1
|
Santisteban MM, Schaeffer S, Anfray A, Faraco G, Brea D, Wang G, Sobanko MJ, Sciortino R, Racchumi G, Waisman A, Park L, Anrather J, Iadecola C. Meningeal interleukin-17-producing T cells mediate cognitive impairment in a mouse model of salt-sensitive hypertension. Nat Neurosci 2024; 27:63-77. [PMID: 38049579 PMCID: PMC10999222 DOI: 10.1038/s41593-023-01497-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/16/2023] [Indexed: 12/06/2023]
Abstract
Hypertension (HTN), a disease afflicting over one billion individuals worldwide, is a leading cause of cognitive impairment, the mechanisms of which remain poorly understood. In the present study, in a mouse model of HTN, we find that the neurovascular and cognitive dysfunction depends on interleukin (IL)-17, a cytokine elevated in individuals with HTN. However, neither circulating IL-17 nor brain angiotensin signaling can account for the dysfunction. Rather, IL-17 produced by T cells in the dura mater is the mediator released in the cerebrospinal fluid and activating IL-17 receptors on border-associated macrophages (BAMs). Accordingly, depleting BAMs, deleting IL-17 receptor A in brain macrophages or suppressing meningeal T cells rescues cognitive function without attenuating blood pressure elevation, circulating IL-17 or brain angiotensin signaling. Our data unveil a critical role of meningeal T cells and macrophage IL-17 signaling in the neurovascular and cognitive dysfunction in a mouse model of HTN.
Collapse
Affiliation(s)
- Monica M Santisteban
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Samantha Schaeffer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Antoine Anfray
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Giuseppe Faraco
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - David Brea
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona, Barcelona, Spain
| | - Gang Wang
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Melissa J Sobanko
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Rose Sciortino
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Gianfranco Racchumi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center, Mainz, Germany
| | - Laibaik Park
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Josef Anrather
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Cohen-Segev R, Nativ O, Kinaneh S, Aronson D, Kabala A, Hamoud S, Karram T, Abassi Z. Effects of Angiotensin 1-7 and Mas Receptor Agonist on Renal System in a Rat Model of Heart Failure. Int J Mol Sci 2023; 24:11470. [PMID: 37511227 PMCID: PMC10380355 DOI: 10.3390/ijms241411470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/09/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Congestive heart failure (CHF) is often associated with impaired kidney function. Over- activation of the renin-angiotensin-aldosterone system (RAAS) contributes to avid salt/water retention and cardiac hypertrophy in CHF. While the deleterious effects of angiotensin II (Ang II) in CHF are well established, the biological actions of angiotensin 1-7 (Ang 1-7) are not fully characterized. In this study, we assessed the acute effects of Ang 1-7 (0.3, 3, 30 and 300 ng/kg/min, IV) on urinary flow (UF), urinary Na+ excretion (UNaV), glomerular filtration rate (GFR) and renal plasma flow )RPF) in rats with CHF induced by the placement of aortocaval fistula. Additionally, the chronic effects of Ang 1-7 (24 µg/kg/h, via intra-peritoneally implanted osmotic minipumps) on kidney function, cardiac hypertrophy and neurohormonal status were studied. Acute infusion of either Ang 1-7 or its agonist, AVE 0991, into sham controls, but not CHF rats, increased UF, UNaV, GFR, RPF and urinary cGMP. In the chronic protocols, untreated CHF rats displayed lower cumulative UF and UNaV than their sham controls. Chronic administration of Ang 1-7 and AVE 0991 exerted significant diuretic, natriuretic and kaliuretic effects in CHF rats, but not in sham controls. Serum creatinine and aldosterone levels were significantly higher in vehicle-treated CHF rats as compared with controls. Treatment with Ang 1-7 and AVE 0991 reduced these parameters to comparable levels observed in sham controls. Notably, chronic administration of Ang 1-7 to CHF rats reduced cardiac hypertrophy. In conclusion, Ang 1-7 exerts beneficial renal and cardiac effects in rats with CHF. Thus, we postulate that ACE2/Ang 1-7 axis represents a compensatory response to over-activity of ACE/AngII/AT1R system characterizing CHF and suggest that Ang 1-7 may be a potential therapeutic agent in this disease state.
Collapse
Affiliation(s)
- Ravit Cohen-Segev
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Omri Nativ
- Department of Urology, Rambam Health Center, Haifa 3109601, Israel
| | - Safa Kinaneh
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Doron Aronson
- Cardiology, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Aviva Kabala
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Shadi Hamoud
- Department of Internal Medicine E, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Tony Karram
- Vascular Surgery, Rambam Health Care Campus, Haifa 3109601, Israel
| | - Zaid Abassi
- Department of Physiology and Biophysics, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
- Laboratory Medicine, Rambam Health Care Campus, Haifa 31096, Israel
| |
Collapse
|
3
|
Molaei A, Molaei E, Hayes AW, Karimi G. Mas receptor: a potential strategy in the management of ischemic cardiovascular diseases. Cell Cycle 2023; 22:1654-1674. [PMID: 37365840 PMCID: PMC10361149 DOI: 10.1080/15384101.2023.2228089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/10/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023] Open
Abstract
MasR is a critical element in the RAS accessory pathway that protects the heart against myocardial infarction, ischemia-reperfusion injury, and pathological remodeling by counteracting the effects of AT1R. This receptor is mainly stimulated by Ang 1-7, which is a bioactive metabolite of the angiotensin produced by ACE2. MasR activation attenuates ischemia-related myocardial damage by facilitating vasorelaxation, improving cell metabolism, reducing inflammation and oxidative stress, inhibiting thrombosis, and stabilizing atherosclerotic plaque. It also prevents pathological cardiac remodeling by suppressing hypertrophy- and fibrosis-inducing signals. In addition, the potential of MasR in lowering blood pressure, improving blood glucose and lipid profiles, and weight loss has made it effective in modulating risk factors for coronary artery disease including hypertension, diabetes, dyslipidemia, and obesity. Considering these properties, the administration of MasR agonists offers a promising approach to the prevention and treatment of ischemic heart disease.Abbreviations: Acetylcholine (Ach); AMP-activated protein kinase (AMPK); Angiotensin (Ang); Angiotensin receptor (ATR); Angiotensin receptor blocker (ARB); Angiotensin-converting enzyme (ACE); Angiotensin-converting enzyme inhibitor (ACEI); Anti-PRD1-BF1-RIZ1 homologous domain containing 16 (PRDM16); bradykinin (BK); Calcineurin (CaN); cAMP-response element binding protein (CREB); Catalase (CAT); C-C Motif Chemokine Ligand 2 (CCL2); Chloride channel 3 (CIC3); c-Jun N-terminal kinases (JNK); Cluster of differentiation 36 (CD36); Cocaine- and amphetamine-regulated transcript (CART); Connective tissue growth factor (CTGF); Coronary artery disease (CAD); Creatine phosphokinase (CPK); C-X-C motif chemokine ligand 10 (CXCL10); Cystic fibrosis transmembrane conductance regulator (CFTR); Endothelial nitric oxide synthase (eNOS); Extracellular signal-regulated kinase 1/2 (ERK 1/2); Fatty acid transport protein (FATP); Fibroblast growth factor 21 (FGF21); Forkhead box protein O1 (FoxO1); Glucokinase (Gk); Glucose transporter (GLUT); Glycogen synthase kinase 3β (GSK3β); High density lipoprotein (HDL); High sensitive C-reactive protein (hs-CRP); Inositol trisphosphate (IP3); Interleukin (IL); Ischemic heart disease (IHD); Janus kinase (JAK); Kruppel-like factor 4 (KLF4); Lactate dehydrogenase (LDH); Left ventricular end-diastolic pressure (LVEDP); Left ventricular end-systolic pressure (LVESP); Lipoprotein lipase (LPL); L-NG-Nitro arginine methyl ester (L-NAME); Low density lipoprotein (LDL); Mammalian target of rapamycin (mTOR); Mas-related G protein-coupled receptors (Mrgpr); Matrix metalloproteinase (MMP); MAPK phosphatase-1 (MKP-1); Mitogen-activated protein kinase (MAPK); Monocyte chemoattractant protein-1 (MCP-1); NADPH oxidase (NOX); Neuropeptide FF (NPFF); Neutral endopeptidase (NEP); Nitric oxide (NO); Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB); Nuclear-factor of activated T-cells (NFAT); Pancreatic and duodenal homeobox 1 (Pdx1); Peroxisome proliferator- activated receptor γ (PPARγ); Phosphoinositide 3-kinases (PI3k); Phospholipase C (PLC); Prepro-orexin (PPO); Prolyl-endopeptidase (PEP); Prostacyclin (PGI2); Protein kinase B (Akt); Reactive oxygen species (ROS); Renin-angiotensin system (RAS); Rho-associated protein kinase (ROCK); Serum amyloid A (SAA); Signal transducer and activator of transcription (STAT); Sirtuin 1 (Sirt1); Slit guidance ligand 3 (Slit3); Smooth muscle 22α (SM22α); Sterol regulatory element-binding protein 1 (SREBP-1c); Stromal-derived factor-1a (SDF); Superoxide dismutase (SOD); Thiobarbituric acid reactive substances (TBARS); Tissue factor (TF); Toll-like receptor 4 (TLR4); Transforming growth factor β1 (TGF-β1); Tumor necrosis factor α (TNF-α); Uncoupling protein 1 (UCP1); Ventrolateral medulla (VLM).
Collapse
Affiliation(s)
- Ali Molaei
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Emad Molaei
- PharmD, Assistant of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - A. Wallace Hayes
- University of South Florida College of Public Health, Tampa, Florida, USA
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Nwia SM, Leite APO, Li XC, Zhuo JL. Sex differences in the renin-angiotensin-aldosterone system and its roles in hypertension, cardiovascular, and kidney diseases. Front Cardiovasc Med 2023; 10:1198090. [PMID: 37404743 PMCID: PMC10315499 DOI: 10.3389/fcvm.2023.1198090] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/06/2023] [Indexed: 07/06/2023] Open
Abstract
Cardiovascular disease is a pathology that exhibits well-researched biological sex differences, making it possible for physicians to tailor preventative and therapeutic approaches for various diseases. Hypertension, which is defined as blood pressure greater than 130/80 mmHg, is the primary risk factor for developing coronary artery disease, stroke, and renal failure. Approximately 48% of American men and 43% of American women suffer from hypertension. Epidemiological data suggests that during reproductive years, women have much lower rates of hypertension than men. However, this protective effect disappears after the onset of menopause. Treatment-resistant hypertension affects approximately 10.3 million US adults and is unable to be controlled even after implementing ≥3 antihypertensives with complementary mechanisms. This indicates that other mechanisms responsible for modulating blood pressure are still unclear. Understanding the differences in genetic and hormonal mechanisms that lead to hypertension would allow for sex-specific treatment and an opportunity to improve patient outcomes. Therefore, this invited review will review and discuss recent advances in studying the sex-specific physiological mechanisms that affect the renin-angiotensin system and contribute to blood pressure control. It will also discuss research on sex differences in hypertension management, treatment, and outcomes.
Collapse
Affiliation(s)
- Sarah M. Nwia
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Ana Paula O. Leite
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Xiao Chun Li
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jia Long Zhuo
- Tulane Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, LA, United States
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
5
|
Pereira BP, do Vale GT, Ceron CS. The role of nitric oxide in renovascular hypertension: from the pathophysiology to the treatment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:121-131. [PMID: 34994823 DOI: 10.1007/s00210-021-02186-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/17/2021] [Indexed: 12/25/2022]
Abstract
Renovascular hypertension is one of the most relevant causes of secondary hypertension, mostly caused by atherosclerotic renovascular stenosis or fibromuscular dysplasia. The increase in angiotensin II production, oxidative stress, and formation of peroxynitrite promotes the decrease in nitric oxide (NO) availability and the development of hypertension, renal and endothelial dysfunction, and cardiac and vascular remodeling. The NO produced by nitric oxide synthases (NOS) acts as a vasodilator; however, endothelial NOS uncoupling (eNOS) also contributes to NO reduced availability in renovascular hypertension. NO donors and NO-derived metabolites have been investigated in experimental renovascular hypertension and have shown promissory effects in attenuating blood pressure and organ damage in this condition. Therefore, understanding the role of decreased NO in the pathophysiology of renovascular hypertension promotes the study and development of NO donors and molecules that can be converted into NO (such as nitrate and nitrite), contributing for the treatment of this condition in the future.
