1
|
The biological role of arachidonic acid 12-lipoxygenase (ALOX12) in various human diseases. Biomed Pharmacother 2020; 129:110354. [DOI: 10.1016/j.biopha.2020.110354] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 05/20/2020] [Accepted: 06/01/2020] [Indexed: 12/18/2022] Open
|
2
|
Mukherjee K, Song CY, Estes AM, Dhodi AN, Ormseth BH, Shin JS, Gonzalez FJ, Malik KU. Cytochrome P450 1B1 Is Critical for Neointimal Growth in Wire-Injured Carotid Artery of Male Mice. J Am Heart Assoc 2018; 7:e010065. [PMID: 30371217 PMCID: PMC6222936 DOI: 10.1161/jaha.118.010065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/26/2018] [Indexed: 11/29/2022]
Abstract
Background We have reported that cytochrome P450 1B1 ( CYP 1B1), expressed in cardiovascular tissues, contributes to angiotensin II -induced vascular smooth muscle cell ( VSMC ) migration and proliferation and development of hypertension in various experimental animal models via generation of reactive oxygen species. This study was conducted to determine the contribution of CYP 1B1 to platelet-derived growth factor-BB-induced VSMC migration and proliferation in vitro and to neointimal growth in vivo. Methods and Results VSMC s isolated from aortas of male Cyp1b1 +/+ and Cyp1b1 -/- mice were used for in vitro experiments. Moreover, carotid arteries of Cyp1b1 +/+ and Cyp1b1 -/- mice were injured with a metal wire to assess neointimal growth after 14 days. Platelet-derived growth factor- BB -induced migration and proliferation and H2O2 production were found to be attenuated in VSMC s from Cyp1b1 -/- mice and in VSMC s of Cyp1b1 +/+ mice treated with 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl, a superoxide dismutase and catalase mimetic. In addition, wire injury resulted in neointimal growth, as indicated by increased intimal area, intima/media ratio, and percentage area of restenosis, as well as elastin disorganization and adventitial collagen deposition in carotid arteries of Cyp1b1 +/+ mice, which were minimized in Cyp1b1 -/- mice. Wire injury also increased infiltration of inflammatory and immune cells, as indicated by expression of CD 68+ macrophages and CD 3+ T cells, respectively, in the injured arteries of Cyp1b1 +/+ mice, but not Cyp1b1 -/- mice. Administration of 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl attenuated neointimal growth in wire-injured carotid arteries of Cyp1b1 +/+ mice. Conclusions These data suggest that CYP 1B1-dependent oxidative stress contributes to the neointimal growth caused by wire injury of carotid arteries of male mice.
Collapse
Affiliation(s)
- Kamalika Mukherjee
- Department of PharmacologyCollege of MedicineUniversity of Tennessee Health Science CenterMemphisTN
| | - Chi Young Song
- Department of PharmacologyCollege of MedicineUniversity of Tennessee Health Science CenterMemphisTN
| | - Anne M. Estes
- Department of PharmacologyCollege of MedicineUniversity of Tennessee Health Science CenterMemphisTN
| | - Ahmad N. Dhodi
- Department of PharmacologyCollege of MedicineUniversity of Tennessee Health Science CenterMemphisTN
| | - Benjamin H. Ormseth
- Department of PharmacologyCollege of MedicineUniversity of Tennessee Health Science CenterMemphisTN
| | - Ji Soo Shin
- Department of PharmacologyCollege of MedicineUniversity of Tennessee Health Science CenterMemphisTN
| | | | - Kafait U. Malik
- Department of PharmacologyCollege of MedicineUniversity of Tennessee Health Science CenterMemphisTN
| |
Collapse
|
3
|
Porro B, Songia P, Squellerio I, Tremoli E, Cavalca V. Analysis, physiological and clinical significance of 12-HETE: a neglected platelet-derived 12-lipoxygenase product. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 964:26-40. [PMID: 24685839 DOI: 10.1016/j.jchromb.2014.03.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/07/2014] [Accepted: 03/09/2014] [Indexed: 11/25/2022]
Abstract
While the importance of cyclooxygenase (COX) in platelet function has been amply elucidated, the identification of the role of 12-lipoxygenase (12-LOX) and of its stable metabolite, 12-hydroxyeicosatretraenoic acid (12-HETE), has not been clarified as yet. Many studies have analysed the implications of 12-LOX products in different pathological disorders but the information obtained from these works is controversial. Several analytical methods have been developed over the years to simultaneously detect eicosanoids, and specifically 12-HETE, in different biological matrices, essentially enzyme-linked immunosorbent assays (ELISA), radioimmunoassays (RIA), high performance liquid chromatography (HPLC) and mass spectrometry coupled with both gas and liquid chromatography methods (GC- and LC-MS). This review is aimed at summarizing the up to now known physiological and clinical features of 12-HETE together with the analytical methods used for its determination, focusing on the critical issues regarding its measurement.
Collapse
Affiliation(s)
| | | | | | - Elena Tremoli
- Centro Cardiologico Monzino-IRCCS, Milan, Italy; Università degli Studi di Milano, Dipartimento di Scienze Farmacologiche e Biomolecolari, Milan, Italy
| | - Viviana Cavalca
- Centro Cardiologico Monzino-IRCCS, Milan, Italy; Dipartimento di Scienze Cliniche e di Comunità, Milan, Italy.
| |
Collapse
|
4
|
Zhao L, Grosser T, Fries S, Kadakia L, Wang H, Zhao J, Falotico R. Lipoxygenase and prostaglandin G/H synthase cascades in cardiovascular disease. Expert Rev Clin Immunol 2014; 2:649-58. [DOI: 10.1586/1744666x.2.4.649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
Félétou M. The Endothelium, Part I: Multiple Functions of the Endothelial Cells -- Focus on Endothelium-Derived Vasoactive Mediators. ACTA ACUST UNITED AC 2011. [DOI: 10.4199/c00031ed1v01y201105isp019] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
|
7
|
Singh NK, Quyen DV, Kundumani-Sridharan V, Brooks PC, Rao GN. AP-1 (Fra-1/c-Jun)-mediated induction of expression of matrix metalloproteinase-2 is required for 15S-hydroxyeicosatetraenoic acid-induced angiogenesis. J Biol Chem 2010; 285:16830-43. [PMID: 20353950 DOI: 10.1074/jbc.m110.106187] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand the involvement of matrix metalloproteinases (MMPs) in 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE)-induced angiogenesis, we have studied the role of MMP-2. 15(S)-HETE induced MMP-2 expression and activity in a time-dependent manner in human dermal microvascular endothelial cells (HDMVECs). Inhibition of MMP-2 activity or depletion of its levels attenuated 15(S)-HETE-induced HDMVEC migration, tube formation, and Matrigel plug angiogenesis. 15(S)-HETE also induced Fra-1 and c-Jun expression in a Rac1-MEK1-JNK1-dependent manner. In addition, 15(S)-HETE-induced MMP-2 expression and activity were mediated by Rac1-MEK1-JNK1-dependent activation of AP-1 (Fra-1/c-Jun). Cloning and site-directed mutagenesis of MMP-2 promoter revealed that AP-1 site proximal to the transcriptional start site is required for 15(S)-HETE-induced MMP-2 expression, and Fra-1 and c-Jun are the essential components of AP-1 that bind to MMP-2 promoter in response to 15(S)-HETE. Hind limb ischemia led to an increase in MEK1 and JNK1 activation and Fra-1, c-Jun, and MMP-2 expression resulting in enhanced neovascularization and recovery of blood perfusion in wild-type mice as compared with 12/15-Lox(-/-) mice. Together, these results provide the first direct evidence for a role of 12/15-Lox-12/15(S)-HETE axis in the regulation of ischemia-induced angiogenesis.
Collapse
Affiliation(s)
- Nikhlesh K Singh
- Department of Physiology, the University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | |
Collapse
|
8
|
15(S)-hydroxyeicosatetraenoic acid-induced angiogenesis requires Src-mediated Egr-1-dependent rapid induction of FGF-2 expression. Blood 2010; 115:2105-16. [PMID: 20053757 DOI: 10.1182/blood-2009-09-241802] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To understand the mechanisms underlying 15(S)-hydroxyeicosatetraenoic acid [15(S)-HETE]-induced angiogenesis, we studied the role of Egr-1. 15(S)-HETE induced Egr-1 expression in a time-dependent manner in human dermal microvascular endothelial cells (HDMVECs). Blockade of Egr-1 via forced expression of its dominant-negative mutant attenuated 15(S)-HETE-induced HDMVEC migration and tube formation as well as Matrigel plug angiogenesis. 15(S)-HETE-induced Egr-1 expression requires Src activation. In addition, adenovirus-mediated expression of dominant-negative mutant of Src blocked 15(S)-HETE's effects on migration and tube formation of HDMVECs and Matrigel plug angiogenesis. 15(S)-HETE induced fibroblast growth factor-2 (FGF-2) expression rapidly via Src-mediated production of Egr-1. Cloning and mutational analysis of FGF-2 promoter revealed that Egr-1 binding site proximal to transcription start site is required for 15(S)-HETE-induced FGF-2 expression. Neutralizing antibody-mediated suppression of FGF-2 function also attenuated the effects of 15(S)-HETE on HDMVEC migration and tube formation as well as Matrigel plug angiogenesis. Furthermore, in contrast to wild-type mice, 12/15-LOX(-/-) mice exhibited decreased Matrigel plug angiogenesis in response to AA, which was rescued by 15(S)-HETE. On the basis of these observations, we conclude that 15(S)-HETE-induced angiogenesis requires Src-mediated Egr-1-dependent rapid induction of FGF-2. These findings may suggest that 15(S)-HETE could be a potential endogenous regulator of pathologic angiogenesis associated with atherosclerosis and restenosis.
