1
|
Zhu J, Li Q, Sun Y, Zhang S, Pan R, Xie Y, Chen J, Shi L, Chen Y, Sun Z, Zhang L. Insulin-Like Growth Factor 1 Receptor Deficiency Alleviates Angiotensin II-Induced Cardiac Fibrosis Through the Protein Kinase B/Extracellular Signal-Regulated Kinase/Nuclear Factor-κB Pathway. J Am Heart Assoc 2023; 12:e029631. [PMID: 37721135 PMCID: PMC10547288 DOI: 10.1161/jaha.123.029631] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 08/15/2023] [Indexed: 09/19/2023]
Abstract
Background The renin-angiotensin system plays a crucial role in the development of heart failure, and Ang II (angiotensin II) acts as the critical effector of the renin-angiotensin system in regulating cardiac fibrosis. However, the mechanisms of cardiac fibrosis are complex and still not fully understood. IGF1R (insulin-like growth factor 1 receptor) has multiple functions in maintaining cardiovascular homeostasis, and low-dose IGF1 treatment is effective in relieving Ang II-induced cardiac fibrosis. Here, we aimed to investigate the molecular mechanism of IGF1R in Ang II-induced cardiac fibrosis. Methods and Results Using primary mouse cardiac microvascular endothelial cells and fibroblasts, in vitro experiments were performed. Using C57BL/6J mice and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9)-mediated IGF1R heterozygous knockout (Igf1r+/-) mice, cardiac fibrosis mouse models were induced by Ang II for 2 weeks. The expression of IGF1R was examined by quantitative reverse transcription polymerase chain reaction, immunohistochemistry, and Western blot. Mice heart histologic changes were evaluated using Masson and picro sirius red staining. Fibrotic markers and signal molecules indicating the function of the Akt (protein kinase B)/ERK (extracellular signal-regulated kinase)/nuclear factor-κB pathway were detected using quantitative reverse transcription polymerase chain reaction and Western blot. RNA sequencing was used to explore IGF1R-mediated target genes in the hearts of mice, and the association of IGF1R and G-protein-coupled receptor kinase 5 was identified by coimmunoprecipitation. More important, blocking IGF1R signaling significantly suppressed endothelial-mesenchymal transition in primary mouse cardiac microvascular endothelial cells and mice in response to transforming growth factor-β1 or Ang II, respectively. Deficiency or inhibition of IGF1R signaling remarkably attenuated Ang II-induced cardiac fibrosis in primary mouse cardiac fibroblasts and mice. We further observed that the patients with heart failure exhibited higher blood levels of IGF1 and IGF1R than healthy individuals. Moreover, Ang II treatment significantly increased cardiac IGF1R in wild type mice but led to a slight downregulation in Igf1r+/- mice. Interestingly, IGF1R deficiency significantly alleviated cardiac fibrosis in Ang II-treated mice. Mechanistically, the phosphorylation level of Akt and ERK was upregulated in Ang II-treated mice, whereas blocking IGF1R signaling in mice inhibited these changes of Akt and ERK phosphorylation. Concurrently, phosphorylated p65 of nuclear factor-κB exhibited similar alterations in the corresponding group of mice. Intriguingly, IGF1R directly interacted with G-protein-coupled receptor kinase 5, and this association decreased ≈50% in Igf1r+/- mice. In addition, Grk5 deletion downregulated expression of the Akt/ERK/nuclear factor-κB signaling pathway in primary mouse cardiac fibroblasts. Conclusions IGF1R signaling deficiency alleviates Ang II-induced cardiac fibrosis, at least partially through inhibiting endothelial-mesenchymal transition via the Akt/ERK/nuclear factor-κB pathway. Interestingly, G-protein-coupled receptor kinase 5 associates with IGF1R signaling directly, and it concurrently acts as an IGF1R downstream effector. This study suggests the promising potential of IGF1R as a therapeutic target for cardiac fibrosis.
Collapse
Affiliation(s)
- Jiafeng Zhu
- Department of NursingWeifang Medical UniversityWeifangChina
| | - Qian Li
- Department of NursingWeifang Medical UniversityWeifangChina
| | - Yan Sun
- Department of StomatologyWeifang Medical UniversityWeifangChina
| | - Shiyu Zhang
- Department of NursingWeifang Medical UniversityWeifangChina
| | - Ruiyan Pan
- Department of PharmacologyWeifang Medical UniversityWeifangChina
| | - Yanguang Xie
- Department of NursingWeifang Medical UniversityWeifangChina
| | - Jinyan Chen
- Department of Clinical MedicineWeifang Medical UniversityWeifangChina
| | - Lihong Shi
- Department of Rehabilitation MedicineWeifang Medical UniversityWeifangChina
| | - Yanbo Chen
- Department of Cardiology, The First Affiliated HospitalWeifang Medical UniversityWeifangChina
| | - Zhipeng Sun
- Department of PharmacologyWeifang Medical UniversityWeifangChina
| | - Lane Zhang
- Department of NursingWeifang Medical UniversityWeifangChina
| |
Collapse
|
2
|
Tian C, Yang Y, Li B, Liu M, He X, Zhao L, Song X, Yu T, Chu XM. Doxorubicin-Induced Cardiotoxicity May Be Alleviated by Bone Marrow Mesenchymal Stem Cell-Derived Exosomal lncRNA via Inhibiting Inflammation. J Inflamm Res 2022; 15:4467-4486. [PMID: 35966005 PMCID: PMC9365022 DOI: 10.2147/jir.s358471] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/09/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose To explore the therapeutic mechanism of bone marrow mesenchymal stem cells derived exosomes (BMSC-Exos) for doxorubicin (DOX)-induced cardiotoxicity (DIC) and identify the long noncoding RNAs’ (lncRNAs’) anti-inflammation function derived by BMSC-Exos. Materials and Methods High-throughput sequencing and transcriptome bioinformatics analysis of lncRNA were performed between DOX group and BEC (bone marrow mesenchymal stem cells derived exosomes coculture) group. Elevated lncRNA (ElncRNA) in the cardiomyocytes of BEC group compared with DOX group were confirmed. Based on the location and co-expression relationship between ElncRNA and its target genes, we predicted two target genes of ElncRNA, named cis_targets and trans_targets. The target genes were analyzed by enrichment analyses. Then, we identified the key cellular biological pathways regulating DIC. Experiments were performed to verify the therapeutic effects of exosomes and the origin of lncRNAs in vitro and in vivo. Results Three hundred and one lncRNAs were differentially expressed between DOX and BEC groups (fold change >1.5 and p < 0.05), of which 169 lncRNAs were elevated in the BEC group compared with the DOX group. GO enrichment analysis of target genes of ElncRNAs showed that they were predominantly involved in inflammation-associated processes. KEGG analysis indicated that their regulatory pathways were mainly involved in oxidative stress-induced inflammation and proliferation of cardiomyocyte. The verification experiments in vitro showed that the oxidative stress and cell deaths were decreased in BEC groups. Moreover, from the top 10 ElncRNAs identified in the sequencing results, MSTRG.98097.4 and MSTRG.58791.2 were both decreased in the DOX group and elevated in BEC group. While in verification experiments in vivo, only the expression of MSTRG.58791.2 is consistent with the result in vitro. Conclusion Our results show that ElncRNA, MSTRG.58791.2, is possibly secreted by the BMSC-Exos and able to alleviate DIC by suppressing inflammatory response and inflammation-related cell death.
Collapse
Affiliation(s)
- Chao Tian
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, Qingdao, People’s Republic of China
| | - Bing Li
- Department of Genetics, Basic Medicine School, Qingdao University, Qingdao, People’s Republic of China
| | - Meixin Liu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Liang Zhao
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Xiaoxia Song
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Correspondence: Tao Yu, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China, Tel/Fax +86-532-82991791, Email
| | - Xian-Ming Chu
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
- Department of Cardiology, The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, People’s Republic of China
- Xian-Ming Chu, Department of Cardiology, the Affiliated Hospital of Qingdao University, No. 59 Haier Road, Qingdao, 266100, People’s Republic of China, Tel +86-532-82913257, Email
| |
Collapse
|
3
|
Rueda P, Merlin J, Chimenti S, Feletou M, Paysant J, White PJ, Christopoulos A, Sexton PM, Summers RJ, Charman WN, May LT, Langmead CJ. Pharmacological Insights Into Safety and Efficacy Determinants for the Development of Adenosine Receptor Biased Agonists in the Treatment of Heart Failure. Front Pharmacol 2021; 12:628060. [PMID: 33776771 PMCID: PMC7991592 DOI: 10.3389/fphar.2021.628060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/26/2021] [Indexed: 11/13/2022] Open
Abstract
Adenosine A1 receptors (A1R) are a potential target for cardiac injury treatment due to their cardioprotective/antihypertrophic actions, but drug development has been hampered by on-target side effects such as bradycardia and altered renal hemodynamics. Biased agonism has emerged as an attractive mechanism for A1R-mediated cardioprotection that is haemodynamically safe. Here we investigate the pre-clinical pharmacology, efficacy and side-effect profile of the A1R agonist neladenoson, shown to be safe but ineffective in phase IIb trials for the treatment of heart failure. We compare this agent with the well-characterized, pan-adenosine receptor (AR) agonist NECA, capadenoson, and the A1R biased agonist VCP746, previously shown to be safe and cardioprotective in pre-clinical models of heart failure. We show that like VCP746, neladenoson is biased away from Ca2+ influx relative to NECA and the cAMP pathway at the A1R, a profile predictive of a lack of adenosine-like side effects. Additionally, neladenoson was also biased away from the MAPK pathway at the A1R. In contrast to VCP746, which displays more 'adenosine-like' signaling at the A2BR, neladenoson was a highly selective A1R agonist, with biased, weak agonism at the A2BR. Together these results show that unwanted hemodynamic effects of A1R agonists can be avoided by compounds biased away from Ca2+ influx relative to cAMP, relative to NECA. The failure of neladenoson to reach primary endpoints in clinical trials suggests that A1R-mediated cAMP inhibition may be a poor indicator of effectiveness in chronic heart failure. This study provides additional information that can aid future screening and/or design of improved AR agonists that are safe and efficacious in treating heart failure in patients.
Collapse
Affiliation(s)
- Patricia Rueda
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Jon Merlin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Stefano Chimenti
- Cardiovascular Discovery Research Unit, Institut de Recherches Servier, Suresnes, France
| | - Michel Feletou
- Cardiovascular Discovery Research Unit, Institut de Recherches Servier, Suresnes, France
| | - Jerome Paysant
- Cardiovascular Discovery Research Unit, Institut de Recherches Servier, Suresnes, France
| | - Paul J. White
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Patrick M. Sexton
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Roger J. Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - William N. Charman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Lauren T. May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Christopher J. Langmead
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| |
Collapse
|
4
|
Tian G, Zhou J, Quan Y, Kong Q, Wu W, Liu X. P2Y1 Receptor Agonist Attenuates Cardiac Fibroblasts Activation Triggered by TGF-β1. Front Pharmacol 2021; 12:627773. [PMID: 33679406 PMCID: PMC7926204 DOI: 10.3389/fphar.2021.627773] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/12/2021] [Indexed: 02/05/2023] Open
Abstract
Cardiac fibroblasts (CFs) activation is a hallmark feature of cardiac fibrosis caused by cardiac remodeling. The purinergic signaling molecules have been proven to participate in the activation of CFs. In this study, we explored the expression pattern of P2Y receptor family in the cardiac fibrosis mice model induced by the transverse aortic constriction (TAC) operation and in the activation of CFs triggered by transforming growth factor β1 (TGF-β1) stimulation. We then investigated the role of P2Y1receptor (P2Y1R) in activated CFs. The results showed that among P2Y family members, only P2Y1R was downregulated in the heart tissues of TAC mice. Consistent with our in vivo results, the level of P2Y1R was decreased in the activated CFs, when CFs were treated with TGF-β1. Silencing P2Y1R expression with siP2Y1R accelerated the effects of TGF-β1 on CFs activation. Moreover, the P2Y1R selective antagonist BPTU increased the levels of mRNA and protein of profibrogenic markers, such as connective tissue growth factor (CTGF), periostin (POSTN). periostin (POSTN), and α-smooth muscle actin(α-SMA). Further, MRS2365, the agonist of P2Y1R, ameliorated the activation of CFs and activated the p38 MAPK and ERK signaling pathways. In conclusion , our findings revealed that upregulating of P2Y1R may attenuate the abnormal activation of CFs via the p38 MAPK and ERK signaling pathway.
Collapse
Affiliation(s)
- Geer Tian
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Junteng Zhou
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yue Quan
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qihang Kong
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wenchao Wu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojing Liu
- Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.,Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Jackson EK, Gillespie DG, Cheng D, Mi Z, Menshikova EV. Characterization of the N 6-etheno-bridge method to assess extracellular metabolism of adenine nucleotides: detection of a possible role for purine nucleoside phosphorylase in adenosine metabolism. Purinergic Signal 2020; 16:187-211. [PMID: 32367441 PMCID: PMC7367995 DOI: 10.1007/s11302-020-09699-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
The goal of this study was to determine the validity of using N6-etheno-bridged adenine nucleotides to evaluate ecto-nucleotidase activity. We observed that the metabolism of N6-etheno-ATP versus ATP was quantitatively similar when incubated with recombinant CD39, ENTPD2, ENTPD3, or ENPP-1, and the quantitative metabolism of N6-etheno-AMP versus AMP was similar when incubated with recombinant CD73. This suggests that ecto-nucleotidases process N6-etheno-bridged adenine nucleotides similarly to endogenous adenine nucleotides. Four cell types rapidly (t1/2, 0.21 to 0.66 h) metabolized N6-etheno-ATP. Applied N6-etheno-ATP was recovered in the medium as N6-etheno-ADP, N6-etheno-AMP, N6-etheno-adenosine, and surprisingly N6-etheno-adenine; intracellular N6-etheno compounds were undetectable. This suggests minimal cellular uptake, intracellular metabolism, or deamination of these compounds. N6-etheno-ATP, N6-etheno-ADP, N6-etheno-AMP, N6-etheno-adenosine, and N6-etheno-adenine had little affinity for recombinant A1, A2A, or A2B receptors, for a subset of P2X receptors (3H-α,β-methylene-ATP binding to rat bladder membranes), or for a subset of P2Y receptors (35S-ATP-αS binding to rat brain membranes), suggesting minimal pharmacological activity. N6-etheno-adenosine was partially converted to N6-etheno-adenine in four different cell types; this was blocked by purine nucleoside phosphorylase (PNPase) inhibition. Intravenous N6-etheno-ATP was quickly metabolized, with N6-etheno-adenine being the main product in naïve rats, but not in rats pretreated with a PNPase inhibitor. PNPase inhibition reduced the urinary excretion of endogenous adenine and attenuated the conversion of exogenous adenosine to adenine in the renal cortex. The N6-etheno-bridge method is a valid technique to assess extracellular metabolism of adenine nucleotides by ecto-nucleotidases. Also, rats express an enzyme with PNPase-like activity that metabolizes N6-etheno-adenosine to N6-etheno-adenine.
