1
|
Suzuki K, Nii M, Tanabe T, Ishigaki M, Sato K, Yoshimoto J, Kim SH, Mitsushita N, Tanaka Y. Global longitudinal strain is a surrogate marker for time constant of isovolumic relaxation in post-Fontan operation patients with single right ventricle and preserved ejection fraction. Cardiol Young 2024:1-9. [PMID: 39387218 DOI: 10.1017/s1047951124026428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
BACKGROUND The time constant of isovolumic relaxation is an established index of ventricular relaxation, a major component of diastolic function, even in a single right ventricle. However, the specific echocardiographic parameters for estimating diastolic dysfunction are insufficient for a single right ventricle. This study aimed to investigate the echocardiographic indices associated with time constant of isovolumic relaxation in post-Fontan operation patients with a single right ventricle. METHODS We included 39 patients with hypoplastic left heart syndrome after Fontan operation with an ejection fraction ≥45% and preserved valve function. First, the correlation between echocardiographic parameters and time constant of isovolumic relaxation was examined, and partial correlation coefficients were calculated using age and heart rate as covariates. Next, univariate regression analysis was performed using time constant of isovolumic relaxation as the objective variable and echocardiographic parameters as independent variables, followed by multivariate regression analysis incorporating parameters with p < 0.10. RESULTS Among the echocardiographic parameters, global longitudinal strain correlated most strongly with time constant of isovolumic relaxation (r = 0.778, p < 0.001). This was consistent with the partial correlation coefficients (r = 0.707, p < 0.001). Using stepwise multivariate regression analysis, only global longitudinal strain was found to be an independent predictor of time constant of isovolumic relaxation (adjusted R2 = 0.551). CONCLUSIONS Global longitudinal strain could be used as a surrogate marker of time constant of isovolumic relaxation, an invasive indicator of relaxation impairment, in post-Fontan operation patients with a single right ventricle, preserved ejection fraction, and valve function.
Collapse
Affiliation(s)
- Kota Suzuki
- Department of Pediatrics, Yamagata University Hospital, Yamagata, Japan
| | - Masaki Nii
- Department of Pediatric Cardiology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Takehiro Tanabe
- Department of Pediatric Cardiology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Mizuhiko Ishigaki
- Department of Pediatric Cardiology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Keisuke Sato
- Department of Pediatric Cardiology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Jun Yoshimoto
- Department of Pediatric Cardiology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Sung-Hae Kim
- Department of Pediatric Cardiology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Norie Mitsushita
- Department of Pediatric Cardiology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Yasuhiko Tanaka
- Department of Pediatric Cardiology, Shizuoka Children's Hospital, Shizuoka, Japan
| |
Collapse
|
2
|
Namazi M, Eftekhar SP, Mosaed R, Shiralizadeh Dini S, Hazrati E. Pulmonary Hypertension and Right Ventricle: A Pathophysiological Insight. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2024; 18:11795468241274744. [PMID: 39257563 PMCID: PMC11384539 DOI: 10.1177/11795468241274744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/21/2024] [Indexed: 09/12/2024]
Abstract
Background Pulmonary hypertension (PH) is a pulmonary vascular disease characterized by elevated pulmonary vascular pressure. Long-term PH, irrespective of its etiology, leads to increased right ventricular (RV) pressure, RV hypertrophy, and ultimately, RV failure. Main body Research indicates that RV failure secondary to hypertrophy remains the primary cause of mortality in pulmonary arterial hypertension (PAH). However, the impact of PH on RV structure and function under increased overload remains incompletely understood. Several mechanisms have been proposed, including extracellular remodeling, RV hypertrophy, metabolic disturbances, inflammation, apoptosis, autophagy, endothelial-to-mesenchymal transition, neurohormonal dysregulation, capillary rarefaction, and ischemia. Conclusions Studies have demonstrated the significant role of oxidative stress in the development of RV failure. Understanding the interplay among these mechanisms is crucial for the prevention and management of RV failure in patients with PH.
Collapse
Affiliation(s)
- Mehrshad Namazi
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
- Clinical Biomechanics and Ergonomics Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Seyed Parsa Eftekhar
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Mosaed
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| | | | - Ebrahim Hazrati
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Das BB. Unlocking the Potential: Angiotensin Receptor Neprilysin and Sodium Glucose Co-Transporter 2 Inhibitors for Right Ventricle Dysfunction in Heart Failure. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1112. [PMID: 39064541 PMCID: PMC11279219 DOI: 10.3390/medicina60071112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
This review article examines the mechanism of action of Angiotensin Receptor-Neprilysin Inhibitors (ARNIs) and Sodium-Glucose Co-Transporter 2 Inhibitors (SGLT2is) in managing chronic right ventricular (RV) dysfunction. Despite advancements in heart failure (HF) treatment, RV dysfunction remains a significant contributor to morbidity and mortality. This article explores the The article explores the impact of ARNIs and SGLT2is on RV function based on clinical and preclinical evidence, and the potential benefits of combined therapy. It highlights the need for further research to optimize patient outcomes and suggests that RV function should be considered in future clinical trials as part of risk stratification for HF therapies. This review underscores the importance of the early initiation of ARNIs and SGLT2is as per guideline-directed medical therapy for eligible HFrEF and HFpEF patients to improve co-existing RV dysfunction.
Collapse
Affiliation(s)
- Bibhuti B Das
- Heart Failure and Transplant Program, Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
4
|
Guan D, Tian L, Li W, Gao H. Using LDDMM and a kinematic cardiac growth model to quantify growth and remodelling in rat hearts under PAH. Comput Biol Med 2024; 171:108218. [PMID: 38428098 DOI: 10.1016/j.compbiomed.2024.108218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/20/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a rapidly progressive and fatal disease, with right ventricular failure being the primary cause of death in patients with PAH. This study aims to determine the mechanical stimuli that may initiate heart growth and remodelling (G&R). To achieve this, two bi-ventricular models were constructed: one for a control rat heart and another for a rat heart with PAH. The growth of the diseased heart was estimated by warping it to the control heart using an improved large deformation diffeomorphic metric mapping (LDDMM) framework. Correlation analysis was then performed between mechanical cues (stress and strain) and growth tensors, which revealed that principal strains may serve as a triggering stimulus for myocardial growth and remodelling under PAH. The growth tensors, estimated from in vivo images, could explain 84.3% of the observed geometrical changes in the diseased heart with PAH by using a kinematic cardiac growth model. Our approach has the potential to quantify G&R using sparse in vivo images and to provide insights into the underlying mechanism of triggering right heart failure from a biomechanical perspective.
Collapse
Affiliation(s)
- Debao Guan
- School of Control Science and Engineering, Shandong University, China; School of Mathematics and Statistics, University of Glasgow, UK
| | - Lian Tian
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, UK
| | - Wei Li
- School of Control Science and Engineering, Shandong University, China
| | - Hao Gao
- School of Mathematics and Statistics, University of Glasgow, UK.
| |
Collapse
|
5
|
Pellegrino A, Toncelli L, Pasquini L, Masini G, Mecacci F, Pedrizzetti G, Modesti PA. Left ventricular remodeling in twin pregnancy, noninvasively assessed using hemodynamic forces and pressure-volume relation analysis: prospective, cohort study. Am J Physiol Heart Circ Physiol 2024; 326:H426-H432. [PMID: 38099843 DOI: 10.1152/ajpheart.00699.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/28/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024]
Abstract
This study was designed to prospectively investigate the pattern of intraventricular hemodynamic forces (HDFs) associated with left ventricular (LV) function and remodeling in women with uncomplicated twin pregnancy. Transthoracic echocardiography was performed on 35 women (aged 35.9 ± 4.7-yr old) during gestation (T1, <14 wk; T2, 14-27 wk; T3, >28 wk) and 6-7 mo after delivery (T0). LV HDFs were computed from echocardiography long-axis data sets using a novel technique based on endocardial boundary tracking, both in apex-base (A-B) and latero-septal (L-S) directions. HDF distribution was evaluated by L-S over A-B HDF ratio (L-S:A-B HDF ratio). At T1, L-S:A-B HDF ratio was higher than in T0 (P < 0.05) indicating HDF misalignment. At T2, a slight impairment of cardiac function was then recorded with a reduction of global longitudinal strain (GLS) and left ventricular end-systolic elastance (Ees) at pressure-volume relationship analysis versus T1 (both P < 0.05). Finally, at T3, when HDF misalignment and LV contractility reduction (GLS and Ees) were all restored, a rightward shift of the end-diastolic pressure-volume relationship (EDPVR) with an increase of ventricular capacitance was documented. In twin pregnancy, HDF misalignment in the first trimester precedes the slight temporary decrease in left ventricular systolic function in the second trimester; at the third trimester, a rightward shift of the EDPVR was associated with a realignment of HDF and normalization of ventricular contractility indexes. These coordinated changes that occur in the maternal heart during twin pregnancy suggest the role of HDFs in cardiac remodeling.NEW & NOTEWORTHY These changes indicate that 1) the misalignment of hemodynamic forces (HDFs) precedes a mild reduction in systolic function in twin pregnancy and 2) the positive left ventricular (LV) response to hemodynamic stress is mainly due to an improved diastolic function with enhanced LV cavity compliance.
Collapse
Affiliation(s)
- Alessio Pellegrino
- Sport Medicine Unit, Careggi University Hospital, Florence, Italy
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Loira Toncelli
- Sport Medicine Unit, Careggi University Hospital, Florence, Italy
| | - Lucia Pasquini
- Fetal Medicine Unit, Careggi University Hospital, Florence, Italy
| | - Giulia Masini
- Fetal Medicine Unit, Careggi University Hospital, Florence, Italy
| | - Federico Mecacci
- Fetal Medicine Unit, Careggi University Hospital, Florence, Italy
| | - Gianni Pedrizzetti
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Pietro Amedeo Modesti
- Sport Medicine Unit, Careggi University Hospital, Florence, Italy
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| |
Collapse
|
6
|
Avesani M, Jalal Z, Friedberg MK, Villemain O, Venet M, Di Salvo G, Thambo JB, Iriart X. Adverse remodelling in tetralogy of Fallot: From risk factors to imaging analysis and future perspectives. Hellenic J Cardiol 2024; 75:48-59. [PMID: 37495104 DOI: 10.1016/j.hjc.2023.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/29/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023] Open
Abstract
Although contemporary outcomes of initial surgical repair of tetralogy of Fallot (TOF) are excellent, the survival of adult patients remains significantly lower than that of the normal population due to the high incidence of heart failure, ventricular arrhythmias, and sudden cardiac death. The underlying mechanisms are only partially understood but involve an adverse biventricular response, so-called remodelling, to key stressors such as right ventricular (RV) pressure-and/or volume-overload, myocardial fibrosis, and electro-mechanical dyssynchrony. In this review, we explore risk factors and mechanisms of biventricular remodelling, from histological to electro-mechanical aspects, and the role of imaging in their assessment. We discuss unsolved challenges and future directions to better understand and treat the long-term sequelae of this complex congenital heart disease.
Collapse
Affiliation(s)
- Martina Avesani
- Paediatric and Congenital Cardiology Department, M3C National Reference Centre, Bordeaux University Hospital, Bordeaux, France; IHU Liryc, Electrophysiology and Heart Modelling Institute, Bordeaux University Foundation, Pessac, France; Paediatric Cardiology Unit, Department of Woman's and Child's Health, University-Hospital of Padova, University of Padua, Padua, Italy
| | - Zakaria Jalal
- Paediatric and Congenital Cardiology Department, M3C National Reference Centre, Bordeaux University Hospital, Bordeaux, France; IHU Liryc, Electrophysiology and Heart Modelling Institute, Bordeaux University Foundation, Pessac, France
| | - Mark K Friedberg
- Labatt Family Heart Center, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Olivier Villemain
- Labatt Family Heart Center, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Maeyls Venet
- Labatt Family Heart Center, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Giovanni Di Salvo
- Paediatric Cardiology Unit, Department of Woman's and Child's Health, University-Hospital of Padova, University of Padua, Padua, Italy
| | - Jean-Benoît Thambo
- Paediatric and Congenital Cardiology Department, M3C National Reference Centre, Bordeaux University Hospital, Bordeaux, France; IHU Liryc, Electrophysiology and Heart Modelling Institute, Bordeaux University Foundation, Pessac, France
| | - Xavier Iriart
- Paediatric and Congenital Cardiology Department, M3C National Reference Centre, Bordeaux University Hospital, Bordeaux, France; IHU Liryc, Electrophysiology and Heart Modelling Institute, Bordeaux University Foundation, Pessac, France.
| |
Collapse
|
7
|
Rejdak K, Sienkiewicz-Jarosz H, Bienkowski P, Alvarez A. Modulation of neurotrophic factors in the treatment of dementia, stroke and TBI: Effects of Cerebrolysin. Med Res Rev 2023; 43:1668-1700. [PMID: 37052231 DOI: 10.1002/med.21960] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023]
Abstract
Neurotrophic factors (NTFs) are involved in the pathophysiology of neurological disorders such as dementia, stroke and traumatic brain injury (TBI), and constitute molecular targets of high interest for the therapy of these pathologies. In this review we provide an overview of current knowledge of the definition, discovery and mode of action of five NTFs, nerve growth factor, insulin-like growth factor 1, brain derived NTF, vascular endothelial growth factor and tumor necrosis factor alpha; as well as on their contribution to brain pathology and potential therapeutic use in dementia, stroke and TBI. Within the concept of NTFs in the treatment of these pathologies, we also review the neuropeptide preparation Cerebrolysin, which has been shown to resemble the activities of NTFs and to modulate the expression level of endogenous NTFs. Cerebrolysin has demonstrated beneficial treatment capabilities in vitro and in clinical studies, which are discussed within the context of the biochemistry of NTFs. The review focuses on the interactions of different NTFs, rather than addressing a single NTF, by outlining their signaling network and by reviewing their effect on clinical outcome in prevalent brain pathologies. The effects of the interactions of these NTFs and Cerebrolysin on neuroplasticity, neurogenesis, angiogenesis and inflammation, and their relevance for the treatment of dementia, stroke and TBI are summarized.