Collapse
|
9
|
Potula HSK, Wang D, Quyen DV, Singh NK, Kundumani-Sridharan V, Karpurapu M, Park EA, Glasgow WC, Rao GN. Src-dependent STAT-3-mediated expression of monocyte chemoattractant protein-1 is required for 15(S)-hydroxyeicosatetraenoic acid-induced vascular smooth muscle cell migration. J Biol Chem 2009; 284:31142-55. [PMID: 19736311 DOI: 10.1074/jbc.m109.012526] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
To understand the role of human 15-lipoxygenase 1 (15-LOX1) in vascular wall remodeling, we have studied the effect of the major 15-LOX1 metabolite of arachidonic acid, 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE), on vascular smooth muscle cell (VSMC) migration both in vitro and in vivo. Among 5(S)-HETE, 12(S)-HETE, and 15(S)-HETE, 15(S)-HETE potentially stimulated more vascular smooth muscle cell (VSMC) migration. In addition, 15(S)-HETE-induced VSMC migration was dependent on Src-mediated activation of signal transducer and activator of transcription-3 (STAT-3). 15(S)-HETE also induced monocyte chemoattractant protein-1 (MCP-1) expression via Src-STAT-3 signaling, and neutralizing anti-MCP-1 antibodies completely negated 15(S)-HETE-induced VSMC migration. Cloning and characterization of a 2.6-kb MCP-1 promoter revealed the presence of four putative STAT-binding sites, and the site that is proximal to the transcription start site was found to be essential for 15(S)-HETE-induced Src-STAT-3-mediated MCP-1 expression. Rat carotid arteries that were subjected to balloon injury and transduced with Ad-15-LOX1 upon exposure to [(3)H]arachidonic acid ex vivo produced 15-HETE as a major eicosanoid and enhanced balloon injury-induced expression of MCP-1 in smooth muscle cells in Src and STAT-3-dependent manner in vivo. Adenovirus-mediated delivery of 15-LOX1 into rat carotid artery also led to recruitment and homing of macrophages to medial region in response to injury. In addition, transduction of Ad-15-LOX1 into arteries enhanced balloon injury-induced smooth muscle cell migration from media to intima and neointima formation. These results show for the first time that 15-LOX1-15(S)-HETE axis plays a major role in vascular wall remodeling after balloon angioplasty.
Collapse
Affiliation(s)
- Harihara S K Potula
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Chava KR, Karpurapu M, Wang D, Bhanoori M, Kundumani-Sridharan V, Zhang Q, Ichiki T, Glasgow WC, Rao GN. CREB-mediated IL-6 expression is required for 15(S)-hydroxyeicosatetraenoic acid-induced vascular smooth muscle cell migration. Arterioscler Thromb Vasc Biol 2009; 29:809-15. [PMID: 19342597 PMCID: PMC2724759 DOI: 10.1161/atvbaha.109.185777] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Migration of vascular smooth muscle cells (VSMCs) from media to intima is a key event in the pathophysiology of atherosclerosis and restenosis. The lipoxygenase products of polyunsaturated fatty acids (PUFA) were shown to play a role in these diseases. cAMP response element binding protein (CREB) has been implicated in the regulation of VSMC growth and motility in response to thrombin and angiotensin II. The aim of the present study was to test the role of CREB in an oxidized lipid molecule, 15(S)-HETE-induced VSMC migration and neointima formation. METHODS AND RESULTS 15(S)-HETE stimulated VSMC migration in CREB-dependent manner, as measured by the modified Boyden chamber method. Blockade of MEK1, JNK1, or p38MAPK inhibited 15(S)-HETE-induced CREB phosphorylation and VSMC migration. 15(S)-HETE induced expression and secretion of interleukin-6 (IL-6), as analyzed by RT-PCR and ELISA, respectively. Neutralizing anti-IL-6 antibodies blocked 15(S)-HETE-induced VSMC migration. Dominant-negative mutant-mediated blockade of ERK1/2, JNK1, p38MAPK, or CREB suppressed 15(S)-HETE-induced IL-6 expression in VSMCs. Serial 5' deletions and site-directed mutagenesis of IL-6 promoter along with chromatin immunoprecipitation using anti-CREB antibodies showed that cAMP response element is essential for 15(S)-HETE-induced IL-6 expression. Dominant-negative CREB also suppressed balloon injury-induced IL-6 expression, SMC migration from media to intimal region, and neointima formation. Adenovirus-mediated transduction of 15-lipoxygenase 2 (15-LOX2) caused increased production of 15-HETE in VSMCs and enhanced IL-6 expression, SMC migration from media to intimal region, and neointima formation in response to arterial injury. CONCLUSIONS The above results suggest a role for 15-LOX2-15-HETE in the regulation of VSMC migration and neointima formation involving CREB-mediated IL-6 expression.
Collapse
MESH Headings
- Angioplasty, Balloon/adverse effects
- Animals
- Arachidonate 15-Lipoxygenase/genetics
- Arachidonate 15-Lipoxygenase/metabolism
- Carotid Artery Injuries/enzymology
- Carotid Artery Injuries/metabolism
- Carotid Artery Injuries/pathology
- Cell Movement
- Cells, Cultured
- Cyclic AMP Response Element-Binding Protein/genetics
- Cyclic AMP Response Element-Binding Protein/metabolism
- Disease Models, Animal
- Hydroxyeicosatetraenoic Acids/metabolism
- Interleukin-6/genetics
- Interleukin-6/metabolism
- MAP Kinase Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Mitogen-Activated Protein Kinase 8/metabolism
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Mutation
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Phosphorylation
- Promoter Regions, Genetic
- Rats
- Time Factors
- Transfection
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Koteswara R. Chava
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Manjula Karpurapu
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Dong Wang
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Manjula Bhanoori
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | | | - Qiuhua Zhang
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Toshihiro Ichiki
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Wayne C. Glasgow
- Division of Basic Medical Sciences, Mercer University School of Medicine, Macon, GA 31207, USA
| | - Gadiparthi N. Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163
| |
Collapse
|
11
|
The 15(S)-hydroxyeicosatetraenoic acid-induced angiogenesis requires Janus kinase 2-signal transducer and activator of transcription-5B-dependent expression of interleukin-8. Blood 2009; 113:6023-33. [PMID: 19349617 DOI: 10.1182/blood-2008-10-183210] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To understand the molecular basis underlying 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE)-induced angiogenesis, we have studied the role of the Janus kinase-signal transducer and activator of transcription (Jak-STAT) signaling. The 15(S)-HETE stimulated tyrosine phosphorylation of Jak2 in a time-dependent manner in human retinal microvascular endothelial cells (HRMVECs). Inhibition of Jak2 activation via adenovirus-mediated expression of its dominant-negative mutant attenuated 15(S)-HETE-induced HRMVEC migration and tube formation and Matrigel plug angiogenesis. Similarly, 15(S)-HETE activated tyrosine phosphorylation of STAT-5B in a time-dependent manner. Dominant-negative mutant-mediated interference of STAT-5B activation suppressed 15(S)-HETE-induced HRMVEC migration and tube formation and Matrigel plug angiogenesis. The 15(S)-HETE induced interleukin-8 (IL-8) expression in Jak2-STAT-5B-dependent manner in HRMVECs. In addition, neutralizing anti-IL-8 antibodies reduced 15(S)-HETE-induced HRMVEC migration and tube formation and Matrigel plug angiogenesis. Cloning and Transfac analysis of IL-8 promoter revealed the presence of 1 putative STAT-binding sequence at -476 nt, and electrophoretic mobility shift assay and chromatin immunoprecipitation analysis showed the binding of STAT-5B to this site in response to 15(S)-HETE. Mutational analysis showed that STAT binding site is essential for 15(S)-HETE-induced IL-8 promoter activity. Together, these observations suggest that 15(S)-HETE-induced angiogenesis requires Jak2-STAT-5B-dependent expression of IL-8.
