1
|
Dings C, Lehr T, Vojnar B, Gaik C, Koch T, Eberhart LHJ, Huljic-Lankinen S, Murst M, Kreuer S. Population kinetic/pharmacodynamic modelling of the haemodynamic effects of cafedrine/theodrenaline (Akrinor) under general anaesthesia. Br J Clin Pharmacol 2024; 90:1964-1974. [PMID: 38720661 DOI: 10.1111/bcp.16083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 07/31/2024] Open
Abstract
AIMS The 20:1 combination of cafedrine and theodrenaline (C/T) is widely used in Germany for the treatment of arterial hypotension. Since there is little knowledge about the impact of covariates on the effect, the aim was to develop a kinetic/pharmacodynamic covariate model describing mean arterial pressure (MAP), systolic (SBP) and diastolic blood pressure (DBP), and heart rate (HR) for 30 min after the administration of C/T. METHODS Data of patients receiving C/T from the HYPOTENS study (NCT02893241, DRKS00010740) were analysed using nonlinear mixed-effects modelling techniques. RESULTS Overall, 16 579 measurements from 315 patients were analysed. The combination of two kinetic compartments and a delayed effect model, coupled with distinct Emax models for HR, SBP and DBP, described the data best. The model included age, sex, body mass index (BMI), antihypertensive medication, American Society of Anaesthesiologists (ASA) physical status classification grade, baseline SBP at the time of hypotension and pre-surgery HR as covariates (all P < .001). A higher baseline SBP led to a lower absolute increase in MAP. Patients with higher age, higher BMI and lower ASA grade showed smaller increases in MAP. The initial increase was similar for male and female patients. The long-term effect was higher in women. Concomitant antihypertensive medication caused a delayed effect and a lower maximum MAP. The HR increased only slightly (median increase 2.6 bpm, P < .001). CONCLUSIONS Seven covariates with an impact on the effect of C/T could be identified. The results will enable physicians to optimize the dose with respect to individual patients.
Collapse
Affiliation(s)
- Christiane Dings
- Clinical Pharmacy, Saarland University, Saarbrücken, Germany
- Saarmetrics GmbH, Saarbrücken, Germany
| | - Thorsten Lehr
- Clinical Pharmacy, Saarland University, Saarbrücken, Germany
- Saarmetrics GmbH, Saarbrücken, Germany
| | - Benjamin Vojnar
- Department of Anaesthesiology and Intensive Care, Philipps-University Marburg, Marburg, Germany
| | - Christine Gaik
- Department of Anaesthesiology and Intensive Care, Philipps-University Marburg, Marburg, Germany
| | - Tilo Koch
- Department of Anaesthesiology and Intensive Care, Philipps-University Marburg, Marburg, Germany
| | - Leopold H J Eberhart
- Department of Anaesthesiology and Intensive Care, Philipps-University Marburg, Marburg, Germany
| | | | | | - Sascha Kreuer
- Saarmetrics GmbH, Saarbrücken, Germany
- Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Centre, Homburg, Saar, Germany
| |
Collapse
|
2
|
Alibhai FJ, Li RK. Rejuvenation of the Aging Heart: Molecular Determinants and Applications. Can J Cardiol 2024; 40:1394-1411. [PMID: 38460612 DOI: 10.1016/j.cjca.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024] Open
Abstract
In Canada and worldwide, the elderly population (ie, individuals > 65 years of age) is increasing disproportionately relative to the total population. This is expected to have a substantial impact on the health care system, as increased aged is associated with a greater incidence of chronic noncommunicable diseases. Within the elderly population, cardiovascular disease is a leading cause of death, therefore developing therapies that can prevent or slow disease progression in this group is highly desirable. Historically, aging research has focused on the development of anti-aging therapies that are implemented early in life and slow the age-dependent decline in cell and organ function. However, accumulating evidence supports that late-in-life therapies can also benefit the aged cardiovascular system by limiting age-dependent functional decline. Moreover, recent studies have demonstrated that rejuvenation (ie, reverting cellular function to that of a younger phenotype) of the already aged cardiovascular system is possible, opening new avenues to develop therapies for older individuals. In this review, we first provide an overview of the functional changes that occur in the cardiomyocyte with aging and how this contributes to the age-dependent decline in heart function. We then discuss the various anti-aging and rejuvenation strategies that have been pursued to improve the function of the aged cardiomyocyte, with a focus on therapies implemented late in life. These strategies include 1) established systemic approaches (caloric restriction, exercise), 2) pharmacologic approaches (mTOR, AMPK, SIRT1, and autophagy-targeting molecules), and 3) emerging rejuvenation approaches (partial reprogramming, parabiosis/modulation of circulating factors, targeting endogenous stem cell populations, and senotherapeutics). Collectively, these studies demonstrate the exciting potential and limitations of current rejuvenation strategies and highlight future areas of investigation that will contribute to the development of rejuvenation therapies for the aged heart.
Collapse
Affiliation(s)
- Faisal J Alibhai
- Toronto General Research Hospital Institute, University Health Network, Toronto, Ontario, Canada
| | - Ren-Ke Li
- Toronto General Research Hospital Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, Division of Cardiovascular Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Westhoff M, Del Villar SG, Voelker TL, Thai PN, Spooner HC, Costa AD, Sirish P, Chiamvimonvat N, Dickson EJ, Dixon RE. BIN1 knockdown rescues systolic dysfunction in aging male mouse hearts. Nat Commun 2024; 15:3528. [PMID: 38664444 PMCID: PMC11045846 DOI: 10.1038/s41467-024-47847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Cardiac dysfunction is a hallmark of aging in humans and mice. Here we report that a two-week treatment to restore youthful Bridging Integrator 1 (BIN1) levels in the hearts of 24-month-old mice rejuvenates cardiac function and substantially reverses the aging phenotype. Our data indicate that age-associated overexpression of BIN1 occurs alongside dysregulated endosomal recycling and disrupted trafficking of cardiac CaV1.2 and type 2 ryanodine receptors. These deficiencies affect channel function at rest and their upregulation during acute stress. In vivo echocardiography reveals reduced systolic function in old mice. BIN1 knockdown using an adeno-associated virus serotype 9 packaged shRNA-mBIN1 restores the nanoscale distribution and clustering plasticity of ryanodine receptors and recovers Ca2+ transient amplitudes and cardiac systolic function toward youthful levels. Enhanced systolic function correlates with increased phosphorylation of the myofilament protein cardiac myosin binding protein-C. These results reveal BIN1 knockdown as a novel therapeutic strategy to rejuvenate the aging myocardium.
Collapse
Affiliation(s)
- Maartje Westhoff
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Silvia G Del Villar
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Taylor L Voelker
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Phung N Thai
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA
| | - Heather C Spooner
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Alexandre D Costa
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Padmini Sirish
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, Davis, CA, USA
- Department of Veterans Affairs, Northern California Health Care System, Mather, CA, USA
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - Eamonn J Dickson
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA
| | - Rose E Dixon
- Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA.
| |
Collapse
|
4
|
Maghsoudi S, Shuaib R, Van Bastelaere B, Dakshinamurti S. Adenylyl cyclase isoforms 5 and 6 in the cardiovascular system: complex regulation and divergent roles. Front Pharmacol 2024; 15:1370506. [PMID: 38633617 PMCID: PMC11021717 DOI: 10.3389/fphar.2024.1370506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/11/2024] [Indexed: 04/19/2024] Open
Abstract
Adenylyl cyclases (ACs) are crucial effector enzymes that transduce divergent signals from upstream receptor pathways and are responsible for catalyzing the conversion of ATP to cAMP. The ten AC isoforms are categorized into four main groups; the class III or calcium-inhibited family of ACs comprises AC5 and AC6. These enzymes are very closely related in structure and have a paucity of selective activators or inhibitors, making it difficult to distinguish them experimentally. AC5 and AC6 are highly expressed in the heart and vasculature, as well as the spinal cord and brain; AC6 is also abundant in the lungs, kidney, and liver. However, while AC5 and AC6 have similar expression patterns with some redundant functions, they have distinct physiological roles due to differing regulation and cAMP signaling compartmentation. AC5 is critical in cardiac and vascular function; AC6 is a key effector of vasodilatory pathways in vascular myocytes and is enriched in fetal/neonatal tissues. Expression of both AC5 and AC6 decreases in heart failure; however, AC5 disruption is cardio-protective, while overexpression of AC6 rescues cardiac function in cardiac injury. This is a comprehensive review of the complex regulation of AC5 and AC6 in the cardiovascular system, highlighting overexpression and knockout studies as well as transgenic models illuminating each enzyme and focusing on post-translational modifications that regulate their cellular localization and biological functions. We also describe pharmacological challenges in the design of isoform-selective activators or inhibitors for AC5 and AC6, which may be relevant to developing new therapeutic approaches for several cardiovascular diseases.
Collapse
Affiliation(s)
- Saeid Maghsoudi
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Rabia Shuaib
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Ben Van Bastelaere
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Shyamala Dakshinamurti
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
- Biology of Breathing Group, Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Section of Neonatology, Department of Pediatrics, Health Sciences Centre, Winnipeg, MB, Canada
| |
Collapse
|
5
|
Alpenglow JK, Bunsawat K, Francisco MA, Craig JC, Iacovelli JJ, Ryan JJ, Wray DW. Impaired cardiopulmonary baroreflex function and altered cardiovascular responses to hypovolemia in patients with heart failure with preserved ejection fraction. J Appl Physiol (1985) 2024; 136:525-534. [PMID: 38174372 PMCID: PMC11212821 DOI: 10.1152/japplphysiol.00510.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/05/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is associated with autonomic dysregulation, which may be related to baroreflex dysfunction. Thus, we tested the hypothesis that cardiac and peripheral vascular responses to baroreflex activation via lower-body negative pressure (LBNP; -10, -20, -30, -40 mmHg) would be diminished in patients with HFpEF (n = 10, 71 ± 7 yr) compared with healthy controls (CON, n = 9, 69 ± 5 yr). Changes in heart rate (HR), mean arterial pressure (MAP, Finapres), forearm blood flow (FBF, ultrasound Doppler), and thoracic impedance (Z) were determined. Mild levels of LBNP (-10 and -20 mmHg) were used to specifically assess the cardiopulmonary baroreflex, whereas responses across the greater levels of LBNP represented an integrated baroreflex response. LBNP significantly increased in HR in CON subjects at -30 and -40 mmHg (+3 ± 3 and +6 ± 5 beats/min, P < 0.01), but was unchanged in patients with HFpEF across all LBNP levels. LBNP provoked progressive peripheral vasoconstriction, as quantified by changes in forearm vascular conductance (FVC), in both groups. However, a marked (40%-60%) attenuation in FVC responses was observed in patients with HFpEF (-6 ± 8, -15 ± 6, -16 ± 5, and -19 ± 7 mL/min/mmHg at -10, -20, -30, and -40 mmHg, respectively) compared with controls (-15 ± 10, -22 ± 6, -25 ± 10, and -28 ± 10 mL/min/mmHg, P < 0.01). MAP was unchanged in both groups. Together, these data provide new evidence for impairments in cardiopulmonary baroreflex function and diminished cardiovascular responsiveness during hypovolemia in patients with HFpEF, which may be an important aspect of the disease-related changes in autonomic cardiovascular control in this patient group.NEW & NOTEWORTHY Data from the current study demonstrate diminished cardiovascular responsiveness during hypovolemia induced by incremental lower-body negative pressure in patients with heart failure with preserved ejection fraction (HFpEF). These diminished responses imply impaired cardiopulmonary baroreflex function and altered autonomic cardiovascular regulation which may represent an important aspect of HFpEF pathophysiology.
Collapse
Affiliation(s)
- Jeremy K Alpenglow
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - Kanokwan Bunsawat
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- George E. Wahlen Department of Veterans Affairs Medical Center, Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah, United States
| | - Michael A Francisco
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- George E. Wahlen Department of Veterans Affairs Medical Center, Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah, United States
| | - Jesse C Craig
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- George E. Wahlen Department of Veterans Affairs Medical Center, Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah, United States
| | - Jarred J Iacovelli
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
| | - John J Ryan
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
| | - D Walter Wray
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah, United States
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah, United States
- George E. Wahlen Department of Veterans Affairs Medical Center, Geriatric Research, Education, and Clinical Center, Salt Lake City, Utah, United States
| |
Collapse
|
6
|
Trauzeddel RF, Rothe LM, Nordine M, Dehé L, Scholtz K, Spies C, Hadzidiakos D, Winterer G, Borchers F, Kruppa J, Treskatsch S. Influence of a chronic beta-blocker therapy on perioperative opioid consumption - a post hoc secondary analysis. BMC Anesthesiol 2024; 24:80. [PMID: 38413849 PMCID: PMC10898005 DOI: 10.1186/s12871-024-02456-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Beta-blocker (BB) therapy plays a central role in the treatment of cardiovascular diseases. An increasing number of patients with cardiovascular diseases undergoe noncardiac surgery, where opioids are an integral part of the anesthesiological management. There is evidence to suggest that short-term intravenous BB therapy may influence perioperative opioid requirements due to an assumed cross-talk between G-protein coupled beta-adrenergic and opioid receptors. Whether chronic BB therapy could also have an influence on perioperative opioid requirements is unclear. METHODS A post hoc analysis of prospectively collected data from a multicenter observational (BioCog) study was performed. Inclusion criteria consisted of elderly patients (≥ 65 years) undergoing elective noncardiac surgery as well as total intravenous general anesthesia without the use of regional anesthesia and duration of anesthesia ≥ 60 min. Two groups were defined: patients with and without BB in their regular preopreative medication. The administered opioids were converted to their respective morphine equivalent doses. Multiple regression analysis was performed using the morphine-index to identify independent predictors. RESULTS A total of 747 patients were included in the BioCog study in the study center Berlin. 106 patients fulfilled the inclusion criteria. Of these, 37 were on chronic BB. The latter were preoperatively significantly more likely to have arterial hypertension (94.6%), chronic renal failure (27%) and hyperlipoproteinemia (51.4%) compared to patients without BB. Both groups did not differ in terms of cumulative perioperative morphine equivalent dose (230.9 (BB group) vs. 214.8 mg (Non-BB group)). Predictive factors for increased morphine-index were older age, male sex, longer duration of anesthesia and surgery of the trunk. In a model with logarithmised morphine index, only gender (female) and duration of anesthesia remained predictive factors. CONCLUSIONS Chronic BB therapy was not associated with a reduced perioperative opioid consumption. TRIAL REGISTRATION This study was registered at ClinicalTrials.gov ( NCT02265263 ) on the 15.10.2014 with the principal investigator being Univ.-Prof. Dr. med. Claudia Spies.