Collapse
Affiliation(s)
- Bruna Pinheiro Pereira
- Departamento de Alimentos E Medicamentos, Universidade Federal de Alfenas (UNIFAL-MG), Alfenas, Minas Gerais, Brazil
| | - Gabriel Tavares do Vale
- Departamento de Ciências Biomédicas E da Saúde, Universidade Do Estado de Minas Gerais (UEMG), Belo Horizonte, Minas Gerais, Brazil
| | - Carla Speroni Ceron
- Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brasil.
| |
Collapse
|
6
|
Zangaladze A, Cai CL, Marcelino M, Aranda JV, Beharry KD. Renal biomarkers of acute kidney injury in response to increasing intermittent hypoxia episodes in the neonatal rat. BMC Nephrol 2021; 22:299. [PMID: 34481475 PMCID: PMC8418040 DOI: 10.1186/s12882-021-02507-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/19/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND We tested the hypotheses that: 1) early exposure to increasing episodes of clinically relevant intermittent hypoxia (IH) is detrimental to the developing kidneys; and 2) there is a critical number of daily IH episodes which will result in irreparable renal damage that may involve angiotensin (Ang) II and endothelin (ET)-1. METHODS At birth (P0), neonatal rat pups were exposed to brief IH episodes from the first day of life (P0) to P7 or from P0-P14. Pups were either euthanized immediately or placed in room air (RA) until P21. RA littermates served as controls. Kidneys were harvested at P7, P14, and P21 for histopathology; angiotensin converting enzyme (ACE), ACE-2, ET-1, big ET-1, and malondialdehyde (MDA) levels; immunoreactivity of ACE, ACE-2, ET-1, ET-2, ET receptors (ETAR, ETBR), and hypoxia inducible factor (HIF)1α; and apoptosis (TUNEL stain). RESULTS Histopathology showed increased renal damage with 8-12 IH episodes/day, and was associated with Ang II, ACE, HIF1α, and apoptosis. ACE-2 was not expressed at P7, and minimally increased at P14. However, a robust ACE-2 response was seen during recovery with maximum levels noted in the groups recovering from 8 IH episodes/day. ET-1, big ET-1, ETAR, ETBR, and MDA increased with increasing levels of neonatal IH. CONCLUSIONS Chronic neonatal IH causes severe damage to the developing kidney with associated elevations in vasoconstrictors, suggesting hypertension, particularly with 8 neonatal IH episodes. ACE-2 is not activated in early postnatal life, and this may contribute to IH-induced vasoconstriction. Therapeutic targeting of ACE and ET-1 may help decrease the risk for kidney injury in the developing neonate to prevent and/or treat neonatal acute kidney injury and/or chronic kidney disease.
Collapse
Affiliation(s)
- Anano Zangaladze
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Charles L Cai
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Matthew Marcelino
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
| | - Jacob V Aranda
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
- Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA
- SUNY Eye Institute, New York, NY, USA
| | - Kay D Beharry
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, State University of New York, Downstate Medical Center, Brooklyn, NY, USA.
- Department of Ophthalmology, State University of New York, Downstate Medical Center, Brooklyn, NY, USA.
- SUNY Eye Institute, New York, NY, USA.
- Department of Pediatrics & Ophthalmology, Neonatal-Perinatal Medicine Clinical & Translational Research Labs, State University of New York, Downstate Medical Center, 450 Clarkson Avenue, Box 49, Brooklyn, NY, 11203, USA.
| |
Collapse
|
7
|
Zolty R. Novel Experimental Therapies for Treatment of Pulmonary Arterial Hypertension. J Exp Pharmacol 2021; 13:817-857. [PMID: 34429666 PMCID: PMC8380049 DOI: 10.2147/jep.s236743] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and devastating disease characterized by pulmonary artery vasoconstriction and vascular remodeling leading to vascular rarefaction with elevation of pulmonary arterial pressures and pulmonary vascular resistance. Often PAH will cause death from right heart failure. Current PAH-targeted therapies improve functional capacity, pulmonary hemodynamics and reduce hospitalization. Nevertheless, today PAH still remains incurable and is often refractory to medical therapy, underscoring the need for further research. Over the last three decades, PAH has evolved from a disease of unknown pathogenesis devoid of effective therapy to a condition whose cellular, genetic and molecular underpinnings are unfolding. This article provides an update on current knowledge and summarizes the progression in recent advances in pharmacological therapy in PAH.
Collapse
Affiliation(s)
- Ronald Zolty
- Pulmonary Hypertension Program, University of Nebraska Medical Center, Lied Transplant Center, Omaha, NE, USA
| |
Collapse
|
8
|
Cohen JB, South AM, Shaltout HA, Sinclair MR, Sparks MA. Renin-angiotensin system blockade in the COVID-19 pandemic. Clin Kidney J 2021; 14:i48-i59. [PMID: 33796285 PMCID: PMC7929063 DOI: 10.1093/ckj/sfab026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/19/2021] [Indexed: 01/08/2023] Open
Abstract
In the early months of the coronavirus disease 2019 (COVID-19) pandemic, a hypothesis emerged suggesting that pharmacologic inhibitors of the renin–angiotensin system (RAS) may increase COVID-19 severity. This hypothesis was based on the role of angiotensin-converting enzyme 2 (ACE2), a counterregulatory component of the RAS, as the binding site for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), allowing viral entry into host cells. Extrapolations from prior evidence led to speculation that upregulation of ACE2 by RAS blockade may increase the risk of adverse outcomes from COVID-19. However, counterarguments pointed to evidence of potential protective effects of ACE2 and RAS blockade with regard to acute lung injury, as well as substantial risks from discontinuing these commonly used and important medications. Here we provide an overview of classic RAS physiology and the crucial role of ACE2 in systemic pathways affected by COVID-19. Additionally, we critically review the physiologic and epidemiologic evidence surrounding the interactions between RAS blockade and COVID-19. We review recently published trial evidence and propose important future directions to improve upon our understanding of these relationships.
Collapse
Affiliation(s)
- Jordana B Cohen
- Renal-Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew M South
- Section of Nephrology, Department of Pediatrics, Brenner Children's Hospital, Wake Forest School of Medicine, Winston Salem, NC, USA.,Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, Winston Salem, NC, USA.,Department of Surgery, Hypertension and Vascular Research, Wake Forest School of Medicine, Winston Salem, NC, USA.,Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Hossam A Shaltout
- Department of Surgery, Hypertension and Vascular Research, Wake Forest School of Medicine, Winston Salem, NC, USA.,Cardiovascular Sciences Center, Wake Forest School of Medicine, Winston Salem, NC, USA.,Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston Salem, NC, USA.,Department of Pharmacology and Toxicology, School of Pharmacy, University of Alexandria, Alexandria, Egypt
| | - Matthew R Sinclair
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.,Duke Clinical Research Institute, Durham, NC, USA
| | - Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.,Renal Section, Durham VA Health Care System, Durham, NC, USA
| |
Collapse
|
9
|
Garvin AM, Khokhar BS, Czubryt MP, Hale TM. RAS inhibition in resident fibroblast biology. Cell Signal 2020; 80:109903. [PMID: 33370581 DOI: 10.1016/j.cellsig.2020.109903] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Angiotensin II (Ang II) is a primary mediator of profibrotic signaling in the heart and more specifically, the cardiac fibroblast. Ang II-mediated cardiomyocyte hypertrophy in combination with cardiac fibroblast proliferation, activation, and extracellular matrix production compromise cardiac function and increase mortality in humans. Profibrotic actions of Ang II are mediated by increasing production of fibrogenic mediators (e.g. transforming growth factor beta, scleraxis, osteopontin, and periostin), recruitment of immune cells, and via increased reactive oxygen species generation. Drugs that inhibit Ang II production or action, collectively referred to as renin angiotensin system (RAS) inhibitors, are first line therapeutics for heart failure. Moreover, transient RAS inhibition has been found to persistently alter hypertensive cardiac fibroblast responses to injury providing a useful tool to identify novel therapeutic targets. This review summarizes the profibrotic actions of Ang II and the known impact of RAS inhibition on cardiac fibroblast phenotype and cardiac remodeling.
Collapse
Affiliation(s)
- Alexandra M Garvin
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Bilal S Khokhar
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA
| | - Michael P Czubryt
- Institute of Cardiovascular Sciences, St Boniface Hospital Albrechtsen Research Centre and Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Taben M Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ, USA.
| |
Collapse
|
10
|
Hemnes AR, Rathinasabapathy A, Austin EA, Brittain EL, Carrier EJ, Chen X, Fessel JP, Fike CD, Fong P, Fortune N, Gerszten RE, Johnson JA, Kaplowitz M, Newman JH, Piana R, Pugh ME, Rice TW, Robbins IM, Wheeler L, Yu C, Loyd JE, West J. A potential therapeutic role for angiotensin-converting enzyme 2 in human pulmonary arterial hypertension. Eur Respir J 2018; 51:13993003.02638-2017. [PMID: 29903860 DOI: 10.1183/13993003.02638-2017] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/25/2018] [Indexed: 12/20/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a deadly disease with no cure. Alternate conversion of angiotensin II (AngII) to angiotensin-(1-7) (Ang-(1-7)) by angiotensin-converting enzyme 2 (ACE2) resulting in Mas receptor (Mas1) activation improves rodent models of PAH. Effects of recombinant human (rh) ACE2 in human PAH are unknown. Our objective was to determine the effects of rhACE2 in PAH.We defined the molecular effects of Mas1 activation using porcine pulmonary arteries, measured AngII/Ang-(1-7) levels in human PAH and conducted a phase IIa, open-label pilot study of a single infusion of rhACE2 (GSK2586881, 0.2 or 0.4 mg·kg-1 intravenously).Superoxide dismutase 2 (SOD2) and inflammatory gene expression were identified as markers of Mas1 activation. After confirming reduced plasma ACE2 activity in human PAH, five patients were enrolled in the trial. GSK2586881 was well tolerated with significant improvement in cardiac output and pulmonary vascular resistance. GSK2586881 infusion was associated with reduced plasma markers of inflammation within 2-4 h and increased SOD2 plasma protein at 2 weeks.PAH is characterised by reduced ACE2 activity. Augmentation of ACE2 in a pilot study was well tolerated, associated with improved pulmonary haemodynamics and reduced markers of oxidant and inflammatory mediators. Targeting this pathway may be beneficial in human PAH.