Collapse
|
12
|
Xu ZG, Yuan H, Lanting L, Li SL, Wang M, Shanmugam N, Kato M, Adler SG, Reddy MA, Natarajan R. Products of 12/15-lipoxygenase upregulate the angiotensin II receptor. J Am Soc Nephrol 2008; 19:559-69. [PMID: 18235084 DOI: 10.1681/asn.2007080939] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Angiotensin II and its type 1 receptor (AT1R) play important roles in the pathogenesis of renal disease and diabetic nephropathy. The 12/15-lipoxygenase pathway of arachidonate metabolism and its lipid products have also been implicated in diabetic nephropathy. However, it is unclear whether 12/15-lipoxygenase regulates expression of AT1R. In cultured rat mesangial cells, we found that the 12/15-lipoxygenase product 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE) increased AT1R mRNA and protein expression, primarily by stabilizing AT1R mRNA. Pretreatment with 12(S)-HETE also amplified the signaling effects of angiotensin II, likely due to the increased AT1R expression. Levels of AT1R protein expression decreased when 12/15-lipoxygenase was knocked down with specific short hairpin RNA (shRNA) compared with control cells. Similarly, levels of the AT1 receptor, but not the AT2 receptor, were significantly lower in mesangial cells and glomeruli derived from 12/15-lipoxygenase knockout mice compared with control mice. Reciprocally, stable overexpression of 12/15-lipoxygenase increased AT1R expression in cultured mesangial cells. In vivo, modified siRNA targeting 12/15-lipoxygenase reduced glomerular AT1R expression in a diabetic mouse model. Interestingly, angiotensin II induced greater levels of 12/15-lipoxygenase, TGF-beta1, and fibronectin (FN) in AT1R-overexpressing mesangial cells compared with control cells. Therefore, oxidized lipids generated by the 12/15-lipoxygenase-mediated metabolism of arachidonic acid can enhance AT1R expression in mesangial cells and augment the profibrotic effects of angiotensin II.
Collapse
Affiliation(s)
- Zhong-Gao Xu
- Gonda Diabetes Research Center, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Dwarakanath RS, Sahar S, Lanting L, Wang N, Stemerman MB, Natarajan R, Reddy MA. Viral vector-mediated 12/15-lipoxygenase overexpression in vascular smooth muscle cells enhances inflammatory gene expression and migration. J Vasc Res 2007; 45:132-42. [PMID: 17943024 DOI: 10.1159/000109966] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 07/05/2007] [Indexed: 11/19/2022] Open
Abstract
Increased expression and activity of 12/15-lipoxygenase (12/15-LO) in vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetes and vascular complications. However, the consequences of 12/15-LO overexpression for VSMC migration and inflammatory gene expression are not known. In this study, 12/15-LO was overexpressed using adeno- and baculoviral vectors in human VSMC (HVSMCs) and proatherogenic responses compared with control enhanced green fluorescent protein (EGFP)-expressing cells. HVSMCs transduced with 12/15-LO viruses expressed high levels of enzymatically active protein and produced increased levels of the LO product, 12(S)-hydroxyeicosatetraenoic acid. 12/15-LO-overexpressing HVSMCs exhibited increased oxidant stress, activation of p38 mitogen-activated protein kinase, migration and inflammatory gene expression relative to HVSMCs expressing EGFP. Furthermore, inflammatory gene expression induced by 12/15-LO overexpression was abolished by anti-oxidants, siRNAs targeting p65 (nuclear factor-kappaB), or new-generation baculoviruses expressing inhibitory IkappaBalpha or IkappaBalpha superrepressor mutant. Thus, we have used novel viral vector delivery systems, including baculoviruses, for the first time to deliver foreign genes into VSMCs and thereby demonstrated that 12/15-LO overexpression increases oxidant stress, mitogen-activated protein kinase activation, migration and inflammatory genes in VSMCs and that NF-kappaB is a key downstream effector. Enhanced proatherogenic responses in VSMCs triggered by increased 12/15-LO levels under pathological conditions may contribute to vascular dysfunction.
Collapse
|
14
|
Srivastava K, Kundumani-Sridharan V, Zhang B, Bajpai AK, Rao GN. 15(S)-hydroxyeicosatetraenoic acid-induced angiogenesis requires STAT3-dependent expression of VEGF. Cancer Res 2007; 67:4328-36. [PMID: 17483346 DOI: 10.1158/0008-5472.can-06-3594] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
15(S)-Hydroxyeicosatetraenoic acid [15(S)-HETE] activated signal transducer and activator of transcription 3 (STAT3) as measured by its tyrosine phosphorylation, translocation from the cytoplasm to the nucleus, DNA binding, and reporter gene activity in human dermal microvascular endothelial cells (HDMVEC). Inhibition of STAT3 activation via adenovirus-mediated expression of its dominant-negative mutant suppressed 15(S)-HETE-induced HDMVEC migration and tube formation in vitro and aortic ring and Matrigel plug angiogenesis in vivo. 15(S)-HETE induced the expression of vascular endothelial growth factor (VEGF) in a time- and STAT3-dependent manner in HDMVEC. In addition, neutralizing anti-VEGF antibodies blocked 15(S)-HETE-induced HDMVEC migration and tube formation in vitro and aortic ring and Matrigel plug angiogenesis in vivo. Together, these results show for the first time that 15(S)-HETE-induced angiogenesis requires STAT3-dependent expression of VEGF. In view of these findings, it is suggested that eicosanoids, particularly 15(S)-HETE, via its capacity to stimulate angiogenesis, may influence the progression of cancer and vascular disease.
Collapse
Affiliation(s)
- Kalyan Srivastava
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | | | | | |
Collapse
|
15
|
Quintana LF, Guzmán B, Collado S, Clària J, Poch E. A coding polymorphism in the 12-lipoxygenase gene is associated to essential hypertension and urinary 12(S)-HETE. Kidney Int 2006; 69:526-30. [PMID: 16514435 DOI: 10.1038/sj.ki.5000147] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The arachidonic acid-derived metabolite 12-(S)hydroxyeicosatetraenoic acid (12(S)-HETE), catalyzed by 12-lipoxygenase (12-LOX, ALOX12), exhibits a variety of biological activities with implications in cardiovascular disease. Previous studies have shown higher urinary excretion of this metabolite in essential hypertension. The aim of this study was to analyze the association of polymorphisms in ALOX12 with hypertension and urinary levels of 12(S)-HETE. We studied 200 patients with essential hypertension (aged 56+/-1 years, mean+/-s.e.m., 97 males) and 166 matched controls (aged 54+/-1 years, 91 males). Out of six polymorphisms in the coding region of ALOX12, only R261Q determined a nonconservative amino-acid change and was evaluated by polymerase chain reaction and restriction digestion. Urinary 12(S)-HETE was measured in Sep-Pack-extracted samples using specific enzyme-linked immunosorbent assay. The distribution of genotypes of the R261Q polymorphism was significantly different between patients and controls: patients 92 (0.46) GG, 84 (0.42) GA, 24 (0.12) AA vs controls 56 (0.34) GG, 78 (0.47) GA, 32 (0.19) AA (P=0.030). On the contrary, no association was observed for two intronic polymorphisms. The urinary excretion of 12(S)-HETE (ng/mg creatinine) was significantly higher in GG homozygous patients (13.0+/-1.5) than in GA (8.2+/-1.8) or in AA (8+/-1.5) patients (P=0.018). These results indicate that a nonsynonymous polymorphism in ALOX12 is associated to essential hypertension and to urinary levels of 12(S)-HETE, thus suggesting a role for this gene in this disease.
Collapse
Affiliation(s)
- L F Quintana
- Servicio de Nefrología, Hospital Clínic, Universidad de, Barcelona, Barcelona, Spain
| | | | | | | | | |
Collapse
|
16
|
Abstract
Arachidonic acid metabolites are vital for the proper control of renal haemodynamics and, when not properly controlled, can contribute to renal vascular injury and end-stage renal disease. Three major enzymatic pathways, COX (cyclo-oxygenase), CYP450 (cytochrome P450) and LOX (lipoxygenase), are responsible for the metabolism of arachidonic acid metabolites to bioactive eicosanoids. These eicosanoids can dilate or constrict the renal vasculature and maintain vascular resistance in the face of changing vasoactive hormones. Renal vascular generation of eicosanoids is altered in pathophysiological conditions such as hypertension, diabetes, metabolic syndrome and acute renal failure. Experimental evidence supports the concept that altered eicosanoid metabolism contributes to renal haemodynamic alterations and the development and progression of nephropathy. The possible beneficial renal vascular actions of enzymatic inhibitors, eicosanoid analogues and receptor antagonists have been examined in hypertension, diabetes and metabolic syndrome. This review highlights the roles of renal vascular eicosanoids in the pathogenesis of nephropathy and therapeutic targets for renal disease related to hypertension, diabetes, metabolic syndrome and acute renal failure.
Collapse
Affiliation(s)
- John D Imig
- Vascular Biology Center, Department of Physiology, Medical College of Georgia, Augusta, GA 30912, USA.
| |
Collapse
|
17
|
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the Western world. Its incidence has been increasing lately in developing countries. Several lines of evidence support a role for oxidative stress in atherogenesis. Growing evidence indicates that chronic and acute overproduction of reactive oxygen species (ROS) under pathophysiologic conditions is integral in the development of cardiovascular diseases (CVD). ROS mediate various signaling pathways that underlie vascular inflammation in atherogenesis from the initiation of fatty streak development through lesion progression to ultimate plaque rupture. Various animal models of oxidative stress support the notion that ROS have a causal role in atherosclerosis and other cardiovascular diseases. Human investigations also support the oxidative stress hypothesis of atherosclerosis. Oxidative stress is the unifying mechanism for many CVD risk factors, which additionally supports its central role in CVD. A main source of ROS in vascular cells is the reduced nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase system. This is a membrane-associated enzyme, composed of five subunits, catalyzing the one-electron reduction of oxygen, using NADH or NADPH as the electron donor. This system is an important target for genetic investigations. Identification of groups of patients with genetically prone or resistant of oxidative stress is therefore an obvious target of investigation. A better understanding of the complexity of cellular redox reactions, development of a new class of antioxidants targeted to specific subcellular sites, and the phenotype-genotype linkage analysis for oxidative stress will likely be avenues for future research with regards to the broader use of pharmacological therapies in the treatment and prevention of CVD.
