1
|
Lee KCY, Williams AL, Hara A, Khadka VS, Hayashi J, Shohet RV. Loss of PKM2 dysregulates inflammatory signaling in the infarcted murine heart. Physiol Rep 2025; 13:e70193. [PMID: 39761962 PMCID: PMC11705480 DOI: 10.14814/phy2.70193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/24/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
Inflammation and a metabolic shift from oxidative metabolism to glycolysis are common in the ischemic heart, the latter partly controlled by pyruvate kinase (muscle, PKM). We previously identified alternative splicing promoting the PKM2 isoform after myocardial infarction (MI). We examined the role of PKM2 physiological upregulation after MI, modeled by ligation of the left anterior descending coronary artery, using global PKM2 knockout (PKM2-/-) mice. Echocardiography showed similar cardiac function between PKM2-/- and control mice after MI. However, PKM2-/- infarcted hearts had increased abundances of transcripts associated with oxidative stress and immune responses. Immunohistochemistry revealed greater abundance of macrophages in PKM2-/- hearts prior to MI, with a small increase in CD86+ macrophages in PKM2-/- infarcted hearts. Elevated baseline plasma IL-6, IL-1β, and C-reactive protein, and cardiac IL-6, 3 days post-MI, were observed in PKM2-/- mice. Oxidative lipid products were also elevated in baseline PKM2-/- hearts, while antioxidant glutathione peroxidase 4 was reduced. Greater fibrosis was seen in PKM2-/- hearts 28 days after MI. These findings suggest Pkm2 ablation primes the heart for increased oxidative stress, inflammation, and fibrosis post-MI. The natural upregulation of PKM2 may mitigate fibrosis by reducing oxidative stress and inflammation, highlighting its protective role in the infarcted heart.
Collapse
Affiliation(s)
- Katie C. Y. Lee
- Department of Medicine, John A. Burns School of MedicineUniversity of Hawaii MānoaHonoluluHawaiiUSA
- Department of Cell and Molecular Biology, John A. Burns School of MedicineUniversity of Hawaii MānoaHonoluluHawaiiUSA
| | - Allison L. Williams
- Department of Medicine, John A. Burns School of MedicineUniversity of Hawaii MānoaHonoluluHawaiiUSA
| | - Akitoshi Hara
- Department of Medicine, John A. Burns School of MedicineUniversity of Hawaii MānoaHonoluluHawaiiUSA
| | - Vedbar S. Khadka
- Bioinformatics Core, Department of Quantitative Health Sciences, John A. Burns School of MedicineUniversity of Hawaii MānoaHonoluluHawaiiUSA
| | - Jeffrey Hayashi
- John A. Burns School of MedicineUniversity of Hawaii MānoaHonoluluHawaiiUSA
| | - Ralph V. Shohet
- Department of Medicine, John A. Burns School of MedicineUniversity of Hawaii MānoaHonoluluHawaiiUSA
| |
Collapse
|
2
|
Shrestha UM, Chae HD, Fang Q, Lee RJ, Packiasamy J, Huynh L, Blecha J, Huynh TL, VanBrocklin HF, Levi J, Seo Y. A Feasibility Study of [ 18F]F-AraG Positron Emission Tomography (PET) for Cardiac Imaging-Myocardial Viability in Ischemia-Reperfusion Injury Model. Mol Imaging Biol 2024; 26:869-878. [PMID: 39060882 DOI: 10.1007/s11307-024-01932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/05/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
PURPOSE Myocardial infarction (MI) with subsequent inflammation is one of the most common heart conditions leading to progressive tissue damage. A reliable imaging marker to assess tissue viability after MI would help determine the risks and benefits of any intervention. In this study, we investigate whether a new mitochondria-targeted imaging agent, 18F-labeled 2'-deoxy-2'-18F-fluoro-9-β-d-arabinofuranosylguanine ([18F]F-AraG), a positron emission tomography (PET) agent developed for imaging activated T cells, is suitable for cardiac imaging and to test the myocardial viability after MI. PROCEDURE To test whether the myocardial [18F]-F-AraG signal is coming from cardiomyocytes or immune infiltrates, we compared cardiac signal in wild-type (WT) mice with that of T cell deficient Rag1 knockout (Rag1 KO) mice. We assessed the effect of dietary nucleotides on myocardial [18F]F-AraG uptake in normal heart by comparing [18F]F-AraG signals between mice fed with purified diet and those fed with purified diet supplemented with nucleotides. The myocardial viability was investigated in rodent model by imaging rat with [18F]F-AraG and 2-deoxy-2[18F]fluoro-D-glucose ([18F]FDG) before and after MI. All PET signals were quantified in terms of the percent injected dose per cc (%ID/cc). We also explored [18F]FDG signal variability and potential T cell infiltration into fibrotic area in the affected myocardium with H&E analysis. RESULTS The difference in %ID/cc for Rag1 KO and WT mice was not significant (p = ns) indicating that the [18F]F-AraG signal in the myocardium was primarily coming from cardiomyocytes. No difference in myocardial uptake was observed between [18F]F-AraG signals in mice fed with purified diet and with purified diet supplemented with nucleotides (p = ns). The [18F]FDG signals showed wider variability at different time points. Noticeable [18F]F-AraG signals were observed in the affected MI regions. There were T cells in the fibrotic area in the H&E analysis, but they did not constitute the predominant infiltrates. CONCLUSIONS Our preliminary preclinical data show that [18F]F-AraG accumulates in cardiomyocytes indicating that it may be suitable for cardiac imaging and to evaluate the myocardial viability after MI.
Collapse
Affiliation(s)
- Uttam M Shrestha
- Department of Radiology and Biomedical Imaging, UCSF Physics Research Laboratory, University of California, 185 Berry Street, STE 350, San Francisco, CA, 94143, USA.
| | - Hee-Don Chae
- CellSight Technologies, Inc., 185 Berry Street, STE 350, San Francisco, CA, 94107, USA
| | - Qizhi Fang
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Randall J Lee
- Department of Medicine, Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Juliet Packiasamy
- CellSight Technologies, Inc., 185 Berry Street, STE 350, San Francisco, CA, 94107, USA
| | - Lyna Huynh
- CellSight Technologies, Inc., 185 Berry Street, STE 350, San Francisco, CA, 94107, USA
| | - Joseph Blecha
- Department of Radiology and Biomedical Imaging, UCSF Physics Research Laboratory, University of California, 185 Berry Street, STE 350, San Francisco, CA, 94143, USA
| | - Tony L Huynh
- Department of Radiology and Biomedical Imaging, UCSF Physics Research Laboratory, University of California, 185 Berry Street, STE 350, San Francisco, CA, 94143, USA
| | - Henry F VanBrocklin
- Department of Radiology and Biomedical Imaging, UCSF Physics Research Laboratory, University of California, 185 Berry Street, STE 350, San Francisco, CA, 94143, USA
| | - Jelena Levi
- CellSight Technologies, Inc., 185 Berry Street, STE 350, San Francisco, CA, 94107, USA.
| | - Youngho Seo
- Department of Radiology and Biomedical Imaging, UCSF Physics Research Laboratory, University of California, 185 Berry Street, STE 350, San Francisco, CA, 94143, USA
| |
Collapse
|
3
|
Zhang X, Zheng W, Sun S, Du Y, Xu W, Sun Z, Liu F, Wang M, Zhao Z, Liu J, Liu Q. Cadmium contributes to cardiac metabolic disruption by activating endothelial HIF1A-GLUT1 axis. Cell Signal 2024; 119:111170. [PMID: 38604344 DOI: 10.1016/j.cellsig.2024.111170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Cadmium (Cd) is an environmental risk factor of cardiovascular diseases. Researchers have found that Cd exposure causes energy metabolic disorders in the heart decades ago. However, the underlying molecular mechanisms are still elusive. In this study, male C57BL/6 J mice were exposed to cadmium chloride (CdCl2) through drinking water for 4 weeks. We found that exposure to CdCl2 increased glucose uptake and utilization, and disrupted normal metabolisms in the heart. In vitro studies showed that CdCl2 specifically increased endothelial glucose uptake without affecting cardiomyocytic glucose uptake and endothelial fatty acid uptake. The glucose transporter 1 (GLUT1) as well as its transcription factor HIF1A was significantly increased after CdCl2 treatment in endothelial cells. Further investigations found that CdCl2 treatment upregulated HIF1A expression by inhibiting its degradation through ubiquitin-proteasome pathway, thereby promoted its transcriptional activation of SLC2A1. Administration of HIF1A small molecule inhibitor echinomycin and A-485 reversed CdCl2-mediated increase of glucose uptake in endothelial cells. In accordance with this, intravenous injection of echinomycin effectively ameliorated CdCl2-mediated metabolic disruptions in the heart. Our study uncovered the molecular mechanisms of Cd in contributing cardiac metabolic disruption by inhibiting HIF1A degradation and increasing GLUT1 transcriptional expression. Inhibition of HIF1A could be a potential strategy to ameliorate Cd-mediated cardiac metabolic disorders and Cd-related cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Medical Physiology, School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong, China; Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Wendan Zheng
- Department of Medical Physiology, School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong, China; Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Shiyu Sun
- Department of Medical Physiology, School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, Shandong, China; Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Yang Du
- Department of Personnel, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Wenjuan Xu
- Department of Health Management, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering Laboratory for Health Management, Ji'nan, Shandong, China
| | - Zongguo Sun
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Fuhong Liu
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Manzhi Wang
- Department of Hematology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Zuohui Zhao
- Department of Pediatric Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Ju Liu
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China
| | - Qiang Liu
- Shandong Provincial Key Medical and Health Laboratory of Translational Medicine in Microvascular Aging, Laboratory of Translational Medicine in Microvascular Regulation, Institute of Microvascular Medicine, Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji'nan, Shandong, China; Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Ji'nan, Shandong, China.
| |
Collapse
|
4
|
Shrestha U, Chae HD, Fang Q, Lee RJ, Packiasamy J, Huynh L, Blecha J, Huynh TL, VanBrocklin HF, Levi J, Seo Y. A feasibility study of [18F]F-AraG positron emission tomography (PET) for cardiac imaging - myocardial viability in ischemia-reperfusion injury model. RESEARCH SQUARE 2024:rs.3.rs-4244476. [PMID: 38746162 PMCID: PMC11092840 DOI: 10.21203/rs.3.rs-4244476/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Purpose Myocardial infarction (MI) with subsequent inflammation is one of the most common heart conditions leading to progressive tissue damage. A reliable imaging marker to assess tissue viability after MI would help determine the risks and benefits of any intervention. In this study, we investigate whether a new mitochondria-targeted imaging agent, 18F-labeled 2'-deoxy-2'-18F-fluoro-9-β-d-arabinofuranosylguanine ([18F]F-AraG), a positron emission tomography (PET) agent developed for imaging activated T cells, is suitable for cardiac imaging and to test the myocardial viability after MI. Procedure To test whether the myocardial [18F]-F-AraG signal is coming from cardiomyocytes or immune infiltrates, we compared cardiac signal in wild-type (WT) mice with that of T cell deficient Rag1 knockout (Rag1 KO) mice. We assessed the effect of dietary nucleotides on myocardial [18F]F-AraG uptake in normal heart by comparing [18F]F-AraG signals between mice fed with purified diet and those fed with purified diet supplemented with nucleotides. The myocardial viability was investigated in rodent model by imaging rat with [18F]F-AraG and 2-deoxy-2[18F]fluoro-D-glucose ([18F]FDG) before and after MI. All PET signals were quantified in terms of the percent injected dose per cc (%ID/cc). We also explored [18F]FDG signal variability and potential T cell infiltration into fibrotic area in the affected myocardium with H&E analysis. Results The difference in %ID/cc for Rag1 KO and WT mice was not significant (p = ns) indicating that the [18F]F-AraG signal in the myocardium was primarily coming from cardiomyocytes. No difference in myocardial uptake was observed between [18F]F-AraG signals in mice fed with purified diet and with purified diet supplemented with nucleotides (p = ns). The [18F]FDG signals showed wider variability at different time points. Noticeable [18F]F-AraG signals were observed in the affected MI regions. There were T cells in the fibrotic area in the H&E analysis, but they did not constitute the predominant infiltrates. Conclusions Our preliminary preclinical data show that [18F]F-AraG accumulates in cardiomyocytes indicating that it may be suitable for cardiac imaging and to evaluate the myocardial viability after MI.