Collapse
Affiliation(s)
- Anna R Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,These two authors are joint first authors
| | - Anandharajan Rathinasabapathy
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,These two authors are joint first authors
| | - Eric A Austin
- Dept of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Evan L Brittain
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Erica J Carrier
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xinping Chen
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joshua P Fessel
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Candice D Fike
- Dept of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter Fong
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Niki Fortune
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jennifer A Johnson
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mark Kaplowitz
- Dept of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John H Newman
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Robert Piana
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Meredith E Pugh
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Todd W Rice
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ivan M Robbins
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lisa Wheeler
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chang Yu
- Dept of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James E Loyd
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James West
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
11
|
Liang B, Zhao YN, Wang X, Yu XJ, Li Y, Yang HY, Su Q, Kang YM, Yang ZM. Angiotensin-(1-7) attenuates hypertension and cardiac hypertrophy via modulation of nitric oxide and neurotransmitter levels in the paraventricular nucleus in salt-sensitive hypertensive rats. RSC Adv 2018; 8:8779-8786. [PMID: 35547241 PMCID: PMC9087825 DOI: 10.1039/c7ra09136b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 02/15/2018] [Indexed: 01/15/2023] Open
Abstract
Angiotensin-(1-7) [Ang-(1-7)] is a multifunctional bioactive angiotensin peptide which exerts a cardiovascular protective function mainly by opposing the effects of angiotensin II. We aimed to determine whether brain Ang-(1-7) regulates nitric oxide (NO) and neurotransmitter levels in the hypothalamic paraventricular nucleus (PVN), and influences sympathetic activity, blood pressure and cardiac hypertrophy in salt-sensitive hypertension. Dahl salt-sensitive rats receiving a high-salt (HS, 8% NaCl) or a normal-salt (NS, 0.3% NaCl) diet were treated with an intracerebroventricular (ICV) infusion of Ang-(1-7) for 6 weeks. Seven rats were measured in each group. In comparison with NS rats, HS rats exhibited significantly increased mean arterial pressure, plasma norepinephrine (NE) and cardiac hypertrophy. In addition, HS rats (compared to NS rats) had increased glutamate, NE and tyrosine hydroxylase (TH) expression, and reduced NO levels as well as reduced expression of γ-aminobutyric acid (GABA) and the 67 kDa isoform of glutamate decarboxylase (GAD67) in the PVN. Treatment with ICV infusion of Ang-(1-7) reversed these changes in the salt-sensitive hypertensive rats. The results suggest that the beneficial effects of brain Ang-(1-7) on salt-sensitive hypertension and cardiac hypertrophy are partly due to an elevation in the NO level and restoration of neurotransmitter balance in the PVN. Angiotensin-(1-7) [Ang-(1-7)] is a multifunctional bioactive angiotensin peptide which exerts a cardiovascular protective function mainly by opposing the effects of angiotensin II.![]()
Collapse
Affiliation(s)
- Bin Liang
- Department of Cardiology
- The Second Hospital of Shanxi Medical University
- Taiyuan 030001
- China
- Key Laboratory of Cardiovascular Medicine and Clinical Pharmacology of Shanxi Province
| | - Ya-Nan Zhao
- Department of Cardiology
- The Second Hospital of Shanxi Medical University
- Taiyuan 030001
- China
- Department of Respiratory
| | - Xin Wang
- Key Laboratory of Cardiovascular Medicine and Clinical Pharmacology of Shanxi Province
- Taiyuan 030001
- China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology
- Xi'an Jiaotong University School of Basic Medical Sciences
- Xi'an Jiaotong University Health Science Center
- Xi'an 710061
- China
| | - Ying Li
- Department of Physiology and Pathophysiology
- Xi'an Jiaotong University School of Basic Medical Sciences
- Xi'an Jiaotong University Health Science Center
- Xi'an 710061
- China
| | - Hui-Yu Yang
- Department of Cardiology
- The Second Hospital of Shanxi Medical University
- Taiyuan 030001
- China
- Key Laboratory of Cardiovascular Medicine and Clinical Pharmacology of Shanxi Province
| | - Qing Su
- Department of Physiology and Pathophysiology
- Xi'an Jiaotong University School of Basic Medical Sciences
- Xi'an Jiaotong University Health Science Center
- Xi'an 710061
- China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology
- Xi'an Jiaotong University School of Basic Medical Sciences
- Xi'an Jiaotong University Health Science Center
- Xi'an 710061
- China
| | - Zhi-Ming Yang
- Department of Cardiology
- The Second Hospital of Shanxi Medical University
- Taiyuan 030001
- China
- Key Laboratory of Cardiovascular Medicine and Clinical Pharmacology of Shanxi Province
| |
Collapse
|
12
|
Ismail B, deKemp RA, Croteau E, Hadizad T, Burns KD, Beanlands RS, DaSilva JN. Treatment with enalapril and not diltiazem ameliorated progression of chronic kidney disease in rats, and normalized renal AT1 receptor expression as measured with PET imaging. PLoS One 2017; 12:e0177451. [PMID: 28542215 PMCID: PMC5438116 DOI: 10.1371/journal.pone.0177451] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 04/27/2017] [Indexed: 12/23/2022] Open
Abstract
ACE inhibitors are considered first line of treatment in patients with many forms of chronic kidney disease (CKD). Other antihypertensives such as calcium channel blockers achieve similar therapeutic effectiveness in attenuating hypertension-related renal damage progression. Our objective was to explore the value of positron emission tomography (PET) imaging of renal AT1 receptor (AT1R) to guide therapy in the 5/6 subtotal-nephrectomy (Nx) rat model of CKD. Ten weeks after Nx, Sprague-Dawley rats were administered 10mg/kg/d enalapril (NxE), 30mg/kg/d diltiazem (NxD) or left untreated (Nx) for an additional 8-10 weeks. Kidney AT1R expression was assessed using in vivo [18F]fluoropyridine-losartan PET and in vitro autoradiography. Compared to shams, Nx rats exhibited higher systolic blood pressure that was reduced by both enalapril and diltiazem. At 18-20 weeks, plasma creatinine and albuminuria were significantly increased in Nx, reduced to sham levels in NxE, but enhanced in NxD rats. Enalapril treatment decreased kidney angiotensin II whereas diltiazem induced significant elevations in plasma and kidney levels. Reduced PET renal AT1R levels in Nx were normalized by enalapril but not diltiazem, and results were supported by autoradiography. Reduction of renal blood flow in Nx was restored by enalapril, while no difference was observed in myocardial blood flow amongst groups. Enhanced left ventricle mass in Nx was not reversed by enalapril but was augmented with diltiazem. Stroke volume was diminished in untreated Nx compared to shams and restored with both therapies. [18F]Fluoropyridine-Losartan PET allowed in vivo quantification of kidney AT1R changes associated with progression of CKD and with various pharmacotherapies.
Collapse
Affiliation(s)
- Basma Ismail
- Cardiac PET Centre, Department of Medicine (Division of Cardiology), University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Rob A. deKemp
- Cardiac PET Centre, Department of Medicine (Division of Cardiology), University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Etienne Croteau
- Cardiac PET Centre, Department of Medicine (Division of Cardiology), University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Tayebeh Hadizad
- Cardiac PET Centre, Department of Medicine (Division of Cardiology), University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Kevin D. Burns
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada
| | - Rob S. Beanlands
- Cardiac PET Centre, Department of Medicine (Division of Cardiology), University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jean N. DaSilva
- Cardiac PET Centre, Department of Medicine (Division of Cardiology), University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal; University of Montreal Hospital Research Centre (CRCHUM), Montréal, Québec, Canada
- * E-mail:
| |
Collapse
|
13
|
Faraco G, Sugiyama Y, Lane D, Garcia-Bonilla L, Chang H, Santisteban MM, Racchumi G, Murphy M, Van Rooijen N, Anrather J, Iadecola C. Perivascular macrophages mediate the neurovascular and cognitive dysfunction associated with hypertension. J Clin Invest 2016; 126:4674-4689. [PMID: 27841763 DOI: 10.1172/jci86950] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/30/2016] [Indexed: 01/05/2023] Open
Abstract
Hypertension is a leading risk factor for dementia, but the mechanisms underlying its damaging effects on the brain are poorly understood. Due to a lack of energy reserves, the brain relies on continuous delivery of blood flow to its active regions in accordance with their dynamic metabolic needs. Hypertension disrupts these vital regulatory mechanisms, leading to the neuronal dysfunction and damage underlying cognitive impairment. Elucidating the cellular bases of these impairments is essential for developing new therapies. Perivascular macrophages (PVMs) represent a distinct population of resident brain macrophages that serves key homeostatic roles but also has the potential to generate large amounts of reactive oxygen species (ROS). Here, we report that PVMs are critical in driving the alterations in neurovascular regulation and attendant cognitive impairment in mouse models of hypertension. This effect was mediated by an increase in blood-brain barrier permeability that allowed angiotensin II to enter the perivascular space and activate angiotensin type 1 receptors in PVMs, leading to production of ROS through the superoxide-producing enzyme NOX2. These findings unveil a pathogenic role of PVMs in the neurovascular and cognitive dysfunction associated with hypertension and identify these cells as a putative therapeutic target for diseases associated with cerebrovascular oxidative stress.
Collapse
|
14
|
Kavanagh K, Davis AT, Jenkins KA, Flynn DM. Effects of heated hydrotherapy on muscle HSP70 and glucose metabolism in old and young vervet monkeys. Cell Stress Chaperones 2016; 21:717-25. [PMID: 27188431 PMCID: PMC4908005 DOI: 10.1007/s12192-016-0699-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/18/2016] [Accepted: 05/09/2016] [Indexed: 12/31/2022] Open
Abstract
Increasing heat shock protein 70 (HSP70) in aged and/or insulin-resistant animal models confers benefits to healthspan and lifespan. Heat application to increase core temperature induces HSPs in metabolically important tissues, and preliminary human and animal data suggest that heated hydrotherapy is an effective method to achieve increased HSPs. However, safety concerns exist, particularly in geriatric medicine where organ and cardiovascular disease commonly will preexist. We evaluated young vervet monkeys compared to old, insulin-resistant vervet monkeys (Chlorocebus aethiops sabaeus) in their core temperatures, glucose tolerance, muscle HSP70 level, and selected safety biomarkers after 10 sessions of hot water immersions administered twice weekly. Hot water immersion robustly induced the heat shock response in muscles. We observed that heat-treated old and young monkeys have significantly higher muscle HSP70 than control monkeys and treatment was without significant adverse effects on organ or cardiovascular health. Heat therapy improved pancreatic responses to glucose challenge and tended to normalize glucose excursions. A trend for worsened blood pressure and glucose values in the control monkeys and improved values in heat-treated monkeys were seen to support further investigation into the safety and efficacy of this intervention for metabolic syndrome or diabetes in young or old persons unable to exercise.
Collapse
Affiliation(s)
- Kylie Kavanagh
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| | - Ashely T Davis
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Kurt A Jenkins
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - D Mickey Flynn
- Department of Pathology, Section on Comparative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| |
Collapse
|
15
|
Ismail B, deKemp RA, Hadizad T, Mackasey K, Beanlands RS, DaSilva JN. Decreased renal AT1 receptor binding in rats after subtotal nephrectomy: PET study with [(18)F]FPyKYNE-losartan. EJNMMI Res 2016; 6:55. [PMID: 27339045 PMCID: PMC4919198 DOI: 10.1186/s13550-016-0209-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/14/2016] [Indexed: 01/13/2023] Open
Abstract
Background Significant renal mass reduction induced by 5/6 subtotal nephrectomy (Nx) is associated with a chain of events that culminates in hypertension and chronic kidney disease (CKD). Numerous studies have provided evidence for the role of angiotensin (Ang) II type 1 receptor (AT1R) in the promotion and progression of the disease; however, conflicting results were reported on intrarenal AT1R levels in CKD models. Methods Male Sprague-Dawley rats (n = 26) underwent Nx or sham operations. Animals were scanned at 8–10 weeks post-surgery with PET using the novel AT1R radioligand [18F]FPyKYNE-losartan. Radioligand binding was quantified by kidney-to-blood ratio (KBR), standard uptake value (SUV), and distribution volume (DV). After sacrifice, plasma and kidney Ang II levels were measured. Western blot and 125I-[Sar1, Ile8]Ang II autoradiography were performed to assess AT1R expression. Results At 8–10 weeks post-surgery, Nx rats developed hypertension, elevated plasma creatinine levels, left ventricle hypertrophy, increased myocardial blood flow (MBF), and reduced Ang II levels compared to shams. PET measurements displayed significant decrease in KBR (29 %), SUV (24 %), and DV (22 %) induced by Nx (p < 0.05), and these findings were confirmed by in vitro assays. Conclusions Reduced renal AT1Rs in hypertensive rats measured with [18F]FPyKYNE-losartan PET at 8–10 weeks following Nx support further use of this non-invasive approach in longitudinal studies to better understand the AT1R role in CKD progression.
Collapse
Affiliation(s)
- Basma Ismail
- National Cardiac PET Centre, University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON, K1Y 4W7, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Robert A deKemp
- National Cardiac PET Centre, University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON, K1Y 4W7, Canada
| | - Tayebeh Hadizad
- National Cardiac PET Centre, University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON, K1Y 4W7, Canada
| | - Kumiko Mackasey
- National Cardiac PET Centre, University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON, K1Y 4W7, Canada
| | - Rob S Beanlands
- National Cardiac PET Centre, University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON, K1Y 4W7, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Jean N DaSilva
- National Cardiac PET Centre, University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON, K1Y 4W7, Canada. .,Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada. .,Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, University of Montreal Hospital Research Centre (CRCHUM), 900 Rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada.
| |
Collapse
|
16
|
Maleki M, Nematbakhsh M. Renal Blood Flow Response to Angiotensin 1-7 versus Hypertonic Sodium Chloride 7.5% Administration after Acute Hemorrhagic Shock in Rats. Int J Vasc Med 2016; 2016:6562017. [PMID: 27073699 PMCID: PMC4814681 DOI: 10.1155/2016/6562017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/04/2016] [Accepted: 02/17/2016] [Indexed: 11/24/2022] Open
Abstract
Background. Angiotensin 1-7 (Ang1-7) plays an important role in renal circulation. Hemorrhagic shock (HS) may cause kidney circulation disturbance, and this study was designed to investigate the renal blood flow (RBF) response to Ang1-7 after HS. Methods. 27 male Wistar rats were subjected to blood withdrawal to reduce mean arterial pressure (MAP) to 45 mmHg for 45 min. The animals were treated with saline (group 1), Ang1-7 (300 ng·kg(-1) min(-1)), Ang1-7 in hypertonic sodium chloride 7.5% (group 3), and hypertonic solution alone (group 4). Results. MAP was increased in a time-related fashion (P time < 0.0001) in all groups; however, there was a tendency for the increase in MAP in response to hypertonic solution (P = 0.09). Ang1-7, hypertonic solution, or combination of both increased RBF in groups 2-4, and these were significantly different from saline group (P = 0.05); that is, Ang1-7 leads to a significant increase in RBF to 1.35 ± 0.25 mL/min compared with 0.55 ± 0.12 mL/min in saline group (P < 0.05). Conclusion. Although Ang1-7 administration unlike hypertonic solution could not elevate MAP after HS, it potentially could increase RBF similar to hypertonic solution. This suggested that Ang1-7 recovers RBF after HS when therapeutic opportunities of hypertonic solution are limited.