Collapse
Affiliation(s)
- Konrad Rejdak
- Department of Neurology, Medical University of Lublin, Lublin, Poland
| | | | | | - Anton Alvarez
- Medinova Institute of Neurosciences, Clinica RehaSalud, Coruña, Spain
| |
Collapse
|
8
|
Zhou C, Li D, Cui Q, Sun Q, Hu Y, Xiao Y, Jiang C, Qiu L, Zhang H, Ye L, Sun Y. Ability of the Right Ventricle to Serve as a Systemic Ventricle in Response to the Volume Overload at the Neonatal Stage. BIOLOGY 2022; 11:biology11121831. [PMID: 36552341 PMCID: PMC9775952 DOI: 10.3390/biology11121831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND In children with hypoplastic left heart syndrome (HLHS), volume overload (VO) is inevitable, and the right ventricle (RV) pumps blood into the systemic circulation. Understanding the molecular differences and their different responses to VO between the RV and left ventricle (LV) at the neonatal and highly plastic stages may improve the long-term management of children with HLHS. METHODS AND RESULTS A neonatal rat ventricular VO model was established by the creation of a fistula between the inferior vena cava and the abdominal aorta on postnatal day 1 (P1) and confirmed by echocardiographic and histopathological analyses. Transcriptomic analysis demonstrated that some of the major differences between a normal neonatal RV and LV were associated with the thyroid hormone and insulin signaling pathways. Under the influence of VO, the levels of insulin receptors and thyroid hormone receptors were significantly increased in the LV but decreased in the RV. The transcriptomic analysis also demonstrated that under the influence of VO, the top two common enriched pathways between the RV and LV were the insulin and thyroid hormone signaling pathways, whereas the RV-specific enriched pathways were primarily associated with lipid metabolism and arrhythmogenic right ventricular cardiomyopathy (ARVC); further, the LV-specific enriched pathways were primarily associated with nucleic acid metabolism and microRNAs in cancer. CONCLUSIONS Insulin and thyroid hormones may play critical roles in the differences between a neonatal RV and LV as well as their common responses to VO. Regarding the isolated responses to VO, the RV favors an ARVC change and the LV favors a reduction in microRNAs in cancer. The current study suggests that insulin, thyroid hormone, and cancer-associated microRNAs are potential therapeutic targets that should be explored by basic science studies to improve the function of the RV to match that of the LV.
Collapse
Affiliation(s)
- Chunxia Zhou
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Debao Li
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qing Cui
- Department of Cardiology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Qi Sun
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yuqing Hu
- Department of Cardiology, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yingying Xiao
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chuan Jiang
- Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lisheng Qiu
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Haibo Zhang
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Correspondence: (H.Z.); (Y.S.); Tel.: +86-21-38626649 (H.Z. & Y.S.); Fax: +86-21-50891405 (H.Z. & Y.S.)
| | - Lincai Ye
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Institute for Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yanjun Sun
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Correspondence: (H.Z.); (Y.S.); Tel.: +86-21-38626649 (H.Z. & Y.S.); Fax: +86-21-50891405 (H.Z. & Y.S.)
| |
Collapse
|
9
|
Altered Cellular Protein Quality Control System Modulates Cardiomyocyte Function in Volume Overload-Induced Hypertrophy. Antioxidants (Basel) 2022; 11:antiox11112210. [DOI: 10.3390/antiox11112210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022] Open
Abstract
Volume-induced hypertrophy is one of the risk factors for cardiac morbidity and mortality. In addition, mechanical and metabolic dysfunction, aging, and cellular redox balance are also contributing factors to the disease progression. In this study, we used volume overload (VO), which was induced by an aortocaval fistula in 2-month-old male Wistar rats, and sham-operated animals served as control. Functional parameters were measured by transthoracic echocardiography at termination 4- or 8-months after VO. The animals showed hypertrophic remodeling that was accompanied by mechanical dysfunction and increased cardiomyocyte stiffness. These alterations were reversible upon treatment with glutathione. Cardiomyocyte dysfunction was associated with elevated oxidative stress markers with unchanged inflammatory signaling pathways. In addition, we observed altered phosphorylation status of small heat shock proteins 27 and 70 and diminished protease expression caspases 3 compared to the matched control group, indicating an impaired protein quality control system. Such alterations might be attributed to the increased oxidative stress as anticipated from the enhanced titin oxidation, ubiquitination, and the elevation in oxidative stress markers. Our study showed an early pathological response to VO, which manifests in cardiomyocyte mechanical dysfunction and dysregulated signaling pathways associated with enhanced oxidative stress and an impaired protein quality control system.
Collapse
|
10
|
Lippmann MR, Maron BA. The Right Ventricle: From Embryologic Development to RV Failure. Curr Heart Fail Rep 2022; 19:325-333. [PMID: 36149589 PMCID: PMC9818027 DOI: 10.1007/s11897-022-00572-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW The right ventricle (RV) and left ventricle (LV) have different developmental origins, which likely plays a role in their chamber-specific response to physiological and pathological stress. RV dysfunction is encountered frequently in patients with congenital heart disease (CHD) and right heart abnormalities emerge from different causes than increased afterload alone as is observed in RV dysfunction due to pulmonary hypertension (PH). In this review, we describe the developmental, structural, and functional differences between ventricles while highlighting emerging therapies for RV dysfunction. RECENT FINDINGS There are new insights into the role of fibrosis, inflammation, myocyte contraction, and mitochondrial dynamics in the pathogenesis of RV dysfunction. We discuss the current state of therapies that may potentially improve RV function in both experimental and clinical trials. A clearer understanding of the differences in molecular alterations in the RV compared to the LV may allow for the development of better therapies that treat RV dysfunction.
Collapse
Affiliation(s)
- Matthew R. Lippmann
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, 77 Ave. Louis Pasteur, NRB 0630-N, Boston, MA 02115, USA
| | - Bradley A. Maron
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, 77 Ave. Louis Pasteur, NRB 0630-N, Boston, MA 02115, USA,Department of Cardiology, VA Boston Healthcare System, West Roxbury, MA, USA
| |
Collapse
|
11
|
Valerianova A, Mlcek M, Grus T, Malik J, Kittnar O. New Porcine Model of Arteriovenous Fistula Documents Increased Coronary Blood Flow at the Cost of Brain Perfusion. Front Physiol 2022; 13:881658. [PMID: 35574433 PMCID: PMC9091445 DOI: 10.3389/fphys.2022.881658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/06/2022] [Indexed: 11/19/2022] Open
Abstract
Background: Arteriovenous fistulas (AVF) represent a low resistant circuit. It is known that their opening leads to decreased systemic vascular resistance, increased cardiac output and other hemodynamic changes. Possible competition of AVF and perfusion of other organs has been observed before, however the specific impact of AVF has not been elucidated yet. Previous animal models studied long-term changes associated with a surgically created high flow AVF. The aim of this study was to create a simple AVF model for the analysis of acute hemodynamic changes. Methods: Domestic female pigs weighing 62.6 ± 5.2 kg were used. All the experiments were held under general anesthesia. The AVF was created using high-diameter ECMO cannulas inserted into femoral artery and vein. Continuous hemodynamic monitoring was performed throughout the protocol. Near-infrared spectroscopy sensors, flow probes and flow wires were inserted to study brain and heart perfusion. Results: AVF blood flow was 2.1 ± 0.5 L/min, which represented around 23% of cardiac output. We observed increase in cardiac output (from 7.02 ± 2.35 L/min to 9.19 ± 2.99 L/min, p = 0.0001) driven dominantly by increased heart rate, increased pulmonary artery pressure, and associated right ventricular work. Coronary artery flow velocity rose. On the contrary, carotid artery flow and brain and muscle tissue oxygenation measured by NIRS decreased significantly. Conclusions: Our new non-surgical AVF model is reproducible and demonstrated an acute decrease of brain and muscle perfusion.
Collapse
Affiliation(s)
- Anna Valerianova
- 3rd Department of Internal Medicine, General University Hospital in Prague, 1st Faculty of Medicine, Charles University, Prague, Czechia.,Institute of Physiology, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Mikulas Mlcek
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Tomas Grus
- 2nd Surgical clinic, Cardiovascular Surgery, General University Hospital in Prague, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Jan Malik
- 3rd Department of Internal Medicine, General University Hospital in Prague, 1st Faculty of Medicine, Charles University, Prague, Czechia
| | - Otomar Kittnar
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
12
|
Khokhlova A, Myachina T, Volzhaninov D, Butova X, Kochurova A, Berg V, Gette I, Moroz G, Klinova S, Minigalieva I, Solovyova O, Danilova I, Sokolova K, Kopylova G, Shchepkin D. Type 1 Diabetes Impairs Cardiomyocyte Contractility in the Left and Right Ventricular Free Walls but Preserves It in the Interventricular Septum. Int J Mol Sci 2022; 23:ijms23031719. [PMID: 35163643 PMCID: PMC8836009 DOI: 10.3390/ijms23031719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022] Open
Abstract
Type 1 diabetes (T1D) leads to ischemic heart disease and diabetic cardiomyopathy. We tested the hypothesis that T1D differently affects the contractile function of the left and right ventricular free walls (LV, RV) and the interventricular septum (IS) using a rat model of alloxan-induced T1D. Single-myocyte mechanics and cytosolic Ca2+ concentration transients were studied on cardiomyocytes (CM) from LV, RV, and IS in the absence and presence of mechanical load. In addition, we analyzed the phosphorylation level of sarcomeric proteins and the characteristics of the actin-myosin interaction. T1D similarly affected the characteristics of actin-myosin interaction in all studied regions, decreasing the sliding velocity of native thin filaments over myosin in an in vitro motility assay and its Ca2+ sensitivity. A decrease in the thin-filament velocity was associated with increased expression of β-myosin heavy-chain isoform. However, changes in the mechanical function of single ventricular CM induced by T1D were different. T1D depressed the contractility of CM from LV and RV; it decreased the auxotonic tension amplitude and the slope of the active tension–length relationship. Nevertheless, the contractile function of CM from IS was principally preserved.
Collapse
Affiliation(s)
- Anastasia Khokhlova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
- Institute of Physics and Technology, Ural Federal University, Mira 19, 620002 Yekaterinburg, Russia
- Correspondence:
| | - Tatiana Myachina
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
| | - Denis Volzhaninov
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
| | - Xenia Butova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
| | - Anastasia Kochurova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
| | - Valentina Berg
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
| | - Irina Gette
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
| | - Gleb Moroz
- Institute of Natural Sciences and Mathematics, Ural Federal University, Mira 19, 620002 Yekaterinburg, Russia;
| | - Svetlana Klinova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Popova 30, 620014 Yekaterinburg, Russia; (S.K.); (I.M.)
| | - Ilzira Minigalieva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Popova 30, 620014 Yekaterinburg, Russia; (S.K.); (I.M.)
| | - Olga Solovyova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
- Institute of Physics and Technology, Ural Federal University, Mira 19, 620002 Yekaterinburg, Russia
- Institute of Natural Sciences and Mathematics, Ural Federal University, Mira 19, 620002 Yekaterinburg, Russia;
| | - Irina Danilova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
| | - Ksenia Sokolova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
| | - Galina Kopylova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
| | - Daniil Shchepkin
- Institute of Immunology and Physiology, Russian Academy of Sciences, Pervomajskaya 106, 620049 Yekaterinburg, Russia; (T.M.); (D.V.); (X.B.); (A.K.); (V.B.); (I.G.); (O.S.); (I.D.); (K.S.); (G.K.); (D.S.)
| |
Collapse
|
13
|
Jarkovská D, Miklovič M, Švíglerová J, Červenka L, Škaroupková P, Melenovský V, Štengl M. Effects of Trandolapril on Structural, Contractile and Electrophysiological Remodeling in Experimental Volume Overload Heart Failure. Front Pharmacol 2021; 12:729568. [PMID: 34566652 PMCID: PMC8460913 DOI: 10.3389/fphar.2021.729568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic volume overload induces multiple cardiac remodeling processes that finally result in eccentric cardiac hypertrophy and heart failure. We have hypothesized that chronic angiotensin-converting enzyme (ACE) inhibition by trandolapril might affect various remodeling processes differentially, thus allowing their dissociation. Cardiac remodeling due to chronic volume overload and the effects of trandolapril were investigated in rats with an aortocaval fistula (ACF rats). The aortocaval shunt was created using a needle technique and progression of cardiac remodeling to heart failure was followed for 24 weeks. In ACF rats, pronounced eccentric cardiac hypertrophy and contractile and proarrhythmic electrical remodeling were associated with increased mortality. Trandolapril substantially reduced the electrical proarrhythmic remodeling and mortality, whereas the effect on cardiac hypertrophy was less pronounced and significant eccentric hypertrophy was preserved. Effective suppression of electrical proarrhythmic remodeling and mortality but not hypertrophy indicates that the beneficial therapeutic effects of ACE inhibitor trandolapril in volume overload heart failure might be dissociated from pure antihypertrophic effects.
