1
|
Fan YX, Yang CB, Song ZH, Yang X, Ma YJ, Zhang HQ. Genetically Proxied Antiplatelet Drug Target Perturbation and Risk of Aneurysmal Subarachnoid Hemorrhage: A Mendelian Randomization Analysis. World Neurosurg 2025; 196:123794. [PMID: 39956371 DOI: 10.1016/j.wneu.2025.123794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/08/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND The impact of antiplatelet drugs (APDs) on the rupture risk of unruptured intracranial aneurysms (uIAs) remains controversial. This study aimed to evaluate the causal effects of APDs on aneurysmal subarachnoid hemorrhage (aSAH) and uIA. METHODS A two-sample Mendelian randomization (TSMR) analysis examined associations between genetically proxied platelet reactivity and aSAH. The therapeutic inhibition of platelet aggregation by 5 widely used APDs was proxied by expression quantitative trait loci from eqtlGen consortium and Genotype-Tissue Expression project v8 consortium and protein quantitative trait loci from deCODE database. Causal effects were estimated with summary-data-based MR, TSMR, colocalization analysis, and sensitivity analysis. Mediation MR analysis explored potential pathways. RESULTS The platelet reactivity was inversely associated with the risk of aSAH, exhibiting no discernible heterogeneity or pleiotropic effects (odds ratio, 0.883; 95% confidential interval, 0.833-0.936; P = 2.67E-05). No causal effects on the aSAH and uIA were observed for the majority of APD target genes by summary-data-based MR, TSMR, and colocalization analysis. However, elevated genetic expression of platelet endothelial aggregation receptor 1 was associated with increased platelet reactivity with an odds ratio of 1.46 (β1=0.375, se=0.072; P = 1.99E-07), and this elevation showed significant inverse association with aSAH risks (β2=-0.125, se=0.030; P = 2.67E-05). CONCLUSIONS The platelet reactivity was inversely associated with aSAH risk. However, APDs were not identified as either risk or protective agents for aSAH or uIA. Targeting platelet endothelial aggregation receptor 1 might reduce platelet reactivity and increase aSAH risk, highlighting the need for further research.
Collapse
Affiliation(s)
- Yu-Xiang Fan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cheng-Bin Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zi-Hao Song
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xu Yang
- Department of Neurosurgery, The First People's Hospital of Guiyang, Guiyang, China
| | - Yong-Jie Ma
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Hong-Qi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China; China International Neuroscience Institute (China-INI), Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Liberale L, Tual-Chalot S, Sedej S, Ministrini S, Georgiopoulos G, Grunewald M, Bäck M, Bochaton-Piallat ML, Boon RA, Ramos GC, de Winther MPJ, Drosatos K, Evans PC, Ferguson JF, Forslund-Startceva SK, Goettsch C, Giacca M, Haendeler J, Kallikourdis M, Ketelhuth DFJ, Koenen RR, Lacolley P, Lutgens E, Maffia P, Miwa S, Monaco C, Montecucco F, Norata GD, Osto E, Richardson GD, Riksen NP, Soehnlein O, Spyridopoulos I, Van Linthout S, Vilahur G, Wentzel JJ, Andrés V, Badimon L, Benetos A, Binder CJ, Brandes RP, Crea F, Furman D, Gorbunova V, Guzik TJ, Hill JA, Lüscher TF, Mittelbrunn M, Nencioni A, Netea MG, Passos JF, Stamatelopoulos KS, Tavernarakis N, Ungvari Z, Wu JC, Kirkland JL, Camici GG, Dimmeler S, Kroemer G, Abdellatif M, Stellos K. Roadmap for alleviating the manifestations of ageing in the cardiovascular system. Nat Rev Cardiol 2025:10.1038/s41569-025-01130-5. [PMID: 39972009 DOI: 10.1038/s41569-025-01130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2025] [Indexed: 02/21/2025]
Abstract
Ageing of the cardiovascular system is associated with frailty and various life-threatening diseases. As global populations grow older, age-related conditions increasingly determine healthspan and lifespan. The circulatory system not only supplies nutrients and oxygen to all tissues of the human body and removes by-products but also builds the largest interorgan communication network, thereby serving as a gatekeeper for healthy ageing. Therefore, elucidating organ-specific and cell-specific ageing mechanisms that compromise circulatory system functions could have the potential to prevent or ameliorate age-related cardiovascular diseases. In support of this concept, emerging evidence suggests that targeting the circulatory system might restore organ function. In this Roadmap, we delve into the organ-specific and cell-specific mechanisms that underlie ageing-related changes in the cardiovascular system. We raise unanswered questions regarding the optimal design of clinical trials, in which markers of biological ageing in humans could be assessed. We provide guidance for the development of gerotherapeutics, which will rely on the technological progress of the diagnostic toolbox to measure residual risk in elderly individuals. A major challenge in the quest to discover interventions that delay age-related conditions in humans is to identify molecular switches that can delay the onset of ageing changes. To overcome this roadblock, future clinical trials need to provide evidence that gerotherapeutics directly affect one or several hallmarks of ageing in such a manner as to delay, prevent, alleviate or treat age-associated dysfunction and diseases.
Collapse
Affiliation(s)
- Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Simon Tual-Chalot
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK.
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | | | - Myriam Grunewald
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Magnus Bäck
- Translational Cardiology, Centre for Molecular Medicine, Department of Medicine Solna, and Department of Cardiology, Heart and Vascular Centre, Karolinska Institutet, Stockholm, Sweden
- Inserm, DCAC, Université de Lorraine, Nancy, France
| | | | - Reinier A Boon
- Department of Physiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC location VUmc, Amsterdam, Netherlands
| | - Gustavo Campos Ramos
- Department of Internal Medicine I/Comprehensive Heart Failure Centre, University Hospital Würzburg, Würzburg, Germany
| | - Menno P J de Winther
- Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences: Atherosclerosis and Ischaemic Syndromes; Amsterdam Infection and Immunity: Inflammatory Diseases, Amsterdam UMC location AMC, Amsterdam, Netherlands
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Cardiovascular Center, Department of Pharmacology, Physiology, and Neurobiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Paul C Evans
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jane F Ferguson
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sofia K Forslund-Startceva
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Goettsch
- Department of Internal Medicine I, Division of Cardiology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Mauro Giacca
- British Heart foundation Centre of Reseach Excellence, King's College London, London, UK
| | - Judith Haendeler
- Cardiovascular Degeneration, Medical Faculty, University Hospital and Heinrich-Heine University, Düsseldorf, Germany
| | - Marinos Kallikourdis
- Adaptive Immunity Lab, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Daniel F J Ketelhuth
- Cardiovascular and Renal Research Unit, Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Rory R Koenen
- CARIM-School for Cardiovascular Diseases, Department of Biochemistry, Maastricht University, Maastricht, Netherlands
| | | | - Esther Lutgens
- Department of Cardiovascular Medicine & Immunology, Mayo Clinic, Rochester, MN, USA
| | - Pasquale Maffia
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Satomi Miwa
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Claudia Monaco
- Kennedy Institute, NDORMS, University of Oxford, Oxford, UK
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Elena Osto
- Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Gavin D Richardson
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Oliver Soehnlein
- Institute of Experimental Pathology, University of Münster, Münster, Germany
| | - Ioakim Spyridopoulos
- Translational and Clinical Research Institute, Vascular Biology and Medicine Theme, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Sophie Van Linthout
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätmedizin Berlin, Berlin, Germany
| | - Gemma Vilahur
- Research Institute, Hospital de la Santa Creu y Sant Pau l, IIB-Sant Pau, Barcelona, Spain
| | - Jolanda J Wentzel
- Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, Netherlands
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), CIBERCV, Madrid, Spain
| | - Lina Badimon
- Cardiovascular Health and Innovation Research Foundation (FICSI) and Cardiovascular Health and Network Medicine Department, University of Vic (UVIC-UCC), Barcelona, Spain
| | - Athanase Benetos
- Department of Geriatrics, University Hospital of Nancy and Inserm DCAC, Université de Lorraine, Nancy, France
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ralf P Brandes
- Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Filippo Crea
- Centre of Excellence of Cardiovascular Sciences, Ospedale Isola Tiberina - Gemelli Isola, Roma, Italy
| | - David Furman
- Buck Institute for Research on Aging, Novato, CA, USA
| | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - Tomasz J Guzik
- Centre for Cardiovascular Sciences, University of Edinburgh, Edinburgh, UK
| | - Joseph A Hill
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Thomas F Lüscher
- Heart Division, Royal Brompton and Harefield Hospital and National Heart and Lung Institute, Imperial College, London, UK
| | - María Mittelbrunn
- Consejo Superior de Investigaciones Científicas (CSIC), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Alessio Nencioni
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
- Dipartimento di Medicina Interna e Specialità Mediche-DIMI, Università degli Studi di Genova, Genova, Italy
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - João F Passos
- Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Kimon S Stamatelopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Nektarios Tavernarakis
- Medical School, University of Crete, and Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Zoltan Ungvari
- Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - James L Kirkland
- Center for Advanced Gerotherapeutics, Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université Paris Cité, Sorbonne Université, Inserm, Institut Universitaire de France, Paris, France
| | | | - Konstantinos Stellos
- Department of Cardiovascular Research, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
3
|
Li CX, Sun LC, Wang YQ, Liu TT, Cai JR, Liu H, Ren Z, Yi Z. The associations of candidate gene polymorphisms with aspirin resistance in patients with ischemic disease: a meta-analysis. Hum Genomics 2024; 18:135. [PMID: 39617913 PMCID: PMC11610159 DOI: 10.1186/s40246-024-00699-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Recently, extensive research has been conducted on the relationship between aspirin gene polymorphisms and aspirin resistance (AR) in patients with ischemic diseases. Among the numerous candidate genes, it remains unclear which ones are significantly associated with AR and could potentially serve as potential biomarkers for genetic testing before aspirin use. METHODS Eligible articles were searched in PubMed, Embase, Cochrane Library, WanFang, CNKI and Sinomed. A cohort study examining the efficacy of aspirin in secondary prevention for patients with ischemic diseases, along with a discussion on genetic polymorphisms and their association with AR, has been included. The Newcastle-Ottawa Scale for assessing the quality of included studies. Odds ratios (OR) with 95% confidence intervals (CI) were used as measures of effect. Subgroup analyses were conducted based on different genotypes with the same genetic polymorphisms, different research regions and types of ischemic diseases. RESULTS From 75 eligible articles, 94 candidate gene polymorphisms were analyzed. In the overall analysis, 25 genes were subjected to meta-analysis and 69 genes were systematically described. 23 gene polymorphisms were observed to be significantly associated with AR, including PTGS2(rs20417) (OR = 0.57, 95% CI: 0.44-0.73), ITGA2(rs1126643) (OR = 0.52, 95% CI: 0.29-0.93), and TbXA2R(rs1131882) (OR = 1.54, 95% CI: 1.09-2.18) were obtained from the combined analysis of this study, and 20 genes were systematically described in this study. Further subgroup analyses demonstrated that AA genotype for PTGS1(rs1330344) (OR = 0.56, 95%CI:0.43-0.74), C allele for PTGS1(rs5788) (OR = 0.51, 95%CI: 0.30-0.87) polymorphisms were significantly associated with AR. The polymorphisms of 13 genes, including PTGS1(rs1236913), have been studied only in Asia, GP6(rs1613662) has been studied only in Europe, and the polymorphisms of 5 genes, including ABCB1(rs1045642), showed different correlations with AR in various regions. The individuals with the PTGS1 (rs5788) variant who experienced an ischemic stroke (OR = 0.98, 95%CI: 0.54-1.67) may exhibit an elevated risk of AR compared to those with coronary artery disease (OR = 0.51, 95%CI: 0.3-0.87). CONCLUSIONS Our meta-analysis indicates that PTGS2(rs20417), ITGA2(rs1126643), and TbXA2R(rs1131882) could be potential genetic biomarkers for AR. Among these, PTGS2 (rs20417) is particularly suggested for individuals in Asia with ischemic diseases before aspirin use, as the GC/CC genotype raises AR risk by 42% compared to GG. ITGA2 (rs1126643) increases AR risk by 48% in Asia with the TC/TC genotype versus CC. However, results for ABCB1(rs1045642) and GP1BA(rs2243093) vary by regions, requiring further research.
Collapse
Affiliation(s)
- Chun-Xing Li
- Department of Pharmacy, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, No.15, Yuquan Road, Haidian District, Beijing, 100049, China.
| | - Li-Chaoyue Sun
- Department of Pharmacy, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, No.15, Yuquan Road, Haidian District, Beijing, 100049, China
| | - Yu-Qiao Wang
- Department of Pharmacy, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, No.15, Yuquan Road, Haidian District, Beijing, 100049, China
| | - Tian-Tian Liu
- Department of Pharmacy, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, No.15, Yuquan Road, Haidian District, Beijing, 100049, China
| | - Jin-Rui Cai
- Beijing Haidian District WanShouLu Community Health Service Center, Beijing, China
| | - Hua Liu
- Department of Pharmacy, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, No.15, Yuquan Road, Haidian District, Beijing, 100049, China
| | - Zhao Ren
- Department of Pharmacy, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, No.15, Yuquan Road, Haidian District, Beijing, 100049, China
| | - Zhanmiao Yi
- Department of Pharmacy, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, China.