Collapse
Affiliation(s)
| | | | | | | | | | - Lyna Huynh
- UCSF: University of California San Francisco
| | | | | | | | - Jelena Levi
- UCSF: University of California San Francisco
| | - Youngho Seo
- UCSF: University of California San Francisco
| |
Collapse
|
5
|
Harris DD, Sabe SA, Broadwin M, Bellam K, Xu CM, Li JW, Abid MR, Sellke FW. DPP-4 inhibitor sitagliptin treatment results in altered myocardial metabolic proteome and oxidative phosphorylation in a swine model of chronic myocardial ischemia. Physiol Rep 2024; 12:e15976. [PMID: 38472161 PMCID: PMC10933084 DOI: 10.14814/phy2.15976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Small animal models have shown improved cardiac function with DPP-4 inhibition, but many human studies have shown worse outcomes or no benefit. We seek to bridge the gap by studying the DPP-4 inhibitor sitagliptin in a swine model of chronic myocardial ischemia using proteomic analysis. Thirteen Yorkshire swine underwent the placement of an ameroid constrictor on the left coronary circumflex artery to model chronic myocardial ischemia. Two weeks post-op, swine received either sitagliptin 100 mg daily (SIT, n = 5) or no drug (CON, n = 8). After 5 weeks of treatment, swine underwent functional measurements and tissue harvest. In the SIT group compared to CON, there was a trend towards decreased cardiac index (p = 0.06). The non-ischemic and ischemic myocardium had 396 and 166 significantly decreased proteins, respectively, in the SIT group compared to CON (all p < 0.01). This included proteins involved in fatty acid oxidation (FAO), myocardial contraction, and oxidative phosphorylation (OXPHOS). Sitagliptin treatment resulted in a trend towards decreased cardiac index and decreased expression of proteins involved in OXPHOS, FAO, and myocardial contraction in both ischemic and non-ischemic swine myocardium. These metabolic and functional changes may provide some mechanistic evidence for outcomes seen in clinical studies.
Collapse
Affiliation(s)
- Dwight D. Harris
- Division of Cardiothoracic Surgery, Department of SurgeryCardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Sharif A. Sabe
- Division of Cardiothoracic Surgery, Department of SurgeryCardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Mark Broadwin
- Division of Cardiothoracic Surgery, Department of SurgeryCardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Krishna Bellam
- Division of Cardiothoracic Surgery, Department of SurgeryCardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Cynthia M. Xu
- Division of Cardiothoracic Surgery, Department of SurgeryCardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Janelle W. Li
- Division of Cardiothoracic Surgery, Department of SurgeryCardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - M. Ruhul Abid
- Division of Cardiothoracic Surgery, Department of SurgeryCardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| | - Frank W. Sellke
- Division of Cardiothoracic Surgery, Department of SurgeryCardiovascular Research Center, Rhode Island Hospital, Alpert Medical School of Brown UniversityProvidenceRhode IslandUSA
| |
Collapse
|
6
|
Sigle M, Rohlfing AK, Kenny M, Scheuermann S, Sun N, Graeßner U, Haug V, Sudmann J, Seitz CM, Heinzmann D, Schenke-Layland K, Maguire PB, Walch A, Marzi J, Gawaz MP. Translating genomic tools to Raman spectroscopy analysis enables high-dimensional tissue characterization on molecular resolution. Nat Commun 2023; 14:5799. [PMID: 37726278 PMCID: PMC10509269 DOI: 10.1038/s41467-023-41417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 09/04/2023] [Indexed: 09/21/2023] Open
Abstract
Spatial transcriptomics of histological sections have revolutionized research in life sciences and enabled unprecedented insights into genetic processes involved in tissue reorganization. However, in contrast to genomic analysis, the actual biomolecular composition of the sample has fallen behind, leaving a gap of potentially highly valuable information. Raman microspectroscopy provides untargeted spatiomolecular information at high resolution, capable of filling this gap. In this study we demonstrate spatially resolved Raman "spectromics" to reveal homogeneity, heterogeneity and dynamics of cell matrix on molecular levels by repurposing state-of-the-art bioinformatic analysis tools commonly used for transcriptomic analyses. By exploring sections of murine myocardial infarction and cardiac hypertrophy, we identify myocardial subclusters when spatially approaching the pathology, and define the surrounding metabolic and cellular (immune-) landscape. Our innovative, label-free, non-invasive "spectromics" approach could therefore open perspectives for a profound characterization of histological samples, while additionally allowing the combination with consecutive downstream analyses of the very same specimen.
Collapse
Affiliation(s)
- Manuel Sigle
- Department of Cardiology and Angiology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Anne-Katrin Rohlfing
- Department of Cardiology and Angiology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Martin Kenny
- UCD Conway SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Sophia Scheuermann
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tuebingen, 72076, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, 72076, Tuebingen, Germany
| | - Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Ulla Graeßner
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tuebingen, 72076, Tuebingen, Germany
| | - Verena Haug
- Department of Cardiology and Angiology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Jessica Sudmann
- Department of Cardiology and Angiology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Christian M Seitz
- Department of Pediatric Hematology and Oncology, University Children's Hospital Tuebingen, 72076, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, 72076, Tuebingen, Germany
| | - David Heinzmann
- Department of Cardiology and Angiology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
| | - Katja Schenke-Layland
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, 72076, Tuebingen, Germany
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770, Reutlingen, Germany
| | - Patricia B Maguire
- UCD Conway SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- Institute for Discovery, O'Brien Centre for Science, University College Dublin, Dublin, Ireland
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Julia Marzi
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tuebingen, 72076, Tuebingen, Germany
- Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany
- NMI Natural and Medical Sciences Institute at the University of Tuebingen, 72770, Reutlingen, Germany
| | - Meinrad Paul Gawaz
- Department of Cardiology and Angiology, University Hospital Tuebingen, Eberhard Karls University Tuebingen, 72076, Tuebingen, Germany.
| |
Collapse
|
7
|
Mouton AJ, Aitken NM, Moak SP, do Carmo JM, da Silva AA, Omoto ACM, Li X, Wang Z, Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA, Hall JE. Temporal changes in glucose metabolism reflect polarization in resident and monocyte-derived macrophages after myocardial infarction. Front Cardiovasc Med 2023; 10:1136252. [PMID: 37215542 PMCID: PMC10196495 DOI: 10.3389/fcvm.2023.1136252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/28/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Metabolic reprogramming from glycolysis to the mitochondrial tricarboxylic acid (TCA) cycle and oxidative phosphorylation may mediate macrophage polarization from the pro-inflammatory M1 to the anti-inflammatory M2 phenotype. We hypothesized that changes in cardiac macrophage glucose metabolism would reflect polarization status after myocardial infarction (MI), ranging from the early inflammatory phase to the later wound healing phase. Methods MI was induced by permanent ligation of the left coronary artery in adult male C57BL/6J mice for 1 (D1), 3 (D3), or 7 (D7) days. Infarct macrophages were subjected to metabolic flux analysis or gene expression analysis. Monocyte versus resident cardiac macrophage metabolism was assessed using mice lacking the Ccr2 gene (CCR2 KO). Results By flow cytometry and RT-PCR, D1 macrophages exhibited an M1 phenotype while D7 macrophages exhibited an M2 phenotype. Macrophage glycolysis (extracellular acidification rate) was increased at D1 and D3, returning to basal levels at D7. Glucose oxidation (oxygen consumption rate) was decreased at D3, returning to basal levels at D7. At D1, glycolytic genes were elevated (Gapdh, Ldha, Pkm2), while TCA cycle genes were elevated at D3 (Idh1 and Idh2) and D7 (Pdha1, Idh1/2, Sdha/b). Surprisingly, Slc2a1 and Hk1/2 were increased at D7, as well as pentose phosphate pathway (PPP) genes (G6pdx, G6pd2, Pgd, Rpia, Taldo1), indicating increased PPP activity. Macrophages from CCR2 KO mice showed decreased glycolysis and increased glucose oxidation at D3, and decreases in Ldha and Pkm2 expression. Administration of dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, robustly decreased pyruvate dehydrogenase phosphorylation in the non-infarcted remote zone, but did not affect macrophage phenotype or metabolism in the infarct zone. Discussion Our results indicate that changes in glucose metabolism and the PPP underlie macrophage polarization following MI, and that metabolic reprogramming is a key feature of monocyte-derived but not resident macrophages.
Collapse
Affiliation(s)
- Alan J. Mouton
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, United States
| | - Nikaela M. Aitken
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, United States
| | - Sydney P. Moak
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, United States
| | - Jussara M. do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, United States
| | - Alexandre A. da Silva
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, United States
| | - Ana C. M. Omoto
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, United States
| | - Xuan Li
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, United States
| | - Zhen Wang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, United States
| | | | - Simona G. Codreanu
- Department of Chemistry and Center for Innovative Technology, Vanderbilt University, Nashville, TN, United States
| | - Stacy D. Sherrod
- Department of Chemistry and Center for Innovative Technology, Vanderbilt University, Nashville, TN, United States
| | - John A. McLean
- Department of Chemistry and Center for Innovative Technology, Vanderbilt University, Nashville, TN, United States
| | - John E. Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, United States
| |
Collapse
|
8
|
Tian H, Zhao X, Zhang Y, Xia Z. Abnormalities of glucose and lipid metabolism in myocardial ischemia-reperfusion injury. Biomed Pharmacother 2023; 163:114827. [PMID: 37141734 DOI: 10.1016/j.biopha.2023.114827] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/23/2023] [Accepted: 04/30/2023] [Indexed: 05/06/2023] Open
Abstract
Myocardial ischemia-reperfusion injury is a common condition in cardiovascular diseases, and the mechanism of its occurrence involves multiple complex metabolic pathways and signaling pathways. Among these pathways, glucose metabolism and lipid metabolism play important roles in regulating myocardial energy metabolism. Therefore, this article focuses on the roles of glucose metabolism and lipid metabolism in myocardial ischemia-reperfusion injury, including glycolysis, glucose uptake and transport, glycogen metabolism and the pentose phosphate pathway; and triglyceride metabolism, fatty acid uptake and transport, phospholipid metabolism, lipoprotein metabolism, and cholesterol metabolism. Finally, due to the different alterations and development of glucose metabolism and lipid metabolism in myocardial ischemia-reperfusion, there are also complex interregulatory relationships between them. In the future, modulating the equilibrium between glucose metabolism and lipid metabolism in cardiomyocytes and ameliorating aberrations in myocardial energy metabolism represent highly promising novel strategies for addressing myocardial ischemia-reperfusion injury. Therefore, a comprehensive exploration of glycolipid metabolism can offer novel theoretical and clinical insights into the prevention and treatment of myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Hao Tian
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xiaoshuai Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yuxi Zhang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China.
| |
Collapse
|
9
|
Fatmi MK, Ren D, Fedorova J, Zoungrana LI, Wang H, Davitt K, Li Z, Iglesias M, Lesnefsky EJ, Krause‐Hauch M, Li J. Cardiomyocyte Pdk4 response is associated with metabolic maladaptation in aging. Aging Cell 2023; 22:e13800. [PMID: 36797808 PMCID: PMC10086528 DOI: 10.1111/acel.13800] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 02/18/2023] Open
Abstract
Ischemic heart disease (IHD) is the leading cause of death, with age range being the primary factor for development. The mechanisms by which aging increases vulnerability to ischemic insult are not well understood. We aim to use single-cell RNA sequencing to discover transcriptional differences in various cell types between aged and young mice, which may contribute to aged-related vulnerability to ischemic insult. Utilizing 10× Genomics Single-Cell RNA sequencing, we were able to complete bioinformatic analysis to identity novel differential gene expression. During the analysis of our collected samples, we detected Pyruvate Dehydrogenase Kinase 4 (Pdk4) expression to be remarkably differentially expressed. Particularly in cardiomyocyte cell populations, Pdk4 was found to be significantly upregulated in the young mouse population compared to the aged mice under ischemic/reperfusion conditions. Pdk4 is responsible for inhibiting the enzyme pyruvate dehydrogenase, resulting in the regulation of glucose metabolism. Due to decreased Pdk4 expression in aged cardiomyocytes, there may be an increased reliance on glucose oxidization for energy. Through biochemical metabolomics analysis, it was observed that there is a greater abundance of pyruvate in young hearts in contrast to their aged counterparts, indicating less glycolytic activity. We believe that Pdk4 response provides valuable insight towards mechanisms that allow for the young heart to handle ischemic insult stress more effectively than the aged heart.