Collapse
Affiliation(s)
- Ralf F Trauzeddel
- Department of Anesthesiology and Intensive Care Medicine, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Luisa M Rothe
- IS Global Campus Cliníc Rosselló, Barcelona Institute for Global Health, 132, 7è, Barcelona, 08036, Spain
| | - Michael Nordine
- Department of Anesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Lukas Dehé
- Department of Anesthesiology and Intensive Care Medicine, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Kathrin Scholtz
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Augustenburger Platz 1, Berlin, 13353, Germany
| | - Claudia Spies
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Augustenburger Platz 1, Berlin, 13353, Germany
| | - Daniel Hadzidiakos
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Augustenburger Platz 1, Berlin, 13353, Germany
| | - Georg Winterer
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Augustenburger Platz 1, Berlin, 13353, Germany
| | - Friedrich Borchers
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Augustenburger Platz 1, Berlin, 13353, Germany
| | - Jochen Kruppa
- Hochschule Osnabrück, University of Applied Sciences, Osnabrück, Germany
| | - Sascha Treskatsch
- Department of Anesthesiology and Intensive Care Medicine, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität and Humboldt Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany.
| |
Collapse
|
7
|
Liu HH, Li S, Zhang Y, Zhang M, Zhang HW, Qian J, Dou KF, Li JJ. Association of β-blocker use at discharge and prognosis of oldest old with acute myocardial infarction: a prospective cohort study. Eur Geriatr Med 2024; 15:169-178. [PMID: 38103145 DOI: 10.1007/s41999-023-00899-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/11/2023] [Indexed: 12/17/2023]
Abstract
PURPOSE It is uncertain whether β-blockers are beneficial for long-term prognosis in older patients following acute myocardial infarction (AMI). Thus, this study sought to examine the effect of β-blockers on long-term cardiovascular mortality (CVM) in the oldest old (≥ 80 years) with AMI. METHODS In this prospective, consecutive, non-randomized study, a total of 1156 patients with AMI admitted within 24 h after onset of symptoms were enrolled from January 2012 to February 2020. Univariate and multivariate Cox regression analyses were performed to examine the impact of β-blocker use on prognosis. Furthermore, one-to-one propensity score matching (PSM) and inverse probability treatment weighting (IPTW) analyses were used to control for systemic differences between groups. The primary outcome was long-term CVM. RESULTS Among the enrolled subjects, 972 (85.9%) were prescribed with β-blockers at discharge. Over a mean follow-up of 26.3 months, 224 cardiovascular deaths were recorded. Both univariate [hazard ratio (HR), 1.41, 95% confidence interval (CI) 0.93-2.13] and multivariate (HR, 1.29, 95% CI 0.79-2.10) Cox regression analyses showed that β-blocker use had no significant association with the long-term CVM, which was further demonstrated by PSM (HR, 1.31, 95% CI 0.75-2.28) and IPTW (HR, 1.41, 95% CI 0.73-2.69) analyses. Subgroup analyses according to sex, heart rate, hypertension, diabetes, revascularization, left ventricular ejection fraction, and angiotensin-converting enzyme inhibitors/angiotensin receptor blockers use showed consistent results as well. CONCLUSION Our findings first suggested that the use of β-blockers at discharge in oldest old with AMI was not useful for reducing post-discharge CVM, which need to be further verified by randomized controlled trials.
Collapse
Affiliation(s)
- Hui-Hui Liu
- Cardiometabolic Center, State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China
- Heart Failure Center, State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sha Li
- Cardiometabolic Center, State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China
| | - Yan Zhang
- Cardiometabolic Center, State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China
| | - Meng Zhang
- Cardiometabolic Center, State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China
| | - Hui-Wen Zhang
- Cardiometabolic Center, State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China
| | - Jie Qian
- Cardiometabolic Center, State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China
| | - Ke-Fei Dou
- Cardiometabolic Center, State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China.
| | - Jian-Jun Li
- Cardiometabolic Center, State Key Laboratory of Cardiovascular Disease, FuWai Hospital, National Center for Cardiovascular Diseases, National Clinical Research Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 BeiLiShi Road, XiCheng District, Beijing, 100037, China.
| |
Collapse
|
8
|
Reddy PM, Abdali K, Ross SE, Davis S, Mallet RT, Shi X. Impact of Age on Cognitive Testing Practice Effects and Cardiorespiratory Responses. Gerontol Geriatr Med 2024; 10:23337214241234737. [PMID: 38410616 PMCID: PMC10896047 DOI: 10.1177/23337214241234737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/28/2024] Open
Abstract
Objective: This study tested the hypothesis that healthy aging attenuates cognitive practice effects and, consequently, limits the familiarity-associated reductions in heart rate (HR) and breathing frequency (BF) responses during retesting. Methods: Twenty-one cognitively normal older and younger adults (65 ± 2 vs. 26 ± 1 years old) participated in the study. Mini-Mental State Examination (MMSE), Digit-Span-Test (DST), Trail Making Test (TMT-B), and California Verbal Learning Test (CVLT-II) were administered twice at 3-week intervals, while HR and BF were monitored by electrocardiography and plethysmography, respectively. Results: Cognitive performances were not affected by the age factor, and the retest factor only affected CVLT-II. HR and BF increased only in the younger adults (p < .01) during cognitive tests; retesting attenuated these responses (retest factor p < .01). Long-delay free-recall in CVLT-II was unchanged in cognitively normal older versus younger adults. Healthy aging did not diminish short-term memory assessed by DST and CVLT-II short-delay or long-delay free-recalls. Conclusions: Only CVLT-II, but not MMSE, DST or TMT-B, demonstrated cognitive retesting practice effects in the younger and older adults. Cognitive testing at 3-week intervals in cognitively normal older and younger subjects revealed divergent cardiorespiratory responses to MMSE, DST, and TMT-B cognitive testing, particularly HR, which increased only in younger adults and to a lesser extent during retesting despite the absence of practice effects.
Collapse
Affiliation(s)
| | - Kulsum Abdali
- University of North Texas Health Science Center, Fort Worth, USA
| | - Sarah E. Ross
- University of North Texas Health Science Center, Fort Worth, USA
| | - Sandra Davis
- University of North Texas Health Science Center, Fort Worth, USA
| | - Robert T. Mallet
- University of North Texas Health Science Center, Fort Worth, USA
| | - Xiangrong Shi
- University of North Texas Health Science Center, Fort Worth, USA
| |
Collapse
|
9
|
Uemura Y, Kinoshita M, Sakai Y, Tanaka K. Hemodynamic impact of ephedrine on hypotension during general anesthesia: a prospective cohort study on middle-aged and older patients. BMC Anesthesiol 2023; 23:283. [PMID: 37608253 PMCID: PMC10464275 DOI: 10.1186/s12871-023-02244-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Ephedrine is a mixed α- and β-agonist vasopressor that is frequently used for the correction of hypotension during general anesthesia. β-responsiveness has been shown to decrease with age; therefore, this study aimed to determine whether aging would reduce the pressor effect of ephedrine on hypotension during general anesthesia. METHODS Seventy-five patients aged ≥ 45 years were included in this study, with 25 patients allocated to each of the three age groups: 45-64 years, 65-74 years, and ≥ 75 years. All patients received propofol, remifentanil, and rocuronium for the induction of general anesthesia, followed by desflurane and remifentanil. Cardiac output (CO) was estimated using esCCO technology. Ephedrine (0.1 mg/kg) was administered for the correction of hypotension. The primary and secondary outcome measures were changes in the mean arterial pressure (MAP) and CO, respectively, at 5 min after the administration of ephedrine. RESULTS: The administration of ephedrine significantly increased MAP (p < 0.001, mean difference: 8.34 [95% confidence interval (CI), 5.95-10.75] mmHg) and CO (p < 0.001, mean difference: 7.43 [95% CI, 5.20-9.65] %) across all groups. However, analysis of variance revealed that the degree of elevation of MAP (F [2, 72] = 0.546, p = 0.581, η2 = 0.015 [95% CI, 0.000-0.089]) and CO (F [2, 72] = 2.023, p = 0.140, η2 = 0.053 [95% CI, 0.000-0.162]) did not differ significantly among the groups. Similarly, Spearman's rank correlation and multiple regression analysis revealed no significant relation between age and the changes in MAP or CO after the administration of ephedrine. CONCLUSION The administration of ephedrine significantly increased MAP and CO; however, no significant correlation with age was observed in patients aged > 45 years. These findings suggest that ephedrine is effective for the correction of hypotension during general anesthesia, even in elderly patients. TRIAL REGISTRATION UMIN-CTR (UMIN000045038; 02/08/2021).
Collapse
Affiliation(s)
- Yuta Uemura
- Department of Anesthesiology, Tokushima University Graduate School of Biomedical Sciences, 3-8-15 Kuramoto-cho, Tokushima-shi, Tokushima, 770-8503, Japan
- Department of Anesthesiology, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima-shi, Tokushima, 770-8503, Japan
| | - Michiko Kinoshita
- Department of Anesthesiology, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima-shi, Tokushima, 770-8503, Japan.
| | - Yoko Sakai
- Division of Anesthesiology, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima-shi, Tokushima, 770-8503, Japan
| | - Katsuya Tanaka
- Department of Anesthesiology, Tokushima University Graduate School of Biomedical Sciences, 3-8-15 Kuramoto-cho, Tokushima-shi, Tokushima, 770-8503, Japan
- Department of Anesthesiology, Tokushima University Hospital, 2-50-1 Kuramoto-cho, Tokushima-shi, Tokushima, 770-8503, Japan
| |
Collapse
|
10
|
Segal S, Shemla O, Shapira R, Peretz NK, Lukyanenko Y, Brosh I, Behar J, Lakatta EG, Tsutsui K, Yaniv Y. cAMP signaling affects age-associated deterioration of pacemaker beating interval dynamics. GeroScience 2023; 45:2589-2600. [PMID: 37084120 PMCID: PMC10651572 DOI: 10.1007/s11357-023-00787-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/27/2023] [Indexed: 04/22/2023] Open
Abstract
Sinoatrial node (SAN) beating interval variability (BIV) and the average beating interval (BI) are regulated by a coupled-clock system, driven by Ca2+-calmodulin activated adenylyl cyclase, cAMP, and downstream PKA signaling. Reduced responsiveness of the BI and BIV to submaximal, [X]50, β-adrenergic receptor (β-AR) stimulation, and phosphodiesterase inhibition (PDEI) have been documented in aged SAN tissue, whereas the maximal responses, [X]max, do not differ by age. To determine whether age-associated dysfunction in cAMP signaling leads to altered responsiveness of BI and BIV, we measured cAMP levels and BI in adult (2-4 months n = 27) and aged (22-26 months n = 25) C57/BL6 mouse SAN tissue in control and in response to β-AR or PDEI at X50 and [X]max. Both cAMP and average BI in adult SAN were reduced at X50, whereas cAMP and BI at Xmax did not differ by age. cAMP levels and average BI were correlated both within and between adult and aged SAN. BIV parameters in long- and short-range terms were correlated with cAMP levels for adult SAN. However, due to reduced cAMP within aged tissues at [X]50, these correlations were diminished in advanced age. Thus, cAMP level generated by the coupled clock mechanisms is tightly linked to average BI. Reduced cAMP level at X50 in aged SAN explains the reduced responsiveness of the BI and BIV to β-AR stimulation and PDEI.
Collapse
Affiliation(s)
- Sofia Segal
- Laboratory of Bioelectric and Bioenegetic, The Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Ori Shemla
- Laboratory of Bioelectric and Bioenegetic, The Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Rotem Shapira
- Laboratory of Bioelectric and Bioenegetic, The Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Noa Kirschner Peretz
- Laboratory of Bioelectric and Bioenegetic, The Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | | | - Inbar Brosh
- Laboratory of Bioelectric and Bioenegetic, The Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Joachim Behar
- Laboratory of Bioelectric and Bioenegetic, The Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel
| | - Edward G Lakatta
- Intramural Research Program, National Institute On Aging, Baltimore, MD, USA
| | - Kenta Tsutsui
- Intramural Research Program, National Institute On Aging, Baltimore, MD, USA.
- Department of Cardiovascular Medicine, Saitama Medical University International Medical Center, Saitama, Japan.
| | - Yael Yaniv
- Laboratory of Bioelectric and Bioenegetic, The Faculty of Biomedical Engineering, Technion-IIT, Haifa, Israel.
| |
Collapse
|
11
|
Kimura A, Ishida Y, Nosaka M, Ishigami A, Yamamoto H, Kuninaka Y, Hata S, Ozaki M, Kondo T. Application and limitation of a biological clock-based method for estimating time of death in forensic practices. Sci Rep 2023; 13:6093. [PMID: 37055510 PMCID: PMC10102023 DOI: 10.1038/s41598-023-33328-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/11/2023] [Indexed: 04/15/2023] Open
Abstract
Estimating time of death is one of the most important problems in forensics. Here, we evaluated the applicability, limitations and reliability of the developed biological clock-based method. We analyzed the expression of the clock genes, BMAL1 and NR1D1, in 318 dead hearts with defined time of death by real-time RT-PCR. For estimating the time of death, we chose two parameters, the NR1D1/BMAL1 ratio and BMAL1/NR1D1 ratio for morning and evening deaths, respectively. The NR1D1/BMAL1 ratio was significantly higher in morning deaths and the BMAL1/NR1D1 ratio was significantly higher in evening deaths. Sex, age, postmortem interval, and most causes of death had no significant effect on the two parameters, except for infants and the elderly, and severe brain injury. Although our method may not work in all cases, our method is useful for forensic practice in that it complements classical methods that are strongly influenced by the environment in which the corpse is placed. However, this method should be applied with caution in infants, the elderly, and patients with severe brain injury.
