1
|
Mu B, Zeng Y, Luo L, Wang K. Oxidative stress-mediated protein sulfenylation in human diseases: Past, present, and future. Redox Biol 2024; 76:103332. [PMID: 39217848 PMCID: PMC11402764 DOI: 10.1016/j.redox.2024.103332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
Reactive Oxygen Species (ROS) refer to a variety of derivatives of molecular oxygen that play crucial roles in regulating a wide range of physiological and pathological processes. Excessive ROS levels can cause oxidative stress, leading to cellular damage and even cell demise. However, moderately elevated levels of ROS can mediate the oxidative post-translational modifications (oxPTMs) of redox-sensitive proteins, thereby affecting protein functions and regulating various cellular signaling pathways. Among the oxPTMs, ROS-induced reversible protein sulfenylation represents the initial form of cysteine oxidation for sensing redox signaling. In this review, we will summarize the discovery, chemical formation, and detection approaches of protein sulfenylation. In addition, we will highlight recent findings for the roles of protein sulfenylation in various diseases, including thrombotic disorders, diabetes, cardiovascular diseases, neurodegenerative diseases, and cancer.
Collapse
Affiliation(s)
- Baoquan Mu
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Zeng
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Li Luo
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, 610041, China.
| | - Kui Wang
- West China School of Basic Medical Sciences & Forensic Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Li X, Liu Y, Tang Y, Xia Z. Transformation of macrophages into myofibroblasts in fibrosis-related diseases: emerging biological concepts and potential mechanism. Front Immunol 2024; 15:1474688. [PMID: 39386212 PMCID: PMC11461261 DOI: 10.3389/fimmu.2024.1474688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Macrophage-myofibroblast transformation (MMT) transforms macrophages into myofibroblasts in a specific inflammation or injury microenvironment. MMT is an essential biological process in fibrosis-related diseases involving the lung, heart, kidney, liver, skeletal muscle, and other organs and tissues. This process consists of interacting with various cells and molecules and activating different signal transduction pathways. This review deeply discussed the molecular mechanism of MMT, clarified crucial signal pathways, multiple cytokines, and growth factors, and formed a complex regulatory network. Significantly, the critical role of transforming growth factor-β (TGF-β) and its downstream signaling pathways in this process were clarified. Furthermore, we discussed the significance of MMT in physiological and pathological conditions, such as pulmonary fibrosis and cardiac fibrosis. This review provides a new perspective for understanding the interaction between macrophages and myofibroblasts and new strategies and targets for the prevention and treatment of MMT in fibrotic diseases.
Collapse
Affiliation(s)
- Xiujun Li
- Health Science Center, Chifeng University, Chifeng, China
| | - Yuyan Liu
- Rehabilitation Medicine College, Shandong Second Medical University, Jinan, China
| | - Yongjun Tang
- Department of Emergency, Affiliated Hospital of Chifeng University, Chifeng, China
| | - Zhaoyi Xia
- Department of Library, Children’s Hospital Affiliated to Shandong University, Jinan, China
- Department of Library, Jinan Children’s Hospital, Jinan, China
| |
Collapse
|
3
|
Lv H, Xu R, Xie X, Liang Q, Yuan W, Xia Y, Ao X, Tan S, Zhao L, Wu J, Wang Y. Injectable, degradable, and mechanically adaptive hydrogel induced by L-serine and allyl-functionalized chitosan with platelet-rich plasma for treating intrauterine adhesions. Acta Biomater 2024; 184:144-155. [PMID: 38964528 DOI: 10.1016/j.actbio.2024.06.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
