghel P, Tanca A, Bucur O, Liehn EA. Phospholipids, the Masters in the Shadows during Healing after Acute Myocardial Infarction. Int J Mol Sci 2023; 24:8360. [PMID: 37176067 PMCID: PMC10178977 DOI: 10.3390/ijms24098360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Phospholipids are major components of cell membranes with complex structures, high heterogeneity and critical biological functions and have been used since ancient times to treat cardiovascular disease. Their importance and role were shadowed by the difficulty or incomplete available research methodology to study their biological presence and functionality. This review focuses on the current knowledge about the roles of phospholipids in the pathophysiology and therapy of cardiovascular diseases, which have been increasingly recognized. Used in singular formulation or in inclusive combinations with current drugs, phospholipids proved their positive and valuable effects not only in the protection of myocardial tissue, inflammation and fibrosis but also in angiogenesis, coagulation or cardiac regeneration more frequently in animal models as well as in human pathology. Thus, while mainly neglected by the scientific community, phospholipids present negligible side effects and could represent an ideal target for future therapeutic strategies in healing myocardial infarction. Acknowledging and understanding their mechanisms of action could offer a new perspective into novel therapeutic strategies for patients suffering an acute myocardial infarction, reducing the burden and improving the general social and economic outcome.
Collapse
Affiliation(s)
- Dan-Valentin Pistritu
- Victor Babes’ National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
| | | | - Anda Vasiliu
- Victor Babes’ National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
| | - Elena-Florentina Visinescu
- Faculty of Human Medicine, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
| | - Ioana-Elena Visoiu
- Faculty of Human Medicine, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
| | - Smaranda Vizdei
- Faculty of Human Medicine, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
| | - Paula Martínez Anghel
- Victor Babes’ National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
- Business Academy Aarhus, 30 Sønderhøj, 8260 Viby J, Denmark
| | - Antoanela Tanca
- Victor Babes’ National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
- Faculty of Human Medicine, Carol Davila University of Medicine and Pharmacy, 37 Dionisie Lupu Street, 020021 Bucharest, Romania
| | - Octavian Bucur
- Victor Babes’ National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
- Viron Molecular Medicine Institute, 201 Washington Street, Boston, MA 02108, USA
| | - Elisa Anamaria Liehn
- Victor Babes’ National Institute of Pathology, 99-101 Splaiul Independentei, 050096 Bucharest, Romania
- Institute for Molecular Medicine, University of Southern Denmark, 25 J.B Winsløws Vej, 5230 Odense, Denmark
- National Heart Center Singapore, 5 Hospital Dr., Singapore 169609, Singapore
| |
Collapse
|
8
|
Goncin U, Curiel L, Geyer CR, Machtaler S. Aptamer-Functionalized Microbubbles Targeted to P-selectin for Ultrasound Molecular Imaging of Murine Bowel Inflammation. Mol Imaging Biol 2023; 25:283-293. [PMID: 35851673 DOI: 10.1007/s11307-022-01755-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/01/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Our objectives were to develop a targeted microbubble with an anti-P-selectin aptamer and assess its ability to detect bowel inflammation in two murine models of acute colitis. PROCEDURES Lipid-shelled microbubbles were prepared using mechanical agitation. A rapid copper-free click chemistry approach (azide-DBCO) was used to conjugate the fluorescent anti-P-selectin aptamer (Fluor-P-Ap) to the microbubble surface. Bowel inflammation was chemically induced using 2,4,6-trinitrobenzenesulfonic acid (TNBS) in both Balb/C and interleukin-10-deficient (IL-10 KO) mice. Mouse bowels were imaged using non-linear contrast mode following an i.v. bolus of 1 × 108 microbubbles. Each mouse received a bolus of aptamer-functionalized and non-targeted microbubbles. Mouse phenotypes and the presence of P-selectin were validated using histology and immunostaining, respectively. RESULTS Microbubble labelling of Fluor-P-Ap was complete after 20 min at 37 ̊C. We estimate approximately 300,000 Fluor-P-Ap per microbubble and confirmed fluorescence using confocal microscopy. There was a significant increase in ultrasound molecular imaging signal from both Balb/C (p = 0.003) and IL-10 KO (p = 0.02) mice with inflamed bowels using aptamer-functionalized microbubbles in comparison to non-targeted microbubbles. There was no signal in healthy mice (p = 0.4051) using either microbubble. CONCLUSIONS We constructed an aptamer-functionalized microbubble specific for P-selectin using a clinically relevant azide-DBCO click reaction, which could detect bowel inflammation in vivo. Aptamers have potential as a next generation targeting agent for developing cost-efficient and clinically translatable targeted microbubbles.
Collapse
Affiliation(s)
- Una Goncin
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Laura Curiel
- Department of Electrical and Software Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, T2N 4V8, Canada
| | - C Ronald Geyer
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Steven Machtaler
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
9
|
Wilson RC, Lo JO, Romero Jimenez G, Lindner JR, Slayden OD, Roberts VHJ. Utilizing Contrast-Enhanced Ultrasonography with Phosphatidylserine Microbubbles to Detect Placental Inflammation in Rhesus Macaques. Molecules 2023; 28:2894. [PMID: 37049657 PMCID: PMC10096139 DOI: 10.3390/molecules28072894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
The ability to comprehensively monitor physiological and detect pathophysiologic processes early during pregnancy can reduce maternal and fetal morbidity and mortality. Contrast-enhanced ultrasound (CEUS) is a non-invasive imaging technology that utilizes the acoustic detection of microbubbles to examine vascular spaces. Furthermore, microbubbles conjugated to specific compounds can focus studies on precise physiological pathways. We hypothesized that CEUS with phosphatidylserine microbubbles (MB-PS) could be employed to monitor placental inflammation. We tested this hypothesis in rhesus macaques (Macaca mulatta), a translational and relevant animal model of human placental health. As placental inflammation impacts many at-risk pregnancies, we performed CEUS with MB-PS in pregnant macaques fed a high-fat diet (e.g., a western-style diet, WSD) in the presence or absence of testosterone (T) to mimic the increased risk of polycystic ovary syndrome and subfertility. We have previously demonstrated a placental inflammation phenotype in this model, and, thus, we related the MB-PS CEUS signal intensity to placental inflammation markers: selectin p and angiopoietins. Testosterone exposure increased the MB-PS signal in the placental microcirculation on the maternal side compared to control animals. We found that T increased placental weight and decreased angiopoietin 2 (ANGPT2) immunoreactivity. Furthermore, a significant inverse correlation was found between MB-PS signal and ANGPT2. This indicated that CEUS with MB-PS can be used to monitor placental parameters. We propose that CEUS with MB-PS could aid in the identification of pregnancies at risk of placental vascular compromise.
Collapse
Affiliation(s)
- Rachel C. Wilson
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Jamie O. Lo
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Gabriel Romero Jimenez
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Jonathan R. Lindner
- Cardiovascular Division, University of Virginia Medical Center, Charlottesville, VA 22903, USA
| | - Ov D. Slayden
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| | - Victoria H. J. Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR 97006, USA
| |
Collapse
|
10
|
Kumar M, Kumar D, Chopra S, Mahmood S, Bhatia A. Microbubbles: Revolutionizing Biomedical Applications with Tailored Therapeutic Precision. Curr Pharm Des 2023; 29:3532-3545. [PMID: 38151837 DOI: 10.2174/0113816128282478231219044000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Over the past ten years, tremendous progress has been made in microbubble-based research for a variety of biological applications. Microbubbles emerged as a compelling and dynamic tool in modern drug delivery systems. They are employed to deliver drugs or genes to targeted regions of interest, and then ultrasound is used to burst the microbubbles, causing site-specific delivery of the bioactive materials. OBJECTIVE The objective of this article is to review the microbubble compositions and physiochemical characteristics in relation to the development of innovative biomedical applications, with a focus on molecular imaging and targeted drug/gene delivery. METHODS The microbubbles are prepared by using various methods, which include cross-linking polymerization, emulsion solvent evaporation, atomization, and reconstitution. In cross-linking polymerization, a fine foam of the polymer is formed, which serves as a bubble coating agent and colloidal stabilizer, resulting from the vigorous stirring of a polymeric solution. In the case of emulsion solvent evaporation, there are two solutions utilized in the production of microbubbles. In atomization and reconstitution, porous spheres are created by atomising a surfactant solution into a hot gas. They are encapsulated in primary modifier gas. After the addition of the second gas or gas osmotic agent, the package is placed into a vial and sealed after reconstituting with sterile saline solution. RESULTS Microbubble-based drug delivery is an innovative approach in the field of drug delivery that utilizes microbubbles, which are tiny gas-filled bubbles, act as carriers for therapeutic agents. These microbubbles can be loaded with drugs, imaging agents, or genes and then guided to specific target sites. CONCLUSION The potential utility of microbubbles in biomedical applications is continually growing as novel formulations and methods. The versatility of microbubbles allows for customization, tailoring the delivery system to various medical applications, including cancer therapy, cardiovascular treatments, and gene therapy.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, Punjab 151001, India
| | - Devesh Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, Punjab 151001, India
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, Punjab 151001, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda, Punjab 151001, India
| |
Collapse
|
11
|
Kierski TM, Walmer RW, Tsuruta JK, Yin J, Chérin E, Foster FS, Demore CEM, Newsome IG, Pinton GF, Dayton PA. Acoustic Molecular Imaging Beyond the Diffraction Limit In Vivo. IEEE OPEN JOURNAL OF ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 2:237-249. [PMID: 38125957 PMCID: PMC10732349 DOI: 10.1109/ojuffc.2022.3212342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Ultrasound molecular imaging (USMI) is a technique used to noninvasively estimate the distribution of molecular markers in vivo by imaging microbubble contrast agents (MCAs) that have been modified to target receptors of interest on the vascular endothelium. USMI is especially relevant for preclinical and clinical cancer research and has been used to predict tumor malignancy and response to treatment. In the last decade, methods that improve the resolution of contrast-enhanced ultrasound by an order of magnitude and allow researchers to noninvasively image individual capillaries have emerged. However, these approaches do not translate directly to molecular imaging. In this work, we demonstrate super-resolution visualization of biomarker expression in vivo using superharmonic ultrasound imaging (SpHI) with dual-frequency transducers, targeted contrast agents, and localization microscopy processing. We validate and optimize the proposed method in vitro using concurrent optical and ultrasound microscopy and a microvessel phantom. With the same technique, we perform a proof-of-concept experiment in vivo in a rat fibrosarcoma model and create maps of biomarker expression co-registered with images of microvasculature. From these images, we measure a resolution of 23 μm, a nearly fivefold improvement in resolution compared to previous diffraction-limited molecular imaging studies.