Collapse
Affiliation(s)
- Maryam Maleki
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan 81745, Iran
| | - Mehdi Nematbakhsh
- Water and Electrolytes Research Center, Isfahan University of Medical Sciences, Isfahan 81745, Iran; Department of Physiology, Isfahan University of Medical Sciences, Isfahan 81745, Iran; Isfahan MN Institute of Basic and Applied Sciences Research, Isfahan 81745, Iran
| |
Collapse
|
17
|
Murugan D, Lau YS, Lau WC, Mustafa MR, Huang Y. Angiotensin 1-7 Protects against Angiotensin II-Induced Endoplasmic Reticulum Stress and Endothelial Dysfunction via Mas Receptor. PLoS One 2015; 10:e0145413. [PMID: 26709511 PMCID: PMC4692500 DOI: 10.1371/journal.pone.0145413] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/03/2015] [Indexed: 02/07/2023] Open
Abstract
Angiotensin 1–7 (Ang 1–7) counter-regulates the cardiovascular actions of angiotensin II (Ang II). The present study investigated the protective effect of Ang 1–7 against Ang II-induced endoplasmic reticulum (ER) stress and endothelial dysfunction. Ex vivo treatment with Ang II (0.5 μM, 24 hours) impaired endothelium-dependent relaxation in mouse aortas; this harmful effect of Ang II was reversed by co-treatment with ER stress inhibitors, l4-phenylbutyric acid (PBA) and tauroursodeoxycholic acid (TUDCA) as well as Ang 1–7. The Mas receptor antagonist, A779, antagonized the effect of Ang 1–7. The elevated mRNA expression of CHOP, Grp78 and ATF4 or protein expression of p-eIF2α and ATF6 (ER stress markers) in Ang II-treated human umbilical vein endothelial cells (HUVECs) and mouse aortas were blunted by co-treatment with Ang 1–7 and the latter effect was reversed by A779. Furthermore, Ang II-induced reduction in both eNOS phosphorylation and NO production was inhibited by Ang 1–7. In addition, Ang 1–7 decreased the levels of ER stress markers and augmented NO production in HUVECs treated with ER stress inducer, tunicamycin. The present study provides new evidence for functional antagonism between the two arms of the renin-angiotensin system in endothelial cells by demonstrating that Ang 1–7 ameliorates Ang II-stimulated ER stress to raise NO bioavailability, and subsequently preserves endothelial function.
Collapse
Affiliation(s)
- Dharmani Murugan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
- * E-mail: (YH); (DM)
| | - Yeh Siang Lau
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Wai Chi Lau
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yu Huang
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, China
- * E-mail: (YH); (DM)
| |
Collapse
|
18
|
Magalhães GS, Rodrigues-Machado MG, Motta-Santos D, Silva AR, Caliari MV, Prata LO, Abreu SC, Rocco PRM, Barcelos LS, Santos RAS, Campagnole-Santos MJ. Angiotensin-(1-7) attenuates airway remodelling and hyperresponsiveness in a model of chronic allergic lung inflammation. Br J Pharmacol 2015; 172:2330-42. [PMID: 25559763 DOI: 10.1111/bph.13057] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 11/20/2014] [Accepted: 12/15/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE A long-term imbalance between pro- and anti-inflammatory mediators leads to airway remodelling, which is strongly correlated to most of the symptoms, severity and progression of chronic lung inflammation. The Angiotensin-(1-7) [Ang-(1-7)]/Mas receptor axis of the renin-angiotensin system is associated with attenuation of acute and chronic inflammatory processes. In this study, we investigated the effects of Ang-(1-7) treatment in a model of chronic allergic lung inflammation. EXPERIMENTAL APPROACH Mice were sensitized to ovalbumin (OVA; 4 injections over 42 days, 14 days apart) and were challenged three times per week (days 21-46). These mice received Ang-(1-7) (1 μg·h(-1) , s.c.) by osmotic mini-pumps, for the last 28 days. Histology and morphometric analysis were performed in left lung and right ventricle. Airway responsiveness to methacholine, analysis of Ang-(1-7) levels (RIA), collagen I and III (qRT-PCR), ERK1/2 and JNK (Western blotting), IgE (elisa), cytokines and chemokines (elisa multiplex), and immunohistochemistry for Mas receptors were performed. KEY RESULTS Infusion of Ang-(1-7) in OVA-sensitized and challenged mice decreased inflammatory cell infiltration and collagen deposition in the airways and lung parenchyma, and prevented bronchial hyperresponsiveness. These effects were accompanied by decreased IgE and ERK1/2 phosphorylation, and decreased pro-inflammatory cytokines. Mas receptors were detected in the epithelium and bronchial smooth muscle, suggesting a site in the lung for the beneficial actions of Ang-(1-7). CONCLUSIONS AND IMPLICATIONS Ang-(1-7) exerted beneficial attenuation of three major features of chronic asthma: lung inflammation, airway remodelling and hyperresponsiveness. Our results support an important protective role of Ang-(1-7) in lung inflammation.
Collapse
Affiliation(s)
- G S Magalhães
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-NANOBIOFAR), Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sparks MA, Crowley SD, Gurley SB, Mirotsou M, Coffman TM. Classical Renin-Angiotensin system in kidney physiology. Compr Physiol 2015; 4:1201-28. [PMID: 24944035 DOI: 10.1002/cphy.c130040] [Citation(s) in RCA: 363] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The renin-angiotensin system has powerful effects in control of the blood pressure and sodium homeostasis. These actions are coordinated through integrated actions in the kidney, cardiovascular system and the central nervous system. Along with its impact on blood pressure, the renin-angiotensin system also influences a range of processes from inflammation and immune responses to longevity. Here, we review the actions of the "classical" renin-angiotensin system, whereby the substrate protein angiotensinogen is processed in a two-step reaction by renin and angiotensin converting enzyme, resulting in the sequential generation of angiotensin I and angiotensin II, the major biologically active renin-angiotensin system peptide, which exerts its actions via type 1 and type 2 angiotensin receptors. In recent years, several new enzymes, peptides, and receptors related to the renin-angiotensin system have been identified, manifesting a complexity that was previously unappreciated. While the functions of these alternative pathways will be reviewed elsewhere in this journal, our focus here is on the physiological role of components of the "classical" renin-angiotensin system, with an emphasis on new developments and modern concepts.
Collapse
Affiliation(s)
- Matthew A Sparks
- Division of Nephrology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | | | | | | | | |
Collapse
|
20
|
Washburn LK, Brosnihan KB, Chappell MC, Diz DI, Gwathmey TM, Nixon PA, Russell GB, Snively BM, O'Shea TM. The renin-angiotensin-aldosterone system in adolescent offspring born prematurely to mothers with preeclampsia. J Renin Angiotensin Aldosterone Syst 2014; 16:529-38. [PMID: 24737639 DOI: 10.1177/1470320314526940] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 01/28/2014] [Indexed: 11/16/2022] Open
Abstract
HYPOTHESIS/INTRODUCTION Preeclampsia is associated with alterations in the maternal renin-angiotensin-aldosterone system (RAAS), increased blood pressure (BP), and cardiovascular risk in the offspring. We hypothesized that preeclampsia is associated with alterations in the RAAS in the offspring that persist into adolescence. MATERIALS AND METHODS We compared components of the circulating (n = 111) and renal (n = 160) RAAS in adolescents born prematurely with very low birth weight (VLBW) of preeclamptic (PreE) and normotensive (NoHTN) pregnancies. Multivariable linear regression was used to evaluate potential confounding and intermediate variables. Analyses were stratified by sex. RESULTS Adjusting for race and antenatal steroid exposure, male offspring of PreE mothers had higher circulating aldosterone than those of NoHTN mothers (adjusted mean difference = 109; 95% confidence limits: -9, 227 pmol/L). Further adjustment for current BMI attenuated this difference (adjusted mean difference: 93; 95% confidence limits: -30, 215 pmol/L). CONCLUSION Among male preterm VLBW infants, maternal preeclampsia is associated with increased circulating aldosterone level in adolescence, which appears to be mediated in part by higher BMI.
Collapse
Affiliation(s)
- Lisa K Washburn
- Department of Pediatrics, Wake Forest School of Medicine, USA Hypertension and Vascular Research Center, Wake Forest School of Medicine, USA
| | - K Bridget Brosnihan
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, USA
| | - Mark C Chappell
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, USA
| | - Debra I Diz
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, USA
| | - TanYa M Gwathmey
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, USA
| | - Patricia A Nixon
- Department of Pediatrics, Wake Forest School of Medicine, USA Health and Exercise Science, Wake Forest School of Medicine, USA
| | - Gregory B Russell
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, USA
| | - Beverly M Snively
- Department of Biostatistical Sciences, Division of Public Health Sciences, Wake Forest School of Medicine, USA
| | - T Michael O'Shea
- Department of Pediatrics, Wake Forest School of Medicine, USA Hypertension and Vascular Research Center, Wake Forest School of Medicine, USA
| |
Collapse
|
21
|
da Costa Gonçalves AC, Fraga-Silva RA, Leite R, Santos RAS. AVE 0991, a non-peptide Mas-receptor agonist, facilitates penile erection. Exp Physiol 2012; 98:850-5. [PMID: 23042379 DOI: 10.1113/expphysiol.2012.068551] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The renin-angiotensin system plays a crucial role in erectile function. It has been shown that elevated levels of angiotensin II contribute to the development of erectile dysfunction both in humans and in aminals. On the contrary, the heptapeptide angiotensin-(1-7) appears to mediate penile erection by activation of the Mas receptor. Recently, we have shown that the erectile function of Mas gene-deleted mice was substantially reduced, which was associated with a marked increase in fibrous tissue in the corpus cavernosum. We have hypothesized that the synthetic non-peptide Mas agonist, AVE 0991, would potentiate penile erectile function. We showed that intracavernosal injection of AVE 0991 potentiated the erectile response of anaesthetized Wistar rats, measured as the ratio between corpus cavernosum pressure and mean arterial pressure, upon electrical stimulation of the major pelvic ganglion. The facilitatory effect of AVE 0991 on erectile function was dose dependent and completely blunted by the nitric oxide synthesis inhibitor, l-NAME. Importantly, concomitant intracavernosal infusion of the specific Mas receptor blocker, A-779, abolished the effect of AVE 0991. We demonstrated that AVE 0991 potentiates the penile erectile response through Mas in an NO-dependent manner. Importantly, these results suggest that Mas agonists, such as AVE 0991, might have significant therapeutic benefits for the treatment of erectile dysfunction.
Collapse
Affiliation(s)
- Andrey C da Costa Gonçalves
- Departamento de Fisiologia e Biofísica, Av. Antonio Carlos, 6627 - ICB - UFMG, 31270-901 - Belo Horizonte, MG, Brasil
| | | | | | | |
Collapse
|
22
|
Angiotensin II-induced mitochondrial Nox4 is a major endogenous source of oxidative stress in kidney tubular cells. PLoS One 2012; 7:e39739. [PMID: 22808054 PMCID: PMC3392275 DOI: 10.1371/journal.pone.0039739] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/25/2012] [Indexed: 02/07/2023] Open
Abstract
Angiotensin II (Ang II)-induced activation of nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase leads to increased production of reactive oxygen species (ROS), an important intracellular second messenger in renal disease. Recent findings suggest that Ang II induces mitochondrial depolarization and further amplifies mitochondrial generation of ROS. We examined the hypothesis that ROS injury mediated by Ang II-induced mitochondrial Nox4 plays a pivotal role in mitochondrial dysfunction in tubular cells and is related to cell survival. In addition, we assessed whether angiotensin (1-7) peptide (Ang-(1-7)) was able to counteract Ang II-induced ROS-mediated cellular injury. Cultured NRK-52E cells were stimulated with 10−6 M Ang II for 24 h with or without Ang-(1-7) or apocynin. Ang II simulated mitochondrial Nox4 and resulted in the abrupt production of mitochondrial superoxide (O2−) and hydrogen peroxide (H2O2). Ang II also induced depolarization of the mitochondrial membrane potential, and cytosolic secretion of cytochrome C and apoptosis-inducing factor (AIF). Ang-(1-7) attenuated Ang II-induced mitochondrial Nox4 expression and apoptosis, and its effect was comparable to that of the NAD(P)H oxidase inhibitor. These findings suggest that Ang II-induced activation of mitochondrial Nox4 is an important endogenous source of ROS, and is related to cell survival. The ACE2-Ang-(1-7)-Mas receptor axis should be investigated further as a novel target of Ang II-mediated ROS injury.