- Institute for Drug Evaluation, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
4
|
Abstract
Significance: Aging is a complex process associated with an increased risk of many diseases, including thrombosis. This review summarizes age-related prothrombotic mechanisms in clinical settings of thromboembolism, focusing on the role of fibrin structure and function modified by oxidative stress. Recent Advances: Aging affects blood coagulation and fibrinolysis via multiple mechanisms, including enhanced oxidative stress, with an imbalance in the oxidant/antioxidant mechanisms, leading to loss of function and accumulation of oxidized proteins, including fibrinogen. Age-related prothrombotic alterations are multifactorial involving enhanced platelet activation, endothelial dysfunction, and changes in coagulation factors and inhibitors. Formation of more compact fibrin clot networks displaying impaired susceptibility to fibrinolysis represents a novel mechanism, which might contribute to atherothrombosis and venous thrombosis. Alterations to fibrin clot structure/function are at least in part modulated by post-translational modifications of fibrinogen and other proteins involved in thrombus formation, with a major impact of carbonylation. Fibrin clot properties are also involved in the efficacy and safety of therapy with oral anticoagulants, statins, and/or aspirin. Critical Issues: Since a prothrombotic state is observed in very elderly individuals free of diseases associated with thromboembolism, the actual role of activated blood coagulation in health remains elusive. It is unclear to what extent oxidative modifications of coagulation and fibrinolytic proteins, in particular fibrinogen, contribute to a prothrombotic state in healthy aging. Future Directions: Ongoing studies will show whether novel therapies that may alter oxidative stress and fibrin characteristics are beneficial to prevent atherosclerosis and thromboembolic events associated with aging.
Collapse
Affiliation(s)
- Małgorzata Konieczyńska
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- The St. John Paul II Hospital, Krakow, Poland
| | - Joanna Natorska
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- The St. John Paul II Hospital, Krakow, Poland
| | - Anetta Undas
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- The St. John Paul II Hospital, Krakow, Poland
| |
Collapse
|
5
|
Fernández DI, Troitiño S, Sobota V, Tullemans BME, Zou J, van den Hurk H, García Á, Honarnejad S, Kuijpers MJE, Heemskerk JWM. Ultra-high throughput-based screening for the discovery of antiplatelet drugs affecting receptor dependent calcium signaling dynamics. Sci Rep 2024; 14:6229. [PMID: 38486006 PMCID: PMC10940705 DOI: 10.1038/s41598-024-56799-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024] Open
Abstract
Distinct platelet activation patterns are elicited by the tyrosine kinase-linked collagen receptor glycoprotein VI (GPVI) and the G-protein coupled protease-activated receptors (PAR1/4) for thrombin. This is reflected in the different platelet Ca2+ responses induced by the GPVI agonist collagen-related peptide (CRP) and the PAR1/4 agonist thrombin. Using a 96 well-plate assay with human Calcium-6-loaded platelets and a panel of 22 pharmacological inhibitors, we assessed the cytosolic Ca2+ signaling domains of these receptors and developed an automated Ca2+ curve algorithm. The algorithm was used to evaluate an ultra-high throughput (UHT) based screening of 16,635 chemically diverse small molecules with orally active physicochemical properties for effects on platelets stimulated with CRP or thrombin. Stringent agonist-specific selection criteria resulted in the identification of 151 drug-like molecules, of which three hit compounds were further characterized. The dibenzyl formamide derivative ANO61 selectively modulated thrombin-induced Ca2+ responses, whereas the aromatic sulfonyl imidazole AF299 and the phenothiazine ethopropazine affected CRP-induced responses. Platelet functional assays confirmed selectivity of these hits. Ethopropazine retained its inhibitory potential in the presence of plasma, and suppressed collagen-dependent thrombus buildup at arterial shear rate. In conclusion, targeting of platelet Ca2+ signaling dynamics in a screening campaign has the potential of identifying novel platelet-inhibiting molecules.
Collapse
Affiliation(s)
- Delia I Fernández
- The Department of Biochemistry, CARIM, Maastricht University, 6229 ER, Maastricht, The Netherlands
- Platelet Proteomics Group, CiMUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Sara Troitiño
- Platelet Proteomics Group, CiMUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Vladimír Sobota
- IHU-LIRYC, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33604, Bordeaux, France
- Institut de Mathématiques de Bordeaux, UMR5251, University of Bordeaux, 33 405, Talence, France
| | - Bibian M E Tullemans
- The Department of Biochemistry, CARIM, Maastricht University, 6229 ER, Maastricht, The Netherlands
- Synapse Research Institute, Kon. Emmaplein 7, 6217 KD, Maastricht, The Netherlands
| | - Jinmi Zou
- The Department of Biochemistry, CARIM, Maastricht University, 6229 ER, Maastricht, The Netherlands
- Synapse Research Institute, Kon. Emmaplein 7, 6217 KD, Maastricht, The Netherlands
| | | | - Ángel García
- Platelet Proteomics Group, CiMUS, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | | | - Marijke J E Kuijpers
- The Department of Biochemistry, CARIM, Maastricht University, 6229 ER, Maastricht, The Netherlands.
- Thrombosis Expertise Centre, Heart and Vascular Centre, Maastricht University Medical Centre+, 6229 HX, Maastricht, The Netherlands.
| | - Johan W M Heemskerk
- The Department of Biochemistry, CARIM, Maastricht University, 6229 ER, Maastricht, The Netherlands.
- Synapse Research Institute, Kon. Emmaplein 7, 6217 KD, Maastricht, The Netherlands.
| |
Collapse
|
6
|
Kullaya VI, Temba GS, Vadaq N, Njau J, Boahen CK, Nkambule BB, Thibord F, Chen MH, Pecht T, Lyamuya F, Kumar V, Netea MG, Mmbaga BT, van der Ven A, Johnson AD, de Mast Q. Genetic and nongenetic drivers of platelet reactivity in healthy Tanzanian individuals. J Thromb Haemost 2024; 22:805-817. [PMID: 38029856 DOI: 10.1016/j.jtha.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Platelets play a key role in hemostasis, inflammation, and cardiovascular diseases. Platelet reactivity is highly variable between individuals. The drivers of this variability in populations from Sub-Saharan Africa remain largely unknown. OBJECTIVES We aimed to investigate the nongenetic and genetic determinants of platelet reactivity in healthy adults living in a rapidly urbanizing area in Northern Tanzania. METHODS Platelet activation and reactivity were measured by platelet P-selectin expression and the binding of fibrinogen in unstimulated blood and after ex vivo stimulation with adenosine diphosphate and PAR-1 and PAR-4 ligands. We then analyzed the associations of platelet parameters with host genetic and nongenetic factors, environmental factors, plasma inflammatory markers, and plasma metabolites. RESULTS Only a few associations were found between platelet reactivity parameters and plasma inflammatory markers and nongenetic host and environmental factors. In contrast, untargeted plasma metabolomics revealed a large number of associations with food-derived metabolites, including phytochemicals that were previously reported to inhibit platelet reactivity. Genome-wide single-nucleotide polymorphism genotyping identified 2 novel single-nucleotide polymorphisms (rs903650 and rs4789332) that were associated with platelet reactivity at the genome-wide level (P < 5 × 10-8) as well as a number of variants in the PAR4 gene (F2RL3) that were associated with PAR4-induced reactivity. CONCLUSION Our study uncovered factors that determine variation in platelet reactivity in a population in East Africa that is rapidly transitioning to an urban lifestyle, including the importance of genetic ancestry and the gradual abandoning of the traditional East African diet.
Collapse
Affiliation(s)
- Vesla I Kullaya
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, Tanzania; Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Godfrey S Temba
- Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi, Tanzania; Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nadira Vadaq
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Judith Njau
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, Tanzania
| | - Collins K Boahen
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Florian Thibord
- National Heart, Lung, and Blood Institute, Population Sciences Branch, Framingham, Massachusetts, USA
| | - Ming-Huei Chen
- National Heart, Lung, and Blood Institute, Population Sciences Branch, Framingham, Massachusetts, USA
| | - Tal Pecht
- Department for Genomics and Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Furaha Lyamuya
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, Tanzania
| | - Vinod Kumar
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands; Department for Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Blandina T Mmbaga
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, Tanzania; Department of Pediatrics, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Andre van der Ven
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andrew D Johnson
- National Heart, Lung, and Blood Institute, Population Sciences Branch, Framingham, Massachusetts, USA
| | - Quirijn de Mast
- Department of Internal Medicine, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
7
|
Chan MV, Chen MH, Thibord F, Nkambule BB, Lachapelle AR, Grech J, Schneider ZE, Wallace de Melendez C, Huffman JE, Hayman MA, Allan HE, Armstrong PC, Warner TD, Johnson AD. Factors that modulate platelet reactivity as measured by 5 assay platforms in 3429 individuals. Res Pract Thromb Haemost 2024; 8:102406. [PMID: 38813256 PMCID: PMC11135030 DOI: 10.1016/j.rpth.2024.102406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/05/2024] [Indexed: 05/31/2024] Open
Abstract
Background Assessment of platelet function is key in diagnosing bleeding disorders and evaluating antiplatelet drug efficacy. However, there is a prevailing "one-size-fits-all" approach in the interpretation of measures of platelet reactivity, with arbitrary cutoffs often derived from healthy volunteer responses. Objectives Our aim was to compare well-used platelet reactivity assays. Methods Blood and platelet-rich plasma obtained from the Framingham Heart Study (N = 3429) were assayed using a range of agonists in 5 platelet assays: light transmission aggregometry, Optimul aggregometry, Multiplate impedance aggregometry (Roche Diagnostics), Total Thrombus-Formation Analysis System, and flow cytometry. Using linear mixed-effect models, we determined the contribution of preanalytical and technical factors that modulated platelet reactivity traits. Results A strong intra-assay correlation of platelet traits was seen in all assays, particularly Multiplate velocity (r = 0.740; ristocetin vs arachidonic acid). In contrast, only moderate interassay correlations were observed (r = 0.375; adenosine diphosphate Optimul Emax vs light transmission aggregometry large area under the curve). As expected, antiplatelet drugs strongly reduced platelet responses, with aspirin use primarily targeting arachidonic acid-induced aggregation, and explained substantial variance (β = -1.735; P = 4.59 × 10-780; variance proportion = 46.2%) and P2Y12 antagonists blocking adenosine diphosphate responses (β = -1.612; P = 6.75 × 10-27; variance proportion = 2.1%). Notably, female sex and older age were associated with enhanced platelet reactivity. Fasting status and deviations from standard venipuncture practices did not alter platelet reactivity significantly. Finally, the agonist batch, phlebotomist, and assay technician (more so for assays that require additional sample manipulation) had a moderate to large effect on measured platelet reactivity. Conclusion Caution must be exercised when extrapolating findings between assays, and the use of standard ranges must be medication-specific and sex-specific at a minimum. Researchers should also consider preanalytical and technical variables when designing experiments and interpreting platelet reactivity measures.
Collapse
Affiliation(s)
- Melissa V. Chan
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA
| | - Ming-Huei Chen
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA
| | - Florian Thibord
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA
| | - Bongani B. Nkambule
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA
| | - Amber R. Lachapelle
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA
| | - Joseph Grech
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA
| | - Zoe E. Schneider
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA
| | | | - Jennifer E. Huffman
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA
| | - Melissa A. Hayman
- Centre for Immunobiology, the Blizard Institute, Faculty of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Harriet E. Allan
- Centre for Immunobiology, the Blizard Institute, Faculty of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Paul C. Armstrong
- Centre for Immunobiology, the Blizard Institute, Faculty of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Timothy D. Warner
- Centre for Immunobiology, the Blizard Institute, Faculty of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Andrew D. Johnson
- Population Sciences Branch, National Heart, Lung, and Blood Institute, Framingham, Massachusetts, USA
| |
Collapse
|
8
|
Thomas S, Kelliher S, Krishnan A. Heterogeneity of platelets and their responses. Res Pract Thromb Haemost 2024; 8:102356. [PMID: 38666061 PMCID: PMC11043642 DOI: 10.1016/j.rpth.2024.102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 04/28/2024] Open
Abstract
There has been increasing recognition of heterogeneity in blood platelets and their responses, particularly in recent years, where next-generation technologies and advanced bioinformatic tools that interrogate "big data" have enabled large-scale studies of RNA and protein expression across a growing list of disease states. However, pioneering platelet biologists and clinicians were already hypothesizing upon and investigating heterogeneity in platelet (and megakaryocyte) activity and platelet metabolism and aggregation over half a century ago. Building on their foundational hypotheses, in particular Professor Marian A. Packham's pioneering work and a State of the Art lecture in her memoriam at the 2023 International Society on Thrombosis and Haemostasis Congress by Anandi Krishnan, this review outlines the key features that contribute to the heterogeneity of platelets between and within individuals. Starting with important epidemiologic factors, we move stepwise through successively smaller scales down to heterogeneity revealed by single-cell technologies in health and disease. We hope that this overview will urge future scientific and clinical studies to recognize and account for heterogeneity of platelets and aim to apply methods that capture that heterogeneity. Finally, we summarize other exciting new data presented on this topic at the 2023 International Society on Thrombosis and Haemostasis Congress.
Collapse
Affiliation(s)
- Sally Thomas
- Sheffield Teaching Hospitals, National Health Services, Sheffield, UK
| | - Sarah Kelliher
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Anandi Krishnan
- Stanford University School of Medicine, Stanford University, Stanford, California, USA
- Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
9
|
Walker LE, Stewart A, Pirmohamed SM, Meschia JF, Kinne FB. Stroke Pharmacogenetics. STROKE GENETICS 2024:423-508. [DOI: 10.1007/978-3-031-41777-1_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
10
|
Verdier H, Thomas P, Batista J, Kempster C, McKinney H, Gleadall N, Danesh J, Mumford A, Heemskerk JWM, Ouwehand WH, Downes K, Astle WJ, Turro E. A signature of platelet reactivity in CBC scattergrams reveals genetic predictors of thrombotic disease risk. Blood 2023; 142:1895-1908. [PMID: 37647652 PMCID: PMC10733829 DOI: 10.1182/blood.2023021100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/27/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
Genetic studies of platelet reactivity (PR) phenotypes may identify novel antiplatelet drug targets. However, such studies have been limited by small sample sizes (n < 5000) because of the complexity of measuring PR. We trained a model to predict PR from complete blood count (CBC) scattergrams. A genome-wide association study of this phenotype in 29 806 blood donors identified 21 distinct associations implicating 20 genes, of which 6 have been identified previously. The effect size estimates were significantly correlated with estimates from a study of flow cytometry-measured PR and a study of a phenotype of in vitro thrombus formation. A genetic score of PR built from the 21 variants was associated with the incidence rates of myocardial infarction and pulmonary embolism. Mendelian randomization analyses showed that PR was causally associated with the risks of coronary artery disease, stroke, and venous thromboembolism. Our approach provides a blueprint for using phenotype imputation to study the determinants of hard-to-measure but biologically important hematological traits.