The integration of barrier materials with pharmacological therapy is a promising strategy to treat intrauterine adhesions (IUAs). However, most of these materials are surgically implanted in a fixed shape and incongruence with the natural mechanical properties of the uterus, causing poor adaptability and significant discomfort to the patients. Herein, an injectable, biodegradable, and mechanically adaptive hydrogel loaded with platelet-rich plasma (PRP) is created by L‑serine and allyl functionalized chitosan (ACS) to achieve efficient, comfortable, and minimally invasive treatment of IUAs. L‑serine induces fast gelation and mechanical reinforcement of the hydrogel, while ACS introduces, imparting a good injectability and complaint yet strong feature to the hydrogel. This design enables the hydrogel to adapt to the complex geometry and match the mechanical properties of the uterine. Moreover, the hydrogel exhibits proper degradability, sustained growth factors (GFs) of PRP release ability, and good biocompatibility. Consequently, the hydrogel shows promising therapeutic efficacy by reducing collagen fiber deposition and facilitating endometrium cell proliferation, thereby restoring the fertility function of the uterus in an IUAs model of rats. Accordingly, the combination of L‑serine and ACS-induced hydrogel with such advantages holds great potential for treating IUAs. STATEMENT OF SIGNIFICANCE: This research introduces a breakthrough in the treatment of intrauterine adhesions (IUAs) with an injectable, biodegradable and mechanically adaptive hydrogel using L‑serine and allyl functionalized chitosan (ACS). Unlike traditional surgical treatments, this hydrogel uniquely conforms to the uterus's geometry and mechanical properties, offering a minimally invasive, comfortable, and more effective solution. The hydrogel is designed to release growth factors from platelet-rich plasma (PRP) sustainably, promoting tissue regeneration by enhancing collagen fiber deposition and endometrium cell proliferation. Demonstrated efficacy in a rat model of IUAs indicates its great potential to significantly improve fertility restoration treatments. This advancement represents a significant leap in reproductive medicine, promising to transform IUAs treatment with its innovative approach to achieving efficient, comfortable, and minimally invasive therapy.
Collapse
Affiliation(s)
- Hongyi Lv
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Ruijuan Xu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Xiangyan Xie
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Qianqian Liang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Wanting Yuan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yuting Xia
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Xue Ao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Shiqiao Tan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Lijuan Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Jinrong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yi Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China.
| |
Collapse
|
4
|
Danielpour D. Advances and Challenges in Targeting TGF-β Isoforms for Therapeutic Intervention of Cancer: A Mechanism-Based Perspective. Pharmaceuticals (Basel) 2024; 17:533. [PMID: 38675493 PMCID: PMC11054419 DOI: 10.3390/ph17040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The TGF-β family is a group of 25 kDa secretory cytokines, in mammals consisting of three dimeric isoforms (TGF-βs 1, 2, and 3), each encoded on a separate gene with unique regulatory elements. Each isoform plays unique, diverse, and pivotal roles in cell growth, survival, immune response, and differentiation. However, many researchers in the TGF-β field often mistakenly assume a uniform functionality among all three isoforms. Although TGF-βs are essential for normal development and many cellular and physiological processes, their dysregulated expression contributes significantly to various diseases. Notably, they drive conditions like fibrosis and tumor metastasis/progression. To counter these pathologies, extensive efforts have been directed towards targeting TGF-βs, resulting in the development of a range of TGF-β inhibitors. Despite some clinical success, these agents have yet to reach their full potential in the treatment of cancers. A significant challenge rests in effectively targeting TGF-βs' pathological functions while preserving their physiological roles. Many existing approaches collectively target all three isoforms, failing to target just the specific deregulated ones. Additionally, most strategies tackle the entire TGF-β signaling pathway instead of focusing on disease-specific components or preferentially targeting tumors. This review gives a unique historical overview of the TGF-β field often missed in other reviews and provides a current landscape of TGF-β research, emphasizing isoform-specific functions and disease implications. The review then delves into ongoing therapeutic strategies in cancer, stressing the need for more tools that target specific isoforms and disease-related pathway components, advocating mechanism-based and refined approaches to enhance the effectiveness of TGF-β-targeted cancer therapies.