Collapse
Affiliation(s)
| | - Di Ren
- Department of SurgeryMorsani College of MedicineTampaFloridaUSA
| | - Julia Fedorova
- Department of SurgeryMorsani College of MedicineTampaFloridaUSA
| | | | - Hao Wang
- Department of SurgeryMorsani College of MedicineTampaFloridaUSA
| | - Kayla Davitt
- Department of SurgeryMorsani College of MedicineTampaFloridaUSA
| | - Zehui Li
- Department of Medical Engineering, College of Engineering and Morsani College of MedicineUniversity of South FloridaTampaFloridaUSA
| | | | - Edward J. Lesnefsky
- Pauley Heart Center, Division of Cardiology, Department of Internal MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
- Cardiology Section, Medical Service, Richmond Department of Veterans Affairs Medical CenterRichmondVirginiaUSA
| | - Meredith Krause‐Hauch
- Department of SurgeryMorsani College of MedicineTampaFloridaUSA
- James A. Haley Veterans' HospitalTampaFloridaUSA
| | - Ji Li
- Department of SurgeryMorsani College of MedicineTampaFloridaUSA
- James A. Haley Veterans' HospitalTampaFloridaUSA
| |
Collapse
|
10
|
Xu CM, Karbasiafshar C, Brinck Teixeira R, Ahsan N, Blume Corssac G, Sellke FW, Abid MR. Proteomic Assessment of Hypoxia-Pre-Conditioned Human Bone Marrow Mesenchymal Stem Cell-Derived Extracellular Vesicles Demonstrates Promise in the Treatment of Cardiovascular Disease. Int J Mol Sci 2023; 24:1674. [PMID: 36675188 PMCID: PMC9866304 DOI: 10.3390/ijms24021674] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
Human bone marrow mesenchymal stem cell derived-extracellular vesicles (HBMSC-EV) are known for their regenerative and anti-inflammatory effects in animal models of myocardial ischemia. However, it is not known whether the efficacy of the EVs can be modulated by pre-conditioning of HBMSC by exposing them to either starvation or hypoxia prior to EV collection. HBMSC-EVs were isolated following normoxia starvation (NS), normoxia non-starvation (NNS), hypoxia starvation (HS), or hypoxia non-starvation (HNS) pre-conditioning. The HBMSC-EVs were characterized by nanoparticle tracking analysis, electron microscopy, Western blot, and proteomic analysis. Comparative proteomic profiling revealed that starvation pre-conditioning led to a smaller variety of proteins expressed, with the associated lesser effect of normoxia versus hypoxia pre-conditioning. In the absence of starvation, normoxia and hypoxia pre-conditioning led to disparate HBMSC-EV proteomic profiles. HNS HBMSC-EV was found to have the greatest variety of proteins overall, with 74 unique proteins, the greatest number of redox proteins, and pathway analysis suggestive of improved angiogenic properties. Future HBMSC-EV studies in the treatment of cardiovascular disease may achieve the most therapeutic benefits from hypoxia non-starved pre-conditioned HBMSC. This study was limited by the lack of functional and animal models of cardiovascular disease and transcriptomic studies.
Collapse
Affiliation(s)
- Cynthia M. Xu
- Cardiovascular Research Center, Rhode Island Hospital, Providence, RI 02903, USA
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | | | - Rayane Brinck Teixeira
- Cardiovascular Research Center, Rhode Island Hospital, Providence, RI 02903, USA
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - Nagib Ahsan
- Mass Spectrometry, Proteomics and Metabolomics Core Facility, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| | - Giana Blume Corssac
- Cardiovascular Physiology Laboratory, Basic Health Sciences Institute, UFRGS, Porto Alegre, RS, Brazil
| | - Frank W. Sellke
- Cardiovascular Research Center, Rhode Island Hospital, Providence, RI 02903, USA
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| | - M. Ruhul Abid
- Cardiovascular Research Center, Rhode Island Hospital, Providence, RI 02903, USA
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI 02903, USA
| |
Collapse
|
11
|
Dhar A, Venkadakrishnan J, Roy U, Vedam S, Lalwani N, Ramos KS, Pandita TK, Bhat A. A comprehensive review of the novel therapeutic targets for the treatment of diabetic cardiomyopathy. Ther Adv Cardiovasc Dis 2023; 17:17539447231210170. [PMID: 38069578 PMCID: PMC10710750 DOI: 10.1177/17539447231210170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 10/09/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is characterized by structural and functional abnormalities in the myocardium affecting people with diabetes. Treatment of DCM focuses on glucose control, blood pressure management, lipid-lowering, and lifestyle changes. Due to limited therapeutic options, DCM remains a significant cause of morbidity and mortality in patients with diabetes, thus emphasizing the need to develop new therapeutic strategies. Ongoing research is aimed at understanding the underlying molecular mechanism(s) involved in the development and progression of DCM, including oxidative stress, inflammation, and metabolic dysregulation. The goal is to develope innovative pharmaceutical therapeutics, offering significant improvements in the clinical management of DCM. Some of these approaches include the effective targeting of impaired insulin signaling, cardiac stiffness, glucotoxicity, lipotoxicity, inflammation, oxidative stress, cardiac hypertrophy, and fibrosis. This review focuses on the latest developments in understanding the underlying causes of DCM and the therapeutic landscape of DCM treatment.
Collapse
Affiliation(s)
- Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana, India
| | | | - Utsa Roy
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana, India
| | - Sahithi Vedam
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana, India
| | - Nikita Lalwani
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana, India
| | - Kenneth S. Ramos
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Tej K. Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir (UT) 184311, India
| |
Collapse
|
12
|
Oknińska M, Mączewski M, Mackiewicz U. Ventricular arrhythmias in acute myocardial ischaemia-Focus on the ageing and sex. Ageing Res Rev 2022; 81:101722. [PMID: 36038114 DOI: 10.1016/j.arr.2022.101722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 01/31/2023]
Abstract
Annually, approximately 17 million people die from cardiovascular diseases worldwide, half of them suddenly. The most common direct cause of sudden cardiac death is ventricular arrhythmia triggered by an acute coronary syndrome (ACS). The study summarizes the knowledge of the mechanisms of arrhythmia onset during ACS in humans and in animal models and factors that may influence the susceptibility to life-threatening arrhythmias during ACS with particular focus on the age and sex. The real impact of age and sex on the arrhythmic susceptibility within the setting of acute ischaemia is masked by the fact that ACSs result from coronary artery disease appearing with age much earlier among men than among women. However, results of researches show that in ageing process changes with potential pro-arrhythmic significance, such as increased fibrosis, cardiomyocyte hypertrophy, decrease number of gap junction channels, disturbances of the intracellular Ca2+ signalling or changes in electrophysiological parameters, occur independently of the development of cardiovascular diseases and are more severe in male individuals. A review of the literature also indicates a marked paucity of research in this area in female and elderly individuals. Greater awareness of sex differences in the aging process could help in the development of personalized prevention methods targeting potential pro-arrhythmic factors in patients of both sexes to reduce mortality during the acute phase of myocardial infarction. This is especially important in an era of aging populations in which women will predominate due to their longer lifespan.
Collapse
Affiliation(s)
- Marta Oknińska
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Michał Mączewski
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland
| | - Urszula Mackiewicz
- Department of Clinical Physiology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland.
| |
Collapse
|
13
|
Nakayama Y, Mukai N, Kreitzer G, Patwari P, Yoshioka J. Interaction of ARRDC4 With GLUT1 Mediates Metabolic Stress in the Ischemic Heart. Circ Res 2022; 131:510-527. [PMID: 35950500 PMCID: PMC9444972 DOI: 10.1161/circresaha.122.321351] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/01/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND An ancient family of arrestin-fold proteins, termed alpha-arrestins, may have conserved roles in regulating nutrient transporter trafficking and cellular metabolism as adaptor proteins. One alpha-arrestin, TXNIP (thioredoxin-interacting protein), is known to regulate myocardial glucose uptake. However, the in vivo role of the related alpha-arrestin, ARRDC4 (arrestin domain-containing protein 4), is unknown. METHODS We first tested whether interaction with GLUTs (glucose transporters) is a conserved function of the mammalian alpha-arrestins. To define the in vivo function of ARRDC4, we generated and characterized a novel Arrdc4 knockout (KO) mouse model. We then analyzed the molecular interaction between arrestin domains and the basal GLUT1. RESULTS ARRDC4 binds to GLUT1, induces its endocytosis, and blocks cellular glucose uptake in cardiomyocytes. Despite the closely shared protein structure, ARRDC4 and its homologue TXNIP operate by distinct molecular pathways. Unlike TXNIP, ARRDC4 does not increase oxidative stress. Instead, ARRDC4 uniquely mediates cardiomyocyte death through its effects on glucose deprivation and endoplasmic reticulum stress. At baseline, Arrdc4-KO mice have mild fasting hypoglycemia. Arrdc4-KO hearts exhibit a robust increase in myocardial glucose uptake and glycogen storage. Accordingly, deletion of Arrdc4 improves energy homeostasis during ischemia and protects cardiomyocytes against myocardial infarction. Furthermore, structure-function analyses of the interaction of ARRDC4 with GLUT1 using both scanning mutagenesis and deep-learning Artificial Intelligence identify specific residues in the C-terminal arrestin-fold domain as the interaction interface that regulates GLUT1 function, revealing a new molecular target for potential therapeutic intervention against myocardial ischemia. CONCLUSIONS These results uncover a new mechanism of ischemic injury in which ARRDC4 drives glucose deprivation-induced endoplasmic reticulum stress leading to cardiomyocyte death. Our findings establish ARRDC4 as a new scaffold protein for GLUT1 that regulates cardiac metabolism in response to ischemia and provide insight into the therapeutic strategy for ischemic heart disease.
Collapse
Affiliation(s)
- Yoshinobu Nakayama
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, City College of New York, New York, New York
| | - Nobuhiro Mukai
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, City College of New York, New York, New York
| | - Geri Kreitzer
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, City College of New York, New York, New York
| | - Parth Patwari
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jun Yoshioka
- Department of Molecular, Cellular & Biomedical Sciences, City University of New York School of Medicine, City College of New York, New York, New York
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
14
|
Andrijevic D, Vrselja Z, Lysyy T, Zhang S, Skarica M, Spajic A, Dellal D, Thorn SL, Duckrow RB, Ma S, Duy PQ, Isiktas AU, Liang D, Li M, Kim SK, Daniele SG, Banu K, Perincheri S, Menon MC, Huttner A, Sheth KN, Gobeske KT, Tietjen GT, Zaveri HP, Latham SR, Sinusas AJ, Sestan N. Cellular recovery after prolonged warm ischaemia of the whole body. Nature 2022; 608:405-412. [PMID: 35922506 PMCID: PMC9518831 DOI: 10.1038/s41586-022-05016-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 06/23/2022] [Indexed: 02/05/2023]
Abstract
After cessation of blood flow or similar ischaemic exposures, deleterious molecular cascades commence in mammalian cells, eventually leading to their death1,2. Yet with targeted interventions, these processes can be mitigated or reversed, even minutes or hours post mortem, as also reported in the isolated porcine brain using BrainEx technology3. To date, translating single-organ interventions to intact, whole-body applications remains hampered by circulatory and multisystem physiological challenges. Here we describe OrganEx, an adaptation of the BrainEx extracorporeal pulsatile-perfusion system and cytoprotective perfusate for porcine whole-body settings. After 1 h of warm ischaemia, OrganEx application preserved tissue integrity, decreased cell death and restored selected molecular and cellular processes across multiple vital organs. Commensurately, single-nucleus transcriptomic analysis revealed organ- and cell-type-specific gene expression patterns that are reflective of specific molecular and cellular repair processes. Our analysis comprises a comprehensive resource of cell-type-specific changes during defined ischaemic intervals and perfusion interventions spanning multiple organs, and it reveals an underappreciated potential for cellular recovery after prolonged whole-body warm ischaemia in a large mammal.