Collapse
Affiliation(s)
- Hippolyte Verdier
- Institut Pasteur, CNRS UMR 3751, Decision and Bayesian Computation, Université Paris Cité, Paris, France
| | - Patrick Thomas
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Joana Batista
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Carly Kempster
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Harriet McKinney
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Nicholas Gleadall
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Andrew Mumford
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
- South West National Health Service Genomic Medicine Service Alliance, Bristol, United Kingdom
| | | | - Willem H. Ouwehand
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Kate Downes
- Cambridge Genomics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - William J. Astle
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Medical Research Council Biostatistics Unit, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
- National Institute for Health and Care Research Blood and Transplant Research Unit in Donor Health and Behaviour, University of Cambridge, Cambridge, United Kingdom
| | - Ernest Turro
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
11
|
Wu TT, Zheng YY, Ma X, Xiu WJ, Yang HT, Hou XG, Yang Y, Chen Y, Ma YT, Xie X. Mutated CYP17A1 promotes atherosclerosis and early-onset coronary artery disease. Cell Commun Signal 2023; 21:155. [PMID: 37370070 PMCID: PMC10294473 DOI: 10.1186/s12964-023-01061-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/29/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Coronary artery disease (CAD) is a multi-factor complex trait and is heritable, especially in early-onset families. However, the genetic factors affecting the susceptibility of early-onset CAD are not fully characterized. METHODS In the present study, we identified a rare nonsense variant in the CYP17A1 gene from a Chinese Han family with CAD. To validate the effect of this variation on atherosclerosis and early-onset coronary artery disease, we conducted studies on population, cells, and mice. RESULTS The mutation precisely congregated with the clinical syndrome in all the affected family members and was absent in unaffected family members and unrelated controls. Similar to the human phenotype, the CYP17A1-deficient mice present the phenotype of metabolic syndrome with hypertension, increased serum glucose concentration, and presentation of central obesity and fatty liver. Furthermore, CYP17A1 knockout mice or CYP17A1 + ApoE double knockout mice developed more atherosclerotic lesions than wild type (WT) with high fat diary. In cell models, CYP17A1 was found to be involved in glucose metabolism by increasing glucose intake and utilization, through activating IGF1/mTOR/HIF1-α signaling way, which was consistent in CYP17A1 knockout mice with impaired glucose tolerance and insulin resistance. CONCLUSIONS Through our study of cells, mice and humans, we identified CYP17A1 as a key protein participating in the pathophysiology of the atherosclerotic process and the possible mechanism of CYP17A1 C987X mutation induced atherosclerosis and early-onset CAD involving glucose homeostasis regulation was revealed. Video Abstract.
Collapse
Affiliation(s)
- Ting-Ting Wu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830011, People's Republic of China
| | - Ying-Ying Zheng
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830011, People's Republic of China
| | - Xiang Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830011, People's Republic of China
| | - Wen-Juan Xiu
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830011, People's Republic of China
| | - Hai-Tao Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830011, People's Republic of China
| | - Xian-Geng Hou
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830011, People's Republic of China
| | - Yi Yang
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830011, People's Republic of China
| | - You Chen
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830011, People's Republic of China
| | - Yi-Tong Ma
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830011, People's Republic of China.
| | - Xiang Xie
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan Road, Urumqi, 830011, People's Republic of China.
| |
Collapse
|
12
|
Valenzuela A, Ayuso M, Buyssens L, Bars C, Van Ginneken C, Tessier Y, Van Cruchten S. Platelet Activation by Antisense Oligonucleotides (ASOs) in the Göttingen Minipig, including an Evaluation of Glycoprotein VI (GPVI) and Platelet Factor 4 (PF4) Ontogeny. Pharmaceutics 2023; 15:pharmaceutics15041112. [PMID: 37111598 PMCID: PMC10143489 DOI: 10.3390/pharmaceutics15041112] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023] Open
Abstract
Antisense oligonucleotide (ASO) is a therapeutic modality that enables selective modulation of undruggable protein targets. However, dose- and sequence-dependent platelet count reductions have been reported in nonclinical studies and clinical trials. The adult Göttingen minipig is an acknowledged nonclinical model for ASO safety testing, and the juvenile Göttingen minipig has been recently proposed for the safety testing of pediatric medicines. This study assessed the effects of various ASO sequences and modifications on Göttingen minipig platelets using in vitro platelet activation and aggregometry assays. The underlying mechanism was investigated further to characterize this animal model for ASO safety testing. In addition, the protein abundance of glycoprotein VI (GPVI) and platelet factor 4 (PF4) was investigated in the adult and juvenile minipigs. Our data on direct platelet activation and aggregation by ASOs in adult minipigs are remarkably comparable to human data. Additionally, PS ASOs bind to platelet collagen receptor GPVI and directly activate minipig platelets in vitro, mirroring the findings in human blood samples. This further corroborates the use of the Göttingen minipig for ASO safety testing. Moreover, the differential abundance of GPVI and PF4 in minipigs provides insight into the influence of ontogeny in potential ASO-induced thrombocytopenia in pediatric patients.
Collapse
|
13
|
Donkin R, Fung YL, Singh I. Fibrinogen, Coagulation, and Ageing. Subcell Biochem 2023; 102:313-342. [PMID: 36600138 DOI: 10.1007/978-3-031-21410-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The World Health Organization estimates that the world's population over 60 years of age will nearly double in the next 30 years. This change imposes increasing demands on health and social services with increased disease burden in older people, hereafter defined as people aged 60 years or more. An older population will have a greater incidence of cardiovascular disease partly due to higher levels of blood fibrinogen, increased levels of some coagulation factors, and increased platelet activity. These factors lead to a hypercoagulable state which can alter haemostasis, causing an imbalance in appropriate coagulation, which plays a crucial role in the development of cardiovascular diseases. These changes in haemostasis are not only affected by age but also by gender and the effects of hormones, or lack thereof in menopause for older females, ethnicity, other comorbidities, medication interactions, and overall health as we age. Another confounding factor is how we measure fibrinogen and coagulation through laboratory and point-of-care testing and how our decision-making on disease and treatment (including anticoagulation) is managed. It is known throughout life that in normal healthy individuals the levels of fibrinogen and coagulation factors change, however, reference intervals to guide diagnosis and management are based on only two life stages, paediatric, and adult ranges. There are no specific diagnostic guidelines based on reference intervals for an older population. How ageing relates to alterations in haemostasis and the impact of the disease will be discussed in this chapter. Along with the effect of anticoagulation, laboratory testing of fibrinogen and coagulation, future directions, and implications will be presented.
Collapse
Affiliation(s)
- Rebecca Donkin
- The University of the Sunshine Coast, School of Health and Behavioural Sciences, Sippy Downs, QLD, Australia. .,Griffith University, School of Medicine and Dentistry, Gold Coast, QLD, Australia.
| | - Yoke Lin Fung
- The University of the Sunshine Coast, School of Health and Behavioural Sciences, Sippy Downs, QLD, Australia
| | - Indu Singh
- Griffith University, School of Pharmacy and Medical Science, Gold Coast, QLD, Australia
| |
Collapse
|
14
|
Xiang Q, Wang Z, Mu G, Xie Q, Liu Z, Zhou S, Zhang H, Wang Z, Hu K, Song H, Yuan D, Xia Q, Huang Y, Cui Y. PROK2, HRNR, and FIG4 as potential genetic biomarkers of high bleeding propensity in East Asian patients with acute coronary syndrome using ticagrelor. Pharmacotherapy 2022; 42:872-879. [PMID: 36263704 DOI: 10.1002/phar.2736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 12/13/2022]
Abstract
STUDY OBJECTIVE East Asians have a higher risk of bleeding than Europeans when treated with ticagrelor. This study aimed to explore genetic indicators related to the high bleeding propensity in East Asian patients with acute coronary syndrome (ACS) using ticagrelor. DESIGN A multicenter prospective cohort study. SETTING Four sub center hospitals participating the study. PATIENTS Between March 2018 and July 2021, 208 patients with ACS were administered ticagrelor and underwent genetic testing. INVERTENTION Patients were enrolled and followed up for bleeding events for 12 months. Single-nucleotide polymorphisms (SNPs) were detected using whole-exome sequencing. SNPs significantly associated with cumulative bleeding events within 1-, 6-, and 12-month follow-ups were selected (p < 0.01). Among these, SNPs showing a difference of ≥2 fold in their distribution frequency among East Asians and Europeans were selected. MEASUREMENTS AND MAIN RESULTS Among all patients, 96.60% received ticagrelor plus aspirin or cilostazol, and 42.3% suffered from bleeding events during 12-month follow-up. Furthermore, 22 SNPs of 15 genes were found to have a significant association with cumulative bleeding events within 1-, 6-, and 12-month follow-ups. Among these SNPs, FIG4 rs2295837 (A>T) variant had the strongest association with bleeding events within 1 month (p = 1.28 × 10-4 ), with an increased risk of bleeding in T allele carriers (odds ratio [OR]: 3.07, 95% confidence interval [CI]: 1.68-5.63). PROK2 rs3796224 (C>T) variant was most strongly associated with cumulative bleeding events within 6 months (p = 4.57 × 10-4 ) with an increased risk of bleeding in T allele carriers (OR: 2.16, 95% CI: 1.20-3.89). Moreover, HRNR rs6662450 (C>T) variant showed the strongest relation with cumulative bleeding events within 12 months (p = 4.86 × 10-4 ) with a reduced risk of bleeding in T allele carriers (OR: 0.48, 95% CI: 0.24-0.95). CONCLUSION Fifteen genes, including PROK2, HRNR, and FIG4, were potential biomarkers of high bleeding propensity in East Asian patients with ACS using ticagrelor.
Collapse
Affiliation(s)
- Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Zhe Wang
- Department of Pharmacy, Peking University First Hospital, Beijing, China.,School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Guangyan Mu
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Qiufen Xie
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Zhiyan Liu
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Shuang Zhou
- Department of Pharmacy, Peking University First Hospital, Beijing, China.,School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Hanxu Zhang
- School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Zining Wang
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Kun Hu
- Department of Pharmacy, Peking University First Hospital, Beijing, China.,School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Hongtao Song
- Department of Pharmacy, 900 Hospital of the Joint Logistics Team, Fuzhou, China
| | - Dongdong Yuan
- Department of Pharmacy, Zhengzhou Seventh People's Hospital, Zhengzhou, China
| | - Quan Xia
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yan Huang
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, China.,School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China.,Institute of Clinical Pharmacology, Peking University, Beijing, China
| |
Collapse
|
15
|
Liu Z, Avila C, Malone LE, Gnatenko DV, Sheriff J, Zhu W, Bahou WF. Age-restricted functional and developmental differences of neonatal platelets. J Thromb Haemost 2022; 20:2632-2645. [PMID: 35962592 PMCID: PMC10953828 DOI: 10.1111/jth.15847] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Developmental ontogeny of neonatal thrombopoiesis retains characteristics that are distinct from adults although molecular mechanisms remain unestablished. METHODS We applied multiparameter quantitative platelet responses with integrated ribosome profiling/transcriptomic studies to better define gene/pathway perturbations regulating the neonatal-to-adult transition. A bioinformatics pipeline was developed to identify stable, neonatal-restricted platelet biomarkers for clinical application. RESULTS Cord blood (CB) platelets retained the capacity for linear agonist-receptor coupling linked to phosphatidylserine (PS) exposure and α-granule release, although a restricted block in cross-agonist activation pathways was evident. Functional immaturity of synergistic signaling pathways was due to younger ontogenetic age and singular underdevelopment of the protein secretory gene network, with reciprocal expansion of developmental pathways (E2F, G2M checkpoint, c-Myc) important for megakaryocytopoiesis. Genetic perturbations regulating vesicle transport and fusion (TOM1L1, VAMP3, SNAP23, and DNM1L) and PS exposure and procoagulant activity (CLCN3) were the most significant, providing a molecular explanation for globally attenuated responses. Integrated transcriptomic and ribosomal footprints identified highly abundant (ribosome-protected) DEFA3 (encoding human defensin neutrophil peptide 3) and HBG1 as stable biomarkers of neonatal thrombopoiesis. Studies comparing CB- or adult-derived megakaryocytopoiesis confirmed inducible and abundant DEFA3 antigenic expression in CB megakaryocytes, ~3.5-fold greater than in leukocytes (the most abundant source in humans). An initial feasibility cohort of at-risk pregnancies manifested by maternal/fetal hemorrhage (chimerism) were applied for detection and validation of platelet HBG1 and DEFA3 as neonatal thrombopoiesis markers, most consistent for HBG1, which displayed gestational age-dependent expression. CONCLUSIONS These studies establish an ontogenetically divergent stage of neonatal thrombopoiesis, and provide initial feasibility studies to track disordered fetal-to-adult megakaryocytopoiesis in vivo.