Collapse
Affiliation(s)
- Dagmar Jarkovská
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Matúš Miklovič
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia.,Department of Pathophysiology, 2 Faculty of Medicine, Charles University, Prague, Czechia
| | - Jitka Švíglerová
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Luděk Červenka
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia.,Department of Pathophysiology, 2 Faculty of Medicine, Charles University, Prague, Czechia
| | - Petra Škaroupková
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Vojtěch Melenovský
- Department of Cardiology, Institute for Clinical and Experimental Medicine, Prague, Czechia
| | - Milan Štengl
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| |
Collapse
|
14
|
Lei I, Huang W, Ward PA, Pober JS, Tellides G, Ailawadi G, Pagani FD, Landstrom AP, Wang Z, Mortensen RM, Cascalho M, Platt J, Eugene Chen Y, Lam HYK, Tang PC. Differential inflammatory responses of the native left and right ventricle associated with donor heart preservation. Physiol Rep 2021; 9:e15004. [PMID: 34435466 PMCID: PMC8387788 DOI: 10.14814/phy2.15004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Dysfunction and inflammation of hearts subjected to cold ischemic preservation may differ between left and right ventricles, suggesting distinct strategies for amelioration. METHODS AND RESULTS Explanted murine hearts subjected to cold ischemia for 0, 4, or 8 h in preservation solution were assessed for function during 60 min of warm perfusion and then analyzed for cell death and inflammation by immunohistochemistry and western blotting and total RNA sequencing. Increased cold ischemic times led to greater left ventricle (LV) dysfunction compared to right ventricle (RV). The LV experienced greater cell death assessed by TUNEL+ cells and cleaved caspase-3 expression (n = 4). While IL-6 protein levels were upregulated in both LV and RV, IL-1β, TNFα, IL-10, and MyD88 were disproportionately increased in the LV. Inflammasome components (NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3), adaptor molecule apoptosis-associated speck-like protein containing a CARD (ASC), cleaved caspase-1) and products (cleaved IL-1β and gasdermin D) were also more upregulated in the LV. Pathway analysis of RNA sequencing showed increased signaling related to tumor necrosis factor, interferon, and innate immunity with ex-vivo ischemia, but no significant differences were found between the LV and RV. Human donor hearts showed comparable inflammatory responses to cold ischemia with greater LV increases of TNFα, IL-10, and inflammasomes (n = 3). CONCLUSIONS Mouse hearts subjected to cold ischemia showed time-dependent contractile dysfunction and increased cell death, inflammatory cytokine expression and inflammasome expression that are greater in the LV than RV. However, IL-6 protein elevations and altered transcriptional profiles were similar in both ventricles. Similar changes are observed in human hearts.
Collapse
Affiliation(s)
- Ienglam Lei
- Department of Cardiac SurgeryUniversity of Michigan Frankel Cardiovascular CenterAnn ArborMichiganUSA
| | - Wei Huang
- Department of Cardiac SurgeryUniversity of Michigan Frankel Cardiovascular CenterAnn ArborMichiganUSA
| | - Peter A. Ward
- Department of PathologyUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Jordan S. Pober
- Department of ImmunobiologyYale UniversityNew HavenConnecticutUSA
| | | | - Gorav Ailawadi
- Department of Cardiac SurgeryUniversity of Michigan Frankel Cardiovascular CenterAnn ArborMichiganUSA
| | - Francis D. Pagani
- Department of Cardiac SurgeryUniversity of Michigan Frankel Cardiovascular CenterAnn ArborMichiganUSA
| | | | - Zhong Wang
- Department of Cardiac SurgeryUniversity of Michigan Frankel Cardiovascular CenterAnn ArborMichiganUSA
| | - Richard M. Mortensen
- Department of Internal MedicineUniversity of Michigan Frankel Cardiovascular CenterAnn ArborMichiganUSA
| | - Marilia Cascalho
- Department of SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Jeffrey Platt
- Department of SurgeryUniversity of Michigan Medical SchoolAnn ArborMichiganUSA
| | - Yuqing Eugene Chen
- Department of Cardiac SurgeryUniversity of Michigan Frankel Cardiovascular CenterAnn ArborMichiganUSA
| | | | - Paul C. Tang
- Department of Cardiac SurgeryUniversity of Michigan Frankel Cardiovascular CenterAnn ArborMichiganUSA
| |
Collapse
|
15
|
Havlenova T, Skaroupkova P, Miklovic M, Behounek M, Chmel M, Jarkovska D, Sviglerova J, Stengl M, Kolar M, Novotny J, Benes J, Cervenka L, Petrak J, Melenovsky V. Right versus left ventricular remodeling in heart failure due to chronic volume overload. Sci Rep 2021; 11:17136. [PMID: 34429479 PMCID: PMC8384875 DOI: 10.1038/s41598-021-96618-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023] Open
Abstract
Mechanisms of right ventricular (RV) dysfunction in heart failure (HF) are poorly understood. RV response to volume overload (VO), a common contributing factor to HF, is rarely studied. The goal was to identify interventricular differences in response to chronic VO. Rats underwent aorto-caval fistula (ACF)/sham operation to induce VO. After 24 weeks, RV and left ventricular (LV) functions, gene expression and proteomics were studied. ACF led to biventricular dilatation, systolic dysfunction and hypertrophy affecting relatively more RV. Increased RV afterload contributed to larger RV stroke work increment compared to LV. Both ACF ventricles displayed upregulation of genes of myocardial stress and metabolism. Most proteins reacted to VO in a similar direction in both ventricles, yet the expression changes were more pronounced in RV (pslope: < 0.001). The most upregulated were extracellular matrix (POSTN, NRAP, TGM2, CKAP4), cell adhesion (NCAM, NRAP, XIRP2) and cytoskeletal proteins (FHL1, CSRP3) and enzymes of carbohydrate (PKM) or norepinephrine (MAOA) metabolism. Downregulated were MYH6 and FAO enzymes. Therefore, when exposed to identical VO, both ventricles display similar upregulation of stress and metabolic markers. Relatively larger response of ACF RV compared to the LV may be caused by concomitant pulmonary hypertension. No evidence supports RV chamber-specific regulation of protein expression in response to VO.
Collapse
Affiliation(s)
- Tereza Havlenova
- grid.418930.70000 0001 2299 1368Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Videnska 1958/9, 140 21 Prague 4, Czech Republic ,grid.4491.80000 0004 1937 116XDepartment of Pathophysiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petra Skaroupkova
- grid.418930.70000 0001 2299 1368Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Videnska 1958/9, 140 21 Prague 4, Czech Republic
| | - Matus Miklovic
- grid.418930.70000 0001 2299 1368Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Videnska 1958/9, 140 21 Prague 4, Czech Republic ,grid.4491.80000 0004 1937 116XDepartment of Pathophysiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Matej Behounek
- grid.4491.80000 0004 1937 116XBIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martin Chmel
- grid.4491.80000 0004 1937 116XBIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Dagmar Jarkovska
- grid.4491.80000 0004 1937 116XFaculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Jitka Sviglerova
- grid.4491.80000 0004 1937 116XFaculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Milan Stengl
- grid.4491.80000 0004 1937 116XFaculty of Medicine in Pilsen, Charles University, Prague, Czech Republic
| | - Michal Kolar
- grid.418827.00000 0004 0620 870XInstitute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Novotny
- grid.418827.00000 0004 0620 870XInstitute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Benes
- grid.418930.70000 0001 2299 1368Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Videnska 1958/9, 140 21 Prague 4, Czech Republic
| | - Ludek Cervenka
- grid.418930.70000 0001 2299 1368Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Videnska 1958/9, 140 21 Prague 4, Czech Republic ,grid.4491.80000 0004 1937 116XDepartment of Pathophysiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiri Petrak
- grid.4491.80000 0004 1937 116XBIOCEV, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vojtech Melenovsky
- grid.418930.70000 0001 2299 1368Department of Cardiology, Institute for Clinical and Experimental Medicine - IKEM, Videnska 1958/9, 140 21 Prague 4, Czech Republic
| |
Collapse
|
16
|
Andrade DC, Díaz-Jara E, Toledo C, Schwarz KG, Pereyra KV, Díaz HS, Marcus NJ, Ortiz FC, Ríos-Gallardo AP, Ortolani D, Del Rio R. Exercise intolerance in volume overload heart failure is associated with low carotid body mediated chemoreflex drive. Sci Rep 2021; 11:14458. [PMID: 34262072 PMCID: PMC8280104 DOI: 10.1038/s41598-021-93791-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/28/2021] [Indexed: 11/10/2022] Open
Abstract
Mounting an appropriate ventilatory response to exercise is crucial to meeting metabolic demands, and abnormal ventilatory responses may contribute to exercise-intolerance (EX-inT) in heart failure (HF) patients. We sought to determine if abnormal ventilatory chemoreflex control contributes to EX-inT in volume-overload HF rats. Cardiac function, hypercapnic (HCVR) and hypoxic (HVR) ventilatory responses, and exercise tolerance were assessed at the end of a 6 week exercise training program. At the conclusion of the training program, exercise tolerant HF rats (HF + EX-T) exhibited improvements in cardiac systolic function and reductions in HCVR, sympathetic tone, and arrhythmias. In contrast, HF rats that were exercise intolerant (HF + EX-inT) exhibited worse diastolic dysfunction, and showed no improvements in cardiac systolic function, HCVR, sympathetic tone, or arrhythmias at the conclusion of the training program. In addition, HF + EX-inT rats had impaired HVR which was associated with increased arrhythmia susceptibility and mortality during hypoxic challenges (~ 60% survival). Finally, we observed that exercise tolerance in HF rats was related to carotid body (CB) function as CB ablation resulted in impaired exercise capacity in HF + EX-T rats. Our results indicate that: (i) exercise may have detrimental effects on cardiac function in HF-EX-inT, and (ii) loss of CB chemoreflex sensitivity contributes to EX-inT in HF.
Collapse
Affiliation(s)
- David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Fisiología y Medicina de Altura, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Esteban Díaz-Jara
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Karla G Schwarz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katherin V Pereyra
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Noah J Marcus
- Dept. of Physiology and Pharmacology, Des Moines University, Des Moines, IA, USA
| | - Fernando C Ortiz
- Mechanism of Myelin Formation and Repair Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Angélica P Ríos-Gallardo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Domiziana Ortolani
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile.
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
17
|
Akazawa Y, Fujioka T, Ide H, Yazaki K, Honjo O, Sun M, Friedberg MK. Impaired right and left ventricular function and relaxation induced by pulmonary regurgitation are not reversed by tardive antifibrosis treatment. Am J Physiol Heart Circ Physiol 2021; 321:H38-H51. [PMID: 34048283 DOI: 10.1152/ajpheart.00467.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pulmonary regurgitation (PR) after repair of tetralogy of Fallot (rTOF) is associated with progressive right (RV) and left (LV) ventricular dysfunction and fibrosis. However, angiotensin II receptor blockade therapy has shown mixed and often disappointing results. The aim of this study was to serially assess changes in biventricular remodeling, dysfunction, and interactions in a rat model of isolated severe PR and to study the effects of angiotensin II receptor blockade. PR was induced in Sprague-Dawley rats by leaflet laceration. Shams (n = 6) were compared with PR (n = 5) and PR + losartan treatment (n = 6). In the treatment group, oral losartan (50 mg·kg-1·day-1) was started 6 wk after PR induction and continued for 6 wk until the terminal experiment. In all groups, serial echocardiography was performed every 2 wk until the terminal experiment where biventricular myocardium was harvested and analyzed for fibrosis. PR and PR + losartan rats experienced early progressive RV dilatation by 2 wk which then stabilized. RV systolic dysfunction occurred from 4 wk after insult and gradually progressed. In PR rats, RV dilatation caused diastolic LV compression and impaired relaxation. PR rats developed increased RV fibrosis compared with shams. Although losartan decreased RV fibrosis, RV dilatation and dysfunction were not improved. This suggests that RV dilatation is an early consequence of PR and affects LV relaxation. RV dysfunction may progress independent of further remodeling. Reduced RV fibrosis was not associated with improved RV function and may not be a viable therapeutic target in rTOF with predominant RV volume loading.NEW & NOTEWORTHY The time-course of RV dilatation and the mechanisms of biventricular dysfunction caused by PR have not been well characterized and the effect of losartan in volume-overloaded RV remains controversial. Our findings suggest that severe PR induces early onset of RV dilatation and dysfunction with little progression after the first 4 wk. The RV dilatation distorts LV geometry with associated impaired LV relaxation. Losartan reduced RV fibrosis but did not reverse RV dilatation and dysfunction.