Collapse
Affiliation(s)
- Thomas M Kierski
- Joint Department of Biomedical Engineering, UNC-Chapel Hill and NC State University, Chapel Hill, NC 27599 USA
| | - Rachel W Walmer
- Joint Department of Biomedical Engineering, UNC-Chapel Hill and NC State University, Chapel Hill, NC 27599 USA
| | - James K Tsuruta
- Joint Department of Biomedical Engineering, UNC-Chapel Hill and NC State University, Chapel Hill, NC 27599 USA
| | - Jianhua Yin
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
| | | | - F Stuart Foster
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Christine E M Demore
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Isabel G Newsome
- Joint Department of Biomedical Engineering, UNC-Chapel Hill and NC State University, Chapel Hill, NC 27599 USA
| | - Gianmarco F Pinton
- Joint Department of Biomedical Engineering, UNC-Chapel Hill and NC State University, Chapel Hill, NC 27599 USA
| | - Paul A Dayton
- Joint Department of Biomedical Engineering, UNC-Chapel Hill and NC State University, Chapel Hill, NC 27599 USA
| |
Collapse
|
12
|
Zeng F, Du M, Chen Z. Nanosized Contrast Agents in Ultrasound Molecular Imaging. Front Bioeng Biotechnol 2021; 9:758084. [PMID: 34912789 PMCID: PMC8666542 DOI: 10.3389/fbioe.2021.758084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/08/2021] [Indexed: 11/13/2022] Open
Abstract
Applying nanosized ultrasound contrast agents (nUCAs) in molecular imaging has received considerable attention. nUCAs have been instrumental in ultrasound molecular imaging to enhance sensitivity, identification, and quantification. nUCAs can achieve high performance in molecular imaging, which was influenced by synthetic formulations and size. This review presents an overview of nUCAs from different synthetic formulations with a discussion on imaging and detection technology. Then we also review the progress of nUCAs in preclinical application and highlight the recent challenges of nUCAs.
Collapse
Affiliation(s)
- Fengyi Zeng
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, China.,Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China.,Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meng Du
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, China.,Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhiyi Chen
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, China.,Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
13
|
Porter TR. The Potential for Retained Microbubbles: To Imaging . . . and Beyond. J Am Coll Cardiol 2021; 78:2001-2003. [PMID: 34763777 DOI: 10.1016/j.jacc.2021.08.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Thomas R Porter
- University of Nebraska Medical Center, Omaha, Nebraska, USA.
| |
Collapse
|
14
|
Davidson BP, Hodovan J, Layoun ME, Golwala H, Zahr F, Lindner JR. Echocardiographic Ischemic Memory Molecular Imaging for Point-of-Care Detection of Myocardial Ischemia. J Am Coll Cardiol 2021; 78:1990-2000. [PMID: 34763776 DOI: 10.1016/j.jacc.2021.08.068] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Noninvasive molecular imaging of recent ischemia can potentially be used to diagnose acute coronary syndrome (ACS) with high accuracy. OBJECTIVES The authors hypothesized that bedside myocardial contrast echocardiography (MCE) ischemic memory imaging could be achieved with phosphatidylserine microbubbles (MBPS) that are retained in the microcirculation via ischemia-associated endothelial activation. METHODS A dose-finding study was performed in healthy volunteers (n = 17) to establish optimal MBPS dosing. Stable patients with ACS (n = 30) and confirmed antecedent but resolved myocardial ischemia were studied within 2 hours of coronary angiography and percutaneous coronary intervention (PCI) when indicated. MCE molecular imaging was performed 8 minutes after intravenous administration of MBPS. MCE perfusion imaging was used to assess the status of the postischemic microcirculation. RESULTS Based on dose-finding studies, 0.10 or 0.15 mL of MBPS based on body mass was selected. In patients with ACS, all but 2 underwent primary PCI. MCE molecular imaging signal intensity was greater in the postischemic risk area vs remote territory (median [95% CI]: 56 [33-66] vs 8 [2-17] IU; P < 0.001) with a receiver-operating characteristic curve C-statistic of 0.94 to differentiate post-ischemic from remote territory. Molecular imaging signal in the risk area was not related to type of ACS (unstable angina: 3; non-ST-segment elevation myocardial infarction: 14; ST-segment elevation myocardial infarction: 13), peak troponin, time to PCI, post-PCI myocardial perfusion, GRACE (Global Registry of Acute Coronary Events) score, or HEART score. CONCLUSIONS Molecular imaging with point-of-care echocardiography and MBPS can detect recent but resolved myocardial ischemia. This bedside technique requires only minutes to perform and appears independent of the degree of ischemia. (Ischemic Memory Imaging With Myocardial Contrast Echocardiography; NCT03009266).
Collapse
Affiliation(s)
- Brian P Davidson
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - James Hodovan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Michael E Layoun
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Harsh Golwala
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Firas Zahr
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA; Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
15
|
Barmin RA, Rudakovskaya PG, Chernyshev VS, Guslyakova OI, Belcov PA, Obukhova EN, Gayer AV, Shirshin EA, Gorin DA. Optoacoustic/Fluorescent/Acoustic Imaging Probe Based on Air-Filled Bubbles Functionalized with Gold Nanorods and Fluorescein Isothiocyanate. ACS OMEGA 2021; 6:3809-3821. [PMID: 33585760 PMCID: PMC7876831 DOI: 10.1021/acsomega.0c05518] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/28/2020] [Indexed: 05/08/2023]
Abstract
Liquid/surfactant/gas interfaces are promising objects for nanoengineered multimodal contrasts, which can be used for biomedical imaging in preclinical and clinical applications. Microbubbles with the gaseous core and shell made of lipids/proteins have already acted as ultrasound (US) contrast agents for angiography. In the present work, microbubbles with a shell composed of Span 60 and Tween 80 surfactants functionalized with fluorescein isothiocyanate and gold nanorods to achieve a multimodal combination of US, fluorescence, and optoacoustic imaging are described. Optimal conditions for microbubble generation by studying the surface tension of the initial solutions and analyzing the size, stability, and charge of the resulting bubbles were found. By controlling and modifying bubbles' surface properties, an increase in stability and storage time can be achieved. The functionalization of bubbles with gold nanoparticles and a dye by using an optimally selected sonication protocol was performed. The biomedical application's potential in imaging modalities of functionalized microbubbles using a medical US device with a frequency of 50 MHz, fluorescence tomography, and raster-scanning optoacoustic mesoscopy measurements was evaluated. The obtained results are important for optimum stabilization and functionalization of gas/liquid interfaces and the following applications in the multimodal biomedical imaging.
Collapse
Affiliation(s)
- Roman A. Barmin
- Skolkovo
Institute of Science and Technology, 3 Nobelya Str., Moscow 121205, Russia
| | | | | | - Olga I. Guslyakova
- Saratov
State University, 83 Astrakhanskaya Str., Saratov 410012, Russia
| | - Pavel A. Belcov
- Anta-Med
Premium, LLC, 11 Derbenevskaya
Naberezhnaya, Moscow 115114, Russia
| | | | - Alexey V. Gayer
- Lomonosov
Moscow State University, 1/2 Leninskie Gory, Moscow 119991, Russia
| | - Evgeny A. Shirshin
- Lomonosov
Moscow State University, 1/2 Leninskie Gory, Moscow 119991, Russia
- Institute
of Spectroscopy of the Russian Academy of Sciences, 5 Fizicheskaya Str., Troitsk, Moscow 108840, Russia
- Institute
for Regenerative Medicine, Sechenov First
Moscow State Medical University, Trubetskaya 8-2, Moscow 119048, Russia
| | - Dmitry A. Gorin
- Skolkovo
Institute of Science and Technology, 3 Nobelya Str., Moscow 121205, Russia
| |
Collapse
|
16
|
Ultrasound. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Sueishi N, Ohshima T, Oikawa T, Takemura H, Kasai M, Kitano K, Maeda N, Nakamura Y. Plaque-removal effect of ultrafine bubble water: Oral application in patients undergoing orthodontic treatment. Dent Mater J 2020; 40:272-278. [PMID: 33055432 DOI: 10.4012/dmj.2018-355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
During orthodontic treatment, plaque tends to form around fixed orthodontic appliances, which increases the risk of dental caries. It has been reported that ultarafine bubble with a diameter <1 μm water (UFBW) effectively removes organic matter. In addition, UFBW is harmless and stable for at least one month with refrigeration. The aim of this study was to examine the plaque-removal effect of ultrafine bubble water (UFBW) to establish a new method to prevent dental caries in patients during orthodontic treatment procedures. The in vitro study examined different concentrations of UFBW and compared the cleaning effect to that of existing mouthwashes. High-concentration UFBW (HUFBW) was most effective in cleaning. In the subsequent clinical study, HUFBW showed a significantly higher plaque-removal effect compared to distilled water (p<0.01). Thus, supplementary use of HUFBW could decrease the incidence of dental caries during orthodontic treatment.
