1
|
Chrysant SG. The role of gut microbiota in the development of salt-sensitive hypertension and the possible preventive effect of exercise. Expert Rev Cardiovasc Ther 2024; 22:265-271. [PMID: 38823009 DOI: 10.1080/14779072.2024.2364031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/31/2024] [Indexed: 06/03/2024]
Abstract
INTRODUCTION The aim of the present study is to analyze the data indicating an association between high salt intake and the gastrointestinal microbiota in the development of salt-sensitive hypertension in animals and men. It is also, to discuss the preventive effects of exercise on gut-induced hypertension by favorably modifying the composition of gut microbiota. AREAS COVERED Salt sensitivity is quite common, accounting for 30%-60% in hypertensive subjects. Recently, a novel cause for salt-sensitive hypertension has been discovered through the action of gut microbiota by the secretion of several hormones and the action of short chain fatty acids (SCFAs). In addition, recent studies indicate that exercise might favorably modify the adverse effects of gut microbiota regarding their effects on BP. To identify the role of gut microbiota on the incidence of hypertension and CVD and the beneficial effect of exercise, a Medline search of the English literature was conducted between 2018 and 2023 and 42 pertinent papers were selected. EXPERT OPINION The analysis of data from the selected papers disclosed that the gut microbiota contribute significantly to the development of salt-sensitive hypertension and that exercise modifies their gut composition and ameliorates their adverse effects on BP.
Collapse
Affiliation(s)
- Steven G Chrysant
- Cardiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
2
|
Jakubczyk K, Melkis K, Janda-Milczarek K, Skonieczna-Żydecka K. Phenolic Compounds and Antioxidant Properties of Fermented Beetroot Juices Enriched with Different Additives. Foods 2023; 13:102. [PMID: 38201130 PMCID: PMC10778454 DOI: 10.3390/foods13010102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Fermented beetroot juice is a beverage obtained from the fermentation of beetroot, most commonly red beet (Beta vulgaris L. var. conditiva). Nowadays, this product is increasingly recognised as a functional food with potentially beneficial health properties. It has been suggested to have antioxidant, anti-inflammatory, anticancer, antihypertensive, immunomodulatory, and probiotic effects, among others. Moreover, with the increasing popularity of the drink, newer variants are appearing in the food market, obtained by modifying the traditional recipe, adding other raw materials, herbs, and spices. Therefore, the aim of this study was to evaluate and compare the antioxidant potential and phytochemical composition of the selected fermented beetroot juices in different flavour variants available in the Polish food market. The study material consisted of six fermented beetroot juices: traditional, with garlic, with horseradish, with acerola, without salt, and iodized. The obtained results showed that the addition of acerola, horseradish, garlic, salt, and iodine in the form of sodium iodide and potassium iodide influenced the composition and properties of fermented beetroot juice. The most promising product in terms of potentially beneficial health properties related to the prevention of free radical diseases was fermented beetroot juice without salt (FRAP-5663.40 µM Fe (II)/L, ABTS-96.613%, TPC-760.020 mg GAE/L, TFC-221.280 mg RE/L). Iodized fermented beetroot juice had the highest vitamin C content-51.859 mg/100 mL. However, all the products tested were characterised by a significant content of biologically active substances with antioxidant properties and showed a high antioxidant potential. Moreover, all the fermented beetroot juices were rated positively in terms of flavour intensity, sweetness, acidity, colour, and overall acceptability. They can, therefore, be a good source of antioxidants in the daily diet.
Collapse
Affiliation(s)
- Karolina Jakubczyk
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland (K.J.-M.)
| | - Klaudia Melkis
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland (K.J.-M.)
| | - Katarzyna Janda-Milczarek
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 24 Broniewskiego Street, 71-460 Szczecin, Poland (K.J.-M.)
| | | |
Collapse
|
3
|
Zietara A, Palygin O, Levchenko V, Dissanayake LV, Klemens CA, Geurts A, Denton JS, Staruschenko A. K ir7.1 knockdown and inhibition alter renal electrolyte handling but not the development of hypertension in Dahl salt-sensitive rats. Am J Physiol Renal Physiol 2023; 325:F177-F187. [PMID: 37318990 PMCID: PMC10393338 DOI: 10.1152/ajprenal.00059.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
High K+ supplementation is correlated with a lower risk of the composite of death, major cardiovascular events, and ameliorated blood pressure, but the exact mechanisms have not been established. Inwardly rectifying K+ (Kir) channels expressed in the basolateral membrane of the distal nephron play an essential role in maintaining electrolyte homeostasis. Mutations in this channel family have been shown to result in strong disturbances in electrolyte homeostasis, among other symptoms. Kir7.1 is a member of the ATP-regulated subfamily of Kir channels. However, its role in renal ion transport and its effect on blood pressure have yet to be established. Our results indicate the localization of Kir7.1 to the basolateral membrane of aldosterone-sensitive distal nephron cells. To examine the physiological implications of Kir7.1, we generated a knockout of Kir7.1 (Kcnj13) in Dahl salt-sensitive (SS) rats and deployed chronic infusion of a specific Kir7.1 inhibitor, ML418, in the wild-type Dahl SS strain. Knockout of Kcnj13 (Kcnj13-/-) resulted in embryonic lethality. Heterozygous Kcnj13+/- rats revealed an increase in K+ excretion on a normal-salt diet but did not exhibit a difference in blood pressure development or plasma electrolytes after 3 wk of a high-salt diet. Wild-type Dahl SS rats exhibited increased renal Kir7.1 expression when dietary K+ was increased. K+ supplementation also demonstrated that Kcnj13+/- rats excreted more K+ on normal salt. The development of hypertension was not different when rats were challenged with high salt for 3 wk, although Kcnj13+/- rats excrete less Na+. Interestingly, chronic infusion of ML418 significantly increased Na+ and Cl- excretion after 14 days of high salt but did not alter salt-induced hypertension development. Here, we found that reduction of Kir7.1 function, either through genetic ablation or pharmacological inhibition, can influence renal electrolyte excretion but not to a sufficient degree to impact the development of SS hypertension.NEW & NOTEWORTHY To investigate the role of the Kir7.1 channel in salt-sensitive hypertension, its function was examined using complementary genetic and pharmacological approaches. The results revealed that although reducing Kir7.1 expression had some impact on maintaining K+ and Na+ balance, it did not lead to a significant change in the development or magnitude of salt-induced hypertension. Hence, it is probable that Kir7.1 works in conjunction with other basolateral K+ channels to fine-tune membrane potential.
Collapse
Affiliation(s)
- Adrian Zietara
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Oleg Palygin
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Vladislav Levchenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
| | - Lashodya V Dissanayake
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
| | - Christine A Klemens
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
| | - Aron Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Jerod S Denton
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Alexander Staruschenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, United States
- Hypertension and Kidney Research Center, University of South Florida, Tampa, Florida, United States
- James A. Haley Veterans Hospital, Tampa, Florida, United States
| |
Collapse
|
4
|
Association between Perceived Salt Intake and Arterial Stiffness. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9072082. [PMID: 35845930 PMCID: PMC9279047 DOI: 10.1155/2022/9072082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/30/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
To explore the association of perceived salt intake (SI) level with arterial stiffness in the community population in northern China. We enrolled participants who completed the health questionnaire, physical examination, and brachial-ankle pulse wave velocity (baPWV) test during 2010-2019 and divided them into <6 g (low SI), 6-10 g (medium SI), and >10 g (high SI) groups based on their daily SI. The influence of SI on baPWV was analyzed using the multivariate logistic regression model. A total of 36324 subjects, aged (49.10 ± 12.57) years with a male to female ratio of 25934 : 10390, met the inclusion criteria and were enrolled. The average baPWV was (1527.73 ± 355.61) cm/s. Logistic regression analysis showed that after adjusting for other confounders, daily SI>10 g (high SI) was a risk factor for arterial stiffness (baPWV ≥1400 cm/s), with the odds ratio (95% confidence interval [CI]) of 1.17 (1.04-1.31). High SI is independently associated with arterial stiffness.
Collapse
|
5
|
Isaeva E, Bohovyk R, Fedoriuk M, Shalygin A, Klemens CA, Zietara A, Levchenko V, Denton JS, Staruschenko A, Palygin O. Crosstalk between ENaC and basolateral K ir 4.1/K ir 5.1 channels in the cortical collecting duct. Br J Pharmacol 2021; 179:2953-2968. [PMID: 34904226 DOI: 10.1111/bph.15779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/06/2021] [Accepted: 12/06/2021] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND AND PURPOSE Inwardly rectifying K+ (Kir ) channels located on the basolateral membrane of epithelial cells of the distal nephron play a crucial role in K+ handling and blood pressure control, making these channels an attractive target for the treatment of hypertension. The purpose of the present study was to determine how the inhibition of basolateral Kir 4.1/Kir 5.1 heteromeric K+ channel affects epithelial sodium channel (ENaC)-mediated Na+ transport in the principal cells of cortical collecting duct (CCD). EXPERIMENTAL APPROACH The effect of fluoxetine, amitriptyline, and recently developed Kir inhibitor, VU0134992, on the activity of Kir 4.1, Kir 4.1/Kir 5.1, and ENaC were tested using electrophysiological approaches in Chinese hamster ovary (CHO) cells transfected with respective channel subunits, cultured polarized epithelial mCCDcl1 cells, and freshly isolated rat and human CCD tubules. To test the effect of pharmacological Kir 4.1/Kir 5.1 inhibition on electrolyte homeostasis in vivo and corresponding changes in distal tubule transport, Dahl salt-sensitive rats were injected with amitriptyline (15 mg kg-1 day-1 ) for three days. KEY RESULTS We found that inhibition of Kir 4.1/Kir 5.1, but not Kir 4.1 channel, depolarizes cell membrane, induces the elevation of intracellular Ca2+ concentration, and suppresses ENaC activity. Furthermore, we demonstrate that amitriptyline administration leads to a significant drop in plasma K+ level, triggering sodium excretion and diuresis. CONCLUSION AND IMPLICATIONS Present data uncovers a specific role of the Kir 4.1/Kir 5.1 channel in the modulation of ENaC activity and emphasizes the potential for using Kir 4.1/Kir 5.1 inhibitors to regulate electrolyte homeostasis and blood pressure.
Collapse
Affiliation(s)
- Elena Isaeva
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Ruslan Bohovyk
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv, Ukraine.,Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Mykhailo Fedoriuk
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Alexey Shalygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Institute of Cytology of the Russian Academy of Sciences, St. Petersburg, Russia
| | - Christine A Klemens
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Adrian Zietara
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Vladislav Levchenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Jerod S Denton
- Department of Anesthesiology and Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA.,Clement J. Zablocki VA Medical Center, Milwaukee, WI, USA.,Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Medicine, Division of Nephrology, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
6
|
Zhu Q, Hu J, Wang L, Wang W, Wang Z, Li PL, Li N. Overexpression of MicroRNA-429 Transgene Into the Renal Medulla Attenuated Salt-Sensitive Hypertension in Dahl S Rats. Am J Hypertens 2021; 34:1071-1077. [PMID: 34089591 DOI: 10.1093/ajh/hpab089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/28/2021] [Accepted: 06/02/2021] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND We have previously shown that high salt stimulates the expression of miR-429 in the renal medulla, which induces mRNA decay of HIF prolyl-hydroxylase 2 (PHD2), an enzyme to promote the degradation of hypoxia-inducible factor (HIF)-1α, and increases the HIF-1α-mediated activation of antihypertensive genes in the renal medulla, consequently promoting extra sodium excretion. Our preliminary results showed that high salt-induced increase of miR-429 was not observed in Dahl S rats. This present study determined whether correction of this impairment in miR-429 would reduce PHD2 levels, increase antihypertensive gene expression in the renal medulla and attenuate salt-sensitive hypertension in Dahl S rats. METHODS Lentiviruses encoding rat miR-429 were transfected into the renal medulla in uninephrectomized Dahl S rats. Sodium excretion and blood pressure were then measured. RESULTS Transduction of lentiviruses expressing miR-429 into the renal medulla increased miR-429 levels, decreased PHD2 levels, and upregulated HIF-1α target gene NOS-2, which restored the adaptive mechanism to increase the antihypertensive gene after high-salt intake in Dahl S rats. Functionally, overexpression of miR-429 transgene in the renal medulla significantly improved pressure natriuretic response, enhanced urinary sodium excretion, and reduced sodium retention upon extra sodium loading, and consequently, attenuated the salt-sensitive hypertension in Dahl S rats. CONCLUSIONS Our results suggest that the impaired miR-429-mediated PHD2 inhibition in response to high salt in the renal medulla may represent a novel mechanism for salt-sensitive hypertension in Dahl S rats and that correction of this impairment in miR-429 pathway could be a therapeutic approach for salt-sensitive hypertension.