Collapse
Affiliation(s)
- Zhaoyan Liu
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
| | - Cecilia Avila
- Department of Obstetrics and Gynecology, Stony Brook University, Stony Brook, New York, USA
| | - Lisa E. Malone
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Dmitri V. Gnatenko
- Department of Medicine, Stony Brook University, Stony Brook, New York, USA
- Center for Scientific Review, National Institutes of Health, Bethesda, Maryland, USA
| | - Jawaad Sheriff
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA
| | - Wei Zhu
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA
| | - Wadie F. Bahou
- Department of Obstetrics and Gynecology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
16
|
Cofer LB, Barrett TJ, Berger JS. Aspirin for the Primary Prevention of Cardiovascular Disease: Time for a Platelet-Guided Approach. Arterioscler Thromb Vasc Biol 2022; 42:1207-1216. [PMID: 36047408 PMCID: PMC9484763 DOI: 10.1161/atvbaha.122.318020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022]
Abstract
Aspirin protects against atherothrombosis while increasing the risk of major bleeding. Although it is widely used to prevent cardiovascular disease (CVD), its benefit does not outweigh its risk for primary CVD prevention in large population settings. The recent United States Preventive Services Task Force guidelines on aspirin use to prevent CVD reflect this clinical tradeoff as well as the persistent struggle to define a population that would benefit from prophylactic aspirin therapy. Past clinical trials of primary CVD prevention with aspirin have not included consideration of a biomarker relevant to aspirin's mechanism of action, platelet inhibition. This approach is at odds with the paradigm used in other key areas of pharmacological CVD prevention, including antihypertensive and statin therapy, which combine cardiovascular risk assessment with the measurement of mechanistic biomarkers (eg, blood pressure and LDL [low-density lipoprotein]-cholesterol). Reliable methods for quantifying platelet activity, including light transmission aggregometry and platelet transcriptomics, exist and should be considered to identify individuals at elevated cardiovascular risk due to a hyperreactive platelet phenotype. Therefore, we propose a new, platelet-guided approach to the study of prophylactic aspirin therapy. We think that this new approach will reveal a population with hyperreactive platelets who will benefit most from primary CVD prevention with aspirin and usher in a new era of precision-guided antiplatelet therapy.
Collapse
|
17
|
Tekle E, Gelaw Y, Asrie F. Hematological Profile Changes Among Oral Contraceptive Users: A Narrative Review. J Blood Med 2022; 13:525-536. [PMID: 36199529 PMCID: PMC9528910 DOI: 10.2147/jbm.s379841] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Esayas Tekle
- Department of Medical Laboratory Sciences, Institute of Health Sciences, Wallaga University, Nekemte, Ethiopia
- Correspondence: Esayas Tekle, Email
| | - Yemataw Gelaw
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Fikir Asrie
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
18
|
Xie Q, Li Y, Liu Z, Mu G, Zhang H, Zhou S, Wang Z, Wang Z, Jiang J, Li X, Xiang Q, Cui Y. SLC4A4, FRAS1, and SULT1A1 Genetic Variations Associated With Dabigatran Metabolism in a Healthy Chinese Population. Front Genet 2022; 13:873031. [PMID: 35646073 PMCID: PMC9136018 DOI: 10.3389/fgene.2022.873031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/07/2022] [Indexed: 12/21/2022] Open
Abstract
Background: The purpose of this study was to identify genetic variations associated with the metabolism of dabigatran in healthy Chinese subjects, with particular focus given to pharmacokinetics (PK) and pharmacodynamics (PD).Methods: Healthy Chinese adults aged 18–65 years with unknown genotypes from a bioequivalence trial were included according to the protocol registered at ClinicalTrial.org (NCT03161496). All subjects received a single dose (150 mg) of dabigatran etexilate. PK (main outcomes: area under the concentration-time, AUC0-t, of total and free dabigatran) and PD (main outcomes: anti-FIIa activity, APTT, and PT) parameters were evaluated. Whole-exome sequencing and genome-wide association analyses were performed. Additionally, candidate gene association analyses related to dabigatran were conducted.Results: A total of 118 healthy Chinese subjects were enrolled in this study. According to the p-value suggestive threshold (1.0 × 10−4), the following three SNPs were found to be associated with the AUC0–t of total dabigatran: SLC4A4 SNP rs138389345 (p = 5.99 × 10−5), FRAS1 SNP rs6835769 (p = 6.88 × 10−5), and SULT1A1 SNP rs9282862 (p = 7.44 × 10−5). Furthermore, these SNPs were also found to have significant influences on the AUC0–t of free dabigatran, maximum plasma concentration, and anti-FIIa activity (p < 0.05). Moreover, we identified 30 new potential SNPs of 13 reported candidate genes (ABCB1, ABCC2, ABCG2, CYP2B6, CYP1A2, CYP2C19, CYP3A5, CES1, SLCO1B1, SLC22A1, UGT1A1, UGT1A9, and UGT2B7) that were associated with drug metabolism.Conclusion: Genetic variations were indeed found to impact dabigatran metabolism in a population of healthy Chinese subjects. Further research is needed to explore the more detailed functions of these SNPs. Additionally, our results should be verified in studies that use larger sample sizes and investigate other ethnicities.
Collapse
Affiliation(s)
- Qiufen Xie
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Yuan Li
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China
| | - Zhiyan Liu
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Guangyan Mu
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Hanxu Zhang
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Shuang Zhou
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Zhe Wang
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Zining Wang
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Jie Jiang
- Department of Cardiology, Peking University First Hospital, Beijing, China
| | - Xin Li
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Beijing, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, China
- School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
- Institute of Clinical Pharmacology, Peking University, Beijing, China
| |
Collapse
|
19
|
Carbone MG, Pagni G, Tagliarini C, Imbimbo BP, Pomara N. Can platelet activation result in increased plasma Aβ levels and contribute to the pathogenesis of Alzheimer's disease? Ageing Res Rev 2021; 71:101420. [PMID: 34371202 DOI: 10.1016/j.arr.2021.101420] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/18/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022]
Abstract
One of the central lesions in the brain of subjects with Alzheimer's disease (AD) is represented by aggregates of β-amyloid (Aβ), a peptide of 40-42 amino acids derived from the amyloid precursor protein (APP). The reasons why Aβ accumulates in the brain of individuals with sporadic forms of AD are unknown. Platelets are the primary source of circulating APP and, upon activation, can secrete significant amounts of Aβ into the blood which can be actively transported to the brain across the blood-brain barrier and promote amyloid deposition. Increased platelet activity can stimulate platelet adhesion to endothelial cells, trigger the recruitment of leukocytes into the vascular wall and cause perivascular inflammation, which can spread inflammation in the brain. Neuroinflammation is fueled by activated microglial cells and reactive astrocytes that release neurotoxic cytokines and chemokines. Platelet activation is also associated with the progression of carotid artery disease resulting in an increased risk of cerebral hypoperfusion which may also contribute to the AD neurodegenerative process. Platelet activation may thus be a pathophysiological mechanism of AD and for the strong link between AD and cerebrovascular diseases. Interfering with platelet activation may represent a promising potential adjunct therapeutic approach for AD.
Collapse
Affiliation(s)
- Manuel Glauco Carbone
- Department of Medicine and Surgery, Division of Psychiatry, University of Insubria, Viale Luigi Borri 57, 21100, Varese, Italy; Pisa-School of Experimental and Clinical Psychiatry, University of Pisa, Via Roma 57, 56100, Pisa, Italy.
| | - Giovanni Pagni
- Pisa-School of Experimental and Clinical Psychiatry, University of Pisa, Via Roma 57, 56100, Pisa, Italy.
| | - Claudia Tagliarini
- Pisa-School of Experimental and Clinical Psychiatry, University of Pisa, Via Roma 57, 56100, Pisa, Italy.
| | | | - Nunzio Pomara
- Geriatric Psychiatry Department, Nathan Kline Institute, and Departments of Psychiatry and Pathology, NYU Grossman School of Medicine, 140 Old Orangeburg Road Orangeburg, New York, 10962, United States.
| |
Collapse
|
20
|
Multiparameter phenotyping of platelet reactivity for stratification of human cohorts. Blood Adv 2021; 5:4017-4030. [PMID: 34474473 PMCID: PMC8945618 DOI: 10.1182/bloodadvances.2020003261] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 05/12/2021] [Indexed: 12/30/2022] Open
Abstract
Accurate and comprehensive assessment of platelet function across cohorts of donors may be key to understanding the risk of thrombotic events associated with cardiovascular disease, and, hence, to help personalize the application of antiplatelet drugs. However, platelet function tests can be difficult to perform and analyze; they also can be unreliable or uninformative and poorly standardized across studies. The Platelet Phenomic Analysis (PPAnalysis) assay and associated open-source software platform were developed in response to these challenges. PPAnalysis utilizes preprepared freeze-dried microtiter plates to provide a detailed characterization of platelet function. The automated analysis of the high-dimensional data enables the identification of subpopulations of donors with distinct platelet function phenotypes. Using this approach, we identified that the sensitivity of a donor's platelets to an agonist and their capacity to generate a functional response are distinct independent metrics of platelet reactivity. Hierarchical clustering of these metrics identified 6 subgroups with distinct platelet phenotypes within healthy cohorts, indicating that platelet reactivity does not fit into the traditional simple categories of "high" and "low" responders. These platelet phenotypes were found to exist in 2 independent cohorts of healthy donors and were stable on recall. PPAnalysis is a powerful tool for stratification of cohorts on the basis of platelet reactivity that will enable investigation of the causes and consequences of differences in platelet function and drive progress toward precision medicine.
Collapse
|
21
|
Bermingham KM, Brennan L, Segurado R, Gray IJ, Barron RE, Gibney ER, Ryan MF, Gibney MJ, Newman JW, O'Sullivan DAM. Genetic and environmental influences on serum oxylipins, endocannabinoids, bile acids and steroids. Prostaglandins Leukot Essent Fatty Acids 2021; 173:102338. [PMID: 34500309 DOI: 10.1016/j.plefa.2021.102338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022]
Abstract
Lipid bioactivity is a result of direct action and the action of lipid mediators including oxylipins, endocannabinoids, bile acids and steroids. Understanding the factors contributing to biological variation in lipid mediators may inform future approaches to understand and treat complex metabolic diseases. This research aims to determine the contribution of genetic and environmental influences on lipid mediators involved in the regulation of inflammation and energy metabolism. This study recruited 138 monozygotic (MZ) and dizygotic (DZ) twins aged 18-65 years and measured serum oxylipins, endocannabinoids, bile acids and steroids using liquid chromatography mass-spectrometry (LC-MS). In this classic twin design, the similarities and differences between MZ and DZ twins are modelled to estimate the contribution of genetic and environmental influences to variation in lipid mediators. Heritable lipid mediators included the 12-lipoxygenase products 12-hydroxyeicosatetraenoic acid [0.70 (95% CI: 0.12,0.82)], 12-hydroxyeicosatetraenoic acid [0.73 (95% CI: 0.30,0.83)] and 14‑hydroxy-docosahexaenoic acid [0.51 (95% CI: 0.07,0.71)], along with the endocannabinoid docosahexaenoy-lethanolamide [0.52 (95% CI: 0.15,0.72)]. For others such as 13-hydroxyoctadecatrienoic acid and lithocholic acid the contribution of environment to variation was stronger. With increased understanding of lipid mediator functions in health, it is important to understand the factors contributing to their variance. This study provides a comprehensive analysis of lipid mediators and extends pre-existing knowledge of the genetic and environmental influences on the human lipidome.
Collapse
MESH Headings
- 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/blood
- 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/genetics
- Adolescent
- Adult
- Aged
- Bile Acids and Salts/blood
- Bile Acids and Salts/genetics
- Dehydroepiandrosterone/blood
- Dehydroepiandrosterone/genetics
- Docosahexaenoic Acids/blood
- Docosahexaenoic Acids/genetics
- Eicosapentaenoic Acid/analogs & derivatives
- Eicosapentaenoic Acid/blood
- Eicosapentaenoic Acid/genetics
- Endocannabinoids/blood
- Endocannabinoids/genetics
- Fatty Acids, Omega-3/blood
- Fatty Acids, Omega-3/genetics
- Female
- Gene-Environment Interaction
- Humans
- Lipid Metabolism/genetics
- Male
- Middle Aged
- Oxylipins/blood
- Steroids/blood
- Twins, Dizygotic/genetics
- Twins, Monozygotic/genetics
- Young Adult
Collapse
Affiliation(s)
- K M Bermingham
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - L Brennan
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland; UCD Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - R Segurado
- UCD School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - I J Gray
- Obesity and Metabolism Research Unit, United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA; West Coast Metabolomics Center, UC Davis Genome Center, University of California Davis, Davis, CA, USA
| | - R E Barron
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - E R Gibney
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - M F Ryan
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - M J Gibney
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - J W Newman
- Obesity and Metabolism Research Unit, United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA; West Coast Metabolomics Center, UC Davis Genome Center, University of California Davis, Davis, CA, USA; Dept of Nutrition, University of California Davis, Davis, CA, USA
| | - Dr A M O'Sullivan
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
22
|
Noh JY. Megakaryopoiesis and Platelet Biology: Roles of Transcription Factors and Emerging Clinical Implications. Int J Mol Sci 2021; 22:ijms22179615. [PMID: 34502524 PMCID: PMC8431765 DOI: 10.3390/ijms22179615] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022] Open
Abstract
Platelets play a critical role in hemostasis and thrombus formation. Platelets are small, anucleate, and short-lived blood cells that are produced by the large, polyploid, and hematopoietic stem cell (HSC)-derived megakaryocytes in bone marrow. Approximately 3000 platelets are released from one megakaryocyte, and thus, it is important to understand the physiologically relevant mechanism of development of mature megakaryocytes. Many genes, including several key transcription factors, have been shown to be crucial for platelet biogenesis. Mutations in these genes can perturb megakaryopoiesis or thrombopoiesis, resulting in thrombocytopenia. Metabolic changes owing to inflammation, ageing, or diseases such as cancer, in which platelets play crucial roles in disease development, can also affect platelet biogenesis. In this review, I describe the characteristics of platelets and megakaryocytes in terms of their differentiation processes. The role of several critical transcription factors have been discussed to better understand the changes in platelet biogenesis that occur during disease or ageing.