Collapse
Affiliation(s)
- Edwin K. Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Drive, Room 514, Pittsburgh, PA 15219 USA
| | - Delbert G. Gillespie
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Drive, Room 514, Pittsburgh, PA 15219 USA
| | - Dongmei Cheng
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Drive, Room 514, Pittsburgh, PA 15219 USA
| | - Zaichuan Mi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Drive, Room 514, Pittsburgh, PA 15219 USA
| | - Elizabeth V. Menshikova
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Drive, Room 514, Pittsburgh, PA 15219 USA
| |
Collapse
|
6
|
The Role of Cyclic AMP Signaling in Cardiac Fibrosis. Cells 2019; 9:cells9010069. [PMID: 31888098 PMCID: PMC7016856 DOI: 10.3390/cells9010069] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/18/2022] Open
Abstract
Myocardial stress and injury invariably promote remodeling of the cardiac tissue, which is associated with cardiomyocyte death and development of fibrosis. The fibrotic process is initially triggered by the differentiation of resident cardiac fibroblasts into myofibroblasts. These activated fibroblasts display increased proliferative capacity and secrete large amounts of extracellular matrix. Uncontrolled myofibroblast activation can thus promote heart stiffness, cardiac dysfunction, arrhythmias, and progression to heart failure. Despite the well-established role of myofibroblasts in mediating cardiac disease, our current knowledge on how signaling pathways promoting fibrosis are regulated and coordinated in this cell type is largely incomplete. In this respect, cyclic adenosine monophosphate (cAMP) signaling acts as a major modulator of fibrotic responses activated in fibroblasts of injured or stressed hearts. In particular, accumulating evidence now suggests that upstream cAMP modulators including G protein-coupled receptors, adenylyl cyclases (ACs), and phosphodiesterases (PDEs); downstream cAMP effectors such as protein kinase A (PKA) and the guanine nucleotide exchange factor Epac; and cAMP signaling organizers such as A-kinase anchoring proteins (AKAPs) modulate a variety of fundamental cellular processes involved in myocardial fibrosis including myofibroblast differentiation, proliferation, collagen secretion, and invasiveness. The current review will discuss recent advances highlighting the role of cAMP and AKAP-mediated signaling in regulating pathophysiological responses controlling cardiac fibrosis.
Collapse
|
7
|
Li J, Hong X, Li G, Conti PS, Zhang X, Chen K. PET Imaging of Adenosine Receptors in Diseases. Curr Top Med Chem 2019; 19:1445-1463. [PMID: 31284861 DOI: 10.2174/1568026619666190708163407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/26/2019] [Accepted: 02/02/2019] [Indexed: 01/08/2023]
Abstract
Adenosine receptors (ARs) are a class of purinergic G-protein-coupled receptors (GPCRs). Extracellular adenosine is a pivotal regulation molecule that adjusts physiological function through the interaction with four ARs: A1R, A2AR, A2BR, and A3R. Alterations of ARs function and expression have been studied in neurological diseases (epilepsy, Alzheimer's disease, and Parkinson's disease), cardiovascular diseases, cancer, and inflammation and autoimmune diseases. A series of Positron Emission Tomography (PET) probes for imaging ARs have been developed. The PET imaging probes have provided valuable information for diagnosis and therapy of diseases related to alterations of ARs expression. This review presents a concise overview of various ARs-targeted radioligands for PET imaging in diseases. The most recent advances in PET imaging studies by using ARs-targeted probes are briefly summarized.
Collapse
Affiliation(s)
- Jindian Li
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, United States.,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xingfang Hong
- Laboratory of Pathogen Biology, School of Basic Medical Sciences, Dali University, Dali 671000, China
| | - Guoquan Li
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, United States
| | - Peter S Conti
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, United States
| | - Xianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Kai Chen
- Department of Radiology, Molecular Imaging Center, Keck School of Medicine, University of Southern California, 2250 Alcazar Street, CSC103, Los Angeles, CA 90033, United States
| |
Collapse
|
8
|
Inhibition of Mitofusin-2 Promotes Cardiac Fibroblast Activation via the PERK/ATF4 Pathway and Reactive Oxygen Species. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3649808. [PMID: 31178957 PMCID: PMC6501253 DOI: 10.1155/2019/3649808] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/06/2018] [Indexed: 02/05/2023]
Abstract
Mitofusin-2 (Mfn2) is a key outer mitochondrial membrane protein, which maintains normal mitochondrial dynamics and function. However, its role in cardiac fibroblast activation remains poorly understood. In the present study, a rat model of transverse aortic constriction (TAC) was established to observe the cardiac fibroblast activation in vivo. TGF-β1 treatment for 24 hours was used to induce cardiac fibroblast activation in vitro. As a result, the expression of Mfn2 decreased in the hypertrophic heart tissues and cardiac fibroblasts treated with TGF-β1. siMfn2 and adenovirus were applied to mediate Mfn2 gene silencing and overexpression in cardiac fibroblasts to elucidate the relationship between Mfn2 and cardiac fibroblast activation, as well as the possible underlying mechanisms. Knockdown of Mfn2 further promoted TGF-β1-induced cardiac fibroblast activation, while forced expression of Mfn2 attenuated this pathological reaction. The PERK/ATF4 pathway, one of the branches of endoplasmic reticulum (ER) stress, was identified to be involved in this process. Knockdown and overexpression of Mfn2 lead to aggravation or alleviation of the PERK/ATF4 pathway. Blocking this pathway by silencing ATF4 with siATF4 attenuated the pathological process. During the activation of cardiac fibroblasts, knockdown of Mfn2 also increased the production of reactive oxygen species (ROS), while ROS scavenger N-acetyl-l-cysteine (NAC) could attenuate the effect caused by knockdown of Mfn2. Our data suggested that inhibition of Mfn2 could promote cardiac fibroblast activation by activating the PERK/ATF4 signaling pathway and increasing the generation of ROS.
Collapse
|
9
|
Wang X, Lu L, Tan Y, Jiang L, Zhao M, Gao E, Yu S, Liu J. GPR 30 reduces myocardial infarct area and fibrosis in female ovariectomized mice by activating the PI3K/AKT pathway. Life Sci 2019; 226:22-32. [PMID: 30905784 DOI: 10.1016/j.lfs.2019.03.049] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 12/30/2022]
Abstract
AIMS Estrogen plays an important role in cardioprotection. Animal experiments showed that the G-protein coupled estrogen receptor 30 (GPR30) specific agonist G1 could reduce post-ischemic dysfunction and inhibit cardiac fibroblast proliferation. However, the underlying mechanism of action is not clear. The current study tests the hypothesis that GPR30 reduces myocardial infarct area and fibrosis in female ovariectomized (OVX) mice by activating the PI3K/AKT pathway. MAIN METHODS In this study, we established a myocardial infarction (MI) animal model derived from OVX C57BL/6 female mice, and investigated the effect of G1 on cardiac function by echocardiography and Hemodynamics, morphology and expression of fibrosis-related and apoptosis-related proteins by Masson's trichrome and H&E, Immunofluorescence, Western blotting and TUNEL. KEY FINDINGS Combination with OVX significantly increased myocardial fibrosis and MI area compared to MI treatment alone, as determined by echocardiography and hemodynamics. Further addition of G1 changed the expression of apoptosis-related proteins, decreased the levels of tumor necrosis factor-α and interleukin-10, and reduced the degree of myocardial fibrosis and myocardial infarct area. Primary cultured cardiac fibroblasts (CFs) were subjected to hypoxia/serum deprivation (H/SD) simulating the in vivo ischemia model. When the PI3K/AKT pathway was inhibited by wortmanin in H/SD CFs, G1 failed to induce significant changes in the expression of apoptosis-related proteins. SIGNIFICANCE It suggested that GPR30 may improve cardiac function in female OVX mice by activating the PI3K/AKT pathway and reducing myocardial infarct size and fibrosis.
Collapse
Affiliation(s)
- Xiaowu Wang
- Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Linhe Lu
- Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Yanzhen Tan
- Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Liqing Jiang
- Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Minggao Zhao
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, PR China
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Shiqiang Yu
- Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China
| | - Jincheng Liu
- Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, PR China.
| |
Collapse
|
10
|
Vecchio EA, White PJ, May LT. The adenosine A 2B G protein-coupled receptor: Recent advances and therapeutic implications. Pharmacol Ther 2019; 198:20-33. [PMID: 30677476 DOI: 10.1016/j.pharmthera.2019.01.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The adenosine A2B receptor (A2BAR) is one of four adenosine receptor subtypes belonging to the Class A family of G protein-coupled receptors (GPCRs). Until recently, the A2BAR remained poorly characterised, in part due to its relatively low affinity for the endogenous agonist adenosine and therefore presumed minor physiological significance. However, the substantial increase in extracellular adenosine concentration, the sensitisation of the receptor and the upregulation of A2BAR expression under conditions of hypoxia and inflammation, suggest the A2BAR as an exciting therapeutic target in a variety of pathological disease states. Here we discuss the pharmacology of the A2BAR and outline its role in pathophysiology including ischaemia-reperfusion injury, fibrosis, inflammation and cancer.
Collapse
Affiliation(s)
- Elizabeth A Vecchio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Heart Failure Pharmacology, Baker Heart & Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Paul J White
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
11
|
Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pharmacology of Adenosine Receptors: The State of the Art. Physiol Rev 2018; 98:1591-1625. [PMID: 29848236 DOI: 10.1152/physrev.00049.2017] [Citation(s) in RCA: 516] [Impact Index Per Article: 73.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Adenosine is a ubiquitous endogenous autacoid whose effects are triggered through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Due to the rapid generation of adenosine from cellular metabolism, and the widespread distribution of its receptor subtypes in almost all organs and tissues, this nucleoside induces a multitude of physiopathological effects, regulating central nervous, cardiovascular, peripheral, and immune systems. It is becoming clear that the expression patterns of adenosine receptors vary among cell types, lending weight to the idea that they may be both markers of pathologies and useful targets for novel drugs. This review offers an overview of current knowledge on adenosine receptors, including their characteristic structural features, molecular interactions and cellular functions, as well as their essential roles in pain, cancer, and neurodegenerative, inflammatory, and autoimmune diseases. Finally, we highlight the latest findings on molecules capable of targeting adenosine receptors and report which stage of drug development they have reached.
Collapse
Affiliation(s)
- Pier Andrea Borea
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Stefania Gessi
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Stefania Merighi
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Fabrizio Vincenzi
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| | - Katia Varani
- Department of Medical Sciences, University of Ferrara , Ferrara , Italy
| |
Collapse
|
12
|
Wang X, Tan Y, Xu B, Lu L, Zhao M, Ma J, Liang H, Liu J, Yu S. GPR30 Attenuates Myocardial Fibrosis in Diabetic Ovariectomized Female Rats: Role of iNOS Signaling. DNA Cell Biol 2018; 37:821-830. [PMID: 30227089 DOI: 10.1089/dna.2018.4208] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Premenopausal women have a reduced risk for cardiovascular disease. Estrogen deficiency augments cardiac inflammation and oxidative stress and, thereby, aggravates myocardial fibrosis (MF) and diastolic dysfunction in hypertensive female rats. However, estrogen replacement therapy has no effect on myocardial infarction and cardiac fibrosis in postmenopausal women. Further clinical studies showed that high blood glucose levels in patients with diabetes is an important cause of MF, but the underlying mechanism is unclear. To experimentally address this issue, diabetes mellitus (DM) was induced by injecting streptozotocin and administering a high-fat diet in ovariectomized (OVX) rats. High degrees of fibrosis and apoptosis were detected in the cardiac tissue of these rats, together with increased expression of iNOS. Further treatment with the G protein-coupled estrogen receptor 30 (GPR30) agonist G1 decreased iNOS expression and the apoptosis rate in cardiac tissue significantly and inhibited cardiac fibroblast (CF) proliferation. Similar trends were observed in cultured CFs treated with high concentrations of fat and glucose. In addition, treatment with the iNOS-specific inhibitor W1400 attenuated iNOS and vimentin expression, which is associated with a marked reduction in MF. These results suggest that GPR30 activation inhibits MF in diabetic OVX female rats by suppressing cardiac iNOS activity and consequently NO levels. Thus, GPR30 activation may provide novel cardioprotection strategies for postmenopausal women, especially those with DM.
Collapse
Affiliation(s)
- Xiaowu Wang
- 1 Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University , Xi'an, Shaanxi, China
| | - Yanzhen Tan
- 1 Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University , Xi'an, Shaanxi, China
| | - Bo Xu
- 1 Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University , Xi'an, Shaanxi, China
| | - Linhe Lu
- 1 Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University , Xi'an, Shaanxi, China
| | - Minggao Zhao
- 2 Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University , Xi'an, Shaanxi, China
| | - Jipeng Ma
- 1 Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University , Xi'an, Shaanxi, China
| | - Hongliang Liang
- 1 Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University , Xi'an, Shaanxi, China
| | - Jincheng Liu
- 1 Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University , Xi'an, Shaanxi, China
| | - Shiqiang Yu
- 1 Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University , Xi'an, Shaanxi, China
| |
Collapse
|
13
|
Phosri S, Bunrukchai K, Parichatikanond W, Sato VH, Mangmool S. Epac is required for exogenous and endogenous stimulation of adenosine A 2B receptor for inhibition of angiotensin II-induced collagen synthesis and myofibroblast differentiation. Purinergic Signal 2018; 14:141-156. [PMID: 29322373 DOI: 10.1007/s11302-017-9600-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/25/2017] [Indexed: 12/31/2022] Open
Abstract
Angiotensin II (Ang II) plays an important role on the pathogenesis of cardiac fibrosis. Prolong and overstimulation of angiotensin II type 1 receptor with Ang II-induced collagen synthesis and myofibroblast differentiation in cardiac fibroblasts, leading to cardiac fibrosis. Although adenosine and its analogues are known to have cardioprotective effects, the mechanistic by which adenosine A2 receptors (A2Rs) inhibit Ang II-induced cardiac fibrosis is not clearly understood. In the present study, we examined the effects of exogenous adenosine and endogenous adenosine on Ang II-induced collagen and myofibroblast differentiation determined by α-smooth muscle action (α-SMA) overexpression and their underlying signal transduction. Elevation of endogenous adenosine levels resulted in the inhibition of Ang II-induced collagen type I and III and α-SMA synthesis in cardiac fibroblasts. Moreover, treatment with exogenous adenosine which selectively stimulated A2Rs also suppressed Ang II-induced collagen synthesis and α-SMA production. These antifibrotic effects of both endogenous and exogenous adenosines are mediated through the A2B receptor (A2BR) subtype. Stimulation of A2BR exhibited antifibrotic effects via the cAMP-dependent and Epac-dependent pathways. Our results provide new mechanistic insights regarding the role for cAMP and Epac on A2BR-mediated antifibrotic effects. Thus, A2BR is one of the potential therapeutic targets against cardiac fibrosis.