Collapse
Affiliation(s)
- Akihiko Kimura
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Yuko Ishida
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Mizuho Nosaka
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Akiko Ishigami
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Hiroki Yamamoto
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Yumi Kuninaka
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan
| | - Satoshi Hata
- Department of Cardiovascular Medicine, Kinan Hospital, Wakayama, Japan
| | - Mitsunori Ozaki
- Department of Neurological Surgery, National Hospital Organization Minami Wakayama Medical Center, Wakayama, Japan
| | - Toshikazu Kondo
- Department of Forensic Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama, 641-8509, Japan.
| |
Collapse
|
12
|
Varghese LN, Schwenke DO, Katare R. Role of noncoding RNAs in cardiac ageing. Front Cardiovasc Med 2023; 10:1142575. [PMID: 37034355 PMCID: PMC10073704 DOI: 10.3389/fcvm.2023.1142575] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
The global population is estimated to reach 9.8 billion by 2050, of which 2.1 billion will comprise individuals above 60 years of age. As the number of elderly is estimated to double from 2017, it is a victory of the modern healthcare system but also worrisome as ageing, and the onset of chronic disease are correlated. Among other chronic conditions, cardiovascular diseases (CVDs) are the leading cause of death in the aged population. While the underlying cause of the age-associated development of CVDs is not fully understood, studies indicate the role of non-coding RNAs such as microRNAs (miRNAs) and long noncoding RNAs (lnc-RNAs) in the development of age-associated CVDs. miRNAs and lnc-RNAs are non-coding RNAs which control gene expression at the post-transcriptional level. The expression of specific miRNAs and lnc-RNAs are reportedly dysregulated with age, leading to cardiovascular system changes and ultimately causing CVDs. Since miRNAs and lnc-RNAs play several vital roles in maintaining the normal functioning of the cardiovascular system, they are also being explored for their therapeutic potential as a treatment for CVDs. This review will first explore the pathophysiological changes associated with ageing. Next, we will review the known mechanisms underlying the development of CVD in ageing with a specific focus on miRNA and lnc-RNAs. Finally, we will discuss the therapeutic options and future challenges towards healthy cardiac ageing. With the global ageing population on the rise, this review will provide a fundamental understanding of some of the underlying molecular mechanisms of cardiac ageing.
Collapse
|
13
|
Dixon RE. Nanoscale Organization, Regulation, and Dynamic Reorganization of Cardiac Calcium Channels. Front Physiol 2022; 12:810408. [PMID: 35069264 PMCID: PMC8769284 DOI: 10.3389/fphys.2021.810408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022] Open
Abstract
The architectural specializations and targeted delivery pathways of cardiomyocytes ensure that L-type Ca2+ channels (CaV1.2) are concentrated on the t-tubule sarcolemma within nanometers of their intracellular partners the type 2 ryanodine receptors (RyR2) which cluster on the junctional sarcoplasmic reticulum (jSR). The organization and distribution of these two groups of cardiac calcium channel clusters critically underlies the uniform contraction of the myocardium. Ca2+ signaling between these two sets of adjacent clusters produces Ca2+ sparks that in health, cannot escalate into Ca2+ waves because there is sufficient separation of adjacent clusters so that the release of Ca2+ from one RyR2 cluster or supercluster, cannot activate and sustain the release of Ca2+ from neighboring clusters. Instead, thousands of these Ca2+ release units (CRUs) generate near simultaneous Ca2+ sparks across every cardiomyocyte during the action potential when calcium induced calcium release from RyR2 is stimulated by depolarization induced Ca2+ influx through voltage dependent CaV1.2 channel clusters. These sparks summate to generate a global Ca2+ transient that activates the myofilaments and thus the electrical signal of the action potential is transduced into a functional output, myocardial contraction. To generate more, or less contractile force to match the hemodynamic and metabolic demands of the body, the heart responds to β-adrenergic signaling by altering activity of calcium channels to tune excitation-contraction coupling accordingly. Recent accumulating evidence suggests that this tuning process also involves altered expression, and dynamic reorganization of CaV1.2 and RyR2 channels on their respective membranes to control the amplitude of Ca2+ entry, SR Ca2+ release and myocardial function. In heart failure and aging, altered distribution and reorganization of these key Ca2+ signaling proteins occurs alongside architectural remodeling and is thought to contribute to impaired contractile function. In the present review we discuss these latest developments, their implications, and future questions to be addressed.
Collapse
Affiliation(s)
- Rose E Dixon
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
14
|
Mach J, Allore H, Gnjidic D, Gemikonakli G, Kane AE, Howlett SE, de Cabo R, Le Couteur D, Hilmer SN. Preclinical frailty assessments: Phenotype and frailty index identify frailty in different mice and are variably affected by chronic medications. Exp Gerontol 2022; 161:111700. [PMID: 35032570 DOI: 10.1016/j.exger.2022.111700] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 11/04/2022]
Abstract
Use of different objective frailty assessment tools may improve understanding of the biology of frailty and allow evaluation of effects of interventions on frailty. Polypharmacy is associated with increased risk of frailty in epidemiologic studies, regardless of frailty definition, but the pathophysiology of the association is not well understood. This study aims to (1) assess and compare the prevalence of frailty from middle to old age following control, chronic polypharmacy or monotherapy treatment, when measured using the clinical frailty index assessment and the mouse frailty phenotype tools; and (2) to evaluate and compare the effects of chronic polypharmacy regimens with zero, low and high Drug Burden Index (DBI) and monotherapies from middle to old age on the rate of deficit accumulation on the frailty index, mean number of phenotype criteria, odds of being frail assessed by the frailty index or phenotype, and the time to onset of frailty assessed by the frailty index or phenotype. In a longitudinal study, middle-aged (12 months) male C57BL/6J(B6) mice were administered non medicated control feed and water, or therapeutic doses of different polypharmacy combinations or monotherapies in feed and/or water. Frailty assessments were performed at 12, 15, 18, 21 and 24 months. There was limited overlap between animals identified as frail using different frailty assessments. Polypharmacy has measurable and different effects on each frailty assessment. Long-term chronic administration of some polypharmacy and monotherapy therapeutic drug regimens increased the number of frailty deficits (clinical frailty index: low DBI polypharmacy (15 and 21 months), high DBI polypharmacy (15-21 months), oxycodone (15-18 months), oxybutynin (15-18 months), citalopram (15-21 months) and metoprolol monotherapy (15 months) and modified frailty phenotype assessment (over the whole duration of treatment, low DBI polypharmacy (adjusted Risk Ratio(aRR) = 1.97, 95% confidence interval (CI) 1.43-2.72), high DBI polypharmacy (aRR = 1.88; 95% CI 1.36-2.60), oxybutynin (aRR = 1.48; 95% CI 1.01-2.16) and citalopram monotherapy (aRR = 1.96; 95% CI 1.41-2.74), p < 0.05) . The odds of developing frailty measured with the clinical frailty index increased with high DBI polypharmacy (adjusted odds ratio (aOR) = 3.13; 95% CI 1.01-9.66) and when measured with the frailty phenotype assessment increased with low DBI polypharmacy (aOR = 4.38, 95% CI 1.40-13.74), high DBI polypharmacy (aOR = 3.43; 95% CI 1.12-10.50) and citalopram monotherapy (aOR = 4.63; 95% CI 1.39-15.54)). No treatment affected time to frailty using either frailty assessment. Analysis of the number of deficits on the frailty index or number of positive criteria on the frailty phenotype allows analysis of rate of change and provides greater sensitivity, while the odds of being frail analysis provided a clinically relevant indicator of whether mice had greater chance of reaching a cut-off for becoming frail with medication exposure than without. Our results are consistent with clinical studies, demonstrating that certain polypharmacy regimens induce frailty, with different relationships observed when using different frailty assessments and analyses.
Collapse
Affiliation(s)
- John Mach
- Laboratory of Ageing and Pharmacology, Kolling Institute of Medical Research, Royal North Shore Hospital, Faculty of Medicine and Health, The University of Sydney, St Leonards, New South Wales, Australia; Departments of Clinical Pharmacology and Aged Care, Royal North Shore Hospital, St Leonards, New South Wales, Australia.
| | - Heather Allore
- Department of Internal Medicine, Yale University, New Haven, CT, United States; Department of Biostatistics, Yale School of Public Health, New Haven, CT, United States
| | - Danijela Gnjidic
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia; Charles Perkins Centre, University of Sydney, New South Wales, Australia
| | - Gizem Gemikonakli
- Laboratory of Ageing and Pharmacology, Kolling Institute of Medical Research, Royal North Shore Hospital, Faculty of Medicine and Health, The University of Sydney, St Leonards, New South Wales, Australia; Departments of Clinical Pharmacology and Aged Care, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Alice E Kane
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Susan E Howlett
- Departments of Pharmacology and Medicine (Geriatric Medicine), Dalhousie University, Halifax, Canada
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - David Le Couteur
- Ageing and Alzheimer's Institute (AAAI), Centre for Education and Research on Ageing (CERA), ANZAC Research Institute, Concord Hospital, Sydney, New South Wales, Australia; Charles Perkins Centre, University of Sydney, New South Wales, Australia
| | - Sarah N Hilmer
- Laboratory of Ageing and Pharmacology, Kolling Institute of Medical Research, Royal North Shore Hospital, Faculty of Medicine and Health, The University of Sydney, St Leonards, New South Wales, Australia; Departments of Clinical Pharmacology and Aged Care, Royal North Shore Hospital, St Leonards, New South Wales, Australia; Charles Perkins Centre, University of Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Rowe G, Tracy E, Beare JE, LeBlanc AJ. Cell therapy rescues aging-induced beta-1 adrenergic receptor and GRK2 dysfunction in the coronary microcirculation. GeroScience 2021; 44:329-348. [PMID: 34608562 DOI: 10.1007/s11357-021-00455-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/03/2021] [Indexed: 01/08/2023] Open
Abstract
Our past study showed that coronary arterioles isolated from adipose-derived stromal vascular fraction (SVF)-treated rats showed amelioration of the age-related decrease in vasodilation to beta-adrenergic receptor (β-AR) agonist and improved β-AR-dependent coronary flow and microvascular function in a model of advanced age. We hypothesized that intravenously (i.v.) injected SVF improves coronary microvascular function in aged rats by re-establishing the equilibrium of the negative regulators of the internal adrenergic signaling cascade, G-protein receptor kinase 2 (GRK2) and G-alpha inhibitory (Gαi) proteins, back to youthful levels. Female Fischer-344 rats aged young (3 months, n = 24), old (24 months, n = 26), and old animals that received 1 × 107 green fluorescent protein (GFP+) SVF cells (O + SVF, n = 11) 4 weeks prior to sacrifice were utilized. Overnight urine was collected prior to sacrifice for catecholamine measurements. Cardiac samples were used for western blotting while coronary arterioles were isolated for pressure myography studies, immunofluorescence staining, and RNA sequencing. Coronary microvascular levels of the β1 adrenergic receptor are decreased with advancing age, but this decreased expression was rescued by SVF treatment. Aging led to a decrease in phosphorylated GRK2 in cardiomyocytes vs. young control with restoration of phosphorylation status by SVF. In vessels, there was no change in genetic transcription (RNAseq) or protein expression (immunofluorescence); however, inhibition of GRK2 (paroxetine) led to improved vasodilation to norepinephrine in the old control (OC) and O + SVF, indicating greater GRK2 functional inhibition of β1-AR in aging. SVF works to improve adrenergic-mediated vasodilation by restoring the β1-AR population and mitigating signal cascade inhibitors to improve vasodilation.
Collapse
Affiliation(s)
- Gabrielle Rowe
- Cardiovascular Innovation Institute, University of Louisville, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA
- Department of Physiology, University of Louisville, Louisville, KY, 40292, USA
| | - Evan Tracy
- Cardiovascular Innovation Institute, University of Louisville, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA
- Department of Physiology, University of Louisville, Louisville, KY, 40292, USA
| | - Jason E Beare
- Cardiovascular Innovation Institute, University of Louisville, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, 40292, USA
| | - Amanda J LeBlanc
- Cardiovascular Innovation Institute, University of Louisville, 302 E Muhammad Ali Blvd, Louisville, KY, 40202, USA.
- Department of Physiology, University of Louisville, Louisville, KY, 40292, USA.
| |
Collapse
|
16
|
Piantoni C, Carnevali L, Molla D, Barbuti A, DiFrancesco D, Bucchi A, Baruscotti M. Age-Related Changes in Cardiac Autonomic Modulation and Heart Rate Variability in Mice. Front Neurosci 2021; 15:617698. [PMID: 34084126 PMCID: PMC8168539 DOI: 10.3389/fnins.2021.617698] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/20/2021] [Indexed: 01/08/2023] Open
Abstract
Objective The aim of this study was to assess age-related changes in cardiac autonomic modulation and heart rate variability (HRV) and their association with spontaneous and pharmacologically induced vulnerability to cardiac arrhythmias, to verify the translational relevance of mouse models for further in-depth evaluation of the link between autonomic changes and increased arrhythmic risk with advancing age. Methods Heart rate (HR) and time- and frequency-domain indexes of HRV were calculated from Electrocardiogram (ECG) recordings in two groups of conscious mice of different ages (4 and 19 months old) (i) during daily undisturbed conditions, (ii) following peripheral β-adrenergic (atenolol), muscarinic (methylscopolamine), and β-adrenergic + muscarinic blockades, and (iii) following β-adrenergic (isoprenaline) stimulation. Vulnerability to arrhythmias was evaluated during daily undisturbed conditions and following β-adrenergic stimulation. Results HRV analysis and HR responses to autonomic blockades revealed that 19-month-old mice had a lower vagal modulation of cardiac function compared with 4-month-old mice. This age-related autonomic effect was not reflected in changes in HR, since intrinsic HR was lower in 19-month-old compared with 4-month-old mice. Both time- and frequency-domain HRV indexes were reduced following muscarinic, but not β-adrenergic blockade in younger mice, and to a lesser extent in older mice, suggesting that HRV is largely modulated by vagal tone in mice. Finally, 19-month-old mice showed a larger vulnerability to both spontaneous and isoprenaline-induced arrhythmias. Conclusion The present study combines HRV analysis and selective pharmacological autonomic blockades to document an age-related impairment in cardiac vagal modulation in mice which is consistent with the human condition. Given their short life span, mice could be further exploited as an aged model for studying the trajectory of vagal decline with advancing age using HRV measures, and the mechanisms underlying its association with proarrhythmic remodeling of the senescent heart.