Collapse
Affiliation(s)
- David Danielpour
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH 44106, USA; ; Tel.: +1-216-368-5670; Fax: +1-216-368-8919
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Institute of Urology, University Hospitals, Cleveland, OH 44106, USA
| |
Collapse
|
5
|
Gibson Hughes TA, Dona MSI, Sobey CG, Pinto AR, Drummond GR, Vinh A, Jelinic M. Aortic Cellular Heterogeneity in Health and Disease: Novel Insights Into Aortic Diseases From Single-Cell RNA Transcriptomic Data Sets. Hypertension 2024; 81:738-751. [PMID: 38318714 DOI: 10.1161/hypertensionaha.123.20597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Aortic diseases such as atherosclerosis, aortic aneurysms, and aortic stiffening are significant complications that can have significant impact on end-stage cardiovascular disease. With limited pharmacological therapeutic strategies that target the structural changes in the aorta, surgical intervention remains the only option for some patients with these diseases. Although there have been significant contributions to our understanding of the cellular architecture of the diseased aorta, particularly in the context of atherosclerosis, furthering our insight into the cellular drivers of disease is required. The major cell types of the aorta are well defined; however, the advent of single-cell RNA sequencing provides unrivaled insights into the cellular heterogeneity of each aortic cell type and the inferred biological processes associated with each cell in health and disease. This review discusses previous concepts that have now been enhanced with recent advances made by single-cell RNA sequencing with a focus on aortic cellular heterogeneity.
Collapse
Affiliation(s)
- Tayla A Gibson Hughes
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| | - Malathi S I Dona
- Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia (M.S.I.D., A.R.P.)
| | - Christopher G Sobey
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| | - Alexander R Pinto
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
- Baker Heart and Diabetes Research Institute, Melbourne, Victoria, Australia (M.S.I.D., A.R.P.)
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| | - Antony Vinh
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| | - Maria Jelinic
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia (T.A.G.H., C.G.S., A.R.P., G.R.D., A.V., M.J.)
| |
Collapse
|
6
|
Schnitzler GR, Kang H, Fang S, Angom RS, Lee-Kim VS, Ma XR, Zhou R, Zeng T, Guo K, Taylor MS, Vellarikkal SK, Barry AE, Sias-Garcia O, Bloemendal A, Munson G, Guckelberger P, Nguyen TH, Bergman DT, Hinshaw S, Cheng N, Cleary B, Aragam K, Lander ES, Finucane HK, Mukhopadhyay D, Gupta RM, Engreitz JM. Convergence of coronary artery disease genes onto endothelial cell programs. Nature 2024; 626:799-807. [PMID: 38326615 PMCID: PMC10921916 DOI: 10.1038/s41586-024-07022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/03/2024] [Indexed: 02/09/2024]
Abstract
Linking variants from genome-wide association studies (GWAS) to underlying mechanisms of disease remains a challenge1-3. For some diseases, a successful strategy has been to look for cases in which multiple GWAS loci contain genes that act in the same biological pathway1-6. However, our knowledge of which genes act in which pathways is incomplete, particularly for cell-type-specific pathways or understudied genes. Here we introduce a method to connect GWAS variants to functions. This method links variants to genes using epigenomics data, links genes to pathways de novo using Perturb-seq and integrates these data to identify convergence of GWAS loci onto pathways. We apply this approach to study the role of endothelial cells in genetic risk for coronary artery disease (CAD), and discover 43 CAD GWAS signals that converge on the cerebral cavernous malformation (CCM) signalling pathway. Two regulators of this pathway, CCM2 and TLNRD1, are each linked to a CAD risk variant, regulate other CAD risk genes and affect atheroprotective processes in endothelial cells. These results suggest a model whereby CAD risk is driven in part by the convergence of causal genes onto a particular transcriptional pathway in endothelial cells. They highlight shared genes between common and rare vascular diseases (CAD and CCM), and identify TLNRD1 as a new, previously uncharacterized member of the CCM signalling pathway. This approach will be widely useful for linking variants to functions for other common polygenic diseases.