Collapse
Affiliation(s)
- Sarawuth Phosri
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Kwanchai Bunrukchai
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | | | - Vilasinee H Sato
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Supachoke Mangmool
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
14
|
Liu X, Mujahid H, Rong B, Lu QH, Zhang W, Li P, Li N, Liang ES, Wang Q, Tang DQ, Li NL, Ji XP, Chen YG, Zhao YX, Zhang MX. Irisin inhibits high glucose-induced endothelial-to-mesenchymal transition and exerts a dose-dependent bidirectional effect on diabetic cardiomyopathy. J Cell Mol Med 2017; 22:808-822. [PMID: 29063670 PMCID: PMC5783871 DOI: 10.1111/jcmm.13360] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 07/25/2017] [Indexed: 12/17/2022] Open
Abstract
Emerging evidence indicates that irisin provides beneficial effects in diabetes. However, whether irisin influences the development of diabetic cardiomyopathy (DCM) remains unclear. Therefore, we investigated the potential role and mechanism of action of irisin in diabetes‐induced myocardial dysfunction in mice. Type 1 diabetes was induced in mice by injecting streptozotocin, and the diabetic mice were administered recombinant r‐irisin (low or high dose: 0.5 or 1.5 μg/g body weight/day, I.P.) or PBS for 16 weeks. Irisin treatment did not alter blood glucose levels in the diabetic mice. However, the results of echocardiographical and histopathological assays indicated that low‐dose irisin treatment alleviated cardiac fibrosis and left ventricular function in the diabetic mice, whereas high‐dose irisin failed to mitigate the ventricular function impairment and increased collagen deposition. The potential mechanism underlying the effect of low‐dose irisin involved irisin‐mediated inhibition of high glucose‐induced endothelial‐to‐mesenchymal transition (EndMT); conversely, high‐dose irisin treatment enhanced high glucose‐induced MMP expression by stimulating MAPK (p38 and ERK) signalling and cardiac fibroblast proliferation and migration. Low‐dose irisin alleviated DCM development by inhibiting high glucose‐induced EndMT. By contrast, high‐dose irisin disrupted normal MMP expression and induced cardiac fibroblast proliferation and migration, which results in excess collagen deposition. Thus, irisin can inhibit high glucose‐induced EndMT and exert a dose‐dependent bidirectional effect on DCM.
Collapse
Affiliation(s)
- Xue Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Haroon Mujahid
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Bing Rong
- Department of Geriatrics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qing-Hua Lu
- Department of Cardiology, Second Hospital of Shandong University, Jinan, Shandong, China
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Peng Li
- Department of Pharmacology, College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Na Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Er-Shun Liang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qi Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Dong-Qi Tang
- Department of Cardiology, Second Hospital of Shandong University, Jinan, Shandong, China
| | - Nai-Lin Li
- Department of Medicine-Solna, Clinical Pharma Pharmacology, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Xiao-Ping Ji
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yu-Guo Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yu-Xia Zhao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ming-Xiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
15
|
Phosri S, Arieyawong A, Bunrukchai K, Parichatikanond W, Nishimura A, Nishida M, Mangmool S. Stimulation of Adenosine A 2B Receptor Inhibits Endothelin-1-Induced Cardiac Fibroblast Proliferation and α-Smooth Muscle Actin Synthesis Through the cAMP/Epac/PI3K/Akt-Signaling Pathway. Front Pharmacol 2017; 8:428. [PMID: 28713274 PMCID: PMC5492828 DOI: 10.3389/fphar.2017.00428] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/15/2017] [Indexed: 12/19/2022] Open
Abstract
Background and Purpose: Cardiac fibrosis is characterized by an increase in fibroblast proliferation, overproduction of extracellular matrix proteins, and the formation of myofibroblast that express α-smooth muscle actin (α-SMA). Endothelin-1 (ET-1) is involved in the pathogenesis of cardiac fibrosis. Overstimulation of endothelin receptors induced cell proliferation, collagen synthesis, and α-SMA expression in cardiac fibroblasts. Although adenosine was shown to have cardioprotective effects, the molecular mechanisms by which adenosine A2 receptor inhibit ET-1-induced fibroblast proliferation and α-SMA expression in cardiac fibroblasts are not clearly identified. Experimental Approach: This study aimed at evaluating the mechanisms of cardioprotective effects of adenosine receptor agonist in rat cardiac fibroblast by measurement of cell proliferation, and mRNA and protein levels of α-SMA. Key results: Stimulation of adenosine subtype 2B (A2B) receptor resulted in the inhibition of ET-1-induced fibroblast proliferation, and a reduction of ET-1-induced α-SMA expression that is dependent on cAMP/Epac/PI3K/Akt signaling pathways in cardiac fibroblasts. The data in this study confirm a critical role for Epac signaling on A2B receptor-mediated inhibition of ET-1-induced cardiac fibrosis via PI3K and Akt activation. Conclusion and Implications: This is the first work reporting a novel signaling pathway for the inhibition of ET-1-induced cardiac fibrosis mediated through the A2B receptor. Thus, A2B receptor agonists represent a promising perspective as therapeutic targets for the prevention of cardiac fibrosis.
Collapse
Affiliation(s)
- Sarawuth Phosri
- Department of Pharmacology, Faculty of Pharmacy, Mahidol UniversityBangkok, Thailand
| | - Ajaree Arieyawong
- Department of Pharmacology, Faculty of Pharmacy, Mahidol UniversityBangkok, Thailand
| | - Kwanchai Bunrukchai
- Department of Pharmacology, Faculty of Pharmacy, Mahidol UniversityBangkok, Thailand
| | | | - Akiyuki Nishimura
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural SciencesAichi, Japan
| | - Motohiro Nishida
- Division of Cardiocirculatory Signaling, Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences), National Institutes of Natural SciencesAichi, Japan.,Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu UniversityFukuoka, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology AgencyKawaguchi, Japan
| | - Supachoke Mangmool
- Department of Pharmacology, Faculty of Pharmacy, Mahidol UniversityBangkok, Thailand
| |
Collapse
|
16
|
He Z, Yang Y, Wen Z, Chen C, Xu X, Zhu Y, Wang Y, Wang DW. CYP2J2 metabolites, epoxyeicosatrienoic acids, attenuate Ang II-induced cardiac fibrotic response by targeting Gα 12/13. J Lipid Res 2017; 58:1338-1353. [PMID: 28554983 DOI: 10.1194/jlr.m074229] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 05/23/2017] [Indexed: 12/23/2022] Open
Abstract
The arachidonic acid-cytochrome P450 2J2-epoxyeicosatrienoic acid (AA-CYP2J2-EET) metabolic pathway has been identified to be protective in the cardiovascular system. This study explored the effects of the AA-CYP2J2-EET metabolic pathway on cardiac fibrosis from the perspective of cardiac fibroblasts and underlying mechanisms. In in vivo studies, 8-week-old male CYP2J2 transgenic mice (aMHC-CYP2J2-Tr) and littermates were infused with angiotensin II (Ang II) or saline for 2 weeks. Results showed that CYP2J2 overexpression increased EET production. Meanwhile, impairment of cardiac function and fibrotic response were attenuated by CYP2J2 overexpression. The effects of CYP2J2 were associated with reduced activation of the α subunits of G12 family G proteins (Gα12/13)/RhoA/Rho kinase (ROCK) cascade and elevation of the NO/cyclic guanosine monophosphate (cGMP) level in cardiac tissue. In in vitro studies, cardiac fibroblast activation, proliferation, migration, and collagen production induced by Ang II were associated with activation of the Gα12/13/RhoA/ROCK pathway, which was inhibited by exogenous 11,12-EET. Moreover, silencing of Gα12/13 or RhoA exerted similar effects as 11,12-EET. Furthermore, inhibitory effects of 11,12-EET on Gα12/13 were blocked by NO/cGMP pathway inhibitors. Our findings indicate that enhancement of the AA-CYP2J2-EET metabolic pathway by CYP2J2 overexpression attenuates Ang II-induced cardiac dysfunction and fibrosis by reducing the fibrotic response of cardiac fibroblasts by targeting the Gα12/13/RhoA/ROCK pathway via NO/cGMP signaling.
Collapse
Affiliation(s)
- Zuowen He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yong Yang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xizhen Xu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yanfang Zhu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| |
Collapse
|
17
|
Vecchio EA, White PJ, May LT. Targeting Adenosine Receptors for the Treatment of Cardiac Fibrosis. Front Pharmacol 2017; 8:243. [PMID: 28529484 PMCID: PMC5418340 DOI: 10.3389/fphar.2017.00243] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/18/2017] [Indexed: 12/15/2022] Open
Abstract
Adenosine is a ubiquitous molecule with key regulatory and cytoprotective mechanisms at times of metabolic imbalance in the body. Among a plethora of physiological actions, adenosine has an important role in attenuating ischaemia-reperfusion injury and modulating the ensuing fibrosis and tissue remodeling following myocardial damage. Adenosine exerts these actions through interaction with four adenosine G protein-coupled receptors expressed in the heart. The adenosine A2B receptor (A2BAR) is the most abundant adenosine receptor (AR) in cardiac fibroblasts and is largely responsible for the influence of adenosine on cardiac fibrosis. In vitro and in vivo studies demonstrate that acute A2BAR stimulation can decrease fibrosis through the inhibition of fibroblast proliferation and reduction in collagen synthesis. However, in contrast, there is also evidence that chronic A2BAR antagonism reduces tissue fibrosis. This review explores the opposing pro- and anti-fibrotic activity attributed to the activation of cardiac ARs and investigates the therapeutic potential of targeting ARs for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Elizabeth A Vecchio
- Monash Institute of Pharmaceutical Sciences, Monash University, ParkvilleVIC, Australia.,Department of Pharmacology, Monash University, ParkvilleVIC, Australia
| | - Paul J White
- Monash Institute of Pharmaceutical Sciences, Monash University, ParkvilleVIC, Australia
| | - Lauren T May
- Monash Institute of Pharmaceutical Sciences, Monash University, ParkvilleVIC, Australia.,Department of Pharmacology, Monash University, ParkvilleVIC, Australia
| |
Collapse
|
18
|
Qiao G, Xia D, Cheng Z, Zhang G. Role of Sprouty1 (Spry1) in the pathogenesis of atrial fibrosis. Pathol Res Pract 2017; 214:308-313. [PMID: 29096943 DOI: 10.1016/j.prp.2017.04.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/28/2017] [Accepted: 04/20/2017] [Indexed: 11/19/2022]
Abstract
Atrial fibrosis is the hallmark of atrial fibrillation (AF) dependent structure remodeling. Besides, sprouty 1 (Spry1) plays a key role in the process of fibrosis. In this study, we investigated whether Spry1 could regulate TGF-β1 in atrial fibrosis. Ten dogs or patients were assigned to control (n=4) and AF group (n=6). The left atrium of dogs or right atrial appendage of patients was taken. After that, cardiac fibroblasts were treated with or without angiotensin II (Ang II). Furthermore, cardiac fibroblasts were transfected with lentivirus of Spry1 over-expression vector, Spry1 shRNA or negative control (NC). And the protein expression of Spry1 and TGF-β1 was analyzed by western blot and immunohistochemistry. The results showed that TGF-β1 was highly expressed while Spry1 was lowly expressed in the models of human and canine with AF. Besides, the protein expression of TGF-β1 was up-regulated and Spry1 was down-regulated in Ang II stimulated cardiac fibroblasts. Furthermore, when Spry1 was knockdown in Ang II-induced cardiac fibroblasts, the cell proliferation and the TGF-β1 protein expression increased significantly, while Spry1 over-expression showed inverse results. Our results demonstrated that Spry1 may target TGF-β1 in regulating fibrosis. These findings may provide possible therapeutic targets in atrial fibrosis.
Collapse
Affiliation(s)
- Gang Qiao
- Department of Cardiovascular Surgery, Henan Provincial Hospital, Zhengzhou University 450003, Zhengzhou, China
| | - Dongsheng Xia
- Department of Cardiovascular Surgery, Henan Provincial Hospital, Zhengzhou University 450003, Zhengzhou, China
| | - Zhaoyun Cheng
- Department of Cardiovascular Surgery, Henan Provincial Hospital, Zhengzhou University 450003, Zhengzhou, China
| | - Guobao Zhang
- Department of Cardiovascular Surgery, Henan Provincial Hospital, Zhengzhou University 450003, Zhengzhou, China.
| |
Collapse
|
19
|
de Oliveira Bravo M, Carvalho JL, Saldanha-Araujo F. Adenosine production: a common path for mesenchymal stem-cell and regulatory T-cell-mediated immunosuppression. Purinergic Signal 2016; 12:595-609. [PMID: 27557887 DOI: 10.1007/s11302-016-9529-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/05/2016] [Indexed: 12/14/2022] Open
Abstract
Adenosine is an important molecule that exerts control on the immune system, by signaling through receptors lying on the surface of immune cells. This nucleotide is produced, in part, by the action of the ectoenzymes CD39 and CD73. Interestingly, these proteins are expressed on the cell surface of regulatory T-cells (Tregs) and mesenchymal stromal cells (MSCs)-two cell populations that have emerged as potential therapeutic tools in the field of cell therapy. In fact, the production of adenosine constitutes a mechanism used by both cell types to control the immune response. Recently, great scientific progress was obtained regarding the role of adenosine in the inflammatory environment. In this context, the present review focuses on the advances related to the impact of adenosine production over the immune modulatory activity of Tregs and MSCs, and how this nucleotide controls the biological functions of these cells. Finally, we mention the main challenges and hurdles to bring such molecule to clinical settings.