Collapse
Affiliation(s)
- Qing Zhu
- Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong Pharmaceutical University, Guangzhou, China
| | - Junping Hu
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Lei Wang
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weili Wang
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Zhengchao Wang
- Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Pin-Lan Li
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ningjun Li
- Department of Pharmacology & Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
7
|
Rao X, Asico LD, Zanos P, Mahabeleshwar GH, Singh Gangwar R, Xia C, Duan L, Cisse YM, Rengasamy P, Jose PA, Gould TD, Nelson R, Biswal S, Chen LC, Zhong J, Rajagopalan S. Alpha2B-Adrenergic Receptor Overexpression in the Brain Potentiate Air Pollution-induced Behavior and Blood Pressure Changes. Toxicol Sci 2020; 169:95-107. [PMID: 30812033 DOI: 10.1093/toxsci/kfz025] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Fine ambient particulate matter (PM2.5) is able to induce sympathetic activation and inflammation in the brain. However, direct evidence demonstrating an essential role of sympathetic activation in PM2.5-associated disease progression is lacking. We assess the contribution of α2B-adrenergic receptor (Adra2b) in air pollution-associated hypertension and behavioral changes in this study. Wild-type mice and Adra2b-transgenic mice overexpressing Adra2b in the brain (Adra2bTg) were exposed to concentrated PM2.5 or filtered air for 3 months via a versatile aerosol concentrator exposure system. Mice were fed with a high salt diet (4.0% NaCl) for 1 week at week 11 of exposure to induce blood pressure elevation. Intra-arterial blood pressure was monitored by radio-telemetry and behavior changes were assessed by open field, light-dark, and prepulse inhibition tests. PM2.5 exposure increased Adra2b in the brain of wild-type mice. Adra2b overexpression enhanced the anxiety-like behavior and high salt diet-induced blood pressure elevation in response to air pollution but not filtered air exposure. Adra2b overexpression induced upregulation of inflammatory genes such as TLR2, TLR4, and IL-6 in the brain exposed to PM2.5. In addition, there were increased frequencies of activated effector T cells and increased expression of oxidative stress-related genes, such as SOD1, NQO1, Nrf2, and Gclm in Adra2bTg mice compared with wild-type mice. Our results provide new evidence of distinct behavioral changes consistent with anxiety and blood pressure elevation in response to high salt intake and air pollution exposure, highlighting the importance of centrally expressed Adra2b in the vulnerability to air pollution exposure.
Collapse
Affiliation(s)
- Xiaoquan Rao
- Oregon Institute of Occupational Health Science, Oregon Health & Science University, Portland, Oregon.,Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio
| | - Laureano D Asico
- Division of Renal Diseases & Hypertension, The George Washington University, Washington, District of Columbia
| | - Panos Zanos
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | | | | | - Chang Xia
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio
| | - Lihua Duan
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio
| | | | - Palanivel Rengasamy
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio
| | - Pedro A Jose
- Division of Renal Diseases & Hypertension, The George Washington University, Washington, District of Columbia
| | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Randy Nelson
- Department of Neuroscience, The Ohio State University, Columbus, Ohio
| | - Shyam Biswal
- Department of Environmental Health Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Lung-Chi Chen
- Department of Environmental Medicine, New York University, Tuxedo, New York
| | - Jixin Zhong
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
8
|
|
9
|
Palygin O, Levchenko V, Ilatovskaya DV, Pavlov TS, Pochynyuk OM, Jacob HJ, Geurts AM, Hodges MR, Staruschenko A. Essential role of Kir5.1 channels in renal salt handling and blood pressure control. JCI Insight 2017; 2:92331. [PMID: 28931751 PMCID: PMC5621918 DOI: 10.1172/jci.insight.92331] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 08/08/2017] [Indexed: 01/07/2023] Open
Abstract
Supplementing diets with high potassium helps reduce hypertension in humans. Inwardly rectifying K+ channels Kir4.1 (Kcnj10) and Kir5.1 (Kcnj16) are highly expressed in the basolateral membrane of distal renal tubules and contribute to Na+ reabsorption and K+ secretion through the direct control of transepithelial voltage. To define the importance of Kir5.1 in blood pressure control under conditions of salt-induced hypertension, we generated a Kcnj16 knockout in Dahl salt-sensitive (SS) rats (SSKcnj16-/-). SSKcnj16-/- rats exhibited hypokalemia and reduced blood pressure, and when fed a high-salt diet (4% NaCl), experienced 100% mortality within a few days triggered by salt wasting and severe hypokalemia. Electrophysiological recordings of basolateral K+ channels in the collecting ducts isolated from SSKcnj16-/- rats revealed activity of only homomeric Kir4.1 channels. Kir4.1 expression was upregulated in SSKcnj16-/- rats, but the protein was predominantly localized in the cytosol in SSKcnj16-/- rats. Benzamil, but not hydrochlorothiazide or furosemide, rescued this phenotype from mortality on a high-salt diet. Supplementation of high-salt diet with increased potassium (2% KCl) prevented mortality in SSKcnj16-/- rats and prevented or mitigated hypertension in SSKcnj16-/- or control SS rats, respectively. Our results demonstrate that Kir5.1 channels are key regulators of renal salt handling in SS hypertension.
Collapse
Affiliation(s)
- Oleg Palygin
- Department of Physiology and
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | | | | | - Oleh M. Pochynyuk
- Department of Integrative Biology, University of Texas Health Science Center Medical School, Houston, Texas, USA
| | - Howard J. Jacob
- Department of Physiology and
- Human and Molecular Genetics Center and
| | - Aron M. Geurts
- Department of Physiology and
- Human and Molecular Genetics Center and
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Matthew R. Hodges
- Department of Physiology and
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Alexander Staruschenko
- Department of Physiology and
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
10
|
Zhou X, Forrest MJ, Sharif-Rodriguez W, Forrest G, Szeto D, Urosevic-Price O, Zhu Y, Stevenson AS, Zhou Y, Stribling S, Dajee M, Walsh SP, Pasternak A, Sullivan KA. Chronic Inhibition of Renal Outer Medullary Potassium Channel Not Only Prevented but Also Reversed Development of Hypertension and End-Organ Damage in Dahl Salt-Sensitive Rats. Hypertension 2017; 69:332-338. [DOI: 10.1161/hypertensionaha.116.08358] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 09/05/2016] [Accepted: 11/13/2016] [Indexed: 01/21/2023]
Abstract
The renal outer medullary potassium (ROMK) channel mediates potassium recycling and facilitates sodium reabsorption through the Na
+
/K
+
/2Cl
−
cotransporter in the loop of Henle and potassium secretion at the cortical collecting duct. Evidence from the phenotype of humans and rodents with functional ROMK deficiency supports the contention that selective ROMK inhibitors (ROMKi) will represent a novel diuretic with potential of therapeutic benefit for hypertension. ROMKi have recently been synthesized by Merck & Co, Inc. The present studies were designed to examine the effects of ROMKi B on systemic hemodynamics, renal function and structure, and vascular function in Dahl salt-sensitive rats. Four experimental groups—control, high-salt diet alone; ROMKi B 3 mg·kg
−
1
·d
−
1
; ROMKi B 10 mg·kg
−
1
·d
−
1
; and hydrochlorothiazide 25 mg·kg
−
1
·d
−
1
—were included in prophylactic (from week 1 to week 9 on high-salt diet) and therapeutic studies (from week 5 to week 9 on high-salt diet), respectively. ROMKi B produced sustained blood pressure reduction and improved renal and vascular function and histological alterations induced by a high-salt diet. ROMKi B was superior to hydrochlorothiazide at reducing blood pressure. Furthermore, ROMKi B provided beneficial effects on both the plasma lipid profile and bone mineral density. Chronic ROMK inhibition not only prevented but also reversed the development of hypertension and end-organ damage in Dahl salt-sensitive rats. Our findings suggest a potential utility of ROMKi B as a novel antihypertensive agent, particularly for the treatment of the salt-sensitive hypertension patient population.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- From the Departments of Cardiometabolic Diseases (X.Z., W.S.-R., Y.Z., A.S.S., M.D., K.A.S.), In Vivo Pharmacology (M.J.F., G.F., D.S., O.U.-P., Y.Z., S.S.), and Chemistry (S.P.W., A.P.), Merck & Co, Inc, Kenilworth, NJ
| | - Michael J. Forrest
- From the Departments of Cardiometabolic Diseases (X.Z., W.S.-R., Y.Z., A.S.S., M.D., K.A.S.), In Vivo Pharmacology (M.J.F., G.F., D.S., O.U.-P., Y.Z., S.S.), and Chemistry (S.P.W., A.P.), Merck & Co, Inc, Kenilworth, NJ
| | - Wanda Sharif-Rodriguez
- From the Departments of Cardiometabolic Diseases (X.Z., W.S.-R., Y.Z., A.S.S., M.D., K.A.S.), In Vivo Pharmacology (M.J.F., G.F., D.S., O.U.-P., Y.Z., S.S.), and Chemistry (S.P.W., A.P.), Merck & Co, Inc, Kenilworth, NJ
| | - Gail Forrest
- From the Departments of Cardiometabolic Diseases (X.Z., W.S.-R., Y.Z., A.S.S., M.D., K.A.S.), In Vivo Pharmacology (M.J.F., G.F., D.S., O.U.-P., Y.Z., S.S.), and Chemistry (S.P.W., A.P.), Merck & Co, Inc, Kenilworth, NJ
| | - Daphne Szeto
- From the Departments of Cardiometabolic Diseases (X.Z., W.S.-R., Y.Z., A.S.S., M.D., K.A.S.), In Vivo Pharmacology (M.J.F., G.F., D.S., O.U.-P., Y.Z., S.S.), and Chemistry (S.P.W., A.P.), Merck & Co, Inc, Kenilworth, NJ
| | - Olga Urosevic-Price
- From the Departments of Cardiometabolic Diseases (X.Z., W.S.-R., Y.Z., A.S.S., M.D., K.A.S.), In Vivo Pharmacology (M.J.F., G.F., D.S., O.U.-P., Y.Z., S.S.), and Chemistry (S.P.W., A.P.), Merck & Co, Inc, Kenilworth, NJ
| | - Yonghua Zhu
- From the Departments of Cardiometabolic Diseases (X.Z., W.S.-R., Y.Z., A.S.S., M.D., K.A.S.), In Vivo Pharmacology (M.J.F., G.F., D.S., O.U.-P., Y.Z., S.S.), and Chemistry (S.P.W., A.P.), Merck & Co, Inc, Kenilworth, NJ
| | - Andra S. Stevenson
- From the Departments of Cardiometabolic Diseases (X.Z., W.S.-R., Y.Z., A.S.S., M.D., K.A.S.), In Vivo Pharmacology (M.J.F., G.F., D.S., O.U.-P., Y.Z., S.S.), and Chemistry (S.P.W., A.P.), Merck & Co, Inc, Kenilworth, NJ
| | - Yuchen Zhou
- From the Departments of Cardiometabolic Diseases (X.Z., W.S.-R., Y.Z., A.S.S., M.D., K.A.S.), In Vivo Pharmacology (M.J.F., G.F., D.S., O.U.-P., Y.Z., S.S.), and Chemistry (S.P.W., A.P.), Merck & Co, Inc, Kenilworth, NJ
| | - Sloan Stribling
- From the Departments of Cardiometabolic Diseases (X.Z., W.S.-R., Y.Z., A.S.S., M.D., K.A.S.), In Vivo Pharmacology (M.J.F., G.F., D.S., O.U.-P., Y.Z., S.S.), and Chemistry (S.P.W., A.P.), Merck & Co, Inc, Kenilworth, NJ
| | - Maya Dajee
- From the Departments of Cardiometabolic Diseases (X.Z., W.S.-R., Y.Z., A.S.S., M.D., K.A.S.), In Vivo Pharmacology (M.J.F., G.F., D.S., O.U.-P., Y.Z., S.S.), and Chemistry (S.P.W., A.P.), Merck & Co, Inc, Kenilworth, NJ
| | - Shawn P. Walsh
- From the Departments of Cardiometabolic Diseases (X.Z., W.S.-R., Y.Z., A.S.S., M.D., K.A.S.), In Vivo Pharmacology (M.J.F., G.F., D.S., O.U.-P., Y.Z., S.S.), and Chemistry (S.P.W., A.P.), Merck & Co, Inc, Kenilworth, NJ
| | - Alexander Pasternak
- From the Departments of Cardiometabolic Diseases (X.Z., W.S.-R., Y.Z., A.S.S., M.D., K.A.S.), In Vivo Pharmacology (M.J.F., G.F., D.S., O.U.-P., Y.Z., S.S.), and Chemistry (S.P.W., A.P.), Merck & Co, Inc, Kenilworth, NJ
| | - Kathleen A. Sullivan
- From the Departments of Cardiometabolic Diseases (X.Z., W.S.-R., Y.Z., A.S.S., M.D., K.A.S.), In Vivo Pharmacology (M.J.F., G.F., D.S., O.U.-P., Y.Z., S.S.), and Chemistry (S.P.W., A.P.), Merck & Co, Inc, Kenilworth, NJ
| |
Collapse
|
11
|
Abstract
Multiple genes and pathways are involved in the pathogenesis of hypertension. Epigenomic studies of hypertension are beginning to emerge and hold great promise of providing novel insights into the mechanisms underlying hypertension. Epigenetic marks or mediators including DNA methylation, histone modifications, and noncoding RNA can be studied at a genome or near-genome scale using epigenomic approaches. At the single gene level, several studies have identified changes in epigenetic modifications in genes expressed in the kidney that correlate with the development of hypertension. Systematic analysis and integration of epigenetic marks at the genome-wide scale, demonstration of cellular and physiological roles of specific epigenetic modifications, and investigation of inheritance are among the major challenges and opportunities for future epigenomic and epigenetic studies of hypertension.