Collapse
Affiliation(s)
- David Andrijevic
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.,These authors contributed equally: David Andrijevic, Zvonimir Vrselja, Taras Lysyy, Shupei Zhang
| | - Zvonimir Vrselja
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.,These authors contributed equally: David Andrijevic, Zvonimir Vrselja, Taras Lysyy, Shupei Zhang
| | - Taras Lysyy
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.,Department of Surgery, Yale School of Medicine New Haven, New Haven, CT, USA.,These authors contributed equally: David Andrijevic, Zvonimir Vrselja, Taras Lysyy, Shupei Zhang
| | - Shupei Zhang
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.,Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,These authors contributed equally: David Andrijevic, Zvonimir Vrselja, Taras Lysyy, Shupei Zhang
| | - Mario Skarica
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Ana Spajic
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - David Dellal
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.,Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Stephanie L. Thorn
- Yale Translational Research Imaging Center, Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Robert B. Duckrow
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Shaojie Ma
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Phan Q. Duy
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.,Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.,Medical Scientist Training Program (MD-PhD), Yale School of Medicine, New Haven, CT, USA
| | - Atagun U. Isiktas
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Dan Liang
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Mingfeng Li
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Suel-Kee Kim
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Stefano G. Daniele
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.,Medical Scientist Training Program (MD-PhD), Yale School of Medicine, New Haven, CT, USA
| | - Khadija Banu
- Department of Nephrology, Yale School of Medicine, New Haven, CT, USA
| | - Sudhir Perincheri
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Madhav C. Menon
- Department of Nephrology, Yale School of Medicine, New Haven, CT, USA
| | - Anita Huttner
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Kevin N. Sheth
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.,Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Kevin T. Gobeske
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Gregory T. Tietjen
- Department of Surgery, Yale School of Medicine New Haven, New Haven, CT, USA.,Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Hitten P. Zaveri
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Stephen R. Latham
- Interdisciplinary Center for Bioethics, Yale University, New Haven, CT, USA
| | - Albert J. Sinusas
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,Department of Biomedical Engineering, Yale University, New Haven, CT, USA.,Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT, USA.,Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA. .,Department of Genetics, Yale School of Medicine, New Haven, CT, USA. .,Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA. .,Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA. .,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT, USA. .,Yale Child Study Center, New Haven, CT, USA.
| |
Collapse
|
15
|
Goetzman E, Gong Z, Rajasundaram D, Muzumdar I, Goodchild T, Lefer D, Muzumdar R. Serum Metabolomics Reveals Distinct Profiles during Ischemia and Reperfusion in a Porcine Model of Myocardial Ischemia-Reperfusion. Int J Mol Sci 2022; 23:ijms23126711. [PMID: 35743153 PMCID: PMC9223436 DOI: 10.3390/ijms23126711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 12/16/2022] Open
Abstract
Acute myocardial infarction (MI) is one of the leading causes of death worldwide. Early identification of ischemia and establishing reperfusion remain cornerstones in the treatment of MI, as mortality and morbidity can be significantly reduced by establishing reperfusion to the affected areas. The aim of the current study was to investigate the metabolomic changes in the serum in a swine model of MI induced by ischemia and reperfusion (I/R) injury, and to identify circulating metabolomic biomarkers for myocardial injury at different phases. Female Yucatan minipigs were subjected to 60 min of ischemia followed by reperfusion, and serum samples were collected at baseline, 60 min of ischemia, 4 h of reperfusion, and 24 h of reperfusion. Circulating metabolites were analyzed using an untargeted metabolomic approach. A bioinformatic approach revealed that serum metabolites show distinct profiles during ischemia and during early and late reperfusion. Some notable changes during ischemia include accumulation of metabolites that indicate impaired mitochondrial function and N-terminally modified amino acids. Changes in branched-chain amino-acid metabolites were noted during early reperfusion, while bile acid pathway derivatives and intermediates predominated in the late reperfusion phases. This indicates a potential for such an approach toward identification of the distinct phases of ischemia and reperfusion in clinical situations.
Collapse
Affiliation(s)
- Eric Goetzman
- Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15260, USA; (E.G.); (Z.G.); (D.R.)
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Zhenwei Gong
- Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15260, USA; (E.G.); (Z.G.); (D.R.)
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Dhivyaa Rajasundaram
- Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15260, USA; (E.G.); (Z.G.); (D.R.)
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Ishan Muzumdar
- School of Undergraduate Study, Penn State University, State College, PA 16802, USA;
| | - Traci Goodchild
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (T.G.); (D.L.)
| | - David Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (T.G.); (D.L.)
| | - Radhika Muzumdar
- Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15260, USA; (E.G.); (Z.G.); (D.R.)
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Correspondence:
| |
Collapse
|
16
|
Role of ranolazine in heart failure: From cellular to clinic perspective. Eur J Pharmacol 2022; 919:174787. [PMID: 35114190 DOI: 10.1016/j.ejphar.2022.174787] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/25/2021] [Accepted: 01/25/2022] [Indexed: 12/17/2022]
Abstract
Ranolazine was approved by the US Food and Drug Administration as an antianginal drug in 2006, and has been used since in certain groups of patients with stable angina. The therapeutic action of ranolazine was initially attributed to inhibitory effects on fatty acids metabolism. As investigations went on, however, it developed that the main beneficial effects of ranolazine arise from its action on the late sodium current in the heart. Since late sodium currents were discovered to be involved in various heart pathologies such as ischemia, arrhythmias, systolic and diastolic dysfunctions, and all these conditions are associated with heart failure, ranolazine has in some way been tested either directly or indirectly on heart failure in numerous experimental and clinical studies. As the heart continuously remodels following any sort of severe injury, the inhibition by ranolazine of the underlying mechanisms of cardiac remodeling including ion disturbances, oxidative stress, inflammation, apoptosis, fibrosis, metabolic dysregulation, and neurohormonal impairment are discussed, along with unresolved issues. A projection of pathologies targeted by ranolazine from cellular level to clinical is provided in this review.
Collapse
|
17
|
Laurila S, Rebelos E, Lahesmaa M, Sun L, Schnabl K, Peltomaa TM, Klén R, U-Din M, Honka MJ, Eskola O, Kirjavainen AK, Nummenmaa L, Klingenspor M, Virtanen KA, Nuutila P. Novel effects of the gastrointestinal hormone secretin on cardiac metabolism and renal function. Am J Physiol Endocrinol Metab 2022; 322:E54-E62. [PMID: 34806426 PMCID: PMC8791786 DOI: 10.1152/ajpendo.00260.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/02/2021] [Accepted: 11/14/2021] [Indexed: 11/22/2022]
Abstract
The cardiac benefits of gastrointestinal hormones have been of interest in recent years. The aim of this study was to explore the myocardial and renal effects of the gastrointestinal hormone secretin in the GUTBAT trial (NCT03290846). A placebo-controlled crossover study was conducted on 15 healthy males in fasting conditions, where subjects were blinded to the intervention. Myocardial glucose uptake was measured with [18F]2-fluoro-2-deoxy-d-glucose ([18F]FDG) positron emission tomography. Kidney function was measured with [18F]FDG renal clearance and estimated glomerular filtration rate (eGFR). Secretin increased myocardial glucose uptake compared with placebo (secretin vs. placebo, means ± SD, 15.5 ± 7.4 vs. 9.7 ± 4.9 μmol/100 g/min, 95% confidence interval (CI) [2.2, 9.4], P = 0.004). Secretin also increased [18F]FDG renal clearance (44.5 ± 5.4 vs. 39.5 ± 8.5 mL/min, 95%CI [1.9, 8.1], P = 0.004), and eGFR was significantly increased from baseline after secretin, compared with placebo (17.8 ± 9.8 vs. 6.0 ± 5.2 ΔmL/min/1.73 m2, 95%CI [6.0, 17.6], P = 0.001). Our results implicate that secretin increases heart work and renal filtration, making it an interesting drug candidate for future studies in heart and kidney failure.NEW & NOTEWORTHY Secretin increases myocardial glucose uptake compared with placebo, supporting a previously proposed inotropic effect. Secretin also increased renal filtration rate.
Collapse
Affiliation(s)
- Sanna Laurila
- Turku PET Centre, University of Turku, Turku, Finland
- Heart Center, Turku University Hospital, Turku, Finland
- Heart Center, Satakunta Central Hospital, Pori, Finland
| | - Eleni Rebelos
- Turku PET Centre, University of Turku, Turku, Finland
| | - Minna Lahesmaa
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Internal Medicine, Jorvi Hospital, Helsinki University Hospital, Helsinki, Finland
| | - Lihua Sun
- Turku PET Centre, University of Turku, Turku, Finland
| | - Katharina Schnabl
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | | | - Riku Klén
- Turku PET Centre, University of Turku, Turku, Finland
| | - Mueez U-Din
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | | | - Olli Eskola
- Turku PET Centre, University of Turku, Turku, Finland
| | | | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Psychology, University of Turku, Turku, Finland
| | - Martin Klingenspor
- Chair for Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Kirsi A Virtanen
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland (UEF), Kuopio, Finland
- Department of Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| |
Collapse
|
18
|
Olejnik A, Banaszkiewicz M, Krzywonos-Zawadzka A, Bil-Lula I. The Klotho protein supports redox balance and metabolic functions of cardiomyocytes during ischemia/reperfusion injury. Cardiol J 2021; 29:836-849. [PMID: 34967938 PMCID: PMC9550321 DOI: 10.5603/cj.a2021.0174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 11/22/2021] [Accepted: 12/05/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Acute heart ischemia followed by reperfusion leads to overproduction of reactive oxygen/ /nitrogen species (ROS/RNS), disrupted expression of nitric oxide synthase (NOS) and unbalanced glucose metabolism. Klotho is a membrane-bound or soluble protein that exerts protective activity in many organs. While Klotho is produced mainly in the kidneys and brain, it has been recently proven that Klotho is expressed in the cardiomyocytes as well. This study aimed to show the influence of the Klotho protein on oxidative/nitrosative stress and metabolic function of the cardiomyocytes subjected to ischemia/reperfusion (I/R) injury. METHODS Human cardiac myocytes underwent in vitro chemical I/R (with sodium cyanide and 2-deoxyglucose), in the presence or absence of the recombinant human Klotho protein. The present study included an investigation of cell injury markers, level of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX), level of oxidative/nitrosative stress and metabolic processes of the cardiomyocytes. RESULTS Administration of Klotho protein resulted in mitigation of injury, decreased level of NOX2 and NOX4, reduced generation of ROS/RNS and hydrogen peroxide (H2O2), decreased expression of inducible NOS and limited production of nitrates/nitrites in cells under I/R. Glucose uptake and lactate production in the cardiomyocytes subjected to I/R were normalized after Klotho supplementation. CONCLUSIONS The Klotho protein participates in the regulation of redox balance and supports metabolic homeostasis of the cardiomyocytes and hence, contributes to protection against I/R injury.
Collapse
Affiliation(s)
- Agnieszka Olejnik
- Division of Clinical Chemistry and Laboratory Haematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
| | - Marta Banaszkiewicz
- Division of Clinical Chemistry and Laboratory Haematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Anna Krzywonos-Zawadzka
- Division of Clinical Chemistry and Laboratory Haematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Iwona Bil-Lula
- Division of Clinical Chemistry and Laboratory Haematology, Department of Medical Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
19
|
Dynamic Regulation of Cysteine Oxidation and Phosphorylation in Myocardial Ischemia-Reperfusion Injury. Cells 2021; 10:cells10092388. [PMID: 34572037 PMCID: PMC8469016 DOI: 10.3390/cells10092388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/02/2023] Open
Abstract
Myocardial ischemia-reperfusion (I/R) injury significantly alters heart function following infarct and increases the risk of heart failure. Many studies have sought to preserve irreplaceable myocardium, termed cardioprotection, but few, if any, treatments have yielded a substantial reduction in clinical I/R injury. More research is needed to fully understand the molecular pathways that govern cardioprotection. Redox mechanisms, specifically cysteine oxidations, are acute and key regulators of molecular signaling cascades mediated by kinases. Here, we review the role of reactive oxygen species in modifying cysteine residues and how these modifications affect kinase function to impact cardioprotection. This exciting area of research may provide novel insight into mechanisms and likely lead to new treatments for I/R injury.
Collapse
|
20
|
Scheen M, Giraud R, Bendjelid K. Stress hyperglycemia, cardiac glucotoxicity, and critically ill patient outcomes current clinical and pathophysiological evidence. Physiol Rep 2021; 9:e14713. [PMID: 33463901 PMCID: PMC7814494 DOI: 10.14814/phy2.14713] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/09/2020] [Accepted: 12/12/2020] [Indexed: 01/07/2023] Open
Abstract
Stress hyperglycemia is a transient increase in blood glucose during acute physiological stress in the absence of glucose homeostasis dysfunction. Its's presence has been described in critically ill patients who are subject to many physiological insults. In this regard, hyperglycemia and impaired glucose tolerance are also frequent in patients who are admitted to the intensive care unit for heart failure and cardiogenic shock. The hyperglycemia observed at the beginning of these cardiac disorders appears to be related to a variety of stress mechanisms. The release of major stress and steroid hormones, catecholamine overload, and glucagon all participate in generating a state of insulin resistance with increased hepatic glucose output and glycogen breakdown. In fact, the observed pathophysiological response, which appears to regulate a stress situation, is harmful because it induces mitochondrial impairment, oxidative stress-related injury to cells, endothelial damage, and dysfunction of several cellular channels. Paradigms are now being challenged by growing evidence of a phenomenon called glucotoxicity, providing an explanation for the benefits of lowering glucose levels with insulin therapy in these patients. In the present review, the authors present the data published on cardiac glucotoxicity and discuss the benefits of lowering plasma glucose to improve heart function and to positively affect the course of critical illness.