Collapse
Affiliation(s)
- Ji-Yoon Noh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea
| |
Collapse
|
23
|
Keramati AR, Chen MH, Rodriguez BAT, Yanek LR, Bhan A, Gaynor BJ, Ryan K, Brody JA, Zhong X, Wei Q, Kammers K, Kanchan K, Iyer K, Kowalski MH, Pitsillides AN, Cupples LA, Li B, Schlaeger TM, Shuldiner AR, O'Connell JR, Ruczinski I, Mitchell BD, Faraday N, Taub MA, Becker LC, Lewis JP, Mathias RA, Johnson AD. Genome sequencing unveils a regulatory landscape of platelet reactivity. Nat Commun 2021; 12:3626. [PMID: 34131117 PMCID: PMC8206369 DOI: 10.1038/s41467-021-23470-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/13/2021] [Indexed: 12/16/2022] Open
Abstract
Platelet aggregation at the site of atherosclerotic vascular injury is the underlying pathophysiology of myocardial infarction and stroke. To build upon prior GWAS, here we report on 16 loci identified through a whole genome sequencing (WGS) approach in 3,855 NHLBI Trans-Omics for Precision Medicine (TOPMed) participants deeply phenotyped for platelet aggregation. We identify the RGS18 locus, which encodes a myeloerythroid lineage-specific regulator of G-protein signaling that co-localizes with expression quantitative trait loci (eQTL) signatures for RGS18 expression in platelets. Gene-based approaches implicate the SVEP1 gene, a known contributor of coronary artery disease risk. Sentinel variants at RGS18 and PEAR1 are associated with thrombosis risk and increased gastrointestinal bleeding risk, respectively. Our WGS findings add to previously identified GWAS loci, provide insights regarding the mechanism(s) by which genetics may influence cardiovascular disease risk, and underscore the importance of rare variant and regulatory approaches to identifying loci contributing to complex phenotypes.
Collapse
Affiliation(s)
- Ali R Keramati
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- GeneSTAR Research Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ming-Huei Chen
- Division of Intramural Research, Population Sciences Branch, National Heart, Lung and Blood Institute, Bethesda, MD, USA
- The Framingham Heart Study, Framingham, MA, USA
| | - Benjamin A T Rodriguez
- Division of Intramural Research, Population Sciences Branch, National Heart, Lung and Blood Institute, Bethesda, MD, USA
- The Framingham Heart Study, Framingham, MA, USA
- Valo Health, Boston, MA, USA
| | - Lisa R Yanek
- GeneSTAR Research Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Division of General Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Brady J Gaynor
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Baltimore, MD, USA
| | - Kathleen Ryan
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Baltimore, MD, USA
| | - Jennifer A Brody
- Cardiovascular Health Research Unit, University of Washington School of Medicine, Seattle, WA, USA
| | - Xue Zhong
- Vanderbilt Genetics Institute, Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiang Wei
- Vanderbilt Genetics Institute, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Kai Kammers
- Biostatistics and Bioinformatics, Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kanika Kanchan
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kruthika Iyer
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Madeline H Kowalski
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
| | - Achilleas N Pitsillides
- The Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - L Adrienne Cupples
- The Framingham Heart Study, Framingham, MA, USA
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA, USA
| | - Bingshan Li
- Vanderbilt Genetics Institute, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | | | - Alan R Shuldiner
- Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Baltimore, MD, USA
| | - Jeffrey R O'Connell
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Baltimore, MD, USA
| | - Ingo Ruczinski
- Bloomberg School of Public Health, Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | - Braxton D Mitchell
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Baltimore, MD, USA
| | - Nauder Faraday
- GeneSTAR Research Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Margaret A Taub
- Bloomberg School of Public Health, Biostatistics, Johns Hopkins University, Baltimore, MD, USA
| | - Lewis C Becker
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- GeneSTAR Research Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joshua P Lewis
- Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA.
- Program in Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, Baltimore, MD, USA.
| | - Rasika A Mathias
- GeneSTAR Research Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Andrew D Johnson
- Division of Intramural Research, Population Sciences Branch, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
- The Framingham Heart Study, Framingham, MA, USA.
| |
Collapse
|
24
|
Garcia A, Dunoyer-Geindre S, Nolli S, Strassel C, Reny JL, Fontana P. miR-204-5p and Platelet Function Regulation: Insight into a Mechanism Mediated by CDC42 and GPIIbIIIa. Thromb Haemost 2021; 121:1206-1219. [PMID: 33940656 PMCID: PMC8421094 DOI: 10.1055/a-1497-9649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Several platelet-derived microRNAs are associated with platelet reactivity (PR) and clinical outcome in cardiovascular patients. We previously showed an association between miR-204-5p and PR in stable cardiovascular patients, but data on functional mechanisms are lacking. AIMS To validate miR-204-5p as a regulator of PR in platelet-like structures (PLS) derived from human megakaryocytes and to address mechanistic issues. METHODS Human hematopoietic stem cells were differentiated into megakaryocytes, enabling the transfection of miR-204-5p and the recovery of subsequent PLS. The morphology of transfected megakaryocytes and PLS was characterized using flow cytometry and microscopy. The functional impact of miR-204-5p was assessed using a flow assay, the quantification of the activated form of the GPIIbIIIa receptor, and a fibrinogen-binding assay. Quantitative polymerase chain reaction and western blot were used to evaluate the impact of miR-204-5p on a validated target, CDC42. The impact of CDC42 modulation was investigated using a silencing strategy. RESULTS miR-204-5p transfection induced cytoskeletal changes in megakaryocytes associated with the retracted protrusion of proPLS, but it had no impact on the number of PLS released. Functional assays showed that the PLS produced by megakaryocytes transfected with miR-204-5p were more reactive than controls. This phenotype is mediated by the regulation of GPIIbIIIa expression, a key contributor in platelet-fibrinogen interaction. Similar results were obtained after CDC42 silencing, suggesting that miR-204-5p regulates PR, at least in part, via CDC42 downregulation. CONCLUSION We functionally validated miR-204-5p as a regulator of the PR that occurs through CDC42 downregulation and regulation of fibrinogen receptor expression.
Collapse
Affiliation(s)
- Alix Garcia
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Séverine Nolli
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Jean-Luc Reny
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of General Internal Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Pierre Fontana
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Division of Angiology and Haemostasis, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
25
|
Current Understanding of the Relationship between Blood Donor Variability and Blood Component Quality. Int J Mol Sci 2021; 22:ijms22083943. [PMID: 33920459 PMCID: PMC8069744 DOI: 10.3390/ijms22083943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
While differences among donors has long challenged meeting quality standards for the production of blood components for transfusion, only recently has the molecular basis for many of these differences become understood. This review article will examine our current understanding of the molecular differences that impact the quality of red blood cells (RBC), platelets, and plasma components. Factors affecting RBC quality include cytoskeletal elements and membrane proteins associated with the oxidative response as well as known enzyme polymorphisms and hemoglobin variants. Donor age and health status may also be important. Platelet quality is impacted by variables that are less well understood, but that include platelet storage sensitive metabolic parameters, responsiveness to agonists accumulating in storage containers and factors affecting the maintenance of pH. An increased understanding of these variables can be used to improve the quality of blood components for transfusion by using donor management algorithms based on a donors individual molecular and genetic profile.
Collapse
|
26
|
Infeld M, Friede KA, San TR, Knickerbocker HJ, Ginsburg GS, Ortel TL, Voora D. Platelet reactivity in response to aspirin and ticagrelor in African-Americans and European-Americans. J Thromb Thrombolysis 2021; 51:249-259. [PMID: 33159252 PMCID: PMC7889728 DOI: 10.1007/s11239-020-02327-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2020] [Indexed: 12/19/2022]
Abstract
Platelet gene polymorphisms are associated with variable on-treatment platelet reactivity and vary by race. Whether differences in platelet reactivity and aspirin or ticagrelor exist between African-American and European-Americans remains poorly understood. Biological samples from three prior prospective antiplatelet challenge studies at the Duke Clinical Research Unit were used to compare platelet reactivity between African-American and European-American subjects. Platelet reactivity at baseline, on-aspirin, on-ticagrelor, and the treatment effect of aspirin or ticagrelor were compared between groups using an adjusted mixed effects model. Compared with European-Americans (n = 282; 50% female; mean ± standard deviation age, 50 ± 16), African-Americans (n = 209; 67% female; age 48 ± 12) had lower baseline platelet reactivity with platelet function analyzer-100 (PFA-100) (p < 0.01) and with light transmission aggregometry (LTA) in response to arachidonic acid (AA), adenosine diphosphate (ADP), and epinephrine agonists (p < 0.05). African-Americans had lower platelet reactivity on aspirin in response to ADP, epinephrine, and collagen (p < 0.05) and on ticagrelor in response to AA, ADP, and collagen (p < 0.05). The treatment effect of aspirin was greater in European-Americans with an AA agonist (p = 0.002). Between-race differences with in vitro aspirin mirrored those seen in vivo. The treatment effect of ticagrelor was greater in European-Americans in response to ADP (p < 0.05) but with collagen, the treatment effect was greater for African-Americans (p < 0.05). Platelet reactivity was overall lower in African-Americans off-treatment, on aspirin, and on ticagrelor. European-Americans experienced greater platelet suppression on aspirin and on ticagrelor. The aspirin response difference in vivo and in vitro suggests a mechanism intrinsic to the platelet. Whether the absolute level of platelet reactivity or the degree of platelet suppression after treatment is more important for clinical outcomes is uncertain.
Collapse
Affiliation(s)
- Margaret Infeld
- Division of Cardiology, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Kevin A Friede
- Division of Cardiology, Department of Medicine, Duke University, Durham, NC, USA
| | - Tan Ru San
- Department of Cardiology, National Heart Centre, Singapore, Singapore
| | - Holly J Knickerbocker
- Center for Applied Genomics & Precision Medicine, Duke University, 2187 CIEMAS, Campus Box 3382, Durham, NC, 27708, USA
| | - Geoffrey S Ginsburg
- Center for Applied Genomics & Precision Medicine, Duke University, 2187 CIEMAS, Campus Box 3382, Durham, NC, 27708, USA
- Division of Cardiology, Department of Medicine, Duke University, Durham, NC, USA
| | - Thomas L Ortel
- Division of Hematology, Duke University, Durham, NC, USA
| | - Deepak Voora
- Center for Applied Genomics & Precision Medicine, Duke University, 2187 CIEMAS, Campus Box 3382, Durham, NC, 27708, USA.
- Division of Cardiology, Department of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
27
|
Wiśniewski A. Multifactorial Background for a Low Biological Response to Antiplatelet Agents Used in Stroke Prevention. ACTA ACUST UNITED AC 2021; 57:medicina57010059. [PMID: 33435185 PMCID: PMC7827369 DOI: 10.3390/medicina57010059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/27/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022]
Abstract
Effective platelet inhibition is the main goal of the antiplatelet therapy recommended as a standard treatment in the secondary prevention of non-embolic ischemic stroke. Acetylsalicylic acid (aspirin) and clopidogrel are commonly used for this purpose worldwide. A low biological response to antiplatelet agents is a phenomenon that significantly reduces the therapeutic and protective properties of the therapy. The mechanisms leading to high on-treatment platelet reactivity are still unclear and remain multifactorial. The aim of the current review is to establish the background of resistance to antiplatelet agents commonly used in the secondary prevention of ischemic stroke and to explain the possible mechanisms. The most important factors influencing the incidence of a low biological response were demonstrated. The similarities and the differences in resistance to both drugs are emphasized, which may facilitate the selection of the appropriate antiplatelet agent in relation to specific clinical conditions and comorbidities. Despite the lack of indications for the routine assessment of platelet reactivity in stroke subjects, this should be performed in selected patients from the high-risk group. Increasing the detectability of low antiaggregant responders, in light of its negative impact on the prognosis and clinical outcomes, can contribute to a more individualized approach and modification of the antiplatelet therapy to maximize the therapeutic effect in the secondary prevention of stroke.
Collapse
Affiliation(s)
- Adam Wiśniewski
- Department of Neurology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Skłodowskiej 9 Street, 85-094 Bydgoszcz, Poland
| |
Collapse
|
28
|
Esparza O, Higa K, Davizon-Castillo P. Molecular and functional characteristics of megakaryocytes and platelets in aging. Curr Opin Hematol 2020; 27:302-310. [PMID: 32740036 PMCID: PMC11776438 DOI: 10.1097/moh.0000000000000601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Advances in medical care and preventive measures have contributed to increasing life expectancy. Therefore, it is critical to expand our understanding of the physiological and pathophysiological adaptations of the hematological system in aging. We highlight and review the findings from recent investigations aimed at understanding the effects of aging on megakaryocytes and platelets. RECENT FINDINGS Biochemical and transcriptomic studies of megakaryocytes and platelets from older humans and mice have advanced our understanding of the molecular and functional characteristics of megakaryocytes and platelets during aging. These studies have led to the identification of metabolic and inflammatory pathways associated with the generation of hyperreactive platelets that may significantly contribute to the high incidence of thrombosis in aging. SUMMARY By increasing our research efforts to understand and identify the characteristics of megakaryocytes and platelets in aging, we will increase our potential to develop novel therapies aimed at decreasing the incidence of aging-associated thrombosis. These efforts will also serve as a foundation to better understand the role of megakaryocytes and platelets in other age-related hematological conditions with high thrombotic risk such as clonal hematopoiesis of indeterminate potential and myeloproliferative neoplasms.