Collapse
Affiliation(s)
| | - Juliana Lott Carvalho
- Genomic Sciences and Biotechnology Center, Catholic University of Brasilia, Brasilia, Brazil
| | | |
Collapse
|
20
|
Vecchio EA, Chuo CH, Baltos JA, Ford L, Scammells PJ, Wang BH, Christopoulos A, White PJ, May LT. The hybrid molecule, VCP746, is a potent adenosine A2B receptor agonist that stimulates anti-fibrotic signalling. Biochem Pharmacol 2016; 117:46-56. [PMID: 27520486 DOI: 10.1016/j.bcp.2016.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/08/2016] [Indexed: 01/12/2023]
Abstract
We have recently described the rationally-designed adenosine receptor agonist, 4-(5-amino-4-benzoyl-3-(3-(trifluoromethyl)phenyl)thiophen-2-yl)-N-(6-(9-((2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxylmethyl)tetrahydro-furan-2-yl)-9H-purin-6-ylamino)hexyl)benzamide (VCP746), a hybrid molecule consisting of an adenosine moiety linked to an adenosine A1 receptor (A1AR) allosteric modulator moiety. At the A1AR, VCP746 mediated cardioprotection in the absence of haemodynamic side effects such as bradycardia. The current study has now identified VCP746 as an important pharmacological tool for the adenosine A2B receptor (A2BAR). The binding and function of VCP746 at the A2BAR was rigorously characterised in a heterologous expression system, in addition to examination of its anti-fibrotic signalling in cardiac- and renal-derived cells. In FlpInCHO cells stably expressing the human A2BAR, VCP746 was a high affinity, high potency A2BAR agonist that stimulated Gs- and Gq-mediated signal transduction, with an apparent lack of system bias relative to prototypical A2BAR agonists. The distinct agonist profile may result from an atypical binding mode of VCP746 at the A2BAR, which was consistent with a bivalent mechanism of receptor interaction. In isolated neonatal rat cardiac fibroblasts (NCF), VCP746 stimulated potent inhibition of both TGF-β1- and angiotensin II-mediated collagen synthesis. Similar attenuation of TGF-β1-mediated collagen synthesis was observed in renal mesangial cells (RMC). The anti-fibrotic signalling mediated by VCP746 in NCF and RMC was selectively reversed in the presence of an A2BAR antagonist. Thus, we believe, VCP746 represents an important tool to further investigate the role of the A2BAR in cardiac (patho)physiology.
Collapse
Affiliation(s)
- Elizabeth A Vecchio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia.
| | - Chung Hui Chuo
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia.
| | - Jo-Anne Baltos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia.
| | - Leigh Ford
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | - Peter J Scammells
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| | - Bing H Wang
- Centre of Cardiovascular Research and Education in Therapeutics, School of Public Health and Preventive Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3004, Australia.
| | - Arthur Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia.
| | - Paul J White
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia.
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences & Department of Pharmacology, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
21
|
Pharmacology of the Adenosine A3 Receptor in the Vasculature and Essential Hypertension. PLoS One 2016; 11:e0150021. [PMID: 26907173 PMCID: PMC4764345 DOI: 10.1371/journal.pone.0150021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/08/2016] [Indexed: 12/02/2022] Open
Abstract
Background Essential hypertension is considered to be a multifactorial disorder and its aetiology has yet to be clearly identified. As the adenosine receptors have a significant role in mediating vasodilation, alterations in their structures or signalling pathways may be involved in the development of hypertension. This study aimed to measure the expression of adenosine A3 receptors in a range of cardiovascular tissues and determine whether they could be altered with essential hypertension, and to functionally test responses to adenosine A3 receptor agonists in coronary blood vessels using the isolated perfused heart preparation. Methods mRNA samples from cardiovascular tissues and a range of blood vessels were collected from 10 week old male spontaneously hypertensive rats and age-gender matched Wistar rats (n = 8). The Langendorff heart perfusion preparation was used to characterise adenosine A3 receptor mediated coronary vasodilation in the rat heart. Results Adenosine A3 receptor agonists induced coronary vasodilation. The expression of adenosine A3 receptors in cardiovascular tissues was altered in a tissue-specific pattern. Specifically, down-regulation of adenosine A3 receptor expression occurred in hypertensive hearts, which might be associated with attenuated vasodilator responses observed in coronary vessels to adenosine A3 receptor agonists. Conclusions This study demonstrated alterations in the expression of adenosine A3 receptors occurred in a tissue specific mode, and reduced adenosine A3 receptor mediated coronary vasodilation in hearts from spontaneously hypertensive rats. Our findings with regard to changes in the adenosine A3 receptor in hypertensive hearts suggest that adenosine A3 receptor might play a role in the physiopathology of essential hypertension and potentially open the way to pharmacologic manipulation of vasomotor activity by the use of adenosine A3 receptor agonists.
Collapse
|
22
|
Tofovic SP, Salah EM, Smits GJ, Whalley ET, Ticho B, Deykin A, Jackson EK. Dual A1/A2B Receptor Blockade Improves Cardiac and Renal Outcomes in a Rat Model of Heart Failure with Preserved Ejection Fraction. J Pharmacol Exp Ther 2016; 356:333-40. [PMID: 26585572 PMCID: PMC4727158 DOI: 10.1124/jpet.115.228841] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/17/2015] [Indexed: 12/19/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is prevalent and often accompanied by metabolic syndrome. Current treatment options are limited. Here, we test the hypothesis that combined A1/A2B adenosine receptor blockade is beneficial in obese ZSF1 rats, an animal model of HFpEF with metabolic syndrome. The combined A1/A2B receptor antagonist 3-[4-(2,6-dioxo-1,3-dipropyl-7H-purin-8-yl)-1-bicyclo[2.2.2]octanyl]propanoic acid (BG9928) was administered orally (10 mg/kg/day) to obese ZSF1 rats (n = 10) for 24 weeks (from 20 to 44 weeks of age). Untreated ZSF1 rats (n = 9) served as controls. After 24 weeks of administration, BG9928 significantly lowered plasma triglycerides (in mg/dl: control group, 4351 ± 550; BG9928 group, 2900 ± 551) without adversely affecting plasma cholesterol or activating renin release. BG9928 significantly decreased 24-hour urinary glucose excretion (in mg/kg/day: control group, 823 ± 179; BG9928 group, 196 ± 80) and improved oral glucose tolerance, polydipsia, and polyuria. BG9928 significantly augmented left ventricular diastolic function in association with a reduction in cardiac vasculitis and cardiac necrosis. BG9928 significantly reduced 24-hour urinary protein excretion (in mg/kg/day: control group, 1702 ± 263; BG9928 group, 1076 ± 238), and this was associated with a reduction in focal segmental glomerulosclerosis, tubular atrophy, tubular dilation, and deposition of proteinaceous material in the tubules. These findings show that, in a model of HFpEF with metabolic syndrome, A1/A2B receptor inhibition improves hyperlipidemia, exerts antidiabetic actions, reduces HFpEF, improves cardiac histopathology, and affords renal protection. We conclude that chronic administration of combined A1/A2B receptor antagonists could be beneficial in patients with HFpEF, in particular those with comorbidities such as obesity, diabetes, and dyslipidemias.
Collapse
Affiliation(s)
- Stevan P Tofovic
- Vascular Medicine Institute (S.P.T.) and the Departments of Medicine (S.P.T., E.K.J.), Pathology (E.M.S.), and Pharmacology and Chemical Biology (E.K.J.), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and Biogen Idec, Inc., Cambridge, Massachusetts (G.J.S., E.T.W., B.T., A.D.)
| | - Eman M Salah
- Vascular Medicine Institute (S.P.T.) and the Departments of Medicine (S.P.T., E.K.J.), Pathology (E.M.S.), and Pharmacology and Chemical Biology (E.K.J.), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and Biogen Idec, Inc., Cambridge, Massachusetts (G.J.S., E.T.W., B.T., A.D.)
| | - Glenn J Smits
- Vascular Medicine Institute (S.P.T.) and the Departments of Medicine (S.P.T., E.K.J.), Pathology (E.M.S.), and Pharmacology and Chemical Biology (E.K.J.), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and Biogen Idec, Inc., Cambridge, Massachusetts (G.J.S., E.T.W., B.T., A.D.)
| | - Eric T Whalley
- Vascular Medicine Institute (S.P.T.) and the Departments of Medicine (S.P.T., E.K.J.), Pathology (E.M.S.), and Pharmacology and Chemical Biology (E.K.J.), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and Biogen Idec, Inc., Cambridge, Massachusetts (G.J.S., E.T.W., B.T., A.D.)
| | - Barry Ticho
- Vascular Medicine Institute (S.P.T.) and the Departments of Medicine (S.P.T., E.K.J.), Pathology (E.M.S.), and Pharmacology and Chemical Biology (E.K.J.), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and Biogen Idec, Inc., Cambridge, Massachusetts (G.J.S., E.T.W., B.T., A.D.)
| | - Aaron Deykin
- Vascular Medicine Institute (S.P.T.) and the Departments of Medicine (S.P.T., E.K.J.), Pathology (E.M.S.), and Pharmacology and Chemical Biology (E.K.J.), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and Biogen Idec, Inc., Cambridge, Massachusetts (G.J.S., E.T.W., B.T., A.D.)
| | - Edwin K Jackson
- Vascular Medicine Institute (S.P.T.) and the Departments of Medicine (S.P.T., E.K.J.), Pathology (E.M.S.), and Pharmacology and Chemical Biology (E.K.J.), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and Biogen Idec, Inc., Cambridge, Massachusetts (G.J.S., E.T.W., B.T., A.D.)
| |
Collapse
|
23
|
Inhibition of MEF2A prevents hyperglycemia-induced extracellular matrix accumulation by blocking Akt and TGF-β1/Smad activation in cardiac fibroblasts. Int J Biochem Cell Biol 2015; 69:52-61. [DOI: 10.1016/j.biocel.2015.10.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/19/2015] [Accepted: 10/13/2015] [Indexed: 02/07/2023]
|
24
|
Dubey RK, Fingerle J, Gillespie DG, Mi Z, Rosselli M, Imthurn B, Jackson EK. Adenosine Attenuates Human Coronary Artery Smooth Muscle Cell Proliferation by Inhibiting Multiple Signaling Pathways That Converge on Cyclin D. Hypertension 2015; 66:1207-19. [PMID: 26416848 PMCID: PMC4644125 DOI: 10.1161/hypertensionaha.115.05912] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/07/2015] [Indexed: 01/01/2023]
Abstract
The goal of this study was to determine whether and how adenosine affects the proliferation of human coronary artery smooth muscle cells (HCASMCs). In HCASMCs, 2-chloroadenosine (stable adenosine analogue), but not N(6)-cyclopentyladenosine, CGS21680, or N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide, inhibited HCASMC proliferation (A2B receptor profile). 2-Chloroadenosine increased cAMP, reduced phosphorylation (activation) of ERK and Akt (protein kinases known to increase cyclin D expression and activity, respectively), and reduced levels of cyclin D1 (cyclin that promotes cell-cycle progression in G1). Moreover, 2-chloroadenosine inhibited expression of S-phase kinase-associated protein-2 (Skp2; promotes proteolysis of p27(Kip1)) and upregulated levels of p27(Kip1) (cell-cycle regulator that impairs cyclin D function). 2-Chloroadenosine also inhibited signaling downstream of cyclin D, including hyperphosphorylation of retinoblastoma protein and expression of cyclin A (S phase cyclin). Knockdown of A2B receptors prevented the effects of 2-chloroadenosine on ERK1/2, Akt, Skp2, p27(Kip1), cyclin D1, cyclin A, and proliferation. Likewise, inhibition of adenylyl cyclase and protein kinase A abrogated 2-chloroadenosine's inhibitory effects on Skp2 and stimulatory effects on p27(Kip1) and rescued HCASMCs from 2-chloroadenosine-mediated inhibition. Knockdown of p27(Kip1) also reversed the inhibitory effects of 2-chloroadenosine on HCASMC proliferation. In vivo, peri-arterial (rat carotid artery) 2-chloroadenosine (20 μmol/L for 7 days) downregulated vascular expression of Skp2, upregulated vascular expression of p27(Kip1), and reduced neointima hyperplasia by 71% (P<0.05; neointimal thickness: control, 37 424±18 371 pixels; treated, 10 352±2824 pixels). In conclusion, the adenosine/A2B receptor/cAMP/protein kinase A axis inhibits HCASMC proliferation by blocking multiple signaling pathways (ERK1/2, Akt, and Skp2) that converge at cyclin D, a key G1 cyclin that controls cell-cycle progression.