Collapse
Affiliation(s)
- Marc Scheen
- Intensive Care Division, University Hospitals, Geneva, Switzerland.,Geneva Hemodynamic Research Group, Geneva, Switzerland.,Faculty of Medicine, Geneva, Switzerland
| | - Raphael Giraud
- Intensive Care Division, University Hospitals, Geneva, Switzerland.,Geneva Hemodynamic Research Group, Geneva, Switzerland.,Faculty of Medicine, Geneva, Switzerland
| | - Karim Bendjelid
- Intensive Care Division, University Hospitals, Geneva, Switzerland.,Geneva Hemodynamic Research Group, Geneva, Switzerland.,Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
21
|
Liss KH, Ek SE, Lutkewitte AJ, Pietka TA, He M, Skaria P, Tycksen E, Ferguson D, Blanc V, Graham MJ, Hall AM, McGill MR, McCommis KS, Finck BN. Monoacylglycerol Acyltransferase 1 Knockdown Exacerbates Hepatic Ischemia/Reperfusion Injury in Mice With Hepatic Steatosis. Liver Transpl 2021; 27:116-133. [PMID: 32916011 PMCID: PMC7785593 DOI: 10.1002/lt.25886] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/19/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming the most common indication for liver transplantation. The growing prevalence of NAFLD not only increases the demand for liver transplantation, but it also limits the supply of available organs because steatosis predisposes grafts to ischemia/reperfusion injury (IRI) and many steatotic grafts are discarded. We have shown that monoacylglycerol acyltransferase (MGAT) 1, an enzyme that converts monoacylglycerol to diacylglycerol, is highly induced in animal models and patients with NAFLD and is an important mediator in NAFLD-related insulin resistance. Herein, we sought to determine whether Mogat1 (the gene encoding MGAT1) knockdown in mice with hepatic steatosis would reduce liver injury and improve liver regeneration following experimental IRI. Antisense oligonucleotides (ASO) were used to knockdown the expression of Mogat1 in a mouse model of NAFLD. Mice then underwent surgery to induce IRI. We found that Mogat1 knockdown reduced hepatic triacylglycerol accumulation, but it unexpectedly exacerbated liver injury and mortality following experimental ischemia/reperfusion surgery in mice on a high-fat diet. The increased liver injury was associated with robust effects on the hepatic transcriptome following IRI including enhanced expression of proinflammatory cytokines and chemokines and suppression of enzymes involved in intermediary metabolism. These transcriptional changes were accompanied by increased signs of oxidative stress and an impaired regenerative response. We have shown that Mogat1 knockdown in a mouse model of NAFLD exacerbates IRI and inflammation and prolongs injury resolution, suggesting that Mogat1 may be necessary for liver regeneration following IRI and that targeting this metabolic enzyme will not be an effective treatment to reduce steatosis-associated graft dysfunction or failure.
Collapse
Affiliation(s)
- Kim H.H. Liss
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
| | - Shelby E. Ek
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | - Terri A. Pietka
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Mai He
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Priya Skaria
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO
| | - Eric Tycksen
- Department of Genome Technology Access Center, McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO
| | - Daniel Ferguson
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Valerie Blanc
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | | | - Angela M. Hall
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Mitchell R. McGill
- Department of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Kyle S. McCommis
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO
| | - Brian N. Finck
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
22
|
Samuel TJ, Beaudry R, Sarma S, Zaha V, Haykowsky MJ, Nelson MD. Diastolic Stress Testing Along the Heart Failure Continuum. Curr Heart Fail Rep 2019; 15:332-339. [PMID: 30171472 DOI: 10.1007/s11897-018-0409-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW This review summarizes recent developments highlighting the clinical utility of diastolic stress testing along the heart failure continuum. RECENT FINDINGS Invasive hemodynamic assessment of cardiac filling pressures during physiological stress is the gold-standard technique for unmasking diastolic dysfunction. Non-invasive surrogate techniques, such as Doppler ultrasound, have shown excellent agreement with invasive approaches and are now recommended by the American Society of Echocardiography and the European Association of Cardiovascular Imaging. While cycle exercise is often advocated, recent evidence supports the use of isometric handgrip as a viable alternative stressor. Diastolic stress testing is a powerful tool to enhance detection of diastolic dysfunction, is able to differentiate between cardiac and non-cardiac pathology, and should be incorporated into routine clinical assessment.
Collapse
Affiliation(s)
- T Jake Samuel
- The University of Texas at Arlington, Engineering Research Building 453, 500 UTA Blvd, Arlington, TX, 76019, USA
| | - Rhys Beaudry
- The University of Texas at Arlington, Engineering Research Building 453, 500 UTA Blvd, Arlington, TX, 76019, USA
| | - Satyam Sarma
- The University of Texas Southwestern Medical Center, Dallas, TX, USA.,Institute of Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, TX, USA
| | - Vlad Zaha
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mark J Haykowsky
- The University of Texas at Arlington, Engineering Research Building 453, 500 UTA Blvd, Arlington, TX, 76019, USA
| | - Michael D Nelson
- The University of Texas at Arlington, Engineering Research Building 453, 500 UTA Blvd, Arlington, TX, 76019, USA.
| |
Collapse
|
23
|
Loss of GCN5L1 in cardiac cells disrupts glucose metabolism and promotes cell death via reduced Akt/mTORC2 signaling. Biochem J 2019; 476:1713-1724. [PMID: 31138772 DOI: 10.1042/bcj20190302] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/21/2019] [Accepted: 05/27/2019] [Indexed: 12/13/2022]
Abstract
GCN5L1 regulates protein acetylation and mitochondrial energy metabolism in diverse cell types. In the heart, loss of GCN5L1 sensitizes the myocardium to injury from exposure to nutritional excess and ischemia/reperfusion injury. This phenotype is associated with the reduced acetylation of metabolic enzymes and elevated mitochondrial reactive oxygen species (ROS) generation, although the direct molecular targets of GCN5L1 remain largely unknown. In this study, we sought to determine the mechanism by which GCN5L1 impacts energy substrate utilization and mitochondrial health. We find that hypoxia and reoxygenation (H/R) leads to a reduction in cell viability and Akt phosphorylation in GCN5L1 knockdown AC16 cardiomyocytes, in parallel with elevated glucose utilization and impaired fatty acid use. We demonstrate that glycolysis is uncoupled from glucose oxidation under normoxic conditions in GCN5L1-depleted cells. We show that GCN5L1 directly binds to the Akt-activating mTORC2 component Rictor, and that loss of Rictor acetylation is evident in GCN5L1 knockdown cells. Finally, we show that restoring Rictor acetylation in GCN5L1-depleted cells reduces mitochondrial ROS generation and increases cell survival in response to H/R. These studies suggest that GCN5L1 may play a central role in energy substrate metabolism and cell survival via the regulation of Akt/mTORC2 signaling.
Collapse
|
24
|
Wu CY, Satapati S, Gui W, Wynn RM, Sharma G, Lou M, Qi X, Burgess SC, Malloy C, Khemtong C, Sherry AD, Chuang DT, Merritt ME. A novel inhibitor of pyruvate dehydrogenase kinase stimulates myocardial carbohydrate oxidation in diet-induced obesity. J Biol Chem 2018; 293:9604-9613. [PMID: 29739849 DOI: 10.1074/jbc.ra118.002838] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/23/2018] [Indexed: 11/06/2022] Open
Abstract
The pyruvate dehydrogenase complex (PDC) is a key control point of energy metabolism and is subject to regulation by multiple mechanisms, including posttranslational phosphorylation by pyruvate dehydrogenase kinase (PDK). Pharmacological modulation of PDC activity could provide a new treatment for diabetic cardiomyopathy, as dysregulated substrate selection is concomitant with decreased heart function. Dichloroacetate (DCA), a classic PDK inhibitor, has been used to treat diabetic cardiomyopathy, but the lack of specificity and side effects of DCA indicate a more specific inhibitor of PDK is needed. This study was designed to determine the effects of a novel and highly selective PDK inhibitor, 2((2,4-dihydroxyphenyl)sulfonyl) isoindoline-4,6-diol (designated PS10), on pyruvate oxidation in diet-induced obese (DIO) mouse hearts compared with DCA-treated hearts. Four groups of mice were studied: lean control, DIO, DIO + DCA, and DIO + PS10. Both DCA and PS10 improved glucose tolerance in the intact animal. Pyruvate metabolism was studied in perfused hearts supplied with physiological mixtures of long chain fatty acids, lactate, and pyruvate. Analysis was performed using conventional 1H and 13C isotopomer methods in combination with hyperpolarized [1-13C]pyruvate in the same hearts. PS10 and DCA both stimulated flux through PDC as measured by the appearance of hyperpolarized [13C]bicarbonate. DCA but not PS10 increased hyperpolarized [1-13C]lactate production. Total carbohydrate oxidation was reduced in DIO mouse hearts but increased by DCA and PS10, the latter doing so without increasing lactate production. The present results suggest that PS10 is a more suitable PDK inhibitor for treatment of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Cheng-Yang Wu
- From the Department of Biochemistry.,Advanced Imaging Research Center
| | | | | | - R Max Wynn
- From the Department of Biochemistry.,Department of Internal Medicine, and
| | | | - Mingliang Lou
- Chemistry Center, National Institute of Biological Science, Beijing 102206, China, and.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiangbing Qi
- Chemistry Center, National Institute of Biological Science, Beijing 102206, China, and.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | | | - Craig Malloy
- Advanced Imaging Research Center.,Department of Internal Medicine, and.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Chalermchai Khemtong
- Advanced Imaging Research Center.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - A Dean Sherry
- Advanced Imaging Research Center.,Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390.,Department of Chemistry, University of Texas at Dallas, Richardson, Texas 75080
| | - David T Chuang
- From the Department of Biochemistry, .,Department of Internal Medicine, and
| | - Matthew E Merritt
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610,
| |
Collapse
|
25
|
Bi X, Zhang G, Wang X, Nguyen C, May HI, Li X, Al-Hashimi AA, Austin RC, Gillette TG, Fu G, Wang ZV, Hill JA. Endoplasmic Reticulum Chaperone GRP78 Protects Heart From Ischemia/Reperfusion Injury Through Akt Activation. Circ Res 2018; 122:1545-1554. [PMID: 29669712 DOI: 10.1161/circresaha.117.312641] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/30/2018] [Accepted: 04/17/2018] [Indexed: 12/14/2022]
Abstract
RATIONALE Restoration of coronary artery blood flow is the most effective means of ameliorating myocardial damage triggered by ischemic heart disease. However, coronary reperfusion elicits an increment of additional injury to the myocardium. Accumulating evidence indicates that the unfolded protein response (UPR) in cardiomyocytes is activated by ischemia/reperfusion (I/R) injury. Xbp1s (spliced X-box binding protein 1), the most highly conserved branch of the unfolded protein response, is protective in response to cardiac I/R injury. GRP78 (78 kDa glucose-regulated protein), a master regulator of the UPR and an Xbp1s target, is upregulated after I/R. However, its role in the protective response of Xbp1s during I/R remains largely undefined. OBJECTIVE To elucidate the role of GRP78 in the cardiomyocyte response to I/R using both in vitro and in vivo approaches. METHODS AND RESULTS Simulated I/R injury to cultured neonatal rat ventricular myocytes induced apoptotic cell death and strong activation of the UPR and GRP78. Overexpression of GRP78 in neonatal rat ventricular myocytes significantly protected myocytes from I/R-induced cell death. Furthermore, cardiomyocyte-specific overexpression of GRP78 ameliorated I/R damage to the heart in vivo. Exploration of underlying mechanisms revealed that GRP78 mitigates cellular damage by suppressing the accumulation of reactive oxygen species. We go on to show that the GRP78-mediated cytoprotective response involves plasma membrane translocation of GRP78 and interaction with PI3 kinase, culminating in stimulation of Akt. This response is required as inhibition of the Akt pathway significantly blunted the antioxidant activity and cardioprotective effects of GRP78. CONCLUSIONS I/R induction of GRP78 in cardiomyocytes stimulates Akt signaling and protects against oxidative stress, which together protect cells from I/R damage.