Collapse
|
23
|
Mustafa HI, Raj SR, Diedrich A, Black BK, Paranjape SY, Dupont WD, Williams GH, Biaggioni I, Robertson D. Altered systemic hemodynamic and baroreflex response to angiotensin II in postural tachycardia syndrome. Circ Arrhythm Electrophysiol 2012; 5:173-80. [PMID: 22247480 DOI: 10.1161/circep.111.965343] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Postural tachycardia syndrome (POTS) is characterized by excessive orthostatic tachycardia and significant functional disability. We have previously found that patients with POTS have increases in plasma angiotensin II (Ang II) that are twice as high as healthy subjects despite normal blood pressures (BPs). In this study, we assess systemic and renal hemodynamic and functional responses to Ang II infusion in patients with POTS compared with healthy controls. METHODS AND RESULTS Following a 3-day sodium-controlled diet, we infused Ang II (3 ng/kg per minute) for 1 hour in patients with POTS (n=15) and healthy controls (n=13) in the supine position. All study subjects were women with normal BP. Ages were similar for patients with POTS and controls (mean±SEM, 30±2 versus 26±1 years; P=0.11). We measured the changes from baseline mean arterial pressure, renal plasma flow, plasma renin activity, aldosterone, urine sodium, and baroreflex sensitivity in both groups. In response to Ang II infusion, patients with POTS had a blunted increase compared with controls in mean arterial pressure (10±1 versus 14±1 mm Hg, P=0.01) and diastolic BP (9±1 versus 13±1 mm Hg, P=0.01) but not systolic BP (13±2 versus 15±2 mm Hg, P=0.40). Renal plasma flow decreased similarly with Ang II infusion in patients with POTS versus controls (-166±20 versus -181±17 mL/min per 1.73 kg/m(2), P=0.58). Postinfusion, the decrease in plasma renin activity (-0.9±0.2 versus -0.6±0.2 ng/mL per hour, P=0.43) and the increase in aldosterone (17±1 versus 15±2 pg/mL, P=0.34) were similar in both groups. The decrease in urine sodium excretion was similar in patients with POTS and controls (-49±12 versus -60±16 mEq/g creatinine, P=0.55). The spontaneous baroreflex sensitivity at baseline was significantly lower in patients with POTS compared with controls (10.1±1.2 versus 16.8±1.5 ms/mm Hg, P=0.003), and it was further reduced with Ang II infusion. CONCLUSIONS Patients with POTS have blunted vasopressor response to Ang II and impaired baroreflex function. This impaired vasoconstrictive response might be exaggerated with upright posture and may contribute to the subsequent orthostatic tachycardia that is the hallmark of this disorder. Clinical Trial Registration- URL: http://www.clinicaltrials.gov. Unique identifier: NCT00962949.
Collapse
Affiliation(s)
- Hossam I Mustafa
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232-2195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Brosnihan KB, Bharadwaj MS, Yamaleyeva LM, Neves LAA. Decidualized pseudopregnant rat uterus shows marked reduction in Ang II and Ang-(1-7) levels. Placenta 2011; 33:17-23. [PMID: 22101031 DOI: 10.1016/j.placenta.2011.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/12/2011] [Accepted: 10/30/2011] [Indexed: 11/19/2022]
Abstract
UNLABELLED Previous studies showed that angiotensin (Ang) II and Ang-(1-7) concentrations were reduced in the implantation site at day 7 of pregnancy in Sprague-Dawley rats as compared to the site immediately adjacent to it, which does not have the embryo attached, clearly showing the importance of the blastocyst in the regulation of renin-angiotensin system (RAS). OBJECTIVE The objective of this study was to evaluate the regulation of the RAS in the decidualized uterus in the pseudopregnant rat, a model without the presence of a conceptus. METHODS Ovariectomized, adult female rats were sensitized for the decidual cell reaction with steroid treatments; decidualization was induced by oil-injection of the right horn; the left horn served as a control. The uterine content of Ang I, Ang II, and Ang-(1-7) was examined in the decidualized and non-decidualized uteri. RESULTS Both Ang-(1-7) and Ang II and ACE and ACE2 mRNA were significantly reduced in the decidualized horn as compared to the non-decidualized horn. Immunocytochemical characterization of Ang II, Ang-(1-7), ACE and ACE2 demonstrated that Ang-(1-7), Ang II, and ACE2 polarize to the anti-mesometrial pole with decidualization. CONCLUSION The decidualization process elicits marked reduction in uterine Ang II and Ang-(1-7) content as compared to the non-decidualized horn. The differential immunocytochemical expression of Ang II and Ang-(1-7) with ACE2, but not ACE in the anti-mesometrial pole of the decidualized horn may favor the formation and action of Ang-(1-7) in the anti-mesometrial pole, an area which plays a role in triggering the decidualization process.
Collapse
Affiliation(s)
- K B Brosnihan
- Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, NC 27157, United States.
| | | | | | | |
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW Previous concepts regarding the pathways involved in the generation of angiotensin II (Ang II) have been challenged by studies showing the existence of a peptide acting as an endogenous antagonist of Ang II. The discovery that angiotensin-(1-7) [Ang-(1-7)] opposes the pressor, proliferative, profibrotic, and prothrombotic actions mediated by Ang II has contributed to the realization that the renin-angiotensin system is composed of two opposing arms: the pressor arm constituted by the enzyme angiotensin-converting enzyme (ACE), Ang II as the product, and the Ang II type 1 (AT1) receptor as the main protein mediating the biological actions of Ang II; the second arm is composed of the monocarboxypeptidase angiotensin-converting enzyme 2 (ACE2), Ang-(1-7) produced through hydrolysis of Ang II, and the Mas receptor as the protein conveying the vasodilator, antiproliferative, antifibrotic, and antithrombotic effects of Ang-(1-7). RECENT FINDINGS Experimental and clinical studies demonstrate a role for the Ang-(1-7)/ACE2/Mas axis in the evolution of hypertension, the regulation of renal function, and the progression of renal disease including diabetic nephropathy. Additional evidence suggests that a reduction in the expression and activity of this vasodepressor component may be a critical factor in mediating the progression of cardiovascular disease. SUMMARY Further research on the contribution of the Ang-(1-7)/ACE2/Mas axis to cardiovascular pathology will lead to the development of new pharmacological approaches resulting in the design of molecular or genetic means to increase the expression of ACE2, allow for increased tissue levels of Ang-(1-7), or both.
Collapse
|
26
|
Mustafa HI, Garland EM, Biaggioni I, Black BK, Dupont WD, Robertson D, Raj SR. Abnormalities of angiotensin regulation in postural tachycardia syndrome. Heart Rhythm 2011; 8:422-8. [PMID: 21266211 DOI: 10.1016/j.hrthm.2010.11.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 11/04/2010] [Indexed: 12/12/2022]
Abstract
BACKGROUND Postural tachycardia syndrome (POTS) is a disorder characterized by excessive orthostatic tachycardia and significant functional disability. We previously reported that POTS patients have low blood volume and inappropriately low plasma renin activity (PRA) and aldosterone. In this study, we sought to more fully characterize the renin-angiotensin-aldosterone system (RAAS) to gain a better understanding of the pathophysiology of POTS. OBJECTIVE The purpose of this study was to prospectively assess the plasma levels of angiotensin (Ang) peptides and their relationship to other RAAS components in patients with POTS compared with healthy controls. METHODS Heart rate, PRA, Ang I, Ang II, Ang (1-7), and aldosterone were measured in POTS patients (n = 38) and healthy controls (n = 13) while they were consuming a sodium-controlled diet. RESULTS POTS patients had larger orthostatic increases in heart rate than did controls (52 ± 3 [mean ± SEM] bpm vs 27 ± 6 bpm, P = .001). Plasma Ang II was significantly higher in POTS patients (43 ± 3 pg/mL vs 28 ± 3 pg/mL, P = .006), whereas plasma Ang I and angiotensin 1-7 [Ang-(1-7)] were similar between groups. Despite the twofold increase of Ang II, POTS patients trended to lower PRA levels than did controls (0.9 ± 0.1 ng/mL/h vs 1.6 ± 0.5 ng/mL/h, P = .268) and lower aldosterone levels (4.6 ± 0.8 pg/mL vs 10.0 ± 3.0 pg/mL, P = .111). Estimated angiotensin-converting enzyme-2 (ACE2) activity was significantly lower in POTS patients than in controls (0.25 ± 0.02 vs 0.33 ± 0.03, P = .038). CONCLUSION Some patients with POTS have inappropriately high plasma Ang II levels, with low estimated ACE2 activity. We propose that these abnormalities in Ang regulation may play a key role in the pathophysiology of POTS in some patients.
Collapse
Affiliation(s)
- Hossam I Mustafa
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2195, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
ACE2-angiotensin-(1-7)-Mas axis and oxidative stress in cardiovascular disease. Hypertens Res 2010; 34:154-60. [PMID: 21124322 DOI: 10.1038/hr.2010.235] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The renin-angiotensin-aldosterone system (RAAS) is a pivotal regulator of physiological homeostasis and diseases of the cardiovascular system. Recently, new factors have been discovered, such as angiotensin-converting enzyme 2 (ACE2), angiotensin-(1-7) and Mas. This newly defined ACE2-angiotensin-(1-7)-Mas axis was shown to have a critical role in the vasculature and in the heart, exerting mainly protective effects. One important mechanism of the classic and the new RAAS regulate vascular function is through the regulation of redox signaling. Angiotensin II is a classic prooxidant peptide that increases superoxide production through the activation of NAD(P)H oxidases. This review summarizes the current knowledge about the ACE2-angiotensin-(1-7)-Mas axis and redox signaling in the context of cardiovascular regulation and disease. By interacting with its receptor Mas, angiotensin-(1-7) induces the release of nitric oxide from endothelial cells and thereby counteracts the effects of angiotensin II. ACE2 converts angiotensin II to angiotensin-(1-7) and, thus, is a pivotal regulator of the local effects of the RAAS on the vessel wall. Taken together, the ACE2-angiotensin-(1-7)-Mas axis emerges as a novel therapeutic target in the context of cardiovascular and metabolic diseases.