Collapse
Affiliation(s)
- Mingyu Liang
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI.
| | | | | | | | | |
Collapse
|
12
|
Vascular Response to Graded Angiotensin II Infusion in Offspring Subjected to High-Salt Drinking Water during Pregnancy: The Effect of Blood Pressure, Heart Rate, Urine Output, Endothelial Permeability, and Gender. Int J Vasc Med 2014; 2014:876527. [PMID: 24860669 PMCID: PMC4016930 DOI: 10.1155/2014/876527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Revised: 03/10/2014] [Accepted: 03/13/2014] [Indexed: 11/17/2022] Open
Abstract
Introduction. Rennin-angiotensin system and salt diet play important roles in blood pressure control. We hypothesized that the high-salt intake during pregnancy influences the degree of angiotensin-dependent control of the blood pressure in adult offspring. Methods. Female Wistar rats in two groups (A and B) were subjected to drink tap and salt water, respectively, during pregnancy. The offspring were divided into four groups as male and female offspring from group A (groups 1 and 2) and from group B (groups 3 and 4). In anesthetized matured offspring mean arterial pressure (MAP), heart rate and urine output were measured in response to angiotensin II (AngII) (0-1000 ng/kg/min, iv) infusion. Results. An increase in MAP was detected in mothers with salt drinking water (P < 0.05). The body weight increased and kidney weight decreased significantly in male offspring from group 3 in comparison to group 1 (P < 0.05). MAP and urine volume in response to AngII infusion increased in group 3 (P < 0.05). These findings were not observed in female rats. Conclusion. Salt overloading during pregnancy had long-term effects on kidney weight and increased sex-dependent response to AngII infusion in offspring (adult) that may reveal the important role of diet during pregnancy in AngII receptors.
Collapse
|
13
|
Cabral PD, Garvin JL. Less potassium coming out, less sodium going in: phenotyping ROMK knockout rats. Hypertension 2013; 62:240-1. [PMID: 23753409 PMCID: PMC4220290 DOI: 10.1161/hypertensionaha.113.01192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Zhou X, Zhang Z, Shin MK, Horwitz SB, Levorse JM, Zhu L, Sharif-Rodriguez W, Streltsov DY, Dajee M, Hernandez M, Pan Y, Urosevic-Price O, Wang L, Forrest G, Szeto D, Zhu Y, Cui Y, Michael B, Balogh LA, Welling PA, Wade JB, Roy S, Sullivan KA. Heterozygous disruption of renal outer medullary potassium channel in rats is associated with reduced blood pressure. Hypertension 2013; 62:288-94. [PMID: 23753405 DOI: 10.1161/hypertensionaha.111.01051] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The renal outer medullary potassium channel (ROMK, KCNJ1) mediates potassium recycling and facilitates sodium reabsorption through the Na(+)/K(+)/2Cl(-) cotransporter in the loop of Henle and potassium secretion at the cortical collecting duct. Human genetic studies indicate that ROMK homozygous loss-of-function mutations cause type II Bartter syndrome, featuring polyuria, renal salt wasting, and hypotension; humans heterozygous for ROMK mutations identified in the Framingham Heart Study have reduced blood pressure. ROMK null mice recapitulate many of the features of type II Bartter syndrome. We have generated an ROMK knockout rat model in Dahl salt-sensitive background by using zinc finger nuclease technology and investigated the effects of knocking out ROMK on systemic and renal hemodynamics and kidney histology in the Dahl salt-sensitive rats. The ROMK(-/-) pups recapitulated features identified in the ROMK null mice. The ROMK(+/-) rats, when challenged with a 4% salt diet, exhibited a reduced blood pressure compared with their ROMK(+/+) littermates. More importantly, when challenged with an 8% salt diet, the Dahl salt-sensitive rats with 50% less ROMK expression showed increased protection from salt-induced blood pressure elevation and signs of protection from renal injury. Our findings in ROMK knockout Dahl salt-sensitive rats, together with the previous reports in humans and mice, underscore a critical role of ROMK in blood pressure regulation.
Collapse
Affiliation(s)
- Xiaoyan Zhou
- Department of Cardiovascular Diseases, Merck Research Laboratories, 126 E Lincoln Ave, Rahway, NJ 07065, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Boon CM, Ng MH, Choo YM, Mok SL. Super, red palm and palm oleins improve the blood pressure, heart size, aortic media thickness and lipid profile in spontaneously hypertensive rats. PLoS One 2013; 8:e55908. [PMID: 23409085 PMCID: PMC3569425 DOI: 10.1371/journal.pone.0055908] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 01/04/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Oleic acid has been shown to lower high blood pressure and provide cardiovascular protection. Curiosity arises as to whether super olein (SO), red palm olein (RPO) and palm olein (PO), which have high oleic acid content, are able to prevent the development of hypertension. METHODOLOGY/PRINCIPAL FINDINGS Four-week-old male spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats were fed 15% SO, RPO or PO supplemented diet for 15 weeks. After 15 weeks of treatment, the systolic blood pressure (SBP) of SHR treated with SO, RPO and PO were 158.4±5.0 mmHg (p<0.001), 178.9±2.7 mmHg (p<0.001) and 167.7±2.1 mmHg (p<0.001), respectively, compared with SHR controls (220.9±1.5 mmHg). Bradycardia was observed with SO and PO. In contrast, the SBP and heart rate of treated WKY rats were not different from those of WKY controls. The SO and PO significantly reduced the increased heart size and thoracic aortic media thickness observed in untreated SHR but RPO reduced only the latter. No such differences, however, were observed between the treated and untreated WKY rats. Oil Red O enface staining of thoracic-abdominal aorta did not show any lipid deposition in all treated rats. The SO and RPO significantly raised serum alkaline phosphatase levels in the SHR while body weight and renal biochemical indices were unaltered in both strains. Serum lipid profiles of treated SHR and WKY rats were unchanged, with the exception of a significant reduction in LDL-C level and total cholesterol/HDL ratio (atherogenic index) in SO and RPO treated SHR compared with untreated SHR. CONCLUSION The SO, RPO and PO attenuate the rise in blood pressure in SHR, accompanied by bradycardia and heart size reduction with SO and PO, and aortic media thickness reduction with SO, RPO and PO. The SO and RPO are antiatherogenic in nature by improving blood lipid profiles in SHR.
Collapse
Affiliation(s)
- Chee-Meng Boon
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mei-Han Ng
- Malaysian Palm Oil Board, Kajang, Selangor, Malaysia
| | - Yuen-May Choo
- Malaysian Palm Oil Board, Kajang, Selangor, Malaysia
| | - Shiueh-Lian Mok
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Ares GR, Haque MZ, Delpire E, Ortiz PA. Hyperphosphorylation of Na-K-2Cl Cotransporter in Thick Ascending Limbs of Dahl Salt-Sensitive Rats. Hypertension 2012; 60:1464-70. [DOI: 10.1161/hypertensionaha.112.202101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Salt-sensitive hypertension involves a renal defect preventing the kidney from eliminating excess NaCl. The thick ascending limb of Henle loop reabsorbs ≈30% of filtered NaCl via the apical Na-K-2Cl cotransporter (NKCC2). Higher NKCC2 activity and Cl reabsorption have been reported in the thick ascending limbs from Dahl salt-sensitive rats (DSS) fed normal salt. NKCC2 activity is primarily regulated by protein trafficking and phosphorylation at Thr
96
/Thr
101
via STE20- and SPS1-related proline and alanine-rich kinases and oxidative stress-responsive kinase 1. However, the mechanism for enhanced NKCC2 activity in DSS is unclear. We hypothesized that DSS exhibit enhanced NKCC2 trafficking and higher NKCC2 phosphorylation compared with Dahl salt-resistant rats on normal salt diet. We measured steady state surface NKCC2 expression and phosphorylation at Thr
96
and Thr
101
by surface biotinylation and Western blot. In DSS, the surface:total NKCC2 ratio was enhanced by 25% compared with Dahl salt-resistant rats (
P
<0.05) despite lower NKCC2 expression. Total NKCC2 phosphorylation at Thr
96
and Thr
101
was enhanced ≈5-fold in DSS thick ascending limbs. Moreover, total STE20- and SPS1-related proline and alanine-rich kinases expression, kidney-specific STE20- and SPS1-related proline and alanine-rich kinases, and oxidative stress-responsive kinase 1 were not different between strains, although STE20- and SPS1-related proline and alanine-rich kinases/oxidative stress-responsive kinase 1 phosphorylation was enhanced by 60% (
P
<0.05) in DSS rats, suggesting increased activity. We concluded that phosphorylation of NKCC2 Thr
96
and Thr
101
and surface:total NKCC2 ratio are enhanced in DSS rats. These differences in NKCC2 may be, in part, responsible for higher NKCC2 activity and abnormally enhanced thick ascending limb NaCl reabsorption in DSS rats.
Collapse
Affiliation(s)
- Gustavo R. Ares
- From the Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI (G.R.A., M.Z.H., P.A.O.); Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN (E.D.); Department of Physiology, Wayne State University, Detroit, MI (P.A.O.)
| | - Mohammed Z. Haque
- From the Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI (G.R.A., M.Z.H., P.A.O.); Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN (E.D.); Department of Physiology, Wayne State University, Detroit, MI (P.A.O.)
| | - Eric Delpire
- From the Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI (G.R.A., M.Z.H., P.A.O.); Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN (E.D.); Department of Physiology, Wayne State University, Detroit, MI (P.A.O.)
| | - Pablo A. Ortiz
- From the Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI (G.R.A., M.Z.H., P.A.O.); Department of Anesthesiology, Vanderbilt University School of Medicine, Nashville, TN (E.D.); Department of Physiology, Wayne State University, Detroit, MI (P.A.O.)
| |
Collapse
|
17
|
Abstract
High blood pressure (BP) is a complex trait determined by genetic and environmental factors, as well as their interactions. Over the past few decades, there has been substantial progress elucidating the genetic determinants underlying BP response to sodium intake, or BP salt sensitivity. Research of monogenic BP disorders has highlighted the importance of renal salt handling in BP regulation, implicating genes and biological pathways subsequently identified in candidate gene studies of salt sensitivity. Despite these advancements, certain candidate gene findings await replication evidence, and some biological pathways warrant further investigation. Furthermore, results from genome-wide association studies (GWASs) and sequencing work have yet to be reported. GWAS will be valuable for uncovering novel mechanisms underlying salt sensitivity, whereas future sequencing efforts promise the discovery of functional variants related to this complex trait. Delineating the genetic architecture of salt sensitivity will be critical to understanding how genes and dietary sodium interact to influence BP.