Collapse
Affiliation(s)
- Naho Sueishi
- Department of Orthodontics, Tsurumi University School of Dental Medicine
| | - Tomoko Ohshima
- Department of Oral Microbiology, Tsurumi University School of Dental Medicine.,Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University
| | - Takashi Oikawa
- Department of Orthodontics, Tsurumi University School of Dental Medicine
| | - Hiroshi Takemura
- Department of Mechanical Engineering, Faculty of Science and Technology, Tokyo University of Science
| | - Mai Kasai
- Department of Mechanical Engineering, Faculty of Science and Technology, Tokyo University of Science
| | - Katsuhisa Kitano
- Department of Oral Microbiology, Tsurumi University School of Dental Medicine.,Center for Atomic and Molecular Technologies, Graduate School of Engineering, Osaka University
| | - Nobuko Maeda
- Department of Oral Microbiology, Tsurumi University School of Dental Medicine
| | - Yoshiki Nakamura
- Department of Orthodontics, Tsurumi University School of Dental Medicine
| |
Collapse
|
18
|
Hyun D, Abou-Elkacem L, Bam R, Brickson LL, Herickhoff CD, Dahl JJ. Nondestructive Detection of Targeted Microbubbles Using Dual-Mode Data and Deep Learning for Real-Time Ultrasound Molecular Imaging. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3079-3088. [PMID: 32286963 PMCID: PMC7793556 DOI: 10.1109/tmi.2020.2986762] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ultrasound molecular imaging (UMI) is enabled by targeted microbubbles (MBs), which are highly reflective ultrasound contrast agents that bind to specific biomarkers. Distinguishing between adherent MBs and background signals can be challenging in vivo. The preferred preclinical technique is differential targeted enhancement (DTE), wherein a strong acoustic pulse is used to destroy MBs to verify their locations. However, DTE intrinsically cannot be used for real-time imaging and may cause undesirable bioeffects. In this work, we propose a simple 4-layer convolutional neural network to nondestructively detect adherent MB signatures. We investigated several types of input data to the network: "anatomy-mode" (fundamental frequency), "contrast-mode" (pulse-inversion harmonic frequency), or both, i.e., "dual-mode", using IQ channel signals, the channel sum, or the channel sum magnitude. Training and evaluation were performed on in vivo mouse tumor data and microvessel phantoms. The dual-mode channel signals yielded optimal performance, achieving a soft Dice coefficient of 0.45 and AUC of 0.91 in two test images. In a volumetric acquisition, the network best detected a breast cancer tumor, resulting in a generalized contrast-to-noise ratio (GCNR) of 0.93 and Kolmogorov-Smirnov statistic (KSS) of 0.86, outperforming both regular contrast mode imaging (GCNR = 0.76, KSS = 0.53) and DTE imaging (GCNR = 0.81, KSS = 0.62). Further development of the methodology is necessary to distinguish free from adherent MBs. These results demonstrate that neural networks can be trained to detect targeted MBs with DTE-like quality using nondestructive dual-mode data, and can be used to facilitate the safe and real-time translation of UMI to clinical applications.
Collapse
|
19
|
Molecular Ultrasound Imaging. NANOMATERIALS 2020; 10:nano10101935. [PMID: 32998422 PMCID: PMC7601169 DOI: 10.3390/nano10101935] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
In the last decade, molecular ultrasound imaging has been rapidly progressing. It has proven promising to diagnose angiogenesis, inflammation, and thrombosis, and many intravascular targets, such as VEGFR2, integrins, and selectins, have been successfully visualized in vivo. Furthermore, pre-clinical studies demonstrated that molecular ultrasound increased sensitivity and specificity in disease detection, classification, and therapy response monitoring compared to current clinically applied ultrasound technologies. Several techniques were developed to detect target-bound microbubbles comprising sensitive particle acoustic quantification (SPAQ), destruction-replenishment analysis, and dwelling time assessment. Moreover, some groups tried to assess microbubble binding by a change in their echogenicity after target binding. These techniques can be complemented by radiation force ultrasound improving target binding by pushing microbubbles to vessel walls. Two targeted microbubble formulations are already in clinical trials for tumor detection and liver lesion characterization, and further clinical scale targeted microbubbles are prepared for clinical translation. The recent enormous progress in the field of molecular ultrasound imaging is summarized in this review article by introducing the most relevant detection technologies, concepts for targeted nano- and micro-bubbles, as well as their applications to characterize various diseases. Finally, progress in clinical translation is highlighted, and roadblocks are discussed that currently slow the clinical translation.
Collapse
|
20
|
Al-Jawadi S, Thakur SS. Ultrasound-responsive lipid microbubbles for drug delivery: A review of preparation techniques to optimise formulation size, stability and drug loading. Int J Pharm 2020; 585:119559. [PMID: 32574685 DOI: 10.1016/j.ijpharm.2020.119559] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 02/08/2023]
Abstract
Lipid-shelled microbubbles have received extensive interest to enhance ultrasound-responsive drug delivery outcomes due to their high biocompatibility. While therapeutic effectiveness of microbubbles is well established, there remain limitations in sample homogeneity, stability profile and drug loading properties which restrict these formulations from seeing widespread use in the clinical setting. In this review, we evaluate and discuss the most encouraging leads in lipid microbubble design and optimisation. We examine current applications in drug delivery for the systems and subsequently detail shell compositions and preparation strategies that improve monodispersity while retaining ultrasound responsiveness. We review how excipients and storage techniques help maximise stability and introduce different characterisation and drug loading techniques and evaluate their impact on formulation performance. The review concludes with current quality control measures in place to ensure lipid microbubbles can be reproducibly used in drug delivery.
Collapse
Affiliation(s)
- Sana Al-Jawadi
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Sachin S Thakur
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
21
|
Kosareva A, Abou-Elkacem L, Chowdhury S, Lindner JR, Kaufmann BA. Seeing the Invisible-Ultrasound Molecular Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:479-497. [PMID: 31899040 DOI: 10.1016/j.ultrasmedbio.2019.11.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Ultrasound molecular imaging has been developed in the past two decades with the goal of non-invasively imaging disease phenotypes on a cellular level not depicted on anatomic imaging. Such techniques already play a role in pre-clinical research for the assessment of disease mechanisms and drug effects, and are thought to in the future contribute to earlier diagnosis of disease, assessment of therapeutic effects and patient-tailored therapy in the clinical field. In this review, we first describe the chemical composition and structure as well as the in vivo behavior of the ultrasound contrast agents that have been developed for molecular imaging. We then discuss the strategies that are used for targeting of contrast agents to specific cellular targets and protocols used for imaging. Next we describe pre-clinical data on imaging of thrombosis, atherosclerosis and microvascular inflammation and in oncology, including the pathophysiological principles underlying the selection of targets in each area. Where applicable, we also discuss efforts that are currently underway for translation of this technique into the clinical arena.
Collapse
Affiliation(s)
- Alexandra Kosareva
- Cardiovascular Molecular Imaging, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Lotfi Abou-Elkacem
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford, California, USA
| | - Sayan Chowdhury
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford, California, USA
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Portland, Oregon, USA; Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Beat A Kaufmann
- Cardiovascular Molecular Imaging, Department of Biomedicine, University of Basel, Basel, Switzerland; Department of Cardiology, University Hospital and University of Basel, Basel, Switzerland.
| |
Collapse
|
22
|
Ultrasound molecular imaging: insights into cardiovascular pathology. J Echocardiogr 2020; 18:86-93. [PMID: 32056137 PMCID: PMC7244457 DOI: 10.1007/s12574-020-00463-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 01/06/2023]
Abstract
Similar to what has already occurred in cancer medicine, the management of cardiovascular conditions will likely be improved by non-invasive molecular imaging technologies that can provide earlier or more accurate diagnosis. These techniques are already having a positive impact in pre-clinical research by providing insight into pathophysiology or efficacy of new therapies. Contrast enhanced ultrasound (CEU) molecular imaging is a technique that relies on the ultrasound detection of targeted microbubble contrast agents to examine molecular or cellular events that occur at the blood pool-endothelial interface. CEU molecular imaging techniques have been developed that are able to provide unique information on atherosclerosis, ischemia reperfusion injury, angiogenesis, vascular inflammation, and thrombus formation. Accordingly, CEU has the potential to be used in a wide variety of circumstances to detect disease early or at the bedside, and to guide appropriate therapy based on vascular phenotype. This review will describe the physical basis for CEU molecular imaging, and the specific disease processes for the pre-clinical translational research experience.
Collapse
|
23
|
Abstract
Ultrasound imaging plays an important role in oncological imaging for more than five decades now. It can be applied in all tissues that are not occluded by bone or gas-filled regions. The quality of ultrasound images benefitted strongly from improved electronics and increased computational power. To the morphological imaging, several functional imaging methods were added: Flow visualization became possible by Doppler techniques and as a recent addition the elastic properties of tissues can be imaged by elastographic methods with transient shear wave imaging. In the beginning of molecular imaging, ultrasound with its contrast based on mechanical tissue properties was an unlikely candidate to play a role. However, with contrast agents consisting of micrometer-sized gas bubbles, which can be imaged with high sensitivity, ligands addressing targets in the vascular wall could be used. Because even single bubbles can be detected, this led to various ultrasound molecular imaging techniques and the ongoing development of clinical molecular contrast media. In this chapter, the basic properties of ultrasonic imaging like its contrast mechanisms and spatiotemporal resolution are discussed. The image formation and its ongoing change from line-oriented scanning to full-volume reconstructions are explained. Then, the ultrasound contrast media and imaging techniques are introduced and emerging new methods like super-resolution vascular imaging demonstrate the ongoing development in this field.
Collapse
|
24
|
Steinl DC, Xu L, Ochoa-Espinosa A, Punjabi M, Kaufmann BA. Non-invasive contrast enhanced ultrasound molecular imaging of inflammation in autoimmune myocarditis for prediction of left ventricular fibrosis and remodeling. PLoS One 2019; 14:e0224377. [PMID: 31658281 PMCID: PMC6816567 DOI: 10.1371/journal.pone.0224377] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/13/2019] [Indexed: 11/18/2022] Open
Abstract
Background Myocarditis can lead to myocyte loss and myocardial fibrosis resulting in dilated cardiomyopathy (DCMP). Currently employed methods for assessing the risk for development of DCMP are inaccurate or rely on invasive myocardial biopsies. We hypothesized that molecular imaging of tissue inflammation with contrast enhanced ultrasound during peak inflammation in myocarditis could predict development of fibrosis and impaired left ventricular function. Methods and results Experimental autoimmune myocarditis (EAM) was induced in Balbc mice by injection of the α-myosin heavy chain peptide. Contrast enhanced ultrasound (CEU) using microbubbles targeted to leukocytes (MBLc), to CD4+ lymphocytes (MBCD4), and to the endothelial cell adhesion molecule P-selectin (MBPSel) was performed during the expected EAM peak inflammatory activity 21 days after induction. High resolution ultrasound, invasive hemodynamic measurements and fibrosis quantification were done 63 days after EAM assessment. All tested microbubbles correlated to fibrosis (MBLc spearman r 0.28, p 0.047, MBCD4 r 0.44, p 0.01, MBPSel r 0.73, p 0.02), however, correlations were weak overall and the spread of data was considerable. Also, targeted CEU data on day 21 did not correlate to hemodynamic and functional data on day 63. Conclusions Ultrasound molecular imaging using targeted microbubbles during the peak inflammatory activity of myocarditis correlates weakly with later development of fibrosis but not with hemodynamic or left ventricular functional parameters.