Collapse
|
28
|
Ferrario CM, Varagic J. The ANG-(1-7)/ACE2/mas axis in the regulation of nephron function. Am J Physiol Renal Physiol 2010; 298:F1297-305. [PMID: 20375118 DOI: 10.1152/ajprenal.00110.2010] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The study of experimental hypertension and the development of drugs with selective inhibitory effects on the enzymes and receptors constituting the components of the circulating and tissue renin-angiotensin systems have led to newer concepts of how this system participates in both physiology and pathology. Over the last decade, a renewed emphasis on understanding the role of angiotensin-(1-7) and angiotensin-converting enzyme 2 in the regulation of blood pressure and renal function has shed new light on the complexity of the mechanisms by which these components of the renin angiotensin system act in the heart and in the kidneys to exert a negative regulatory influence on angiotensin converting enzyme and angiotensin II. The vasodepressor axis composed of angiotensin-(1-7)/angiotensin-converting enzyme 2/mas receptor emerges as a site for therapeutic interventions within the renin-angiotensin system. This review summarizes the evolving knowledge of the counterregulatory arm of the renin-angiotensin system in the control of nephron function and renal disease.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Hypertension and Vascular Disease Research Center and Department of Surgery, Wake Forest University School of Medicine, Winston Salem, North Carolina 27157, USA.
| | | |
Collapse
|
29
|
Impairment of the angiotensin-converting enzyme 2-angiotensin-(1-7)-Mas axis contributes to the acceleration of two-kidney, one-clip Goldblatt hypertension. J Hypertens 2010; 27:1988-2000. [PMID: 19593210 DOI: 10.1097/hjh.0b013e32832f0d06] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Recent studies have shown that the heptapeptide angiotensin-(1-7) [Ang-(1-7)] exerts important vasoactive actions and can act as an endogenous physiological antagonist of angiotensin II (Ang II) within the renin-angiotensin system (RAS). The present study was performed to evaluate the effects, first, of chronic increases of Ang-(1-7) levels, second, of [7-D-Ala], an Ang-(1-7) receptor antagonist, and, third, of an angiotensin-converting enzyme 2 (ACE2) inhibitor on the course of hypertension and of renal function of the nonclipped kidney in two-kidney, one-clip (2K1C) Goldblatt hypertensive rats. METHODS Blood pressure (BP) was monitored by radiotelemetry. Elevation of the effect of circulating Ang-(1-7) levels was achieved either by chronic subcutaneous infusion of Ang-(1-7) through osmotic minipumps or by employing transgenic rats that express an Ang-(1-7)-producing fusion protein [Ang-(1-7)TGR+/+] (and its control Ang-(1-7)TGR-/-). [7-D-Ala] was also infused subcutaneously and the ACE2 inhibitor was administrated in drinking water. On day 25 after clipping, rats were anesthetized and renal function was evaluated. RESULTS Chronic infusion of Ang-(1-7) did not modify the course of 2K1C hypertension and did not alter renal function as compared with saline vehicle-infused 2K1C rats. Chronic infusion of [7-D-Ala] or treatment with the ACE2 inhibitor worsened the course of hypertension and elicited decreases in renal hemodynamics. [Ang-(1-7)TGR+/+] and [Ang-(1-7)TGR-/-] rats exhibited a similar course of hypertension. CONCLUSION The present data support the notion that Ang-(1-7) serves as an important endogenous vasodilator and natriuretic agent and its deficiency might contribute to the acceleration of 2K1C Goldblatt hypertension.
Collapse
|
30
|
Ferrario CM. New physiological concepts of the renin-angiotensin system from the investigation of precursors and products of angiotensin I metabolism. Hypertension 2009; 55:445-52. [PMID: 20026757 DOI: 10.1161/hypertensionaha.109.145839] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Carlos M Ferrario
- Hypertension and Vascular Disease Research Center, Wake Forest University School of Medicine, Winston Salem, NC 27157, USA.
| |
Collapse
|
31
|
Abstract
OBJECTIVE Recent studies have demonstrated that perivascular adipose tissue (PVAT) releases vascular relaxation factor(s), but the identity of this relaxation factor remains unknown. Here, we examined if angiotensin 1-7 [Ang-(1-7)] is one of the relaxation factors released by PVAT. METHOD Morphological and functional methods were used to study aorta from adult Wistar rats. RESULTS Immunohistochemical staining showed abundant presence of Ang-(1-7) in aortic PVAT. In vessels with PVAT removed but intact endothelium (PVAT - E+), contraction induced by phenylephrine was attenuated by preincubation with Ang-(1-7). PVAT - E+ vessels precontracted with phenylephrine showed a concentration-dependent relaxation response to Ang-(1-7), and this response was abolished by the removal of endothelium. Relaxation response induced by Ang-(1-7) was also prevented by Ang-(1-7) receptor (Mas) antagonist (A779), nitric oxide synthase inhibitor, and nitric oxide scavenger. Ang-(1-7) did not cause a relaxation response in aorta precontracted with KCl, and the relaxation response to Ang-(1-7) was also blocked by calcium-dependent potassium (K(Ca)) channel blockers. Incubation of PVAT + E+ vessels with A779 or angiotensin-converting enzyme 2 inhibitor DX600 or angiotensin-converting enzyme inhibitor enalaprilat increased the contraction induced by phenylephrine. Transfer of donor solution incubated with PVAT + E+ vessel to recipient PVAT - E+ vessel caused a relaxation response. This relaxation response was abolished when donor vessels were incubated with DX600 or enalaprilat or when recipient vessels were incubated with A779. CONCLUSION Ang-(1-7) released by PVAT acts on the endothelium to cause the release of nitric oxide, and nitric oxide acts as a hyperpolarizing factor through K(Ca) channels to cause relaxation of the blood vessel.
Collapse
|
32
|
Alfany-Fernandez I, Casillas-Ramirez A, Bintanel-Morcillo M, Brosnihan KB, Ferrario CM, Serafin A, Rimola A, Rodés J, Roselló-Catafau J, Peralta C. Therapeutic targets in liver transplantation: angiotensin II in nonsteatotic grafts and angiotensin-(1-7) in steatotic grafts. Am J Transplant 2009; 9:439-51. [PMID: 19191767 DOI: 10.1111/j.1600-6143.2008.02521.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Numerous steatotic livers are discarded as unsuitable for transplantation because of their poor tolerance of ischemia-reperfusion(I/R). The injurious effects of angiotensin (Ang)-II and the benefits of Ang-(1-7) in various pathologies are well documented. We examined the generation of Ang II and Ang-(1-7) in steatotic and nonsteatotic liver grafts from Zucker rats following transplantation. We also studied in both liver grafts the effects of Ang-II receptors antagonists and Ang-(1-7) receptor antagonists on hepatic I/R damage associated with transplantation. Nonsteatotic grafts showed higher Ang II levels than steatotic grafts, whereas steatotic grafts showed higher Ang-(1-7) levels than nonsteatotic grafts. Ang II receptor antagonists protected only nonsteatotic grafts against damage, whereas Ang-(1-7) receptor antagonists were effective only in steatotic grafts. The protection conferred by Ang II receptor antagonists in nonsteatotic grafts was associated with ERK 1/2 overexpression, whereas the beneficial effects of Ang-(1-7) receptor antagonists in steatotic grafts may be mediated by NO inhibition. Our results show that Ang II receptor antagonists are effective only in nonsteatotic liver transplantation and point to a novel therapeutic target in liver transplantation based on Ang-(1-7), which is specific for steatotic liver grafts.
Collapse
Affiliation(s)
- I Alfany-Fernandez
- Centro de Investigaciones Biomédicas Esther Koplowitz, CIBER-EHD, Instituto de Salud Carlos III, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Frohlich ED, Re RN. Newer Insights into the Biochemical Physiology of the Renin–Angiotensin System: Role of Angiotensin-(1-7), Angiotensin Converting Enzyme 2, and Angiotensin-(1-12). THE LOCAL CARDIAC RENIN-ANGIOTENSIN ALDOSTERONE SYSTEM 2009. [PMCID: PMC7114999 DOI: 10.1007/978-1-4419-0528-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Knowledge of the mechanisms by which the rennin–angiotensin system contributes to cardiovascular pathology continues to advance at a rapid pace as newer methods and therapies uncover the nature of this complex system and its fundamental role in the regulation of blood pressure and tissue function. The characterization of the biochemical pathways and functions mediated by angiotensin-(1-7) [Ang-(1-7)], angiotensin converting enzyme 2 (ACE2), and the mas receptor has revealed a vasodepressor and antiproliferative axis that within the rennin–angiotensin system opposes the biological actions of angiotensin II (Ang II). In addition, new research expands on this knowledge by demonstrating additional mechanisms for the formation of Ang II and Ang-(1-7) through the existence of an alternate form of the angiotensinogen substrate [angiotensin-(1-12)] which generates Ang II and even Ang-(1-7) through a non-renin dependent action. Altogether, this research paves the way for a better understanding of the intracellular mechanisms involved in the synthesis of angiotensin peptides and its consequences in terms of cell function in both physiology and pathology.
Collapse
Affiliation(s)
- Edward D. Frohlich
- Ochsner Clinic Foundation, Jefferson Highway 1514 , New Orleans, 70121 U.S.A
| | - Richard N. Re
- Ochsner Clinic Foundation, Jefferson Highway 1514 , New Orleans, 70121 U.S.A
| |
Collapse
|
34
|
Zhang Y, Lu J, Shi J, Lin X, Dong J, Zhang S, Liu Y, Tong Q. Central administration of angiotensin-(1-7) stimulates nitric oxide release and upregulates the endothelial nitric oxide synthase expression following focal cerebral ischemia/reperfusion in rats. Neuropeptides 2008; 42:593-600. [PMID: 18990443 DOI: 10.1016/j.npep.2008.09.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Revised: 09/14/2008] [Accepted: 09/19/2008] [Indexed: 01/18/2023]
Abstract
Angiotensin-(1-7) [Ang-(1-7)] is an endogenous peptide of the renin-angiotensin system with several beneficial effects that are often opposite to those attributed to angiotensin II (Ang II). Since there are no data available so far on the role of Ang-(1-7) after cerebral ischemia/reperfusion, in this paper, we investigated the central administration of Ang-(1-7) modulates in vivo the nitric oxide(NO) release and the endothelial NO synthase (eNOS) expression following focal cerebral ischemia/reperfusion in rats. Cerebral ischemia-reperfusion injury was induced by intraluminal thread occlusion of middle cerebral artery in the adult male rats. The levels of NO in ischemic tissues were measured by NO detection kits. Reverse transcription (RT)-PCR and western blot were used to determine messenger RNA (mRNA) and protein levels of the eNOS in ischemic tissues. The cerebral ischemic lesion resulted in a significant increase of NO release at 3 and 6h compared with sham operation group in our model after reperfusion, whereas both medium and high doses Ang-(1-7) markedly enhanced NO levels at 3-24h, and 3-72h after reperfusion, respectively. In addition, NO release increased was significantly induced by high-dose Ang-(1-7) compared with medium-dose Ang-(1-7) at 24-72 h after reperfusion. Medium and high-dose Ang-(1-7) significantly stimulated eNOS activation when compared with artificial cerebrospinal fluid (aCSF) treatment group at 3, 6, 12, 24, and 48h after reperfusion, however, no significant changes in eNOS expression were found between medium and high-dose Ang-(1-7) at different times after the ischemic insult. These findings indicate that medium and high-dose Ang-(1-7) stimulate NO release and upregulate eNOS expression in ischemic tissues following focal cerebral ischemia/reperfusion in rats.
Collapse
Affiliation(s)
- Yingdong Zhang
- Department of Neurology, Nanjing Brain Hospital, Nanjing Medical University, No. 264 Guangzhou Road, Nanjing 210029, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Varagic J, Trask AJ, Jessup JA, Chappell MC, Ferrario CM. New angiotensins. J Mol Med (Berl) 2008; 86:663-71. [PMID: 18437333 PMCID: PMC2713173 DOI: 10.1007/s00109-008-0340-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 02/28/2008] [Accepted: 02/29/2008] [Indexed: 12/22/2022]
Abstract
Accumulation of a large body of evidence during the past two decades testifies to the complexity of the renin–angiotensin system (RAS). The incorporation of novel enzymatic pathways, resulting peptides, and their corresponding receptors into the biochemical cascade of the RAS provides a better understanding of its role in the regulation of cardiovascular and renal function. Hence, in recent years, it became apparent that the balance between the two opposing effector peptides, angiotensin II and angiotensin-(1-7), may have a pivotal role in determining different cardiovascular pathophysiologies. Furthermore, our recent studies provide evidence for the functional relevance of a newly discovered rat peptide, containing two additional amino acid residues compared to angiotensin I, first defined as proangiotensin-12 [angiotensin-(1-12)]. This review focuses on angiotensin-(1-7) and its important contribution to cardiovascular function and growth, while introducing angiotensin-(1-12) as a potential novel angiotensin precursor.