Collapse
Affiliation(s)
- Chiara Piantoni
- Department of Biosciences, The PaceLab and "Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata", Università degli Studi di Milano, Milan, Italy.,Institute of Neurophysiology, Hannover Medical School, Hanover, Germany
| | - Luca Carnevali
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - David Molla
- Department of Biosciences, The PaceLab and "Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata", Università degli Studi di Milano, Milan, Italy
| | - Andrea Barbuti
- Department of Biosciences, The PaceLab and "Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata", Università degli Studi di Milano, Milan, Italy
| | - Dario DiFrancesco
- Department of Biosciences, The PaceLab and "Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata", Università degli Studi di Milano, Milan, Italy.,IBF-CNR, University of Milano Unit, Milan, Italy
| | - Annalisa Bucchi
- Department of Biosciences, The PaceLab and "Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata", Università degli Studi di Milano, Milan, Italy
| | - Mirko Baruscotti
- Department of Biosciences, The PaceLab and "Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata", Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
17
|
Chen RZ, Liu C, Zhou P, Li JN, Zhou JY, Wang Y, Zhao XX, Chen Y, Song L, Zhao HJ, Yan HB. Prognostic impacts of β-blockers in acute coronary syndrome patients without heart failure treated by percutaneous coronary intervention. Pharmacol Res 2021; 169:105614. [PMID: 33872810 DOI: 10.1016/j.phrs.2021.105614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND The use of β-blockers for acute coronary syndrome (ACS) patients without heart failure (HF) is controversial, and lacks of evidence in the era of reperfusion and intensive secondary preventions. This study aimed to investigate the prognostic impacts of β-blockers on patients with ACS but no HF treated by percutaneous coronary intervention (PCI). METHODS A total of 2397 consecutive patients with ACS but no HF treated by PCI were retrospectively recruited from January 2010 to June 2017. Univariable Cox regression was used to assess the prognostic impacts of β-blockers, followed by adjusted analysis, one-to-one propensity score matching (PSM), and inverse probability treatment weighting (IPTW) analysis, in order to control for systemic between-group differences. The primary outcome was all-cause death. RESULTS Among the included patients, 2060 (85.9%) were prescribed with β-blockers at discharge. The median follow-up time was 727 (433-2016) days, with 55 (2.3%) cases of all-cause death. Unadjusted analysis showed that the use of β-blockers was associated with lower risk of death (hazard ratio [HR]: 0.42, 95% confidence interval [CI]: 0.23-0.76, P = 0.004), which was sustained in adjusted analysis (HR: 0.53, 95% CI: 0.29-0.98, P = 0.044), PSM analysis (HR: 0.44, 95% CI: 0.20-0.96, P = 0.039) and IPTW analysis (HR: 0.49. 95% CI: 0.35-0.70, P < 0.001). Risk reduction was also seen in β-blocker users for cardiac death, but not for major adverse cardiovascular events. CONCLUSIONS The use of β-blockers was associated with reduced long-term mortality for ACS-PCI patients without HF.
Collapse
Affiliation(s)
- Run-Zhen Chen
- Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Chen Liu
- Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Peng Zhou
- Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jian-Nan Li
- Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jin-Ying Zhou
- Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ying Wang
- Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-Xiao Zhao
- Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Chen
- Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Li Song
- Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Han-Jun Zhao
- Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hong-Bing Yan
- Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China.
| |
Collapse
|
18
|
Howlett LA, Lancaster MK. Reduced cardiac response to the adrenergic system is a key limiting factor for physical capacity in old age. Exp Gerontol 2021; 150:111339. [PMID: 33838216 DOI: 10.1016/j.exger.2021.111339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 10/21/2022]
Abstract
Ageing is associated with a progressive reduction in physical capacity reducing quality of life. One key physiological limitation of physical capacity that deteriorates in a progressive age-dependent manner is cardiac reserve. Peak cardiac output falls progressively with advancing age such that in extreme old age there is limited ability to enhance cardiac output beyond basal function as is required to support the increased metabolic needs of physical activity. This loss of dynamic range in cardiac output associates with a progressive reduction in the heart's response to adrenergic stimulation. A combination of decreases in the expression and functioning of beta1 adrenergic receptors partially underlies this change. Changes in end effector proteins also have a role to play in this decline. Alterations in the efficiency of excitation-contraction coupling contribute to the reduced chronotropic, inotropic and lusitropic responses of the aged heart. Moderate to vigorous endurance exercise training however has some potential to counter elements of these changes. Further studies are required to fully elucidate the key pivotal mechanisms involved in the age-related loss of response to adrenergic signalling to allow targeted therapeutic strategies to be developed with the aim of preserving physical capacity in advanced old age.
Collapse
Affiliation(s)
- Luke A Howlett
- Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK.
| | | |
Collapse
|
19
|
Woulfe KC, Walker LA. Physiology of the Right Ventricle Across the Lifespan. Front Physiol 2021; 12:642284. [PMID: 33737888 PMCID: PMC7960651 DOI: 10.3389/fphys.2021.642284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/05/2021] [Indexed: 01/27/2023] Open
Abstract
The most common cause of heart failure in the United States is ischemic left heart disease; accordingly, a vast amount of work has been done to elucidate the molecular mechanisms underlying pathologies of the left ventricle (LV) as a general model of heart failure. Until recently, little attention has been paid to the right ventricle (RV) and it has commonly been thought that the mechanical and biochemical properties of the RV are similar to those of the LV. However, therapies used to treat LV failure often fail to improve ventricular function in RV failure underscoring, the need to better understand the unique physiologic and pathophysiologic properties of the RV. Importantly, hemodynamic stresses (such as pressure overload) often underlie right heart failure further differentiating RV failure as unique from LV failure. There are significant structural, mechanical, and biochemical properties distinctive to the RV that influences its function and it is likely that adaptations of the RV occur uniquely across the lifespan. We have previously reviewed the adult RV compared to the LV but there is little known about differences in the pediatric or aged RV. Accordingly, in this mini-review, we will examine the subtle distinctions between the RV and LV that are maintained physiologically across the lifespan and will highlight significant knowledge gaps in our understanding of pediatric and aging RV. Consideration of how RV function is altered in different disease states in an age-specific manner may enable us to define RV function in health and importantly, in response to pathology.
Collapse
Affiliation(s)
- Kathleen C Woulfe
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lori A Walker
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
20
|
Pecha S, Geelhoed B, Kempe R, Berk E, Engel A, Girdauskas E, Reichenspurner H, Ravens U, Kaumann A, Eschenhagen T, Schnabel RB, Christ T. No impact of sex and age on beta-adrenoceptor-mediated inotropy in human right atrial trabeculae. Acta Physiol (Oxf) 2021; 231:e13564. [PMID: 33002334 DOI: 10.1111/apha.13564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/30/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
Abstract
AIM There is an increasing awareness of the impact of age and sex on cardiovascular diseases (CVDs). Differences in physiology are suspected. Beta-adrenoceptors (beta-ARs) are an important drug target in CVD and potential differences might have significant impact on the treatment of many patients. To investigate whether age and sex affects beta-AR function, we analysed a large data set on beta-AR-induced inotropy in human atrial trabeculae. METHODS We performed multivariable analysis of individual atrial contractility data from trabeculae obtained during heart surgery of patients in sinus rhythm (535 trabeculae from 165 patients). Noradrenaline or adrenaline were used in the presence of the beta2 -selective antagonist (ICI 118 551, 50 nmol/L) or the beta1 -selective antagonist (CGP 20712A, 300 nmol/L) to stimulate beta1 -AR or beta2 -AR respectively. Agonist concentration required to achieve half-maximum inotropic effects (EC50 ) was taken as a measure of beta-AR sensitivity. RESULTS Impact of clinical variables was modelled using multivariable mixed model regression. As previously reported, chronic treatment with beta-blockers sensitized beta-AR. However, there was no significant interaction between basal force, maximum force and beta-AR sensitivity when age and sex were modelled continuously. In addition, there was no statistically significant effect of body mass index or diabetes on atrial contractility. CONCLUSION Our large, multivariable analysis shows that neither age nor sex affects beta-AR-mediated inotropy or catecholamine sensitivity in human atrial trabeculae. These findings may have important clinical implications because beta-ARs, as a common drug target in CVD and heart failure, do not behave differently in women and men across age decades.
Collapse
Affiliation(s)
- Simon Pecha
- Institute of Experimental Pharmacology and Toxicology University Medical Center Hamburg‐Eppendorf Hamburg Germany
- Department of Cardiovascular Surgery University Heart and Vascular Center Hamburg Germany
- DZHK (German Centre for Cardiovascular Research) Hamburg Germany
| | - Bastiaan Geelhoed
- DZHK (German Centre for Cardiovascular Research) Hamburg Germany
- Department of General and Interventional Cardiology University Heart and Vascular Center Hamburg Germany
| | - Romy Kempe
- Department of Pharmacology Dresden University of Technology Dresden Germany
| | - Emanuel Berk
- Institute of Experimental Pharmacology and Toxicology University Medical Center Hamburg‐Eppendorf Hamburg Germany
- Department of Pharmacology Dresden University of Technology Dresden Germany
- Department of Internal Medicine St. Joseph‐Stift Hospital Dresden Germany
| | - Andreas Engel
- Institute of Experimental Pharmacology and Toxicology University Medical Center Hamburg‐Eppendorf Hamburg Germany
- Department of Pharmacology Dresden University of Technology Dresden Germany
| | - Evaldas Girdauskas
- Institute of Experimental Pharmacology and Toxicology University Medical Center Hamburg‐Eppendorf Hamburg Germany
- Department of Cardiovascular Surgery University Heart and Vascular Center Hamburg Germany
- DZHK (German Centre for Cardiovascular Research) Hamburg Germany
| | - Hermann Reichenspurner
- Institute of Experimental Pharmacology and Toxicology University Medical Center Hamburg‐Eppendorf Hamburg Germany
- Department of Cardiovascular Surgery University Heart and Vascular Center Hamburg Germany
- DZHK (German Centre for Cardiovascular Research) Hamburg Germany
| | - Ursula Ravens
- Institute of Experimental Cardiovascular Medicine University Heart Center Freiburg‐Bad KrozingenUniversity of Freiburg Freiburg Germany
| | - Alberto Kaumann
- Department of Pharmacology University of Murcia Murcia Spain
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology University Medical Center Hamburg‐Eppendorf Hamburg Germany
- DZHK (German Centre for Cardiovascular Research) Hamburg Germany
| | - Renate B. Schnabel
- DZHK (German Centre for Cardiovascular Research) Hamburg Germany
- Department of General and Interventional Cardiology University Heart and Vascular Center Hamburg Germany
| | - Torsten Christ
- Institute of Experimental Pharmacology and Toxicology University Medical Center Hamburg‐Eppendorf Hamburg Germany
- DZHK (German Centre for Cardiovascular Research) Hamburg Germany
| |
Collapse
|
21
|
Monfredi O, Lakatta EG. Complexities in cardiovascular rhythmicity: perspectives on circadian normality, ageing and disease. Cardiovasc Res 2020; 115:1576-1595. [PMID: 31150049 DOI: 10.1093/cvr/cvz112] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/06/2019] [Accepted: 05/25/2019] [Indexed: 12/13/2022] Open
Abstract
Biological rhythms exist in organisms at all levels of complexity, in most organs and at myriad time scales. Our own biological rhythms are driven by energy emitted by the sun, interacting via our retinas with brain stem centres, which then send out complex messages designed to synchronize the behaviour of peripheral non-light sensing organs, to ensure optimal physiological responsiveness and performance of the organism based on the time of day. Peripheral organs themselves have autonomous rhythmic behaviours that can act independently from central nervous system control but is entrainable. Dysregulation of biological rhythms either through environment or disease has far-reaching consequences on health that we are only now beginning to appreciate. In this review, we focus on cardiovascular rhythms in health, with ageing and under disease conditions.
Collapse
Affiliation(s)
- Oliver Monfredi
- Division of Medicine, Department of Cardiology, The Johns Hopkins Hospital, 1800 Orleans Street, Baltimore, MD, USA.,Laboratory of Cardiovascular Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD, USA
| | - Edward G Lakatta
- Laboratory of Cardiovascular Sciences, Intramural Research Program, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD, USA
| |
Collapse
|
22
|
Cavallazzi RS, Polivka BJ, Beatty BL, Antimisiaris DE, Gopalraj RK, Vickers-Smith RA, Folz RJ. Current Bronchodilator Responsiveness Criteria Underestimate Asthma in Older Adults. Respir Care 2020; 65:1104-1111. [PMID: 32071132 DOI: 10.4187/respcare.07132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Asthma is common in older adults and is confirmed by demonstration of variable expiratory air-flow limitations, typically evaluated by spirometric assessment of bronchodilator responsiveness. However, many patients with clinically suspected asthma and documented air-flow obstruction do not exhibit a post-bronchodilator response that meets or exceeds current established guidelines. We investigated if extending the time from bronchodilator administration to assessment of bronchodilator response increases the yield of spirometry for the diagnosis of asthma in older adults. METHODS This was a cross-sectional study. The subjects were non-smokers, ≥ 60 y old, and with suspected asthma. Subjects were characterized as (1) those with a positive bronchodilator response on the 30-min post-bronchodilator spirometry, (2) those with a positive bronchodilator response on the 60-min post-bronchodilator spirometry, and (3) those without a positive bronchodilator response but with a positive methacholine challenge test. Factors associated with a late response to bronchodilator were evaluated by using bivariate analysis and by multivariate analysis by using a logistic regression model. RESULTS This study enrolled 165 subjects. Of these, 81 (49.1%) had a positive bronchodilator response on 30-min post-bronchodilator spirometry; 25 (15.2%) had a positive bronchodilator response on the 1-h post-bronchodilator spirometry; and 59 (35.8%) had no positive bronchodilator response but had a positive methacholine challenge test. On multivariable regression analysis, those with a higher baseline percentage of predicted FEV1, higher scores on a standard asthma control test, and wheezing and/or cough after exercise were more likely to either have a late bronchodilator response or no bronchodilator response. CONCLUSIONS Our study showed that a late positive response to bronchodilator use was more common than previously presumed in older subjects with suspected asthma. Pulmonary function testing laboratories should consider routinely reassessing spirometry at 1 h after bronchodilator use if the earlier assessment did not reveal a significant response.