Collapse
Affiliation(s)
- Raghvendra K Dubey
- From the Department of Reproductive Endocrinology, University Hospital Zurich, Switzerland (R.K.D., M.R., B.I.); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (R.K.D.); Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (D.G.G., Z.M., E.K.J.); and Preclinical Pharma Research 68/209, F. Hoffmann-La-Roche, Basel, Switzerland (J.F.).
| | - Jürgen Fingerle
- From the Department of Reproductive Endocrinology, University Hospital Zurich, Switzerland (R.K.D., M.R., B.I.); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (R.K.D.); Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (D.G.G., Z.M., E.K.J.); and Preclinical Pharma Research 68/209, F. Hoffmann-La-Roche, Basel, Switzerland (J.F.)
| | - Delbert G Gillespie
- From the Department of Reproductive Endocrinology, University Hospital Zurich, Switzerland (R.K.D., M.R., B.I.); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (R.K.D.); Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (D.G.G., Z.M., E.K.J.); and Preclinical Pharma Research 68/209, F. Hoffmann-La-Roche, Basel, Switzerland (J.F.)
| | - Zaichuan Mi
- From the Department of Reproductive Endocrinology, University Hospital Zurich, Switzerland (R.K.D., M.R., B.I.); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (R.K.D.); Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (D.G.G., Z.M., E.K.J.); and Preclinical Pharma Research 68/209, F. Hoffmann-La-Roche, Basel, Switzerland (J.F.)
| | - Marinella Rosselli
- From the Department of Reproductive Endocrinology, University Hospital Zurich, Switzerland (R.K.D., M.R., B.I.); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (R.K.D.); Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (D.G.G., Z.M., E.K.J.); and Preclinical Pharma Research 68/209, F. Hoffmann-La-Roche, Basel, Switzerland (J.F.)
| | - Bruno Imthurn
- From the Department of Reproductive Endocrinology, University Hospital Zurich, Switzerland (R.K.D., M.R., B.I.); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (R.K.D.); Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (D.G.G., Z.M., E.K.J.); and Preclinical Pharma Research 68/209, F. Hoffmann-La-Roche, Basel, Switzerland (J.F.)
| | - Edwin K Jackson
- From the Department of Reproductive Endocrinology, University Hospital Zurich, Switzerland (R.K.D., M.R., B.I.); Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Switzerland (R.K.D.); Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (D.G.G., Z.M., E.K.J.); and Preclinical Pharma Research 68/209, F. Hoffmann-La-Roche, Basel, Switzerland (J.F.)
| |
Collapse
|
25
|
Zhu X, Gillespie DG, Jackson EK. NPY1-36 and PYY1-36 activate cardiac fibroblasts: an effect enhanced by genetic hypertension and inhibition of dipeptidyl peptidase 4. Am J Physiol Heart Circ Physiol 2015; 309:H1528-42. [PMID: 26371160 DOI: 10.1152/ajpheart.00070.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 09/09/2015] [Indexed: 12/13/2022]
Abstract
Cardiac sympathetic nerves release neuropeptide Y (NPY)1-36, and peptide YY (PYY)1-36 is a circulating peptide; therefore, these PP-fold peptides could affect cardiac fibroblasts (CFs). We examined the effects of NPY1-36 and PYY1-36 on the proliferation of and collagen production ([(3)H]proline incorporation) by CFs isolated from Wistar-Kyoto (WKY) normotensive rats and spontaneously hypertensive rats (SHRs). Experiments were performed with and without sitagliptin, an inhibitor of dipeptidyl peptidase 4 [DPP4; an ectoenzyme that metabolizes NPY1-36 and PYY1-36 (Y1 receptor agonists) to NPY3-36 and PYY3-36 (inactive at Y1 receptors), respectively]. NPY1-36 and PYY1-36, but not NPY3-36 or PYY3-36, stimulated proliferation of CFs, and these effects were more potent than ANG II, enhanced by sitagliptin, blocked by BIBP3226 (Y1 receptor antagonist), and greater in SHR CFs. SHR CF membranes expressed more receptor for activated C kinase (RACK)1 [which scaffolds the Gi/phospholipase C (PLC)/PKC pathway] compared with WKY CF membranes. RACK1 knockdown (short hairpin RNA) and inhibition of Gi (pertussis toxin), PLC (U73122), and PKC (GF109203X) blocked the proliferative effects of NPY1-36. NPY1-36 and PYY1-36 stimulated collagen production more potently than did ANG II, and this was enhanced by sitagliptin and greater in SHR CFs. In conclusion, 1) NPY1-36 and PYY1-36, via the Y1 receptor/Gi/PLC/PKC pathway, activate CFs, and this pathway is enhanced in SHR CFs due to increased localization of RACK1 in membranes; and 2) DPP4 inhibition enhances the effects of NPY1-36 and PYY1-36 on CFs, likely by inhibiting the metabolism of NPY1-36 and PYY1-36. The implications are that endogenous NPY1-36 and PYY1-36 could adversely affect cardiac structure/function by activating CFs, and this may be exacerbated in genetic hypertension and by DPP4 inhibitors.
Collapse
Affiliation(s)
- Xiao Zhu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Delbert G Gillespie
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
26
|
Roche PL, Filomeno KL, Bagchi RA, Czubryt MP. Intracellular Signaling of Cardiac Fibroblasts. Compr Physiol 2015; 5:721-60. [DOI: 10.1002/cphy.c140044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
He Z, Zhang X, Chen C, Wen Z, Hoopes SL, Zeldin DC, Wang DW. Cardiomyocyte-specific expression of CYP2J2 prevents development of cardiac remodelling induced by angiotensin II. Cardiovasc Res 2015; 105:304-17. [PMID: 25618409 DOI: 10.1093/cvr/cvv018] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIMS Cardiac remodelling is one of the key pathological changes that occur with cardiovascular disease. Previous studies have demonstrated the beneficial effects of CYP2J2 expression on cardiac injury. In the present study, we investigated the effects of cardiomyocyte-specific CYP2J2 expression and EET treatment on angiotensin II-induced cardiac remodelling and sought to determine the underlying molecular mechanisms involved in this process. METHODS AND RESULTS Eight-week-old mice with cardiomyocyte-specific CYP2J2 expression (αMHC-CYP2J2-Tr) and wild-type (WT) control mice were treated with Ang-II. Ang-II treatment of WT mice induced changes in heart morphology, cardiac hypertrophy and dysfunction, as well as collagen accumulation; however, cardiomyocyte-specific expression of CYP2J2 attenuated these effects. The cardioprotective effects observed in α-MHC-CYP2J2-Tr mice were associated with peroxisome proliferator-activated receptor (PPAR)-γ activation, reduced oxidative stress, reduced NF-κB p65 nuclear translocation, and inhibition of TGF-β1/smad pathway. The effects seen with cardiomyocyte-specific expression of CYP2J2 were partially blocked by treatment with PPAR-γ antagonist GW9662. In in vitro studies, 11,12-EET(1 μmol/L) treatment attenuated cardiomyocyte hypertrophy and remodelling-related protein (collagen I, TGF-β1, TIMP1) expression by inhibiting the oxidative stress-mediated NF-κB pathway via PPAR-γ activation. Furthermore, conditioned media from neonatal cardiomyocytes treated with 11,12-EET inhibited activation of cardiac fibroblasts and TGF-β1/smad pathway. CONCLUSION Cardiomyocyte-specific expression of CYP2J2 or treatment with EETs protects against cardiac remodelling by attenuating oxidative stress-mediated NF-κBp65 nuclear translocation via PPAR-γ activation.
Collapse
Affiliation(s)
- Zuowen He
- Department of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, P. R. China
| | - Xu Zhang
- Department of Physiology, Tianjin Medical University, Tianjin, P. R. China
| | - Chen Chen
- Department of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, P. R. China
| | - Zheng Wen
- Department of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, P. R. China
| | - Samantha L Hoopes
- Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA
| | - Dao Wen Wang
- Department of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095# Jiefang Avenue, Wuhan 430030, P. R. China
| |
Collapse
|
28
|
Smolenski RT, Rybakowska I, Turyn J, Romaszko P, Zabielska M, Taegtmeyer A, Słomińska EM, Kaletha KK, Barton PJR. AMP deaminase 1 gene polymorphism and heart disease-a genetic association that highlights new treatment. Cardiovasc Drugs Ther 2014; 28:183-9. [PMID: 24431031 PMCID: PMC3955129 DOI: 10.1007/s10557-013-6506-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Nucleotide metabolism and signalling is directly linked to myocardial function. Therefore analysis how diversity of genes coding nucleotide metabolism related proteins affects clinical progress of heart disease could provide valuable information for development of new treatments. Several studies identified that polymorphism of AMP deaminase 1 gene (AMPD1), in particular the common C34T variant of this gene was found to benefit patients with heart failure and ischemic heart disease. However, these findings were inconsistent in subsequent studies. This prompted our detailed analysis of heart transplant recipients that revealed diverse effect: improved early postoperative cardiac function associated with C34T mutation in donors, but worse 1-year survival. Our other studies on the metabolic impact of AMPD1 C34T mutation revealed decrease in AMPD activity, increased production of adenosine and de-inhibition of AMP regulated protein kinase. Thus, genetic, clinical and biochemical studies revealed that while long term attenuation of AMPD activity could be deleterious, transient inhibition of AMPD activity before acute cardiac injury is protective. We suggest therefore that pharmacological inhibition of AMP deaminase before transient ischemic event such as during ischemic heart disease or cardiac surgery could provide therapeutic benefit.
Collapse
Affiliation(s)
- Ryszard T Smolenski
- Department of Biochemistry, Medical University of Gdansk, Debinki 1, 80-211, Gdansk, Poland,
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Eskildsen TV, Schneider M, Sandberg MB, Skov V, Brønnum H, Thomassen M, Kruse TA, Andersen DC, Sheikh SP. The microRNA-132/212 family fine-tunes multiple targets in Angiotensin II signalling in cardiac fibroblasts. J Renin Angiotensin Aldosterone Syst 2014; 16:1288-97. [PMID: 25031299 DOI: 10.1177/1470320314539367] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION MicroRNAs (miRNAs) are emerging as key regulators of cardiovascular development and disease; however, the cardiac miRNA target molecules are not well understood. We and others have described the Angiotensin II (AngII)-induced miR-132/212 family as novel regulators of cardiovascular function including regulation of cardiac hypertrophy, heart failure and blood pressure possibly through AT1R signalling. However, the miR-132/212 targets in the heart remain unknown. MATERIALS AND METHODS To understand the role of these miRNAs in cardiac signalling networks, we undertook comprehensive in silico and in vitro experiments to identify miR-132/212 molecular targets in primary rat cardiac fibroblasts. RESULTS MiR-132/212 overexpression increased fibroblast cell size and mRNA arrays detected several hundred genes that were differentially expressed, including a wide panel of receptors, signalling molecules and transcription factors. Subsequent comprehensive in silico analysis identified 24 target genes, of which 22 genes were qPCR validated. We identified seven genes involved in AngII signalling pathways. CONCLUSION We here report novel insight of an extensive network of molecular pathways that fine-tuned by miR-132/212, suggesting a role for this miRNA family as master signalling switches in cardiac fibroblasts. Our data underscore the potential for miRNA tools to manipulate a large array of molecules and thereby control biological function.
Collapse
Affiliation(s)
- Tilde V Eskildsen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Denmark Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark
| | - Mikael Schneider
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark
| | - Maria B Sandberg
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark
| | - Vibe Skov
- Department of Clinical Genetics, Odense University Hospital, Denmark
| | - Hasse Brønnum
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Denmark Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, Odense University Hospital, Denmark
| | - Torben A Kruse
- Department of Clinical Genetics, Odense University Hospital, Denmark
| | - Ditte C Andersen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Denmark Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark
| | - Søren P Sheikh
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Denmark Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Denmark
| |
Collapse
|
30
|
Role of adenosine A2B receptor signaling in contribution of cardiac mesenchymal stem-like cells to myocardial scar formation. Purinergic Signal 2014; 10:477-86. [PMID: 24584483 DOI: 10.1007/s11302-014-9410-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 02/18/2014] [Indexed: 12/20/2022] Open
Abstract
Adenosine levels increase in ischemic hearts and contribute to the modulation of that pathological environment. We previously showed that A2B adenosine receptors on mouse cardiac Sca1(+)CD31(-) mesenchymal stromal cells upregulate secretion of paracrine factors that may contribute to the improvement in cardiac recovery seen when these cells are transplanted in infarcted hearts. In this study, we tested the hypothesis that A2B receptor signaling regulates the transition of Sca1(+)CD31(-) cells, which occurs after myocardial injury, into a myofibroblast phenotype that promotes myocardial repair and remodeling. In vitro, TGFβ1 induced the expression of the myofibroblast marker α-smooth muscle actin (αSMA) and increased collagen I generation in Sca1(+)CD31(-) cells. Stimulation of A2B receptors attenuated TGFβ1-induced collagen I secretion but had no effect on αSMA expression. In vivo, myocardial infarction resulted in a rapid increase in the numbers of αSMA-positive cardiac stromal cells by day 5 followed by a gradual decline. Genetic deletion of A2B receptors had no effect on the initial accumulation of αSMA-expressing stromal cells but hastened their subsequent decline; the numbers of αSMA-positive cells including Sca1(+)CD31(-) cells remained significantly higher in wild type compared with A2B knockout hearts. Thus, our study revealed a significant contribution of cardiac Sca1(+)CD31(-) cells to the accumulation of αSMA-expressing cells after infarction and implicated A2B receptor signaling in regulation of myocardial repair and remodeling by delaying deactivation of these cells. It is plausible that this phenomenon may contribute to the beneficial effects of transplantation of these cells to the injured heart.
Collapse
|
31
|
|
32
|
Forman MB, Gillespie DG, Cheng D, Jackson EK. A novel adenosine precursor 2',3'-cyclic adenosine monophosphate inhibits formation of post-surgical adhesions. Dig Dis Sci 2014; 59:2118-25. [PMID: 24711075 PMCID: PMC4147251 DOI: 10.1007/s10620-014-3139-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 03/25/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Intraperitoneal adenosine reduces abdominal adhesions. However, because of the ultra-short half-life and low solubility of adenosine, optimal efficacy requires multiple dosing. AIM Here, we compared the ability of potential adenosine prodrugs to inhibit post-surgical abdominal adhesions after a single intraperitoneal dose. METHODS Abdominal adhesions were induced in mice using an electric toothbrush to damage the cecum. Also, 20 μL of 95 % ethanol was applied to the cecum to cause chemically induced injury. After injury, mice received intraperitoneally either saline (n = 18) or near-solubility limit of adenosine (23 mmol/L; n = 12); 5'-adenosine monophosphate (75 mmol/L; n = 11); 3'-adenosine monophosphate (75 mmol/L; n = 12); 2'-adenosine monophosphate (75 mmol/L; n = 12); 3',5'-cyclic adenosine monophosphate (75 mmol/L; n = 19); or 2',3'-cyclic adenosine monophosphate (75 mmol/L; n = 20). After 2 weeks, adhesion formation was scored by an observer blinded to the treatments. In a second study, intraperitoneal adenosine levels were measured using tandem mass spectrometry for 3 h after instillation of 2',3'-cyclic adenosine monophosphate (75 mmol/L) into the abdomen. RESULTS The order of efficacy for attenuating adhesion formation was: 2',3'-cyclic adenosine monophosphate > 3',5'-cyclic adenosine monophosphate ≈ adenosine > 5'-adenosine monophosphate ≈ 3'-adenosine monophosphate ≈ 2'-adenosine monophosphate. The groups were compared using a one-factor analysis of variance, and the overall p value for differences between groups was p < 0.000001. Intraperitoneal administration of 2',3'-cAMP yielded pharmacologically relevant levels of adenosine in the abdominal cavity for >3 h. CONCLUSION Administration of 2',3'-cyclic adenosine monophosphate into the surgical field is a unique, convenient and effective method of preventing post-surgical adhesions by acting as an adenosine prodrug.