Collapse
Affiliation(s)
- David C. Steinl
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Lifen Xu
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | - Mukesh Punjabi
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Beat A. Kaufmann
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Cardiology, University Hospital and University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
25
|
Ultrasound Molecular Imaging of Lymphocyte-endothelium Adhesion Cascade in Acute Cellular Rejection of Cardiac Allografts. Transplantation 2019; 103:1603-1611. [DOI: 10.1097/tp.0000000000002698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
26
|
Li J, Zhou P, Xu H, Tian S, Liu W, Zhao Y, Hu Z. Antitumor activity of integrin α Vβ 3 antibody conjugated-cationic microbubbles in liver cancer. Transl Cancer Res 2019; 8:899-908. [PMID: 35116829 PMCID: PMC8799305 DOI: 10.21037/tcr.2019.05.29] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/15/2019] [Indexed: 01/06/2023]
Abstract
Background The overexpression of integrin αVβ3 in hepatocarcinoma (HCC) promotes tumor progression, metastasis, and clinical staging. Thus, the inhibition of integrin αVβ3 might be potentially effective as an anti-cancer agent in HCC. Methods In this study, we aimed to investigate the antitumor effect of integrin αVβ3 antibody conjugated cationic microbubbles (CMBs) in HCC model. By conjugating with integrin αVβ3 antibody with non-targeting CMBs, CMBsαvβ3 was constructed. The antitumor effect of CMBsαvβ3 was evaluated in HepG2 cells in vitro and in HepG2 xenograft mice models. Bcl-2, p53 and CD31 mRNA level, and caspase-3 activity were examined in xenograft tumors. Cell proliferation assay and scratch test were performed to evaluate the anti-migrant effect of CMBsαvβ3in vitro. Results CMBsαvβ3 could specifically target to HCC HepG2 cells and improve pEGFP-KDRP-CD/TK plasmid transfection efficiency. In HepG2 xenograft mice models, CMBsαvβ3 treatment significantly suppressed tumor weights and volumes. CMBsαvβ3 treatment suppressed Bcl-2 and p53 mRNA level in tumors. In HepG2 cells, CMBsαvβ3 significantly impaired wound healing and inhibited cell proliferation. Moreover, when combined with CD/TK double suicide gene transfection and 5-FC/GCV treatment, caspase-3 was activated and the cell proliferation was tremendously inhibited. Conclusions CMBsαvβ3 not only suppresses cell migration and proliferation, but also facilitates 5-FC/GCV plus CD/TK double suicide gene-induced apoptotic cell death. CMBsαvβ3 is a promising gene delivery agent with potential anti-tumor activity itself.
Collapse
Affiliation(s)
- Jiale Li
- Department of Ultrasound, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Ping Zhou
- Department of Ultrasound, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Hongbo Xu
- Department of General Surgery, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Shuangming Tian
- Department of Ultrasound, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wengang Liu
- Department of Ultrasound, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yongfeng Zhao
- Department of Ultrasound, the Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zheyu Hu
- Department of Breast Medical Oncology and Central Laboratory, the Affiliated Caner Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Non-invasive molecular imaging is currently used as a research technique to better understand disease pathophysiology. There are also many potential clinical applications where molecular imaging may provide unique information that allows either earlier or more definitive diagnosis, or can guide precision medicine-based decisions on therapy. Contrast-enhanced ultrasound (CEU) with targeted microbubble contrast agents is one such technique that has been developed that has the unique properties of providing rapid information and revealing information only on events that occur within the vascular space. RECENT FINDINGS CEU molecular probes have been developed for a wide variety of disease states including atherosclerosis, vascular inflammation, thrombosis, tumor neovascularization, and ischemic injury. While the technique has not yet been adapted to clinical use, it has been used to reveal pathological processes, to identify new therapeutic targets, and to test the efficacy of novel treatments. This review will explore the physical basis for CEU molecular imaging, its strengths and limitations compared to other molecular imaging modalities, and the pre-clinical translational research experience.
Collapse
Affiliation(s)
- Eran Brown
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.,Knight Cardiovascular Institute, UHN-62, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, UHN-62, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA. .,Oregon National Primate Research Center (J.R.L.), Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
28
|
Zhao M, Wang R, Li B, Fan Y, Wu Y, Zhu X, Zhang F. Precise In Vivo Inflammation Imaging Using In Situ Responsive Cross-linking of Glutathione-Modified Ultra-Small NIR-II Lanthanide Nanoparticles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812878] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mengyao Zhao
- Department of Chemistry; Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers and i Chem; Fudan University; Shanghai 200433 P. R. China
| | - Rui Wang
- Department of Chemistry; Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers and i Chem; Fudan University; Shanghai 200433 P. R. China
| | - Benhao Li
- Department of Chemistry; Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers and i Chem; Fudan University; Shanghai 200433 P. R. China
| | - Yong Fan
- Department of Chemistry; Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers and i Chem; Fudan University; Shanghai 200433 P. R. China
| | - Yifan Wu
- Department of Chemistry; Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers and i Chem; Fudan University; Shanghai 200433 P. R. China
| | - Xinyan Zhu
- Department of Chemistry; Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers and i Chem; Fudan University; Shanghai 200433 P. R. China
| | - Fan Zhang
- Department of Chemistry; Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials; State Key Laboratory of Molecular Engineering of Polymers and i Chem; Fudan University; Shanghai 200433 P. R. China
| |
Collapse
|
29
|
Zhao M, Wang R, Li B, Fan Y, Wu Y, Zhu X, Zhang F. Precise In Vivo Inflammation Imaging Using In Situ Responsive Cross-linking of Glutathione-Modified Ultra-Small NIR-II Lanthanide Nanoparticles. Angew Chem Int Ed Engl 2019; 58:2050-2054. [PMID: 30589175 DOI: 10.1002/anie.201812878] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Indexed: 12/19/2022]
Abstract
To improve the bioimaging signal-to-noise ratio (SNR), long-term imaging capability, and decrease the potential biotoxicity, an in vivo cross-linking strategy was developed by using sub-10 nm, glutathione-modified, lanthanide nanoprobes. After administration, the nanoprobes cross-link in response to reactive oxygen species (ROS) at the inflamed area and enable the quick imaging of ROS in the second near-infrared (NIR-II) window. These nanoprobes could be rapidly excreted due to their ultra-small size. This strategy may also be applied to other ultra-small contrast agents for the precise bioimaging by in situ lesion cross-linking.
Collapse
Affiliation(s)
- Mengyao Zhao
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Rui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Benhao Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Yong Fan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Yifan Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Xinyan Zhu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, 200433, P. R. China
| | - Fan Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers and iChem, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
30
|
Acton PD. Multimodality Preclinical Imaging in Inflammatory Diseases. IMAGE FUSION IN PRECLINICAL APPLICATIONS 2019:135-160. [DOI: 10.1007/978-3-030-02973-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
31
|
Wilkens R, Wilson A, Burns PN, Ghosh S, Wilson SR. Persistent Enhancement on Contrast-Enhanced Ultrasound Studies of Severe Crohn's Disease: Stuck Bubbles? ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2189-2198. [PMID: 30076030 DOI: 10.1016/j.ultrasmedbio.2018.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/16/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
A small population of patients with severe Crohn's disease (CD) exhibit atypical lack of intensity decline on intestinal contrast-enhanced ultrasound. From a retrospective CD cohort examined with contrast-enhanced ultrasound, 104 patients were identified. Twenty study patients with severe active disease exhibited high peak enhancement (>23 dB) and minimal decline. From the same cohort, 84 control patients also exhibited high peak enhancement >23dB, but with typical intensity decline. Patient outcomes were assessed. Time-intensity curve analysis revealed a significantly higher (p < 0.0001) area under the curve (44.7 ± 1.5 dB·s), washout time and intensities at 60s and 120s in the study population compared with controls (40.0 ± 1.1 dB·s). Study patients had a worse overall outcome with surgery in 30% versus 10% (p = 0.027) during follow-up. Heightened enhancement with lack of decline on contrast-enhanced ultrasound suggests microbubbles are stuck within the inflamed bowel wall for an extended period. This observation occurs in patients with severe disease and a bad outcome.
Collapse
Affiliation(s)
- Rune Wilkens
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada; Department of Medicine, Division of Gastroenterology, University of Calgary, Calgary, Alberta, Canada
| | - Alexandra Wilson
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Peter N Burns
- Department of Medical Imaging Research, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| | - Subrata Ghosh
- Department of Medicine, Division of Gastroenterology, University of Calgary, Calgary, Alberta, Canada
| | - Stephanie R Wilson
- Department of Radiology, University of Calgary, Calgary, Alberta, Canada; Department of Medicine, Division of Gastroenterology, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
32
|
Sun PF, Tian T, Chen LN, Fu RG, Xu SS, Ai H, Wang B, Zhang J, Si RY, Chai Z, Cooper ME, Ren ST. Ultrasound Combined with Microbubbles Enhances the Effects of Methylprednisolone in Lipopolysaccharide-Induced Human Mesangial Cells. J Pharmacol Exp Ther 2018; 365:476-484. [PMID: 29549156 DOI: 10.1124/jpet.117.246223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/09/2018] [Indexed: 03/08/2025] Open
Abstract
A novel drug delivery system mediated by ultrasound (US) combined with microbubbles (MBs) (US+MB) could improve local drug concentration to enhance its efficacy. To investigate the influence of US+MB on methylprednisolone (MP), the effect of US+MB combined with MP (US+MB+MP) on lipopolysaccharide (LPS)-induced human mesangial cells (HMCs) and the underlying mechanism were explored in this study. The results revealed that HMCs treated with LPS underwent significant proliferation and exhibited an increase in nuclear transcription factor-κB (NF-κB) and transforming growth factor-β1 (TGF-β1) expression and a decrease in cellular apoptosis. This effect was significantly inhibited by MP (30-100 μg/ml), US combined with MBs (3.22 × 107 and 8.05 × 107 bubbles/ml), and US combined with both MBs (1.29 × 107 bubbles/ml) and MP (12 μg/ml) (US+MB1+MP12). The effect of US+MB1+MP12 was better than the effect of 12 μg/ml of MP alone and was similar to the effect of 100 μg/ml of MP. Additionally, the intracellular free MP content was significantly higher in the US+MB1+MP12 group than in the MP12 group. US combined with MBs not only inhibited LPS-induced HMC proliferation and NF-κB and TGF-β1 expression and increased cellular apoptosis but also synergized with the pharmacologic effect of MP. The mechanism is partially due to the US-assisted MB local drug delivery and the anti-inflammatory effect induced by US combined with MBs.