Collapse
Affiliation(s)
- Rodrigo S Cavallazzi
- Division of Pulmonary, Critical Care Medicine, and Sleep Disorders University of Louisville, Louisville, Kentucky
| | | | - Bryan L Beatty
- Division of Pulmonary, Critical Care Medicine, and Sleep Disorders University of Louisville, Louisville, Kentucky
| | - Demetra E Antimisiaris
- Department of Health Management & Systems Science, University of Louisville, Louisville, Kentucky
| | | | | | - Rodney J Folz
- Division of Pulmonary, Critical Care, and Sleep Medicine University Hospital Cleveland Medical Center and Case Western Reserve University
| |
Collapse
|
23
|
Nesterov VP, Burdygin AI, Nesterov SV, Ivanov KB, Korotkov SM, Sobol KV, Shemarova IV. Peculiarities of Cardiohemodynamics and its Autonomic Regulation in Elderly People. J EVOL BIOCHEM PHYS+ 2020. [DOI: 10.1134/s0022093019060061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Jessen S, Solheim SA, Jacobson GA, Eibye K, Bangsbo J, Nordsborg NB, Hostrup M. Beta 2 -adrenergic agonist clenbuterol increases energy expenditure and fat oxidation, and induces mTOR phosphorylation in skeletal muscle of young healthy men. Drug Test Anal 2020; 12:610-618. [PMID: 31887249 DOI: 10.1002/dta.2755] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 11/07/2022]
Abstract
Clenbuterol is a beta2 -adrenoceptor agonist marketed as an asthma reliever but is not approved for human use in most countries due to concerns of adverse cardiac effects. Given its demonstrated hypertrophic and lipolytic actions in rodents, clenbuterol is one of the most widely abused doping substances amongt athletes and recreational body-builders seeking leanness. Herein, we examined the effect of clenbuterol ingestion on metabolic rate as well as skeletal muscle mammalian target of rapamycin (mTOR) phosphorylation and protein kinase A (PKA)-signaling in six young men. Before and 140 min after ingestion of 80 μg clenbuterol, resting metabolic rate and contractile function of the quadriceps muscle were measured, and blood samples as well as vastus lateralis muscle biopsies were collected. Clenbuterol increased resting energy expenditure by 21% (P < 0.001), and fat oxidation by 39% (P = 0.006), whereas carbohydrate oxidation was unchanged. Phosphorylation of mTORSer2448 and PKA substrates increased by 121% (P = 0.004) and 35% (P = 0.006), respectively, with clenbuterol. Maximal voluntary contraction torque decreased by 4% (P = 0.026) and the half-relaxation time shortened by 9% (P = 0.046), while voluntary activation, time to peak twitch, and peak twitch torque did not change significantly with clenbuterol. Glycogen content of the vastus lateralis muscle did not change with clenbuterol. Clenbuterol increased circulating levels of glucose (+30%; P < 0.001), lactate (+90%; P = 0.004), insulin (+130%; P = 0.009), and fatty acids (+180%; P = 0.001). Collectively, these findings indicate that clenbuterol is an efficient thermogenic substance that possibly also exerts muscle hypertrophic actions in humans. For these reasons, the restrictions imposed against clenbuterol in competitive sports seem warranted.
Collapse
Affiliation(s)
- Søren Jessen
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Sara A Solheim
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | | | - Kasper Eibye
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Nikolai B Nordsborg
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| | - Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Denmark
| |
Collapse
|
25
|
Hemodynamic Response to Rapid Saline Infusion Compared with Exercise in Healthy Participants Aged 20–80 Years. J Card Fail 2019; 25:902-910. [DOI: 10.1016/j.cardfail.2019.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 05/26/2019] [Accepted: 06/11/2019] [Indexed: 11/18/2022]
|
26
|
Salcan S, Bongardt S, Monteiro Barbosa D, Efimov IR, Rassaf T, Krüger M, Kötter S. Elastic titin properties and protein quality control in the aging heart. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1867:118532. [PMID: 31421188 DOI: 10.1016/j.bbamcr.2019.118532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 07/12/2019] [Accepted: 08/12/2019] [Indexed: 01/09/2023]
Abstract
Cardiac aging affects the heart on the functional, structural, and molecular level and shares characteristic hallmarks with the development of chronic heart failure. Apart from age-dependent left ventricular hypertrophy and fibrosis that impairs diastolic function, diminished activity of cardiac protein-quality-control systems increases the risk of cytotoxic accumulation of defective proteins. Here, we studied the impact of cardiac aging on the sarcomeric protein titin by analyzing titin-based cardiomyocyte passive tension, titin modification and proteasomal titin turnover. We analyzed left ventricular samples from young (6 months) and old (20 months) wild-type mice and healthy human donor patients grouped according to age in young (17-50 years) and aged hearts (51-73 years). We found no age-dependent differences in titin isoform composition of mouse or human hearts. In aged hearts from mice and human we determined altered titin phosphorylation at serine residues S4010 and S4099 in the elastic N2B domain, but no significant changes in phosphorylation of S11878 and S12022 in the elastic PEVK region. Importantly, overall titin-based cardiomyocyte passive tension remained unchanged. In aged hearts, the calcium-activated protease calpain-1, which provides accessibility to ubiquitination by releasing titin from the sarcomere, showed decreased proteolytic activity. In addition, we observed a reduction in the proteasomal activities. Taken together, our data indicate that cardiac aging does not affect titin-based passive properties of the cardiomyocytes, but impairs protein-quality control, including titin, which may result in a diminished adaptive capacity of the aged myocardium.
Collapse
Affiliation(s)
- Senem Salcan
- Department of Cardiovascular Physiology, Medical Faculty, Heinrich Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Sabine Bongardt
- Department of Cardiovascular Physiology, Medical Faculty, Heinrich Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - David Monteiro Barbosa
- Department of Cardiovascular Physiology, Medical Faculty, Heinrich Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Igor R Efimov
- George Washington University, Department of Biomedical Engineering, Science and Engineering Hall, Washington DC-20052, USA
| | - Tienush Rassaf
- University Hospital Essen, Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, 45147 Essen, Germany
| | - Martina Krüger
- Department of Cardiovascular Physiology, Medical Faculty, Heinrich Heine-University Düsseldorf, D-40225 Düsseldorf, Germany.
| | - Sebastian Kötter
- Department of Cardiovascular Physiology, Medical Faculty, Heinrich Heine-University Düsseldorf, D-40225 Düsseldorf, Germany.
| |
Collapse
|
27
|
Rowe G, Kelm NQ, Beare JE, Tracy E, Yuan F, LeBlanc AJ. Enhanced beta-1 adrenergic receptor responsiveness in coronary arterioles following intravenous stromal vascular fraction therapy in aged rats. Aging (Albany NY) 2019; 11:4561-4578. [PMID: 31296794 PMCID: PMC6660031 DOI: 10.18632/aging.102069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 06/25/2019] [Indexed: 04/30/2023]
Abstract
Our past study showed that a single tail vein injection of adipose-derived stromal vascular fraction (SVF) into old rats was associated with improved dobutamine-mediated coronary flow reserve. We hypothesize that i.v. injection of SVF improves coronary microvascular function in aged rats via alterations in beta adrenergic microvascular signaling. Female Fischer-344 rats aged young (3 months, n=32) and old (24 months, n=30) were utilized, along with two cell therapies intravenously injected in old rats four weeks prior to sacrifice: 1x107 green fluorescent protein (GFP+) SVF cells (O+SVF, n=21), and 5x106 GFP+ bone-marrow mesenchymal stromal cells (O+BM, n=6), both harvested from young donors. Cardiac ultrasound and pressure-volume measurements were obtained, and coronary arterioles were isolated from each group for microvessel reactivity studies and immunofluorescence staining. Coronary flow reserve decreased with advancing age, but this effect was rescued by the SVF treatment in the O+SVF group. Echocardiography showed an age-related diastolic dysfunction that was improved with SVF to a greater extent than with BM treatment. Coronary arterioles isolated from SVF-treated rats showed amelioration of the age-related decrease in vasodilation to a non-selective β-AR agonist. I.v. injected SVF cells improved β-adrenergic receptor-dependent coronary flow and microvascular function in a model of advanced age.
Collapse
Affiliation(s)
- Gabrielle Rowe
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40292, USA
- Department of Physiology, University of Louisville, Louisville, KY 40292, USA
| | - Natia Q. Kelm
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40292, USA
| | - Jason E. Beare
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40292, USA
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY 40292, USA
| | - Evan Tracy
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40292, USA
- Department of Physiology, University of Louisville, Louisville, KY 40292, USA
| | - Fangping Yuan
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40292, USA
| | - Amanda J. LeBlanc
- Cardiovascular Innovation Institute, University of Louisville, Louisville, KY 40292, USA
- Department of Physiology, University of Louisville, Louisville, KY 40292, USA
| |
Collapse
|
28
|
Zhou J, He F, Sun B, Liu R, Gao Y, Ren H, Shu Y, Chen X, Liu Z, Zhou H, Deng S, Xu H, Li J, Xu L, Zhang W. Polytropic Influence of TRIB3 rs2295490 Genetic Polymorphism on Response to Antihypertensive Agents in Patients With Essential Hypertension. Front Pharmacol 2019; 10:236. [PMID: 30971918 PMCID: PMC6445854 DOI: 10.3389/fphar.2019.00236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/26/2019] [Indexed: 02/05/2023] Open
Abstract
Tribbles homolog 3 (TRIB3) mediating signaling pathways are closely related to blood pressure regulation. Our previous findings suggested a greater benefit on vascular outcomes in patients carrying TRIB3 (251, A > G, rs2295490) G allele with good glucose and blood pressure control. And TRIB3 (rs2295490) AG/GG genotypes were found to reduce primary vascular events in type 2 diabetic patients who received intensive glucose treatment as compared to those receiving standard glucose treatment. However, the effect of TRIB3 genetic variation on antihypertensives was not clear in essential hypertension patients. A total of 368 patients treated with conventional dosage of antihypertensives (6 groups, grouped by atenolol/bisoprolol, celiprolol, doxazosin, azelnidipine/nitrendipine, imidapril, and candesartan/irbesartan) were enrolled in our study. Genetic variations were successfully identified by sanger sequencing. A linear mixed model analysis was performed to evaluate blood pressures among TRIB3 (251, A > G) genotypes and adjusted for baseline age, gender, body mass index, systolic blood pressure (SBP), diastolic blood pressure (DBP), total cholesterol and other biochemical factors appropriately. Our data suggested that TRIB3 (251, A > G) AA genotype carriers showed better antihypertensive effect than the AG/GG genotype carriers [P = 0.014 for DBP and P = 0.042 for mean arterial pressure (MAP)], with a maximal reduction of DBP by 4.2 mmHg and MAP by 3.56 mmHg after azelnidipine or nitrendipine treatment at the 4th week. Similar tendency of DBP-change and MAP-change was found for imidapril (ACEI) treatment, in which marginally significances were achieved (P = 0.073 and 0.075, respectively). Against that, we found that TRIB3 (251, A > G) AG/GG genotype carriers benefited from antihypertensive therapy of ARBs with a larger DBP-change during the period of observation (P = 0.036). Additionally, stratified analysis revealed an obvious difference of the maximal blood pressure change (13 mmHg for the MAP between male and female patients with AA genotype who took ARBs). Although no significant difference in antihypertensive effect between TRIB3 (251, A > G) genotypes in patients treated with α, β-ADRs was observed, we found significant difference in age-, sex-dependent manner related to α, β-ADRs. In conclusion, our data supported that TRIB3 (251, A > G) genetic polymorphism may serve as a useful biomarker in the treatment of hypertension.
Collapse
Affiliation(s)
- Jiecan Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Pharmacy Department, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Fazhong He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Bao Sun
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Rong Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yongchao Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Huan Ren
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, United States
| | - Xiaoping Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Sheng Deng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Heng Xu
- Department of Laboratory Medicine, Precision Medicine Center, and Precision Medicine Key Laboratory of Sichuan Province, Collaborative Innovation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jianmin Li
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Linyong Xu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.,Pharmacogenetics Research Institute, Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, China.,National Clinical Research Center for Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
29
|
Finan A, Demion M, Sicard P, Guisiano M, Bideaux P, Monceaux K, Thireau J, Richard S. Prolonged elevated levels of c-kit+ progenitor cells after a myocardial infarction by beta 2 adrenergic receptor priming. J Cell Physiol 2019; 234:18283-18296. [PMID: 30912139 DOI: 10.1002/jcp.28461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/23/2022]
Abstract
Endogenous progenitor cells may participate in cardiac repair after a myocardial infarction (MI). The beta 2 adrenergic receptor (ß2-AR) pathway induces proliferation of c-kit+ cardiac progenitor cells (CPC) in vitro. We investigated if ß2-AR pharmacological stimulation could ameliorate endogenous CPC-mediated regeneration after a MI. C-kit+ CPC ß1-AR and ß2-AR expression was evaluated in vivo and in vitro. A significant increase in the percentage of CPCs expressing ß1-AR and ß2-AR was measured 7 days post-MI. Accordingly, 24 hrs of low serum and hypoxia in vitro significantly increased CPC ß2-AR expression. Cell viability and differentiation assays validated a functional role of CPC ß2-AR. The effect of pharmacological activation of ß2-AR was studied in C57 mice using fenoterol administered in the drinking water 1 week before MI or sham surgery or at the time of the surgery. MI induced a significant increase in the percentage of c-kit+ progenitor cells at 7 days, whereas pretreatment with fenoterol prolonged this response resulting in a significant elevated number of CPC up to 21 days post-MI. This increased number of CPC correlated with a decrease in infarct size. The immunofluorescence analysis of the heart tissue for proliferation, apoptosis, macrophage infiltration, cardiomyocytes surface area, and vessel density showed significant changes on the basis of surgery but no benefit due to fenoterol treatment. Cardiac function was not ameliorated by fenoterol administration when evaluated by echocardiography. Our results suggest that ß2-AR stimulation may improve the cardiac repair process by supporting an endogenous progenitor cell response but is not sufficient to improve the cardiac function.