Collapse
Affiliation(s)
- Xukun Bi
- From the Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China (X.B., X.L., G.F.).,Division of Cardiology, Department of Internal Medicine (X.B., G.Z., X.W., C.N., H.I.M., T.G.G., Z.V.W., J.A.H.)
| | - Guangyu Zhang
- Division of Cardiology, Department of Internal Medicine (X.B., G.Z., X.W., C.N., H.I.M., T.G.G., Z.V.W., J.A.H.).,University of Texas Southwestern Medical Center, Dallas; Department of Cardiology, Zhongnan Hospital of Wuhan University, Hubei, China (G.Z.)
| | - Xiaoding Wang
- Division of Cardiology, Department of Internal Medicine (X.B., G.Z., X.W., C.N., H.I.M., T.G.G., Z.V.W., J.A.H.).,Department of Cardiology, Renmin Hospital of Wuhan University, Hubei, China (X.W.)
| | - Chau Nguyen
- Division of Cardiology, Department of Internal Medicine (X.B., G.Z., X.W., C.N., H.I.M., T.G.G., Z.V.W., J.A.H.)
| | - Herman I May
- Division of Cardiology, Department of Internal Medicine (X.B., G.Z., X.W., C.N., H.I.M., T.G.G., Z.V.W., J.A.H.)
| | - Xiaoting Li
- From the Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China (X.B., X.L., G.F.)
| | - Ali A Al-Hashimi
- Department of Medicine, Hamilton Center for Kidney Research, McMaster University and the Research Institute of St. Joseph's Healthcare Hamilton, ON, Canada (A.A.A.-H., R.C.A.)
| | - Richard C Austin
- Department of Medicine, Hamilton Center for Kidney Research, McMaster University and the Research Institute of St. Joseph's Healthcare Hamilton, ON, Canada (A.A.A.-H., R.C.A.)
| | - Thomas G Gillette
- Division of Cardiology, Department of Internal Medicine (X.B., G.Z., X.W., C.N., H.I.M., T.G.G., Z.V.W., J.A.H.)
| | - Guosheng Fu
- From the Department of Cardiology, Biomedical Research (Therapy) Center, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China (X.B., X.L., G.F.)
| | - Zhao V Wang
- Division of Cardiology, Department of Internal Medicine (X.B., G.Z., X.W., C.N., H.I.M., T.G.G., Z.V.W., J.A.H.)
| | - Joseph A Hill
- Division of Cardiology, Department of Internal Medicine (X.B., G.Z., X.W., C.N., H.I.M., T.G.G., Z.V.W., J.A.H.).,Department of Molecular Biology (J.A.H.)
| |
Collapse
|
26
|
Nielsen R, Jorsal A, Iversen P, Tolbod L, Bouchelouche K, Sørensen J, Harms HJ, Flyvbjerg A, Bøtker HE, Wiggers H. Heart failure patients with prediabetes and newly diagnosed diabetes display abnormalities in myocardial metabolism. J Nucl Cardiol 2018; 25:169-176. [PMID: 27473218 DOI: 10.1007/s12350-016-0622-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/07/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND In type 2 diabetes, a decrease in myocardial glucose uptake (MGU) may lower glucose oxidation and contribute to progression of chronic heart failure (CHF). However, it is unsettled whether CHF patients with prediabetes have abnormal MGU and myocardial blood flow (MBF) during normal physiological conditions. METHODS AND RESULTS We studied 35 patients with CHF and reduced left ventricular ejections fraction (34 ± 9%) without overt T2D (mean HbA1c: 40 ± 4 mmol/mol) using echocardiography and quantitative measurements of MGU by 18F-FDG-PET and perfusion by 15O-H2O-PET. An oral glucose tolerance test (OGTT) was performed during the FDG-PET, which identified 17 patients with abnormal and 18 patients with normal glucometabolic response. Global MGU was higher in patients with normal OGTT response (0.31 ± 0.09 µmol/g/min) compared with patients with abnormal OGTT response (0.25 ± 0.09 µmol/g/min) (P = 0.05). MBF (P = 0.22) and myocardial flow reserve (MFR) (P = 0.83) were similar in the study groups. The reduced MGU in prediabetic patients was attributable to reduced MGU in viable myocardium with normal MFR (P < 0.001). CONCLUSION CHF patients with prediabetes have reduced MGU in segments with preserved MFR as compared to CHF patients with normal glucose tolerance. Whether reversal of these myocardial abnormalities can improve outcome needs to be investigated in large-scale studies.
Collapse
Affiliation(s)
- Roni Nielsen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark.
| | - Anders Jorsal
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Peter Iversen
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Tolbod
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Kirsten Bouchelouche
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Sørensen
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Hendrik Johannes Harms
- Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Allan Flyvbjerg
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Henrik Wiggers
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
27
|
Drozd K, Ahmadi A, Deng Y, Jiang B, Petryk J, Thorn S, Stewart D, Beanlands R, deKemp RA, DaSilva JN, Mielniczuk LM. Effects of an endothelin receptor antagonist, Macitentan, on right ventricular substrate utilization and function in a Sugen 5416/hypoxia rat model of severe pulmonary arterial hypertension. J Nucl Cardiol 2017; 24:1979-1989. [PMID: 27688036 DOI: 10.1007/s12350-016-0663-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 07/25/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Altered myocardial energy metabolism has been linked to worsening of RV function in pulmonary arterial hypertension (PAH). The aim of this study was to evaluate RV glucose and fatty acid metabolism in vivo in a rat model of PAH using positron emission tomography (PET) and investigate the effects of Macitentan on RV substrate utilization. METHODS PAH was induced in male Sprague-Dawley rats by a single subcutaneous injection of Sugen 5416 (20 mg/kg) followed by 3 weeks of hypoxia (10% oxygen). At week 5 post-injection, the PAH rats were randomized to Macitentan (30 mg/kg daily) treatment or no treatment. Substrate utilization was serially assessed 5 and 8 weeks post-injection with 2-[18F]fluoro-2-deoxyglucose (FDG) and 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid (FTHA) PET for glucose and fatty acid metabolism respectively and correlated with in vivo functional measurements. RESULTS PAH induction resulted in a 2.5-fold increase in RV FDG uptake (standardized uptake value (SUV) of normal control: 1.6 ± 0.4, week 5: 4.1 ± 1.9, week 8: 4.0 ± 1.6, P < 0.05 for all groups vs. control). RV FTHA showed twofold increased uptake at week 5 (SUV control: 1.50 ± 0.39, week 5: 3.06 ± 1.10, P = 0.03). Macitentan significantly decreased RV FDG uptake at 8 weeks (SUV: 2.5 ± 0.9, P = 0.04), associated with improved RV ejection fraction and reduced RV systolic pressure, while FTHA uptake was maintained. CONCLUSION PAH is associated with metabolic changes in the RV, characterized by a marked increase in FDG and FTHA uptake. Macitentan treatment reduced PAH severity and was associated with a decrease in RV FDG uptake and improved RV function.
Collapse
Affiliation(s)
- Katarzyna Drozd
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON, K1Y 4W7, Canada
| | - Ali Ahmadi
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON, K1Y 4W7, Canada
| | - Yupu Deng
- Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON, Canada
| | - Baohua Jiang
- Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON, Canada
| | - Julia Petryk
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON, K1Y 4W7, Canada
| | - Stephanie Thorn
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON, K1Y 4W7, Canada
| | - Duncan Stewart
- Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON, Canada
| | - Rob Beanlands
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON, K1Y 4W7, Canada
| | - Robert A deKemp
- Department of Cardiac Imaging, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Jean N DaSilva
- Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Research Centre (CRCHUM), Montreal, QC, Canada
| | - Lisa M Mielniczuk
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON, K1Y 4W7, Canada.
| |
Collapse
|
28
|
Popovic D, Martic D, Djordjevic T, Pesic V, Guazzi M, Myers J, Mohebi R, Arena R. Oxygen consumption and carbon-dioxide recovery kinetics in the prediction of coronary artery disease severity and outcome. Int J Cardiol 2017; 248:39-45. [DOI: 10.1016/j.ijcard.2017.06.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 10/19/2022]
|
29
|
Dalal JJ, Mishra S. Modulation of myocardial energetics: An important category of agents in the multimodal treatment of coronary artery disease and heart failure. Indian Heart J 2017. [PMID: 28648439 PMCID: PMC5485408 DOI: 10.1016/j.ihj.2017.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The combined and relative contribution of glucose and fatty acid oxidation generates myocardial energy, which regulates the cardiac function and efficiency. Any dysregulation in this metabolic homeostasis can adversely affect the function of heart and contribute to cardiac conditions such as angina and heart failure. Metabolic agents ameliorate this internal metabolic anomaly, by shifting the energy production pathway from free fatty acids to glucose, resulting in a better performance of the heart. Metabolic therapy is relatively a new modality, which functions through optimization of cardiac substrate metabolism. Among the metabolic therapies, trimetazidine and ranolazine are the agents presently available in India. In the present review, we would like to present the metabolic perspective of pathophysiology of coronary artery disease and heart failure, and metabolic therapy by using trimetazidine and ranolazine.
Collapse
Affiliation(s)
| | - Sundeep Mishra
- Department of Cardiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
30
|
Lu L, Wu D, Li L, Chen L. Apelin/APJ system: A bifunctional target for cardiac hypertrophy. Int J Cardiol 2017; 230:164-170. [DOI: 10.1016/j.ijcard.2016.11.215] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/06/2016] [Indexed: 12/26/2022]
|
31
|
The role of CD36 in the regulation of myocardial lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1450-60. [DOI: 10.1016/j.bbalip.2016.03.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/12/2016] [Accepted: 03/14/2016] [Indexed: 12/29/2022]
|
32
|
Drevinge C, Dalen KT, Mannila MN, Täng MS, Ståhlman M, Klevstig M, Lundqvist A, Mardani I, Haugen F, Fogelstrand P, Adiels M, Asin-Cayuela J, Ekestam C, Gådin JR, Lee YK, Nebb H, Svedlund S, Johansson BR, Hultén LM, Romeo S, Redfors B, Omerovic E, Levin M, Gan LM, Eriksson P, Andersson L, Ehrenborg E, Kimmel AR, Borén J, Levin MC. Perilipin 5 is protective in the ischemic heart. Int J Cardiol 2016; 219:446-54. [DOI: 10.1016/j.ijcard.2016.06.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/12/2016] [Indexed: 10/21/2022]
|
33
|
Keith M, Errett L. Myocardial Metabolism and Improved OutcomesAfter High Risk Heart Surgery. Semin Cardiothorac Vasc Anesth 2016; 9:167-71. [PMID: 15920644 DOI: 10.1177/108925320500900212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The healthy heart relies primarily upon the oxidation of fatty acids for energy, with the remaining coming from the oxidation of glucose and lactate. Changes in energy requirements are met by altering the balance of fuels depending upon the hormonal milieu as well as upon the availability of oxygen and substrates. The use of carbohydrates for fuel is metabolically more efficient and may improve the coupling between glycolysis and pyruvate oxidation. Therefore, promoting a shift in metabolic fuel substrate use during times of reduced oxygen availability may represent a cardioprotective strategy. Subsequently, there has been interest in pharmacologic strategies such insulin or drugs like ranolazine and dichloroacetate that stimulate carbohydrate oxidation either by enhancing oxidation at the pyruvate dehydrogenase complex or by limiting fatty acid oxidation. There is evidence that nutrients may also be able to stimulate carbohydrate oxidation. Previous studies by our group suggest that a combination of nutrients (carnitine, coenzyme Q10, and taurine) may work together, resulting in pleiotropic cardioprotective effects. Our current studies are investigating the potential of nutrients as both a preventative and adjunctive treatment before and after an ischemic event. These investigations will determine the role of nutritional supplementation in the care of patients with ischemic injury.
Collapse
Affiliation(s)
- Mary Keith
- Division of Cardiovascular and Thoracic Surgery, Terrence Donnelly Heart Centre, St. Michael's Hospital and The Department of Surgery, University of Toronto, Ontario, Canada
| | | |
Collapse
|
34
|
Ambrosio G, Tamargo J, Grant PJ. Non-haemodynamic anti-anginal agents in the management of patients with stable coronary artery disease and diabetes: A review of the evidence. Diab Vasc Dis Res 2016; 13:98-112. [PMID: 26873904 DOI: 10.1177/1479164115609028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Patients with coronary artery disease and concomitant diabetes mellitus tend to have more extensive vessel disease than non-diabetes mellitus coronary artery disease patients, are at high risk of adverse cardiovascular events and suffer from a great anginal burden. Very few trials have specifically addressed the issue of optimal anti-anginal therapy in coronary artery disease patients who also have diabetes mellitus. Among 'classical' anti-anginal agents, recent guidelines do not specifically recommend any molecule over others; however, European Society of Cardiology guidelines acknowledge that favourable data in patients with concomitant diabetes mellitus and coronary artery disease are available for trimetazidine and ranolazine, two anti-anginal agents with a non-haemodynamic mechanism of action. The aim of this article is to review available evidence supporting the anti-anginal efficacy of these two drugs in the difficult-to-treat population of diabetes mellitus patients, including their effects on glycated haemoglobin (HbA1c), a measure of medium-term glycaemic control. Although direct head-to-head comparisons have not been performed, available evidence favours ranolazine as an effective anti-anginal agent over trimetazidine in this population. In addition, ranolazine lowers HbA1c, indicating that it may improve glycaemic control in patients with diabetes mellitus. Conversely, scanty data are available on the metabolic effects of trimetazidine in this cohort of patients. Thus, ranolazine may represent a valuable therapeutic option in stable coronary artery disease patients with diabetes mellitus.