Collapse
Affiliation(s)
- Orlando Esparza
- Department of Pediatric Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Aurora, Colorado, USA
| | - Kelly Higa
- Medical Scientist Training Program, University of Colorado, Aurora, Colorado, USA
| | - Pavel Davizon-Castillo
- Department of Pediatric Hematology, Oncology, and Bone Marrow Transplant, University of Colorado, Aurora, Colorado, USA
- Hemophilia and Thrombosis Center, School of Medicine, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
29
|
Rodriguez BA, Bhan A, Beswick A, Elwood PC, Niiranen TJ, Salomaa V, Trégouët DA, Morange PE, Civelek M, Ben-Shlomo Y, Schlaeger T, Chen MH, Johnson AD, Johnson AD. A Platelet Function Modulator of Thrombin Activation Is Causally Linked to Cardiovascular Disease and Affects PAR4 Receptor Signaling. Am J Hum Genet 2020; 107:211-221. [PMID: 32649856 DOI: 10.1016/j.ajhg.2020.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022] Open
Abstract
Dual antiplatelet therapy reduces ischemic events in cardiovascular disease, but it increases bleeding risk. Thrombin receptors PAR1 and PAR4 are drug targets, but the role of thrombin in platelet aggregation remains largely unexplored in large populations. We performed a genome-wide association study (GWAS) of platelet aggregation in response to full-length thrombin, followed by clinical association analyses, Mendelian randomization, and functional characterization including iPSC-derived megakaryocyte and platelet experiments. We identified a single sentinel variant in the GRK5 locus (rs10886430-G, p = 3.0 × 10-42) associated with increased thrombin-induced platelet aggregation (β = 0.70, SE = 0.05). We show that disruption of platelet GRK5 expression by rs10886430-G is associated with enhanced platelet reactivity. The proposed mechanism of a GATA1-driven megakaryocyte enhancer is confirmed in allele-specific experiments. Utilizing further data, we demonstrate that the allelic effect is highly platelet- and thrombin-specific and not likely due to effects on thrombin levels. The variant is associated with increased risk of cardiovascular disease outcomes in UK BioBank, most strongly with pulmonary embolism. The variant associates with increased risk of stroke in the MEGASTROKE, UK BioBank, and FinnGen studies. Mendelian randomization analyses in independent samples support a causal role for rs10886430-G in increasing risk for stroke, pulmonary embolism, and venous thromboembolism through its effect on thrombin-induced platelet reactivity. We demonstrate that G protein-coupled receptor kinase 5 (GRK5) promotes platelet activation specifically via PAR4 receptor signaling. GRK5 inhibitors in development for the treatment of heart failure and cancer could have platelet off-target deleterious effects. Common variants in GRK5 may modify clinical outcomes with PAR4 inhibitors, and upregulation of GRK5 activity or signaling in platelets may have therapeutic benefits.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Andrew D Johnson
- National Heart, Lung, and Blood Institute, Division of Intramural Research, Population Sciences Branch, The Framingham Heart Study, Framingham, MA 01702, USA.
| |
Collapse
|
30
|
Fontana P, Roffi M, Reny JL. Platelet Function Test Use for Patients with Coronary Artery Disease in the Early 2020s. J Clin Med 2020; 9:jcm9010194. [PMID: 31936845 PMCID: PMC7019825 DOI: 10.3390/jcm9010194] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 12/14/2022] Open
Abstract
In the field of antithrombotics, precision medicine is of particular interest, as it may lower the incidence of potentially life-threatening side effects. Indeed, antiplatelet drugs such as P2Y12 inhibitors are one of the most common causes of emergency admissions for drug-related adverse events. The last ten years have seen a continuous debate on whether platelet function tests (PFTs) should be used to tailor antiplatelet drugs to cardiovascular patients. Large-scale randomized studies investigating the escalation of antiplatelet therapies according to the results of PFTs were mostly negative. Potent P2Y12 inhibitors are recommended as a first-line treatment in acute coronary syndrome patients, bringing the bleeding risk at the forefront. De-escalation from prasugrel or ticagrelor to clopidogrel is now considered, with or without the use of a PFT. This review covers recent advances in escalation and de-escalation strategies based on PFTs in various clinical settings. It also describes the main features of the most popular platelet function tests as well as the potential added value of genetic testing. Finally, we detail practical suggestions on how PFTs could be used in clinical practice.
Collapse
Affiliation(s)
- Pierre Fontana
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
- Division of Angiology and Haemostasis, Geneva University Hospitals, 1205 Geneva, Switzerland
- Correspondence: ; Tel.: +41-22-372-97-51; Fax: +41-22-372-98-91
| | - Marco Roffi
- Division of Cardiology, Geneva University Hospitals, 1205 Geneva, Switzerland;
| | - Jean-Luc Reny
- Geneva Platelet Group, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
- Division of General Internal Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| |
Collapse
|
31
|
Increased Cardiovascular Risk Associated with Chemical Sensitivity to Perfluoro-Octanoic Acid: Role of Impaired Platelet Aggregation. Int J Mol Sci 2020; 21:ijms21020399. [PMID: 31936344 PMCID: PMC7014465 DOI: 10.3390/ijms21020399] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
Perfluoro–alkyl substances (PFAS), particularly perfluoro–octanoic acid (PFOA), are persisting environmental chemicals showing bioaccumulation in human tissues. Recently, exposure to PFAS has been associated with increased prevalence of cardiovascular diseases (CVDs). However, a causal role of PFAS in atherosclerosis pathogenesis is under-investigated. Here, we investigated the effect of PFOA exposure on platelets’ function, a key player in atherosclerosis process. PFOA accumulation in platelets was evaluated by liquid chromatography-mass spectrometry. Changes in platelets’ membrane fluidity and activation after dose-dependent exposure to PFOA were evaluated by merocyanine 540 (MC540) and anti P-Selectin immune staining at flow cytometry, respectively. Intracellular calcium trafficking was analyzed with Fluo4M probe, time-lapse live imaging. Platelets’ aggregation state was also evaluated with Multiplate® aggregometry analyzer in 48 male subjects living in a specific area of the Veneto region with high PFAS environmental pollution, and compared with 30 low-exposure control subjects. Platelets’ membrane was the major target of PFOA, whose dose-dependent accumulation was associated in turn with increased membrane fluidity, as expected by a computational model; increased activation at resting condition; and both calcium uptake and aggregation upon activation. Finally, exposed subjects had higher serum and platelets levels of PFOA, together with increased aggregation parameters at Multiplate®, compared with controls. These data help to explain the emerging association between PFAS exposure and CVD.
Collapse
|
32
|
Adenosine Receptor Agonists Exhibit Anti-Platelet Effects and the Potential to Overcome Resistance to P2Y 12 Receptor Antagonists. Molecules 2019; 25:molecules25010130. [PMID: 31905703 PMCID: PMC6982709 DOI: 10.3390/molecules25010130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/16/2019] [Accepted: 12/25/2019] [Indexed: 11/30/2022] Open
Abstract
Large inter-individual variation in platelet response to endogenous agonists and pharmacological agents, including resistance to antiplatelet therapy, prompts a search for novel platelet inhibitors and development new antithrombotic strategies. The present in vitro study evaluates the beneficial effects of three adenosine receptor (AR) agonists (regadenoson, LUF 5835 and NECA), different in terms of their selectivity for platelet adenosine receptors, when used alone and in combination with P2Y12 inhibitors, such as cangrelor or prasugrel metabolite. The anti-platelet effects of AR agonists were evaluated in healthy subjects (in the whole group and after stratification of individuals into high- and low-responders to P2Y12 inhibitors), using whole blood techniques, under flow (thrombus formation) and static conditions (study of platelet activation and aggregation). Compared to P2Y12 antagonists, AR agonists were much less or not effective under static conditions, but demonstrated similar antiplatelet activity in flow. In most cases, AR agonists significantly enhanced the anti-platelet effect of P2Y12 antagonists, despite possessing different selectivity profiles and antiplatelet activities. Importantly, their inhibitory effects in combination with P2Y12 antagonists were similar in high- and low-responders to P2Y12 inhibitors. In conclusion, a combination of anti-platelet agents acting via the P1 and P2 purinergic receptors represents a promising alternative to existing antithrombotic therapy.
Collapse
|
33
|
Houck KL, Yuan H, Tian Y, Solomon M, Cramer D, Liu K, Zhou Z, Wu X, Zhang J, Oehler V, Dong JF. Physical proximity and functional cooperation of glycoprotein 130 and glycoprotein VI in platelet membrane lipid rafts. J Thromb Haemost 2019; 17:1500-1510. [PMID: 31145836 DOI: 10.1111/jth.14525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/28/2019] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Clinical and laboratory studies have demonstrated that platelets become hyperactive and prothrombotic in conditions of inflammation. We have previously shown that the proinflammatory cytokine interleukin (IL)-6 forms a complex with soluble IL-6 receptor α (sIL-6Rα) to prime platelets for activation by subthreshold concentrations of collagen. Upon being stimulated with collagen, the transcription factor signal transducer and activator of transcription (STAT) 3 in platelets is phosphorylated and dimerized to act as a protein scaffold to facilitate the catalytic action between the kinase Syk and the substrate phospholipase Cγ2 (PLCγ2) in collagen-induced signaling. However, it remains unknown how collagen induces phosphorylation and dimerization of STAT3. METHODS AND RESULTS We conducted complementary in vitro experiments to show that the IL-6 receptor subunit glycoprotein 130 (GP130) was in physical proximity to the collagen receptor glycoprotein VI (GPVI in membrane lipid rafts of platelets. This proximity allows collagen to induce STAT3 activation and dimerization, and the IL-6-sIL-6Rα complex to activate the kinase Syk and the substrate PLCγ2 in the GPVI signal pathway, resulting in an enhanced platelet response to collagen. Disrupting lipid rafts or blocking GP130-Janus tyrosine kinase (JAK)-STAT3 signaling abolished the cross-activation and reduced platelet reactivity to collagen. CONCLUSION These results demonstrate cross-talk between collagen and IL-6 signal pathways. This cross-talk could potentially provide a novel mechanism for inflammation-induced platelet hyperactivity, so the IL-6-GP130-JAK-STAT3 pathway has been identified as a potential target to block this hyperactivity.
Collapse
Affiliation(s)
| | - Hengjie Yuan
- Tianjin Neurological Institute, General Hospital, Tianjin Medical University, Tianjin, China
| | - Ye Tian
- Tianjin Neurological Institute, General Hospital, Tianjin Medical University, Tianjin, China
| | | | - Drake Cramer
- Bloodworks Research Institute, Seattle, Washington
| | - Kitty Liu
- Bloodworks Research Institute, Seattle, Washington
| | - Zhou Zhou
- State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Beijing, China
| | - Xiaoping Wu
- Bloodworks Research Institute, Seattle, Washington
| | - Jianning Zhang
- Tianjin Neurological Institute, General Hospital, Tianjin Medical University, Tianjin, China
| | - Vivian Oehler
- Clinical Research Division, Hutchison Cancer Center, Seattle, Washington
- Seattle Cancer Alliances, Seattle, Washington
- Division of Hematology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington
| | - Jing-Fei Dong
- Bloodworks Research Institute, Seattle, Washington
- Division of Hematology, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
34
|
Le Blanc J, Lordkipanidzé M. Platelet Function in Aging. Front Cardiovasc Med 2019; 6:109. [PMID: 31448291 PMCID: PMC6692461 DOI: 10.3389/fcvm.2019.00109] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022] Open
Abstract
Aging is associated with an increased incidence of cardiovascular disease and thrombosis. Platelets play a major role in maintaining hemostasis and in thrombus formation, making them a key player in thrombotic disorders. Whereas it is well-known that platelet aggregability is increased in vascular diseases, the contribution of age-related changes in platelet biology to cardiovascular risk is not well-understood. Several lines of evidence support that platelets from older subjects differ in their function and structure, making platelets more prone to activation and less sensitive to inhibition. These age-related changes could lead to platelet hyperactivity and to the development of a prothrombotic state in advanced age. This review will focus on platelet biochemical modifications during aging and on the mechanisms by which these alterations could lead to thrombotic disease.
Collapse
Affiliation(s)
- Jessica Le Blanc
- Research Center, Montreal Heart Institute, Montreal, QC, Canada.,Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
| | - Marie Lordkipanidzé
- Research Center, Montreal Heart Institute, Montreal, QC, Canada.,Faculty of Pharmacy, Université de Montréal, Montreal, QC, Canada
| |
Collapse
|
35
|
Kuhnla A, Reinthaler M, Braune S, Maier A, Pindur G, Lendlein A, Jung F. Spontaneous and induced platelet aggregation in apparently healthy subjects in relation to age. Clin Hemorheol Microcirc 2019; 71:425-435. [DOI: 10.3233/ch-199006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- A. Kuhnla
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - M. Reinthaler
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Department of Cardiology, Charité - Universitätsmedizin Berlin, University Hospital, Campus Benjamin Franklin, Berlin, Germany
| | - S. Braune
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - A. Maier
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Gerhard Pindur
- Institute of Clinical Haemostaseology and Transfusion Medicine, Saarland University Hospital, Homburg, Germany
| | - A. Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Institute of Chemistry, University of Potsdam, Potsdam, Germany
| | - F. Jung
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Institute of Clinical Haemostaseology and Transfusion Medicine, Saarland University Hospital, Homburg, Germany
| |
Collapse
|
36
|
Reiner AP, Johnson AD. Platelet Genomics. Platelets 2019. [DOI: 10.1016/b978-0-12-813456-6.00005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Karimova A, Hacioğlu Y, Bahtiyar N, Niyazoğlu M, Akbaş F, Yilmaz E, Ulutin T, Onaran I. Increased mitochondrial common deletion in platelets from patients with type 2 diabetes is not associated with abnormal platelet activity or mitochondrial function. Mol Med Rep 2018; 18:3529-3536. [PMID: 30066943 DOI: 10.3892/mmr.2018.9340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/07/2018] [Indexed: 11/05/2022] Open
Abstract
The present study examined the presence and frequency of the 4,977‑base pair mitochondrial (mt)DNA (mtDNA4977) deletion in blood platelets, and whether increased mtDNA4977 deletion was associated with abnormal mitochondrial and platelet function in type 2 diabetes mellitus. A total of 66 patients with type 2 diabetes mellitus and 23 healthy subjects were included in the present study. Patients were divided into three subgroups according to glycemic control, and the presence or absence of chronic diabetic complications: i) Good glycemic control [glycated hemoglobin (HbA1c) <7] without complications; ii) poor glycemic control (HbA1c ≥7) without complications; and iii) poor glycemic control (HbA1c ≥7) with complications. mtDNA4977 deletion, mtDNA copy number, adenine nucleotides, mitochondrial membrane potential and P‑selectin expression levels were analyzed in platelets. Although the frequency of mtDNA4977 deletion in platelets of the patient (96.9%) and control groups (95.6%) was extremely similar, the deletion level significantly increased in all the diabetic groups, compared with the healthy control group. However, the data from the present study revealed that an increased deletion frequency in platelets was not associated with disease severity, although there was clear interindividual variability. Furthermore, all other parameters were not significantly different among the groups, and there were no correlations between mtDNA4977 deletion frequency and all other studied parameters for any of the case groups. The results indicated that the mtDNA4977 deletion occurred in platelets, and increased deletion in patients with type 2 diabetes did not have a marked influence on mitochondrial and/or platelet dysfunction, when compared with the non‑diabetic subjects. Further research is required to elucidate the sources of inter‑individual variability observed in certain parameters.