Collapse
Affiliation(s)
- Uma Singh
- The Laboratory for Atherosclerosis and Metabolic Research, UC Davis Medical Center, Sacramento, CA, United States
| | | |
Collapse
|
18
|
González JM, Andrés V. Cytostatic gene therapy for occlusive vascular disease. Expert Opin Ther Pat 2006. [DOI: 10.1517/13543776.16.4.507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
19
|
Sasson S, Eckel J. Disparate effects of 12-lipoxygenase and 12-hydroxyeicosatetraenoic acid in vascular endothelial and smooth muscle cells and in cardiomyocytes. Arch Physiol Biochem 2006; 112:119-29. [PMID: 16931454 DOI: 10.1080/13813450600712035] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The expression and activity of the arachidonic acid-metabolizing enzyme leukocyte-type 12-lipoxygenase (12-LO) are augmented in cultured vascular endothelial and smooth muscle cells exposed to high glucose concentrations and in blood vessels of diabetic animals. The product of this enzyme, 12-hydroxyeicosatetraenoic acid (12-HETE), evokes two types of interactions in these cells: on one hand it acts as a pro-inflammatory factor that contributes to the initiation and progression of atherosclerotic lesions. Yet on the other, it protects the same cells against deleterious effects of high levels of intracellular glucose by downregulating the glucose transport system in the cells. In addition, it has been shown that 12-LO and 12-HETE support insulin-dependent glucose transporter-4 translocation to the plasma membrane by maintaining intact actin fiber network in the cardiomyocytes. Here we focus on the disparate cellular interactions by which 12-LO and 12-HETE affect the glucose transport system in vascular endothelial and smooth muscle cells and in cardiomyocytes.
Collapse
Affiliation(s)
- S Sasson
- Department of Pharmacology, School of Pharmacy, Faculty of Medicine, The Hebrew University, Jerusalem, Israel.
| | | |
Collapse
|
20
|
Huber J, Fürnkranz A, Bochkov VN, Patricia MK, Lee H, Hedrick CC, Berliner JA, Binder BR, Leitinger N. Specific monocyte adhesion to endothelial cells induced by oxidized phospholipids involves activation of cPLA2 and lipoxygenase. J Lipid Res 2006; 47:1054-62. [PMID: 16461778 DOI: 10.1194/jlr.m500555-jlr200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxidized phospholipids stimulate endothelial cells to bind monocytes, but not neutrophils, an initiating event in atherogenesis. Here, we investigate intracellular signaling events induced by oxidized phospholipids in human umbilical vein endothelial cells (HUVECs) that lead to specific monocyte adhesion. In a static adhesion assay, oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine and one of its components, 1-palmitoyl-2-oxovaleroyl-sn-glycero-3-phosphorylcholine, stimulated HUVECs to bind U937 cells and human peripheral blood monocytes but not HL-60 cells or blood neutrophils. Monocyte adhesion was dependent on protein kinases A and C, extracellular signal-regulated kinase 1/2, p38 mitogen activated protein kinases (MAPKs), and cytosolic phospholipase A(2) (cPLA(2)). Inhibition of 12-lipoxygenase (12-LOX), but not cyclooxygenases, blocked monocyte adhesion, and addition of 12-hydroxyeicosatetraenoic acid (12-HETE) mimicked the effects of oxidized phospholipids. Peroxisome proliferator-activated receptor alpha (PPARalpha) was excluded as a possible target for 12-HETE, because monocyte adhesion was still induced in endothelial cells from PPARalpha null mice. Together, our results suggest that oxidized phospholipids stimulate HUVECs to specifically bind monocytes involving MAPK pathways, which lead to the activation of cPLA(2) and 12-LOX. Further analysis of signaling pathways induced by oxidized phospholipids that lead to specific monocyte adhesion should ultimately lead to the development of novel therapeutic approaches against chronic inflammatory diseases.
Collapse
Affiliation(s)
- Joakim Huber
- Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Pei H, Gu J, Thimmalapura PR, Mison A, Nadler JL. Activation of the 12-lipoxygenase and signal transducer and activator of transcription pathway during neointima formation in a model of the metabolic syndrome. Am J Physiol Endocrinol Metab 2006; 290:E92-E102. [PMID: 16118253 DOI: 10.1152/ajpendo.00133.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insulin resistance (IR) is associated with an increased risk of cardiovascular diseases. The obese Zucker rat (ZR) is a model of IR that shows markedly increased insulin and triglyceride concentrations without major changes in glucose. In this study, we evaluated the response of obese and lean ZR to carotid balloon injury and determined potential mechanisms and treatments. The neointima-to-media ratio of obese ZR was greater than that of lean ZR, starting at 14 days after injury, and persisted until at least day 30. An enhanced inflammatory response to balloon injury in the obese ZR was reflected by significantly higher ED1-positive macrophage cells in the injured vessel wall compared with that in lean ZR at 3, 7, and 14 days after balloon injury. Inflammatory mediators 12-lipoxygenase (12-LO) and STAT4 were studied in neointimal lesions. Expression of 12-LO RNA was increased beginning at day 7 and showed increases of 4.3-fold on day 14 and 7-fold on day 30 in obese ZR compared with lean animals. Staining of phosphorylated STAT4 (PSTAT4), the activated form of STAT4, in lesions from obese ZR was also increased compared with that in leans. We tested the effects of a novel anti-inflammatory agent, lisofylline (LSF), in the obese ZR. LSF markedly reduced neointimal formation in the obese ZR. LSF also reduced monocyte/macrophage infiltration into the vessel wall and the activation of PSTAT4. These studies suggest both the presence of an exaggerated injury response in the insulin-resistant obese ZR model and that inflammation plays a major role in mediating neointimal growth.
Collapse
Affiliation(s)
- Hong Pei
- Division of Endocrinology, Department of Internal Medicine, University of Virginia, PO Box 801405, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
22
|
Zhang B, Cao H, Rao GN. 15(S)-hydroxyeicosatetraenoic acid induces angiogenesis via activation of PI3K-Akt-mTOR-S6K1 signaling. Cancer Res 2005; 65:7283-91. [PMID: 16103079 DOI: 10.1158/0008-5472.can-05-0633] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To determine whether the lipoxygenase metabolites of arachidonic acid, 5(S)-, 12(S)-, and 15(S)-hydroxyeicosatetraenoic acids [5(S)-HETE, 12(S)-HETE, and 15(S)-HETE, respectively] are angiogenic, we have studied their effects on human dermal microvascular endothelial cell (HDMVEC) tube formation and migration. All three HETEs stimulated HDMVEC tube formation and migration. Because 15(S)-HETE was found to be more potent than 5(S)-HETE and 12(S)-HETE in HDMVEC tube formation, we next focused on elucidation of the signaling mechanisms underlying its angiogenic activity. 15(S)-HETE stimulated Akt and S6K1 phosphorylation in HDMVEC in a time-dependent manner. Wortmannin and LY294002, two specific inhibitors of phosphatidylinositol 3-kinase (PI3K), blocked both Akt and S6K1 phosphorylation, whereas rapamycin, a specific inhibitor of Akt downstream effector, mammalian target of rapamycin (mTOR), suppressed only S6K1 phosphorylation induced by 15(S)-HETE suggesting that this eicosanoid activates the PI3K-Akt-mTOR-S6K1 signaling in HDMVEC. Wortmannin, LY294002, and rapamycin also inhibited 15(S)-HETE-induced HDMVEC tube formation and migration. In addition, all three HETEs stimulated angiogenesis as measured by in vivo Matrigel plug assay with 15(S)-HETE being more potent. Pharmacologic inhibition of PI3K-Akt-mTOR-S6K1 signaling completely suppressed 15(S)-HETE-induced in vivo angiogenesis. Consistent with these observations, adenoviral-mediated expression of dominant-negative Akt also blocked 15(S)-HETE-induced HDMVEC tube formation and migration and in vivo angiogenesis. Together, these results show for the first time that 15(S)-HETE stimulates angiogenesis via activation of PI3K-Akt-mTOR-S6K1 signaling.