Collapse
Affiliation(s)
- Yohei Akazawa
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tao Fujioka
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Kana Yazaki
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Osami Honjo
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mei Sun
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mark K Friedberg
- Division of Cardiology, Labatt Family Heart Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Malik J, Valerianova A, Tuka V, Trachta P, Bednarova V, Hruskova Z, Slavikova M, Rosner MH, Tesar V. The effect of high-flow arteriovenous fistulas on systemic haemodynamics and brain oxygenation. ESC Heart Fail 2021; 8:2165-2171. [PMID: 33755355 PMCID: PMC8120398 DOI: 10.1002/ehf2.13305] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/01/2021] [Accepted: 03/05/2021] [Indexed: 12/25/2022] Open
Abstract
Aims High‐flow arteriovenous fistula (AVF) for haemodialysis leads to profound haemodynamic changes and sometimes to heart failure (HF). Cardiac output (CO) is divided between the AVF and body tissues. The term effective CO (COef) represents the difference between CO and AVF flow volume (Qa) and better characterizes the altered haemodynamics that may result in organ hypoxia. We investigated the effects of Qa reduction on systemic haemodynamics and on brain oxygenation. Methods and results This is a single‐centre interventional study. Twenty‐six patients on chronic haemodialysis with high Qa (>1500 mL/min) were indicated for surgical Qa reduction for HF symptoms and/or signs of structural heart disease on echocardiography. The included patients underwent three sets of examinations: at 4 months and then 2 days prior and 6 weeks post‐surgical procedure. Clinical status, echocardiographical haemodynamic assessment, Qa, and brain oximetry were recorded. All parameters remained stable from selection to inclusion. After the procedure, Qa decreased from 3.0 ± 1.4 to 1.3 ± 0.5 L/min, P < 0.00001, CO from 7.8 ± 1.9 to 6.6 ± 1.5 L/min, P = 0.0002, but COef increased from 4.6 ± 1.4 to 5.3 ± 1.4 L/min, P = 0.036. Brain tissue oxygen saturation increased from 56 ± 11% to 60 ± 9%, P = 0.001. Conclusions Qa reduction led to increased COef. This was explained by a decreased proportion of CO running through the AVF in patients with Qa > 2.0 L/min. These observations were mirrored by higher brain oxygenation and might explain HF symptoms and improved haemodynamics even in asymptomatic high Qa patients.
Collapse
Affiliation(s)
- Jan Malik
- Third Department of Internal Medicine, General University Hospital, First Faculty of Medicine, Charles University, U Nemocnice 1, Prague, 128 08, Czech Republic
| | - Anna Valerianova
- Third Department of Internal Medicine, General University Hospital, First Faculty of Medicine, Charles University, U Nemocnice 1, Prague, 128 08, Czech Republic
| | - Vladimir Tuka
- Third Department of Internal Medicine, General University Hospital, First Faculty of Medicine, Charles University, U Nemocnice 1, Prague, 128 08, Czech Republic
| | - Pavel Trachta
- Third Department of Internal Medicine, General University Hospital, First Faculty of Medicine, Charles University, U Nemocnice 1, Prague, 128 08, Czech Republic
| | - Vladimira Bednarova
- Department of Nephrology, General University Hospital, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Zdenka Hruskova
- Department of Nephrology, General University Hospital, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marcela Slavikova
- Second Department of Surgery, General University Hospital, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Mitchell H Rosner
- Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Vladimir Tesar
- Department of Nephrology, General University Hospital, First Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
19
|
Woulfe KC, Walker LA. Physiology of the Right Ventricle Across the Lifespan. Front Physiol 2021; 12:642284. [PMID: 33737888 PMCID: PMC7960651 DOI: 10.3389/fphys.2021.642284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/05/2021] [Indexed: 01/27/2023] Open
Abstract
The most common cause of heart failure in the United States is ischemic left heart disease; accordingly, a vast amount of work has been done to elucidate the molecular mechanisms underlying pathologies of the left ventricle (LV) as a general model of heart failure. Until recently, little attention has been paid to the right ventricle (RV) and it has commonly been thought that the mechanical and biochemical properties of the RV are similar to those of the LV. However, therapies used to treat LV failure often fail to improve ventricular function in RV failure underscoring, the need to better understand the unique physiologic and pathophysiologic properties of the RV. Importantly, hemodynamic stresses (such as pressure overload) often underlie right heart failure further differentiating RV failure as unique from LV failure. There are significant structural, mechanical, and biochemical properties distinctive to the RV that influences its function and it is likely that adaptations of the RV occur uniquely across the lifespan. We have previously reviewed the adult RV compared to the LV but there is little known about differences in the pediatric or aged RV. Accordingly, in this mini-review, we will examine the subtle distinctions between the RV and LV that are maintained physiologically across the lifespan and will highlight significant knowledge gaps in our understanding of pediatric and aging RV. Consideration of how RV function is altered in different disease states in an age-specific manner may enable us to define RV function in health and importantly, in response to pathology.
Collapse
Affiliation(s)
- Kathleen C Woulfe
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lori A Walker
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
20
|
Hagdorn QAJ, Kurakula K, Koop AMC, Bossers GPL, Mavrogiannis E, van Leusden T, van der Feen DE, de Boer RA, Goumans MJTH, Berger RMF. Volume Load-Induced Right Ventricular Failure in Rats Is Not Associated With Myocardial Fibrosis. Front Physiol 2021; 12:557514. [PMID: 33716758 PMCID: PMC7952521 DOI: 10.3389/fphys.2021.557514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 01/25/2021] [Indexed: 01/15/2023] Open
Abstract
Background Right ventricular (RV) function and failure are key determinants of morbidity and mortality in various cardiovascular diseases. Myocardial fibrosis is regarded as a contributing factor to heart failure, but its importance in RV failure has been challenged. This study aims to assess whether myocardial fibrosis drives the transition from compensated to decompensated volume load-induced RV dysfunction. Methods Wistar rats were subjected to aorto-caval shunt (ACS, n = 23) or sham (control, n = 15) surgery, and sacrificed after 1 month, 3 months, or 6 months. Echocardiography, RV pressure-volume analysis, assessment of gene expression and cardiac histology were performed. Results At 6 months, 6/8 ACS-rats (75%) showed clinical signs of RV failure (pleural effusion, ascites and/or liver edema), whereas at 1 month and 3 months, no signs of RV failure had developed yet. Cardiac output has increased two- to threefold and biventricular dilatation occurred, while LV ejection fraction gradually decreased. At 1 month and 3 months, RV end-systolic elastance (Ees) remained unaltered, but at 6 months, RV Ees had decreased substantially. In the RV, no oxidative stress, inflammation, pro-fibrotic signaling (TGFβ1 and pSMAD2/3), or fibrosis were present at any time point. Conclusions In the ACS rat model, long-term volume load was initially well tolerated at 1 month and 3 months, but induced overt clinical signs of end-stage RV failure at 6 months. However, no myocardial fibrosis or increased pro-fibrotic signaling had developed. These findings indicate that myocardial fibrosis is not involved in the transition from compensated to decompensated RV dysfunction in this model.
Collapse
Affiliation(s)
- Quint A J Hagdorn
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Kondababu Kurakula
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Anne-Marie C Koop
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Guido P L Bossers
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Emmanouil Mavrogiannis
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Tom van Leusden
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Diederik E van der Feen
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Marie-José T H Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Rolf M F Berger
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
21
|
Andersen A, van der Feen DE, Andersen S, Schultz JG, Hansmann G, Bogaard HJ. Animal models of right heart failure. Cardiovasc Diagn Ther 2020; 10:1561-1579. [PMID: 33224774 PMCID: PMC7666958 DOI: 10.21037/cdt-20-400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022]
Abstract
Right heart failure may be the ultimate cause of death in patients with acute or chronic pulmonary hypertension (PH). As PH is often secondary to other cardiovascular diseases, the treatment goal is to target the underlying disease. We do however know, that right heart failure is an independent risk factor, and therefore, treatments that improve right heart function may improve morbidity and mortality in patients with PH. There are no therapies that directly target and support the failing right heart and translation from therapies that improve left heart failure have been unsuccessful, with the exception of mineralocorticoid receptor antagonists. To understand the underlying pathophysiology of right heart failure and to aid in the development of new treatments we need solid animal models that mimic the pathophysiology of human disease. There are several available animal models of acute and chronic PH. They range from flow induced to pressure overload induced right heart failure and have been introduced in both small and large animals. When initiating new pre-clinical or basic research studies it is key to choose the right animal model to ensure successful translation to the clinical setting. Selecting the right animal model for the right study is hence important, but may be difficult due to the plethora of different models and local availability. In this review we provide an overview of the available animal models of acute and chronic right heart failure and discuss the strengths and limitations of the different models.
Collapse
Affiliation(s)
- Asger Andersen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Diederik E. van der Feen
- Center for Congenital Heart Diseases, University Medical Center Groningen, Groningen, The Netherlands
| | - Stine Andersen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
| | - Harm Jan Bogaard
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pulmonary Medicine, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
22
|
FHL-1 is not involved in pressure overload-induced maladaptive right ventricular remodeling and dysfunction. Basic Res Cardiol 2020; 115:17. [PMID: 31980934 PMCID: PMC6981327 DOI: 10.1007/s00395-019-0767-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/06/2019] [Indexed: 12/31/2022]
Abstract
AIMS The cytoskeletal signaling protein four and-a-half LIM domains 1 (FHL-1) has recently been identified as a novel key player in pulmonary hypertension as well as in left heart diseases. In this regard, FHL-1 has been implicated in dysregulated hypertrophic signaling in pulmonary arterial smooth muscle cells leading to pulmonary hypertension. In mice, FHL-1-deficiency (FHL-1-/-) led to an attenuated hypertrophic signaling associated with a blunted hypertrophic response of the pressure-overloaded left ventricle (LV). However, the role of FHL-1 in right heart hypertrophy has not yet been addressed. METHODS AND RESULTS We investigated FHL-1 expression in C57Bl/6 mice subjected to chronic biomechanical stress and found it to be enhanced in the right ventricle (RV). Next, we subjected FHL-1-/- and corresponding wild-type mice to pressure overload of the RV by pulmonary arterial banding for various time points. However, in contrast to the previously published study in LV-pressure overload, which was confirmed here, RV hypertrophy and hypertrophic signaling was not diminished in FHL-1-/- mice. In detail, right ventricular pressure overload led to hypertrophy, dilatation and fibrosis of the RV from both FHL-1-/- and wild-type mice. RV remodeling was associated with impaired RV function as evidenced by reduced tricuspid annular plane systolic excursion. Additionally, PAB induced upregulation of natriuretic peptides and slight downregulation of phospholamban and ryanodine receptor 2 in the RV. However, there was no difference between genotypes in the degree of expression change. CONCLUSION FHL-1 pathway is not involved in the control of adverse remodeling in the pressure overloaded RV.
Collapse
|
23
|
Toledo C, Lucero C, Andrade DC, Díaz HS, Schwarz KG, Pereyra KV, Arce-Álvarez A, López NA, Martinez M, Inestrosa NC, Del Rio R. Cognitive impairment in heart failure is associated with altered Wnt signaling in the hippocampus. Aging (Albany NY) 2019; 11:5924-5942. [PMID: 31447429 PMCID: PMC6738419 DOI: 10.18632/aging.102150] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/31/2019] [Indexed: 12/23/2022]
Abstract
Age represents the highest risk factor for death due to cardiovascular disease. Heart failure (HF) is the most common cardiovascular disease in elder population and it is associated with cognitive impairment (CI), diminishing learning and memory process affecting life quality and mortality in these patients. In HF, CI has been associated with inadequate O2 supply to the brain; however, an important subset of HF patients displays CI with almost no alteration in cerebral blood flow. Importantly, nothing is known about the pathophysiological mechanisms underpinning CI in HF with no change in brain tissue perfusion. Here, we aimed to study memory performance and learning function in a rodent model of HF that shows no change in blood flow going to the brain. We found that HF rats presented learning impairments and memory loss. In addition, HF rats displayed a decreased level of Wnt/β-catenin signaling downstream elements in the hippocampus, one pathway implicated largely in aging diseases. Taken together, our results suggest that in HF rats CI is associated with dysfunction of the Wnt/β-catenin signaling pathway. The mechanisms involved in the alterations of Wnt/β-catenin signaling in HF and its contribution to the development/maintenance of CI deserves future investigations.
Collapse
Affiliation(s)
- Camilo Toledo
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia de Biomedicina en Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Claudia Lucero
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Investigación en Fisiología del Ejercicio, Universidad Mayor, Santiago, Chile
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karla G Schwarz
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katherin V Pereyra
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis Arce-Álvarez
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás A López
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Milka Martinez
- Center for Aging and Regeneration (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Center for Aging and Regeneration (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia de Biomedicina en Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile.,Center for Aging and Regeneration (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia de Biomedicina en Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
24
|
Żebrowska A, Mikołajczyk R, Waśkiewicz Z, Gąsior Z, Mizia-Stec K, Kawecki D, Rosemann T, Nikolaidis PT, Knechtle B. Left Ventricular Systolic Function Assessed by Speckle Tracking Echocardiography in Athletes with and without Left Ventricle Hypertrophy. J Clin Med 2019; 8:jcm8050687. [PMID: 31096682 PMCID: PMC6571655 DOI: 10.3390/jcm8050687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/09/2019] [Accepted: 05/12/2019] [Indexed: 01/20/2023] Open
Abstract
The aim of this study was to evaluate selected parameters of strain and rotation of the left ventricle (the basal rotation (BR) index, the basal circumferential strain (BCS) index, and the global longitudinal strain (GLS) of the left ventricle) in male athletes with physiological cardiac hypertrophy (LVH group), and athletes (non-LVH group) and non-athletes without hypertrophy (control group, CG). They were evaluated using transthoracic echocardiography and speckle tracking echocardiography before and after an incremental exercise test. The LVH group demonstrated lower BR at rest than the non-LVH group (p < 0.05) and the CG (p < 0.05). Physical effort had no effect on BR, nor was this effect different between groups (p > 0.05). There was a combined influence of LVH and physical effort on BR (F = 5.70; p < 0.05) and BCS (F = 4.97; p < 0.05), but no significant differences in BCS and GLS at rest between the groups. A higher BCS and lower GLS after exercise in the LVH group were demonstrated in comparison with the CG (p < 0.05). Left ventricular basal rotation as well as longitudinal and circumferential strains showed less of a difference between rest and after physical effort in subjects with significant myocardial hypertrophy. In conclusion, the obtained results may suggest that echocardiographic assessment of basal rotation and circumferential strain of the left ventricular can be important in predicting cardiac disorders caused by physical effort in individuals with physiological and pathological heart hypertrophy.