Collapse
Affiliation(s)
- Gavin R Schnitzler
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Helen Kang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
| | - Shi Fang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ramcharan S Angom
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA
| | - Vivian S Lee-Kim
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - X Rosa Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
| | - Ronghao Zhou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
| | - Tony Zeng
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
| | - Katherine Guo
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
| | - Martin S Taylor
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shamsudheen K Vellarikkal
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Aurelie E Barry
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Oscar Sias-Garcia
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Alex Bloemendal
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA
| | - Glen Munson
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Tung H Nguyen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Drew T Bergman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Stephen Hinshaw
- Department of Chemical and Systems Biology, ChEM-H, and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Nathan Cheng
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Brian Cleary
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Faculty of Computing and Data Sciences, Departments of Biology and Biomedical Engineering, Biological Design Center, and Program in Bioinformatics, Boston University, Boston, MA, USA
| | - Krishna Aragam
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Eric S Lander
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Hilary K Finucane
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, USA
| | - Rajat M Gupta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA.
- Divisions of Genetics and Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| | - Jesse M Engreitz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute, Cambridge, MA, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Basic Science and Engineering Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA.
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
7
|
He H, Wang H, Chen X, Zhong Y, Huang XR, Ma RCW, Wang C, Lan HY. Treatment for type 2 diabetes and diabetic nephropathy by targeting Smad3 signaling. Int J Biol Sci 2024; 20:200-217. [PMID: 38164169 PMCID: PMC10750285 DOI: 10.7150/ijbs.87820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/10/2023] [Indexed: 01/03/2024] Open
Abstract
TGF-β/Smad3 signaling plays a critical role in type 2 diabetes (T2D) and type 2 diabetic nephropathy (T2DN), but treatment by specifically targeting Smad3 remains unexplored. To develop a new Smad3-targeted therapy for T2D and T2DN, we treated db/db mice at the pre-diabetic or established diabetic stage with a pharmacological Smad3 inhibitor SIS3. The therapeutic effect and mechanisms of anti-Smad3 treatment on T2D and T2DN were investigated. We found that anti-Smad3 treatment on pre-diabetic db/db mice largely attenuated both T2D and T2DN by markedly reducing blood glucose levels, and inhibiting the elevated serum creatinine, microalbuminuria, and renal fibrosis and inflammation. Unexpectedly, although SIS3 treatment on the established diabetic db/db mice inhibited T2DN but did not significantly improve T2D. Mechanistically, we uncovered that inhibition of T2DN in SIS3-treated db/db mice was associated with effectively restoring the balance of TGF-β/Smad signaling by inhibiting Smad3 while increasing Smad7, thereby suppressing Smad3-mediated renal fibrosis and NF-κB-driven renal inflammation via lncRNA Erbb4-IR and LRN9884-dependent mechanisms. We also revealed that inhibition of islet β cell injury by preventing the loss of islet Pax 6 could be the mechanism through which the pre-diabetic treatment, rather than the late SIS3 treatment on db/db mice significantly improved the T2D phenotype.
Collapse
Affiliation(s)
- Huijun He
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong; and Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, and Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Honglian Wang
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong; and Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, and Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Xiaocui Chen
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong; and Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, and Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Yu Zhong
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong; and Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, and Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Xiao Ru Huang
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong; and Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, and Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Ronald CW Ma
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong; and Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, and Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Cheng Wang
- Division of Nephrology, Department of Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, 519000, China; Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, 519000, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, the Chinese University of Hong Kong, Hong Kong; and Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, and Departments of Nephrology and Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| |
Collapse
|
8
|
Ito S, Amioka N, Franklin MK, Wang P, Liang CL, Katsumata Y, Cai L, Temel RE, Daugherty A, Lu HS, Sawada H. Association of NOTCH3 With Elastic Fiber Dispersion in the Infrarenal Abdominal Aorta of Cynomolgus Monkeys. Arterioscler Thromb Vasc Biol 2023; 43:2301-2311. [PMID: 37855127 PMCID: PMC10843096 DOI: 10.1161/atvbaha.123.319244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 10/02/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND The regional heterogeneity of vascular components and transcriptomes is an important determinant of aortic biology. This notion has been explored in multiple mouse studies. In the present study, we examined the regional heterogeneity of aortas in nonhuman primates. METHODS Aortic samples were harvested from the ascending, descending thoracic, suprarenal, and infrarenal regions of young control monkeys and adult monkeys with high fructose consumption for 3 years. The regional heterogeneity of aortic structure and transcriptomes was examined by histological and bulk RNA sequencing analyses, respectively. RESULTS Immunostaining of CD31 and αSMA (alpha-smooth muscle actin) revealed that endothelial and smooth muscle cells were distributed homogeneously across the aortic regions. In contrast, elastic fibers were less abundant and dispersed in the infrarenal aorta compared with other regions and associated with collagen deposition. Bulk RNA sequencing identified a distinct transcriptome related to the Notch signaling pathway in the infrarenal aorta with significantly increased NOTCH3 mRNA compared with other regions. Immunostaining revealed that NOTCH3 protein was increased in the media of the infrarenal aorta. The abundance of medial NOTCH3 was positively correlated with the dispersion of elastic fibers. Adult cynomolgus monkeys with high fructose consumption displayed vascular wall remodeling, such as smooth muscle cell loss and elastic fiber disruption, predominantly in the infrarenal region. The correlation between NOTCH3 and elastic fiber dispersion was enhanced in these monkeys. CONCLUSIONS Aortas of young cynomolgus monkeys display regional heterogeneity of their transcriptome and the structure of elastin and collagens. Elastic fibers in the infrarenal aorta are dispersed along with upregulation of medial NOTCH3.