Collapse
|
18
|
Rands VF, Seth DM, Kobori H, Prieto MC. Sexual dimorphism in urinary angiotensinogen excretion during chronic angiotensin II-salt hypertension. ACTA ACUST UNITED AC 2012; 9:207-18. [PMID: 22795463 DOI: 10.1016/j.genm.2012.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 05/11/2012] [Accepted: 06/14/2012] [Indexed: 01/11/2023]
Abstract
BACKGROUND The intrarenal renin-angiotensin system contributes to hypertension by regulating sodium and water reabsorption throughout the nephron. Sex differences in the intrarenal components of the renin-angiotensin system have been involved in the greater incidence of high blood pressure and progression to kidney damage in males than females. OBJECTIVE This study investigated whether there is a sex difference in the intrarenal gene expression and urinary excretion of angiotensinogen (AGT) during angiotensin II (Ang II)-dependent hypertension and high-salt (HS) diet. METHODS Male and female Sprague-Dawley rats were divided into 5 groups for each sex: Normal-salt control, HS diet (8% NaCl), Ang II-infused (80 ng/min), Ang II-infused plus HS diet, and Ang II-infused plus HS diet and treatment with the Ang II receptor blocker, candesartan (25 mg/L in the drinking water). Rats were evaluated for systolic blood pressure (SBP), kidney AGT mRNA expression, urinary AGT excretion, and proteinuria at different time points during a 14-day protocol. RESULTS Both male and female rats exhibited similar increases in urinary AGT, with increases in SBP during chronic Ang II infusion. HS diet greatly exacerbated the urinary AGT excretion in Ang II-infused rats; males had a 9-fold increase over Ang II alone and females had a 2.5-fold increase. Male rats displayed salt-sensitive SBP increases during Ang II infusion and HS diet, and female rats did not. In the kidney cortex, males displayed greater AGT gene expression than females during all treatments. During Ang II infusion, both sexes exhibited increases in AGT gene message compared with same-sex controls. In addition, HS diet combined with Ang II infusion exacerbated the proteinuria in both sexes. Concomitant Ang II receptor blocker treatment during Ang II infusion and HS diet decreased SBP and urinary AGT similarly in both sexes; however, the decrease in proteinuria was greater in the females. CONCLUSION During Ang II-dependent hypertension and HS diet, higher intrarenal renin-angiotensin system activation in males, as reflected by higher AGT gene expression and urinary excretion, indicates a mechanism for greater progression of high blood pressure and might explain the sex disparity in development of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Vicky F Rands
- Department of Physiology, School of Medicine, Tulane University, 1430 Tulane Avenue, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
19
|
Zhu Q, Wang Z, Xia M, Li PL, Zhang F, Li N. Overexpression of HIF-1α transgene in the renal medulla attenuated salt sensitive hypertension in Dahl S rats. Biochim Biophys Acta Mol Basis Dis 2012; 1822:936-41. [PMID: 22349312 DOI: 10.1016/j.bbadis.2012.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 02/05/2012] [Accepted: 02/06/2012] [Indexed: 12/13/2022]
Abstract
Hypoxia inducible factor (HIF)-1α-mediated gene activation in the renal medulla in response to high salt intake plays an important role in the control of salt sensitivity of blood pressure. High salt-induced activation of HIF-1α in the renal medulla is blunted in Dahl S rats. The present study determined whether the impairment of the renal medullary HIF-1α pathway was responsible for salt sensitive hypertension in Dahl S rats. Renal medullary HIF-1α levels were induced by either transfection of HIF-1α expression plasmid or chronic infusion of CoCl₂ into the renal medulla, which was accompanied by increased expressions of anti-hypertensive genes, cyclooxygenase-2 and heme oxygenase-1. Overexpression of HIF-1α transgenes in the renal medulla enhanced the pressure natriuresis, promoted the sodium excretion and reduced sodium retention after salt overload. As a result, hypertension induced by 2-week high salt was significantly attenuated in rats treated with HIF-1α plasmid or CoCl₂. These results suggest that an abnormal HIF-1α in the renal medulla may represent a novel mechanism mediating salt-sensitive hypertension in Dahl S rats and that induction of HIF-1α levels in the renal medulla could be a therapeutic approach for the treatment of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Pharmacology & Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richnond VA 23298, USA
| | | | | | | | | | | |
Collapse
|
20
|
Gene-sodium interaction and blood pressure: findings from genomics research of blood pressure salt sensitivity. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 108:237-60. [PMID: 22656380 DOI: 10.1016/b978-0-12-398397-8.00010-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
High blood pressure (BP) is a complex trait determined by both genetic and environmental factors, as well as the interactions between these factors. Over the past few decades, there has been substantial progress in elucidating the genetic determinants underlying the BP response to sodium intake, or BP salt sensitivity. Research of monogenic BP disorders has highlighted the importance of renal salt handling in BP regulation, implicating genes and biological pathways related to salt sensitivity. Candidate gene studies have contributed important information toward understanding the genomic mechanisms underlying the BP response to salt intake, identifying genes in the renin-angiotensin-aldosterone system, renal sodium channels/transporters, and the endothelial system related to this phenotype. Despite these advancements, genome-wide association studies are still needed to uncover novel mechanisms underlying salt sensitivity, while future sequencing efforts promise the discovery of functional variants related to this complex trait. Delineating the genetic architecture of salt sensitivity will be critical to understanding how genes and dietary sodium interact to influence BP.
Collapse
|
21
|
Fuchs FD, Fuchs SC, Moreira LB, Gus M, Nóbrega AC, Poli-de-Figueiredo CE, Mion D, Bortoloto L, Consolim-Colombo F, Nobre F, Coelho EB, Vilela-Martin JF, Moreno H, Cesarino EJ, Franco R, Brandão AA, de Sousa MR, Ribeiro ALP, Jardim PC, Neto AA, Scala LCN, Mota M, Chaves H, Alves JG, Filho DCS, Pereira e Silva R, Neto JAF, Irigoyen MC, Castro I, Steffens AA, Schlatter R, de Mello RB, Mosele F, Ghizzoni F, Berwanger O. Prevention of hypertension in patients with pre-hypertension: protocol for the PREVER-prevention trial. Trials 2011; 12:65. [PMID: 21375762 PMCID: PMC3059277 DOI: 10.1186/1745-6215-12-65] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 03/05/2011] [Indexed: 02/07/2023] Open
Abstract
Background Blood pressure (BP) within pre-hypertensive levels confers higher cardiovascular risk and is an intermediate stage for full hypertension, which develops in an annual rate of 7 out of 100 individuals with 40 to 50 years of age. Non-drug interventions to prevent hypertension have had low effectiveness. In individuals with previous cardiovascular disease or diabetes, the use of BP-lowering agents reduces the incidence of major cardiovascular events. In the absence of higher baseline risk, the use of BP agents reduces the incidence of hypertension. The PREVER-prevention trial aims to investigate the efficacy, safety and feasibility of a population-based intervention to prevent the incidence of hypertension and the development of target-organ damage. Methods This is a randomized, double-blind, placebo-controlled clinical trial, with participants aged 30 to 70 years, with pre-hypertension. The trial arms will be chlorthalidone 12.5 mg plus amiloride 2.5 mg or identical placebo. The primary outcomes will be the incidence of hypertension, adverse events and development or worsening of microalbuminuria and of left ventricular hypertrophy in the EKG. The secondary outcomes will be fatal or non-fatal cardiovascular events: myocardial infarction, stroke, heart failure, evidence of new sub-clinical atherosclerosis, and sudden death. The study will last 18 months. The sample size was calculated on the basis of an incidence of hypertension of 14% in the control group, a size effect of 40%, power of 85% and P alpha of 5%, resulting in 625 participants per group. The project was approved by the Ethics committee of each participating institution. Discussion The early use of blood pressure-lowering drugs, particularly diuretics, which act on the main mechanism of blood pressure rising with age, may prevent cardiovascular events and the incidence of hypertension in individuals with hypertension. If this intervention shows to be effective and safe in a population-based perspective, it could be the basis for an innovative public health program to prevent hypertension in Brazil. Trial Registration Clinical Trials NCT00970931.
Collapse
Affiliation(s)
- Flávio D Fuchs
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Blood pressure within prehypertensive levels confers higher cardiovascular risk by two means. At first, these levels are associated with higher risk for cardiovascular events, starting at BP values as low as 115/75 mmHg, and doubling at each 20 mmHg for systolic or 10 mmHg for diastolic BP. Prehypertension is also an intermediate stage for full hypertension, which develops in an annual rate of 7 out 100 individuals with 40-50 years of age. The precocious drug intervention in patients with prehypertension is therefore appealing. In individuals with previous cardiovascular disease or diabetes the use of BP-lowering agents is compulsory, since the 18-42% reduction of major cardiovascular events demonstrated in randomized clinical trials translates in palpable clinical benefit. In the absence of higher baseline risk, the absolute benefit of treatment is presumably small and was not demonstrated to date. These individuals could be candidate to treatment with the aim to prevent the development of full hypertension. The long-lasting effectiveness of non-drug therapies is low outside the controlled conditions of randomized clinical trials, and there are evidences that the use of BP-lowering drugs reduces the incidence of hypertension in individuals with prehypertension by more than 60%. Clinical trials testing the efficacy and safety of BP agents to prevent hypertension in a population-based perspective are required. In the meantime, it is worthy to present the option to start low doses of BP agents for individuals with prehypertension without co-morbidities who do not respond to the prescription of lifestyle modification.
Collapse
Affiliation(s)
- Flávio Danni Fuchs
- Hospital de Clínicas de Porto Alegre, Serviço de Cardiologia, UFRGS, Porto Alegre-RS, Brazil.
| |
Collapse
|
23
|
Liu Y, Taylor NE, Lu L, Usa K, Cowley AW, Ferreri NR, Yeo NC, Liang M. Renal medullary microRNAs in Dahl salt-sensitive rats: miR-29b regulates several collagens and related genes. Hypertension 2010; 55:974-82. [PMID: 20194304 DOI: 10.1161/hypertensionaha.109.144428] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
MicroRNAs are endogenous repressors of gene expression. We examined microRNAs in the renal medulla of Dahl salt-sensitive rats and consomic SS-13(BN) rats. Salt-induced hypertension and renal injury in Dahl salt-sensitive rats, particularly medullary interstitial fibrosis, have been shown previously to be substantially attenuated in SS-13(BN) rats. Of 377 microRNAs examined, 5 were found to be differentially expressed between Dahl salt-sensitive rats and consomic SS-13(BN) rats receiving a high-salt diet. Real-time PCR analysis demonstrated that high-salt diets induced substantial upregulation of miR-29b in the renal medulla of SS-13(BN) rats but not in SS rats. miR-29b was predicted to regulate 20 collagen genes, matrix metalloproteinase 2 (Mmp2), integrin beta1 (Itgb1), and other genes related to the extracellular matrix. Expression of 9 collagen genes and Mmp2 was upregulated by a high-salt diet in the renal medulla of SS rats, but not in SS-13(BN) rats, an expression pattern opposite to miR-29b. Knockdown of miR-29b in the kidneys of SS-13(BN) rats resulted in upregulation of several collagen genes. miR-29b reduced expression levels of several collagen genes and Itgb1 in cultured rat renal medullary epithelial cells. Moreover, miR-29b suppressed the activity of luciferase when the reporter gene was linked to a 3'-untranslated segment of collagen genes Col1a1, Col3a1, Col4a1, Col5a1, Col5a2, Col5a3, Col7a1, Col8a1, Mmp2, or Itgb1 but not Col12a1. The result demonstrated broad effects of miR-29b on a large number of collagens and genes related to the extracellular matrix and suggested involvement of miR-29b in the protection from renal medullary injury in SS-13(BN) rats.
Collapse
Affiliation(s)
- Yong Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wis, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lu L, Li P, Yang C, Kurth T, Misale M, Skelton M, Moreno C, Roman RJ, Greene AS, Jacob HJ, Lazar J, Liang M, Cowley AW. Dynamic convergence and divergence of renal genomic and biological pathways in protection from Dahl salt-sensitive hypertension. Physiol Genomics 2009; 41:63-70. [PMID: 20009007 DOI: 10.1152/physiolgenomics.00170.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chromosome 13 consomic and congenic rat strains were analyzed to investigate the pattern of genomic pathway utilization involved in protection against salt-sensitive hypertension and renal injury. Introgression of the entire Brown-Norway chromosome 13 (consomic SS-13(BN)) or nonoverlapping segments of this chromosome (congenic strains, 16 Mbp in D13Rat151-D13Rat197 or 14 Mbp in D13Rat111-D13Got22) into the genome of the Dahl salt-sensitive rat attenuated salt-induced hypertension and proteinuria. mRNA abundance profiles in the renal cortex and the renal medulla from rats receiving 0.4% or 8% NaCl diets revealed two important features of pathway recruitment in these rat strains. First, the two congenic strains shared alterations in several pathways compared with Dahl salt-sensitive rats, despite the fact that the genomic segments introgressed in the two congenic strains did not overlap. Second, even though the genomic segment introgressed in each congenic strain was a part of the chromosome introgressed in the consomic strain, pathways altered in each congenic strain were not simply a subset of those altered in the consomic. Supporting the relevance of the mRNA data, differential expression of oxidative stress-related genes among the four strains of rats was associated with differences in urinary excretion of lipid peroxidation products. The findings suggest that different genetic alterations might converge to influence shared pathways in protection from hypertension, and that, depending on the genomic context, the same genetic alteration might diverge to affect different pathways.