Collapse
Affiliation(s)
- Aleksandra Żebrowska
- Department of Physiological and Medical Sciences, Academy of Physical Education, Mikołowska Street 72a, 40-065 Katowice, Poland.
| | - Rafał Mikołajczyk
- Department of Physiological and Medical Sciences, Academy of Physical Education, Mikołowska Street 72a, 40-065 Katowice, Poland.
| | - Zbigniew Waśkiewicz
- Department of Team Sports Games, Academy of Physical Education in Katowice, Mikołowska Street 72a, 40-065 Katowice, Poland.
- Department of Sports Medicine and Medical Rehabilitation, Sechenov University, Moscow 119991, Russia.
| | - Zbigniew Gąsior
- Department of Cardiology, School of Health Science, Medical University of Silesia, Katowice, Poland Ziołowa Street 47, 40-635 Katowice, Poland.
| | - Katarzyna Mizia-Stec
- 1st Department of Cardiology, School of Medicine Medical University of Silesia, Katowice, Poland Ziołowa Street 47, 40-635 Katowice, Poland.
| | - Damian Kawecki
- 2nd Department of Cardiology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Skłodowskiej, Curie 10 Street, 41-800 Zabrze, Poland.
| | - Thomas Rosemann
- Institute of Primary Care, University of Zurich, 8091 Zurich, Switzerland.
| | | | - Beat Knechtle
- Institute of Primary Care, University of Zurich, 8091 Zurich, Switzerland.
- Medbase St. Gallen Am Vadianplatz, 9001 St. Gallen, Switzerland.
| |
Collapse
|
25
|
Files MD, Arya B. Pathophysiology, adaptation, and imaging of the right ventricle in Fontan circulation. Am J Physiol Heart Circ Physiol 2018; 315:H1779-H1788. [DOI: 10.1152/ajpheart.00336.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Fontan procedure, which creates a total cavopulmonary anastomosis and represents the final stage of palliation for hypoplastic left heart syndrome, generates a unique circulation relying on a functionally single right ventricle (RV). The RV pumps blood in series around the systemic and pulmonary circulation, which requires adaptations to the abnormal volume and pressure loads. Here, we provide a complete review of RV adaptations as the RV assumes the role of the systemic ventricle, the progression of RV dysfunction to a distinct pattern of heart failure unique to this disease process, and the assessment and management strategies used to protect and rehabilitate the failing RV of Fontan circulation.
Collapse
Affiliation(s)
| | - Bhawna Arya
- Seattle Children’s Hospital, Seattle, Washington
| |
Collapse
|
26
|
Zhang M, Zhu P, Wang Y, Wu J, Yu Y, Wu X, Liu X, Gu Y. Bilateral sympathetic stellate ganglionectomy attenuates myocardial remodelling and fibrosis in a rat model of chronic volume overload. J Cell Mol Med 2018; 23:1001-1013. [PMID: 30411499 PMCID: PMC6349216 DOI: 10.1111/jcmm.14000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 09/25/2018] [Accepted: 10/15/2018] [Indexed: 12/05/2022] Open
Abstract
Reducing sympathetic neurohormone expression is a key therapeutic option in attenuating cardiac remodelling. Present study tested the feasibility of attenuating cardiac remodelling through reducing sympathetic neurohormone level by partial cardiac sympathetic denervation in a rat model of chronic volume overload. Male Sprague‐Dawley rats were randomized into sham group (S, n = 7), aortocaval fistula group (AV, n = 7), and aortocaval fistula with bilateral sympathetic stellate ganglionectomy group (AD, n = 8). After 12 weeks, myocardial protein expression of sympathetic neurohormones, including tyrosine hydroxylase, neuropeptide Y, growth associated protein 43, and protein gene product 9.5, were significantly up‐regulated in AV group compared to S group, and down‐regulated in AD group. Cardiac remodelling was aggravated in AV group compared to S group and attenuated in AD group. The myocardial deposition of extracellular matrix, including collagen I and III, was enhanced in AV group, which was reduced in AD group. Myocardial angiotensin II and aldosterone expressions were significantly up‐regulated in AV group and down‐regulated in AD group. Our results show that bilateral sympathetic stellate ganglionectomy could attenuate cardiac remodelling and fibrosis by down‐regulating sympathetic neurohormones expression in this rat model of chronic volume overload.
Collapse
Affiliation(s)
- Mingjing Zhang
- Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengfei Zhu
- Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuting Wang
- Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Wu
- Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yijun Yu
- Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinying Wu
- Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Liu
- Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Gu
- Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
27
|
Right Ventricular Function After Creation of an Atriovenous Fistula in Patients With End Stage Renal Disease. Heart Lung Circ 2018; 28:884-892. [PMID: 29866523 DOI: 10.1016/j.hlc.2018.04.282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 02/13/2018] [Accepted: 04/04/2018] [Indexed: 01/20/2023]
Abstract
BACKGROUND Right ventricular (RV) dysfunction is associated with increased risk of heart failure and mortality in end stage renal disease (ESRD) patients. Accumulating evidence suggests an association between atriovenous fistula (AVF) and RV dysfunction; however, there is no adequate data on the relation between AVF characteristics and risk of RV dysfunction after AVF creation. METHODS The study included 30 ESRD patients (median age: 44years, 17 male) who had their first autogenous mature AVF. Before and 6months after AVF creation the following were measured: myocardial performance index of RV (MPI-RV) using tissue Doppler imaging echocardiography and flow rate (Qa), feeding artery and receiving vein diameters using colour-flow Doppler ultrasound. Change (Δ) in MPI-RV was calculated by subtracting follow-up value from baseline value. Worsening RV function was defined as Δ MPI-RV>0.015 and high AVF flow as Qa≥950ml/min. RESULTS Compared to patients with lower AVF flow, patients with higher flow showed increased Δ in MPI-RV (0.12 vs. -0.03, p=0.04), basal RV diameter (0.3 vs. -0.02cm, p=0.014), left ventricular end diastolic volume index (9.9 vs. 0ml/m2, p=0.004) and left atrial volume index (3 vs. 1ml/m2, p=0.016). Among all clinical, echocardiographic and AVF-related parameters, univariate predictors of worsening of RV function were: high Qa, upper arm AVF, and large feeding artery diameter at baseline. Δ MPI-RV showed significant correlations with feeding artery diameter at baseline (r=0.46, p=0.01), and Qa (0.37, p=0.04) and no significant correlation with pulmonary artery pressures. Qa≥950ml/min, feeding artery diameter at baseline≥4mm and upper arm AVF can predict worsening of RV function with 73%, 73%, 75% sensitivity and 67%, 67%, 70% specificity, respectively. CONCLUSIONS In patients with ESRD, higher AVF flow adversely affects RV remodelling, manifested as increased size and worsening function. Predictors of worsening of RV function are: higher AVF flow rate, AVF in the upper arm, and large feeding artery diameter.
Collapse
|
28
|
La Gerche A, Rakhit DJ, Claessen G. Exercise and the right ventricle: a potential Achilles' heel. Cardiovasc Res 2018; 113:1499-1508. [PMID: 28957535 DOI: 10.1093/cvr/cvx156] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/08/2017] [Indexed: 11/13/2022] Open
Abstract
Exercise is associated with unequivocal health benefits and results in many structural and functional changes of the myocardium that enhance performance and prevent heart failure. However, intense exercise also presents a significant hemodynamic challenge in which the right-sided heart chambers are exposed to a disproportionate increase in afterload and wall stress that can manifest as myocardial fatigue or even damage if intense exercise is sustained for prolonged periods. This review focuses on the physiological factors that result in a disproportionate load on the right ventricle during exercise and the long-term consequences. The changes in cardiac structure and function that define 'athlete's heart' disproportionately affect the right-sided heart chambers and this can raise important diagnostic overlap with some cardiac pathologies, particularly some inherited cardiomyopathies. The interaction between exercise and arrhythmogenic right ventricular cardiomyopathy (ARVC) will be highlighted as an important example of how hemodynamic stressors can combine with deficiencies in cardiac structural elements to cause cardiac dysfunction predisposing to arrhythmias. The extent to which extreme exercise can cause adverse remodelling in the absence of a genetic predisposition remains controversial. In the athlete with profound changes in heart structure, it can be extremely challenging to determine whether common symptoms such as palpitations may be a marker of more sinister arrhythmias. This review discusses some of the techniques that have recently been proposed to identify pathology in these circumstances. Finally, we will discuss recent evidence defining the role of exercise restriction as a therapeutic intervention in individuals predisposed to arrhythmogenic cardiomyopathy.
Collapse
Affiliation(s)
- Andre La Gerche
- Sports Cardiology and Cardiac Magnetic Resonance Imaging Lab, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia.,Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium.,Cardiology Department, St Vincent's Hospital, Melbourne, Australia
| | - Dhrubo J Rakhit
- Sports Cardiology and Cardiac Magnetic Resonance Imaging Lab, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia.,Cardiovascular Imaging Department, Southampton University Hospital, Southampton, UK
| | - Guido Claessen
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Bossers GP, Hagdorn QA, Ploegstra MJ, Borgdorff MA, Silljé HH, Berger RM, Bartelds B. Volume load-induced right ventricular dysfunction in animal models: insights in a translational gap in congenital heart disease. Eur J Heart Fail 2017; 20:808-812. [DOI: 10.1002/ejhf.931] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/13/2022] Open
Affiliation(s)
- Guido P.L. Bossers
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology; University of Groningen, University Medical Center Groningen; The Netherlands
| | - Quint A.J. Hagdorn
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology; University of Groningen, University Medical Center Groningen; The Netherlands
| | - Mark Jan Ploegstra
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology; University of Groningen, University Medical Center Groningen; The Netherlands
| | - Marinus A.J. Borgdorff
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology; University of Groningen, University Medical Center Groningen; The Netherlands
| | - Herman H.W. Silljé
- Department of Cardiology, University of Groningen; University Medical Center Groningen; The Netherlands
| | - Rolf M.F. Berger
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology; University of Groningen, University Medical Center Groningen; The Netherlands
| | - Beatrijs Bartelds
- Center for Congenital Heart Diseases, Department of Pediatric Cardiology; University of Groningen, University Medical Center Groningen; The Netherlands
- Department of Pediatrics, Division of Pediatric Cardiology; Sophia Children's Hospital; Rotterdam The Netherlands
| |
Collapse
|
30
|
Andrade DC, Arce-Alvarez A, Toledo C, Díaz HS, Lucero C, Schultz HD, Marcus NJ, Del Rio R. Exercise training improves cardiac autonomic control, cardiac function, and arrhythmogenesis in rats with preserved-ejection fraction heart failure. J Appl Physiol (1985) 2017; 123:567-577. [DOI: 10.1152/japplphysiol.00189.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 05/24/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic heart failure is characterized by autonomic imbalance, cardiac dysfunction, and arrhythmogenesis. It has been shown that exercise training (ExT) improves central nervous system oxidative stress, autonomic control, and cardiac function in heart failure with reduced ejection fraction; however, to date no comprehensive studies have addressed the effects of ExT, if any, on oxidative stress in brain stem cardiovascular areas, cardiac autonomic balance, arrhythmogenesis, and cardiac function in heart failure with preserved ejection fraction (HFpEF). We hypothesize that ExT reduces brain stem oxidative stress, improves cardiac autonomic control and cardiac function, and reduces arrhythmogenesis in HFpEF rats. Rats underwent sham treatment or volume overload to induce HFpEF. ExT (60 min/day, 25 m/min, 10% inclination) was performed for 6 wk starting at the second week after HFpEF induction. Rats were randomly allocated into Sham+sedentary (Sed) ( n = 8), Sham+ExT ( n = 6), HFpEF+Sed ( n = 8), and HFpEF+ExT ( n = 8) groups. Compared with the HFpEF+Sed condition, HFpEF+ExT rats displayed reduced NAD(P)H oxidase activity and oxidative stress in the rostral ventrolateral medulla (RVLM), improved cardiac autonomic balance, and reduced arrhythmogenesis. Furthermore, a threefold improvement in cardiac function was observed in HFpEF+ExT rats. These novel findings suggest that moderate-intensity ExT is an effective means to attenuate the progression of HFpEF through improvement in RVLM redox state, cardiac autonomic control, and cardiac function. NEW & NOTEWORTHY In the present study, we found that exercise reduced oxidative stress in key brain stem areas related to autonomic control, improved sympathovagal control of the heart, reduced cardiac arrhythmias, and delayed deterioration of cardiac function in rats with heart failure with preserved ejection fraction (HFpEF). Our results provide strong evidence for the therapeutic efficacy of exercise training in HFpEF.