Collapse
Affiliation(s)
- Mervyn B. Forman
- St. Joseph Translational Research Institute, St. Joseph Hospital of Atlanta, Atlanta, GA USA
| | - Delbert G. Gillespie
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Drive, Room 514, Pittsburgh, PA 15219 USA
| | - Dongmei Cheng
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Drive, Room 514, Pittsburgh, PA 15219 USA
| | - Edwin K. Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Drive, Room 514, Pittsburgh, PA 15219 USA
| |
Collapse
|
33
|
Schmuck EG, Mulligan JD, Ertel RL, Kouris NA, Ogle BM, Raval AN, Saupe KW. Cardiac fibroblast-derived 3D extracellular matrix seeded with mesenchymal stem cells as a novel device to transfer cells to the ischemic myocardium. Cardiovasc Eng Technol 2013; 5:119-131. [PMID: 24683428 DOI: 10.1007/s13239-013-0167-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE Demonstrate a novel manufacturing method to generate extracellular matrix scaffolds from cardiac fibroblasts (CF-ECM) as a therapeutic mesenchymal stem cell-transfer device. MATERIALS AND METHODS Rat CF were cultured at high-density (~1.6×105/cm2) for 10-14 days. Cell sheets were removed from the culture dish by incubation with EDTA and decellularized with water and peracetic acid. CF-ECM was characterized by mass spectrometry, immunofluorescence and scanning electron microscopy. CF-ECM seeded with human embryonic stem cell derived mesenchymal stromal cells (hEMSCs) were transferred into a mouse myocardial infarction model. 48 hours later, mouse hearts were excised and examined for CF-ECM scaffold retention and cell transfer. RESULTS CF-ECM scaffolds are composed of fibronectin (82%), collagens type I (13%), type III (3.4%), type V (0.2%), type II (0.1%) elastin (1.3%) and 18 non-structural bioactive molecules. Scaffolds remained intact on the mouse heart for 48 hours without the use of sutures or glue. Identified hEMSCs were distributed from the epicardium to the endocardium. CONCLUSIONS High density cardiac fibroblast culture can be used to generate CF-ECM scaffolds. CF-ECM scaffolds seeded with hEMSCs can be maintained on the heart without suture or glue. hEMSC are successfully delivered throughout the myocardium.
Collapse
Affiliation(s)
- Eric G Schmuck
- Department of Medicine, University of Wisconsin at Madison, Madison, WI 53706, USA
| | - Jacob D Mulligan
- Department of Medicine, University of Wisconsin at Madison, Madison, WI 53706, USA
| | - Rebecca L Ertel
- Department of Medicine, University of Wisconsin at Madison, Madison, WI 53706, USA
| | - Nicholas A Kouris
- Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, WI 53706, USA
| | - Brenda M Ogle
- Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, WI 53706, USA
| | - Amish N Raval
- Department of Medicine, University of Wisconsin at Madison, Madison, WI 53706, USA ; Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, WI 53706, USA
| | - Kurt W Saupe
- Department of Medicine, University of Wisconsin at Madison, Madison, WI 53706, USA
| |
Collapse
|
34
|
Cardiovascular adenosine receptors: Expression, actions and interactions. Pharmacol Ther 2013; 140:92-111. [DOI: 10.1016/j.pharmthera.2013.06.002] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 12/26/2022]
|
35
|
Brønnum H, Eskildsen T, Andersen DC, Schneider M, Sheikh SP. IL-1β suppresses TGF-β-mediated myofibroblast differentiation in cardiac fibroblasts. Growth Factors 2013; 31:81-9. [PMID: 23734837 DOI: 10.3109/08977194.2013.787994] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiac fibrosis is a maladaptive response of the injured myocardium and is mediated through a complex interplay between molecular triggers and cellular responses. Interleukin (IL)-1β is a key inflammatory inducer in cardiac disease and promotes cell invasion and cardiomyocyte injury, but little is known of its impact on fibrosis. A major cornerstone of fibrosis is the differentiation of cardiac fibroblasts (CFs) into myofibroblasts (myoFbs), which is highly promoted by Transforming Growth Factor (TGF)-β. Therefore, we asked how IL-1β functionally modulated CF-to-myoFb differentiation. Using a differentiation model of ventricular fibroblasts, we found that IL-1β instigated substantial anti-fibrogenic effects. In specific, IL-1β reduced proliferation, matrix activity, cell motility and α-smooth muscle actin expression, which are all hallmarks of myoFb differentiation. These findings suggest that IL-1β, besides from its acknowledged adverse role in the inflammatory response, can also exert beneficial effects in cardiac fibrosis by actively suppressing differentiation of CFs into fibrogenic myoFbs.
Collapse
Affiliation(s)
- Hasse Brønnum
- Laboratory for Molecular and Cellular Cardiology, Department of Clinical Biochemistry and Pharmacology, Odense University Hospital and Institute of Molecular Medicine, University of Southern Denmark, Odense C, Denmark
| | | | | | | | | |
Collapse
|
36
|
Jiang X, Ning Q, Wang J. Angiotensin II induced differentially expressed microRNAs in adult rat cardiac fibroblasts. J Physiol Sci 2013; 63:31-38. [PMID: 23007623 PMCID: PMC10717151 DOI: 10.1007/s12576-012-0230-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 08/24/2012] [Indexed: 10/27/2022]
Abstract
Angiotensin II (Ang II) plays a pivotal role in cardiac fibrosis, and microRNAs (miRNAs) have been shown to participate in diverse pathological processes. Our aim is to identify the Ang II-induced miRNAs in cardiac fibroblasts (CFs). The miRNA array was used to analyze the miRNA expression profile in CFs treated by Ang II and control cells. Stem-loop real-time PCR was performed to re-measure the levels of the differentially expressed miRNAs. Analysis of miRNA arrays showed that 33 miRNAs were differentially expressed (13 up- and 20 downregulated) in response to Ang II (100 nM) for 24 h as compared to control cells. Quantitative PCR revealed that Ang II upregulated the levels of miR-132, -125b-3p and miR-146b but downregulated the levels of miR-300-5p, -204* and miR-181b in CFs. The trend of miRNA change is consistent with microarray and qRT-PCR. Bioinformatic analysis revealed that MMP9 as the target of miR-132, MMP16 as the target of miR-146b and TIMP3 as the target of miR-181b have been listed in the miR database with experimentally validated targets, indicating the potential role of those miRNAs in cardiac fibrosis. Our results demonstrated that we did identify a subset of miRNAs that was differentially expressed in Ang II-treated CFs, which provide a starting point to explore their potential roles in cardiac fibrosis and hypertension.
Collapse
Affiliation(s)
- Xiaoying Jiang
- Department of Genetics and Molecular Biology, School of Medicine, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China.
- NIHR Translational Research Facility in Respiratory Medicine Group, School of Translational Medicine, Stopford Building, University of Manchester, Manchester, M13 9PT, UK.
| | - Qilan Ning
- Department of Genetics and Molecular Biology, School of Medicine, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| | - Juanli Wang
- Department of Genetics and Molecular Biology, School of Medicine, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, 710061, Shaanxi, China
| |
Collapse
|
37
|
Jackson EK, Cheng D, Jackson TC, Verrier JD, Gillespie DG. Extracellular guanosine regulates extracellular adenosine levels. Am J Physiol Cell Physiol 2012; 304:C406-21. [PMID: 23242185 DOI: 10.1152/ajpcell.00212.2012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aim of this investigation was to test the hypothesis that extracellular guanosine regulates extracellular adenosine levels. Rat preglomerular vascular smooth muscle cells were incubated with adenosine, guanosine, or both. Guanosine (30 μmol/l) per se had little effect on extracellular adenosine levels. Extracellular adenosine levels 1 h after addition of adenosine (3 μmol/l) were 0.125 ± 0.020 μmol/l, indicating rapid disposition of extracellular adenosine. Extracellular adenosine levels 1 h after addition of adenosine (3 μmol/l) plus guanosine (30 μmol/l) were 1.173 ± 0.061 μmol/l, indicating slow disposition of extracellular adenosine. Cell injury increased extracellular levels of endogenous adenosine and guanosine, and the effects of cell injury on endogenous extracellular adenosine were modulated by altering the levels of endogenous extracellular guanosine with exogenous purine nucleoside phosphorylase (converts guanosine to guanine) or 8-aminoguanosine (inhibits purine nucleoside phosphorylase). Extracellular guanosine also slowed the disposition of extracellular adenosine in rat preglomerular vascular endothelial cells, mesangial cells, cardiac fibroblasts, and kidney epithelial cells and in human aortic and coronary artery vascular smooth muscle cells and coronary artery endothelial cells. The effects of guanosine on adenosine levels were not mimicked or attenuated by 5-iodotubericidin (adenosine kinase inhibitor), erythro-9-(2-hydroxy-3-nonyl)-adenine (adenosine deaminase inhibitor), 5-aminoimidazole-4-carboxamide (guanine deaminase inhibitor), aristeromycin (S-adenosylhomocysteine hydrolase inhibitor), low sodium (inhibits concentrative nucleoside transporters), S-(4-nitrobenzyl)-6-thioinosine [inhibits equilibrative nucleoside transporter (ENT) type 1], zidovudine (inhibits ENT type 2), or acadesine (known modulator of adenosine levels). Guanosine also increases extracellular inosine, uridine, thymidine, and cytidine, yet decreases extracellular uric acid. In conclusion, extracellular guanosine regulates extracellular adenosine levels.
Collapse
Affiliation(s)
- Edwin K Jackson
- Dept. of Pharmacology and Chemical Biology, 100 Technology Drive, Rm. 514, Univ. of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| | | | | | | | | |
Collapse
|
38
|
Hamad EA, Zhu W, Chan TO, Myers V, Gao E, Li X, Zhang J, Song J, Zhang XQ, Cheung JY, Koch W, Feldman AM. Cardioprotection of controlled and cardiac-specific over-expression of A(2A)-adenosine receptor in the pressure overload. PLoS One 2012; 7:e39919. [PMID: 22792196 PMCID: PMC3391213 DOI: 10.1371/journal.pone.0039919] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 05/29/2012] [Indexed: 11/18/2022] Open
Abstract
Adenosine binds to three G protein-coupled receptors (R) located on the cardiomyocyte (A(1)-R, A(2A)-R and A(3)-R) and provides cardiac protection during both ischemic and load-induced stress. While the role of adenosine receptor-subtypes has been well defined in the setting of ischemia-reperfusion, far less is known regarding their roles in protecting the heart during other forms of cardiac stress. Because of its ability to increase cardiac contractility and heart rate, we hypothesized that enhanced signaling through A(2A)-R would protect the heart during the stress of transverse aortic constriction (TAC). Using a cardiac-specific and inducible promoter, we selectively over-expressed A(2A)-R in FVB mice. Echocardiograms were obtained at baseline, 2, 4, 8, 12, 14 weeks and hearts were harvested at 14 weeks, when WT mice developed a significant decrease in cardiac function, an increase in end systolic and diastolic dimensions, a higher heart weight to body weight ratio (HW/BW), and marked fibrosis when compared with sham-operated WT. More importantly, these changes were significantly attenuated by over expression of the A(2A)-R. Furthermore, WT mice also demonstrated marked increases in the hypertrophic genes β-myosin heavy chain (β-MHC), and atrial natriuretic factor (ANF)--changes that are mediated by activation of the transcription factor GATA-4. Levels of the mRNAs encoding β-MHC, ANP, and GATA-4 were significantly lower in myocardium from A(2A)-R TG mice after TAC when compared with WT and sham-operated controls. In addition, three inflammatory factors genes encoding cysteine dioxygenase, complement component 3, and serine peptidase inhibitor, member 3N, were enhanced in WT TAC mice, but their expression was suppressed in A(2A)-R TG mice. A(2A)-R over-expression is protective against pressure-induced heart failure secondary to TAC. These cardioprotective effects are associated with attenuation of GATA-4 expression and inflammatory factors. The A(2A)-R may provide a novel new target for pharmacologic therapy in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Eman A. Hamad
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
- Department of Medicine, The Center for Translational Medicine, Jefferson Medical College, Philadelphia, Pennsylvania, United States of America
| | - Weizhong Zhu
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Tung O. Chan
- Department of Medicine, The Center for Translational Medicine, Jefferson Medical College, Philadelphia, Pennsylvania, United States of America
| | - Valerie Myers
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Erhe Gao
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Xue Li
- Department of Medicine, The Center for Translational Medicine, Jefferson Medical College, Philadelphia, Pennsylvania, United States of America
| | - Jin Zhang
- Department of Medicine, The Center for Translational Medicine, Jefferson Medical College, Philadelphia, Pennsylvania, United States of America
| | - Jianliang Song
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Xue-Qian Zhang
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Joseph Y. Cheung
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Walter Koch
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Arthur M. Feldman
- Department of Physiology, Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
39
|
Jeppesen PL, Christensen GL, Schneider M, Nossent AY, Jensen HB, Andersen DC, Eskildsen T, Gammeltoft S, Hansen JL, Sheikh SP. Angiotensin II type 1 receptor signalling regulates microRNA differentially in cardiac fibroblasts and myocytes. Br J Pharmacol 2012; 164:394-404. [PMID: 21449976 DOI: 10.1111/j.1476-5381.2011.01375.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE The angiotensin II type 1 receptor (AT(1)R) is a key regulator of blood pressure and cardiac contractility and is profoundly involved in development of cardiac disease. Since several microRNAs (miRNAs) have been implicated in cardiac disease, we determined whether miRNAs might be regulated by AT(1)R signals in a Gαq/11-dependent or -independent manner. EXPERIMENTAL APPROACH We performed a global miRNA array analysis of angiotensin II (Ang II)-mediated miRNA regulation in HEK293N cells overexpressing the AT(1)R and focused on separating the role of Gαq/11-dependent and -independent pathways. MiRNA regulation was verified with quantitative PCR in both HEK293N cells and primary cardiac myocytes and fibroblasts. KEY RESULTS Our studies revealed five miRNAs (miR-29b, -129-3p, -132, -132* and -212) that were up-regulated by Ang II in HEK293N cells. In contrast, the biased Ang II analogue, [Sar1, Ile4, Ile8] Ang II (SII Ang II), which selectively activates Gαq/11-independent signalling, failed to regulate miRNAs in HEK293N cells. Furthermore, Ang II-induced miRNA regulation was blocked following Gαq/11 and Mek1 inhibition. The observed Ang II regulation of miRNA was confirmed in primary cultures of adult cardiac fibroblasts. Interestingly, Ang II did not regulate miRNA expression in cardiac myocytes, but SII Ang II significantly down-regulated miR-129-3p. CONCLUSIONS AND IMPLICATIONS Five miRNAs were regulated by Ang II through mechanisms depending on Gαq/11 and Erk1/2 activation. These miRNAs may be involved in Ang II-mediated cardiac biology and disease, as several of these miRNAs have previously been associated with cardiovascular disease and were found to be regulated in cardiac cells.