Collapse
Affiliation(s)
- Amanda Finan
- Physiology & Experimental Medicine of the Heart and Muscles (PhyMedExp), INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Marie Demion
- Physiology & Experimental Medicine of the Heart and Muscles (PhyMedExp), INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Pierre Sicard
- Physiology & Experimental Medicine of the Heart and Muscles (PhyMedExp), INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Morgane Guisiano
- Physiology & Experimental Medicine of the Heart and Muscles (PhyMedExp), INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Patrice Bideaux
- Physiology & Experimental Medicine of the Heart and Muscles (PhyMedExp), INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Kevin Monceaux
- Physiology & Experimental Medicine of the Heart and Muscles (PhyMedExp), INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Jérôme Thireau
- Physiology & Experimental Medicine of the Heart and Muscles (PhyMedExp), INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| | - Sylvain Richard
- Physiology & Experimental Medicine of the Heart and Muscles (PhyMedExp), INSERM U1046, CNRS UMR 9214, University of Montpellier, Montpellier, France
| |
Collapse
|
30
|
Onslev J, Jensen J, Bangsbo J, Wojtaszewski J, Hostrup M. β2-Agonist Induces Net Leg Glucose Uptake and Free Fatty Acid Release at Rest but Not During Exercise in Young Men. J Clin Endocrinol Metab 2019; 104:647-657. [PMID: 30285125 DOI: 10.1210/jc.2018-01349] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/28/2018] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The role of selective β2-adrenergic stimulation in regulation of leg glucose uptake and free fatty acid (FFA) balance is inadequately explored in humans. The objective of this study was to investigate β2-adrenergic effects on net leg glucose uptake and clearance, as well as FFA balance at rest and during exercise. DESIGN The study was a randomized, placebo-controlled crossover trial where 10 healthy men received either infusion of β2-agonist terbutaline (0.2 to 0.4 mg) or placebo. Net leg glucose uptake and clearance and FFA balance were determined at rest and during 8 minutes of knee extensor exercise using Fick's principle. Vastus lateralis muscle biopsies were collected at rest and at cessation of exercise. The primary outcome measure was net leg glucose uptake. RESULTS At rest, net leg glucose uptake and clearance were 0.35 (±0.16) mmol/min and 41 (±17) mL/min (mean ± 95% CI) higher (P < 0.001) for terbutaline than placebo, corresponding to increases of 84% and 70%. During exercise, no treatment differences were observed in net leg glucose uptake, whereas clearance was 101 (±86) mL/min lower (P < 0.05) for terbutaline than placebo. At rest, terbutaline induced a net leg FFA release of 21 (±14) µmol/min, being different from placebo (P = 0.04). During exercise, net leg FFA uptake was not different between the treatments. CONCLUSIONS These observations indicate that β2-agonist alters net leg glucose uptake and clearance, as well as FFA balance in humans, which is associated with myocellular β2-adrenergic and insulin-dependent signaling. Furthermore, the study shows that exercise confounds the β2-adrenergic effect on net leg glucose uptake and FFA balance.
Collapse
Affiliation(s)
- Johan Onslev
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen Wojtaszewski
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Mueller ER, van Maanen R, Chapple C, Abrams P, Herschorn S, Robinson D, Stoelzel M, Yoon SJ, Al-Shukri S, Rechberger T, Gratzke C. Long-term treatment of older patients with overactive bladder using a combination of mirabegron and solifenacin: a prespecified analysis from the randomized, phase III SYNERGY II study. Neurourol Urodyn 2019; 38:779-792. [PMID: 30644570 PMCID: PMC6850571 DOI: 10.1002/nau.23919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/11/2018] [Indexed: 12/25/2022]
Abstract
Aims SYNERGY II was a 12‐month phase III trial in patients with overactive bladder (OAB) symptoms that investigated the safety and efficacy of the combination of mirabegron and solifenacin in comparison with each monotherapy. This analysis evaluated the trial findings using four age subgroups (<65, ≥65, <75, and ≥75 years). Methods Eligible patients were ≥18 years with symptoms of “wet” OAB (urinary frequency and urgency with incontinence) for ≥3 months. Patients were randomized to receive once‐daily solifenacin succinate and mirabegron (5 mg/50 mg; combination), solifenacin succinate, or mirabegron (4:1:1). Safety evaluations: treatment‐emergent adverse events (TEAEs), vital signs, and electrocardiogram, post‐void residual volume, and laboratory assessments. Primary efficacy variables: change from baseline to end of treatment in number of incontinence episodes/24 h and micturitions/24 h. Results Of 1794 patients (full analysis set), 614 (34.2%) and 168 (9.4%) were ≥65 and ≥75 years old, respectively. Overall, 856 (47.2%) patients experienced ≥1 TEAE. Higher TEAE incidences were typically observed for the combination versus both monotherapies (eg, constipation) and in the older versus younger age groups (eg, urinary tract infection). Increases in mean pulse rate from baseline of >1 bpm were noted in the combination and mirabegron younger age groups only. No clinically significant findings were observed in the other safety parameters. The efficacy variables improved with all treatments and the greatest improvements were typically observed with combination therapy. Conclusions Mirabegron and solifenacin combination therapy was a well‐tolerated and effective treatment for patients with OAB symptoms irrespective of their age.
Collapse
Affiliation(s)
| | - Rob van Maanen
- Astellas Pharma Global Development, Leiden, The Netherlands
| | - Christopher Chapple
- Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Paul Abrams
- Bristol Urological Institute, Southmead Hospital, Bristol, UK
| | - Sender Herschorn
- University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | | | | | - Sang J Yoon
- Gachon University Gil Medical Center, Gachon University School of Medicine, Incheon, South Korea
| | - Salman Al-Shukri
- Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | | | | |
Collapse
|
32
|
Jevjdovic T, Dakic T, Kopanja S, Lakic I, Vujovic P, Jasnic N, Djordjevic J. Sex-Related Effects of Prenatal Stress on Region-Specific Expression of Monoamine Oxidase A and β Adrenergic Receptors in Rat Hearts. Arq Bras Cardiol 2018; 112:67-75. [PMID: 30569948 PMCID: PMC6317614 DOI: 10.5935/abc.20190001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 07/23/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Prenatal stress may increase risk of developing cardiovascular disorders in adulthood. The cardiotoxic effects of catecholamines are mediated via prolonged adrenergic receptor stimulation and increased oxidative stress upon their degradation by monoamine oxidase A (MAO-A). OBJECTIVES We investigated long-term effects of prenatal stress on β (1, 2, 3) adrenergic receptors and MAO-A gene expression in the hearts of adult rat offspring. METHODS Pregnant rats were exposed to unpredictable mild stress during the third week of gestation. RNA was isolated from left ventricular apex and base of adult offspring. Quantitative PCR was used to measure gene expression in collected ventricular tissue samples. The level of significance was set to p < 0.05. RESULTS β3 adrenergic receptor mRNA was undetectable in rat left ventricle. β1 adrenergic receptor was the predominantly expressed subtype at the apical and basal left ventricular myocardium in the control females. Male offspring from unstressed mothers displayed higher apical cardiac β1 than β2 adrenergic receptor mRNA levels. However, β1 and β2 adrenergic receptor mRNAs were similarly expressed at the ventricular basal myocardium in males. Unlike males, prenatally stressed females exhibited decreased β1 adrenergic receptor mRNA expression at the apical myocardium. Prenatal stress did not affect cardiac MAO-A gene expression. CONCLUSIONS Collectively, our results show that prenatal stress may have exerted region- and sex-specific β1 and β2 adrenergic receptor expression patterns within the left ventricle.
Collapse
Affiliation(s)
- Tanja Jevjdovic
- Faculty of Biology - University of Belgrade, Belgrado - Sérvia
| | - Tamara Dakic
- Faculty of Biology - University of Belgrade, Belgrado - Sérvia
| | - Sonja Kopanja
- Department of Pediatrics and Adolescent Medicine - Medical University of Vienna, Viena - Áustria
| | - Iva Lakic
- Faculty of Biology - University of Belgrade, Belgrado - Sérvia
| | - Predrag Vujovic
- Faculty of Biology - University of Belgrade, Belgrado - Sérvia
| | - Nebojsa Jasnic
- Faculty of Biology - University of Belgrade, Belgrado - Sérvia
| | | |
Collapse
|
33
|
Lee XA, Callaghan NI. Age-dependent effects on sympathetic responsiveness in cardiac action potential conduction and calcium handling. J Physiol 2018; 596:4569-4570. [PMID: 30095231 DOI: 10.1113/jp276950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Xavier Alexander Lee
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Neal Ingraham Callaghan
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada.,Institute of Biomaterials and Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Abstract
Heart failure (HF) has become increasingly common within the elderly population, decreasing their survival and overall quality of life. In fact, despite the improvements in treatment, many elderly people suffer from cardiac dysfunction (HF, valvular diseases, arrhythmias or hypertension-induced cardiac hypertrophy) that are much more common in an older fragile heart. Since β-adrenergic receptor (β-AR) signaling is abnormal in failing as well as aged hearts, this pathway is an effective diagnostic and therapeutic target. Both HF and aging are characterized by activation/hyperactivity of various neurohormonal pathways, the most important of which is the sympathetic nervous system (SNS). SNS hyperactivity is initially a compensatory mechanism to stimulate contractility and maintain cardiac output. Unfortunately, this chronic stimulation becomes detrimental and causes decreased cardiac function as well as reduced inotropic reserve due to a decrease in cardiac β-ARs responsiveness. Therapies which (e.g., β-blockers and physical activity) restore β-ARs responsiveness can ameliorate cardiac performance and outcomes during HF, particularly in older patients. In this review, we will discuss physiological β-adrenergic signaling and its alterations in both HF and aging as well as the potential clinical application of targeting β-adrenergic signaling in these disease processes.
Collapse
|
35
|
de Lucia C, Eguchi A, Koch WJ. New Insights in Cardiac β-Adrenergic Signaling During Heart Failure and Aging. Front Pharmacol 2018; 9:904. [PMID: 30147654 PMCID: PMC6095970 DOI: 10.3389/fphar.2018.00904] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022] Open
Abstract
Heart failure (HF) has become increasingly common within the elderly population, decreasing their survival and overall quality of life. In fact, despite the improvements in treatment, many elderly people suffer from cardiac dysfunction (HF, valvular diseases, arrhythmias or hypertension-induced cardiac hypertrophy) that are much more common in an older fragile heart. Since β-adrenergic receptor (β-AR) signaling is abnormal in failing as well as aged hearts, this pathway is an effective diagnostic and therapeutic target. Both HF and aging are characterized by activation/hyperactivity of various neurohormonal pathways, the most important of which is the sympathetic nervous system (SNS). SNS hyperactivity is initially a compensatory mechanism to stimulate contractility and maintain cardiac output. Unfortunately, this chronic stimulation becomes detrimental and causes decreased cardiac function as well as reduced inotropic reserve due to a decrease in cardiac β-ARs responsiveness. Therapies which (e.g., β-blockers and physical activity) restore β-ARs responsiveness can ameliorate cardiac performance and outcomes during HF, particularly in older patients. In this review, we will discuss physiological β-adrenergic signaling and its alterations in both HF and aging as well as the potential clinical application of targeting β-adrenergic signaling in these disease processes.
Collapse
Affiliation(s)
| | | | - Walter J. Koch
- Department of Pharmacology – Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
36
|
Francis Stuart SD, Wang L, Woodard WR, Ng GA, Habecker BA, Ripplinger CM. Age-related changes in cardiac electrophysiology and calcium handling in response to sympathetic nerve stimulation. J Physiol 2018; 596:3977-3991. [PMID: 29938794 DOI: 10.1113/jp276396] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/22/2018] [Indexed: 12/16/2022] Open
Abstract
KEY POINTS Ageing results in changes to cardiac electrophysiology, Ca2+ handling, and β-adrenergic responsiveness. Sympathetic neurodegeneration also occurs with age, yet detailed action potential and Ca2+ handling responses to physiological sympathetic nerve stimulation (SNS) in the aged heart have not been assessed. Optical mapping in mouse hearts with intact sympathetic innervation revealed reduced responsiveness to SNS in the aged atria (assessed by heart rate) and aged ventricles (assessed by action potentials and Ca2+ transients). Sympathetic nerve density and noradrenaline content were reduced in aged ventricles, but noradrenaline content was preserved in aged atria. These results demonstrate that reduced responsiveness to SNS in the atria may be primarily due to decreased β-adrenergic receptor responsiveness, whereas reduced responsiveness to SNS in the ventricles may be primarily due to neurodegeneration. ABSTRACT The objective of this study was to determine how age-related changes in sympathetic structure and function impact cardiac electrophysiology and intracellular Ca2+ handling. Innervated hearts from young (3-4 months, YWT, n = 10) and aged (20-24 months, AGED, n = 11) female mice (C57Bl6) were optically mapped using the voltage (Vm ,)- and calcium (Ca2+ )-sensitive indicators Rh237 and Rhod2-AM. Sympathetic nerve stimulation (SNS) was performed at the spinal cord (T1-T3). β-Adrenergic responsiveness was assessed with isoproterenol (1 μM, ISO). Sympathetic nerve density and noradrenaline content were also quantified. Stimulation thresholds necessary to produce a defined increase in heart rate (HR) with SNS were higher in AGED vs. YWT hearts (5.4 ± 0.4 vs. 3.8 ± 0.4 Hz, P < 0.05). Maximal HR with SNS was lower in AGED vs. YWT (20.5 ± 3.41% vs. 73.0 ± 7.63% increase, P < 0.05). β-Adrenergic responsiveness of the atria (measured as percentage increase in HR with ISO) was decreased in AGED vs. YWT hearts (75.3 ± 22.5% vs. 148.5 ± 19.8%, P < 0.05). SNS significantly increased action potential duration (APD) in YWT but not AGED. Ca2+ transient durations and rise times were unchanged by SNS, yet AGED hearts had an increased susceptibility to Ca2+ alternans and ventricular arrhythmias. β-Adrenergic responsiveness of all ventricular parameters were similar between AGED and YWT. Sympathetic nerve density and noradrenaline content were decreased in the AGED ventricle, but not atria, compared to YWT. These data suggest that decreased responsiveness to SNS in the aged atria may be primarily due to decreased β-adrenergic responsiveness, whereas decreased responsiveness to SNS in the aged ventricles may be primarily due to nerve degeneration.