Collapse
Affiliation(s)
- David C. Andrade
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Alexis Arce-Alvarez
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Camilo Toledo
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Hugo S. Díaz
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Claudia Lucero
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Harold D. Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Noah J. Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, Iowa
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
31
|
Sanz-de la Garza M, Rubies C, Batlle M, Bijnens BH, Mont L, Sitges M, Guasch E. Severity of structural and functional right ventricular remodeling depends on training load in an experimental model of endurance exercise. Am J Physiol Heart Circ Physiol 2017; 313:H459-H468. [DOI: 10.1152/ajpheart.00763.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 05/02/2017] [Accepted: 05/21/2017] [Indexed: 11/22/2022]
Abstract
Arrhythmogenic right ventricular (RV) remodeling has been reported in response to regular training, but it remains unclear how exercise intensity affects the presence and extent of such remodeling. We aimed to assess the relationship between RV remodeling and exercise load in a long-term endurance training model. Wistar rats were conditioned to run at moderate (MOD; 45 min, 30 cm/s) or intense (INT; 60 min, 60 cm/s) workloads for 16 wk; sedentary rats served as controls. Cardiac remodeling was assessed with standard echocardiographic and tissue Doppler techniques, sensor-tip pressure catheters, and pressure-volume loop analyses. After MOD training, both ventricles similarly dilated (~16%); the RV apical segment deformation, but not the basal segment deformation, was increased [apical strain rate (SR): −2.9 ± 0.5 vs. −3.3 ± 0.6 s−1, SED vs. MOD]. INT training prompted marked RV dilatation (~26%) but did not further dilate the left ventricle (LV). A reduction in both RV segments' deformation in INT rats (apical SR: −3.3 ± 0.6 vs. −3.0 ± 0.4 s−1 and basal SR: −3.3 ± 0.7 vs. −2.7 ± 0.6 s−1, MOD vs. INT) led to decreased global contractile function (maximal rate of rise of LV pressure: 2.53 ± 0.15 vs. 2.17 ± 0.116 mmHg/ms, MOD vs. INT). Echocardiography and hemodynamics consistently pointed to impaired RV diastolic function in INT rats. LV systolic and diastolic functions remained unchanged in all groups. In conclusion, we showed a biphasic, unbalanced RV remodeling response with increasing doses of exercise: physiological adaptation after MOD training turns adverse with INT training, involving disproportionate RV dilatation, decreased contractility, and impaired diastolic function. Our findings support the existence of an exercise load threshold beyond which cardiac remodeling becomes maladaptive. NEW & NOTEWORTHY Exercise promotes left ventricular eccentric hypertrophy with no changes in systolic or diastolic function in healthy rats. Conversely, right ventricular adaptation to physical activity follows a biphasic, dose-dependent, and segmentary pattern. Moderate exercise promotes a mild systolic function enhancement at the right ventricular apex and more intense exercise impairs systolic and diastolic function.
Collapse
Affiliation(s)
- Maria Sanz-de la Garza
- Cardiovascular Institute, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut d’Investigacions Biomédiques August Pi i Sunyer, Barcelona, Catalonia, Spain
| | - Cira Rubies
- Institut d’Investigacions Biomédiques August Pi i Sunyer, Barcelona, Catalonia, Spain
| | - Montserrat Batlle
- Institut d’Investigacions Biomédiques August Pi i Sunyer, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red, Madrid, Spain
| | - Bart H. Bijnens
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain; and
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Lluis Mont
- Cardiovascular Institute, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut d’Investigacions Biomédiques August Pi i Sunyer, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red, Madrid, Spain
| | - Marta Sitges
- Cardiovascular Institute, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut d’Investigacions Biomédiques August Pi i Sunyer, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red, Madrid, Spain
| | - Eduard Guasch
- Cardiovascular Institute, Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Institut d’Investigacions Biomédiques August Pi i Sunyer, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red, Madrid, Spain
| |
Collapse
|
32
|
Vang A, Clements RT, Chichger H, Kue N, Allawzi A, O'Connell K, Jeong EM, Dudley SC, Sakhatskyy P, Lu Q, Zhang P, Rounds S, Choudhary G. Effect of α7 nicotinic acetylcholine receptor activation on cardiac fibroblasts: a mechanism underlying RV fibrosis associated with cigarette smoke exposure. Am J Physiol Lung Cell Mol Physiol 2017; 312:L748-L759. [PMID: 28258105 PMCID: PMC5451597 DOI: 10.1152/ajplung.00393.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 02/17/2017] [Accepted: 02/23/2017] [Indexed: 01/03/2023] Open
Abstract
Right ventricular (RV) dysfunction is associated with numerous smoking-related illnesses, including chronic obstructive pulmonary disease (COPD), in which it is present even in the absence of pulmonary hypertension. It is unknown whether exposure to cigarette smoke (CS) has direct effects on RV function and cardiac fibroblast (CF) proliferation or collagen synthesis. In this study, we evaluated cardiac function and fibrosis in mice exposed to CS and determined mechanisms of smoke-induced changes in CF signaling and fibrosis. AKR mice were exposed to CS for 6 wk followed by echocardiography and evaluation of cardiac hypertrophy, collagen content, and pulmonary muscularization. Proliferation and collagen content were evaluated in primary isolated rat CFs exposed to CS extract (CSE) or nicotine. Markers of cell proliferation, fibrosis, and proliferative signaling were determined by immunoblot or Sircol collagen assay. Mice exposed to CS had significantly decreased RV function, as determined by tricuspid annular plane systolic excursion. There were no changes in left ventricular parameters. RV collagen content was significantly elevated, but there was no change in RV hypertrophy or pulmonary vascular muscularization. CSE directly increased CF proliferation and collagen content in CF. Nicotine alone reproduced these effects. CSE and nicotine-induced fibroblast proliferation and collagen content were mediated through α7 nicotinic acetylcholine receptors and were dependent on PKC-α, PKC-δ, and reduced p38-MAPK phosphorylation. CS and nicotine have direct effects on CFs to induce proliferation and fibrosis, which may negatively affect right heart function.
Collapse
MESH Headings
- Animals
- Cell Proliferation/drug effects
- Enzyme Activation/drug effects
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Heart Ventricles/drug effects
- Heart Ventricles/pathology
- Heart Ventricles/physiopathology
- Hemodynamics/drug effects
- Hypertrophy, Right Ventricular/complications
- Hypertrophy, Right Ventricular/diagnostic imaging
- Hypertrophy, Right Ventricular/pathology
- Hypertrophy, Right Ventricular/physiopathology
- MAP Kinase Signaling System/drug effects
- Male
- Mice, Inbred AKR
- Myocardium/pathology
- Nicotine/pharmacology
- Phosphorylation/drug effects
- Protein Kinase C-alpha/metabolism
- Protein Kinase C-delta/metabolism
- Rats, Sprague-Dawley
- Smoking/adverse effects
- Vascular Remodeling/drug effects
- Ventricular Dysfunction, Right/complications
- Ventricular Dysfunction, Right/diagnostic imaging
- Ventricular Dysfunction, Right/pathology
- Ventricular Dysfunction, Right/physiopathology
- alpha7 Nicotinic Acetylcholine Receptor/metabolism
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Alexander Vang
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
| | - Richard T Clements
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Surgery, Rhode Island Hospital, Providence, Rhode Island; and
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
| | - Havovi Chichger
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Nouaying Kue
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
| | - Ayed Allawzi
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Molecular Pharmacology, Physiology, and Biotechnology, Brown University, Providence, Rhode Island
| | - Kelly O'Connell
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Euy-Myoung Jeong
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
| | - Samuel C Dudley
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
| | - Pavlo Sakhatskyy
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Qing Lu
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Peng Zhang
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
| | - Sharon Rounds
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Gaurav Choudhary
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island;
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
33
|
Toledo C, Andrade DC, Lucero C, Arce-Alvarez A, Díaz HS, Aliaga V, Schultz HD, Marcus NJ, Manríquez M, Faúndez M, Del Rio R. Cardiac diastolic and autonomic dysfunction are aggravated by central chemoreflex activation in heart failure with preserved ejection fraction rats. J Physiol 2017; 595:2479-2495. [PMID: 28181258 DOI: 10.1113/jp273558] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/31/2017] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS Heart failure with preserved ejection fraction (HFpEF) is associated with disordered breathing patterns, and sympatho-vagal imbalance. Although it is well accepted that altered peripheral chemoreflex control plays a role in the progression of heart failure with reduced ejection fraction (HFrEF), the pathophysiological mechanisms underlying deterioration of cardiac function in HFpEF are poorly understood. We found that central chemoreflex is enhanced in HFpEF and neuronal activation is increased in pre-sympathetic regions of the brainstem. Our data showed that activation of the central chemoreflex pathway in HFpEF exacerbates diastolic dysfunction, worsens sympatho-vagal imbalance and markedly increases the incidence of cardiac arrhythmias in rats with HFpEF. ABSTRACT Heart failure (HF) patients with preserved ejection fraction (HFpEF) display irregular breathing, sympatho-vagal imbalance, arrhythmias and diastolic dysfunction. It has been shown that tonic activation of the central and peripheral chemoreflex pathway plays a pivotal role in the pathophysiology of HF with reduced ejection fraction. In contrast, no studies to date have addressed chemoreflex function or its effect on cardiac function in HFpEF. Therefore, we tested whether peripheral and central chemoreflexes are hyperactive in HFpEF and if chemoreflex activation exacerbates cardiac dysfunction and autonomic imbalance. Sprague-Dawley rats (n = 32) were subjected to sham or volume overload to induce HFpEF. Resting breathing variability, chemoreflex gain, cardiac function and sympatho-vagal balance, and arrhythmia incidence were studied. HFpEF rats displayed [mean ± SD; chronic heart failure (CHF) vs. Sham, respectively] a marked increase in the incidence of apnoeas/hypopnoeas (20.2 ± 4.0 vs. 9.7 ± 2.6 events h-1 ), autonomic imbalance [0.6 ± 0.2 vs. 0.2 ± 0.1 low/high frequency heart rate variability (LF/HFHRV )] and cardiac arrhythmias (196.0 ± 239.9 vs. 19.8 ± 21.7 events h-1 ). Furthermore, HFpEF rats showed increase central chemoreflex sensitivity but not peripheral chemosensitivity. Accordingly, hypercapnic stimulation in HFpEF rats exacerbated increases in sympathetic outflow to the heart (229.6 ± 43.2% vs. 296.0 ± 43.9% LF/HFHRV , normoxia vs. hypercapnia, respectively), incidence of cardiac arrhythmias (196.0 ± 239.9 vs. 576.7 ± 472.9 events h-1 ) and diastolic dysfunction (0.008 ± 0.004 vs. 0.027 ± 0.027 mmHg μl-1 ). Importantly, the cardiovascular consequences of central chemoreflex activation were related to sympathoexcitation since these effects were abolished by propranolol. The present results show that the central chemoreflex is enhanced in HFpEF and that acute activation of central chemoreceptors leads to increases of cardiac sympathetic outflow, cardiac arrhythmogenesis and impairment in cardiac function in rats with HFpEF.
Collapse
Affiliation(s)
- Camilo Toledo
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Claudia Lucero
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Alexis Arce-Alvarez
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Hugo S Díaz
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Valentín Aliaga
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Harold D Schultz
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Centre, Omaha, NE, USA
| | - Noah J Marcus
- Department of Physiology and Pharmacology, Des Moines University, Des Moines, IA, USA
| | - Mónica Manríquez
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Marcelo Faúndez
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
34
|
Huang Q, Cai B. Exosomes as New Intercellular Mediators in Development and Therapeutics of Cardiomyocyte Hypertrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 998:91-100. [PMID: 28936734 DOI: 10.1007/978-981-10-4397-0_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Myocardial hypertrophy is a common cardiac condition in response to hemodynamic and neurohormonal alterations. Pathological hypertrophic growth in hearts caused the decline of cardiac functions, and finally developed into congestive heart failure. The exosomes are small membrane vesicles which are secreted by various cells and play important roles in cellular communication, migration, proliferation and differentiation. Recent studies uncovered that the exosomes from cardiac fibroblasts and other tissues participates in the development of myocardial hypertrophy. Nevertheless, cardiac progenitor cells and mesenchymal stem cells-derived exosomes confer protective action on myocardial hypertrophy. Thus, the exosomes serve as new intercellular mediators between cardiomyocytes and other cells, and show broad application potential in the diagnostic and therapy of cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Qi Huang
- Department of Pharmacy, The Affiliated Second Hospital of Harbin Medical University, 157# Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China.,Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China
| | - Benzhi Cai
- Department of Pharmacy, The Affiliated Second Hospital of Harbin Medical University, 157# Baojian Road, Nangang District, Harbin, 150081, Heilongjiang Province, China. .,Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.
| |
Collapse
|
35
|
Szelid Z, Lux Á, Kolossváry M, Tóth A, Vágó H, Lendvai Z, Kiss L, Maurovich-Horvat P, Bagyura Z, Merkely B. Right Ventricular Adaptation Is Associated with the Glu298Asp Variant of the NOS3 Gene in Elite Athletes. PLoS One 2015; 10:e0141680. [PMID: 26517550 PMCID: PMC4627801 DOI: 10.1371/journal.pone.0141680] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 10/12/2015] [Indexed: 11/19/2022] Open
Abstract
Nitric oxide (NO), an important endogenous pulmonary vasodilator is synthetized by the endothelial NO synthase (NOS3). Reduced NO bioavailability and thus the Glu298Asp polymorphism of NOS3 may enhance right ventricular (RV) afterload and hypertrophic remodeling and influence athletic performance. To test this hypothesis world class level athletes (water polo players, kayakers, canoeists, rowers, swimmers, n = 126) with a VO2 maximum greater than 50ml/kg/min were compared with non-athletic volunteers (n = 155). Cardiopulmonary exercise tests and cardiac magnetic resonance imaging (cMRI) were performed to determine structural or functional changes. Genotype distribution of the NOS3 Glu298Asp polymorphism was not affected by gender or physical performance. Cardiac MRI showed increased stroke volume with eccentric hypertrophy in all athletes regardless of their genotype. However, the Asp allelic variant carriers had increased RV mass index (32±6g versus 27±6g, p<0.01) and larger RV stroke volume index (71±10ml versus 64±10ml, p<0.01) than athletes with a Glu/Glu genotype. Genotype was not significantly associated with athletic performance. In the non-athletic group no genotype related differences were detected. The association between the NOS3 Glu298Asp polymorphism and RV structure and dimension in elite athletes emphasizes the importance of NOS3 gene function and NO bioavailability in sport related cardiac adaptation.