Collapse
Affiliation(s)
- Limin Lu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Tian Z, Liu Y, Usa K, Mladinov D, Fang Y, Ding X, Greene AS, Cowley AW, Liang M. Novel role of fumarate metabolism in dahl-salt sensitive hypertension. Hypertension 2009; 54:255-60. [PMID: 19546378 PMCID: PMC2721687 DOI: 10.1161/hypertensionaha.109.129528] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 05/22/2009] [Indexed: 11/16/2022]
Abstract
In a previous proteomic study, we found dramatic differences in fumarase in the kidney between Dahl salt-sensitive rats and salt-insensitive consomic SS-13(BN) rats. Fumarase catalyzes the conversion between fumarate and l-malate in the tricarboxylic acid cycle. Little is known about the pathophysiological significance of fumarate metabolism in cardiovascular and renal functions, including salt-induced hypertension. The fumarase gene is located on the chromosome substituted in the SS-13(BN) rat. Sequencing of fumarase cDNA indicated the presence of lysine at amino acid position 481 in Dahl salt-sensitive rats and glutamic acid in Brown Norway and SS-13(BN) rats. Total fumarase activity was significantly lower in the kidneys of Dahl salt-sensitive rats compared with SS-13(BN) rats, despite an apparent compensatory increase in fumarase abundance in Dahl salt-sensitive rats. Intravenous infusion of a fumarate precursor in SS-13(BN) rats resulted in a fumarate excess in the renal medulla comparable to that seen in Dahl salt-sensitive rats. The infusion significantly exacerbated salt-induced hypertension in SS-13(BN) rats (140+/-3 vs125+/-2 mm Hg in vehicle control at day 5 on a 4% NaCl diet; P<0.05). In addition, the fumarate infusion increased renal medullary tissue levels of H2O2. Treatment of cultured human renal epithelial cells with the fumarate precursor also increased cellular levels of H2O2. These data suggest a novel role for fumarate metabolism in salt-induced hypertension and renal medullary oxidative stress.
Collapse
Affiliation(s)
- Zhongmin Tian
- Department of Physiology, Biomedical Engineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
- Department of Biotechnology and Biomedical Engineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
- Department of Biomedical Engineering, Xi’an Jiaotong University, Shanxi, P. R. China
| | - Yong Liu
- Department of Physiology, Biomedical Engineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Kristie Usa
- Department of Physiology, Biomedical Engineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Domagoj Mladinov
- Department of Physiology, Biomedical Engineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Yi Fang
- Department of Physiology, Biomedical Engineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, P. R. China
| | - Andrew S. Greene
- Department of Physiology, Biomedical Engineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
- Department of Biotechnology and Biomedical Engineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Allen W. Cowley
- Department of Physiology, Biomedical Engineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Mingyu Liang
- Department of Physiology, Biomedical Engineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
26
|
Liang M, Liu Y, Mladinov D, Cowley AW, Trivedi H, Fang Y, Xu X, Ding X, Tian Z. MicroRNA: a new frontier in kidney and blood pressure research. Am J Physiol Renal Physiol 2009; 297:F553-8. [PMID: 19339633 DOI: 10.1152/ajprenal.00045.2009] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
MicroRNA (miRNA) has emerged rapidly as a major new direction in many fields of research including kidney and blood pressure research. A mammalian genome encodes several hundred miRNAs. These miRNAs potentially regulate the expression of thousands of proteins. miRNA expression profiles differ substantially between the kidney and other organs as well as between kidney regions. miRNAs may be functionally important in models of diabetic nephropathy, podocyte development, and polycystic disease. miRNAs may be involved in the regulation of arterial blood pressure, including possible involvement in genetic elements of hypertension. Studies of miRNAs could generate diagnostic biomarkers for kidney disease and new mechanistic insights into the complex regulatory networks underlying kidney disease and hypertension. Further progress in the understanding of miRNA biogenesis and action and technical improvements for target identification and miRNA manipulation will be important for studying miRNAs in renal function and blood pressure regulation.
Collapse
Affiliation(s)
- Mingyu Liang
- Dept. of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Liu Y, Singh RJ, Usa K, Netzel BC, Liang M. Renal medullary 11 beta-hydroxysteroid dehydrogenase type 1 in Dahl salt-sensitive hypertension. Physiol Genomics 2008; 36:52-8. [PMID: 18826995 DOI: 10.1152/physiolgenomics.90283.2008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Dahl salt-sensitive rat is a widely used model of human salt-sensitive forms of hypertension. The kidney plays an important role in the pathogenesis of Dahl salt-sensitive hypertension, but the molecular mechanisms involved remain a subject of intensive investigation. Gene expression profiling studies suggested that 11 beta-hydroxysteroid dehydrogenase type 1 might be dysregulated in the renal medulla of Dahl salt-sensitive rats. Additional analysis confirmed that renal medullary expression of 11 beta-hydroxysteroid dehydrogenase type 1 was downregulated by a high-salt diet in SS-13BN rats, a consomic rat strain with reduced blood pressure salt sensitivity, but not in Dahl salt-sensitive rats. 11 beta-Hydroxysteroid dehydrogenase type 1 is known to convert inactive 11-dehydrocorticosterone to active corticosterone. The urinary corticosterone/11-dehydrocorticosterone ratio as well as urinary excretion of corticosterone was higher in Dahl salt-sensitive rats than in SS-13BN rats. Knockdown of renal medullary 11 beta-hydroxysteroid dehydrogenase type 1 with small-interfering RNA attenuated the early phase of salt-induced hypertension in Dahl salt-sensitive rats and reduced urinary excretion of corticosterone. Knockdown of 11 beta-hydroxysteroid dehydrogenase type 1 did not affect blood pressure in SS-13BN rats. Long-term attenuation of salt-induced hypertension was achieved with small hairpin RNA targeting renal medullary 11 beta-hydroxysteroid dehydrogenase type 1. In summary, we have demonstrated that suppression of 11 beta-hydroxysteroid dehydrogenase type 1 expression in the renal medulla attenuates salt-induced hypertension in Dahl salt-sensitive rats.
Collapse
Affiliation(s)
- Yong Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | |
Collapse
|
28
|
Inagaki K, Koyanagi T, Berry NC, Sun L, Mochly-Rosen D. Pharmacological inhibition of epsilon-protein kinase C attenuates cardiac fibrosis and dysfunction in hypertension-induced heart failure. Hypertension 2008; 51:1565-9. [PMID: 18413490 DOI: 10.1161/hypertensionaha.107.109637] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Studies on genetically manipulated mice suggest a role for epsilon-protein kinase C (epsilonPKC) in cardiac hypertrophy and in heart failure. The potential clinical relevance of these findings was tested here using a pharmacological inhibitor of epsilonPKC activity during the progression to heart failure in hypertensive Dahl rats. Dahl rats, fed an 8% high-salt diet from the age of 6 weeks, exhibited compensatory cardiac hypertrophy by 11 weeks, followed by heart failure at approximately 17 weeks and death by the age of approximately 20 weeks (123+/-3 days). Sustained treatment between weeks 11 and 17 with the selective epsilonPKC inhibitor epsilonV1-2 or with an angiotensin II receptor blocker olmesartan prolonged animal survival by approximately 5 weeks (epsilonV1-2: 154+/-7 days; olmesartan: 149+/-5 days). These treatments resulted in improved fractional shortening (epsilonV1-2: 58+/-2%; olmesartan: 53+/-2%; saline: 41+/-6%) and decreased cardiac parenchymal fibrosis when measured at 17 weeks without lowering blood pressure at any time during the treatment. Combined treatment with epsilonV1-2, together with olmesartan, prolonged animal survival by 5 weeks (37 days) relative to olmesartan alone (from 160+/-5 to 197+/-14 days, respectively) and by approximately 11 weeks (74 days) on average relative to saline-treated animals, suggesting that the pathway inhibited by epsilonPKC inhibition is not identical to the olmesartan-induced effect. These data suggest that an epsilonPKC-selective inhibitor such as epsilonV1-2 may have a potential in augmenting current therapeutic strategies for the treatment of heart failure in humans.
Collapse
Affiliation(s)
- Koichi Inagaki
- Department of Chemical and Systems Biology, Stanford University School of Medicine, CCSR, Room 3145A, 269 Campus Dr, Stanford, CA 94305-5174, USA
| | | | | | | | | |
Collapse
|
29
|
Tian Z, Greene AS, Usa K, Matus IR, Bauwens J, Pietrusz JL, Cowley AW, Liang M. Renal regional proteomes in young Dahl salt-sensitive rats. Hypertension 2008; 51:899-904. [PMID: 18316652 DOI: 10.1161/hypertensionaha.107.109173] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We performed an extensive proteomic analysis of the Dahl model of salt-sensitive hypertension. The consomic SS-13(BN) rat, genetically similar to the Dahl salt-sensitive rat, while exhibiting a significant amelioration of salt-induced hypertension, was used as a control. Proteomic analysis, using differential in-gel electrophoresis and mass spectrometry techniques, was performed in the renal cortex and the renal medulla of 6-week-old SS and SS-13(BN) rats before significant differences in blood pressure were developed between the 2 strains of rat. Several dozen proteins were identified as differentially expressed between SS and SS-13(BN) rats fed the 0.4% NaCl diet or switched to the 4% NaCl diet for 3 days (n=4). The identified proteins were involved in cellular functions or structures including signal transduction, energy metabolism, and the cytoskeleton. The proteomic analysis and subsequent Western blotting indicated that heterogeneous nuclear ribonucleoprotein K in the renal medulla was upregulated by the 4% NaCl diet in SS-13(BN) rats but downregulated in SS rats. The level of angiotensinogen mRNA in the renal medulla was regulated in an opposite manner. Silencing of heterogeneous nuclear ribonucleoprotein K resulted in an upregulation of angiotensinogen in cultured human kidney cells. In summary, we identified significant differences in kidney regional proteomic profiles between SS and SS-13(BN) rats and demonstrated a potential role of heterogeneous nuclear ribonucleoprotein K in the regulation of angiotensinogen expression in the renal medulla.
Collapse
Affiliation(s)
- Zhongmin Tian
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Hirota SA, Janssen LJ. Sodium and asthma: something borrowed, something new? Am J Physiol Lung Cell Mol Physiol 2007; 293:L1369-73. [PMID: 17905852 DOI: 10.1152/ajplung.00379.2007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Some early studies have called attention to the potential contribution of sodium (both dietary and serum levels) in airway-related disease, although the picture was not entirely clear. Two recent developments may now allow a more careful consideration of this: first, the greatly improved understanding of the role of salt in hypertension (particularly the identification of subgroups of salt-sensitive individuals within the general population), and second, the recent discovery of the role of the Na(+)/Ca(2+) exchanger in smooth muscle function. Here, we first review those two developments and then apply them to airway smooth muscle and asthma.
Collapse
Affiliation(s)
- Simon A Hirota
- Smooth Muscle Research Group, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
31
|
Bertram HC, Wu Z, Straadt IK, Aagaard M, Aaslyng MD. Effects of pressurization on structure, water distribution, and sensory attributes of cured ham: can pressurization reduce the crucial sodium content? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:9912-7. [PMID: 17177520 DOI: 10.1021/jf061966i] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
This study investigated the replacement of tumbling (intermittent vacuum tumbling for 6 h) with pressure treatment (7 MPa for 4 s) in the production of a cured ham product with the aim of elucidating if the pressure treatment could reduce the amount of salt added to obtain a satisfactory product. Confocal laser scanning microscopy (CLSM) revealed a pressure-induced loosening of the meat structure, and proton nuclear magnetic resonance (NMR) relaxometry revealed that this structural modification of the meat had an impact on water properties and water distribution in both cooked and cooked/fried products. Three salt levels (0.6, 1.1, and 1.7% w/w) were investigated, and sensory profiling revealed that the pressured-cooked meat obtained a significantly higher juiciness score at low and medium salt levels. In addition, sensory profiling assessments revealed that at the lowest salt concentration the pressured product was perceived to be saltier compared with the tumbled product; however, the difference was not significant and was absent upon frying. In contrast, in sensory time intensity analysis the maximum intensity and the total salt taste were significantly higher in the pressured samples at the low and medium salt levels in the cooked samples. In conclusion, the present study showed strong evidence that the structure and biophysical characteristics of cured ham is altered by pressurization and suggested that pressurization may reduce the critical amount of salt required in a ham product.