Collapse
Affiliation(s)
- Ayla Karimova
- Department of Medical Biology and Genetics, Cerrahpasa Faculty of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Yalçin Hacioğlu
- Department of Family Medicine, Istanbul Training and Research Hospital, 34098 Istanbul, Turkey
| | - Nurten Bahtiyar
- Department of Biophysics, Cerrahpasa Faculty of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Mutlu Niyazoğlu
- Department of Endocrinology, Istanbul Training and Research Hospital, 34098 Istanbul, Turkey
| | - Fahri Akbaş
- Department of Medical Biology, Faculty of Medicine at Bezmialem Vakif University, 34093 Istanbul, Turkey
| | - Erkan Yilmaz
- Tissue Typing Laboratory, Cerrahpasa Faculty of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Turgut Ulutin
- Department of Medical Biology and Genetics, Cerrahpasa Faculty of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Ilhan Onaran
- Department of Medical Biology and Genetics, Cerrahpasa Faculty of Medicine, Istanbul University, 34098 Istanbul, Turkey
| |
Collapse
|
38
|
Tricoci P, Neely M, Whitley MJ, Edelstein LC, Simon LM, Shaw C, Fortina P, Moliterno DJ, Armstrong PW, Aylward P, White H, Van de Werf F, Jennings LK, Wallentin L, Held C, Harrington RA, Mahaffey KW, Bray PF. Effects of genetic variation in protease activated receptor 4 after an acute coronary syndrome: Analysis from the TRACER trial. Blood Cells Mol Dis 2018; 72:37-43. [PMID: 30055940 DOI: 10.1016/j.bcmd.2018.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 07/20/2018] [Indexed: 01/05/2023]
Abstract
Variation in platelet response to thrombin may affect the safety and efficacy of PAR antagonism. The Thr120 variant of the common single nucleotide polymorphism (SNP) rs773902 in the protease-activated receptor (PAR) 4 gene is associated with higher platelet aggregation compared to the Ala120 variant. We investigated the relationship between the rs773902 SNP with major bleeding and ischemic events, safety, and efficacy of PAR1 inhibition in 6177 NSTE ACS patients in the TRACER trial. There was a lower rate of GUSTO moderate/severe bleeding in patients with the Thr120 variant. The difference was driven by a lower rate in the smaller homozygous group (recessive model, HR 0.13 [0.02-0.92] P = 0.042). No significant differences were observed in the ischemic outcomes. The excess in bleeding observed with PAR1 inhibition was attenuated in patients with the Thr120 variant, but the interactions were not statistically significant. In summary, lower major bleeding rates were observed in the overall TRACER cohort with the hyperreactive PAR4 Thr120 variant. The increase in bleeding with vorapaxar was attenuated with the Thr120 variant, but we could not demonstrate an interaction with PAR1 inhibition. These findings warrant further exploration, including those of African ancestry where the A allele (Thr120) frequency is ~65%.
Collapse
Affiliation(s)
| | - Megan Neely
- Duke Clinical Research Institute, Duke University, Durham, NC, USA
| | - Michael J Whitley
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, PA, USA
| | - Leonard C Edelstein
- The Cardeza Foundation for Hematologic Research and the Department of Medicine, Thomas Jefferson University, Sidney Kimmel Medical College, Philadelphia, PA, USA
| | - Lukas M Simon
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Chad Shaw
- Department of Human & Molecular Genetics, Baylor College of Medicine, Houston, TX, USA; Department of Statistics, Rice University, Houston, TX, USA
| | - Paolo Fortina
- Cancer Genomics and Bioinformatics Laboratory, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - David J Moliterno
- Gill Heart Institute and Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY, USA
| | | | - Philip Aylward
- Division of Medicine, Cardiac & Critical Care Services, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | - Harvey White
- Green Lane Cardiovascular Service, Auckland City Hospital, Auckland, New Zealand
| | - Frans Van de Werf
- Department of Cardiovascular Sciences, University of Leuven, Leuven, Belgium
| | - Lisa K Jennings
- CirQuest Labs, LLC, and University of Tennessee Health Science Center, Memphis, TN, USA
| | - Lars Wallentin
- Department of Medical Sciences, Uppsala Clinical Research Center, Uppsala, Sweden
| | - Claes Held
- Department of Medical Sciences, Uppsala Clinical Research Center, Uppsala, Sweden
| | | | | | - Paul F Bray
- Division of Hematology and Hematologic Malignancies in the Department of Internal Medicine and the Molecular Medicine Program, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
39
|
Puurunen MK, Hwang SJ, Larson MG, Vasan RS, O'Donnell CJ, Tofler G, Johnson AD. ADP Platelet Hyperreactivity Predicts Cardiovascular Disease in the FHS (Framingham Heart Study). J Am Heart Assoc 2018; 7:JAHA.118.008522. [PMID: 29502103 PMCID: PMC5866343 DOI: 10.1161/jaha.118.008522] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Platelet function is associated with adverse events in patients with cardiovascular disease (CVD). METHODS AND RESULTS We examined associations of baseline platelet function with incident CVD events in the community-based FHS (Framingham Heart Study). Participants free of prevalent CVD and without recent aspirin treatment with available data in the Framingham Offspring cohort (1991-1995) and Omni cohort (1994-1998) were included. Platelet function was measured with light transmission aggregometry using collagen (1.9 μg/mL), ADP (0.05-15 μmol/L), and epinephrine (0.01-15 μmol/L). We used proportional hazards models to analyze incident outcomes (myocardial infarction/stroke, CVD, and CVD mortality) with respect to platelet measures. The study sample included 2831 participants (average age, 54.3 years; 57% women). During follow-up (median, 20.4 years), we observed 191 composite incident myocardial infarction or stroke events, 432 incident CVD cases, and 117 CVD deaths. Hyperreactivity to ADP and platelet aggregation at ADP concentration of 1.0 μmol/L were significantly associated with incident myocardial infarction/stroke in a multivariable model (hazard ratio, 1.68 [95% confidence interval, 1.13-2.50] [P=0.011] for hyperreactivity across ADP doses; and hazard ratio, 1.16 [95% confidence interval, 1.02-1.33] [P=0.029] for highest quartile of ADP response at 1.0 μmol/L versus others). No association was observed for collagen lag time or any epinephrine measures with incident myocardial infarction or stroke. CONCLUSIONS Intrinsic hyperreactivity to low-dose ADP in our community-based sample, who were free of CVD and any antiplatelet therapy, is associated with future arterial thrombosis during a 20-year follow-up. These findings reinforce ADP activation inhibition as a critical treatment paradigm and encourage further study of ADP inhibitor-refractive populations.
Collapse
Affiliation(s)
- Marja K Puurunen
- National Heart, Lung, and Blood Institute's and Boston University's The Framingham Heart Study, Framingham, MA.,Schools of Medicine and Public Health, Boston University, Boston, MA
| | - Shih-Jen Hwang
- National Heart, Lung, and Blood Institute's and Boston University's The Framingham Heart Study, Framingham, MA.,Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Framingham, MA
| | - Martin G Larson
- National Heart, Lung, and Blood Institute's and Boston University's The Framingham Heart Study, Framingham, MA.,Biostatistics Department, Boston University School of Public Health, Boston, MA
| | - Ramachandran S Vasan
- National Heart, Lung, and Blood Institute's and Boston University's The Framingham Heart Study, Framingham, MA.,Schools of Medicine and Public Health, Boston University, Boston, MA
| | - Christopher J O'Donnell
- National Heart, Lung, and Blood Institute's and Boston University's The Framingham Heart Study, Framingham, MA.,Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Framingham, MA
| | - Geoffrey Tofler
- Royal North Shore Hospital, Sydney, New South Wales, Australia.,University of Sydney, New South Wales, Australia
| | - Andrew D Johnson
- National Heart, Lung, and Blood Institute's and Boston University's The Framingham Heart Study, Framingham, MA .,Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Framingham, MA
| |
Collapse
|
40
|
O'connor CT, Kiernan TJ, Yan BP. The genetic basis of antiplatelet and anticoagulant therapy: A pharmacogenetic review of newer antiplatelets (clopidogrel, prasugrel and ticagrelor) and anticoagulants (dabigatran, rivaroxaban, apixaban and edoxaban). Expert Opin Drug Metab Toxicol 2017; 13:725-739. [PMID: 28571507 DOI: 10.1080/17425255.2017.1338274] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The study of pharmacogenomics presents the possibility of individualised optimisation of drug therapy tailored to each patients' unique physiological traits. Both antiplatelet and anticoagulant drugs play a key role in the management of cardiovascular disease. Despite their importance, there is a substantial volume of literature to suggest marked person-to-person variability in their effect. Areas covered: This article reviews the data available for the genetic cause for this inter-patient variability of antiplatelet and anticoagulant drugs. The genetic basis for traditional antiplatelets (i.e. aspirin) is compared with the newly available antiplatelet medicines (clopidogrel, prasugrel and ticagrelor). Similarly, the pharmacogenetics of warfarin is compared with the newer direct oral anticoagulants (DOACs) in detail. Expert Opinion: We identify strengths and weaknesses in the research thus far; including shortcomings in trial design and a review of newer analytical techniques. The direction of this research and its real-world implications are discussed.
Collapse
Affiliation(s)
- Cormac T O'connor
- a Cardiology Department , University Hospital Limerick , Limerick , Ireland
| | - Thomas J Kiernan
- a Cardiology Department , University Hospital Limerick , Limerick , Ireland
| | - Bryan P Yan
- b Division of Cardiology, Department of Medicine and Therapeutics , The Chinese University of Hong Kong, Prince of Wales Hospital , Hong Kong SAR , China
| |
Collapse
|
41
|
Eicher JD, Chen MH, Pitsillides AN, Lin H, Veeraraghavan N, Brody JA, Metcalf GA, Muzny DM, Gibbs RA, Becker DM, Becker LC, Faraday N, Mathias RA, Yanek LR, Boerwinkle E, Cupples LA, Johnson AD. Whole exome sequencing in the Framingham Heart Study identifies rare variation in HYAL2 that influences platelet aggregation. Thromb Haemost 2017; 117:1083-1092. [PMID: 28300864 PMCID: PMC7472427 DOI: 10.1160/th16-09-0677] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/12/2017] [Indexed: 12/30/2022]
Abstract
Inhibition of platelet reactivity is a common therapeutic strategy in secondary prevention of cardiovascular disease. Genetic and environmental factors influence inter-individual variation in platelet reactivity. Identifying genes that contribute to platelet reactivity can reveal new biological mechanisms and possible therapeutic targets. Here, we examined rare coding variation to identify genes associated with platelet reactivity in a population-based cohort. To do so, we performed whole exome sequencing in the Framingham Heart Study and conducted single variant and gene-based association tests against platelet reactivity to collagen, adenosine diphosphate (ADP), and epinephrine agonists in up to 1,211 individuals. Single variant tests revealed no significant associations (p<1.44×10-7), though we observed a suggestive association with previously implicated MRVI1 (rs11042902, p = 1.95×10-7). Using gene-based association tests of rare and low-frequency variants, we found significant associations of HYAL2 with increased ADP-induced aggregation (p = 1.07×10-7) and GSTZ1 with increased epinephrine-induced aggregation (p = 1.62×10-6). HYAL2 also showed suggestive associations with epinephrine-induced aggregation (p = 2.64×10-5). The rare variants in the HYAL2 gene-based association included a missense variant (N357S) at a known N-glycosylation site and a nonsense variant (Q406*) that removes a glycophosphatidylinositol (GPI) anchor from the resulting protein. These variants suggest that improper membrane trafficking of HYAL2 influences platelet reactivity. We also observed suggestive associations of AR (p = 7.39×10-6) and MAPRE1 (p = 7.26×10-6) with ADP-induced reactivity. Our study demonstrates that gene-based tests and other grouping strategies of rare variants are powerful approaches to detect associations in population-based analyses of complex traits not detected by single variant tests and possible new genetic influences on platelet reactivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Andrew D Johnson
- Andrew D. Johnson, Tenure Track Investigator, Population Sciences Branch, National Heart, Lung, and Blood Institute, The Framingham Heart Study, 73 Mt. Wayte Ave. Suite #2, Framingham, MA 01702, USA, Tel.: +1 508 663 4082, E-mail:
| |
Collapse
|
42
|
Walker LE, Stewart A, Pirmohamed SM. Stroke Pharmacogenetics. STROKE GENETICS 2017:327-410. [DOI: 10.1007/978-3-319-56210-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
43
|
Garner SF, Furnell A, Kahan BC, Jones CI, Attwood A, Harrison P, Kelly AM, Goodall AH, Cardigan R, Ouwehand WH. Platelet responses to agonists in a cohort of highly characterised platelet donors are consistent over time. Vox Sang 2016; 112:18-24. [PMID: 28001309 PMCID: PMC5299478 DOI: 10.1111/vox.12468] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/16/2016] [Accepted: 09/22/2016] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND OBJECTIVES Platelet function shows significant inheritance that is at least partially genetically controlled. There is also evidence that the platelet response is stable over time, but there are few studies that have assessed consistency of platelet function over months and years. We aimed to measure platelet function in platelet donors over time in individuals selected from a cohort of 956 donors whose platelet function had been previously characterised. MATERIALS AND METHODS Platelet function was assessed by flow cytometry, measuring fibrinogen binding and P-selectin expression after stimulation with either cross-linked collagen-related peptide or adenosine 5'-diphosphate. Eighty-nine donors from the Cambridge Platelet Function Cohort whose platelet responses were initially within the lower or upper decile of reactivity were retested between 4 months and five and a half years later. RESULTS There was moderate-to-high correlation between the initial and repeat platelet function results for all assays (P ≤ 0·007, r2 0·2961-0·7625); furthermore, the range of results observed in the initial low and high responder groups remained significantly different at the time of the second test (P ≤ 0·0005). CONCLUSION Platelet function remains consistent over time. This implies that this potential influence on quality of donated platelet concentrates will remain essentially constant for a given donor.