Collapse
Affiliation(s)
- Baolin Zhang
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | |
Collapse
|
23
|
Preston IR, Hill NS, Warburton RR, Fanburg BL. Role of 12-lipoxygenase in hypoxia-induced rat pulmonary artery smooth muscle cell proliferation. Am J Physiol Lung Cell Mol Physiol 2005; 290:L367-74. [PMID: 16199435 DOI: 10.1152/ajplung.00114.2005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The 12-lipoxygenase (12-LO) pathway of arachidonic acid metabolism stimulates cell growth and metastasis of various cancer cells and the 12-LO metabolite, 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE], enhances proliferation of aortic smooth muscle cells (SMCs). However, pulmonary vascular effects of 12-LO have not been previously studied. We sought evidence for a role of 12-LO and 12(S)-HETE in the development of hypoxia-induced pulmonary hypertension. We found that 12-LO gene and protein expression is elevated in lung homogenates of rats exposed to chronic hypoxia. Immunohistochemical staining with a 12-LO antibody revealed intense staining in endothelial cells of large pulmonary arteries, SMCs (and possibly endothelial cells) of medium and small-size pulmonary arteries and in alveolar walls of hypoxic lungs. 12-LO protein expression was increased in hypoxic cultured rat pulmonary artery SMCs. 12(S)-HETE at concentrations as low as 10(-5) microM stimulated proliferation of pulmonary artery SMCs. 12(S)-HETE induced ERK 1/ERK 2 phosphorylation but had no effect on p38 kinase expression as assessed by Western blotting. 12(S)-HETE-stimulated SMC proliferation was blocked by the MEK inhibitor PD-98059, but not by the p38 MAPK inhibitor SB-202190. Hypoxia (3%)-stimulated pulmonary artery SMC proliferation was blocked by both U0126, a MEK inhibitor, and baicalein, an inhibitor of 12-LO. We conclude that 12-LO and its product, 12(S)-HETE, are important intermediates in hypoxia-induced pulmonary artery SMC proliferation and may participate in hypoxia-induced pulmonary hypertension.
Collapse
Affiliation(s)
- Ioana R Preston
- Pulmonary, Critical Care and Sleep Division, Tufts-New England Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA.
| | | | | | | |
Collapse
|
24
|
Taylor AM, Hanchett R, Natarajan R, Hedrick CC, Forrest S, Nadler JL, McNamara CA. The effects of leukocyte-type 12/15-lipoxygenase on Id3-mediated vascular smooth muscle cell growth. Arterioscler Thromb Vasc Biol 2005; 25:2069-74. [PMID: 16037566 PMCID: PMC2929383 DOI: 10.1161/01.atv.0000178992.40088.f2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE 12/15-lipoxygenase (12/15-LO) has been implicated in the pathogenesis of vascular disease. Vascular smooth muscle cell (VSMC) proliferation is a key component of the response to injury in vascular disease. The role of 12/15-LO in regulating VSMC proliferation is poorly understood. Id3 has been shown to regulate growth in various cell types and is expressed in VSMCs within atherosclerotic and restenotic lesions. This study examines the role of Id3 in 12/15-LO-mediated VSMC proliferation. METHODS AND RESULTS Primary aortic VSMCs from leukocyte-type 12/15-LO transgenic, leukocyte-type 12/15-LO knockout (KO), and control mice were plated in equal densities and assayed for growth, Id3 protein expression, and Id3 transcription. Results demonstrated that 12/15-LO transgenic VSMCs grew faster, whereas 12/15-LO KO VSMCs grew slower relative to control VSMCs. Further, pharmacological and molecular inhibition of 12/15-LO resulted in decreased VSMC growth. Western blots demonstrated increased Id3 protein in 12/15-LO transgenic VSMCs, whereas luciferase promoter reporter assays revealed increased Id3 transcription. In addition, overexpression of 12/15-LO increased growth in control cells but not in Id3 KO cells. 12/15-LO transgenic VSMCs demonstrated increased protein kinase C (PKC) activity. Consistent with these data, PKC inhibition decreased Id3 promoter activation. CONCLUSIONS 12/15-LO is an important mediator of VSMC growth. The growth-promoting effects of 12/15-LO are at least partially mediated through induction of Id3 transcription.
Collapse
Affiliation(s)
- Angela M Taylor
- Cardiovascular Division, University of Virginia Health Sciences Center, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Madamanchi NR, Hakim ZS, Runge MS. Oxidative stress in atherogenesis and arterial thrombosis: the disconnect between cellular studies and clinical outcomes. J Thromb Haemost 2005; 3:254-67. [PMID: 15670030 DOI: 10.1111/j.1538-7836.2004.01085.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Atherosclerosis is a multifactorial disease for which the molecular etiology of many of the risk factors is still unknown. As no single genetic marker or test accurately predicts cardiovascular death, phenotyping for markers of inflammation may identify the individuals at risk for vascular diseases. Reactive oxygen species (ROS) are key mediators of signaling pathways that underlie vascular inflammation in atherogenesis, starting from the initiation of fatty streak development through lesion progression to ultimate plaque rupture. Various animal models of atherosclerosis support the notion that ROS released from NAD(P)H oxidases, xanthine oxidase, lipoxygenases, and enhanced ROS production from dysfunctional mitochondrial respiratory chain indeed have a causatory role in atherosclerosis and other vascular diseases. Human investigations also support the oxidative stress hypothesis of atherogenesis. This is further supported by the observed impairment of vascular function and enhanced atherogenesis in animal models that have deficiencies in antioxidant enzymes. The importance of oxidative stress in atherosclerosis is further emphasized because of its role as a unifying mechanism across many vascular diseases. The main contraindicator for the role oxidative stress plays in atherosclerosis is the lack of effectiveness of antioxidants in reducing primary endpoints of cardiovascular death and morbidity. However, this lack of effectiveness by itself does not negate the existence or causatory role of oxidative stress in vascular disease. Lack of proven markers of oxidative stress, which could help to identify a subset of population that can benefit from antioxidant supplementation, and the complexity and subcellular localization of redox reactions, are among the factors responsible for the mixed outcomes in the use of antioxidants for the prevention of cardiovascular diseases. To better understand the role of oxidative stress in vascular diseases, future studies should be aimed at using advances in mouse and human genetics to define oxidative stress phenotypes and link phenotype with genotype.
Collapse
Affiliation(s)
- N R Madamanchi
- Carolina Cardiovascular Biology Center, Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
26
|
Ma J, Natarajan R, LaPage J, Lanting L, Kim N, Becerra D, Clemmons B, Nast CC, Surya Prakash GK, Mandal M, Adler SG. 12/15-lipoxygenase inhibitors in diabetic nephropathy in the rat. Prostaglandins Leukot Essent Fatty Acids 2005; 72:13-20. [PMID: 15589395 DOI: 10.1016/j.plefa.2004.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2004] [Accepted: 06/22/2004] [Indexed: 12/21/2022]
Abstract
The 12/15-lipoxygenase (12/15-LO) pathway is activated in diabetes mellitus (DM), increasing 12(S)-hydroxyeicosatetraenoic acid (12-HETE). We showed that a 12-LO inhibitor, cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate (CDC) inhibited 12/15-LO activity in vivo and assessed the efficacy of another 12/15-LO inhibitor, N-benzyl-N-hydroxy-5-phenylpentamidine (BHPP), to diminish urinary 12-HETE and ameliorate diabetic nephropathy (DN) over 4 months. Rats studied were control (C, n=8), DM (n=6), and rats injected with BHPP (C+BHPP, n=4) and (DM+BHPP, n=5). BHPP 3 mg/kg/day decreased urinary (U) 12-HETE/creatinine (cr) by 30-50% after one injection and after 1 week of daily injections in DM rats. U 12-HETE/cr excretion increased paradoxically in controls given BHPP. There was a highly significant relationship between U 12-HETE/cr excretion and U alb/cr (r=0.79, P<10(-5)), demonstrating that renal 12/15-LO pathway activation is associated with albuminuria. BHPP did not inhibit glomerular collagen synthesis or improve histology. More sustained 12-LO inhibition may improve albuminuria in DN.