Collapse
Affiliation(s)
- Hanne Christine Bertram
- Department of Food Science, Danish Institute of Agricultural Sciences, Box 50, DK-8830 Tjele, Denmark
| | | | | | | | | |
Collapse
|
32
|
Klotz S, Hay I, Zhang G, Maurer M, Wang J, Burkhoff D. Development of Heart Failure in Chronic Hypertensive Dahl Rats. Hypertension 2006; 47:901-11. [PMID: 16585423 DOI: 10.1161/01.hyp.0000215579.81408.8e] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The impact of hypertension on left ventricular (LV) structure, pump function, and heart failure in Dahl salt-sensitive rats is poorly characterized but hypothesized to yield insights into the pathophysiology of heart failure with normal or preserved ejection fraction. Eighty Dahl salt-sensitive rats were fed either a high-salt (HS) or low-salt (LS, controls) diet starting at age 7 weeks. Ventricular properties were measured by echocardiography, hemodynamics and end-systolic and end-diastolic pressure-volume relationships (ESPVR and EDPVR, respectively). Compared with LS controls, HS rats developed severe hypertension and LV hypertrophy. At week 12, HS rats developed passive diastolic dysfunction (leftward/upward shifted EDPVR, increased chamber stiffness) with reductions in end-diastolic volume. However, the ESPVR also shifted upward (enhanced end-systolic function) so that overall pump function was enhanced compared with LS, and there was no change in end-diastolic pressure (EDP). At 16 and 20 weeks, HS hearts enlarged so that end-diastolic volumes and EDPVRs became similar to the respective age-matched LS controls. Concomitantly, the ESPVRs and overall pump function curves also moved toward controls, and ejection fraction declined. Despite normal or enhanced overall pump function at these times, EDP and wet lung weight increased, indicative of development of heart failure. In the Dahl salt-sensitive rat, which pathophysiologically retains salt and water, the development of heart failure (increased EDP and wet lung weight) is dissociated from changes in passive diastolic and active systolic properties. These observations suggest that a volume overload sate plays an important pathophysiological role in development of heart failure despite preserved overall ventricular pump function in this model of chronic hypertension.
Collapse
Affiliation(s)
- Stefan Klotz
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
33
|
Haddy FJ, Vanhoutte PM, Feletou M. Role of potassium in regulating blood flow and blood pressure. Am J Physiol Regul Integr Comp Physiol 2006; 290:R546-52. [PMID: 16467502 DOI: 10.1152/ajpregu.00491.2005] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Unlike sodium, potassium is vasoactive; for example, when infused into the arterial supply of a vascular bed, blood flow increases. The vasodilation results from hyperpolarization of the vascular smooth muscle cell subsequent to potassium stimulation by the ion of the electrogenic Na+-K+ pump and/or activating the inwardly rectifying Kir channels. In the case of skeletal muscle and brain, the increased flow sustains the augmented metabolic needs of the tissues. Potassium ions are also released by the endothelial cells in response to neurohumoral mediators and physical forces (such as shear stress) and contribute to the endothelium-dependent relaxations, being a component of endothelium-derived hyperpolarization factor-mediated responses. Dietary supplementation of potassium can lower blood pressure in normal and some hypertensive patients. Again, in contrast to NaCl restriction, the response to potassium supplementation is slow to appear, taking approximately 4 wk. Such supplementation reduces the need for antihypertensive medication. "Salt-sensitive" hypertension responds particularly well, perhaps, in part, because supplementation with potassium increases the urinary excretion of sodium chloride. Potassium supplementation may even reduce organ system complications (e.g., stroke).
Collapse
Affiliation(s)
- Francis J Haddy
- Department of Physiology and Biomedical Engineering, Mayo Clinic, College of Medicine, Rochester, Minnesota, USA
| | | | | |
Collapse
|
34
|
Iwamoto T. Vascular Na+/Ca2+exchanger: implications for the pathogenesis and therapy of salt-dependent hypertension. Am J Physiol Regul Integr Comp Physiol 2006; 290:R536-45. [PMID: 16467501 DOI: 10.1152/ajpregu.00592.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Na+/Ca2+exchanger is an ion transporter that exchanges Na+and Ca2+in either Ca2+efflux or Ca2+influx mode, depending on membrane potential and transmembrane ion gradients. In arterial smooth muscle cells, the Na+/Ca2+exchanger is thought to participate in the maintenance of vascular tone by regulating cytosolic Ca2+concentration. Recent pharmacological and genetic engineering studies have revealed that the Ca2+influx mode of vascular Na+/Ca2+exchanger type-1 (NCX1) is involved in the pathogenesis of salt-dependent hypertension. SEA0400, a specific Na+/Ca2+exchange inhibitor that preferentially blocks the Ca2+influx mode, lowers arterial blood pressure in salt-dependent hypertensive models, but not in normotensive rats or other types of hypertensive rats. Furthermore, heterozygous mice with reduced expression of NCX1 are resistant to development of salt-dependent hypertension, whereas transgenic mice with vascular smooth muscle-specific overexpression of NCX1 readily develop hypertension after high-salt loading. SEA0400 reverses the cytosolic Ca2+elevation and vasoconstriction induced by nanomolar ouabain, as well as humoral factors in salt-loaded animals. One possibility is that circulating endogenous cardiotonic steroids may be necessary for NCX1-mediated hypertension. These findings help to explain how arterial smooth muscle cells in blood vessels contribute to salt-elicited blood pressure elevation and suggest that NCX1 inhibitors might be therapeutically useful for salt-dependent hypertension.
Collapse
Affiliation(s)
- Takahiro Iwamoto
- Department of Pharmacology, School of Medicine, Fukuoka University, 7-45-1 Nanakuma Jonan-ku, Fukuoka 814-0180, Japan.
| |
Collapse
|
35
|
Wang Y, Chen AF, Wang DH. ETA receptor blockade prevents renal dysfunction in salt-sensitive hypertension induced by sensory denervation. Am J Physiol Heart Circ Physiol 2005; 289:H2005-11. [PMID: 15994858 DOI: 10.1152/ajpheart.00370.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To test the hypothesis that activation of the endothelin type A (ETA) receptor contributes to decreased renal excretory function and increased blood pressure in sensory nerve-degenerated rats fed a high-salt diet, neonatal Wistar rats were given vehicle or capsaicin (CAP, 50 mg/kg sc) on the first and second day of life. After being weaned, vehicle or CAP-treated rats were fed a normal (NS, 0.5%) or a high- (HS, 4%) sodium diet for 2 wk with or without ABT-627 (5 mg·kg−1·day−1, a selective ETA receptor antagonist). Systolic blood pressure increased in CAP-treated rats fed a HS diet (CAP-HS) compared with vehicle-treated rats fed a HS diet (CON-HS, 145 ± 7 vs. 89 ± 5 mmHg, P < 0.05). Creatinine clearance and fractional sodium excretion (FENa) decreased in CAP-HS rats compared with CON-HS rats (creatinine clearance, 0.54 ± 0.05 vs. 0.81 ± 0.09 ml·min−1·100 g body wt−1; FENa, 8.68 ± 0.99 vs. 12.53 ± 1.47%, respectively; P < 0.05). Water and sodium balance increased in CAP-HS rats compared with CON-HS (water balance, 20.2 ± 1.5 vs. 15.5 ± 1.9 ml/day; sodium balance, 11.9 ± 3.1 vs. 2.4 ± 0.3 meq/day, respectively; P < 0.05). The endothelin (ET)-1 levels in plasma and isolated glomeruli increased by about twofold in CAP-HS rats compared with CON-HS rats ( P < 0.05). ABT-627 prevented the decrease in creatinine clearance and FENa, the increase in water and sodium balance, and the increase in blood pressure in CAP-HS rats ( P < 0.05). Therefore, the blockade of the ETA receptor ameliorates the impairment of renal excretory function and prevents the elevation in blood pressure in salt-sensitive hypertension induced by degeneration of sensory nerves, indicating that the activation of the ETA receptor impairs renal function and contributes to the development of a salt-induced increase in blood pressure in this model.
Collapse
Affiliation(s)
- Youping Wang
- Dept. of Medicine, Michigan State Univ., E. Lansing, MI 48824, USA
| | | | | |
Collapse
|
36
|
Weissgarten J, Berman S, Efrati S, Rapoport M, Modai D, Cohn M, Aladjem M, Galperin E, Averbukh Z. Control of Hypertension with Captopril Affords Better Renal Protection as Compared with Irbesartan in Salt-Loaded Uremic Rats. ACTA ACUST UNITED AC 2005; 101:p14-20. [PMID: 15925907 DOI: 10.1159/000086037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Accepted: 02/25/2005] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIM Hypertension induced by exaggerated sodium consumption accelerates the progression of renal failure. We investigated the effects of a high-sodium (HS) diet on the progression of renal failure in rats maintained normotensive by angiotensin-converting enzyme inhibition or AT-1 blockade. METHODS In 70 Sprague-Dawley rats, renal failure was induced by five-sixths nephrectomy. They were fed isocaloric normal-sodium (NS), low-sodium (LS), or HS diets. HS rats prone to develop hypertension were divided into three subgroups: treated to normotension by irbesartan (HS-1) or captopril (HS-2) or left untreated (HS-0). RESULTS All HS animals developed significant proteinuria which strongly correlated with the 24-hour sodium excretion. HS-0 rats demonstrated severe hypertension, rapid deterioration of the renal function, and 100% mortality after 3 weeks. In irbesartan-treated HS-1 rats, mortality and decline of the glomerular filtration rate were similar to those of normal- or low-sodium-fed animals (100% mortality after week 12). In captopril-treated HS-2 rats, glomerular filtration rate decline and mortality were significantly blunted as compared with all other groups (50% mortality after week 12). CONCLUSIONS (1) In five-sixths-nephrectomized uremic rats maintained normotensive by either irbesartan or captopril, the rate of deterioration of the renal function was not aggravated by exaggerated sodium consumption. (2) In this experimental setting, captopril treatment yielded a better survival outcome as compared with irbesartan, despite the similar hypotensive effect.
Collapse
Affiliation(s)
- Joshua Weissgarten
- Nephrology Division, Assaf Harofeh Medical Center, Affiliated to Sackler Faculty of Medicine, Tel Aviv University, Zerifin, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
McCarty MF. Marinobufagenin may mediate the impact of salty diets on left ventricular hypertrophy by disrupting the protective function of coronary microvascular endothelium. Med Hypotheses 2005; 64:854-63. [PMID: 15694707 DOI: 10.1016/j.mehy.2003.11.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2003] [Accepted: 11/21/2003] [Indexed: 01/19/2023]
Abstract
Individuals who eat salty diets and who are "salt-sensitive" tend to have increased left ventricular mass, independent of blood pressure; this phenomenon awaits an explanation. It is clear that local up-regulation of angiotensin II (AngII) production and activity play a key role in the induction of left ventricular hypertrophy (LVH). Recent evidence suggests that a healthy coronary microvascular endothelium opposes this effect by serving as a paracrine source of nitric oxide (NO), a natural antagonist of AngII activity, and that up-regulation of this mechanism can account for the protective role of bradykinin with respect to LVH. The coronary microvasculature also possesses NAD(P)H oxidase activity that can generate superoxide, inimical to the bioactivity of endothelial NO. There is now good reason to believe that the triterpenoid marinobufagenin (MBG), a selective inhibitor of the alpha-1 isoform of the sodium pump, mediates the impact of salty diets on blood pressure; production of MBG by the adrenal cortex is boosted when salt-sensitive animals are fed salty diets. It is hypothesized that coronary microvascular endothelium expresses the alpha-1 isoform of the sodium pump, and that MBG thus can target this endothelium. If that is the case, MBG would be expected to decrease membrane potential in these cells; as a consequence, superoxide production would be up-regulated, NO synthase activity would be down-regulated, and myocardial NO bioactivity would thus be suppressed. This would offer a satisfying explanation for the impact of salt and salt-sensitivity on risk for LVH. If expression of the alpha-1 isoform of the sodium pump is a more general property of vascular endothelium, MBG may suppress NO bioactivity in other regions of the vascular tree, thereby contributing to other adverse effects elicited by salty diets: reduced arterial compliance, medial hypertrophy, impaired endothelium-dependent vasodilation, hypertensive/diabetic glomerulopathy, increased risk for stroke, and hypertension.