Collapse
Affiliation(s)
- Peng-Fei Sun
- Department of Pathology (P.-F.S., T.T., B.W., J.Z., S.-T.R.), Department of Pharmacology (L.-N.C.), and Therapeutic Vaccines Engineering Center of Shaanxi Province (B.W.), School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, People's Republic of China; Department of Pathology, Xi'an City Center Hospital, Xi'an, People's Republic of China (P.-F.S.); Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China (R.-G.F.); Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China (S.-S.X.); Department of Ultrasound, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China (H.A.); Shanghai Medical College, Fudan University, Shanghai, People's Republic of China (R.-Y.S.); and Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia (Z.C., M.E.C.)
| | - Tian Tian
- Department of Pathology (P.-F.S., T.T., B.W., J.Z., S.-T.R.), Department of Pharmacology (L.-N.C.), and Therapeutic Vaccines Engineering Center of Shaanxi Province (B.W.), School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, People's Republic of China; Department of Pathology, Xi'an City Center Hospital, Xi'an, People's Republic of China (P.-F.S.); Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China (R.-G.F.); Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China (S.-S.X.); Department of Ultrasound, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China (H.A.); Shanghai Medical College, Fudan University, Shanghai, People's Republic of China (R.-Y.S.); and Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia (Z.C., M.E.C.)
| | - Li-Na Chen
- Department of Pathology (P.-F.S., T.T., B.W., J.Z., S.-T.R.), Department of Pharmacology (L.-N.C.), and Therapeutic Vaccines Engineering Center of Shaanxi Province (B.W.), School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, People's Republic of China; Department of Pathology, Xi'an City Center Hospital, Xi'an, People's Republic of China (P.-F.S.); Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China (R.-G.F.); Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China (S.-S.X.); Department of Ultrasound, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China (H.A.); Shanghai Medical College, Fudan University, Shanghai, People's Republic of China (R.-Y.S.); and Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia (Z.C., M.E.C.)
| | - Rong-Guo Fu
- Department of Pathology (P.-F.S., T.T., B.W., J.Z., S.-T.R.), Department of Pharmacology (L.-N.C.), and Therapeutic Vaccines Engineering Center of Shaanxi Province (B.W.), School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, People's Republic of China; Department of Pathology, Xi'an City Center Hospital, Xi'an, People's Republic of China (P.-F.S.); Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China (R.-G.F.); Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China (S.-S.X.); Department of Ultrasound, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China (H.A.); Shanghai Medical College, Fudan University, Shanghai, People's Republic of China (R.-Y.S.); and Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia (Z.C., M.E.C.)
| | - Shan-Shan Xu
- Department of Pathology (P.-F.S., T.T., B.W., J.Z., S.-T.R.), Department of Pharmacology (L.-N.C.), and Therapeutic Vaccines Engineering Center of Shaanxi Province (B.W.), School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, People's Republic of China; Department of Pathology, Xi'an City Center Hospital, Xi'an, People's Republic of China (P.-F.S.); Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China (R.-G.F.); Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China (S.-S.X.); Department of Ultrasound, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China (H.A.); Shanghai Medical College, Fudan University, Shanghai, People's Republic of China (R.-Y.S.); and Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia (Z.C., M.E.C.)
| | - Hong Ai
- Department of Pathology (P.-F.S., T.T., B.W., J.Z., S.-T.R.), Department of Pharmacology (L.-N.C.), and Therapeutic Vaccines Engineering Center of Shaanxi Province (B.W.), School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, People's Republic of China; Department of Pathology, Xi'an City Center Hospital, Xi'an, People's Republic of China (P.-F.S.); Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China (R.-G.F.); Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China (S.-S.X.); Department of Ultrasound, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China (H.A.); Shanghai Medical College, Fudan University, Shanghai, People's Republic of China (R.-Y.S.); and Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia (Z.C., M.E.C.)
| | - Bing Wang
- Department of Pathology (P.-F.S., T.T., B.W., J.Z., S.-T.R.), Department of Pharmacology (L.-N.C.), and Therapeutic Vaccines Engineering Center of Shaanxi Province (B.W.), School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, People's Republic of China; Department of Pathology, Xi'an City Center Hospital, Xi'an, People's Republic of China (P.-F.S.); Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China (R.-G.F.); Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China (S.-S.X.); Department of Ultrasound, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China (H.A.); Shanghai Medical College, Fudan University, Shanghai, People's Republic of China (R.-Y.S.); and Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia (Z.C., M.E.C.)
| | - Jian Zhang
- Department of Pathology (P.-F.S., T.T., B.W., J.Z., S.-T.R.), Department of Pharmacology (L.-N.C.), and Therapeutic Vaccines Engineering Center of Shaanxi Province (B.W.), School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, People's Republic of China; Department of Pathology, Xi'an City Center Hospital, Xi'an, People's Republic of China (P.-F.S.); Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China (R.-G.F.); Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China (S.-S.X.); Department of Ultrasound, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China (H.A.); Shanghai Medical College, Fudan University, Shanghai, People's Republic of China (R.-Y.S.); and Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia (Z.C., M.E.C.)
| | - Ruo-Yan Si
- Department of Pathology (P.-F.S., T.T., B.W., J.Z., S.-T.R.), Department of Pharmacology (L.-N.C.), and Therapeutic Vaccines Engineering Center of Shaanxi Province (B.W.), School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, People's Republic of China; Department of Pathology, Xi'an City Center Hospital, Xi'an, People's Republic of China (P.-F.S.); Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China (R.-G.F.); Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China (S.-S.X.); Department of Ultrasound, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China (H.A.); Shanghai Medical College, Fudan University, Shanghai, People's Republic of China (R.-Y.S.); and Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia (Z.C., M.E.C.)
| | - Zhonglin Chai
- Department of Pathology (P.-F.S., T.T., B.W., J.Z., S.-T.R.), Department of Pharmacology (L.-N.C.), and Therapeutic Vaccines Engineering Center of Shaanxi Province (B.W.), School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, People's Republic of China; Department of Pathology, Xi'an City Center Hospital, Xi'an, People's Republic of China (P.-F.S.); Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China (R.-G.F.); Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China (S.-S.X.); Department of Ultrasound, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China (H.A.); Shanghai Medical College, Fudan University, Shanghai, People's Republic of China (R.-Y.S.); and Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia (Z.C., M.E.C.)
| | - Mark E Cooper
- Department of Pathology (P.-F.S., T.T., B.W., J.Z., S.-T.R.), Department of Pharmacology (L.-N.C.), and Therapeutic Vaccines Engineering Center of Shaanxi Province (B.W.), School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, People's Republic of China; Department of Pathology, Xi'an City Center Hospital, Xi'an, People's Republic of China (P.-F.S.); Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China (R.-G.F.); Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China (S.-S.X.); Department of Ultrasound, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China (H.A.); Shanghai Medical College, Fudan University, Shanghai, People's Republic of China (R.-Y.S.); and Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia (Z.C., M.E.C.)
| | - Shu-Ting Ren
- Department of Pathology (P.-F.S., T.T., B.W., J.Z., S.-T.R.), Department of Pharmacology (L.-N.C.), and Therapeutic Vaccines Engineering Center of Shaanxi Province (B.W.), School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, People's Republic of China; Department of Pathology, Xi'an City Center Hospital, Xi'an, People's Republic of China (P.-F.S.); Department of Nephrology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China (R.-G.F.); Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China (S.-S.X.); Department of Ultrasound, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, People's Republic of China (H.A.); Shanghai Medical College, Fudan University, Shanghai, People's Republic of China (R.-Y.S.); and Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia (Z.C., M.E.C.)
| |
Collapse
|
33
|
Wang S, Hossack JA, Klibanov AL. Targeting of microbubbles: contrast agents for ultrasound molecular imaging. J Drug Target 2018; 26:420-434. [PMID: 29258335 DOI: 10.1080/1061186x.2017.1419362] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For contrast ultrasound imaging, the most efficient contrast agents comprise highly compressible gas-filled microbubbles. These micrometer-sized particles are typically filled with low-solubility perfluorocarbon gases, and coated with a thin shell, often a lipid monolayer. These particles circulate in the bloodstream for several minutes; they demonstrate good safety and are already in widespread clinical use as blood pool agents with very low dosage necessary (sub-mg per injection). As ultrasound is an ubiquitous medical imaging modality, with tens of millions of exams conducted annually, its use for molecular/targeted imaging of biomarkers of disease may enable wider implementation of personalised medicine applications, precision medicine, non-invasive quantification of biomarkers, targeted guidance of biopsy and therapy in real time. To achieve this capability, microbubbles are decorated with targeting ligands, possessing specific affinity towards vascular biomarkers of disease, such as tumour neovasculature or areas of inflammation, ischaemia-reperfusion injury or ischaemic memory. Once bound to the target, microbubbles can be selectively visualised to delineate disease location by ultrasound imaging. This review discusses the general design trends and approaches for such molecular ultrasound imaging agents, which are currently at the advanced stages of development, and are evolving towards widespread clinical trials.