Collapse
Affiliation(s)
- Sohei Ito
- Saha Cardiovascular Research Center, College of Medicine
| | - Naofumi Amioka
- Saha Cardiovascular Research Center, College of Medicine
| | | | - Pengjun Wang
- Saha Cardiovascular Research Center, College of Medicine
| | | | - Yuriko Katsumata
- Department of Biostatistics, College of Public Health, University of Kentucky, KY
- Sanders-Brown Center on Aging, University of Kentucky, KY
| | - Lei Cai
- Saha Cardiovascular Research Center, College of Medicine
| | - Ryan E. Temel
- Saha Cardiovascular Research Center, College of Medicine
- Saha Aortic Center, College of Medicine, University of Kentucky, KY
- Department of Physiology, College of Medicine, University of Kentucky, KY
| | - Alan Daugherty
- Saha Cardiovascular Research Center, College of Medicine
- Saha Aortic Center, College of Medicine, University of Kentucky, KY
- Department of Physiology, College of Medicine, University of Kentucky, KY
| | - Hong S. Lu
- Saha Cardiovascular Research Center, College of Medicine
- Saha Aortic Center, College of Medicine, University of Kentucky, KY
- Department of Physiology, College of Medicine, University of Kentucky, KY
| | - Hisashi Sawada
- Saha Cardiovascular Research Center, College of Medicine
- Saha Aortic Center, College of Medicine, University of Kentucky, KY
- Department of Physiology, College of Medicine, University of Kentucky, KY
| |
Collapse
|
9
|
Gu JJ, Li HX, Wei W, Sun XL, Li BC, Chen Y, Li J, Gu X. Bone marrow mesenchymal stem cell transplantation alleviates radiation-induced myocardial fibrosis through inhibition of the TGF-β1/Smad2/3 signaling pathway in rabbit model. Regen Ther 2023; 24:1-10. [PMID: 37292187 PMCID: PMC10244902 DOI: 10.1016/j.reth.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/10/2023] [Accepted: 04/23/2023] [Indexed: 06/10/2023] Open
Abstract
Background and purpose: Radiotherapy (RT) is an effective treatment for most malignant chest tumors. However, radiation-induced myocardial fibrosis (RIMF) is a serious side effect of RT. Currently, due to the mechanism of RIMF has not been fully elucidated, there is a lack of effective therapeutic approach. In this study, we aimed to investigate the role and possible mechanisms of bone marrow mesenchymal stem cells (BMSCs) in the therapy of RIMF. Materials and methods Twenty-four New Zealand white rabbits were allotted into four groups (n = 6). Rabbits in the Control group received neither irradiation nor treatment. A single dose of 20 Gy heart X-irradiation was applied to the RT group, RT + PBS group and RT + BMSCs group. Rabbits in the RT + PBS group and RT + BMSCs group were injected with 200 μL PBS or 2 × 106 cells via pericardium puncture 24 h following irradiation, respectively. Echocardiography was used to test the cardiac function; Then the heart samples were collected, and processed for histopathological, Western blot and immunohistochemistry investigations. Results It was observed that BMSCs have therapeutic effect on RIMF. Compared with the Control group, inflammatory mediators, oxidative stress and apoptosis were significantly increased, meanwhile, cardiac function was remarkably decreased in the RT group and RT + PBS group. However, in the BMSCs group, BMSCs significantly improved cardiac function, decreased inflammatory mediators, oxidative stress and apoptosis. Furthermore, BMSCs remarkably reduced the expression level of TGF-β1 and the phosphorylated-Smad2/3. Conclusions In conclusion, our research indicates BMSCs have the potential to alleviate RIMF through TGF-β1/Smad2/3 and would be a new therapeutic approach for patients with myocardial fibrosis.