Collapse
Affiliation(s)
- Jasmina Varagic
- The Hypertension and Vascular Research Center, Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | | | | | |
Collapse
|
36
|
Anton L, Merrill DC, Neves LAA, Stovall K, Gallagher PE, Diz DI, Moorefield C, Gruver C, Ferrario CM, Brosnihan KB. Activation of local chorionic villi angiotensin II levels but not angiotensin (1-7) in preeclampsia. Hypertension 2008; 51:1066-72. [PMID: 18259034 PMCID: PMC2705753 DOI: 10.1161/hypertensionaha.107.103861] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The chorionic villi in the placenta are responsible for the regulation of fetal oxygen and nutrient transport. Although the peripheral renin-angiotensin system is activated during normal pregnancy, the regulation of the local chorionic villi renin-angiotensin system remains unknown. Therefore, placental chorionic villous tissue was collected from nulliparous third-trimester normotensive or preeclamptic subjects and was analyzed for angiotensin peptide content, angiotensinogen, renin, angiotensin-converting enzyme (ACE), ACE2, neprilysin, angiotensin II type 1 (AT(1)), angiotensin II type 2, Mas receptor mRNAs, and angiotensin receptor density and subtype. Angiotensin II in chorionic villi was significantly higher in preeclamptic subjects, whereas angiotensin (1-7) was not different. Angiotensinogen and AT(1) receptor gene expression was significantly higher in preeclamptic subjects. No differences were observed in renin, ACE, ACE2, or neprilysin gene expression. Mas receptor mRNA in preeclamptic subjects was decreased. The AT(1) receptor was the predominant receptor subtype in normal and preeclamptic chorionic villi. There was no difference in the density of the AT(1,) angiotensin II type 2, and angiotensin (1-7) receptors. These results indicate that enhanced chorionic villous expression of angiotensin II may result from increased angiotensinogen. Elevated angiotensin II, acting through the AT(1) receptor, may favor vasoconstriction in placental chorionic villi and contribute to impaired fetal blood flow and decreased fetal nutrition observed during preeclampsia.
Collapse
MESH Headings
- Adult
- Angiotensin I/metabolism
- Angiotensin II/metabolism
- Angiotensinogen/genetics
- Angiotensinogen/metabolism
- Chorionic Villi/metabolism
- Female
- Gene Expression
- Humans
- Neprilysin/genetics
- Neprilysin/metabolism
- Peptide Fragments/metabolism
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/metabolism
- Placenta/physiology
- Pre-Eclampsia/metabolism
- Pregnancy
- Proto-Oncogene Mas
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Renin-Angiotensin System/physiology
Collapse
Affiliation(s)
- Lauren Anton
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Neves LAA, Stovall K, Joyner J, Valdés G, Gallagher PE, Ferrario CM, Merrill DC, Brosnihan KB. ACE2 and ANG-(1-7) in the rat uterus during early and late gestation. Am J Physiol Regul Integr Comp Physiol 2007; 294:R151-61. [PMID: 17977916 DOI: 10.1152/ajpregu.00514.2007] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was designed to determine ANG peptide content [ANG I, ANG II, ANG-(1-7)], ACE2 mRNA, and the immunocytochemical distribution of ANG-(1-7) and ACE2 in the uteroembryonic unit during early and late gestation in Sprague-Dawley rats and in a rat model of pregnancy-induced hypertension, the reduced uterine perfusion pressure (RUPP) model. At early pregnancy ANG-(1-7) and ACE2 staining were localized in the primary and secondary decidual zone and luminal and glandular epithelial cells. During late gestation, ANG-(1-7) and ACE2 staining was visualized in the labyrinth placenta and amniotic and yolk sac epithelium. Uterine ANG II concentration at early pregnancy was significantly decreased by 21-55% in the implantation and interimplantation sites compared with virgin rats, whereas ANG-(1-7) levels were maintained at prepregnancy levels. At late gestation, uterine concentrations of ANG I and ANG II were significantly increased (30% and 25%, respectively). In RUPP animals, ANG-(1-7) concentration is significantly reduced in the uterus (181 +/- 16 vs. 372 +/- 74 fmol/g of tissue) and placenta (143 +/- 26 vs. 197 +/- 20 fmol/g of tissue). ACE2 mRNA increased in the uterus of early pregnant compared with virgin rats, yet within the implantation site it was downregulated. At late pregnancy, ACE2 mRNA is elevated by 58% in the uterus and decreased by 59% in RUPP animals. The regulation of ANG-(1-7) and ACE2 in early and late pregnancy supports the hypothesis that ANG-(1-7) and ACE2 may act as a local autocrine/paracrine regulator throughout pregnancy, participating in the early (angiogenesis, apoptosis, and growth) and late (uteroplacental blood flow) events of pregnancy.
Collapse
Affiliation(s)
- Liomar A A Neves
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, NC 27157-1032, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Pignone A, Rosso AD, Brosnihan KB, Perfetto F, Livi R, Fiori G, Guiducci S, Cinelli M, Rogai V, Tempestini A, Bartoli F, Generini S, Ferrario CM, Cerinic MM. Reduced circulating levels of angiotensin-(1--7) in systemic sclerosis: a new pathway in the dysregulation of endothelial-dependent vascular tone control. Ann Rheum Dis 2007; 66:1305-10. [PMID: 17360781 PMCID: PMC1994289 DOI: 10.1136/ard.2006.064493] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2007] [Indexed: 11/04/2022]
Abstract
OBJECTIVE Systemic sclerosis (SSc) impairs endothelium-dependent vasodilatation. Among angiotensin I (Ang I)-derived compounds, vasoconstrictor angiotensin II (Ang II) and vasodilator angiotensin-(1-7) (Ang-(1-7)), cleaved from ACE and neutral endopeptidase (NEP) 24.11, respectively, play an important role in vascular tone regulation. Ang-(1-7) may act independently or by activating other vasodilating molecules, such as nitric oxide (NO) or prostaglandin I2 (PGI2). Our aim was to assess, in patients with SSc, circulating levels of Ang I, Ang II and Ang-(1-7), with their metabolising enzymes ACE and NEP, and levels of NO and PGI2, and to correlate them to the main characteristics of SSc. METHODS Levels of Ang I, Ang II, Ang-(1-7), NEP, ACE, NO and PGI2 were measured in 32 patients with SSc, who were also assessed for humoral and clinical characteristics, and 55 controls. RESULTS Plasma Ang I, Ang II and Ang-(1-7) levels were lower in patients with SSc than in controls (p<0.001in all cases). When Ang II and Ang-(1-7) levels were expressed as a function of the available Ang I, lower Ang-(1-7) levels in patients with SSc than in controls were confirmed (p<0.001), while no difference was found for Ang II levels. In patients with SSc, the Ang II/Ang-(1-7) ratio indicated a prevalence of Ang II over Ang-(1-7), while in controls Ang-(1-7) was prevalent (p<0.001). Levels of ACE, NEP, NO and PGI2 were lower in patients with SSc than in controls (p<0.05 in all cases). CONCLUSION In patients with SSc, prevalence of the vasoconstricting Ang II over the vasodilator Ang-(1-7) suggests a dysfunction of the angiotensin-derived cascade that may contribute to dysregulation of vascular tone.
Collapse
Affiliation(s)
- Alberto Pignone
- Department of Medicine and Surgery, Division of Medicine I and II and Rheumatology, Villa Monna Tessa, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Trask AJ, Ferrario CM. Angiotensin-(1-7): pharmacology and new perspectives in cardiovascular treatments. ACTA ACUST UNITED AC 2007; 25:162-74. [PMID: 17614938 DOI: 10.1111/j.1527-3466.2007.00012.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many advances have been made in the cardiovascular field in the last several decades. Among them is the progress completed to date on the heptapeptide member of the renin-angiotensin system (RAS), angiotensin-(1-7) [Ang-(1-7)]. The peptide's beneficial actions against pathophysiological processes, such as cardiac arrhythmia, heart failure, hypertension, renal disease, preeclampsia, and even cancer are continuously being uncovered. This review encompasses the pharmacology of Ang-(1-7) and expounds upon the peptide's potential as a therapeutic agent against pathological processes both within and outside the cardiovascular continuum.
Collapse
Affiliation(s)
- Aaron J Trask
- The Hypertension and Vascular Research Center, Wake Forest University Health Science Center, Winston-Salem, North Carolina 27157, USA.
| | | |
Collapse
|
40
|
Dimitropoulou C, Chatterjee A, McCloud L, Yetik-Anacak G, Catravas JD. Angiotensin, bradykinin and the endothelium. Handb Exp Pharmacol 2007:255-94. [PMID: 16999222 DOI: 10.1007/3-540-32967-6_8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Angiotensins and kinins are endogenous peptides with diverse biological actions; as such, they represent current and future targets of therapeutic intervention. The field of angiotensin biology has changed significantly over the last 50 years. Our original understanding of the crucial role of angiotensin II in the regulation of vascular tone and electrolyte homeostasis has been expanded to include the discovery of new angiotensins, their important role in cardiovascular inflammation and the development of clinically useful synthesis inhibitors and receptor antagonists. While less applied progress has been achieved in the kinin field, there are continuous discoveries in bradykinin physiology and in the complexity of kinin interactions with other proteins. The present review focuses on mechanisms and interactions of angiotensins and kinins that deal specifically with vascular endothelium.
Collapse
Affiliation(s)
- C Dimitropoulou
- Vascular Biology Center and Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta, GA 30912-2500, USA
| | | | | | | | | |
Collapse
|
41
|
Joyner J, Neves LAA, Granger JP, Alexander BT, Merrill DC, Chappell MC, Ferrario CM, Davis WP, Brosnihan KB. Temporal-spatial expression of ANG-(1-7) and angiotensin-converting enzyme 2 in the kidney of normal and hypertensive pregnant rats. Am J Physiol Regul Integr Comp Physiol 2007; 293:R169-77. [PMID: 17428896 DOI: 10.1152/ajpregu.00387.2006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We recently demonstrated that renin-angiotensin system (RAS) overactivity during late gestation in rats is associated with increased kidney and urine levels of ANG-(1-7) and enhanced kidney immunostaining of ANG-(1-7) and angiotensin-converting enzyme 2 (ACE2). To understand the temporal-spatial changes in normal and hypertensive pregnancies, the renal distribution of ANG-(1-7) and ACE2 in association with kidney angiotensin peptides and ACE2 activity was examined in virgin, normal pregnant (NP; gestational days 5, 15, and 19) and reduced uterine perfusion pressure (RUPP at day 19) pregnant Sprague-Dawley rats. ANG-(1-7) and ACE2 immunocytochemical staining increased 1.8- and 1.9-fold and 1.7- and 1.8-fold, respectively, at days 15 and 19 of NP, compared with virgin rats. ANG-(1-7) and ANG II concentrations were increased in the kidney at 19 days of gestation. ACE2 activity measured using a fluorescent substrate was increased 1.9- and 1.9-fold in the cortex and 1.9- and 1.8-fold in the medulla at days 15 and 19 of NP. In the RUPP animals, ANG-(1-7) immunostaining and concentration were significantly decreased compared with 19-day NP rats. ACE2 activity was unchanged in the cortex and medulla of RUPP rats. In conclusion, during NP, the concurrent changes of ACE2 and ANG-(1-7) suggest that ACE2 plays an important role in regulating the renal levels of ANG-(1-7) at mid to late gestation. However, the decrease in renal ANG-(1-7) content in the absence of a concomitant decrease in ACE2 implicates the participation of other ANG-(1-7) forming or degrading enzymes during hypertensive pregnancy.
Collapse
Affiliation(s)
- J Joyner
- The Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Medical Center Boulevard, Winston Salem, NC 27157-1032, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Schindler C, Brosnihan KB, Ferrario CM, Bramlage P, Maywald U, Koch R, Oertel R, Kirch W. Comparison of inhibitory effects of irbesartan and atorvastatin treatment on the renin angiotensin system (RAS) in veins: a randomized double-blind crossover trial in healthy subjects. J Clin Pharmacol 2007; 47:112-20. [PMID: 17192509 DOI: 10.1177/0091270006294280] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Experimental studies point to an interplay between hypercholesterolemia and hypertension, acting through the renin angiotensin system. In a crossover study design with 8 healthy subjects, the authors tested the hypothesis that statin treatment exerts renin angiotensin system-modulating effects in veins by down-regulation of AT1-receptors, resulting in reduced Angiotensin II (Ang II)-induced venoconstriction and by increasing the pleiotropic Ang II-metabolite Ang-(1-7). Irbesartan was used as positive control. Ang II-induced venoconstriction was 49% +/- 9% before and 64% +/- 10% after 30 days of atorvastatin treatment compared to 50% +/- 8% before and 15% +/- 9% after irbesartan (P = .004). Plasma angiotensin levels significantly increased only after irbesartan treatment (Ang II: 35 +/- 4 vs 329 +/- 101 pg/mL [P = .02]; Ang-(1-7): 10 +/- 3 vs 35 +/- 6 pg/mL [P = .01]) compared to atorvastatin treatment (Ang II: 26 +/- 5 vs 31 +/- 4 pg/mL [P = ns]; Ang-(1-7): 9 +/- 2 vs 11 +/- 3 pg/mL [P = ns]). The data indicate that atorvastatin does not inhibit Ang II-induced venoconstriction in vivo and point toward a supportive role of Ang-(1-7) in contributing to the antihypertensive and beneficial vascular effects of irbesartan.