Collapse
Affiliation(s)
- Jun Ma
- Division of Nephrology, Harbor-UCLA Research and Education Institute, 1124 W Carson Street, Torrance, CA 90502, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ganesh SK, Skelding KA, Mehta L, O'Neill K, Joo J, Zheng G, Goldstein J, Simari R, Billings E, Geller NL, Holmes D, O'Neill WW, Nabel EG. Rationale and study design of the CardioGene Study: genomics of in-stent restenosis. Pharmacogenomics 2004; 5:952-1004. [PMID: 15469413 DOI: 10.1517/14622416.5.7.949] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND AND AIMS in-stent restenosis is a major limitation of stent therapy for atherosclerosis coronary artery disease. The CardioGene Study is an ongoing study of restenosis in bare mental stents (BMS) for the treatment of coronary artery disease. The overall goal is to understand the genetic determinants of the responses to vascular injury that result in the development of restenosis in some patients but not in others. Gene expression profiling at transcriptional and translational levels provides global assessment of gene activity after vascular injury and mechanistic insight. Furthermore, the delineation of genetic biomarkers would be of value in the clinical setting of risk-stratify patients prior to stent therapy. Prospective risk stratification would allow for the rational selection of specialized treatments against the development of in-stent restenosis (ISR), such as drug-eluting stents. SETTING Patients are enrolled at two sites in the US with high-volume cardiac catheterization facilities: the William Beaumont Hospital in Royal Oak, MI, USA, and the Mayo Clinic in Rochester, MN, USA. STUDY DESIGN Two complementary study designs are used to understand the molecular mechanisms of restenosis and the genetic biomarkers predictive of restenosis. First, 350 patients are enrolled prospectively at the time of stent implantation. Blood is sampled prior to stent placement and afterwards at 2 weeks and 6 months. The clinical outcome of restenosis is determined 6 and 12 months after stent placement. The primary outcome is clinical restenosis at 6 months. The major secondary outcome is clinical restenosis at 12 months. Second, a corollary case-control analysis will be carried out with the enrollment of an additional 250 cases with a history of recurrent restenosis after treatment with BMS. Controls for this analysis are derived from the prospective cohort. PATIENTS AND METHODS Consecutive patients presenting to the cardiac catheterization laboratory are screened, informed about the study and enrolled after signing the consent form. Enrollment has been completed for the prospective cohort, and enrollment of the additional group is ongoing. A standardized questionnaire is used to collect clinical data primarily through direct patient interview to assess medical history, medication use, functional status, family history, environmental factors, and social history. Further data are abstracted from the medical charts and catheterization reports. A total of 276 clinical variables are collected per individual at baseline, and 49 variables are collected at each of the 6- and 12-month follow-up visits. A Clinical Events Committee adjudicates clinical outcomes. Blood samples are processed at each clinical enrollment site using standardized operating procedures. From each blood sample, several aliquots are prepared and stored of peripheral blood mononuclear cells, granulocytes, platelets, serum, and plasma. Additionally, a portion of each patient's leukocytes is cryopreserved for future cell-line creation. Samples are frozen and shipped to the National Heart, Lung and Blood Institute (NHLBI). Additional materials generated in the analysis of the samples at the NHLBI are frozen and stored, including isolated genomic DNA, total RNA, reverse transcribed cDNA libraries and labeled RNA hybridization mixtures used in microarray analysis. Per individual in the prospective cohort, high-quality transcript profiles of peripheral blood mononuclear cells at each time of blood sampling are obtained using Affymetrix U133A microarrays (Affymetrix, Santa Clara, CA, USA). Per chip, this yields 495,930 features per individual per time of sampling. This represents expression levels for 22,283 genes per patients oer time of blood sampling, including 14,500 well-characterized human genes. Proteomics of plasma is performed with multidimensional liquid chromatography and tandem mass spectrometry. Protein expression is examined similarly to mRNA expression as a measure of gene expression. Genotyping is performed in two manners. First, those genes showing differential expression at the levels of mRNA and protein are investigated using a candidate gene approach. Specific variants in known gene regulatory regions, such as promoters, are sought initially, as those variants may explain differences in expression level. Second, a genome-wide scan is used to identify genetic loci that are associated with ISR. Those regions identified are further examined for genes that show differential expression in the mRNA microarray profiling or proteomics investigations. These genes are finely investigated for candidate SNPs and other gene variants. Complementary genomic and proteomic approaches are expected to be robust. Integration of data sets is accomplished using a variety of informatics tools, organization of gene expression into functional pathways, and investigation of physical maps of up- and downregulated sets of genes. CONCLUSIONS The CardioGene Study is designed to understand ISR. Global gene and protein expression profiling define molecular phenotypes of patients. Well-defined clinical phenotypes will be paired with genomic data to define analyses aimed to achieve several goals. These include determining blood gene and protein expression in patients with ISR, investigating the genetic basis of ISR, developing predictive gene and protein biomarkers, and the identification of new targets for treatment.
Collapse
Affiliation(s)
- Santhi K Ganesh
- National Heart, Lung and Blood Institute/National Institutes of Health, Cardiovascular Branch, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kim YS, Xu ZG, Reddy MA, Li SL, Lanting L, Sharma K, Adler SG, Natarajan R. Novel interactions between TGF-{beta}1 actions and the 12/15-lipoxygenase pathway in mesangial cells. J Am Soc Nephrol 2004; 16:352-62. [PMID: 15615821 DOI: 10.1681/asn.2004070568] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Diabetic nephropathy (DN) is characterized by mesangial cell (MC) hypertrophy and progressive accumulation of glomerular extracellular matrix (ECM). It was reported recently that 12/15-lipoxygenase (12/15-LO) expression is increased in high-glucose (HG)-stimulated MC and in experimental DN. 12-LO products could also directly induce MC hypertrophy and ECM expression and mediate growth factor effects, thus implicating the 12/15-LO pathway in DN. Because TGF-beta is a major player in the pathogenesis of DN, whether there is an interplay between the TGF-beta and 12/15-LO pathways in MC was evaluated. Treatment of rat MC (RMC) with TGF-beta significantly increased levels of the 12/15-LO product 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE] and also 12/15-LO mRNA and protein expression. HG-induced TGF-beta mRNA expression in RMC was inhibited by a specific ribozyme and siRNA targeted to knockdown rat 12/15-LO. It is interesting that direct treatment of RMC with 12(S)-HETE increased TGF-beta mRNA and protein levels, as well as p-Smad2/3, which are TGF-beta-specific target transcription factors. 12(S)-HETE also increased transcription from a minimal TGF-beta promoter. Furthermore, TGF-beta expression and p-Smad2/3 levels were lower in MC from 12/15-LO knockout mice relative to control mice. Reciprocally, mouse MC stably overexpressing 12/15-LO had greater TGF-beta mRNA and also nuclear p-Smad2/3 relative to mock-transfected cells. 12/15-LO and TGF-beta could functionally signal and increase ECM expression via the p38 mitogen-activated protein kinase signaling pathway. These results indicate for the first time that the 12/15-LO and TGF-beta pathways can cross-talk and activate each other. These novel interactions may amplify the signal transduction cascades and molecular events that lead to DN.
Collapse
Affiliation(s)
- Young-Sook Kim
- Gonda Diabetes Research Center, Beckman Research Institute of the City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Li SL, Dwarakanath RS, Cai Q, Lanting L, Natarajan R. Effects of silencing leukocyte-type 12/15-lipoxygenase using short interfering RNAs. J Lipid Res 2004; 46:220-9. [PMID: 15576842 DOI: 10.1194/jlr.m400328-jlr200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The leukocyte-type 12/15-lipoxygenase (12/15-LO) has been implicated in the pathogenesis of atherosclerosis, hypertension, and diabetes. 12/15-LO and its products are associated with LDL oxidation, cellular growth, migration, adhesion, and inflammatory gene expression in monocytes/macrophages, endothelial cells, and vascular smooth muscle cells (VSMCs). Our objective, therefore, was to develop novel expression vectors for short interfering RNAs (siRNAs) targeting 12/15-LO to evaluate its functional relevance in macrophages and VSMCs. We used a PCR-based approach to rapidly identify effective siRNA target sites on mouse 12/15-LO and initially tested their efficacy on a fusion construct of 12/15-LO cDNA and enhanced green fluorescent protein. We then cloned these U6 promoter+siRNA PCR products into plasmid vectors [short hairpin siRNAs (shRNAs)] to knockdown endogenous 12/15-LO expression in mouse macrophages and also rat and mouse VSMCs. Furthermore, the functional effects of shRNA-mediated 12/15-LO knockdown were noted by the reduced oxidant stress and chemokine [monocyte chemoattractant protein-1 (MCP-1)] expression in a differentiated mouse monocytic cell line as well as by the reduced cellular adhesion and fibronectin expression in VMSCs. Knocking down 12/15-LO expression also reduced the expression of inflammatory genes, MCP-1, vascular cell adhesion molecule-1, and interleukin-6 in VSMCs. Our results illustrate the functional relevance of 12/15-LO activation in macrophages and VSMCs and its relationship to oxidant stress and inflammation.
Collapse
MESH Headings
- 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/pharmacology
- Animals
- Arachidonate 12-Lipoxygenase/genetics
- Arachidonate 12-Lipoxygenase/metabolism
- Arachidonate 15-Lipoxygenase/genetics
- Arachidonate 15-Lipoxygenase/metabolism
- Base Sequence
- Blotting, Western
- Cell Adhesion
- Cell Line
- Cell Movement
- Cells, Cultured
- Chemokine CCL2/metabolism
- Chemokines/metabolism
- DNA Primers/chemistry
- DNA, Complementary/metabolism
- Down-Regulation
- Endothelium, Vascular/metabolism
- Ethidium/analogs & derivatives
- Ethidium/pharmacology
- Fibronectins/chemistry
- Fibronectins/metabolism
- Gene Silencing
- Green Fluorescent Proteins/metabolism
- Humans
- Immunoblotting
- Inflammation
- Lipoproteins, LDL/metabolism
- Macrophages/metabolism
- Mice
- Microscopy, Fluorescence
- Molecular Sequence Data
- Monocytes/metabolism
- Myocytes, Smooth Muscle/cytology
- Oxidants/metabolism
- Oxidative Stress
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- Protein Binding
- RNA, Messenger/metabolism
- RNA, Small Interfering/metabolism
- Rats
- Recombinant Fusion Proteins/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Superoxides/metabolism
- Transfection
Collapse
Affiliation(s)
- Shu-Lian Li
- Gonda Diabetes Research Center, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | | | | | | | | |
Collapse
|
30
|
Cai Q, Lanting L, Natarajan R. Growth factors induce monocyte binding to vascular smooth muscle cells: implications for monocyte retention in atherosclerosis. Am J Physiol Cell Physiol 2004; 287:C707-14. [PMID: 15140748 DOI: 10.1152/ajpcell.00170.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adhesive interactions between monocytes and vascular smooth muscle cells (VSMC) may contribute to subendothelial monocyte-macrophage retention in atherosclerosis. We investigated the effects of angiotensin II (ANG II) and platelet-derived growth factor (PDGF)-BB on VSMC-monocyte interactions. Treatment of human aortic VSMC (HVSMC) with ANG II or PDGF-BB significantly increased binding to human monocytic THP-1 cells and to peripheral blood monocytes. This was inhibited by antibodies to monocyte β1- and β2-integrins. The binding was also attenuated by blocking VSMC arachidonic acid (AA) metabolism by inhibitors of 12/15-lipoxygenase (12/15-LO) or cyclooxygenase-2 (COX-2). Conversely, binding was enhanced by overexpression of 12/15-LO or COX-2. Direct treatment of HVSMC with AA or its metabolites also increased binding. Furthermore, VSMC derived from 12/15-LO knockout mice displayed reduced binding to mouse monocytic cells relative to genetic control mice. Using specific signal transduction inhibitors, we demonstrated the involvement of Src, phosphoinositide 3-kinase, and MAPKs in ANG II- or PDGF-BB-induced binding. Interestingly, after coculture with HVSMC, THP-1 cell surface expression of the scavenger receptor CD36 was increased. These results show for the first time that growth factors may play additional roles in atherosclerosis by increasing monocyte binding to VSMC via AA metabolism and key signaling pathways. This can lead to monocyte subendothelial retention, CD36 expression, and foam cell formation.