Collapse
Affiliation(s)
- Mark F McCarty
- Pantox Laboratories, 4622 Santa Fe Street, San Diego, CA 92109, USA.
| |
Collapse
|
38
|
McCarty MF. Marinobufagenin may mediate the impact of salty diets on left ventricular hypertrophy by disrupting the protective function of coronary microvascular endothelium. Med Hypotheses 2004; 62:993-1002. [PMID: 15142663 DOI: 10.1016/j.mehy.2003.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2003] [Accepted: 11/11/2003] [Indexed: 01/06/2023]
Abstract
Individuals who eat salty diets and who are "salt-sensitive" tend to have increased left ventricular mass, independent of blood pressure; this phenomenon awaits an explanation. It is clear that local up-regulation of angiotensin II (AngII) production and activity play a key role in the induction of left ventricular hypertrophy (LVH). Recent evidence suggests that a healthy coronary microvascular endothelium opposes this effect by serving as a paracrine source of nitric oxide (NO), a natural antagonist of AngII activity, and that up-regulation of this mechanism can account for the protective role of bradykinin with respect to LVH. The coronary microvasculature also possesses NAD(P)H oxidase activity that can generate superoxide, inimical to the bioactivity of endothelial NO. There is now good reason to believe that the triterpenoid marinobufagenin (MBG), a selective inhibitor of the alpha-1 isoform of the sodium pump, mediates the impact of salty diets on blood pressure;production of MBG by the adrenal cortex is boosted when salt-sensitive animals are fed salty diets. It is hypothesized that coronary microvascular endothelium expresses the alpha-1 isoform of the sodium pump, and that MBG thus can target this endothelium. If that is the case, MBG would be expected to decrease membrane potential in these cells;as a consequence, superoxide production would be up-regulated, NO synthase activity would be down-regulated, and myocardial NO bioactivity would thus be suppressed. This would offer a satisfying explanation for the impact of salt and salt-sensitivity on risk for LVH. If expression of the alpha-1 isoform of the sodium pump is a more general property of vascular endothelium, MBG may suppress NO bioactivity in other regions of the vascular tree, thereby contributing to other adverse effects elicited by salty diets: reduced arterial compliance, medial hypertrophy, impaired endothelium-dependent vasodilation, hypertensive/diabetic glomerulopathy, increased risk for stroke, and hypertension.
Collapse
Affiliation(s)
- Mark F McCarty
- Pantox Laboratories, 4622 Santa Fe Street, San Diego, CA 92109, USA.
| |
Collapse
|
39
|
Pamnani MB, Bryant HJ, Clough DL, Schooley JF. Increased dietary potassium and magnesium attenuate experimental volume dependent hypertension possibly through endogenous sodium-potassium pump inhibitor. Clin Exp Hypertens 2003; 25:103-15. [PMID: 12611422 DOI: 10.1081/ceh-120017931] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We and others have shown that inhibition of cardiovascular muscle (CVM) cell Na+,K-ATPase activity (NKPTA) due to increased level of endogenous sodium potassium pump inhibitor (SPI) is involved in the mechanism of volume expanded (VE) experimental and human essential hypertension (HT). Since diets fortified with very high potassium (K) or very high magnesium (Mg) decrease blood pressure (BP), we have examined the effect of a moderate increase in dietary K alone and a moderate increase in dietary K and Mg on plasma levels of SPI, CVM cell NKPTA, and BP in reduced renal mass (RRM)-salt HT rats, a classical model of VE HT. Seventy Percent-RRM rats were divided in four dietary groups, (1) Na free and normal K and Mg (0Na-K-Mg); (2) normal Na, K and Mg (Na-K-Mg); (3) normal Na and high K (2 x normal), and normal Mg (Na-2K-Mg); and (4) normal Na and high K (2 x normal), and high Mg (2 x normal) (Na-2K-2Mg). As expected, compared to control 0Na-K-Mg rats, Na-K-Mg rats developed HT. Blood pressure increased significantly less in Na-2K-Mg rats whereas, BP did not increase in Na-2K-2Mg rats. Hypertension in NA-K-Mg rats was associated with an increase in plasma SPI and digitalis like factor (DIF) and a decrease in renal and myocardial NKPTA. However, doubling the Mg along with K in the diet (Na-2K-2Mg) normalized SPI and DIF and increased myocardial and renal NKPTA, compared to control 0Na-K-Mg rats. Also, compared to 0Na-K-Mg rats, water consumption, urine excretion, urinary sodium excretion urinary potassium excretion (U(Na)V), and (U(K)V) increased in the other three groups, more so in Na-2K-2Mg rats. These data show that K and Mg have additive effects in preventing an increase in SPI, thus probably preventing the BP increase in RRM rats.
Collapse
Affiliation(s)
- Motilal B Pamnani
- Department of Physiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-44799, USA
| | | | | | | |
Collapse
|
40
|
Watanabe S, Kang DH, Feng L, Nakagawa T, Kanellis J, Lan H, Mazzali M, Johnson RJ. Uric acid, hominoid evolution, and the pathogenesis of salt-sensitivity. Hypertension 2002; 40:355-60. [PMID: 12215479 DOI: 10.1161/01.hyp.0000028589.66335.aa] [Citation(s) in RCA: 385] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Humans have elevated serum uric acid as a result of a mutation in the urate oxidase (uricase) gene that occurred during the Miocene. We hypothesize that the mutation provided a survival advantage because of the ability of hyperuricemia to maintain blood pressure under low-salt dietary conditions, such as prevailed during that period. Mild hyperuricemia in rats acutely increases blood pressure by a renin-dependent mechanism that is most manifest under low-salt dietary conditions. Chronic hyperuricemia also causes salt sensitivity, in part by inducing preglomerular vascular disease. The vascular disease is mediated in part by uric acid-induced smooth muscle cell proliferation with activation of mitogen-activated protein kinases and stimulation of cyclooxygenase-2 and platelet-derived growth factor. Although it provided a survival advantage to early hominoids, hyperuricemia may have a major role in the current cardiovascular disease epidemic.
Collapse
Affiliation(s)
- Susumu Watanabe
- Division of Nephrology, Baylor College of Medicine, Houston, Tex 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
He J, Whelton PK. Commentary: Salt intake, hypertension and risk of cardiovascular disease: an important public health challenge. Int J Epidemiol 2002. [DOI: 10.1093/ije/31.2.327] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
42
|
de Wardener HE, MacGregor GA. Harmful effects of dietary salt in addition to hypertension. J Hum Hypertens 2002; 16:213-23. [PMID: 11967714 DOI: 10.1038/sj.jhh.1001374] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2001] [Revised: 11/22/2001] [Accepted: 11/22/2001] [Indexed: 11/09/2022]
Abstract
In addition to raising the blood pressure dietary salt is responsible for several other harmful effects. The most important are a number which, though independent of the arterial pressure, also harm the cardiovascular system. A high salt intake increases the mass of the left ventricle, thickens and stiffens conduit arteries and thickens and narrows resistance arteries, including the coronary and renal arteries. It also increases the number of strokes, the severity of cardiac failure and the tendency for platelets to aggregate. In renal disease, a high salt intake accelerates the rate of renal functional deterioration. Apart from its effect on the cardiovascular system dietary salt has an effect on calcium and bone metabolism, which underlies the finding that in post-menopausal women salt intake controls bone density of the upper femur and pelvis. Dietary salt controls the incidence of carcinoma of the stomach and there is some evidence which suggests that salt is associated with the severity of asthma in male asthmatic subjects.
Collapse
Affiliation(s)
- H E de Wardener
- Department of Clinical Chemistry, Imperial College of Science, Technology and Medicine, Faculty of Medicine, Charing Cross Hospital, St Dunstan's Road, London W6 8RP, UK.
| | | |
Collapse
|
43
|
Giardina JB, Cockrell KL, Granger JP, Khalil RA. Low-salt diet enhances vascular reactivity and Ca(2+) entry in pregnant rats with normal and reduced uterine perfusion pressure. Hypertension 2002; 39:368-74. [PMID: 11882575 DOI: 10.1161/hy02t2.102806] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Salt moderation is often recommended to prevent excessive increases in blood pressure during pregnancy, particularly in women who are prone to pregnancy-induced hypertension; however, the vascular effects of low dietary salt intake during pregnancy are unclear. We investigated whether a low-salt diet during pregnancy alters the mechanisms of vascular smooth muscle contraction. Active stress and (45)Ca(2+) influx were measured in endothelium-denuded aortic strips of virgin and normal pregnant Sprague-Dawley rats and a hypertensive pregnant rat model produced by reduction in uterine perfusion pressure (RUPP), fed either a normal-sodium (NS, 1% NaCl) or low-sodium diet (LS, 0.2% NaCl) for 7 days. The mean arterial pressure was as follows: virgin/NS 108 +/- 8, virgin/LS 117 +/- 7, pregnant/NS 102 +/- 3, pregnant/LS 117 +/- 4, RUPP/NS 119 +/- 3, and RUPP/LS 133 +/- 6 mm Hg. Phenylephrine (Phe) caused concentration-dependent increases in active stress and (45)Ca(2+) influx that were greater in RUPP rats than in normal pregnant or virgin rats and were enhanced in pregnant/LS and RUPP/LS compared with pregnant/NS and RUPP/NS, respectively. High KCl (16 to 96 mmol/L), which stimulates Ca(2+) entry from the extracellular space, also caused increases in active stress that were greater in RUPP than in normal pregnant, in pregnant/LS than in pregnant/NS, and in RUPP/LS than in RUPP/NS rats. The Phe-induced (45)Ca(2+) influx--active stress relation was greater in RUPP/NS than in pregnant/NS and was enhanced in pregnant/LS and RUPP/LS compared with pregnant/NS and RUPP/NS, respectively. In Ca(2+)-free (2 mmol/L ethylene glycol bis(beta-aminoethylether)-N,N,N',N'-tetra-acetic acid) Krebs, stimulation of intracellular Ca(2+) release by Phe (10(-5) mol/L) or caffeine (25 mmol/L) caused a transient contraction that was not significantly different in all groups of rats. Thus, a low-salt diet in pregnant and RUPP rats is associated with increases in vascular reactivity that involves Ca(2+) entry from the extracellular space but not Ca(2+) release from the intracellular stores. The enhancement of the Phe-induced Ca(2+) influx--active stress relation in pregnant and RUPP rats on a low-salt diet suggests activation of other vascular contraction mechanisms in addition to Ca(2+) entry. Although it is difficult to extrapolate the experimental data in rats to clinical data in women, the increased vascular reactivity and Ca(2+) entry and the possible enhancement of additional vascular contraction mechanisms with a low-salt diet suggest that reduction of dietary salt intake should be carefully monitored during pregnancy and pregnancy-induced hypertension.
Collapse
Affiliation(s)
- Jena B Giardina
- Department of Physiology and Biophysics and Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | | |
Collapse
|
44
|
Barron LA, Green GM, Khalil RA. Gender differences in vascular smooth muscle reactivity to increases in extracellular sodium salt. Hypertension 2002; 39:425-32. [PMID: 11882584 DOI: 10.1161/hy02t2.102779] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hypertension is more common in men and postmenopausal women than in premenopausal women, and gender differences in sensitivity to high dietary Na(+) salt have been suggested; however, the vascular mechanisms involved are unclear. We investigated whether increases in the extracellular concentration of Na(+) ([Na(+)](e)) enhance the mechanisms of vascular smooth muscle contraction and whether the vascular effects of [Na(+)](e) exhibit gender differences. Isometric contraction and (45)Ca(2+) influx were measured in endothelium-denuded aortic strips that were isolated from intact male, intact female, castrated male, and ovariectomized (OVX) female Sprague-Dawley rats and incubated in Krebs' solution (2.5 mmol/L Ca(2+)) containing increasing [Na(+)](e) by the addition of 1, 3, 6, 10, 20, and 30 mmol/L NaCl. Increasing [Na(+)](e) for 30 minutes did not increase the resting tone or (45)Ca(2+) influx in any group of rats. Phenylephrine (Phe) caused concentration-dependent increases in contraction and (45)Ca(2+) influx. In vascular strips from intact males, increasing [Na(+)](e) by the addition of 1 to 6 mmol/L NaCl significantly increased the magnitude of Phe contraction and (45)Ca(2+) influx. Further increases in [Na(+)](e) by the addition of 10, 20, and 30 mmol/L NaCl increased Phe-induced (45)Ca(2+) influx but inhibited Phe contraction, possibly because of excessive increases in ionic strength. Preincubation with 2,4-dichlorobenzamil (10(-5) mol/L), inhibitor of the Na(+)-Ca(2+) exchanger, or KB-R7943 (10(-5) mol/L), selective inhibitor of the reverse mode of the Na(+)-Ca(2+) exchanger, abolished the increases in Phe contraction and (45)Ca(2+) influx at increasing [Na(+)](e) obtained by the addition of 1 to 6 mmol/L NaCl. Preincubation in Krebs' solution containing control [Na(+)](e) plus 1 to 6 mmol/L LiCl or N-methyl-D-glucamine did not increase Phe contraction. In intact females, the Phe contraction and Ca(2+) influx were less than those in intact males and were not enhanced with increases in [Na(+)](e). The enhancement of Phe contraction and Ca(2+) influx with increases in [Na(+)](e) were not significantly different between castrated male rats and intact male rats but were greater in OVX female rats than intact female rats. In OVX female rats or castrated male rats treated with 17beta-estradiol (but not 17alpha-estradiol) subcutaneous implants, no significant changes in Phe contraction or Ca(2+) influx with increases in [Na(+)](e) were observed. In OVX female or castrated male rats simultaneously treated with 17beta-estradiol plus the estrogen receptor antagonist ICI 182,780, the Phe contraction and Ca(2+) influx were enhanced with increases in [Na(+)](e). Thus, in intact male rats, small physiological increases in [Na(+)](e) enhance smooth muscle contraction to Phe by a mechanism involving Ca(2+) entry, possibly via the reverse mode of the Na(+)-Ca(2+) exchanger. This mechanism appears to be reduced in the presence of endogenous or exogenous estrogen and thereby protects female rats against excessive increases in vascular reactivity during high dietary Na(+) intake.