Collapse
Affiliation(s)
- Giuseppe Ambrosio
- Division of Cardiology, School of Medicine, University of Perugia, Perugia, Italy
| | - Juan Tamargo
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Peter J Grant
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| |
Collapse
|
35
|
Wang XX, Wang XL, Tong MM, Gan L, Chen H, Wu SS, Chen JX, Li RL, Wu Y, Zhang HY, Zhu Y, Li YX, He JH, Wang M, Jiang W. SIRT6 protects cardiomyocytes against ischemia/reperfusion injury by augmenting FoxO3α-dependent antioxidant defense mechanisms. Basic Res Cardiol 2016; 111:13. [PMID: 26786260 DOI: 10.1007/s00395-016-0531-z] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 01/08/2016] [Indexed: 02/05/2023]
Abstract
SIRT6, a member of the NAD(+)-dependent class III deacetylase sirtuin family, has been revealed to play important roles in promoting cellular resistance against oxidative stress. The formation of reactive oxygen species (ROS) and oxidative stress are the crucial mechanisms underlying cellular damage and dysfunction in cardiac ischemia/reperfusion (I/R) injury, but the role of SIRT6 in I/R-induced ROS and oxidative stress is poorly understood. In this study, by using heterozygous SIRT6 knockout (SIRT6(+/-)) mice and cultured neonatal cardiomyocyte models, we investigated how SIRT6 mediates oxidative stress and myocardial injury during I/R. Partial knockout (KO) of SIRT6 aggravated myocardial damage, ventricular remodeling, and oxidative stress in mice subjected to myocardial I/R, whereas restoration of SIRT6 expression by direct cardiac injection of adenoviral constructs encoding SIRT6 reversed these deleterious effects of SIRT6 KO in the ischemic heart. In addition, partial deletion of the SIRT6 gene decreased myocardial functional recovery following I/R in a Langendorff perfusion model. Similarly, the protective effects of SIRT6 were also observed in cultured cardiomyocytes following hypoxia/reoxygenation. Intriguingly, SIRT6 was noticed to up-regulate AMP/ATP and then activate the adenosine 5'-monophosphate-activated protein kinase (AMPK)-forkhead box O3α (FoxO3α) axis and further initiated the downstream antioxidant-encoding gene expression (manganese superoxide dismutase and catalase), thereby decreasing cellular levels of oxidative stress and mediating cardioprotection in the ischemic heart. These results suggest that SIRT6 protects the heart from I/R injury through FoxO3α activation in the ischemic heart in an AMP/ATP-induced AMPK-dependent way, thus upregulating antioxidants and suppressing oxidative stress.
Collapse
Affiliation(s)
- Xiao-Xiao Wang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Xu-Lei Wang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- School of Life Sciences and Bioengineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, People's Republic of China
| | - Ming-ming Tong
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Lu Gan
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Huali Chen
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Si-si Wu
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jia-Xiang Chen
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ru-Li Li
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yao Wu
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Heng-yu Zhang
- Department of Cardiology, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Ye Zhu
- Department of Cardiology, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yan-xin Li
- Department of Laboratory Medicine, Sichuan Provincial People's Hospital, Chengdu, People's Republic of China
| | - Jin-han He
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Meijing Wang
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Wei Jiang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
36
|
Abstract
Activation of the neuro-hormonal system is a pathophysiological consequence of heart failure. Neuro-hormonal activation promotes metabolic changes, such as insulin resistance, and determines an increased use of non-carbohydrate substrates for energy production. Fasting blood ketone bodies as well as fat oxidation are increased in patients with heart failure, yielding a state of metabolic inefficiency. The net result is additional depletion of myocardial adenosine triphosphate, phosphocreatine and creatine kinase levels with further decreased efficiency of mechanical work. In this context, manipulation of cardiac energy metabolism by modification of substrate use by the failing heart has produced positive clinical results. The results of current research support the concept that shifting the energy substrate preference away from fatty acid metabolism and towards glucose metabolism could be an effective adjunctive treatment in patients with heart failure. The additional use of drugs able to partially inhibit fatty acids oxidation in patients with heart failure may therefore yield a significant protective effect for clinical symptoms and cardiac function improvement, and simultaneously ameliorate left ventricular remodelling. Certainly, to clarify the exact therapeutic role of metabolic therapy in heart failure, a large multicentre, randomised controlled trial should be performed.
Collapse
|
37
|
Gero D, Szabo C. Salvage of nicotinamide adenine dinucleotide plays a critical role in the bioenergetic recovery of post-hypoxic cardiomyocytes. Br J Pharmacol 2015. [PMID: 26218637 DOI: 10.1111/bph.13252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Ischaemic heart disease can lead to serious, life-threatening complications. Traditional therapies for ischaemia aim to increase oxygen delivery and reduce the myocardial ATP consumption by increasing the coronary perfusion and by suppressing cardiac contractility, heart rate or blood pressure. An adjunctive treatment option for ischaemia is to improve or optimize myocardial metabolism. EXPERIMENTAL APPROACH Metabolic suppression in the ischaemic heart is characterized by reduced levels of high-energy molecules: ATP and NAD(+) . Because NAD(+) is required for most metabolic processes that generate ATP, we hypothesized that restoration of NAD(+) would be a prerequisite for ATP regeneration and examined the role of the major NAD(+) anabolic and catabolic pathways in the bioenergetic restoration process following oxygen-glucose deprivation injury in a cardiomyocyte cell line (H9c2 cells). KEY RESULTS Salvage of NAD(+) via nicotinamide phosphoribosyl transferase was essential for bioenergetic recovery in cardiomyocytes. Blockade of nicotinamide phosphoribosyl transferase prevented the restoration of the cellular ATP pool following oxygen-glucose deprivation injury by inhibiting both the aerobic and anaerobic metabolism in the cardiomyocytes. NAD(+) consumption by PARP-1 also undermined the recovery processes, and PARP inhibition significantly improved the metabolism and increased cellular ATP levels in cardiomyocytes. CONCLUSIONS AND IMPLICATIONS We conclude that the NAD(+) salvage pathway is essential for bioenergetic recovery in post-hypoxic cardiomyocytes and PARP inhibition may represent a potential future therapeutic intervention in ischaemic heart disease.
Collapse
Affiliation(s)
- Domokos Gero
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Csaba Szabo
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
38
|
Peterson LR, Herrero P, Coggan AR, Kisrieva-Ware Z, Saeed I, Dence C, Koudelis D, McGill JB, Lyons MR, Novak E, Dávila-Román VG, Waggoner AD, Gropler RJ. Type 2 diabetes, obesity, and sex difference affect the fate of glucose in the human heart. Am J Physiol Heart Circ Physiol 2015; 308:H1510-6. [PMID: 25888511 DOI: 10.1152/ajpheart.00722.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/30/2015] [Indexed: 11/22/2022]
Abstract
Type 2 diabetes, obesity, and sex difference affect myocardial glucose uptake and utilization. However, their effect on the intramyocellular fate of glucose in humans has been unknown. How the heart uses glucose is important, because it affects energy production and oxygen efficiency, which in turn affect heart function and adaptability. We hypothesized that type 2 diabetes, sex difference, and obesity affect myocardial glucose oxidation, glycolysis, and glycogen production. In a first-in-human study, we measured intramyocardiocellular glucose metabolism from time-activity curves generated from previously obtained positron emission tomography scans of 110 subjects in 3 groups: nonobese, obese, and diabetes. Group and sex difference interacted in the prediction of all glucose uptake, utilization, and metabolism rates. Group independently predicted fractional glucose uptake and its components: glycolysis, glycogen deposition, and glucose oxidation rates. Sex difference predicted glycolysis rates. However, there were fewer differences in glucose metabolism between diabetic patients and others when plasma glucose levels were included in the modeling. The potentially detrimental effects of obesity and diabetes on myocardial glucose metabolism are more pronounced in men than women. This sex difference dimorphism needs to be taken into account in the design, trials, and application of metabolic modulator therapy. Slightly higher plasma glucose levels improve depressed glucose oxidation and glycogen deposition rates in diabetic patients.
Collapse
Affiliation(s)
- Linda R Peterson
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Pilar Herrero
- Division of Radiological Sciences, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; and
| | - Andrew R Coggan
- Division of Radiological Sciences, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; and
| | - Zulia Kisrieva-Ware
- Division of Radiological Sciences, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; and
| | - Ibrahim Saeed
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Carmen Dence
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Deborah Koudelis
- Division of Radiological Sciences, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; and
| | - Janet B McGill
- Endocrinology Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Matthew R Lyons
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Eric Novak
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Víctor G Dávila-Román
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Alan D Waggoner
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Robert J Gropler
- Division of Radiological Sciences, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; and
| |
Collapse
|
39
|
Abstract
The heart is a very special organ in the body and has a high requirement for metabolism due to its constant workload. As a consequence, to provide a consistent and sufficient energy a high steady-state demand of metabolism is required by the heart. When delicately balanced mechanisms are changed by physiological or pathophysiological conditions, the whole system's homeostasis will be altered to a new balance, which contributes to the pathologic process. So it is no wonder that almost every heart disease is related to metabolic shift. Furthermore, aging is also found to be related to the reduction in mitochondrial function, insulin resistance, and dysregulated intracellular lipid metabolism. Adenosine monophosphate-activated protein kinase (AMPK) functions as an energy sensor to detect intracellular ATP/AMP ratio and plays a pivotal role in intracellular adaptation to energy stress. During different pathology (like myocardial ischemia and hypertension), the activation of cardiac AMPK appears to be essential for repairing cardiomyocyte's function by accelerating ATP generation, attenuating ATP depletion, and protecting the myocardium against cardiac dysfunction and apoptosis. In this overview, we will talk about the normal heart's metabolism, how metabolic shifts during aging and different pathologies, and how AMPK regulates metabolic changes during these conditions.
Collapse
Affiliation(s)
- Yina Ma
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, NY 14214
| | - Ji Li
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, NY 14214
| |
Collapse
|
40
|
Alfarano C, Foussal C, Lairez O, Calise D, Attané C, Anesia R, Daviaud D, Wanecq E, Parini A, Valet P, Kunduzova O. Transition from metabolic adaptation to maladaptation of the heart in obesity: role of apelin. Int J Obes (Lond) 2014; 39:312-20. [PMID: 25027224 PMCID: PMC4326962 DOI: 10.1038/ijo.2014.122] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/15/2014] [Accepted: 06/17/2014] [Indexed: 11/10/2022]
Abstract
Background/Objectives: Impaired energy metabolism is the defining characteristic of obesity-related heart failure. The adipocyte-derived peptide apelin has a role in the regulation of cardiovascular and metabolic homeostasis and may contribute to the link between obesity, energy metabolism and cardiac function. Here we investigate the role of apelin in the transition from metabolic adaptation to maladaptation of the heart in obese state. Methods: Adult male C57BL/6J, apelin knock-out (KO) or wild-type mice were fed a high-fat diet (HFD) for 18 weeks. To induce heart failure, mice were subjected to pressure overload after 18 weeks of HFD. Long-term effects of apelin on fatty acid (FA) oxidation, glucose metabolism, cardiac function and mitochondrial changes were evaluated in HFD-fed mice after 4 weeks of pressure overload. Cardiomyocytes from HFD-fed mice were isolated for analysis of metabolic responses. Results: In HFD-fed mice, pressure overload-induced transition from hypertrophy to heart failure is associated with reduced FA utilization (P<0.05), accelerated glucose oxidation (P<0.05) and mitochondrial damage. Treatment of HFD-fed mice with apelin for 4 weeks prevented pressure overload-induced decline in FA metabolism (P<0.05) and mitochondrial defects. Furthermore, apelin treatment lowered fasting plasma glucose (P<0.01), improved glucose tolerance (P<0.05) and preserved cardiac function (P<0.05) in HFD-fed mice subjected to pressure overload. In apelin KO HFD-fed mice, spontaneous cardiac dysfunction is associated with reduced FA oxidation (P<0.001) and increased glucose oxidation (P<0.05). In isolated cardiomyocytes, apelin stimulated FA oxidation in a dose-dependent manner and this effect was prevented by small interfering RNA sirtuin 3 knockdown. Conclusions: These data suggest that obesity-related decline in cardiac function is associated with defective myocardial energy metabolism and mitochondrial abnormalities. Furthermore, our work points for therapeutic potential of apelin to prevent myocardial metabolic abnormalities in heart failure paired with obesity.