Collapse
Affiliation(s)
- Qiangjun Cai
- Gonda Diabetes Center, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | | | | |
Collapse
|
31
|
Ando H, Fukuda N, Kotani M, Yokoyama SI, Kunimoto S, Matsumoto K, Saito S, Kanmatsuse K, Mugishima H. Chimeric DNA–RNA hammerhead ribozyme targeting transforming growth factor-β1 mRNA inhibits neointima formation in rat carotid artery after balloon injury. Eur J Pharmacol 2004; 483:207-14. [PMID: 14729108 DOI: 10.1016/j.ejphar.2003.10.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We designed and synthesized a chimeric DNA-RNA hammerhead ribozyme targeting transforming growth factor (TGF)-beta 1 mRNA and found that this ribozyme effectively and specifically inhibited growth of vascular smooth muscle cells. We examined the effects of the chimeric DNA-RNA hammerhead ribozyme targeting TGF-beta 1 mRNA on neointima formation and investigated the underlying mechanism to develop a possible gene therapy for coronary artery restenosis after percutaneous transluminal coronary angioplasty. Expression of mRNAs encoding TGF-beta 1, p27kip1, and connective tissue growth factor (CTGF) in carotid artery increased after balloon injury. Fluorescein-isothiocyanate (FITC)-labeled ribozyme was taken up into the midlayer smooth muscle of the injured carotid artery. Both 2 and 5 mg of ribozyme reduced neointima formation by 65% compared to that of controls. Ribozyme markedly decreased expression of TGF-beta 1 mRNA and protein in injured vessel. Mismatch ribozyme had no effect on expression of TGF-beta 1 mRNA protein in injured vessel. Ribozyme markedly decreased expression of fibronectin, p27kip1, and CTGF mRNAs in injured vessel, whereas a mismatch ribozyme had no effect on these mRNAs. These findings indicate that the chimeric DNA-RNA hammerhead ribozyme targeting TGF-beta 1 mRNA inhibits neointima formation in rat carotid artery after balloon injury with suppression of TGF-beta 1 and inhibition of extracellular matrix and CTGF. In conclusion, the hammerhead ribozyme against TGF-beta 1 may have promise as a therapy for coronary artery restenosis after percutaneous transluminal coronary angioplasty.
Collapse
Affiliation(s)
- Hideyuki Ando
- Second Department of Internal Medicine, Nihon University School of Medicine, Ooyaguchi-kami 30-1, Itabashi-ku, Tokyo 173-8610, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kim YS, Reddy MA, Lanting L, Adler SG, Natarajan R. Differential behavior of mesangial cells derived from 12/15-lipoxygenase knockout mice relative to control mice11See Editorial by Kasinath, p. 1918. Kidney Int 2003; 64:1702-14. [PMID: 14531803 DOI: 10.1046/j.1523-1755.2003.00286.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND The 12/15-lipoxygenase (12/15-LO) enzyme has been implicated in the pathogenesis of diabetic nephropathy since lipoxygenase products induce cellular hypertrophy and extracellular matrix deposition in mesangial cells. In this study, in order to determine the potential in vivo functional role of 12/15-LO in kidney disease, we compared mouse mesangial cells (MMCs) derived from 12/15-LO knockout mice with those from genetic control wild-type mice. METHODS MMCs were isolated from wild-type and 12/15-LO knockout mice. Cellular growth, activation of mitogen-activated protein kinases (MAPKs), transcription factors, superoxide levels, and fibronectin expression were compared in the two cell types. RESULTS Levels of the 12/15-LO product and protein were lower in MMC from 12/15-LO knockout relative to wild-type. MMCs from 12/15-LO knockout mice grew slower than wild-type cells, and also showed lower rates of tritiated thymidine and leucine incorporation (21% and 15% of wild-type, respectively, P < 0.001). Levels of superoxide and the matrix protein fibronectin were also lower in 12/15-LO knockout mice cells. Serum and angiotensin II (Ang II)-stimulated activities of p38 or ERK1/2 MAPKs, and cyclic adenosine monophosphate (cAMP)-responsive element binding protein (CREB) transcription factor were lower in 12/15-LO knockout relative to wild-type cells. In addition, DNA binding and transcriptional activities of activated protein-1 (AP-1) and CREB were lower in 12/15-LO knockout cells. Furthermore, stable 12/15-LO overexpression in MMC led to reciprocal increase in p38 MAPK activation and fibronectin expression. CONCLUSION The differential activation of oxidant stress, specific signaling pathways, transcription factors, and growth and matrix genes may lead to reduced growth and growth factor responses in 12/15-LO knockout versus wild-type MMCs. These results provide ex vivo functional evidence for the first time that 12/15-LO activation plays a key role in mesangial cell responses associated with renal diseases such as diabetic nephropathy.
Collapse
Affiliation(s)
- Young-Sook Kim
- Gonda Diabetes Research Center, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | | | | | |
Collapse
|
33
|
Ueno S, Ohki R, Hashimoto T, Takizawa T, Takeuchi K, Yamashita Y, Ota J, Choi YL, Wada T, Koinuma K, Yamamoto K, Ikeda U, Shimada K, Mano H. DNA microarray analysis of in vivo progression mechanism of heart failure. Biochem Biophys Res Commun 2003; 307:771-7. [PMID: 12878176 DOI: 10.1016/s0006-291x(03)01252-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dahl salt-sensitive rats are genetically hypersensitive to sodium intake. When fed a high sodium diet, they develop systemic hypertension, followed by cardiac hypertrophy and finally heart failure within a few months. Therefore, Dahl rats represent a good model with which to study how heart failure is developed in vivo. By using DNA microarray, we here monitored the transcriptome of >8000 genes in the left ventricular muscles of Dahl rats during the course of cardiovascular damage. Expression of the atrial natriuretic peptide gene was, for instance, induced in myocytes by sodium overload and further enhanced even at the heart failure stage. Interestingly, expression of the gene for the D-binding protein, an apoptotic-related transcriptional factor, became decreased upon the transition to heart failure. To our best knowledge, this is the first report to describe the transcriptome of cardiac myocytes during the disease progression of heart failure.
Collapse
Affiliation(s)
- Shuichi Ueno
- Division of Functional Genomics, Jichi Medical School, 3311-1 Yakushiji, Kawachi-gun, Tochigi 329-0498, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Steele D, Kertsburg A, Soukup GA. Engineered catalytic RNA and DNA : new biochemical tools for drug discovery and design. AMERICAN JOURNAL OF PHARMACOGENOMICS : GENOMICS-RELATED RESEARCH IN DRUG DEVELOPMENT AND CLINICAL PRACTICE 2003; 3:131-44. [PMID: 12749730 DOI: 10.2165/00129785-200303020-00006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Since the fundamental discovery that RNA catalyzes critical biological reactions, the conceptual and practical utility of nucleic acid catalysts as molecular therapeutic and diagnostic agents continually develops. RNA and DNA catalysts are particularly attractive tools for drug discovery and design due to their relative ease of synthesis and tractable rational design features. Such catalysts can intervene in cellular or viral gene expression by effectively destroying virtually any target RNA, repairing messenger RNAs derived from mutant genes, or directly disrupting target genes. Consequently, catalytic nucleic acids are apt tools for dissecting gene function and for effecting gene pharmacogenomic strategies. It is in this capacity that RNA and DNA catalysts have been most widely utilized to affect gene expression of medically relevant targets associated with various disease states, where a number of such catalysts are presently being evaluated in clinical trials. Additionally, biotechnological prospects for catalytic nucleic acids are seemingly unlimited. Controllable nucleic acid catalysts, termed allosteric ribozymes or deoxyribozymes, form the basis of effector or ligand-dependent molecular switches and sensors. Allosteric nucleic acid catalysts promise to be useful tools for detecting and scrutinizing the function of specified components of the metabolome, proteome, transcriptome, and genome. The remarkable versatility of nucleic acid catalysis is thus the fountainhead for wide-ranging applications of ribozymes and deoxyribozymes in biomedical and biotechnological research.