Collapse
Affiliation(s)
- Pia Lindgren Jeppesen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark and Department of Clinical Biochemistry & Pharmacology, Odense University Hospital, Odense, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Feng Y, Shen Y, Zhang H. Molecular mechanism of remodeling of autologous artery graft interposed to vein in rabbit. Anat Rec (Hoboken) 2011; 295:432-7. [PMID: 22213534 DOI: 10.1002/ar.21536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 07/06/2011] [Indexed: 01/06/2023]
Abstract
Our previous study found that the artery interposed to vein did not develop atherosclerosis but rather underwent atrophic remodeling in hyperlipidemic rabbits, suggesting that local hemodynamic load was another important determinant for the development of atherosclerosis. This study focused on the cellular and molecular changes in autologous artery grafts derived from rabbits fed with high lipid diet for 1, 2, 4, 8, and 12 weeks. Thickness, area of vessel wall, and lumen area were measured and analyzed on the grafted common carotid artery (GCCA) interposed to vein and on the right common carotid artery. Apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling. Both elastin and collagen of GCCA were identified by the method of double stains of elastin and collagen. Reverse transcription polymerase chain reaction was used to observe matrix metalloproteinases (MMPs) mRNA expression changes in the examined arteries. The lumen area increased gradually in control common carotid artery and remained unchanged in GCCA 3 months later, since the surgery and the start of high lipid diet, while significantly increased apoptosis was evidenced from inner to outer part of GCCA. Collagen content decreased gradually and elastic fibers remained unchanged in GCCA. At 1 week after operation, the mRNA expression of MMP(2) and MMP(9) increased significantly and returned to baseline thereafter. The artery interposed to a vein underwent atrophy, characterized by increased apoptosis in the vessel wall from intima to adventitia, possibly due to low shear stress circumference and reduced vessel collagen resulting from postsurgical upregulated MMP(2) and MMP(9) expression.
Collapse
Affiliation(s)
- Yanling Feng
- Department of Pathology, Shanghai Public Health Clinical Center, Shanghai 201508, People's Republic of China
| | | | | |
Collapse
|
41
|
Katare R, Riu F, Mitchell K, Gubernator M, Campagnolo P, Cui Y, Fortunato O, Avolio E, Cesselli D, Beltrami AP, Angelini G, Emanueli C, Madeddu P. Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132. Circ Res 2011; 109:894-906. [PMID: 21868695 DOI: 10.1161/circresaha.111.251546] [Citation(s) in RCA: 287] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RATIONALE Pericytes are key regulators of vascular maturation, but their value for cardiac repair remains unknown. OBJECTIVE We investigated the therapeutic activity and mechanistic targets of saphenous vein-derived pericyte progenitor cells (SVPs) in a mouse myocardial infarction (MI) model. METHODS AND RESULTS SVPs have a low immunogenic profile and are resistant to hypoxia/starvation (H/S). Transplantation of SVPs into the peri-infarct zone of immunodeficient CD1/Foxn-1(nu/nu) or immunocompetent CD1 mice attenuated left ventricular dilatation and improved ejection fraction compared to vehicle. Moreover, SVPs reduced myocardial scar, cardiomyocyte apoptosis and interstitial fibrosis, improved myocardial blood flow and neovascularization, and attenuated vascular permeability. SVPs secrete vascular endothelial growth factor A, angiopoietin-1, and chemokines and induce an endogenous angiocrine response by the host, through recruitment of vascular endothelial growth factor B expressing monocytes. The association of donor- and recipient-derived stimuli activates the proangiogenic and prosurvival Akt/eNOS/Bcl-2 signaling pathway. Moreover, microRNA-132 (miR-132) was constitutively expressed and secreted by SVPs and remarkably upregulated, together with its transcriptional activator cyclic AMP response element-binding protein, on stimulation by H/S or vascular endothelial growth factor B. We next investigated if SVP-secreted miR-132 acts as a paracrine activator of cardiac healing. In vitro studies showed that SVP conditioned medium stimulates endothelial tube formation and reduces myofibroblast differentiation, through inhibition of Ras-GTPase activating protein and methyl-CpG-binding protein 2, which are validated miR-132 targets. Furthermore, miR-132 inhibition by antimiR-132 decreased SVP capacity to improve contractility, reparative angiogenesis, and interstitial fibrosis in infarcted hearts. CONCLUSION SVP transplantation produces long-term improvement of cardiac function through a novel paracrine mechanism involving the secretion of miR-132 and inhibition of its target genes.
Collapse
Affiliation(s)
- Rajesh Katare
- University of Bristol, Bristol Royal Infirmary-level 7, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Autocrine signaling via A(1) adenosine receptors causes downregulation of M(2) receptors in adult rat atrial myocytes in vitro. Pflugers Arch 2011; 461:165-76. [PMID: 21061016 DOI: 10.1007/s00424-010-0897-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/13/2010] [Accepted: 10/20/2010] [Indexed: 10/18/2022]
Abstract
G protein-activated K(+) channels composed of Kir3 (GIRK) subunits contribute to regulation of heart rate and excitability. Opening of these channels in myocytes is increased by binding of G(βγ) upon activation of muscarinic M(2) receptors (M(2)-R) or A(1) adenosine receptors (A(1)-R). It has been shown that saturating activation of A(1)-R resulted in a smaller GIRK current than activation of M(2)-R. Adenovirus-driven overexpression of the A(1)-R caused an increase in current induced by adenosine (I(K(Ado))), whereas the M(2)-R-activated current (I(K(ACh))) was reduced. Here, we sought to get deeper insight into the mechanism causing this negative crosstalk. GIRK current in cultured rat atrial myocytes was recorded in whole cell mode. Adenovirus-driven RNA interference targeting the M(2)-R resulted in a reduction in I(K(ACh)) without affecting I(K(Ado)), arguing against a competition of the two receptors for common signaling complexes. The negative effect of A(1)-R overexpression on I(K(ACh)) was reduced by the A(1)-R antagonist DPCPX and augmented by the agonist chloro-N6-cyclopentyladenosin (CCPA). In native myocytes incubation with either CCPA or the muscarinic agonist carbachol resulted in reduction in I(K(ACh)) and I(K(Ado)), suggesting common pathways of A(1)-R and M(2)-R downregulation. In the absence of agonist, inhibition of adenosine deaminase by EHNA or exposure to AMP, less to ADP, but not ATP resulted in reduction of I(K(ACh)) and I(K(Ado)). Our data indicate that atrial myocytes generate adenosine from extracellular AMP, which activates A(1)-R in an autocrine fashion. Chronic activation of A(1)-R causes parallel downregulation of both A(1)-R and M(2)-R.
Collapse
|
43
|
Fan D, Li L, Wang C, Cui XB, Zhou Y, Wu LL. Adiponectin induces interleukin-6 production and its underlying mechanism in adult rat cardiac fibroblasts. J Cell Physiol 2011; 226:1793-802. [PMID: 21069809 DOI: 10.1002/jcp.22512] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
It has been reported that adiponectin enhances interleukin-6 (IL-6) production in cardiac fibroblasts derived from neonatal rats and adult mice, but the mechanisms involved remain unknown. In the present study, we explored the effect and mechanisms of adiponectin on IL-6 production in adult rat cardiac fibroblasts. Globular adiponectin (gAd) increased IL-6 mRNA expression and protein secretion in cultured adult rat cardiac fibroblasts. gAd-induced IL-6 release was attenuated after RNA interference inhibition of adiponectin receptor 1 (AdipoR1), but not AdipoR2 or an adaptor protein APPL1. gAd increased the phosphorylation of AMP-activated protein kinase (AMPK), p38 mitogen-activated protein kinase (p38MAPK), extracellular signal-regulated kinase 1/2 (ERK1/2), and c-Jun-N-terminal kinase (JNK). Inhibitors of AMPK (araA), p38MAPK (SB202190), and ERK1/2 (PD98059 and U0126) but not JNK (SP600125) suppressed gAd-induced IL-6 production. In transient transfection assays of IL-6 promoter/luciferase reporter plasmids, gAd increased the transcriptional activity of the full-length IL-6 promoter. Deletion analysis of the IL-6 promoter indicated that activator protein-1 (AP-1), nuclear factor for IL-6 (NF-IL-6) and nuclear factor κB (NF-κB) binding sites were important for gAd-induced IL-6 transcription. Our data suggest that gAd enhances IL-6 synthesis and release in adult rat cardiac fibroblasts through AdipoR1. Activation of AMPK, p38MAPK, and ERK1/2 mediates the intracellular signal transduction. AP-1, NF-IL-6, and NF-κB cis-elements are required for gAd-induced IL-6 transcription.
Collapse
Affiliation(s)
- Dong Fan
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | | | | | | | | | | |
Collapse
|
44
|
Jackson EK, Ren J, Gillespie DG. 2',3'-cAMP, 3'-AMP, and 2'-AMP inhibit human aortic and coronary vascular smooth muscle cell proliferation via A2B receptors. Am J Physiol Heart Circ Physiol 2011; 301:H391-401. [PMID: 21622827 DOI: 10.1152/ajpheart.00336.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rat vascular smooth muscle cells (VSMCs) from renal microvessels metabolize 2',3'-cAMP to 2'-AMP and 3'-AMP, and these AMPs are converted to adenosine that inhibits microvascular VSMC proliferation via A(2B) receptors. The goal of this study was to test whether this mechanism also exists in VSMCs from conduit arteries and whether it is similarly expressed in human vs. rat VSMCs. Incubation of rat and human aortic VSMCs with 2',3'-cAMP concentration-dependently increased levels of 2'-AMP and 3'-AMP in the medium, with a similar absolute increase in 2'-AMP vs. 3'-AMP. In contrast, in human coronary VSMCs, 2',3'-cAMP increased 2'-AMP levels yet had little effect on 3'-AMP levels. In all cell types, 2',3'-cAMP increased levels of adenosine, but not 5'-AMP, and 2',3'-AMP inhibited cell proliferation. Antagonism of A(2B) receptors (MRS-1754), but not A(1) (1,3-dipropyl-8-cyclopentylxanthine), A(2A) (SCH-58261), or A(3) (VUF-5574) receptors, attenuated the antiproliferative effects of 2',3'-cAMP. In all cell types, 2'-AMP, 3'-AMP, and 5'-AMP increased adenosine levels, and inhibition of ecto-5'-nucleotidase blocked this effect of 5'-AMP but not that of 2'-AMP nor 3'-AMP. Also, 2'-AMP, 3'-AMP, and 5'-AMP, like 2',3'-cAMP, exerted antiproliferative effects that were abolished by antagonism of A(2B) receptors with MRS-1754. In conclusion, VSMCs from conduit arteries metabolize 2',3'-cAMP to AMPs, which are metabolized to adenosine. In rat and human aortic VSMCs, both 2'-AMP and 3'-AMP are involved in this process, whereas, in human coronary VSMCs, 2',3'-cAMP is mainly converted to 2'-AMP. Because adenosine inhibits VSMC proliferation via A(2B) receptors, local vascular production of 2',3'-cAMP may protect conduit arteries from atherosclerosis.
Collapse
Affiliation(s)
- Edwin K Jackson
- Dept. of Pharmacology and Chemical Biology, Univ. of Pittsburgh School of Medicine, 100 Technology Drive, Rm. 514, Pittsburgh, PA 15219-3130, USA.
| | | | | |
Collapse
|
45
|
Jackson EK, Gillespie DG, Dubey RK. 2'-AMP and 3'-AMP inhibit proliferation of preglomerular vascular smooth muscle cells and glomerular mesangial cells via A2B receptors. J Pharmacol Exp Ther 2011; 337:444-50. [PMID: 21270135 PMCID: PMC3083111 DOI: 10.1124/jpet.110.178137] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 01/19/2011] [Indexed: 11/22/2022] Open
Abstract
Studies show that kidneys produce 2',3'-cAMP, 2',3'-cAMP is exported and metabolized to 2'-AMP and 3'-AMP, 2'-AMP and 3'-AMP are metabolized to adenosine, 2',3'-cAMP inhibits proliferation of preglomerular vascular smooth muscle cells (PGVSMCs) and glomerular mesangial cells (GMCs), and A(2B) (not A(1), A(2A), or A(3)) adenosine receptors mediate part of the antiproliferative effects of 2',3'-cAMP. These findings suggest that extracellular 2',3'-cAMP attenuates proliferation of PGVSMCs and GMCs partly via conversion to corresponding AMPs, which are metabolized to adenosine that activates A(2B) receptors. This hypothesis predicts that extracellular 2'-AMP and 3'-AMP should exert A(2B) receptor-mediated antiproliferative effects. Therefore, we examined the antiproliferative effects (cell counts) of 2'-AMP and 3'-AMP. In PGVSMCs and GMCs, 2'-AMP and 3'-AMP exerted concentration-dependent antiproliferative effects. 3'-AMP was equipotent with and 2'-AMP was 3-fold less potent than 5'-AMP (prototypical adenosine precursor). In PGVSMCs, the effects of 2'-AMP and 3'-AMP were mimicked by adenosine, and 8-[4-[((4-cyanophenyl)carbamoylmethyl)oxy]phenyl]-1,3-di(n-propyl)xanthine (MRS-1754) (A(2B) receptor antagonist) equally blocked the antiproliferative effects of 2'-AMP, 3'-AMP, and adenosine but less effectively blocked the effects of 2',3'-cAMP. Similar results were obtained in GMCs except that MRS-1754 also incompletely blocked the effects of 3'-AMP. We conclude that in PGVSMCs, 2'-AMP and 3'-AMP are antiproliferative, the antiproliferative effects of 2'-AMP and 3'-AMP are mediated nearly entirely by adenosine/A(2B) receptors, and some of the antiproliferative effects of 2',3'-cAMP are independent of adenosine/A(2B) receptors. Similar conclusions apply to GMCs except that 3'-AMP also has actions independent of adenosine/A(2B) receptors. Because A(2B) receptors are renoprotective, 2'-AMP and 3'-AMP may provide renoprotection by generating adenosine that activates A(2B) receptors.