Collapse
Affiliation(s)
- Laura A Barron
- Department of Physiology and Biophysics and the Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson 39216, USA
| | | | | |
Collapse
|
45
|
Kagota S, Tamashiro A, Yamaguchi Y, Sugiura R, Kuno T, Nakamura K, Kunitomo M. Downregulation of vascular soluble guanylate cyclase induced by high salt intake in spontaneously hypertensive rats. Br J Pharmacol 2001; 134:737-44. [PMID: 11606313 PMCID: PMC1572996 DOI: 10.1038/sj.bjp.0704300] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2001] [Revised: 07/11/2001] [Accepted: 07/25/2001] [Indexed: 02/05/2023] Open
Abstract
1. Cyclic guanosine monophosphate (cyclic GMP)-mediated mechanism plays an important role in vasodilatation and blood pressure regulation. We investigated the effects of high salt intake on the nitric oxide (NO) - cyclic GMP signal transduction pathway regulating relaxation in aortas of spontaneously hypertensive rats (SHR). 2. Four-week-old SHR and normotensive Wistar-Kyoto rats (WKY) received a normal salt diet (0.3% NaCl) or a high salt diet (8% NaCl) for 4 weeks. 3. In aortic rings from SHR, endothelium-dependent relaxations in response to acetylcholine (ACh), adenosine diphosphate (ADP) and calcium ionophore A23187 were significantly impaired by the high salt intake. The endothelium-independent relaxations in response to sodium nitroprusside (SNP) and nitroglycerin were also impaired, but that to 8-bromo-cyclic GMP remained unchanged. On the other hand, high salt diet had no significant effects on the relaxations of aortic rings from WKY. 4. In aortas from SHR, the release of NO stimulated by ACh was significantly enhanced, whereas the production of cyclic GMP induced by either ACh or SNP was decreased by the high salt intake. 5. Western blot analysis showed that the protein level of endothelial NO synthase (eNOS) was slightly increased, whereas that of soluble guanylate cyclase (sGC) was dramatically reduced by the high salt intake. 6. These results indicate that in SHR, excessive dietary salt can result in downregulation of sGC followed by decreased cyclic GMP production, which leads to impairment of vascular relaxation in responses to NO. It is notable that chronic high salt intake impairs the sGC/cyclic GMP pathway but not the eNOS/NO pathway.
Collapse
Affiliation(s)
- S Kagota
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyuban-cho, Nishinomiya 663-8179, Japan.
| | | | | | | | | | | | | |
Collapse
|
46
|
Giardina JB, Green GM, Rinewalt AN, Granger JP, Khalil RA. Role of endothelin B receptors in enhancing endothelium-dependent nitric oxide-mediated vascular relaxation during high salt diet. Hypertension 2001; 37:516-23. [PMID: 11230328 DOI: 10.1161/01.hyp.37.2.516] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High salt diet is often associated with increases in blood pressure, and the state of activation of endothelium-dependent vascular relaxation pathways is critical under these conditions. Basal activation of endothelial endothelin B (ET(B)) receptors by endothelin has been suggested to stimulate the release of factors that promote vascular relaxation. However, whether ET(B) receptors play a role in enhancing endothelium-dependent vascular relaxation during high salt diet is unclear. In this study, we investigated whether chronic treatment with an ET(B) receptor antagonist is associated with impaired endothelium-dependent vascular relaxation and enhanced vascular reactivity particularly during high salt diet. Isometric contraction was measured in aortic strips isolated from male Sprague-Dawley rats on normal sodium (NS, 1%) and high sodium diet (HS, 8%) for 7 days and untreated or treated with the ET(B) receptor antagonist A-192621 (30 mg/kg per day) for 5 days. The mean arterial pressure was (in mm Hg) 122+/-3 in NS, 132+/-3 in HS, 144+/-2 in NS/ET(B) antagonist, and 171+/-12 in HS/ET(B) antagonist rats. In endothelium-intact strips, phenylephrine (Phe, 10(-5) mol/L) increased active stress to 7.6+/-1.0x10(3)N/m(2) in NS rats and 8.2+/-0.9x10(3)N/m(2) in HS rats. Phe (10(-5) mol/L) -induced stress was significantly greater in NS/ET(B) antagonist (11.3+/-0.9x10(3)N/m(2)) than NS and far greater in HS/ET(B) antagonist (14.1+/-0.1.2x10(3)N/m(2)) than HS rats. Also, Phe was more potent in NS/ET(B) antagonist and HS/ET(B) antagonist rats (ED(50)=0.3x10(-7) and 0.15x10(-7) mol/L) than in NS and HS rats (ED(50)=0.8x10(-7) and 0.7x10(-7) mol/L). Removal of the endothelium enhanced Phe-induced contraction significantly in NS and to a greater extent in HS, but not in NS/ET(B) antagonist or HS/ET(B) antagonist rats. In endothelium-intact strips, acetylcholine (ACh) caused relaxation of Phe contraction that was less in NS/ET(B) antagonist than NS and far less in HS/ET(B) antagonist than HS rats. Pretreatment of endothelium-intact strips with L-NAME (10(-4) mol/L), to inhibit nitric oxide (NO) synthase, or with methylene blue (10(-5) mol/L) or 1H-[1,2,4]oxadiazolo[4,3]-quinoxalin-1-one (ODQ, 10(-6) mol/L), to inhibit cGMP production in smooth muscle, inhibited ACh-induced relaxation and enhanced Phe-induced contraction significantly in NS and HS, slightly in NS/ET(B) antagonist, but not in HS/ET(B) antagonist rats. Measurement of basal and ACh-induced nitrite/nitrate production from aortic strips showed a significant reduction in NS/ET(B) antagonist compared with NS, and a greater reduction in HS/ET(B) antagonist compared with HS rats. Relaxation of Phe contraction with sodium nitroprusside was not significantly different among the different groups of rats. Thus, an endothelial ET(B) receptor-mediated pathway of vascular relaxation involving release of NO seems to be active under basal conditions and may protect against excessive vasoconstriction and increased blood pressure particularly during high salt diet.
Collapse
Affiliation(s)
- J B Giardina
- Department of Physiology, Center for Excellence in Cardiovascular-Renal Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | | | | | | | | |
Collapse
|
47
|
Pamnani MB, Chen X, Haddy FJ, Schooley JF, Mo Z. Mechanism of antihypertensive effect of dietary potassium in experimental volume expanded hypertension in rats. Clin Exp Hypertens 2000; 22:555-69. [PMID: 10972161 DOI: 10.1081/ceh-100100091] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dietary potassium supplementation lowers blood pressure (BP) and attenuates complications in hypertensive subjects, particularly those with the low renin volume expanded (LRVE) variety. We and others have shown that the plasma level of a digitalis like substance (DLS) is elevated in this type of hypertension. We therefore, examined the effect of increases in dietary potassium on the plasma level of endogenous DLS, myocardial and renal Na+, K+-ATPase (NKA) activities, BP, and renal excretory function in reduced renal mass (RRM)-salt hypertension in the rat, a classical model of LRVE hypertension. 70% RRM rats were divided in 4 groups, namely those consuming: 1) a sodium free and normal potassium (1.3% as KCl) diet (RRM-0 Na), 2) a normal sodium and normal potassium diet (RRM-NaK), 3) a normal sodium and high potassium (2 X normal) diet (RRM-Na2K), and 4) a normal sodium and 4 times normal potassium diet (RRM-Na4K). At the end of 4 weeks of dietary treatment, direct BP was recorded, plasma level of DLS determined by bioassay and with a radioimmunoassay for digoxin (DIF) and myocardial and renal NKA activities were measured. As expected, compared to RRM-0Na rats, RRM-NaK rats developed hypertension. BP increased significantly less in RRM-Na2K, whereas BP did not increase in RRM-Na4K rats. Hypertension in RRM-NaK rats was associated with an increase in plasma DLS and DIF and decrease in renal and myocardial NKA activities. DLS was increased (DIF was not changed) and myocardial NKA also decreased in rats consuming double potassium. However, quadrupling potassium in the diet (RRM-Na4K) normalized DLS and DIF and increased myocardial and renal NKA activities, compared to RRM-0Na rats. Also compared to RRM-0Na, water consumption, urinary volume excretion, sodium, and potassium increased in the other 3 groups, more so in RRM-Na4K rats. These data show that quadrupling the potassium in the diet prevents the BP increase in RRM rats and this is associated with diuresis/natriuresis and normalization of DLS, perhaps because the diuresis/natriuresis normalizes blood volume.
Collapse
Affiliation(s)
- M B Pamnani
- Department of Physiology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814 USA
| | | | | | | | | |
Collapse
|
48
|
Chobanian AV, Hill M. National Heart, Lung, and Blood Institute Workshop on Sodium and Blood Pressure : a critical review of current scientific evidence. Hypertension 2000; 35:858-63. [PMID: 10775551 DOI: 10.1161/01.hyp.35.4.858] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/1999] [Accepted: 11/15/1999] [Indexed: 11/16/2022]
Affiliation(s)
- A V Chobanian
- Boston University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
49
|
Safar ME, Blacher J, Mourad JJ, London GM. Stiffness of carotid artery wall material and blood pressure in humans: application to antihypertensive therapy and stroke prevention. Stroke 2000; 31:782-90. [PMID: 10700519 DOI: 10.1161/01.str.31.3.782] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Because epidemiological studies show that increased pulse pressure and carotid wall-material stiffness are predictors of cardiovascular mortality independent of age, atherosclerosis, and conventional risk factors, the relationships between carotid wall stiffness and blood pressure are important to the optimization of cardiovascular prevention. SUMMARY OF REVIEW In middle-aged hypertensive patients, mean and pulse pressures are increased, and systolic and diastolic pressures are increased to the same degree as mean pressure. Carotid hypertrophy is associated with normal wall stress, but no increased stiffness of wall material has been reported. With age, the normal wall stress is associated with a larger diameter and a stiffer material of carotid but not peripheral arteries. The stiffer wall involves calcifications, large amounts of collagen, and fragmentation and rupture of elastic tissue, which results in increased pulse-wave velocity and alterations of amplitude and timing of wave reflections and thus causes a disproportionate increase in systolic and pulse pressure. During this period, acutely administered nitrates in elderly subjects are able to reduce selectively systolic and pulse pressures without altering diastolic and mean blood pressure and composition of the carotid wall. CONCLUSIONS New therapeutic approaches acting mainly on the wall of large arteries are needed to treat hypertension in elderly patients and prevent stroke and myocardial infarction. These drugs could either selectively lower pulse pressure through changes in wave reflections (as nitrates do) or decrease arterial wall stiffness through modification of the composition of material (such as compounds that act on collagen cross-linking).
Collapse
Affiliation(s)
- M E Safar
- Department of Internal Medicine and INSERM (U337), Broussais Hospital, Paris, France.
| | | | | | | |
Collapse
|
50
|
Bayorh MA, Williams E, Thierry-Palmer M, Sanford G, Emmett N, Harris-Hooker S, Socci RR, Chu TC. Enhanced nitric oxide synthesis reverses salt-induced alterations in blood flow and cGMP levels. Clin Exp Hypertens 1999; 21:333-52. [PMID: 10369379 DOI: 10.3109/10641969909068669] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To understand the role of nitric oxide in salt-induced hypertension, we evaluated cardiovascular, hemodynamic and biochemical parameters in Dahl salt-sensitive rats fed low (0.3%) and high (8.0%) sodium diets. Two high salt groups received 1.25 and 2.5 g/L l-arginine in their drinking water. After three weeks of treatment, blood pressure was greater in the high salt groups. l-arginine did not modify salt-induced hypertension. Eicosapentaenoic acid (EPA) caused a smaller depressor response compared to normotensive rats. The increase in blood pressure was associated with decreases in aortic and renal blood flows. In renal artery, the reduction was counteracted by both l-arginine doses; whereas in the aorta, only the higher l-arginine one restored blood flow. The salt-induced reduction in aortic cyclic GMP level was only overcome by the higher l-arginine treatment. These data suggest that at the dose levels tested, nitric oxide reverses the reduction in cGMP and blood flow, but not the blood pressure changes associated with salt-induced hypertension.
Collapse
Affiliation(s)
- M A Bayorh
- Department of Pharmacology/Toxicology, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | | | | | | | | | | | | | | |
Collapse
|