Collapse
Affiliation(s)
- David Steele
- Department of Biomedical Sciences, Creighton University School of Medicine, Omaha, Nebraska, USA
| | | | | |
Collapse
|
35
|
Hashimoto T, Kihara M, Yokoyama K, Fujita T, Kobayashi SI, Matsushita K, Tamura K, Hirawa N, Toya Y, Umemura S. Lipoxygenase products regulate nitric oxide and inducible nitric oxide synthase production in interleukin-1beta stimulated vascular smooth muscle cells. Hypertens Res 2003; 26:177-84. [PMID: 12627879 DOI: 10.1291/hypres.26.177] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In cultured vascular smooth muscle cells (VSMCs), interleukin-1beta (IL-1beta) stimulates inducible nitric oxide synthase (iNOS) expression and nitric oxide (NO) production. IL-1beta also activates phospholipase A2 (PLA2), and induces lipoxygenase (LOX) and cyclooxygenase-2 (COX-2). The present study investigated whether these metabolites are involved in the regulation of IL-1beta-induced NO production and iNOS expression. Pretreatment with ONO-RS-082, the secretory PLA2 (sPLA2) inhibitor, at 1 to 10 micromol/l reduced IL-1beta-stimulated nitrite production and iNOS expression. Nordihydroguaiaretic acid (NDGA, 1 to 10 micromol/l), the LOX inhibitor, also reduced IL-1beta (10 ng/ml)-stimulated nitrite production and iNOS expression in a dose-dependent manner. Exogenous 12(S)-hydroxyeicosatetraenoic acids (HETE) enhanced the IL-1beta-stimulated nitrite production and iNOS expression. On the other hand, the COX inhibitors, indomethacin and NS-398, had little effect on nitrite production or iNOS expression. These results suggest that LOX products play important roles in the regulation of stimulus-induced NO production in VSMCs.
Collapse
Affiliation(s)
- Tatsuo Hashimoto
- Second Department of Internal Medicine, Yokohama City University School of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Reddy MA, Adler SG, Kim YS, Lanting L, Rossi J, Kang SW, Nadler JL, Shahed A, Natarajan R. Interaction of MAPK and 12-lipoxygenase pathways in growth and matrix protein expression in mesangial cells. Am J Physiol Renal Physiol 2002; 283:F985-94. [PMID: 12372774 DOI: 10.1152/ajprenal.00181.2002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The lipoxygenase (LO) pathway of arachidonate metabolism and mitogen-activated protein kinases (MAPKs) can mediate cellular growth and ANG II effects in vascular smooth muscle cells. However, their role in renal mesangial cells (MC) is not very clear. ANG II treatment of rat MC significantly increased 12-LO mRNA expression and formation of the 12-LO product 12(S)-hydroxyeicosatetraenoic acid [12(S)-HETE; P < 0.03]. ANG II-induced [(3)H]leucine incorporation was blocked by an LO inhibitor, cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate (P < 0.02). 12(S)-HETE and ANG II directly induced cellular hypertrophy and fibronectin (FN) expression (P < 0.01) to a similar extent. ANG II and 12(S)-HETE led to activation of p38(MAPK) and its target transcription factor cAMP-responsive element-binding protein (CREB). ANG II- and 12(S)-HETE-induced CREB activation and [(3)H]leucine incorporation were blocked by the p38(MAPK) inhibitor SB-202190. A specific molecular inhibitor of rat 12-LO mRNA, namely, a novel ribozyme, could attenuate ANG II-induced FN mRNA. Thus p38(MAPK)-dependent CREB activation may mediate ANG II- and LO product-induced FN expression and cellular growth in rat MC. ANG II effects may be mediated by the LO pathway. These results suggest a novel interaction between LO and p38(MAPK) activation in MC matrix synthesis associated with renal complications.
Collapse
Affiliation(s)
- Marpadga A Reddy
- Department of Diabetes, Beckman Research Institute of the City of Hope, Duarte California 91010, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Reddy MA, Thimmalapura PR, Lanting L, Nadler JL, Fatima S, Natarajan R. The oxidized lipid and lipoxygenase product 12(S)-hydroxyeicosatetraenoic acid induces hypertrophy and fibronectin transcription in vascular smooth muscle cells via p38 MAPK and cAMP response element-binding protein activation. Mediation of angiotensin II effects. J Biol Chem 2002; 277:9920-8. [PMID: 11786549 DOI: 10.1074/jbc.m111305200] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Evidence suggests that the arachidonic acid metabolite of 12-lipoxygenase, 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE), not only mediates the effects of angiotensin II (AngII), but also has direct effects on hypertrophy and matrix protein production in vascular smooth muscle cells (VSMCs). This study is aimed at identifying the signaling pathways involved in these events. Treatment of porcine VSMCs with 12(S)-HETE led to the activation of Ras and p38 MAPK. It also stimulated phosphorylation, DNA-binding activity, and transactivation of the transcription factor cAMP response element (CRE)-binding protein. In addition, 12(S)-HETE induced transcription from a fibronectin promoter containing multiple CREs. AngII also induced transactivation of CRE-binding protein and transcription from the fibronectin promoter. A specific p38 MAPK inhibitor (SB202190) as well as a dominant-negative Ras mutant (Ras-N17) blocked both 12(S)-HETE and AngII effects. In addition, inhibitors of lipoxygenase also blocked AngII effects. Both 12(S)-HETE and AngII increased cellular hypertrophy with similar potency, and this was significantly blocked by SB202190. Stable overexpression of murine leukocyte-type 12/15-lipoxygenase in VSMCs increased the levels of cell-associated 12(S)-HETE as well as basal activity of both ERK and p38 MAPKs. Furthermore, these 12-lipoxygenase-overexpressing cells displayed significantly greater cellular hypertrophy relative to mock-transfected cells. These results show for the first time that oxidized lipids such as 12(S)-HETE can induce VSMC growth and matrix gene expression and mediate growth factor effects via activation of the Ras-MAPK pathway and key target transcription factors.
Collapse
MESH Headings
- 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/chemistry
- 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/metabolism
- Angiotensin II/metabolism
- Animals
- Cell Nucleus/metabolism
- Cells, Cultured
- Cyclic AMP/metabolism
- Cyclic AMP Response Element-Binding Protein/metabolism
- Enzyme Activation
- Enzyme Inhibitors/pharmacology
- Fibronectins/genetics
- Fibronectins/metabolism
- Hypertrophy
- Imidazoles/pharmacology
- Immunoblotting
- Lipid Metabolism
- Lipoxygenase/metabolism
- Luciferases/metabolism
- Mice
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth, Vascular/cytology
- Oxygen/metabolism
- Phosphorylation
- Promoter Regions, Genetic
- Protein Binding
- Protein Transport
- Pyridines/pharmacology
- Signal Transduction
- Swine
- Time Factors
- Transcription, Genetic
- Transfection
- p38 Mitogen-Activated Protein Kinases
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Marpadga A Reddy
- Gonda Diabetes Center, Beckman Research Institute of the City of Hope, Duarte, California 91010, USA
| | | | | | | | | | | |
Collapse
|
38
|
Coffey MJ, Natarajan R, Chumley PH, Coles B, Thimmalapura PR, Nowell M, Kühn H, Lewis MJ, Freeman BA, O'Donnell VB. Catalytic consumption of nitric oxide by 12/15- lipoxygenase: inhibition of monocyte soluble guanylate cyclase activation. Proc Natl Acad Sci U S A 2001; 98:8006-11. [PMID: 11427723 PMCID: PMC35458 DOI: 10.1073/pnas.141136098] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2001] [Indexed: 01/24/2023] Open
Abstract
12/15-Lipoxygenase (LOX) activity is elevated in vascular diseases associated with impaired nitric oxide (( small middle dot)NO) bioactivity, such as hypertension and atherosclerosis. In this study, primary porcine monocytes expressing 12/15-LOX, rat A10 smooth muscle cells transfected with murine 12/15-LOX, and purified porcine 12/15-LOX all consumed *NO in the presence of lipid substrate. Suppression of LOX diene conjugation by *NO was also found, although the lipid product profile was unchanged. *NO consumption by porcine monocytes was inhibited by the LOX inhibitor, eicosatetraynoic acid. Rates of arachidonate (AA)- or linoleate (LA)-dependent *NO depletion by porcine monocytes (2.68 +/- 0.03 nmol x min(-1) x 10(6) cells(-1) and 1.5 +/- 0.25 nmol x min(-1) x 10(6) cells(-1), respectively) were several-fold greater than rates of *NO generation by cytokine-activated macrophages (0.1-0.2 nmol x min(-1) x 10(6) cells(-1)) and LA-dependent *NO consumption by primary porcine monocytes inhibited *NO activation of soluble guanylate cyclase. These data indicate that catalytic *NO consumption by 12/15-LOX modulates monocyte *NO signaling and suggest that LOXs may contribute to vascular dysfunction not only by the bioactivity of their lipid products, but also by serving as catalytic sinks for *NO in the vasculature.
Collapse
Affiliation(s)
- M J Coffey
- Wales Heart Research Institute, University of Wales College of Medicine, Cardiff CF14 4XN, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|