Collapse
Affiliation(s)
- Zsolt Szelid
- Semmelweis University Heart and Vascular Center, Budapest, Hungary
- * E-mail:
| | - Árpád Lux
- Semmelweis University Heart and Vascular Center, Budapest, Hungary
| | - Márton Kolossváry
- Semmelweis University Heart and Vascular Center, Budapest, Hungary
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Attila Tóth
- Semmelweis University Heart and Vascular Center, Budapest, Hungary
| | - Hajnalka Vágó
- Semmelweis University Heart and Vascular Center, Budapest, Hungary
| | | | - Loretta Kiss
- Semmelweis University Heart and Vascular Center, Budapest, Hungary
| | - Pál Maurovich-Horvat
- Semmelweis University Heart and Vascular Center, Budapest, Hungary
- MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Zsolt Bagyura
- Semmelweis University Heart and Vascular Center, Budapest, Hungary
| | - Béla Merkely
- Semmelweis University Heart and Vascular Center, Budapest, Hungary
| |
Collapse
|
36
|
La Gerche A, Roberts T, Claessen G. The response of the pulmonary circulation and right ventricle to exercise: exercise-induced right ventricular dysfunction and structural remodeling in endurance athletes (2013 Grover Conference series). Pulm Circ 2015; 4:407-16. [PMID: 25621154 DOI: 10.1086/677355] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/22/2014] [Indexed: 02/03/2023] Open
Abstract
There is unequivocal evidence that exercise results in considerable health benefits. These are the result of positive hormonal, metabolic, neuronal, and structural changes brought about by the intermittent physiological challenge of exercise. However, there is evolving evidence that intense exercise may place disproportionate physiological stress on the right ventricle (RV) and the pulmonary circulation. Both echocardiographic and invasive studies are consistent in demonstrating that pulmonary arterial pressures increase progressively with exercise intensity, such that the harder one exercises, the greater the load on the RV. This disproportionate load can result in fatigue or damage of the RV if the intensity and duration of exercise is sufficiently prolonged. This is distinctly different from the load imposed by exercise on the left ventricle (LV), which is moderated by a greater capacity for reductions in systemic afterload. Finally, given the increasing RV demand during exercise, it may be hypothesized that chronic exercise-induced cardiac remodeling (the so-called athlete's heart) may also disproportionately affect the RV. Indeed, there is evidence, although somewhat inconsistent, that RV volume increases may be relatively greater than those for the LV. Perhaps more importantly, there is a suggestion that chronic endurance exercise may cause electrical remodeling, predisposing some athletes to serious arrhythmias originating from the RV. Thus, a relatively consistent picture is emerging of acute stress, prolonged fatigue, and long-term remodeling, which all disproportionately affect the RV. Thus, we contend that the RV should be considered a potential Achilles' heel of the exercising heart.
Collapse
Affiliation(s)
- André La Gerche
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Australia ; Department of Cardiovascular Medicine, University of Leuven, Leuven, Belgium
| | - Timothy Roberts
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, Australia
| | - Guido Claessen
- Department of Cardiovascular Medicine, University of Leuven, Leuven, Belgium
| |
Collapse
|
37
|
Baán JA, Varga ZV, Leszek P, Kuśmierczyk M, Baranyai T, Dux L, Ferdinandy P, Braun T, Mendler L. Myostatin and IGF-I signaling in end-stage human heart failure: a qRT-PCR study. J Transl Med 2015; 13:1. [PMID: 25591711 PMCID: PMC4301667 DOI: 10.1186/s12967-014-0365-0] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/16/2014] [Indexed: 12/31/2022] Open
Abstract
Background Myostatin (Mstn) is a key regulator of heart metabolism and cardiomyocyte growth interacting tightly with insulin-like growth factor I (IGF-I) under physiological conditions. The pathological role of Mstn has also been suggested since Mstn protein was shown to be upregulated in the myocardium of end-stage heart failure. However, no data are available about the regulation of gene expression of Mstn and IGF-I in different regions of healthy or pathologic human hearts, although they both might play a crucial role in the pathomechanism of heart failure. Methods In the present study, heart samples were collected from left ventricles, septum and right ventricles of control healthy individuals as well as from failing hearts of dilated (DCM) or ischemic cardiomyopathic (ICM) patients. A comprehensive qRT-PCR analysis of Mstn and IGF-I signaling was carried out by measuring expression of Mstn, its receptor Activin receptor IIB (ActRIIB), IGF-I, IGF-I receptor (IGF-IR), and the negative regulator of Mstn miR-208, respectively. Moreover, we combined the measured transcript levels and created complex parameters characterizing either Mstn- or IGF-I signaling in the different regions of healthy or failing hearts. Results We have found that in healthy control hearts, the ratio of Mstn/IGF-I signaling was significantly higher in the left ventricle/septum than in the right ventricle. Moreover, Mstn transcript levels were significantly upregulated in all heart regions of DCM but not ICM patients. However, the ratio of Mstn/IGF-I signaling remained increased in the left ventricle/septum compared to the right ventricle of DCM patients (similarly to the healthy hearts). In contrast, in ICM hearts significant transcript changes were detected mainly in IGF-I signaling. In paralell with these results miR-208 showed mild upregulation in the left ventricle of both DCM and ICM hearts. Conclusions This is the first demonstration of a spatial asymmetry in the expression pattern of Mstn/IGF-I in healthy hearts, which is likely to play a role in the different growth regulation of left vs. right ventricle. Moreover, we identified Mstn as a massively regulated gene in DCM but not in ICM as part of possible compensatory mechanisms in the failing heart.
Collapse
|
38
|
Butters TD, Castro SJ, Lowe T, Zhang Y, Lei M, Withers PJ, Zhang H. Optimal iodine staining of cardiac tissue for X-ray computed tomography. PLoS One 2014; 9:e105552. [PMID: 25170844 PMCID: PMC4149378 DOI: 10.1371/journal.pone.0105552] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/22/2014] [Indexed: 02/02/2023] Open
Abstract
X-ray computed tomography (XCT) has been shown to be an effective imaging technique for a variety of materials. Due to the relatively low differential attenuation of X-rays in biological tissue, a high density contrast agent is often required to obtain optimal contrast. The contrast agent, iodine potassium iodide (), has been used in several biological studies to augment the use of XCT scanning. Recently was used in XCT scans of animal hearts to study cardiac structure and to generate 3D anatomical computer models. However, to date there has been no thorough study into the optimal use of as a contrast agent in cardiac muscle with respect to the staining times required, which has been shown to impact significantly upon the quality of results. In this study we address this issue by systematically scanning samples at various stages of the staining process. To achieve this, mouse hearts were stained for up to 58 hours and scanned at regular intervals of 6–7 hours throughout this process. Optimal staining was found to depend upon the thickness of the tissue; a simple empirical exponential relationship was derived to allow calculation of the required staining time for cardiac samples of an arbitrary size.
Collapse
Affiliation(s)
- Timothy D. Butters
- School of Physics and Astronomy, The University of Manchester, Manchester, Greater Manchester, United Kingdom
| | - Simon J. Castro
- School of Physics and Astronomy, The University of Manchester, Manchester, Greater Manchester, United Kingdom
| | - Tristan Lowe
- School of Materials Science, The University of Manchester, Manchester, Greater Manchester, United Kingdom
| | - Yanmin Zhang
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, Greater Manchester, United Kingdom
- Department of Pharmacology, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Ming Lei
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, The University of Manchester, Manchester, Greater Manchester, United Kingdom
- Department of Pharmacology, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Philip J. Withers
- School of Materials Science, The University of Manchester, Manchester, Greater Manchester, United Kingdom
| | - Henggui Zhang
- School of Physics and Astronomy, The University of Manchester, Manchester, Greater Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
39
|
Fiaschi T, Magherini F, Gamberi T, Lucchese G, Faggian G, Modesti A, Modesti PA. Hyperglycemia and angiotensin II cooperate to enhance collagen I deposition by cardiac fibroblasts through a ROS-STAT3-dependent mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2603-10. [PMID: 25072659 DOI: 10.1016/j.bbamcr.2014.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 01/09/2023]
Abstract
Cardiac fibroblasts significantly contribute to diabetes-induced structural and functional changes in the myocardium. The objective of the present study was to determine the effects of high glucose (alone or supplemented with angiotensin II) in the activation of the JAK2/STAT3 pathway and its involvement in collagen I production by cardiac fibroblasts. We observed that the diabetic environment 1) enhanced tyrosine phosphorylation of JAK2 and STAT3; 2) induced nuclear localization of tyrosine phosphorylated STAT3 through a reactive oxygen species-mediated mechanism, with angiotensin II stimulation further enhancing STAT3 nuclear accumulation; and 3) stimulated collagen I production. The effects were inhibited by depletion of reactive oxygen species or silencing of STAT3 in high glucose alone or supplemented with exogenous angiotensin II. Combined, our data demonstrate that increased collagen I deposition in the setting of high glucose occurred through a reactive oxygen species- and STAT3-dependent mechanism. Our results reveal a novel role for STAT3 as a key signaling molecule of collagen I production in cardiac fibroblasts exposed to a diabetic environment.
Collapse
Affiliation(s)
- Tania Fiaschi
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Francesca Magherini
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Tania Gamberi
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Gianluca Lucchese
- Institute of Thoracic and Cardiovascular Surgery, University of Verona, Verona, Italy
| | - Giuseppe Faggian
- Institute of Thoracic and Cardiovascular Surgery, University of Verona, Verona, Italy
| | - Alessandra Modesti
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy.
| | - Pietro Amedeo Modesti
- Department of Clinical and Experimental Medicine, University of Florence, School of Medicine, Florence, Italy.
| |
Collapse
|
40
|
Affiliation(s)
- Mark K. Friedberg
- From the Labatt Family Heart Center, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| | - Andrew N. Redington
- From the Labatt Family Heart Center, Department of Paediatrics, Hospital for Sick Children and University of Toronto, Toronto, ON, Canada
| |
Collapse
|
41
|
Ishimaru K, Miyagawa S, Fukushima S, Ide H, Hoashi T, Shibuya T, Ueno T, Sawa Y. Functional and pathological characteristics of reversible remodeling in a canine right ventricle in response to volume overloading and volume unloading. Surg Today 2014; 44:1935-45. [PMID: 24522891 PMCID: PMC4162977 DOI: 10.1007/s00595-014-0847-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/30/2013] [Indexed: 12/04/2022]
Abstract
Purposes Patients who undergo right ventricular (RV) outflow augmentation inevitably develop RV remodeling due to pulmonary insufficiency-related volume overload (VOL). However, the reversibility of this remodeling is not fully understood. The goal of this study was to establish an animal model of VOL and unloading to characterize the functional and pathological characteristics and reversibility of RV remodeling. Methods VOL-RV was successfully induced by establishing direct RV-pulmonary artery (PA) bypass for 12 weeks in beagle canines. There were no procedure-related mortalities (n = 8). Results The RV developed typical functional features of VOL-related remodeling, such as a significant increase in end-diastolic/systolic volume and end-systolic pressure and a significant reduction in ejection fraction at 12 weeks, as assessed by three-dimensional echocardiography and cardiac catheterization. The RV developed typical pathological signs of remodeling, microstructural disorganization of cardiomyocytes, and/or structural/functional deterioration of the mitochondria. Volume unloading by division of the RV-PA bypass reversed the increase in the end-systolic/diastolic volume over 4 weeks when compared with a sham operation (n = 4 each). In addition, the bypass division also reversed the pathological changes seen in VOL-RV. Conclusions VOL-RV that yielded typical functional and pathological features of RV remodeling was reproducibly achieved by direct RV-PA bypass in canines. The RV remodeling due to VOL was functionally and pathologically reversed by volume unloading via the bypass division.
Collapse
Affiliation(s)
- Kazuhiko Ishimaru
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871 Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871 Japan
| | - Satsuki Fukushima
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871 Japan
| | - Haruki Ide
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871 Japan
| | - Takaya Hoashi
- Department of Pediatric Cardiovascular Surgery, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Toshiharu Shibuya
- Department of Molecular Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Takayoshi Ueno
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871 Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, 565-0871 Japan
| |
Collapse
|
42
|
|
43
|
Heidbüchel H, La Gerche A. The right heart in athletes. Evidence for exercise-induced arrhythmogenic right ventricular cardiomyopathy. Herzschrittmacherther Elektrophysiol 2012; 23:82-86. [PMID: 22782727 DOI: 10.1007/s00399-012-0180-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Although 'athlete's heart' usually constitutes a balanced dilation and hypertrophy of all four chambers, there is increasing evidence that intense endurance activity may particularly tax the right ventricle (RV), both acutely and chronically. We review the evidence that the high wall stress of the RV during intense sports may explain observed B-type natriuretic peptide (BNP) elevations immediately after a race, may lead to cellular disruption and leaking of cardiac enzymes, and may even result in transient RV dilatation and dysfunction. Over time, this could lead to chronic remodelling and a pro-arrhythmic state resembling arrhythmogenic RV cardiomyopathy (ARVC) in some cases. ARVC in high-endurance athletes most often develops in the absence of underlying desmosomal abnormalities, probably only as a result of excessive RV wall stress during exercise. Therefore, we have labelled this syndrome 'exercise-induced ARVC'. Sports cardiologists should be aware that excessive sports activity can lead to cardiac sports injuries in some individuals, just like orthopaedic specialists are familiar with musculoskeletal sports injuries. This does not negate the fact that moderate exercise has positive cardiovascular effects and should be encouraged.