Collapse
Affiliation(s)
- S F Garner
- NHS Blood and Transplant, Cambridge, UK.,Department of Haematology, University of Cambridge, Cambridge, UK
| | - A Furnell
- NHS Blood and Transplant, Cambridge, UK.,Department of Haematology, University of Cambridge, Cambridge, UK
| | - B C Kahan
- Pragmatic Clinical Trials Unit, Queen Mary University of London, London, UK
| | - C I Jones
- Institute for Cardiovascular and Metabolic Research, University of Reading, Reading, UK
| | - A Attwood
- NHS Blood and Transplant, Cambridge, UK.,Department of Haematology, University of Cambridge, Cambridge, UK
| | - P Harrison
- Institute of Inflammation and Ageing, Queen Elizabeth Hospital, University of Birmingham, Birmingham, UK
| | - A M Kelly
- NHS Blood and Transplant, Cambridge, UK.,Department of Haematology, University of Cambridge, Cambridge, UK
| | - A H Goodall
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,NIHR Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - R Cardigan
- NHS Blood and Transplant, Cambridge, UK.,Department of Haematology, University of Cambridge, Cambridge, UK
| | - W H Ouwehand
- NHS Blood and Transplant, Cambridge, UK.,Department of Haematology, University of Cambridge, Cambridge, UK.,Wellcome Trust Sanger Institute, Cambridge, UK
| |
Collapse
|
44
|
Platelet WDR1 suppresses platelet activity and is associated with cardiovascular disease. Blood 2016; 128:2033-2042. [PMID: 27609643 DOI: 10.1182/blood-2016-03-703157] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 09/01/2016] [Indexed: 12/21/2022] Open
Abstract
Platelet activity plays a major role in hemostasis with increased platelet activity likely contributing to the pathogenesis of atherothrombosis. We sought to identify associations between platelet activity variability and platelet-related genes in healthy controls. Transcriptional profiling of platelets revealed that WD-40 repeat domain 1 (WDR1), an enhancer of actin-depolymerizing factor activity, is downregulated in platelet messenger RNA (mRNA) from subjects with a hyperreactive platelet phenotype. We used the human megakaryoblastic cell line MEG-01 as an in vitro model for human megakaryocytes and platelets. Stimulation of MEG-01 with thrombin reduced levels of WDR1 transcripts and protein. WDR1 knockdown (KD) in MEG-01 cells increased adhesion and spreading in both the basal and activated states, increased F-actin content, and increased the basal intracellular calcium concentration. Platelet-like particles (PLPs) produced by WDR1 KD cells were fewer in number but larger than PLPs produced from unmodified MEG-01 cells, and had significantly increased adhesion in the basal state and upon thrombin activation. In contrast, WDR1 overexpression reversed the WDR1 KD phenotype of megakaryocytes and PLPs. To translate the clinical significance of these findings, WDR1 expression was measured in platelet RNA from subjects with established cardiovascular disease (n = 27) and age- and sex-matched controls (n = 10). The WDR1 mRNA and protein level was significantly lower in subjects with cardiovascular disease. These data suggest that WDR1 plays an important role in suppressing platelet activity, where it alters the actin cytoskeleton dynamics, and downregulation of WDR1 may contribute to the platelet-mediated pathogenesis of cardiovascular disease.
Collapse
|
45
|
Du G, Lin Q, Wang J. A brief review on the mechanisms of aspirin resistance. Int J Cardiol 2016; 220:21-6. [PMID: 27372038 DOI: 10.1016/j.ijcard.2016.06.104] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 06/16/2016] [Accepted: 06/21/2016] [Indexed: 01/08/2023]
Abstract
Aspirin is the most widely prescribed drug for the primary and secondary prevention of cardiovascular and cerebrovascular diseases. However, a large number of patients continue to experience thromboembolic events despite aspirin therapy, a phenomenon referred to as aspirin resistance or treatment failure. Aspirin resistance is often observed along with a high incidence of unstable plaque, cardiovascular events and cerebrovascular accident. Studies have shown that aspirin reduces the production of TXA2, but not totally inhibits the activation of platelets. In this review, we analyze current and past research on aspirin resistance, presenting important summaries of results regarding the potential contributive roles of single nucleotide polymorphisms, inflammation, metabolic syndrome and miRNAs. The aim of this article is to provide a brief review on aspirin resistance and platelet function, which will provide important insights into the research of aspirin resistance.
Collapse
Affiliation(s)
- Gang Du
- Department of Cardiology, The First Affiliated Hospital of Jinan University, Guangzhou, China; Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY, USA
| | - Qiang Lin
- Department of Rehabilitation, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jinhua Wang
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY, USA; Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA; Departments of Pediatrics, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
46
|
Abstract
There are clear age-related changes in platelet count and function, driven by changes in hematopoietic tissue, the composition of the blood and vascular health. Platelet count remains relatively stable during middle age (25–60 years old) but falls in older people. The effect of age on platelet function is slightly less clear. The longstanding view is that platelet reactivity increases with age in an almost linear fashion. There are, however, serious limitations to the data supporting this dogma. We can conclude that platelet function increases during middle age, but little evidence exists on the changes in platelet responsiveness in old age (>75 years old). This change in platelet function is driven by differential mRNA and microRNA expression, an increase in oxidative stress and changes in platelet receptors. These age-related changes in platelets are particularly pertinent given that thrombotic disease and use of anti-platelet drugs is much more prevalent in the elderly population, yet the majority of platelet research is carried out in young to middle-aged (20–50 years old) human volunteers and young mice (2–6 months old). We know relatively little about exactly how platelets from people over 75 years old differ from those of middle-aged subjects, and we know even less about the mechanisms that drive these changes. Addressing these gaps in our knowledge will provide substantial understanding in how cell signalling changes during ageing and will enable the development of more precise anti-platelet therapies.
Collapse
Affiliation(s)
- Chris I Jones
- Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, Harborne Building, Whiteknights, Reading, Berkshire, RG6 6AS, UK.
| |
Collapse
|
47
|
Nguyen TN, Pepperell D, Morel-Kopp MC, Cumming RG, Ward C, Hilmer SN. Effect of Frailty and Age on Platelet Aggregation and Response to Aspirin in Older Patients with Atrial Fibrillation: A Pilot Study. Cardiol Ther 2016; 5:51-62. [PMID: 26843016 PMCID: PMC4906083 DOI: 10.1007/s40119-016-0056-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION Frailty is associated with changes in inflammation, coagulation, and possibly platelet function. Aspirin is still prescribed for stroke prevention in older patients with atrial fibrillation, although not recommended by current guidelines. In frail older people, it is unclear whether platelet aggregability and response to aspirin are altered. This study aims to investigate the effects of frailty and chronological age on platelet aggregability and on responses to aspirin in older patients with atrial fibrillation. METHODS Inpatients with atrial fibrillation aged ≥65 years were recruited from a tertiary referral hospital in Sydney, Australia. Frailty was determined using the Reported Edmonton Frail Scale. Platelet aggregation studies were performed using whole blood impedance aggregometry. RESULTS Data from 115 participants were analyzed (mean age 85 ± 6 years, 41% female, 52% frail). Spearman correlation coefficients found no significant associations of platelet aggregation with chronological age or with frailty score. Comparison between frail and non-frail groups showed that there was no impact of frailty status on aggregation assays amongst participants who were not taking any antiplatelet drugs. Amongst participants taking aspirin, the frail had higher adjusted arachidonic acid agonist (ASPI) test measures (AU per platelet) than the non-frail (0.11 ± 0.11 vs. 0.05 ± 0.04; p = 0.04), suggesting that in frail participants, platelet aggregation is less responsive to aspirin than in non-frail. CONCLUSIONS We found no effect of chronological age or frailty status on platelet aggregation amongst older patients with atrial fibrillation in this pilot study. However, frailty could be associated with reduced aspirin responsiveness among older patients with atrial fibrillation.
Collapse
Affiliation(s)
- Tu N Nguyen
- Departments of Clinical Pharmacology and Aged Care, Royal North Shore Hospital and Kolling Institute of Medical Research, Sydney Medical School, University of Sydney, Sydney, NSW, Australia.
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia.
| | - Dominic Pepperell
- Department of Haematology and Transfusion Medicine, Royal North Shore Hospital and Northern Blood Research Centre, Kolling Institute of Medical Research, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Marie-Christine Morel-Kopp
- Department of Haematology and Transfusion Medicine, Royal North Shore Hospital and Northern Blood Research Centre, Kolling Institute of Medical Research, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Robert G Cumming
- Sydney School of Public Health, University of Sydney, Sydney, NSW, Australia
| | - Christopher Ward
- Department of Haematology and Transfusion Medicine, Royal North Shore Hospital and Northern Blood Research Centre, Kolling Institute of Medical Research, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Sarah N Hilmer
- Departments of Clinical Pharmacology and Aged Care, Royal North Shore Hospital and Kolling Institute of Medical Research, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
48
|
Mumaw MM, Nieman MT. Race differences in platelet reactivity: is protease activated receptor 4 a predictor of response to therapy? Arterioscler Thromb Vasc Biol 2015; 34:2524-6. [PMID: 25411106 DOI: 10.1161/atvbaha.114.304727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Michele M Mumaw
- From the Department of Pharmacology, Case Western Reserve University, Cleveland, OH
| | - Marvin T Nieman
- From the Department of Pharmacology, Case Western Reserve University, Cleveland, OH.
| |
Collapse
|
49
|
Antithrombotic therapy in patients with acute coronary syndrome in the intermountain heart collaborative study. Cardiol Res Pract 2015; 2015:270508. [PMID: 25632367 PMCID: PMC4302371 DOI: 10.1155/2015/270508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 12/01/2014] [Accepted: 12/16/2014] [Indexed: 11/18/2022] Open
Abstract
Objective. To determine factors associated with single antiplatelet (SAP) or dual antiplatelet (DAP) therapy and anticoagulants (AC) use in hospital and after discharge among patients with acute coronary syndrome (ACS). Methods. We evaluated 5,294 ACS patients in the Intermountain Heart Collaborative Study from 2004 to 2009. Multivariable logistic regressions were used to determine predictors of AC or AP use. Results. In hospital, 99% received an AC, 79% DAP, and 19% SAP; 78% had DAP + AC. Coronary stents were the strongest predictors of DAP use in hospital compared to SAP (P < 0.001). After discharge, 77% received DAP, 20% SAP, and 9% AC; 5% had DAP + AC. DAP compared to SAP was less likely for patients on AC (odds ratio [OR] = 0.30, P < 0.0001) after discharge. Placement of a stent increased the likelihood of DAP (bare metal: OR = 54.8, P < 0.0001; drug eluting: OR = 59.4, P < 0.0001). 923 had atrial fibrillation and 337 had a history of venous thromboembolism; these patients had increased use of AC (29% and 40%, resp.). Conclusion. While in-hospital use of AC was nearly universal, postdischarge AC use was rare. Concern for providing the best antithrombotic therapy, while maintaining an acceptable bleeding risk, may explain the selection decisions.
Collapse
|
50
|
Edelstein LC, Simon LM, Lindsay CR, Kong X, Teruel-Montoya R, Tourdot BE, Chen ES, Ma L, Coughlin S, Nieman M, Holinstat M, Shaw CA, Bray PF. Common variants in the human platelet PAR4 thrombin receptor alter platelet function and differ by race. Blood 2014; 124:3450-8. [PMID: 25293779 PMCID: PMC4246040 DOI: 10.1182/blood-2014-04-572479] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 09/22/2014] [Indexed: 01/22/2023] Open
Abstract
Human platelets express 2 thrombin receptors: protease-activated receptor (PAR)-1 and PAR4. Recently, we reported 3.7-fold increased PAR4-mediated aggregation kinetics in platelets from black subjects compared with white subjects. We now show that platelets from blacks (n = 70) express 14% more PAR4 protein than those from whites (n = 84), but this difference is not associated with platelet PAR4 function. Quantitative trait locus analysis identified 3 common single nucleotide polymorphisms in the PAR4 gene (F2RL3) associated with PAR4-induced platelet aggregation. Among these single nucleotide polymorphisms, rs773902 determines whether residue 120 in transmembrane domain 2 is an alanine (Ala) or threonine (Thr). Compared with the Ala120 variant, Thr120 was more common in black subjects than in white subjects (63% vs 19%), was associated with higher PAR4-induced human platelet aggregation and Ca2+ flux, and generated greater inositol 1,4,5-triphosphate in transfected cells. A second, less frequent F2RL3 variant, Phe296Val, was only observed in blacks and abolished the enhanced PAR4-induced platelet aggregation and 1,4,5-triphosphate generation associated with PAR4-Thr120. PAR4 genotype did not affect vorapaxar inhibition of platelet PAR1 function, but a strong pharmacogenetic effect was observed with the PAR4-specific antagonist YD-3 [1-benzyl-3(ethoxycarbonylphenyl)-indazole]. These findings may have an important pharmacogenetic effect on the development of new PAR antagonists.
Collapse
Affiliation(s)
- Leonard C Edelstein
- Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Philadelphia, PA
| | - Lukas M Simon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Cory R Lindsay
- Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Philadelphia, PA
| | - Xianguo Kong
- Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Philadelphia, PA
| | - Raúl Teruel-Montoya
- Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Philadelphia, PA
| | - Benjamin E Tourdot
- Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Philadelphia, PA
| | - Edward S Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Lin Ma
- Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Philadelphia, PA
| | - Shaun Coughlin
- Cardiovascular Research Institute, University of California, San Francisco, CA
| | - Marvin Nieman
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH; and
| | - Michael Holinstat
- Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Philadelphia, PA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Department of Statistics, Rice University, Houston, TX
| | - Paul F Bray
- Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Philadelphia, PA
| |
Collapse
|