Collapse
Affiliation(s)
| | - Lianguo Wang
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - William R Woodard
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA
| | - G Andre Ng
- Department of Cardiovascular Sciences, University of Leicester, NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Beth A Habecker
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR, USA
| | | |
Collapse
|
37
|
Cannata' A, Merlo M, Artico J, Gentile P, Camparini L, Cristallini J, Porcari A, Loffredo F, Sinagra G. Cardiovascular aging: the unveiled enigma from bench to bedside. J Cardiovasc Med (Hagerstown) 2018; 19:517-526. [PMID: 30024423 DOI: 10.2459/jcm.0000000000000694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
: The rapid increase in the median age of the world's population requires particular attention towards older and more fragile people. Cardiovascular risk factors, time and comorbidities play a vicious role in the development of heart failure, both with reduced and preserved ejection fraction, in the elderly. Understanding the mechanisms underlying the pathophysiological processes observed with aging is pivotal to target those patients and their therapeutic needs properly. This review aims to investigate and to dissect the main pathways leading to the aging cardiomyopathy, helping to understand the relationship from bench to bedside of the clinical phenotype.
Collapse
Affiliation(s)
- Antonio Cannata'
- Cardiovascular and Thoracic Department, Azienda Sanitaria Universitaria Integrata di Trieste and University of Trieste.,International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Marco Merlo
- Cardiovascular and Thoracic Department, Azienda Sanitaria Universitaria Integrata di Trieste and University of Trieste
| | - Jessica Artico
- Cardiovascular and Thoracic Department, Azienda Sanitaria Universitaria Integrata di Trieste and University of Trieste
| | - Piero Gentile
- Cardiovascular and Thoracic Department, Azienda Sanitaria Universitaria Integrata di Trieste and University of Trieste
| | - Luca Camparini
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Jacopo Cristallini
- Cardiovascular and Thoracic Department, Azienda Sanitaria Universitaria Integrata di Trieste and University of Trieste
| | - Aldostefano Porcari
- Cardiovascular and Thoracic Department, Azienda Sanitaria Universitaria Integrata di Trieste and University of Trieste
| | - Francesco Loffredo
- Cardiovascular and Thoracic Department, Azienda Sanitaria Universitaria Integrata di Trieste and University of Trieste.,International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Gianfranco Sinagra
- Cardiovascular and Thoracic Department, Azienda Sanitaria Universitaria Integrata di Trieste and University of Trieste
| |
Collapse
|
38
|
Bates ML, Anagnostopoulos PV, Nygard C, Torgeson J, Reichert J, Galambos C, Eldridge MW, Lamers LJ. Consequences of an early catheter-based intervention on pulmonary artery growth and right ventricular myocardial function in a pig model of pulmonary artery stenosis. Catheter Cardiovasc Interv 2018; 92:78-87. [PMID: 29602248 DOI: 10.1002/ccd.27593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 02/01/2018] [Accepted: 02/26/2018] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To determine the consequences of an early catheter-based intervention on pulmonary artery (PA) growth and right ventricular (RV) myocardial function in an animal model of branch PA stenosis. BACKGROUND Acute results and safety profiles of deliberate stent fracture within the pulmonary vasculature have been demonstrated. The long-term impact of early stent intervention and deliberate stent fracture on PA growth and myocardial function is not understood. METHODS Implantation of small diameter stents was performed in a pig model of left PA stenosis at 6 weeks (10 kg) followed by dilations at 10 (35 kg) and 18 weeks (65 kg) with intent to fracture and implant large diameter stents. Hemodynamics, RV contractility, and 2D/3D angiography were performed with each intervention. The heart and pulmonary vasculature were histologically assessed. RESULTS Stent fracture occurred in 9/12 and implantation of large diameter stents was successful in 10/12 animals with no PA aneurysms or dissections. The final stented PA segment and distal left PA branch origins equaled the corresponding PA diameters of sham controls. Growth of left PA immediately beyond the stent was limited and there was diffuse fibro-intimal proliferation within the distal left and right PA. RV contractility was diminished in the intervention group and the response to dobutamine occurred uniquely via increases in heart rate. CONCLUSIONS Early stent intervention in this surgically created PA stenosis model was associated with improved growth of the distal PA vasculature but additional investigation of PA vessel physiology and impact on the developing heart are needed.
Collapse
Affiliation(s)
- Melissa L Bates
- Department of Health and Human Physiology, University of Iowa, Iowa City, Iowa, 52242
| | - Petros V Anagnostopoulos
- Department of Cardiothoracic Surgery, University of Wisconsin School of Medicine and Public Health Madison, Wisconsin, 53792
| | - Cole Nygard
- Cardiology Division, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health Madison, Wisconsin, 53792
| | - Jenna Torgeson
- Cardiology Division, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health Madison, Wisconsin, 53792
| | - Jamie Reichert
- Department of Animal Sciences, University of Wisconsin College of Agriculture and Life Sciences Madison, Wisconsin, 53792
| | - Csaba Galambos
- Department of Pathology, University of Colorado School of Medicine Aurora, Colorado, 80045
| | - Marlowe W Eldridge
- Division of Critical Care, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health Madison, Wisconsin, 53792
| | - Luke J Lamers
- Cardiology Division, Department of Pediatrics, University of Wisconsin School of Medicine and Public Health Madison, Wisconsin, 53792
| |
Collapse
|
39
|
Hiemstra JA, Veteto AB, Lambert MD, Olver TD, Ferguson BS, McDonald KS, Emter CA, Domeier TL. Chronic low-intensity exercise attenuates cardiomyocyte contractile dysfunction and impaired adrenergic responsiveness in aortic-banded mini-swine. J Appl Physiol (1985) 2018; 124:1034-1044. [PMID: 29357490 DOI: 10.1152/japplphysiol.00840.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Exercise improves clinical outcomes in patients diagnosed with heart failure with reduced ejection fraction (HFrEF), in part via beneficial effects on cardiomyocyte Ca2+ cycling during excitation-contraction coupling (ECC). However, limited data exist regarding the effects of exercise training on cardiomyocyte function in patients diagnosed with heart failure with preserved ejection fraction (HFpEF). The purpose of this study was to investigate cardiomyocyte Ca2+ handling and contractile function following chronic low-intensity exercise training in aortic-banded miniature swine and test the hypothesis that low-intensity exercise improves cardiomyocyte function in a large animal model of pressure overload. Animals were divided into control (CON), aortic-banded sedentary (AB), and aortic-banded low-intensity trained (AB-LIT) groups. Left ventricular cardiomyocytes were electrically stimulated (0.5 Hz) to assess Ca2+ homeostasis (fura-2-AM) and unloaded shortening during ECC under conditions of baseline pacing and pacing with adrenergic stimulation using dobutamine (1 μM). Cardiomyocytes in AB animals exhibited depressed Ca2+ transient amplitude and cardiomyocyte shortening vs. CON under both conditions. Exercise training attenuated AB-induced decreases in cardiomyocyte Ca2+ transient amplitude but did not prevent impaired shortening vs. CON. With dobutamine, AB-LIT exhibited both Ca2+ transient and shortening amplitude similar to CON. Adrenergic sensitivity, assessed as the time to maximum inotropic response following dobutamine treatment, was depressed in the AB group but normal in AB-LIT animals. Taken together, our data suggest exercise training is beneficial for cardiomyocyte function via the effects on Ca2+ homeostasis and adrenergic sensitivity in a large animal model of pressure overload-induced heart failure. NEW & NOTEWORTHY Conventional treatments have failed to improve the prognosis of heart failure with preserved ejection fraction (HFpEF) patients. Our findings show chronic low-intensity exercise training can prevent cardiomyocyte dysfunction and impaired adrenergic responsiveness in a translational large animal model of chronic pressure overload-induced heart failure with relevance to human HFpEF.
Collapse
Affiliation(s)
- Jessica A Hiemstra
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Missouri , Columbia, Missouri
| | - Adam B Veteto
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri , Columbia, Missouri
| | - Michelle D Lambert
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri , Columbia, Missouri
| | - T Dylan Olver
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Missouri , Columbia, Missouri
| | - Brian S Ferguson
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Missouri , Columbia, Missouri
| | - Kerry S McDonald
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri , Columbia, Missouri
| | - Craig A Emter
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Missouri , Columbia, Missouri
| | - Timothy L Domeier
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri , Columbia, Missouri
| |
Collapse
|
40
|
Spadari RC, Cavadas C, de Carvalho AETS, Ortolani D, de Moura AL, Vassalo PF. Role of Beta-adrenergic Receptors and Sirtuin Signaling in the Heart During Aging, Heart Failure, and Adaptation to Stress. Cell Mol Neurobiol 2018; 38:109-120. [PMID: 29063982 DOI: 10.1007/s10571-017-0557-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 10/06/2017] [Indexed: 01/03/2023]
Abstract
In the heart, catecholamine effects occur by activation of beta-adrenergic receptors (β-ARs), mainly the beta 1 (β1-AR) and beta 2 (β2-AR) subtypes, both of which couple to the Gs protein that activates the adenylyl cyclase signaling pathway. The β2-ARs can also couple to the Gi protein that counterbalances the effect of the Gs protein on cyclic adenosine monophosphate production and activates the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway. In several cardiovascular disorders, including heart failure, as well as in aging and in animal models of environmental stress, a reduction in the β1/β2-AR ratio and activation of the β2-AR-Gi-PI3K-Akt signaling pathway have been observed. Recent studies have shown that sirtuins modulate certain organic processes, including the cellular stress response, through activation of the PI3K-Akt signaling pathway and of downstream molecules such as p53, Akt, HIF1-α, and nuclear factor-kappa B. In the heart, SIRT1, SIRT3, and β2-ARs are crucial to the regulation of the cardiomyocyte energy metabolism, oxidative stress, reactive oxygen species production, and autophagy. SIRT1 and the β2-AR-Gi complex also control signaling pathways of cell survival and death. Here, we review the role played by β2-ARs and sirtuins during aging, heart failure, and adaptation to stress, focusing on the putative interplay between the two. That relationship, if proven, merits further investigation in the context of cardiac function and dysfunction.
Collapse
Affiliation(s)
- Regina Celia Spadari
- Laboratory of Stress Biology, Department of Biosciences, Campus Baixada Santista, Universidade Federal de São Paulo (UNIFESP), Santos, Brazil.
- Departamento de Biociências / Campus Baixada Santista, UNIFESP, Rua Silva Jardim 136, Santos, SP, 11015-020, Brazil.
| | - Claudia Cavadas
- Center for Neurosciences and Cell Biology (CNC) and School of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Ana Elisa T Saturi de Carvalho
- Laboratory of Stress Biology, Department of Biosciences, Campus Baixada Santista, Universidade Federal de São Paulo (UNIFESP), Santos, Brazil
| | - Daniela Ortolani
- Laboratory of Stress Biology, Department of Biosciences, Campus Baixada Santista, Universidade Federal de São Paulo (UNIFESP), Santos, Brazil
- Department of Physiological Science, Universidade Federal Do Espírito Santo (HUCAM, UFES), Vitória, Brazil
| | - Andre Luiz de Moura
- Laboratory of Stress Biology, Department of Biosciences, Campus Baixada Santista, Universidade Federal de São Paulo (UNIFESP), Santos, Brazil
| | - Paula Frizera Vassalo
- Department of Physiological Science, Universidade Federal Do Espírito Santo (HUCAM, UFES), Vitória, Brazil
- University Hospital Cassiano Antônio de Moraes, Universidade Federal Do Espírito Santo (HUCAM, UFES), Vitória, Brazil
| |
Collapse
|
41
|
Kane AE, Howlett SE. Differences in Cardiovascular Aging in Men and Women. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1065:389-411. [PMID: 30051398 DOI: 10.1007/978-3-319-77932-4_25] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases increase dramatically with age in both men and women. While it is clear that advanced age allows more time for individuals to be exposed to risk factors in general, there is strong evidence that age itself is a major independent risk factor for cardiovascular disease. Indeed, there are distinct age-dependent cellular, structural, and functional changes in both the heart and blood vessels, even in individuals with no clinical evidence of cardiovascular disease. Studies in older humans and in animal models of aging indicate that this age-related remodeling is maladaptive. An emerging view is that the heart and blood vessels accumulate cellular and subcellular deficits with age and these deficits increase susceptibility to disease in older individuals. Aspects of this age-dependent remodeling of the heart and blood vessels differ between the sexes. There is also new evidence that these maladaptive changes are more prominent in older animals and humans with a high degree of frailty. These observations may help explain why men and women are susceptible to different cardiovascular diseases as they age and why frail older adults are most often affected by these diseases.
Collapse
Affiliation(s)
- Alice E Kane
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Susan E Howlett
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.
- Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
42
|
Hostrup M, Onslev J, Jacobson GA, Wilson R, Bangsbo J. Chronic β 2 -adrenoceptor agonist treatment alters muscle proteome and functional adaptations induced by high intensity training in young men. J Physiol 2017; 596:231-252. [PMID: 28983994 DOI: 10.1113/jp274970] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/26/2017] [Indexed: 12/26/2022] Open
Abstract
KEY POINTS While several studies have investigated the effects of exercise training in human skeletal muscle and the chronic effect of β2 -agonist treatment in rodent muscle, their effects on muscle proteome signature with related functional measures in humans are still incompletely understood. Herein we show that daily β2 -agonist treatment attenuates training-induced enhancements in exercise performance and maximal oxygen consumption, and alters muscle proteome signature and phenotype in trained young men. Daily β2 -agonist treatment abolished several of the training-induced enhancements in muscle oxidative capacity and caused a repression of muscle metabolic pathways; furthermore, β2 -agonist treatment induced a slow-to-fast twitch muscle phenotype transition. The present study indicates that chronic β2 -agonist treatment confounds the positive effect of high intensity training on exercise performance and oxidative capacity, which is of interest for the large proportion of persons using inhaled β2 -agonists on a daily basis, including athletes. ABSTRACT Although the effects of training have been studied for decades, data on muscle proteome signature remodelling induced by high intensity training in relation to functional changes in humans remains incomplete. Likewise, β2 -agonists are frequently used to counteract exercise-induced bronchoconstriction, but the effects β2 -agonist treatment on muscle remodelling and adaptations to training are unknown. In a placebo-controlled parallel study, we randomly assigned 21 trained men to 4 weeks of high intensity training with (HIT+β2 A) or without (HIT) daily inhalation of β2 -agonist (terbutaline, 4 mg dose-1 ). Of 486 proteins identified by mass-spectrometry proteomics of muscle biopsies sampled before and after the intervention, 32 and 85 were changing (false discovery rate (FDR) ≤5%) with the intervention in HIT and HIT+β2 A, respectively. Proteome signature changes were different in HIT and HIT+β2 A (P = 0.005), wherein β2 -agonist caused a repression of 25 proteins in HIT+β2 A compared to HIT, and an upregulation of 7 proteins compared to HIT. β2 -Agonist repressed or even downregulated training-induced enrichment of pathways related to oxidative phosphorylation and glycogen metabolism, but upregulated pathways related to histone trimethylation and the nucleosome. Muscle contractile phenotype changed differently in HIT and HIT+β2 A (P ≤ 0.001), with a fast-to-slow twitch transition in HIT and a slow-to-fast twitch transition in HIT+β2 A. β2 -Agonist attenuated training-induced enhancements in maximal oxygen consumption (P ≤ 0.01) and exercise performance (6.1 vs. 11.6%, P ≤ 0.05) in HIT+β2 A compared to HIT. These findings indicate that daily β2 -agonist treatment attenuates the beneficial effects of high intensity training on exercise performance and oxidative capacity, and causes remodelling of muscle proteome signature towards a fast-twitch phenotype.