Collapse
Affiliation(s)
- H Heidbüchel
- Department of Cardiovascular Medicine, Cardiology - Electrophysiology, University Hospital Gasthuisberg, University of Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | | |
Collapse
|
44
|
Guihaire J, Haddad F, Mercier O, Murphy DJ, Wu JC, Fadel E. The Right Heart in Congenital Heart Disease, Mechanisms and Recent Advances. ACTA ACUST UNITED AC 2012; 8:1-11. [PMID: 23483726 DOI: 10.4172/2155-9880.s8-010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In patients with congenital heart disease, the right heart may support the pulmonary or the systemic circulation. Several congenital heart diseases primarily affect the right heart including Tetralogy of Fallot, transposition of great arteries, septal defects leading to pulmonary vascular disease, Ebstein anomaly and arrhythmogenic right ventricular cardiomyopathy. In these patients, right ventricular dysfunction leads to considerable morbidity and mortality. In this paper, our objective is to review the mechanisms and management of right heart failure associated with congenital heart disease. We will outline pearls and pitfalls in the management of congenital heart disease affecting the right heart and highlight recent advances in the field.
Collapse
Affiliation(s)
- Julien Guihaire
- Cardiac Surgeon, Universite Paris-Sud, Laboratory of Surgical Research, Marie Lannelongue Surgical Center, France
| | | | | | | | | | | |
Collapse
|
45
|
Nediani C, Raimondi L, Borchi E, Cerbai E. Nitric oxide/reactive oxygen species generation and nitroso/redox imbalance in heart failure: from molecular mechanisms to therapeutic implications. Antioxid Redox Signal 2011; 14:289-331. [PMID: 20624031 DOI: 10.1089/ars.2010.3198] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adaptation of the heart to intrinsic and external stress involves complex modifications at the molecular and cellular levels that lead to tissue remodeling, functional and metabolic alterations, and finally to failure depending upon the nature, intensity, and chronicity of the stress. Reactive oxygen species (ROS) have long been considered as merely harmful entities, but their role as second messengers has gradually emerged. At the same time, our comprehension of the multifaceted role of nitric oxide (NO) and the related reactive nitrogen species (RNS) has been upgraded. The tight interlay between ROS and RNS suggests that their imbalance may implicate the impairment in physiological NO/redox-based signaling that contributes to the failing of the cardiovascular system. This review initially provides basic concepts on the role of nitroso/oxidative stress in the pathophysiology of heart failure with a particular focus on sources of ROS/RNS, their downstream targets, and endogenous modulators. Then, the role of NO/redox regulation of cardiomyocyte function, including calcium homeostasis, electrogenesis, and insulin signaling pathways, is described. Finally, an overview of old and emerging therapeutic opportunities in heart failure is presented, focusing on modulation of NO/redox mechanisms and discussing benefits and limitations.
Collapse
Affiliation(s)
- Chiara Nediani
- Department of Biochemical Sciences, University of Florence, Florence, Italy.
| | | | | | | |
Collapse
|
46
|
Benito B, Gay-Jordi G, Serrano-Mollar A, Guasch E, Shi Y, Tardif JC, Brugada J, Nattel S, Mont L. Cardiac Arrhythmogenic Remodeling in a Rat Model of Long-Term Intensive Exercise Training. Circulation 2011; 123:13-22. [DOI: 10.1161/circulationaha.110.938282] [Citation(s) in RCA: 318] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background—
Recent clinical studies suggest that endurance sports may promote cardiac arrhythmias. The aim of this study was to use an animal model to evaluate whether sustained intensive exercise training induces potentially adverse myocardial remodeling and thus creates a potential substrate for arrhythmias.
Methods and Results—
Male Wistar rats were conditioned to run vigorously for 4, 8, and 16 weeks; time-matched sedentary rats served as controls. Serial echocardiograms and in vivo electrophysiological studies at 16 weeks were obtained in both groups. After euthanasia, ventricular collagen deposition was quantified by histological and biochemical studies, and messenger RNA and protein expression of transforming growth factor-β1, fibronectin-1, matrix metalloproteinase-2, tissue inhibitor of metalloproteinase-1, procollagen-I, and procollagen-III was evaluated in all 4 cardiac chambers. At 16 weeks, exercise rats developed eccentric hypertrophy and diastolic dysfunction, together with atrial dilation. In addition, collagen deposition in the right ventricle and messenger RNA and protein expression of fibrosis markers in both atria and right ventricle were significantly greater in exercise than in sedentary rats at 16 weeks. Ventricular tachycardia could be induced in 5 of 12 exercise rats (42%) and only 1 of 16 sedentary rats (6%;
P
=0.05). The fibrotic changes caused by 16 weeks of intensive exercise were reversed after an 8-week exercise cessation.
Conclusions—
In this animal model, we documented cardiac fibrosis after long-term intensive exercise training, together with changes in ventricular function and increased arrhythmia inducibility. If our findings are confirmed in humans, the results would support the notion that long-term vigorous endurance exercise training may in some cases promote adverse remodeling and produce a substrate for cardiac arrhythmias.
Collapse
Affiliation(s)
- Begoña Benito
- From the Thorax Institute, Hospital Clinic, Universitat de Barcelona, Barcelona, Catalonia, Spain (B.B., E.G., J.B., L.M.); Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Catalonia, Spain (B.B., G.G.-J., A.S.-M., E.G., J.B., L.M.); Research Center, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada (B.B., Y.S., J.-C.T., S.N.); and Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona, Barcelona, Catalonia, Spain (G.G
| | - Gemma Gay-Jordi
- From the Thorax Institute, Hospital Clinic, Universitat de Barcelona, Barcelona, Catalonia, Spain (B.B., E.G., J.B., L.M.); Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Catalonia, Spain (B.B., G.G.-J., A.S.-M., E.G., J.B., L.M.); Research Center, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada (B.B., Y.S., J.-C.T., S.N.); and Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona, Barcelona, Catalonia, Spain (G.G
| | - Anna Serrano-Mollar
- From the Thorax Institute, Hospital Clinic, Universitat de Barcelona, Barcelona, Catalonia, Spain (B.B., E.G., J.B., L.M.); Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Catalonia, Spain (B.B., G.G.-J., A.S.-M., E.G., J.B., L.M.); Research Center, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada (B.B., Y.S., J.-C.T., S.N.); and Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona, Barcelona, Catalonia, Spain (G.G
| | - Eduard Guasch
- From the Thorax Institute, Hospital Clinic, Universitat de Barcelona, Barcelona, Catalonia, Spain (B.B., E.G., J.B., L.M.); Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Catalonia, Spain (B.B., G.G.-J., A.S.-M., E.G., J.B., L.M.); Research Center, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada (B.B., Y.S., J.-C.T., S.N.); and Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona, Barcelona, Catalonia, Spain (G.G
| | - Yanfen Shi
- From the Thorax Institute, Hospital Clinic, Universitat de Barcelona, Barcelona, Catalonia, Spain (B.B., E.G., J.B., L.M.); Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Catalonia, Spain (B.B., G.G.-J., A.S.-M., E.G., J.B., L.M.); Research Center, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada (B.B., Y.S., J.-C.T., S.N.); and Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona, Barcelona, Catalonia, Spain (G.G
| | - Jean-Claude Tardif
- From the Thorax Institute, Hospital Clinic, Universitat de Barcelona, Barcelona, Catalonia, Spain (B.B., E.G., J.B., L.M.); Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Catalonia, Spain (B.B., G.G.-J., A.S.-M., E.G., J.B., L.M.); Research Center, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada (B.B., Y.S., J.-C.T., S.N.); and Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona, Barcelona, Catalonia, Spain (G.G
| | - Josep Brugada
- From the Thorax Institute, Hospital Clinic, Universitat de Barcelona, Barcelona, Catalonia, Spain (B.B., E.G., J.B., L.M.); Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Catalonia, Spain (B.B., G.G.-J., A.S.-M., E.G., J.B., L.M.); Research Center, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada (B.B., Y.S., J.-C.T., S.N.); and Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona, Barcelona, Catalonia, Spain (G.G
| | - Stanley Nattel
- From the Thorax Institute, Hospital Clinic, Universitat de Barcelona, Barcelona, Catalonia, Spain (B.B., E.G., J.B., L.M.); Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Catalonia, Spain (B.B., G.G.-J., A.S.-M., E.G., J.B., L.M.); Research Center, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada (B.B., Y.S., J.-C.T., S.N.); and Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona, Barcelona, Catalonia, Spain (G.G
| | - Lluis Mont
- From the Thorax Institute, Hospital Clinic, Universitat de Barcelona, Barcelona, Catalonia, Spain (B.B., E.G., J.B., L.M.); Institut d'Investigacions Biomèdiques August Pi Sunyer, Barcelona, Catalonia, Spain (B.B., G.G.-J., A.S.-M., E.G., J.B., L.M.); Research Center, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada (B.B., Y.S., J.-C.T., S.N.); and Department of Experimental Pathology, Institut d'Investigacions Biomèdiques de Barcelona, Barcelona, Catalonia, Spain (G.G
| |
Collapse
|
47
|
Banerjee D, Haddad F, Zamanian RT, Nagendran J. Right Ventricular Failure: A Novel Era of Targeted Therapy. Curr Heart Fail Rep 2010; 7:202-11. [PMID: 20890792 DOI: 10.1007/s11897-010-0031-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
|
49
|
Lambert V, Capderou A, Le Bret E, Rücker-Martin C, Deroubaix E, Gouadon E, Raymond N, Stos B, Serraf A, Renaud JF. Right ventricular failure secondary to chronic overload in congenital heart disease: an experimental model for therapeutic innovation. J Thorac Cardiovasc Surg 2010; 139:1197-204, 1204.e1. [PMID: 20412956 DOI: 10.1016/j.jtcvs.2009.11.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2009] [Revised: 10/07/2009] [Accepted: 11/14/2009] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Mortality and morbidity related to right ventricular failure remain a problem for the long-term outcome of congenital heart diseases. Therapeutic innovation requires establishing an animal model reproducing right ventricular dysfunction secondary to chronic pressure-volume overload. METHODS Right ventricular tract enlargement by transvalvular patch and pulmonary artery banding were created in 2-month-old piglets (n = 6) to mimic repaired tetralogy of Fallot. Age-matched piglets were used as controls (n = 5). Right ventricular function was evaluated at baseline and 3 and 4 months of follow-up by hemodynamic parameters and electrocardiography. Right ventricular tissue remodeling was characterized using cellular electrophysiologic and histologic analyses. RESULTS Four months after surgery, right ventricular peak pressure increased to 75% of systemic pressure and pulmonary regurgitation significantly progressed, end-systolic and end-diastolic volumes significantly increased, and efficient ejection fraction significantly decreased compared with controls. At 3 months, the slope of the end-systolic pressure-volume relationship was significantly elevated compared with baseline and controls; a significant rightward shift of the slope, returning to the baseline value, was observed at 4 months, whereas stroke work progressed at each step and was significantly higher than in controls. Four months after surgery, QRS duration was significantly prolonged as action potential duration. Significant fibrosis and myocyte hypertrophy without myolysis and inflammation were observed in the operated group at 4 months. CONCLUSION Various aspects of early right ventricular remodeling were analyzed in this model. This model reproduced evolving right ventricular alterations secondary to chronic volumetric and barometric overload, as observed in repaired tetralogy of Fallot with usual sequelae, and can be used for therapeutic innovation.
Collapse
Affiliation(s)
- Virginie Lambert
- Département de Recherche Médicale, CNRS UMR 8162, Centre Chirurgical Marie Lannelongue, Le Plessis Robinson, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Identification of candidate genes potentially relevant to chamber-specific remodeling in postnatal ventricular myocardium. J Biomed Biotechnol 2010; 2010:603159. [PMID: 20368782 PMCID: PMC2846348 DOI: 10.1155/2010/603159] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 01/07/2010] [Indexed: 11/18/2022] Open
Abstract
Molecular predisposition of postnatal ventricular myocardium to chamber-dependent (concentric or eccentric) remodeling remains largely elusive. To this end, we compared gene expression in the left (LV) versus right ventricle (RV) in newborn piglets, using a differential display reverse transcription-PCR (DDRT-PCR) technique. Out of more than 5600 DDRT-PCR bands, a total of 153 bands were identified as being differentially displayed. Of these, 96 bands were enriched in the LV, whereas the remaining 57 bands were predominant in the RV. The transcripts, displaying over twofold LV-RV expression differences, were sequenced and identified by BLAST comparison to known mRNA sequences. Among the genes, whose expression was not previously recognized as being chamber-dependent, we identified a small cohort of key regulators of muscle cell growth/proliferation (MAP3K7IP2, MSTN, PHB2, APOBEC3F) and gene expression (PTPLAD1, JMJD1C, CEP290), which may be relevant to the chamber-dependent predisposition of ventricular myocardium to respond differentially to pressure (LV) and volume (RV) overloads after birth. In addition, our data demonstrate chamber-dependent alterations in expression of as yet uncharacterized novel genes, which may also be suitable candidates for association studies in animal models of LV/RV hypertrophy.
Collapse
|