Collapse
Affiliation(s)
- Jian Jun Gu
- Department of Cardiology, Institute of Translational Medicine, Medical College, Yangzhou University, PR China
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225001, PR China
| | - Hong Xiao Li
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225001, PR China
| | - Wei Wei
- Department of Cardiology, Institute of Translational Medicine, Medical College, Yangzhou University, PR China
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225001, PR China
| | - Xiao Lin Sun
- Department of Cardiology, Institute of Translational Medicine, Medical College, Yangzhou University, PR China
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225001, PR China
| | - Bi Chun Li
- Key Laboratory of Animal Breeding and Molecular Design for Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225001, PR China
| | - Yong Chen
- Department of Ultrasound, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225001, PR China
| | - Jun Li
- Department of Radiology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225001, PR China
| | - Xiang Gu
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225001, PR China
| |
Collapse
|
10
|
Hampton G, Kim J, Edwards TL, Hellwege JN, Velez Edwards DR. Uterine leiomyomata and keloids fibrosis origins: a mini-review of fibroproliferative diseases. Am J Physiol Cell Physiol 2023; 325:C817-C822. [PMID: 37642233 PMCID: PMC10635651 DOI: 10.1152/ajpcell.00181.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Diseases such as uterine leiomyomata (fibroids and benign tumors of the uterus) and keloids (raised scars) may share common etiology. Fibroids and keloids can co-occur in individuals, and both are highly heritable, suggesting they may share common genetic risk factors. Fibroproliferative diseases are common and characterized by scarring and overgrowth of connective tissue, impacting multiple organ systems. These conditions both have racial disparities in prevalence, with the highest prevalence observed among individuals of African ancestry. Several fibroproliferative diseases are more severe and common in populations of sub-Saharan Africa. This mini-review aims to provide a broad overview of the current knowledge of the evolutionary origins and causes of fibroproliferative diseases. We also discuss current hypotheses proposing that the increased prevalence of these diseases in African-derived populations is due to the selection for profibrotic alleles that are protective against helminth infections and provide examples from knowledge of uterine fibroid and keloid research.
Collapse
Affiliation(s)
- Gabrielle Hampton
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jeewoo Kim
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Todd L Edwards
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Jacklyn N Hellwege
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Digna R Velez Edwards
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Division of Quantitative Sciences, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, Tennessee, United States
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
11
|
Li JC, Jia J, Dong L, Hu ZJ, Huang XR, Wang HL, Wang L, Yang SJ, Lan HY. Angiotensin II mediates hypertensive cardiac fibrosis via an Erbb4-IR-dependent mechanism. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:180-190. [PMID: 37449045 PMCID: PMC10336735 DOI: 10.1016/j.omtn.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Transforming growth factor β (TGF-β)/Smad3 plays a vital role in hypertensive cardiac fibrosis. The long non-coding RNA (lncRNA) Erbb4-IR is a novel Smad3-dependent lncRNA that mediates kidney fibrosis. However, the role of Erbb4-IR in hypertensive heart disease remains unexplored and was investigated in the present study by ultrasound-microbubble-mediated silencing of cardiac Erbb4-IR in hypertensive mice induced by angiotensin II. We found that chronic angiotensin II infusion induced hypertension and upregulated cardiac Erbb4-IR, which was associated with cardiac dysfunction, including a decrease in left ventricle ejection fraction (LVEF) and LV fractional shortening (LVFS) and an increase in LV mass. Knockdown of cardiac Erbb4-IR by Erbb4-IR short hairpin RNA (shRNA) gene transfer effectively improved the angiotensin II-induced deterioration of cardiac function, although blood pressure was not altered. Furthermore, silencing cardiac Erbb4-IR also inhibited angiotensin II-induced progressive cardiac fibrosis, as evidenced by reduced collagen I and III, alpha-smooth muscle actin (α-SMA), and fibronectin accumulation. Mechanistically, improved hypertensive cardiac injury by specifically silencing cardiac Erbb4-IR was associated with increased myocardial Smad7 and miR-29b, revealing that Erbb4-IR may target Smad7 and miR-29b to mediate angiotensin II-induced hypertensive cardiac fibrosis. In conclusion, Erbb4-IR is pathogenic in angiotensin II (Ang II)-induced cardiac remodeling, and targeting Erbb4-IR may be a novel therapy for hypertensive cardiovascular diseases.