Collapse
Affiliation(s)
- Shiying Wang
- a Department of Biomedical Engineering , University of Virginia , Charlottesville , VA , USA
| | - John A Hossack
- a Department of Biomedical Engineering , University of Virginia , Charlottesville , VA , USA
| | - Alexander L Klibanov
- a Department of Biomedical Engineering , University of Virginia , Charlottesville , VA , USA.,b Cardiovascular Division (Department of Medicine), Robert M Berne Cardiovascular Research Center , University of Virginia , Charlottesville , VA , USA
| |
Collapse
|
34
|
Roberts VHJ, Lo JO, Lewandowski KS, Blundell P, Grove KL, Kroenke CD, Sullivan EL, Roberts CT, Frias AE. Adverse Placental Perfusion and Pregnancy Outcomes in a New Nonhuman Primate Model of Gestational Protein Restriction. Reprod Sci 2018; 25:110-119. [PMID: 28443480 PMCID: PMC5993074 DOI: 10.1177/1933719117704907] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Maternal malnutrition during pregnancy impacts fetal growth, with developmental consequences that extend to later life outcomes. In underdeveloped countries, this malnutrition typically takes the form of poor dietary protein content and quality, even if adequate calories are consumed. Here, we report the establishment of a nonhuman primate model of gestational protein restriction (PR) in order to understand how placental function and pregnancy outcomes are affected by protein deficiency. Rhesus macaques were assigned to either a control diet containing 26% protein or switched to a 13% PR diet prior to conception and maintained on this PR diet throughout pregnancy. Standard fetal biometry, Doppler ultrasound of uteroplacental blood flow, ultrasound-guided amniocentesis, and contrast-enhanced ultrasound (CE-US) to assess placental perfusion were performed mid-gestation (gestational day 85 [G85] where term is G168) and in the early third trimester (G135). Our data demonstrate that a 50% reduction in dietary protein throughout gestation results in reduced placental perfusion, fetal growth restriction, and a 50% rate of pregnancy loss. In addition, we demonstrate reduced total protein content and evidence of fetal hypoxia in the amniotic fluid. This report highlights the use of CE-US for in vivo assessment of placental vascular function. The ability to detect placental dysfunction, and thus a compromised pregnancy, early in gestation, may facilitate the development of interventional strategies to optimize clinical care and improve long-term offspring outcomes, which are future areas of study in this new model.
Collapse
Affiliation(s)
- Victoria H. J. Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate
Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Jamie O. Lo
- Department of Obstetrics and Gynecology, Oregon Health & Science
University, Portland, OR, USA
| | - Katherine S. Lewandowski
- Division of Reproductive and Developmental Sciences, Oregon National Primate
Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Peter Blundell
- Division of Cardiometabolic Health, Oregon National Primate Research Center,
Oregon Health & Science University, Beaverton, OR, USA
| | - Kevin L. Grove
- Division of Cardiometabolic Health, Oregon National Primate Research Center,
Oregon Health & Science University, Beaverton, OR, USA
| | - Christopher D. Kroenke
- Division of Neuroscience, Oregon National Primate Research Center, Oregon
Health & Science University, Beaverton, OR, USA
- Advanced Imaging Research Center, Oregon Health & Science University,
Portland, OR, USA
| | - Elinor L. Sullivan
- Division of Neuroscience, Oregon National Primate Research Center, Oregon
Health & Science University, Beaverton, OR, USA
- Department of Biology, University of Portland, Portland, OR, USA
| | - Charles T. Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate
Research Center, Oregon Health & Science University, Beaverton, OR, USA
- Division of Cardiometabolic Health, Oregon National Primate Research Center,
Oregon Health & Science University, Beaverton, OR, USA
| | - Antonio E. Frias
- Division of Reproductive and Developmental Sciences, Oregon National Primate
Research Center, Oregon Health & Science University, Beaverton, OR, USA
- Department of Obstetrics and Gynecology, Oregon Health & Science
University, Portland, OR, USA
| |
Collapse
|
35
|
Molecular Imaging of Acute Cardiac Transplant Rejection: Animal Experiments and Prospects. Transplantation 2017; 101:1977-1986. [PMID: 28538050 DOI: 10.1097/tp.0000000000001780] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acute rejection (AR) remains the biggest challenge during the first year after heart transplantation despite advances in immunosuppressive therapy. The early detection and curbing of AR are crucial to the survival of transplant recipients. However, as the criterion standard for AR, endomyocardial biopsy has several limitations because of its inherent invasiveness and morbidity. Traditional imaging techniques, such as echocardiography and cardiac magnetic resonance imaging, are of certain value for AR, but their diagnostic criteria and accuracy remain in question. Molecular imaging sheds new light on AR diagnosis because it can provide information about gene expression and the location of molecules and cells. This article reviews the latest research and applications of several typical modalities of molecular imaging used in AR and discusses their advantages and disadvantages.
Collapse
|
36
|
Hull TD, Agarwal A, Hoyt K. New Ultrasound Techniques Promise Further Advances in AKI and CKD. J Am Soc Nephrol 2017; 28:3452-3460. [PMID: 28923914 DOI: 10.1681/asn.2017060647] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AKI and CKD are important clinical problems because they affect many patients and the associated diagnostic and treatment paradigms are imperfect. Ultrasound is a cost-effective, noninvasive, and simple imaging modality that offers a multitude of means to improve the diagnosis, monitoring, and treatment of both AKI and CKD, especially considering recent advances in this technique. Ultrasound alone can attenuate AKI and prevent CKD by stimulating the splenic cholinergic anti-inflammatory pathway. Additionally, microbubble contrast agents are improving the sensitivity and specificity of ultrasound for diagnosing kidney disease, especially when these agents are conjugated to ligand-specific mAbs or peptides, which make the dynamic assessment of disease progression and response to treatment possible. More recently, drug-loaded microbubbles have been developed and the load release by ultrasound exposure has been shown to be a highly specific treatment modality, making the potential applications of ultrasound even more promising. This review focuses on the multiple strategies for using ultrasound with and without microbubble technology for enhancing our understanding of the pathophysiology of AKI and CKD.
Collapse
Affiliation(s)
- Travis D Hull
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Anupam Agarwal
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama.,Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas; and .,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
37
|
Cheng X, Zhang Z, Xuanyan G, Li T, Li J, Yin L, Lu M. Adhesive Capsulitis of the Shoulder: Evaluation With US-Arthrography Using a Sonographic Contrast Agent. Sci Rep 2017; 7:5551. [PMID: 28717193 PMCID: PMC5514045 DOI: 10.1038/s41598-017-05491-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/30/2017] [Indexed: 11/09/2022] Open
Abstract
Adhesive capsulitis (AC) is a painful and disabling disorder, which caused restricted motion and chronic pain of shoulder. Intracavitary contrast-enhanced ultrasound has been recently applied to assess obstructive bile duct diseases, tubal patency, vesicoureteric reflux and so on. The aim of this study was to detect the value of US-arthrography by injecting the contrast agent SonoVue into glenohumeral joint compared with US in diagnosing AC. Utrasound (US) and US-arthrography images of 45 patients with AC were compared with that of 45 control subjects without AC with MRI as a gold standard. Patients with AC had a significantly thickened coracohumeral ligment (CHL, 3.1 mm) and inferior capsule (3.5 mm) on US, and a decreased volume of axillary recess (1.14 ml) on US-arthrography compared with the control subjects (1.59 ml). Filling defect (91.1%) and synovitis-like abnormality (75.6%) in the joint on US-arthrography were more sensitive than that of rotator interval abnormality (71.1%), thickened CHL more than 3 mm (64.4%), thickened inferior capsule more than 3.5 mm (66.7%) on US respectively for diagnosis of AC. Consequently, US-arthrography was more effective method than US for assessment of AC. Filling defects of joint cavity and synovitis-like abnormality in the joint are characteristic US-arthrography findings for diagnosing AC.
Collapse
Affiliation(s)
- Xueqing Cheng
- Department of Ultrasound, Sichuan Cancer Hospital Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenqi Zhang
- Department of Ultrasound, Sichuan Cancer Hospital Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Guo Xuanyan
- Department of Ultrasound, Sichuan Academy of Medical Sciences & Sichuan Provincal People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Tingting Li
- Department of Ultrasound, Sichuan Cancer Hospital Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Juan Li
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Longlin Yin
- Department of Radiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Man Lu
- Department of Ultrasound, Sichuan Cancer Hospital Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
38
|
Güvener N, Appold L, de Lorenzi F, Golombek SK, Rizzo LY, Lammers T, Kiessling F. Recent advances in ultrasound-based diagnosis and therapy with micro- and nanometer-sized formulations. Methods 2017; 130:4-13. [PMID: 28552267 DOI: 10.1016/j.ymeth.2017.05.018] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/11/2017] [Accepted: 05/21/2017] [Indexed: 01/15/2023] Open
Abstract
Ultrasound (US) is one of the most frequently used imaging methods in the clinic. The broad spectrum of its applications can be increased by the use of gas-filled microbubbles (MB) as ultrasound contrast agents (UCA). In recent years, also nanoscale UCA like nanobubbles (NB), echogenic liposomes (ELIP) and nanodroplets have been developed, which in contrast to MB, are able to extravasate from the vessels into the tissue. New disease-specific UCA have been designed for the assessment of tissue biomarkers and advanced US to a molecular imaging modality. For this purpose, specific binding moieties were coupled to the UCA surface. The vascular endothelial growth factor receptor-2 (VEGFR-2) and P-/E-selectin are prominent examples of molecular US targets to visualize tumor blood vessels and inflammatory diseases, respectively. Besides their application in contrast-enhanced imaging, MB can also be employed for drug delivery to tumors and across the blood-brain barrier (BBB). This review summarizes the development of micro- and nanoscaled UCA and highlights recent advances in diagnostic and therapeutic applications, which are ready for translation into the clinic.
Collapse
Affiliation(s)
- Nihan Güvener
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany
| | - Lia Appold
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany
| | - Federica de Lorenzi
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany
| | - Susanne K Golombek
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany
| | - Larissa Y Rizzo
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany.
| |
Collapse
|
39
|
Opacic T, Paefgen V, Lammers T, Kiessling F. Status and trends in the development of clinical diagnostic agents. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 9. [DOI: 10.1002/wnan.1441] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/02/2016] [Accepted: 09/15/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Tatjana Opacic
- Department of Experimental Molecular Imaging; RWTH Aachen University; Aachen Germany
| | - Vera Paefgen
- Department of Experimental Molecular Imaging; RWTH Aachen University; Aachen Germany
| | - Twan Lammers
- Department of Experimental Molecular Imaging; RWTH Aachen University; Aachen Germany
- Department of Pharmaceutics; Utrecht University; Utrecht The Netherlands
- Department of Targeted Therapeutics; University of Twente; Enschede The Netherlands
| | - Fabian Kiessling
- Department of Experimental Molecular Imaging; RWTH Aachen University; Aachen Germany
| |
Collapse
|
40
|
Kim J, Park JE, Nahrendorf M, Kim DE. Direct Thrombus Imaging in Stroke. J Stroke 2016; 18:286-296. [PMID: 27733029 PMCID: PMC5066439 DOI: 10.5853/jos.2016.00906] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/01/2016] [Accepted: 09/17/2016] [Indexed: 01/02/2023] Open
Abstract
There is an emergent need for imaging methods to better triage patients with acute stroke for tissue-plasminogen activator (tPA)-mediated thrombolysis or endovascular clot retrieval by directly visualizing the size and distribution of cerebral thromboemboli. Currently, magnetic resonance (MR) or computed tomography (CT) angiography visualizes the obstruction of blood flow within the vessel lumen rather than the thrombus itself. The present visualization method, which relies on observation of the dense artery sign (the appearance of cerebral thrombi on a non-enhanced CT), suffers from low sensitivity. When translated into the clinical setting, direct thrombus imaging is likely to enable individualized acute stroke therapy by allowing clinicians to detect the thrombus with high sensitivity, assess the size and nature of the thrombus more precisely, serially monitor the therapeutic effects of thrombolysis, and detect post-treatment recurrence. This review is intended to provide recent updates on stroke-related direct thrombus imaging using MR imaging, positron emission tomography, or CT.