Collapse
Affiliation(s)
- Christoph Schindler
- Institute of Clinical Pharmacology, Medical Faculty of the University of Technology, Fiedlerstrasse 27, D-01307 Dresden, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
van der Wouden EA, Ochodnický P, van Dokkum RP, Roks AJ, Deelman LE, de Zeeuw D, Henning RH. The role of angiotensin(1-7) in renal vasculature of the rat. J Hypertens 2007; 24:1971-8. [PMID: 16957556 DOI: 10.1097/01.hjh.0000244945.42169.c0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Angiotensin(1-7) is an active component of the renin-angiotensin-aldosterone system. Its exact role in renal vascular function is unclear. We therefore studied the effects of angiotensin(1-7) on the renal vasculature in vitro and in vivo. METHODS Isolated small renal arteries were studied in an arteriograph system by constructing concentration-response curves to angiotensin II, without and with angiotensin(1-7). In isolated perfused kidneys, the response of angiotensin II on renal vascular resistance was measured without and with angiotensin(1-7). The influence of angiotensin(1-7) on angiotensin II-induced glomerular afferent and efferent constriction was assessed with intravital microscopy in vivo under anaesthesia. In freely moving rats, we studied the effect of angiotensin(1-7) on angiotensin II-induced reduction of renal blood flow with an electromagnetic flow probe. RESULTS Angiotensin(1-7) alone had no effect on the renal vasculature in any of the experiments. In vitro, angiotensin(1-7) antagonized angiotensin-II-induced constriction of isolated renal arteries (9.71 +/- 1.21 and 3.20 +/- 0.57%, for control and angiotensin(1-7) pre-treated arteries, respectively; P < 0.0005). In isolated perfused kidneys, angiotensin(1-7) reduced the angiotensin II response (100 +/- 16.6 versus 72.6 +/- 15.6%, P < 0.05) and shifted the angiotensin II dose-response curve rightward (pEC50, 6.69 +/- 0.19 and 6.26 +/- 0.12 for control and angiotensin(1-7) pre-treated kidneys, respectively; P < 0.05). Angiotensin(1-7), however, was devoid of effects on angiotensin-II-induced constriction of glomerular afferent and efferent arterioles and on angiotensin-II-induced renal blood flow reduction in freely moving rats in vivo. CONCLUSION Angiotensin(1-7) antagonizes angiotensin II in renal vessels in vitro, but does not appear to have a major function in normal physiological regulation of renal vascular function in vivo.
Collapse
Affiliation(s)
- Els A van der Wouden
- Department of Clinical Pharmacology, Groningen University Institute for Drug Exploration, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
44
|
Regulation of Cardiovascular Control Mechanisms by Angiotensin-(1–7) and Angiotensin-Converting Enzyme 2. HYPERTENSION AND HORMONE MECHANISMS 2007. [PMCID: PMC7120586 DOI: 10.1007/978-1-59259-987-5_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Among the molecular forms of angiotensin peptides generated by the action of renin on angiotensinogen (Aogen), both angiotensin II (Ang II) and the amino terminal heptapeptide angiotensin-(1–7) [Ang-(1–7)] are critically involved in the long-term control of tissue perfusion, cell-cell communication, development, and growth. Whereas an impressive body of literature continues to uncover pleiotropic effects of Ang II in the regulation of cell function, research on Ang-(1–7) has a shorter history as it was only 16 yr ago that a biological function for this heptapeptide was first demonstrated in the isolated rat neuro-hypophysial explant preparation (1). On the contrary, the synthesis of angiotonin/ hypertensin (now Ang II) was first obtained in 1957 (2), three decades ahead of the discovery of Ang-(1–7) biological properties.
Collapse
|
45
|
ACE Inhibition in Heart Failure and Ischaemic Heart Disease. FRONTIERS IN RESEARCH OF THE RENIN-ANGIOTENSIN SYSTEM ON HUMAN DISEASE 2007. [PMCID: PMC7122740 DOI: 10.1007/978-1-4020-6372-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
The Role of the Renin-Angiotensin System in Hepatic Fibrosis. FRONTIERS IN RESEARCH OF THE RENIN-ANGIOTENSIN SYSTEM ON HUMAN DISEASE 2007. [PMCID: PMC7121340 DOI: 10.1007/978-1-4020-6372-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
47
|
Ferrario CM, Trask AJ, Jessup JA. Advances in biochemical and functional roles of angiotensin-converting enzyme 2 and angiotensin-(1-7) in regulation of cardiovascular function. Am J Physiol Heart Circ Physiol 2005; 289:H2281-90. [PMID: 16055515 PMCID: PMC7203566 DOI: 10.1152/ajpheart.00618.2005] [Citation(s) in RCA: 294] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the first human homologue of ACE to be described. ACE2 is a type I integral membrane protein that functions as a carboxypeptidase, cleaving a single hydrophobic/basic residue from the COOH-terminus of its substrates. Because ACE2 efficiently hydrolyzes the potent vasoconstrictor angiotensin II to angiotensin (1-7), this has changed our overall perspective about the classical view of the renin angiotensin system in the regulation of hypertension and heart and renal function, because it represents the first example of a feedforward mechanism directed toward mitigation of the actions of angiotensin II. This paper reviews the new data regarding the biochemistry of angiotensin-(1-7)-forming enzymes and discusses key findings such as the elucidation of the regulatory mechanisms participating in the expression of ACE2 and angiotensin-(1-7) in the control of the circulation.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Hypertension and Vascular Disease Center, Wake Forest Univ. School of Medicine, Winston-Salem, NC 27157, USA.
| | | | | |
Collapse
|
48
|
Gallagher PE, Chappell MC, Ferrario CM, Tallant EA. Distinct roles for ANG II and ANG-(1-7) in the regulation of angiotensin-converting enzyme 2 in rat astrocytes. Am J Physiol Cell Physiol 2005; 290:C420-6. [PMID: 16176966 DOI: 10.1152/ajpcell.00409.2004] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a homolog of ACE that preferentially forms angiotensin-(1-7) [ANG-(1-7)] from angiotensin II (ANG II). Incubation of neonatal rat cerebellar or medullary astrocytes with ANG II reduced ACE2 mRNA by approximately 60%, suggesting transcriptional regulation of the enzyme. In contrast, ANG II had no effect on ACE mRNA in astrocytes isolated from either brain region, demonstrating a differential regulation of the two enzymes by ANG II. The ANG II-mediated reduction in ACE2 mRNA was blocked by the angiotensin type 1 (AT(1)) receptor antagonists losartan or valsartan; the angiotensin type 2 (AT(2)) antagonist PD123319 was ineffective. The reduction in ACE2 mRNA by ANG II also was associated with a 50% decrease in cerebellar and medullary ACE2 protein, which was blocked by losartan. Treatment of medullary astrocytes with ANG-(1-7), the product of ACE2 hydrolysis of ANG II, did not affect ACE2 mRNA; however, ANG-(1-7) prevented the ANG II-mediated reduction in ACE2 mRNA. The addition of [d-Ala(7)]-ANG-(1-7), a selective AT((1-7)) receptor antagonist, blocked the inhibitory actions of ANG-(1-7). These data are the first to demonstrate transcriptional regulation of ACE2 by ANG II and ANG-(1-7). Because ACE2 preferentially converts ANG II to ANG-(1-7), downregulation of the enzyme by ANG II constitutes a novel positive feed-forward system within the brain that may favor ANG II-mediated neural responses. Furthermore, the modulatory role of ANG-(1-7) in the transcriptional regulation of ACE2 by ANG II suggests a complex interplay between these peptides that is mediated by distinct receptor systems.
Collapse
Affiliation(s)
- Patricia E Gallagher
- The Hypertension and Vascular Disease Center, Wake Forest Univ. School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1032, USA.
| | | | | | | |
Collapse
|
49
|
Tallant EA, Ferrario CM, Gallagher PE. Angiotensin-(1-7) inhibits growth of cardiac myocytes through activation of the mas receptor. Am J Physiol Heart Circ Physiol 2005; 289:H1560-6. [PMID: 15951342 DOI: 10.1152/ajpheart.00941.2004] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peptide hormones such as ANG II and endothelin contribute to cardiac remodeling after myocardial infarction by stimulating myocyte hypertrophy and myofibroblast proliferation. In contrast, angiotensin-(1-7) [ANG-(1-7)] infusion after myocardial infarction reduced myocyte size and attenuated ventricular dysfunction and remodeling. We measured the effect of ANG-(1-7) on protein and DNA synthesis in cultured neonatal rat myocytes to assess the role of the heptapeptide in cell growth. ANG-(1-7) significantly attenuated either fetal bovine serum- or endothelin-1-stimulated [(3)H]leucine incorporation into myocytes with no effect on [(3)H]thymidine incorporation. [d-Ala(7)]-ANG-(1-7), the selective ANG type 1-7 (AT(1-7)) receptor antagonist, blocked the ANG-(1-7)-mediated reduction in protein synthesis in cardiac myocytes, whereas the AT(1) and AT(2) angiotensin peptide receptors were ineffective. Serum-stimulated ERK1/ERK2 mitogen-activated protein kinase activity was significantly decreased by ANG-(1-7) in myocytes, a response that was also blocked by [d-Ala(7)]-ANG-(1-7). Both rat heart and cardiac myocytes express the mRNA for the mas receptor, and a 59-kDa immunoreactive protein was identified in both extracts of rat heart and cultured myocytes by Western blot hybridization with the use of an antibody to mas, an ANG-(1-7) receptor. Transfection of cultured myocytes with an antisense oligonucleotide to the mas receptor blocked the ANG-(1-7)-mediated inhibition of serum-stimulated MAPK activation, whereas a sense oligonucleotide was ineffective. These results suggest that ANG-(1-7) reduces the growth of cardiomyocytes through activation of the mas receptor. Because ANG-(1-7) is elevated after treatment with angiotensin-converting enzyme inhibitors or AT(1) receptor blockers, ANG-(1-7) may contribute to their beneficial effects on cardiac dysfunction and ventricular remodeling after myocardial infarction.
Collapse
Affiliation(s)
- E Ann Tallant
- Hypertension and Vascular Disease Center, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157-1032, USA.
| | | | | |
Collapse
|
50
|
Valdés G, Neves LAA, Anton L, Corthorn J, Chacón C, Germain AM, Merrill DC, Ferrario CM, Sarao R, Penninger J, Brosnihan KB. Distribution of angiotensin-(1-7) and ACE2 in human placentas of normal and pathological pregnancies. Placenta 2005; 27:200-7. [PMID: 16338465 DOI: 10.1016/j.placenta.2005.02.015] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 02/03/2005] [Accepted: 02/19/2005] [Indexed: 11/16/2022]
Abstract
This work was designed to study the expression of the vasodilator peptide angiotensin-(1-7) [Ang-(1-7)] and its generating enzyme (ACE2) in the uteroplacental interface. Placentas were obtained from 11 early pregnancy failures (5 miscarriages and 6 ectopic pregnancies), 15 normotensive, and 10 preeclamptic gestations. In placental villi, the main sites of immunocytochemical expression of Ang-(1-7) and ACE2 were the syncytiotrophoblast, cytotrophoblast, endothelium and vascular smooth muscle of primary and secondary villi. Syncitial Ang-(1-7) expression in samples obtained from miscarriages and ectopic pregnancies was increased compared to normal term pregnancy [2.0 (2.0-2.25 for the 25 and 75% interquartile range) vs 1.3 (1.0-1.9), p<0.01]. In the maternal stroma, Ang-(1-7) and ACE2 were expressed in the invading and intravascular trophoblast and in decidual cells in all 3 groups. Ang-(1-7) and ACE2 staining was also found in arterial and venous endothelium and smooth muscle of the umbilical cord. The expression of Ang-(1-7) and ACE2 was similar in samples obtained from normal term or preeclamptic pregnancies, except for increased expression of ACE2 in umbilical arterial endothelium in preeclampsia [0.5 (0.5-0.8) vs 0.0 (0.0-0.0), p<0.01]. The uteroplacental location of Ang-(1-7) and ACE2 in pregnancy suggests an autocrine function of Ang-(1-7) in the vasoactive regulation that characterizes placentation and established pregnancy.
Collapse
Affiliation(s)
- G Valdés
- Departamento Nefrología, Facultad Medicina Universidad Católica Santiago, Chile
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|