Collapse
Affiliation(s)
- Morten Hostrup
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Johan Onslev
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Glenn A Jacobson
- Division of Pharmacy, School of Medicine, University of Tasmania, Hobart, Australia
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Australia
| | - Jens Bangsbo
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
43
|
Onslev J, Jacobson G, Narkowicz C, Backer V, Kalsen A, Kreiberg M, Jessen S, Bangsbo J, Hostrup M. Beta 2-adrenergic stimulation increases energy expenditure at rest, but not during submaximal exercise in active overweight men. Eur J Appl Physiol 2017; 117:1907-1915. [PMID: 28702809 DOI: 10.1007/s00421-017-3679-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 07/05/2017] [Indexed: 02/04/2023]
Abstract
PURPOSE β2-Agonists have been proposed as weight-loss treatment, because they elevate energy expenditure. However, it is unknown what effect β2-agonists have on energy expenditure in overweight individuals. Furthermore, the influence of β2-agonist R- and S-enantiomer ratio for the increased energy expenditure is insufficiently explored. METHODS Nineteen males were included in the study of which 14 completed. Subjects were 31.6 (±3.5) years [mean (±95% CI)] and had a fat percentage of 22.7 (±2.1)%. On separate days, subjects received either placebo or inhaled racemic (rac-) formoterol (2 × 27 µg). After an overnight fast, energy expenditure and substrate oxidation were estimated by indirect calorimetry at rest and during submaximal exercise. Plasma (R,R)- and (S,S)-formoterol enantiomer levels were measured by ultra-performance liquid chromatograph-mass spectrometry. RESULTS At rest, energy expenditure and fat oxidation were 12% (P ≤ 0.001) and 38% (P = 0.006) higher for rac-formoterol than placebo. Systemic (R,R):(S,S) formoterol ratio was correlated with change in energy expenditure at rest in response to rac-formoterol (r = 0.63, P = 0.028), whereas no association was observed between fat percentage and rac-formoterol-induced change in energy expenditure. During exercise, energy expenditure was not different between treatments, although carbohydrate oxidation was 15% higher (P = 0.021) for rac-formoterol than placebo. Rac-formoterol-induced shift in substrate choice from rest to exercise was related to plasma ln-rac-formoterol concentrations (r = 0.75, P = 0.005). CONCLUSION Selective β2-adrenoceptor agonism effectively increases metabolic rate and fat oxidation in overweight individuals. The potential for weight loss induced by β2-agonists may be greater for R-enantiopure formulations.
Collapse
Affiliation(s)
- Johan Onslev
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, August Krogh, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Glenn Jacobson
- Division of Pharmacy, School of Medicine, University of Tasmania, Hobart, Australia
| | - Christian Narkowicz
- Division of Pharmacy, School of Medicine, University of Tasmania, Hobart, Australia
| | - Vibeke Backer
- Department of Respiratory Research, Bispebjerg University Hospital, Copenhagen, Denmark
- IOC Research Center Copenhagen, Copenhagen, Denmark
| | - Anders Kalsen
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, August Krogh, Universitetsparken 13, 2100, Copenhagen, Denmark
- Department of Respiratory Research, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Michael Kreiberg
- Department of Respiratory Research, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Søren Jessen
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, August Krogh, Universitetsparken 13, 2100, Copenhagen, Denmark
- Department of Respiratory Research, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Jens Bangsbo
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, August Krogh, Universitetsparken 13, 2100, Copenhagen, Denmark
| | - Morten Hostrup
- Section of Integrated Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, August Krogh, Universitetsparken 13, 2100, Copenhagen, Denmark.
- Department of Respiratory Research, Bispebjerg University Hospital, Copenhagen, Denmark.
- IOC Research Center Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
44
|
Verjans R, van Bilsen M, Schroen B. MiRNA Deregulation in Cardiac Aging and Associated Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 334:207-263. [PMID: 28838539 DOI: 10.1016/bs.ircmb.2017.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The prevalence of age-related diseases is increasing dramatically, among which cardiac disease represents the leading cause of death. Aging of the heart is characterized by various molecular and cellular hallmarks impairing both cardiomyocytes and noncardiomyocytes, and resulting in functional deteriorations of the cardiac system. The aging process includes desensitization of β-adrenergic receptor (βAR)-signaling and decreased calcium handling, altered growth signaling and cardiac hypertrophy, mitochondrial dysfunction and impaired autophagy, increased programmed cell death, low-grade inflammation of noncanonical inflammatory cells, and increased ECM deposition. MiRNAs play a fundamental role in regulating the processes underlying these detrimental changes in the cardiac system, indicating that MiRNAs are crucially involved in aging. Among others, MiR-34, MiR-146a, and members of the MiR-17-92 cluster, are deregulated during senescence and drive cardiac aging processes. It is therefore suggested that MiRNAs form possible therapeutic targets to stabilize the aged failing myocardium.
Collapse
Affiliation(s)
- Robin Verjans
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Marc van Bilsen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Blanche Schroen
- Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
45
|
Peled Y, Varnado S, Lowes BD, Zolty R, Lyden ER, Moulton MJ, Um JY, Raichlin E. Sinus tachycardia is associated with impaired exercise tolerance following heart transplantation. Clin Transplant 2017; 31. [DOI: 10.1111/ctr.12946] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Yael Peled
- Heart Center; Sheba Medical Center; Ramat Gan and Sackler School of Medicine; Tel Aviv University; Tel Aviv Israel
| | - Sara Varnado
- Division of Cardiology; University of Nebraska Medical Center; Omaha NE USA
| | - Brian D. Lowes
- Division of Cardiology; University of Nebraska Medical Center; Omaha NE USA
| | - Ronald Zolty
- Division of Cardiology; University of Nebraska Medical Center; Omaha NE USA
| | - Elizabeth R. Lyden
- Department of Biostatistics; College of Public Health; University of Nebraska Medical Center; Omaha NE USA
| | - Michael J. Moulton
- Department of Cardiothoracic Surgery; University of Nebraska Medical Center; Omaha NE USA
| | - John Y. Um
- Department of Cardiothoracic Surgery; University of Nebraska Medical Center; Omaha NE USA
| | - Eugenia Raichlin
- Division of Cardiology; University of Nebraska Medical Center; Omaha NE USA
| |
Collapse
|
46
|
Ryu T, Song SY. Perioperative management of left ventricular diastolic dysfunction and heart failure: an anesthesiologist's perspective. Korean J Anesthesiol 2017; 70:3-12. [PMID: 28184260 PMCID: PMC5296384 DOI: 10.4097/kjae.2017.70.1.3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 12/12/2022] Open
Abstract
Anesthesiologists frequently see asymptomatic patients with diastolic dysfunction or heart failure for various surgeries. These patients typically show normal systolic function but abnormal diastolic parameters in their preoperative echocardiographic evaluations. The symptoms that are sometimes seen are similar to those of chronic obstructive pulmonary disease. Patients with diastolic dysfunction, and even with diastolic heart failure, have the potential to develop a hypertensive crisis or pulmonary congestion. Thus, in addition to conventional perioperative risk quantification, it may be important to consider the results of diastolic assessment for predicting the postoperative outcome and making better decisions. If anesthesiologists see female patients older than 70 years of age who have hypertension, diabetes, chronic renal disease, recent weight gain, or exercise intolerance, they should focus on the patient's diastologic echocardiography indicators such as left atrial enlargement or left ventricular hypertrophy. In addition, there is a need for perioperative strategies to mitigate diastolic dysfunction-related morbidity. Specifically, hypertension should be controlled, keeping pulse pressure below diastolic blood pressure, maintaining a sinus rhythm and normovolemia, and avoiding tachycardia and myocardial ischemia. There is no need to classify these diastolic dysfunction, but it is important to manage this condition to avoid worsening outcomes.
Collapse
Affiliation(s)
- Taeha Ryu
- Department of Anesthesiology and Pain Medicine, School of Medicine, Catholic University of Daegu, Daegu, Korea
| | - Seok-Young Song
- Department of Anesthesiology and Pain Medicine, School of Medicine, Catholic University of Daegu, Daegu, Korea
| |
Collapse
|
47
|
Santulli G, Iaccarino G. Adrenergic signaling in heart failure and cardiovascular aging. Maturitas 2016; 93:65-72. [PMID: 27062709 PMCID: PMC5036981 DOI: 10.1016/j.maturitas.2016.03.022] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 03/23/2016] [Accepted: 03/25/2016] [Indexed: 12/15/2022]
Abstract
Both cardiovascular disease and aging are associated with changes in the sympathetic nervous system. Indeed, mounting evidence indicates that adrenergic receptors are functionally involved in numerous processes underlying both aging and cardiovascular disorders, in particular heart failure. This article will review the pathophysiological role of the sympathetic nervous system in heart failure and cardiovascular aging.
Collapse
Affiliation(s)
- Gaetano Santulli
- College of Physicians & Surgeons, Columbia University Medical Center, New York, NY, USA.
| | - Guido Iaccarino
- Division of Internal Medicine, Department of Medicine and Surgery, University of Salerno, Italy.
| |
Collapse
|
48
|
Sex Differences in the Biology and Pathology of the Aging Heart. Can J Cardiol 2016; 32:1065-73. [DOI: 10.1016/j.cjca.2016.03.017] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 01/30/2023] Open
|
49
|
Yaniv Y, Ahmet I, Tsutsui K, Behar J, Moen JM, Okamoto Y, Guiriba T, Liu J, Bychkov R, Lakatta EG. Deterioration of autonomic neuronal receptor signaling and mechanisms intrinsic to heart pacemaker cells contribute to age-associated alterations in heart rate variability in vivo. Aging Cell 2016; 15:716-24. [PMID: 27168363 PMCID: PMC4933656 DOI: 10.1111/acel.12483] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2016] [Indexed: 12/19/2022] Open
Abstract
We aimed to determine how age‐associated changes in mechanisms extrinsic and intrinsic to pacemaker cells relate to basal beating interval variability (BIV) reduction in vivo. Beating intervals (BIs) were measured in aged (23–25 months) and adult (3–4 months) C57BL/6 male mice (i) via ECG in vivo during light anesthesia in the basal state, or in the presence of 0.5 mg mL−1 atropine + 1 mg mL−1 propranolol (in vivo intrinsic conditions), and (ii) via a surface electrogram, in intact isolated pacemaker tissue. BIV was quantified in both time and frequency domains using linear and nonlinear indices. Although the average basal BI did not significantly change with age under intrinsic conditions in vivo and in the intact isolated pacemaker tissue, the average BI was prolonged in advanced age. In vivo basal BIV indices were found to be reduced with age, but this reduction diminished in the intrinsic state. However, in pacemaker tissue BIV indices increased in advanced age vs. adults. In the isolated pacemaker tissue, the sensitivity of the average BI and BIV in response to autonomic receptor stimulation or activation of mechanisms intrinsic to pacemaker cells by broad‐spectrum phosphodiesterase inhibition declined in advanced age. Thus, changes in mechanisms intrinsic to pacemaker cells increase the average BIs and BIV in the mice of advanced age. Autonomic neural input to pacemaker tissue compensates for failure of molecular intrinsic mechanisms to preserve average BI. But this compensation reduces the BIV due to both the imbalance of autonomic neural input to the pacemaker cells and altered pacemaker cell responses to neural input.
Collapse
Affiliation(s)
- Yael Yaniv
- Biomedical Engineering Faculty Technion‐IIT Haifa Israel
| | - Ismayil Ahmet
- Laboratory of Cardiovascular Science Biomedical Research Center Intramural Research Program National Institute on Aging NIH Baltimore MD USA
| | - Kenta Tsutsui
- Laboratory of Cardiovascular Science Biomedical Research Center Intramural Research Program National Institute on Aging NIH Baltimore MD USA
| | - Joachim Behar
- Biomedical Engineering Faculty Technion‐IIT Haifa Israel
| | - Jack M. Moen
- Laboratory of Cardiovascular Science Biomedical Research Center Intramural Research Program National Institute on Aging NIH Baltimore MD USA
| | - Yosuke Okamoto
- Laboratory of Cardiovascular Science Biomedical Research Center Intramural Research Program National Institute on Aging NIH Baltimore MD USA
| | - Toni‐Rose Guiriba
- Laboratory of Cardiovascular Science Biomedical Research Center Intramural Research Program National Institute on Aging NIH Baltimore MD USA
| | - Jie Liu
- Laboratory of Cardiovascular Science Biomedical Research Center Intramural Research Program National Institute on Aging NIH Baltimore MD USA
| | - Rostislav Bychkov
- Laboratory of Cardiovascular Science Biomedical Research Center Intramural Research Program National Institute on Aging NIH Baltimore MD USA
| | - Edward G. Lakatta
- Laboratory of Cardiovascular Science Biomedical Research Center Intramural Research Program National Institute on Aging NIH Baltimore MD USA
| |
Collapse
|
50
|
Therapeutic synergy and complementarity for ischemia/reperfusion injury: β1-adrenergic blockade and phosphodiesterase-3 inhibition. Int J Cardiol 2016; 214:374-80. [DOI: 10.1016/j.ijcard.2016.03.200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 03/08/2016] [Accepted: 03/29/2016] [Indexed: 11/20/2022]
|