Collapse
Affiliation(s)
- Jongseong Kim
- Molecular Imaging and Neurovascular Research (MINER) Laboratory, Dongguk University Ilsan Hospital, Goyang, Korea.,Global Research Laboratory for Thrombus-targeted Theranostics at Dongguk University Ilsan Hospital (Korea) and Massachusetts General Hospital ( USA )
| | - Jung E Park
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Matthias Nahrendorf
- Global Research Laboratory for Thrombus-targeted Theranostics at Dongguk University Ilsan Hospital (Korea) and Massachusetts General Hospital ( USA ).,Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Dong-Eog Kim
- Molecular Imaging and Neurovascular Research (MINER) Laboratory, Dongguk University Ilsan Hospital, Goyang, Korea.,Global Research Laboratory for Thrombus-targeted Theranostics at Dongguk University Ilsan Hospital (Korea) and Massachusetts General Hospital ( USA ).,Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| |
Collapse
|
41
|
Mott B, Packwood W, Xie A, Belcik JT, Taylor RP, Zhao Y, Davidson BP, Lindner JR. Echocardiographic Ischemic Memory Imaging Through Complement-Mediated Vascular Adhesion of Phosphatidylserine-Containing Microbubbles. JACC Cardiovasc Imaging 2016; 9:937-46. [DOI: 10.1016/j.jcmg.2015.11.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 11/04/2015] [Accepted: 11/25/2015] [Indexed: 11/24/2022]
|
42
|
Optical Verification of Microbubble Response to Acoustic Radiation Force in Large Vessels With In Vivo Results. Invest Radiol 2016; 50:772-84. [PMID: 26135018 DOI: 10.1097/rli.0000000000000185] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The objective of this study was to optically verify the dynamic behaviors of adherent microbubbles in large blood vessel environments in response to a new ultrasound technique using modulated acoustic radiation force. MATERIALS AND METHODS Polydimethylsiloxane (PDMS) flow channels coated with streptavidin were used in targeted groups to mimic large blood vessels. The custom-modulated acoustic radiation force beam sequence was programmed on a Verasonics research scanner. In vitro experiments were performed by injecting a biotinylated lipid-perfluorobutane microbubble dispersion through flow channels. The dynamic response of adherent microbubbles was detected acoustically and simultaneously visualized using a video camera connected to a microscope. In vivo verification was performed in a large abdominal blood vessel of a murine model for inflammation with injection of biotinylated microbubbles conjugated with P-selectin antibody. RESULTS Aggregates of adherent microbubbles were observed optically under the influence of acoustic radiation force. Large microbubble aggregates were observed solely in control groups without targeted adhesion. Additionally, the dispersion of microbubble aggregates were demonstrated to lead to a transient acoustic signal enhancement in control groups (a new phenomenon we refer to as "control peak"). In agreement with in vitro results, the control peak phenomenon was observed in vivo in a murine model. CONCLUSIONS This study provides the first optical observation of microbubble-binding dynamics in large blood vessel environments with application of a modulated acoustic radiation force beam sequence. With targeted adhesion, secondary radiation forces were unable to produce large aggregates of adherent microbubbles. Additionally, the new phenomenon called control peak was observed both in vitro and in vivo in a murine model for the first time. The findings in this study provide us with a better understanding of microbubble behaviors in large blood vessel environments with application of acoustic radiation force and could potentially guide future beam sequence designs or signal processing routines for enhanced ultrasound molecular imaging.
Collapse
|
43
|
Li J, Zhou P, Li L, Zhang Y, Shao Y, Tang L, Tian S. Effects of Cationic Microbubble Carrying CD/TK Double Suicide Gene and αVβ3 Integrin Antibody in Human Hepatocellular Carcinoma HepG2 Cells. PLoS One 2016; 11:e0158592. [PMID: 27391603 PMCID: PMC4938599 DOI: 10.1371/journal.pone.0158592] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/17/2016] [Indexed: 02/07/2023] Open
Abstract
Objective Hepatocellular carcinoma (HCC), mostly derived from hepatitis or cirrhosisis, is one of the most common types of liver cancer. T-cell mediated immune response elicited by CD/TK double suicide gene has shown a substantial antitumor effect in HCC. Integrin αVβ3 over expresssion has been suggested to regulate the biology behavior of HCC. In this study, we investigated the strategy of incorporating CD/TK double suicide gene and anti-αVβ3 integrin monoclonal antibodies into cationic microbubbles (CMBsαvβ3), and evaluated its killing effect in HCC cells. Methods To improve the transfection efficiency of targeted CD/TK double suicide gene, we adopted cationic microbubbles (CMBs), a cationic delivery agent with enhanced DNA-carrying capacity. The ultrasound and high speed shearing method was used to prepare the non-targeting cationic microbubbles (CMBs). Using the biotin-avidin bridge method, αVβ3 integrin antibody was conjugated to CMBs, and CMBsαvβ3 was generated to specifically target to HepG2 cells. The morphology and physicochemical properties of the CMBsαvβ3 was detected by optical microscope and zeta detector. The conjugation of plasmid and the antibody in CMBsαvβ3 were examined by immunofluorescent microscopy and flow cytometry. The binding capacities of CMBsαvβ3 and CMBs to HCC HepG2 and normal L-02 cells were compared using rosette formation assay. To detect EGFP fluorescence and examine the transfection efficiencies of CMBsαvβ3 and CMBs in HCC cells, fluorescence microscope and contrast-enhanced sonography were adopted. mRNA and protein level of CD/TK gene were detected by RT-PCR and Western blot, respectively. To evaluate the anti-tumor effect of CMBsαvβ3, HCC cells with CMBsαvβ3 were exposed to 5-flurocytosine / ganciclovir (5-FC/GCV). Then, cell cycle distribution after treatment were detected by PI staining and flow cytometry. Apoptotic cells death were detected by optical microscope and assessed by MTT assay and TUNEL-staining assay. Results CMBsαvβ3 had a regular shape and good dispersion. Compared to CMBs, CMBsαvβ3 had more stable concentrations of αVβ3 ligand and pEGFP-KDRP-CD/TK, and CMBsαvβ3 was much sticker to HepG2 HCC cells than normal liver L-02cells. Moreover, after exposed to anti-αVβ3 monoclonal antibody, the adhesion of CMBsαvβ3 to HepG2 cells and L-02 cells were significantly reduced. Also, CMBsαvβ3 demonstrated a substantially higher efficiency in pEGFP-KDRP-CD/TK plasmid transfection in HepG2 cells than CMBs. In addition, CMBsαvβ3 could significantly facilitate 5-FC/GCV-induced cell cycle arrest in S phase. Moreover, treatment of 5-FC/GCV combined with CMBsαvβ3 resulted in a marked apoptotic cell death in HepG2 and SK-Herp-1 HCC cells. In vitro, treatment of 5-FC/GCV combined with CMBsαvβ3 suppresed cell proliferation. In nude mice model, 5-FU + GCV combined with plasmid + CMBsαvβ3were able to significantly suppress tumor volumes. Conclusion Through biotin-avidin mediation system, CMBsαvβ3 were successfully generated to specifically target HCC HepG2 cells. More importantly, CMBsαvβ3 could significantly facilitate 5-FC/GCV-induced cell cycle arrest and apoptotic cell death in HepG2 cells. Our study demonstrated a potential strategy that could be translated clinically to improve liver tumor gene delivery.
Collapse
Affiliation(s)
- Jiale Li
- Department of Ultrasound,the Third Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Ping Zhou
- Department of Ultrasound,the Third Xiangya Hospital, Central South University, Changsha, Hunan China
- * E-mail:
| | - Lan Li
- Department of Ultrasound,the Third Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Yan Zhang
- Department of Ultrasound,the Third Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Yang Shao
- Department of Ultrasound,the Third Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Li Tang
- MDFLOW System,Corporate Park of Doral, Doral, Florida, United States of America
| | - Shuangming Tian
- Department of Ultrasound,the Third Xiangya Hospital, Central South University, Changsha, Hunan China
| |
Collapse
|
44
|
Gujral DM, Cheung WK, Shah BN, Chahal NS, Bhattacharyya S, Hooper J, Senior R, Tang MX, Harrington KJ, Nutting CM. Contrast enhancement of carotid adventitial vasa vasorum as a biomarker of radiation-induced atherosclerosis. Radiother Oncol 2016; 120:63-8. [PMID: 27370203 DOI: 10.1016/j.radonc.2016.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Revised: 06/15/2016] [Accepted: 06/18/2016] [Indexed: 11/25/2022]
Abstract
PURPOSE Abnormal proliferation of adventitial vasa vasorum (vv) occurs early at sites of atherosclerosis and is thought to be an early biomarker of vascular damage. Contrast-enhanced ultrasound (CEUS) can detect this process. Its usefulness in irradiated arteries as a measure of accelerated atherosclerosis is unknown. This study investigates contrast intensity in carotid adventitia as an early marker of radiation-induced damage in head and neck cancer (HNC) patients. MATERIALS/METHODS Patients with HNC treated with a wedged-pair and matched neck technique or hemi-neck radiotherapy (RT) (unirradiated side as control) at least 2years previously were included. Patients had been prescribed a dose of at least 50Gy to the neck. CEUS was performed on both carotid arteries and a region of interest was selected in the adventitia of the far wall of both left and right distal common carotid arteries. Novel quantification software was used to compare the average intensity per pixel between irradiated and unirradiated arteries. RESULTS 48 patients (34 males) with median age of 59.2years (interquartile range (IQR) 49.2-64.2) were included. The mean maximum point dose to the irradiated artery was 61.2Gy (IQR 52.6-61.8) and 1.1Gy (IQR 1.0-1.8Gy) to the unirradiated side. The median interval from RT was 59.4months (IQR 41-88.7). There was a significant difference in the mean (SD) contrast intensity per pixel on the irradiated side (1.1 (0.4)) versus 0.96 (0.34) on the unirradiated side (p=0.01). After attenuation correction, the difference in mean contrast intensity per pixel was still significant (1.4 (0.58) versus 1.2 (0.47) (p=0.02). Previous surgery or chemotherapy had no effect on the difference in contrast intensity between the 2 sides of the neck. Mean intensity per pixel did not correlate to traditional risk prediction models (carotid intima-medial thickness, QSTROKE score). CONCLUSIONS Proliferation of vv is demonstrated by increased contrast intensity in irradiated carotid arteries. This may be a useful, independent biomarker of radiation-induced carotid atherosclerosis when used as a tool to quantify neovascularization.