Collapse
MESH Headings
- Acetamides/pharmacology
- Adenosine Monophosphate/pharmacology
- Animals
- Cell Proliferation/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Male
- Mesangial Cells/drug effects
- Mesangial Cells/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Purines/pharmacology
- Rats
- Rats, Inbred WKY
- Receptor, Adenosine A2B/drug effects
- Receptor, Adenosine A2B/metabolism
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Dr., Pittsburgh, PA 15219, USA.
| | | | | |
Collapse
|
46
|
Fassett JT, Hu X, Xu X, Lu Z, Zhang P, Chen Y, Bache RJ. Adenosine kinase regulation of cardiomyocyte hypertrophy. Am J Physiol Heart Circ Physiol 2011; 300:H1722-32. [PMID: 21335462 DOI: 10.1152/ajpheart.00684.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is evidence that extracellular adenosine can attenuate cardiac hypertrophy, but the mechanism by which this occurs is not clear. Here we investigated the role of adenosine receptors and adenosine metabolism in attenuation of cardiomyocyte hypertrophy. Phenylephrine (PE) caused hypertrophy of neonatal rat cardiomyocytes with increases of cell surface area, protein synthesis, and atrial natriuretic peptide (ANP) expression. These responses were attenuated by 5 μM 2-chloroadenosine (CADO; adenosine deaminase resistant adenosine analog) or 10 μM adenosine. While antagonism of adenosine receptors partially blocked the reduction of ANP expression produced by CADO, it did not restore cell size or protein synthesis. In support of a role for intracellular adenosine metabolism in regulating hypertrophy, the adenosine kinase (AK) inhibitors iodotubercidin and ABT-702 completely reversed the attenuation of cell size, protein synthesis, and expression of ANP by CADO or ADO. Examination of PE-induced phosphosignaling pathways revealed that CADO treatment did not reduce AKT(Ser⁴⁷³) phosphorylation but did attenuate sustained phosphorylation of Raf(Ser³³⁸) (24-48 h), mTOR(Ser²⁴⁴⁸) (24-48 h), p70S6k(Thr³⁸⁹) (2.5-48 h), and ERK(Thr²⁰²/Tyr²⁰⁴) (48 h). Inhibition of AK restored activation of these enzymes in the presence of CADO. Using dominant negative and constitutively active Raf adenoviruses, we found that Raf activation is necessary and sufficient for PE-induced mTORC1 signaling and cardiomyocyte hypertrophy. CADO treatment still blocked p70S6k(Thr³⁸⁹) phosphorylation and hypertrophy downstream of constitutively active Raf, however, despite a high level phosphorylation of ERK(Thr202/Tyr204) and AKT(Ser⁴⁷³). Reduction of Raf-induced p70S6k(Thr³⁸⁹) phosphorylation and hypertrophy by CADO was reversed by inhibiting AK. Together, these results identify AK as an important mediator of adenosine attenuation of cardiomyocyte hypertrophy, which acts, at least in part, through inhibition of Raf signaling to mTOR/p70S6k.
Collapse
Affiliation(s)
- John T Fassett
- Univ. of Minnesota, Mayo Mail Code 508, 401 Delaware St. SE, Minneapolis, MN55455 .
| | | | | | | | | | | | | |
Collapse
|
47
|
Headrick JP, Peart JN, Reichelt ME, Haseler LJ. Adenosine and its receptors in the heart: regulation, retaliation and adaptation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1413-28. [PMID: 21094127 DOI: 10.1016/j.bbamem.2010.11.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 11/05/2010] [Accepted: 11/07/2010] [Indexed: 10/18/2022]
Abstract
The purine nucleoside adenosine is an important regulator within the cardiovascular system, and throughout the body. Released in response to perturbations in energy state, among other stimuli, local adenosine interacts with 4 adenosine receptor sub-types on constituent cardiac and vascular cells: A(1), A(2A), A(2B), and A(3)ARs. These G-protein coupled receptors mediate varied responses, from modulation of coronary flow, heart rate and contraction, to cardioprotection, inflammatory regulation, and control of cell growth and tissue remodeling. Research also unveils an increasingly complex interplay between members of the adenosine receptor family, and with other receptor groups. Given generally favorable effects of adenosine receptor activity (e.g. improving the balance between myocardial energy utilization and supply, limiting injury and adverse remodeling, suppressing inflammation), the adenosine receptor system is an attractive target for therapeutic manipulation. Cardiovascular adenosine receptor-based therapies are already in place, and trials of new treatments underway. Although the complex interplay between adenosine receptors and other receptors, and their wide distribution and functions, pose challenges to implementation of site/target specific cardiovascular therapy, the potential of adenosinergic pharmacotherapy can be more fully realized with greater understanding of the roles of adenosine receptors under physiological and pathological conditions. This review addresses some of the major known and proposed actions of adenosine and adenosine receptors in the heart and vessels, focusing on the ability of the adenosine receptor system to regulate cell function, retaliate against injurious stressors, and mediate longer-term adaptive responses.
Collapse
Affiliation(s)
- John P Headrick
- Griffith Health Institute, Griffith University, Southport QLD, Australia.
| | | | | | | |
Collapse
|
48
|
Jackson EK, Ren J, Gillespie DG, Dubey RK. Extracellular 2,3-cyclic adenosine monophosphate is a potent inhibitor of preglomerular vascular smooth muscle cell and mesangial cell growth [corrected]. Hypertension 2010; 56:151-8. [PMID: 20516392 DOI: 10.1161/hypertensionaha.110.152454] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently we discovered that intact kidneys release into the extracellular compartment 2',3'-cAMP (a positional isomer of 3',5'-cAMP with unknown pharmacology) and metabolize 2',3'-cAMP to 2'-AMP, 3'-AMP, and adenosine. Because adenosine inhibits growth of vascular smooth muscle cells and mesangial cells, we tested the hypothesis that extracellular 2',3'-cAMP attenuates growth of preglomerular vascular smooth muscle and mesangial cells via production of adenosine. For comparison, all of the experiments were performed with both 2',3'-cAMP and 3',5'-cAMP. In study 1, 2',3'-cAMP, 3',5'-cAMP, 5'-AMP, 3'-AMP, or 2'-AMP was incubated with cells and purines measured in the medium by mass spectrometry. Both preglomerular vascular smooth muscle and mesangial cells metabolized 3',5'-cAMP to 5'-AMP and adenosine; 5'-AMP to adenosine; 2',3'-cAMP to 2'-AMP, 3'-AMP, and adenosine; and 2'-AMP and 3'-AMP to adenosine. 3-Isobutyl-1-methylxanthine (phosphodiesterase inhibitor) and 1,3-dipropyl-8-p-sulfophenylxanthine (ecto-phosphodiesterase inhibitor) blocked conversion of 3',5'-cAMP to 5'-AMP and adenosine, and alpha,beta-methylene-adenosine-5'-diphosphate (CD73 inhibitor) blocked conversion of 5'-AMP to adenosine. These enzyme inhibitors had little effect on metabolism of 2',3'-cAMP, 2'-AMP, or 3'-AMP. For study 2, 2',3'-cAMP and 3',5'-cAMP profoundly inhibited proliferation (thymidine incorporation and cell number) of both cell types, with 2',3'-cAMP more potent than 3',5'-cAMP. Antagonism of A(2B) receptors (MRS-1724), but not A(1) (1,3-dipropyl-8-cyclopentylxanthine), A(2A) (SCH-58261), or A(3) (VUF-5574) receptors, attenuated the growth inhibitory effects of 2',3'-cAMP and 3',5'-cAMP. Extracellular 2',3'-cAMP inhibits growth of preglomerular vascular smooth muscle and mesangial cells more profoundly than does 3',5'-cAMP. Although both cAMPs inhibit growth in part via conversion to adenosine followed by A(2B) receptor activation, their metabolism is mediated by different enzymes.
Collapse
Affiliation(s)
- Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 100 Technology Dr, Suite 450, Pittsburgh, PA 15219, USA.
| | | | | | | |
Collapse
|
49
|
Dubey RK, Rosselli M, Gillespie DG, Mi Z, Jackson EK. Extracellular 3',5'-cAMP-adenosine pathway inhibits glomerular mesangial cell growth. J Pharmacol Exp Ther 2010; 333:808-15. [PMID: 20194527 PMCID: PMC2879927 DOI: 10.1124/jpet.110.166371] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 02/23/2010] [Indexed: 01/06/2023] Open
Abstract
Abnormal growth of glomerular mesangial cells (GMCs) contributes to the pathophysiology of many types of nephropathy. Because adenosine is an autocrine/paracrine factor that potentially could regulate GMC proliferation and because the extracellular 3',5'-cAMP-adenosine pathway (i.e., the conversion of extracellular 3',5'-cAMP to 5'-AMP and adenosine on the cell surface) could generate adenosine in the biophase of GMC receptors, we investigated the role of the 3',5'-cAMP-adenosine pathway in modulating growth [cell proliferation, DNA synthesis ([(3)H]thymidine incorporation), collagen synthesis ([(3)H]proline incorporation), and mitogen-activated protein kinase activity] of GMCs. The addition of exogenous 3',5'-cAMP to human GMCs increased extracellular levels of 5'-AMP, adenosine, and inosine, and 3-isobutyl-1-methylxanthine (phosphodiesterase inhibitor), 1,3-dipropyl-8-p-sulfophenylxanthine (ecto-phosphodiesterase inhibitor), and alpha,beta-methylene-adenosine-5'-diphosphate (ecto-5'-nucleotidase inhibitor) attenuated the increases in adenosine and inosine. Forskolin augmented extracellular 3',5'-cAMP and adenosine concentrations, and 2',5'-dideoxyadenosine (adenylyl cyclase inhibitor) blocked these increases. Exogenous 3',5'-cAMP and forskolin inhibited all indices of cell growth, and antagonism of A(2) [(E)-8-(3,4-dimethoxystyryl)-1,3-dipropyl-7-methylxanthine, KF17837] or A(1)/A(2) (1,3-dipropyl-8-p-sulfophenylxanthine, DPSPX), but not A(1) (8-cyclopentyl-1,3-dipropylxanthine), or A(3){N-(2-methoxyphenyl)-N'-[2-(3-pyridinyl)-4-quinazolinyl]-urea, VUF5574}, adenosine receptors blocked the growth-inhibitory actions of exogenous 3',5'-cAMP, but not the effects of 8-bromo-3',5'-cAMP (stable 3',5'-cAMP analog). Erythro-9-(2-hydroxy-3-nonyl)adenine (adenosine deaminase inhibitor) plus 5-iodotubercidin (adenosine kinase inhibitor) enhanced the growth inhibition by exogenous 3',5'-cAMP and forskolin, and A(2) receptor antagonism blocked this effect. In rat GMCs, down-regulation of A(2B) receptors with antisense, but not sense or scrambled, oligonucleotides abrogated the inhibitory effects of 3',5'-cAMP and forskolin on cell growth. The extracellular 3',5'-cAMP-adenosine pathway exists in GMCs and attenuates cell growth via A(2B) receptors. Pharmacological augmentation of this pathway could abate pathological glomerular remodeling.
Collapse
Affiliation(s)
- Raghvendra K Dubey
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15219-3130, USA
| | | | | | | | | |
Collapse
|
50
|
Zaidi SHE, Huang Q, Momen A, Riazi A, Husain M. Growth differentiation factor 5 regulates cardiac repair after myocardial infarction. J Am Coll Cardiol 2010; 55:135-43. [PMID: 20117381 DOI: 10.1016/j.jacc.2009.08.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Revised: 07/15/2009] [Accepted: 08/03/2009] [Indexed: 01/06/2023]
Abstract
OBJECTIVES The aim of this study was to examine the function of the bone morphogenic protein growth differentiation factor 5 (Gdf5) in a mouse model of myocardial infarction (MI). BACKGROUND The Gdf5 has been implicated in skeletal development, but a potential role in the heart had not been studied. METHODS The Gdf5-knockout (KO) and wild-type (WT) mice were subjected to permanent left anterior descending coronary artery (LAD) ligation. Cardiac pathology, function, gene expression levels, and signaling pathways downstream of Gdf5 were examined. Effects of recombinant Gdf5 (rGdf5) were tested in primary cardiac cell cultures. RESULTS The WT mice showed increased cardiac Gdf5 levels after MI, with increased expression in peri-infarct cardiomyocytes and myofibroblasts. At 1 and 7 days after MI, no differences were observed in ischemic or infarct areas between WT and Gdf5-KO mice. However, by 28 days after MI, Gdf5-KO mice exhibited increased infarct scar expansion and thinning with decreased arteriolar density compared with WT. The Gdf5-KO hearts also displayed increased left ventricular dilation, with decreased contractility after MI. At 4 days after MI, Gdf5-KO mice exhibited increased cardiomyocyte apoptosis and decreased expression of anti-apoptotic genes Bcl2 and Bcl-xL compared with WT. Unexpectedly, Gdf5-KO hearts displayed increased Smad 1/5/8 phosphorylation but decreased p38-mitogen-activated protein kinase (MAPK) phosphorylation versus WT. The latter was associated with increased collagen gene (Col1a1, Col3a1) expression and fibrosis. In cultures, rGdf5 induced p38-MAPK phosphorylation in cardiac fibroblasts and Smad-dependent increases in Bcl2 and Bcl-xL in cardiomyocytes. CONCLUSIONS Increased expression of Gdf5 after MI limits infarct scar expansion in vivo. These effects might be mediated by Gdf5-induced p38-MAPK signaling in fibroblasts and Gdf5-driven Smad-dependent pro-survival signaling in cardiomyocytes.
Collapse
Affiliation(s)
- Syed H E Zaidi
- Division of Cardiology, University Health Network, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|