Collapse
Affiliation(s)
- C Alfarano
- 1] National Institute of Health and Medical Research (INSERM) U1048, Toulouse, France [2] University of Toulouse, UPS, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - C Foussal
- 1] National Institute of Health and Medical Research (INSERM) U1048, Toulouse, France [2] University of Toulouse, UPS, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - O Lairez
- National Institute of Health and Medical Research (INSERM) U1048, Toulouse, France
| | - D Calise
- 1] University of Toulouse, UPS, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France [2] US006, Microsurgery Services, Toulouse, France
| | - C Attané
- 1] National Institute of Health and Medical Research (INSERM) U1048, Toulouse, France [2] University of Toulouse, UPS, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - R Anesia
- 1] National Institute of Health and Medical Research (INSERM) U1048, Toulouse, France [2] University of Toulouse, UPS, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - D Daviaud
- 1] National Institute of Health and Medical Research (INSERM) U1048, Toulouse, France [2] University of Toulouse, UPS, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - E Wanecq
- 1] National Institute of Health and Medical Research (INSERM) U1048, Toulouse, France [2] University of Toulouse, UPS, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - A Parini
- 1] National Institute of Health and Medical Research (INSERM) U1048, Toulouse, France [2] University of Toulouse, UPS, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - P Valet
- 1] National Institute of Health and Medical Research (INSERM) U1048, Toulouse, France [2] University of Toulouse, UPS, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| | - O Kunduzova
- 1] National Institute of Health and Medical Research (INSERM) U1048, Toulouse, France [2] University of Toulouse, UPS, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France
| |
Collapse
|
41
|
Csonka C, Szűcs G, Varga-Orvos Z, Bencsik P, Csont T, Zvara Á, Puskás LG, Ferdinandy P. Ischemic postconditioning alters the gene expression pattern of the ischemic heart. Exp Biol Med (Maywood) 2014; 239:141-50. [DOI: 10.1177/1535370213511017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To profile changes in gene expression in response to ischemic postconditioning, isolated rat hearts were subjected to 30 min of regional ischemia followed by 120 min of reperfusion with or without postconditioning. At the end of reperfusion, cardiac RNA was assayed by DNA microarrays (31,000 format), verified by quantitative real-time polymerase chain reaction (QRT-PCR). Postconditioning significantly up-regulated 50 genes and down-regulated 58 different genes, including pyruvate dehydrogenase, 60 kDa heat shock protein 1, lipoprotein lipase, gamma-sarcoglycan, and phospholipase C. Gene ontology analysis revealed that most of the altered genes belong to the cellular metabolic processes cluster. Many of the genes have not previously been suspected to be involved in the mechanism of postconditioning.
Collapse
Affiliation(s)
- Csaba Csonka
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, H-6720 Hungary
- Pharmahungary Group, Szeged, H-6723 Hungary
| | - Gergő Szűcs
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, H-6720 Hungary
| | - Zoltán Varga-Orvos
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, H-6726 Hungary
| | | | - Tamás Csont
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, H-6720 Hungary
- Pharmahungary Group, Szeged, H-6723 Hungary
| | - Ágnes Zvara
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, H-6726 Hungary
| | - László G Puskás
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, H-6726 Hungary
| | - Péter Ferdinandy
- Pharmahungary Group, Szeged, H-6723 Hungary
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, H-1089 Hungary
| |
Collapse
|
42
|
Incidental focal FDG uptake in heart is a lighthouse for considering cardiac screening. Ann Nucl Med 2013; 27:572-80. [PMID: 23546808 DOI: 10.1007/s12149-013-0721-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/22/2013] [Indexed: 10/27/2022]
Abstract
OBJECTIVES Cardiac FDG uptake is known to show a variety of patterns under clinical fasting conditions. We hypothesized that focal FDG uptake in the heart (FUH) represents a sign of cardiac disease risk, especially in coronary artery disease (CAD).The aim of this study was to clarify the relationship between FUH and cardiac disease. METHODS Cases showing FUH were selected based on comments in diagnostic reports or identification on retrospective review. Quantitative analysis was performed using maximum standardized uptake value (SUVmax), with regions of interest drawn over focal uptake areas in the heart as confirmed by PET/CT and in lateral side of the same slice showing focal FDG uptake. RESULTS For the 20 patients (11 men, 9 women) with confirmed FUH, coronary artery stenosis or history of treatment for coronary disease was present in 11 patients (55.0 %), and 2 patients showed apical hypertrophy. Mean SUVmax of FUH did not differ significantly between patients with confirmed cardiac disease and those with no evidence of cardiac disease (P = 0.78). CONCLUSIONS FUH suggests a high likelihood of CAD in patients without myocardial symptoms. Cardiac screening or a check of the history of cardiac disease is thus worth considering when FUH is seen incidentally on FDG-PET/CT.
Collapse
|
43
|
Effect of partial fatty acid oxidation inhibition with trimetazidine on mortality and morbidity in heart failure: Results from an international multicentre retrospective cohort study. Int J Cardiol 2013; 163:320-325. [DOI: 10.1016/j.ijcard.2012.09.123] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/19/2012] [Accepted: 09/22/2012] [Indexed: 11/20/2022]
|
44
|
|
45
|
Anezo MC, Pradeau C, Thicoipe M. Le dosage de la glycémie capillaire a-t-il un intérêt en préhospitalier pour le diagnostic d’infarctus du myocarde ? ANNALES FRANCAISES DE MEDECINE D URGENCE 2013. [DOI: 10.1007/s13341-012-0242-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Spectrum of physiological and pathological cardiac and pericardial uptake of FDG in oncology PET-CT. Clin Radiol 2012. [PMID: 23177651 DOI: 10.1016/j.crad.2012.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cardiac uptake of 2-[(18)F]-fluoro-2-deoxy-d-glucose (FDG) is frequently observed on FDG positron-emission tomography combined with computed tomography (PET-CT) performed for diagnosis, staging, and assessment of therapeutic response of lymphoma and solid cancers, despite careful patient preparation to limit myocardial glucose substrate utilisation. We illustrate the varied physiological patterns of cardiac FDG uptake, and show a spectrum of pathological conditions causing FDG uptake within myocardial and pericardial structures, due to clinically important benign and malignant diseases. Recognition and awareness of these various causes of FDG uptake in the heart, along with the appropriate use of correlative contrast-enhanced CT and magnetic resonance imaging (MRI) will facilitate correct interpretation.
Collapse
|
47
|
Uncovering networks from genome-wide association studies via circular genomic permutation. G3-GENES GENOMES GENETICS 2012; 2:1067-75. [PMID: 22973544 PMCID: PMC3429921 DOI: 10.1534/g3.112.002618] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 06/29/2012] [Indexed: 11/24/2022]
Abstract
Genome-wide association studies (GWAS) aim to detect single nucleotide polymorphisms (SNP) associated with trait variation. However, due to the large number of tests, standard analysis techniques impose highly stringent significance thresholds, leaving potentially associated SNPs undetected, and much of the trait genetic variation unexplained. Pathway- and network-based methodologies applied to GWAS aim to detect associations missed by standard single-marker approaches. The complex and non-random architecture of the genome makes it a challenge to derive an appropriate testing framework for such methodologies. We developed a rapid and simple permutation approach that uses GWAS SNP association results to establish the significance of pathway associations while accounting for the linkage disequilibrium structure of SNPs and the clustering of functionally related elements in the genome. All SNPs used in the GWAS are placed in a “circular genome” according to their location. Then the complete set of SNP association P values are permuted by rotation with respect to the genomic locations of the SNPs. Once these “simulated” P values are assigned, the joint gene P values are calculated using Fisher’s combination test, and the association of pathways is tested using the hypergeometric test. The circular genomic permutation approach was applied to a human genome-wide association dataset. The data consists of 719 individuals from the ORCADES study genotyped for ∼300,000 SNPs and measured for 51 traits ranging from physical to biochemical measurements. KEGG pathways (n = 225) were used as the sets of pathways to be tested. Our results demonstrate that the circular genomic permutations provide robust association P values. The non-permuted hypergeometric analysis generates ∼1400 pathway-trait combination results with an association P value more significant than P ≤ 0.05, whereas applying circular genomic permutation reduces the number of significant results to a more credible 40% of that value. The circular permutation software (“genomicper”) is available as an R package at http://cran.r-project.org/.
Collapse
|
48
|
Sun Z, Biela LM, Hamilton KL, Reardon KF. Concentration-dependent effects of the soy phytoestrogen genistein on the proteome of cultured cardiomyocytes. J Proteomics 2012; 75:3592-604. [PMID: 22521270 DOI: 10.1016/j.jprot.2012.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 03/29/2012] [Accepted: 04/02/2012] [Indexed: 12/23/2022]
Abstract
The soy-derived phytoestrogen genistein (GEN) has received attention for its potential benefits on the cardiovascular system by providing direct protection to cardiomyocytes against pathophysiological stresses. Here, we employed a proteomic approach to study the concentration-dependent effects of GEN treatments on cardiomyocytes. Cultured HL-1 cardiomyocytes were treated with low (1μM) and high (50μM) concentrations of GEN. Proteins were pre-fractionated by sequential hydrophilic/hydrophobic extraction and both protein fractions from each treatment group were separated by 2D gel electrophoresis (2DE). Overall, approximately 2,700 spots were visualized on the 2D gels. Thirty-nine and 99 spots changed in volume relative to controls (p<0.05) following the low- and high-concentration GEN treatments, respectively. From these spots, 25 and 62 protein species were identified by ESI-MS/MS and Mascot database searching, respectively. Identified proteins were further categorized according to their functions and possible links to cardioprotection were discussed. MetaCore gene ontology analysis suggested that 1μM GEN significantly impacted the anti-apoptosis process, and that both the low and high concentrations of GEN influenced the glucose catabolic process and regulation of ATPase activity. This proteomics study provides the first global insight into the molecular events triggered by GEN treatment in cardiomyocytes.
Collapse
Affiliation(s)
- Zeyu Sun
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523-1370, USA
| | | | | | | |
Collapse
|
49
|
Adora2b-elicited Per2 stabilization promotes a HIF-dependent metabolic switch crucial for myocardial adaptation to ischemia. Nat Med 2012; 18:774-82. [PMID: 22504483 PMCID: PMC3378044 DOI: 10.1038/nm.2728] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/13/2012] [Indexed: 12/14/2022]
Abstract
Adenosine signaling has been implicated in cardiac adaptation to limited oxygen availability. In a wide search for adenosine receptor A2b (Adora2b)-elicited cardioadaptive responses, we identified the circadian rhythm protein period 2 (Per2) as an Adora2b target. Adora2b signaling led to Per2 stabilization during myocardial ischemia, and in this setting, Per2(-/-) mice had larger infarct sizes compared to wild-type mice and loss of the cardioprotection conferred by ischemic preconditioning. Metabolic studies uncovered a limited ability of ischemic hearts in Per2(-/-) mice to use carbohydrates for oxygen-efficient glycolysis. This impairment was caused by a failure to stabilize hypoxia-inducible factor-1α (Hif-1α). Moreover, stabilization of Per2 in the heart by exposing mice to intense light resulted in the transcriptional induction of glycolytic enzymes and Per2-dependent cardioprotection from ischemia. Together, these studies identify adenosine-elicited stabilization of Per2 in the control of HIF-dependent cardiac metabolism and ischemia tolerance and implicate Per2 stabilization as a potential new strategy for treating myocardial ischemia.
Collapse
|
50
|
Frank A, Bonney M, Bonney S, Weitzel L, Koeppen M, Eckle T. Myocardial ischemia reperfusion injury: from basic science to clinical bedside. Semin Cardiothorac Vasc Anesth 2012; 16:123-32. [PMID: 22368166 DOI: 10.1177/1089253211436350] [Citation(s) in RCA: 349] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Myocardial ischemia reperfusion injury contributes to adverse cardiovascular outcomes after myocardial ischemia, cardiac surgery or circulatory arrest. Primarily, no blood flow to the heart causes an imbalance between oxygen demand and supply, named ischemia (from the Greek isch, restriction; and haema, blood), resulting in damage or dysfunction of the cardiac tissue. Instinctively, early and fast restoration of blood flow has been established to be the treatment of choice to prevent further tissue injury. Indeed, the use of thrombolytic therapy or primary percutaneous coronary intervention is the most effective strategy for reducing the size of a myocardial infarct and improving the clinical outcome. Unfortunately, restoring blood flow to the ischemic myocardium, named reperfusion, can also induce injury. This phenomenon was therefore termed myocardial ischemia reperfusion injury. Subsequent studies in animal models of acute myocardial infarction suggest that myocardial ischemia reperfusion injury accounts for up to 50% of the final size of a myocardial infarct. Consequently, many researchers aim to understand the underlying molecular mechanism of myocardial ischemia reperfusion injury to find therapeutic strategies ultimately reducing the final infarct size. Despite the identification of numerous therapeutic strategies at the bench, many of them are just in the process of being translated to bedside. The current review discusses the most striking basic science findings made during the past decades that are currently under clinical evaluation, with the ultimate goal to treat patients who are suffering from myocardial ischemia reperfusion-associated tissue injury.
Collapse
Affiliation(s)
- Anja Frank
- University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|