Collapse
Affiliation(s)
| | | | - Benoy N Shah
- Department of Echocardiography, Royal Brompton Hospital, London, UK
| | - Navtej S Chahal
- Department of Echocardiography, Royal Brompton Hospital, London, UK
| | | | - James Hooper
- Department of Biochemistry, Royal Brompton Hospital, London, UK
| | - Roxy Senior
- Department of Echocardiography, Royal Brompton Hospital, London, UK
| | - Meng-Xing Tang
- Department of Bioengineering, Imperial College, London, UK
| | | | | |
Collapse
|
45
|
Roman MJ, Naqvi TZ, Gardin JM, Gerhard-Herman M, Jaff M, Mohler E. American Society of Echocardiography Report. Vasc Med 2016; 11:201-11. [PMID: 17288128 DOI: 10.1177/1358863x06070511] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Noninvasive measures of atherosclerosis have emerged as adjuncts to standard cardiovascular disease (CVD) risk factors in an attempt to refine risk stratification and the need for more aggressive preventive strategies. Two such approaches, carotid artery imaging and brachial artery reactivity testing (BART), are ultrasound based. Numerous carotid artery imaging protocols have been used, and methodologic aspects are described in detail in this review. The panel recommends that protocols: (1) use end-diastolic (minimum dimension) images for intimal-medial thickness (IMT) measurements; (2) provide separate categorization of plaque presence and IMT; (3) avoid use of a single upper limit of normal for IMT because the measure varies with age, sex, and race; and (4) incorporate lumen measurement, particularly when serial measurements are performed to account for changes in distending pressure. Protocols may vary in the number of segments wherein IMT is measured, whether near wall is measured in addition to far wall, and whether IMT measurements are derived from B-mode or M-mode images, depending on the application. BART is a technique that requires meticulous attention to patient preparation and methodologic detail. Its application is substantially more challenging than is carotid imaging and remains largely a research technique that is not readily translated into routine clinical practice.
Collapse
Affiliation(s)
- Mary J Roman
- Weill Medical College of Cornell University, New York, NY, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Bagalkot V, Deiuliis JA, Rajagopalan S, Maiseyeu A. "Eat me" imaging and therapy. Adv Drug Deliv Rev 2016; 99:2-11. [PMID: 26826436 PMCID: PMC4865253 DOI: 10.1016/j.addr.2016.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 01/07/2016] [Accepted: 01/18/2016] [Indexed: 12/17/2022]
Abstract
Clearance of apoptotic debris is a vital role of the innate immune system. Drawing upon principles of apoptotic clearance, convenient delivery vehicles including intrinsic anti-inflammatory characteristics and specificity to immune cells can be engineered to aid in drug delivery. In this article, we examine the use of phosphatidylserine (PtdSer), the well-known "eat-me" signal, in nanoparticle-based therapeutics making them highly desirable "meals" for phagocytic immune cells. Use of PtdSer facilitates engulfment of nanoparticles allowing for imaging and therapy in various pathologies and may result in immunomodulation. Furthermore, we discuss the targeting of the macrophages and other cells at sites of inflammation in disease. A thorough understanding of the immunobiology of "eat-me" signals is requisite for the successful application of "eat-me"-bearing materials in biomedical applications.
Collapse
Affiliation(s)
- Vaishali Bagalkot
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Jeffrey A Deiuliis
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Sanjay Rajagopalan
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Andrei Maiseyeu
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland, Baltimore, MD, 21201, United States.
| |
Collapse
|
47
|
Meng M, Gao J, Wu C, Zhou X, Zang X, Lin X, Liu H, Wang C, Su H, Liu K, Wang Y, Xue X, Wu J. Doxorubicin nanobubble for combining ultrasonography and targeted chemotherapy of rabbit with VX2 liver tumor. Tumour Biol 2016; 37:8673-80. [PMID: 26738862 PMCID: PMC4990606 DOI: 10.1007/s13277-015-4525-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/26/2015] [Indexed: 01/11/2023] Open
Abstract
A new class of multifunctional nanobubble using poly(lactic-co-glycolic acid) (PLGA) has been developed as ultrasound imaging contrast agents, doxorubicin carriers, and enhancers of ultrasound-mediated drug delivery. The doxorubicin nanobubble (DOX-NB) wrapping carbon tetrafluoride gas was prepared with double emulsion method. We evaluated the enhanced ultrasonic function of the DOX-NB in vivo; its antitumor function was confirmed. The diameter of the prepared bubble was 500 nm, and the potential was −23 mV. The drug loading and encapsulation efficiency of the bubble were 78.6 and 7.4 %, respectively. Therefore, the DOX-NB greatly enhanced ultrasound imaging in vivo. Ultrasound combined with DOX-NB had significant antitumor effect. Compared with other groups, the tumor growth rate and the proliferation index were the lowest while the survival rate and apoptosis index were the highest.
Collapse
Affiliation(s)
- Mingming Meng
- The Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Yangfang District, Beijing, 100038, China
| | - Jie Gao
- The Department of Pathology, Chinese PLA General Hospital, Beijing, China
| | - Chongchong Wu
- The Department of Radiology, Chinese PLA General Hospital, Beijing, China
| | - Xuan Zhou
- The Department of Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Xuefeng Zang
- The Department of Critical Care Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Xiangchun Lin
- The Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Yangfang District, Beijing, 100038, China
| | - Hong Liu
- The Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Yangfang District, Beijing, 100038, China
| | - Canghai Wang
- The Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Yangfang District, Beijing, 100038, China
| | - Hui Su
- The Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Yangfang District, Beijing, 100038, China
| | - Kuiliang Liu
- The Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Yangfang District, Beijing, 100038, China
| | - Yadan Wang
- The Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Yangfang District, Beijing, 100038, China
| | - Xinying Xue
- The Department of Special Medical Treatment, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Yangfang District, Beijing, 100038, China.
| | - Jing Wu
- The Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, 10 Tieyi Road, Yangfang District, Beijing, 100038, China.
| |
Collapse
|
48
|
Lajoinie G, De Cock I, Coussios CC, Lentacker I, Le Gac S, Stride E, Versluis M. In vitro methods to study bubble-cell interactions: Fundamentals and therapeutic applications. BIOMICROFLUIDICS 2016; 10:011501. [PMID: 26865903 PMCID: PMC4733084 DOI: 10.1063/1.4940429] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/05/2016] [Indexed: 05/08/2023]
Abstract
Besides their use as contrast agents for ultrasound imaging, microbubbles are increasingly studied for a wide range of therapeutic applications. In particular, their ability to enhance the uptake of drugs through the permeabilization of tissues and cell membranes shows great promise. In order to fully understand the numerous paths by which bubbles can interact with cells and the even larger number of possible biological responses from the cells, thorough and extensive work is necessary. In this review, we consider the range of experimental techniques implemented in in vitro studies with the aim of elucidating these microbubble-cell interactions. First of all, the variety of cell types and cell models available are discussed, emphasizing the need for more and more complex models replicating in vivo conditions together with experimental challenges associated with this increased complexity. Second, the different types of stabilized microbubbles and more recently developed droplets and particles are presented, followed by their acoustic or optical excitation methods. Finally, the techniques exploited to study the microbubble-cell interactions are reviewed. These techniques operate over a wide range of timescales, or even off-line, revealing particular aspects or subsequent effects of these interactions. Therefore, knowledge obtained from several techniques must be combined to elucidate the underlying processes.
Collapse
Affiliation(s)
- Guillaume Lajoinie
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands
| | - Ine De Cock
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University , Ghent, Belgium
| | | | - Ine Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicines, Faculty of Pharmaceutical Sciences, Ghent University , Ghent, Belgium
| | - Séverine Le Gac
- MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands
| | - Eleanor Stride
- Institute of Biomedical Engineering, University of Oxford , Oxford, United Kingdom
| | - Michel Versluis
- Physics of Fluids Group, MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands
| |
Collapse
|
49
|
Zhang X, Zhao K, Wang J, Bai S, Jiao S, Zhang J, Yu L. Design of simvastatin-loaded polymeric microbubbles as targeted ultrasound contrast agents for vascular imaging and drug delivery in the identification of atherosclerotic plaque. NEW J CHEM 2016. [DOI: 10.1039/c5nj02292d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Simvastatin-loaded polymeric microbubbles were synthesized as targeted ultrasound contrast agents and ultrasound-triggered drug carriers.
Collapse
Affiliation(s)
- Xiangyu Zhang
- College of Pharmacy
- Jiamusi University
- Jiamusi 154007
- China
| | - Kaiyue Zhao
- College of Pharmacy
- Jiamusi University
- Jiamusi 154007
- China
| | - Jun Wang
- College of Material Science and Chemical Engineering
- Harbin Engineering University
- Harbin 150001
- China
| | - Shujie Bai
- College of Pharmacy
- Jiamusi University
- Jiamusi 154007
- China
| | - Shuqing Jiao
- College of Pharmacy
- Jiamusi University
- Jiamusi 154007
- China
| | - Jie Zhang
- College of Pharmacy
- Jiamusi University
- Jiamusi 154007
- China
| | - Lian Yu
- College of Pharmacy
- Jiamusi University
- Jiamusi 154007
- China
| |
Collapse
|
50
|
Zhou J, Hu W, Tang L. Non-invasive Characterization of Immune Responses to Biomedical Implants. Ann Biomed Eng 2015; 44:693-704. [DOI: 10.1007/s10439-015-1470-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/22/2015] [Indexed: 01/08/2023]
|