Collapse
Affiliation(s)
- Jian-Chun Li
- Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jian Jia
- Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Li Dong
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- National Traditional Chinese Medicine Clinical Research Base, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zhong-Jing Hu
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- National Traditional Chinese Medicine Clinical Research Base, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| | - Hong-Lian Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Li Wang
- Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Si-Jin Yang
- National Traditional Chinese Medicine Clinical Research Base, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Hui-Yao Lan
- Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China
| |
Collapse
|
12
|
Suryono S, Rohman MS, Widjajanto E, Prayitnaningsih S, Wihastuti TA, Oktaviono YH. Effect of Colchicine in reducing MMP-9, NOX2, and TGF- β1 after myocardial infarction. BMC Cardiovasc Disord 2023; 23:449. [PMID: 37697278 PMCID: PMC10496361 DOI: 10.1186/s12872-023-03464-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/22/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND According to WHO 2020, CAD is the second leading cause of death in Indonesia with death cases reaching 259,297 or 15.33% of total deaths. Unfortunately, most of the patients of CAD in Indonesia did not match the golden period or decline to be treated with Percutaneous Coronary Intervention (PCI). Based on the recent study, there were increases in MMP-9, NOX2, and TGF-β1 in STEMI patients which contribute to cardiac remodeling. Moreover, there is controversy regarding the benefit of late PCI (12-48 hours after onset of STEMI) in stable patients. Lately, colchicine is widely used in cardiovascular disease. This study was conducted to explore the effect of colchicine to reduce MMP- 9, NOX2, and TGF-β1 levels after myocardial infarction in stable patients. METHOD In this clinical trial study, we assessed 129 STEMI patients, about 102 patients who met inclusion criteria were randomized into four groups. Around 25 patients received late PCI (12-48 h after the onset of chest pain), optimal medical treatment (OMT) for STEMI, and colchicine; 24 patients received late PCI and OMT; 22 patients didn't get the revascularization (No Revas), OMT, and colchicine; and 31 patients received No Revas and OMT only. The laboratory test for MMP-9, NOX2, and TGF-β1 were tested in Day-1 and Day-5. The data were analyzed using Mann-Whitney. RESULTS A total of 102 patients with mean age of 56 ± 9.9, were assigned into four groups. The data analysis showed significant results within No Revas + OMT + Colchicine group versus No Revas + OMT + Placebo in MMP-9 (Day-1: p = 0.001; Day-5: p = 0.022), NOX2 (Day-1: p = 0.02; Day-5: p = 0.026), and TGF-β1 (Day-1: p = 0.00; Day-5: p = 0.00) with the less three markers in OMT + Colchicine group than OMT + Placebo group. There were no significant differences within the late PCI + OMT + colchicine group and PCI + OMT + Placebo group. CONCLUSIONS Colchicine could significantly reduce MMP-9, NOX2, and TGF-β1 levels in stable STEMI patients. So that, colchicine could be a potential agent in STEMI patients and prevent cardiac remodeling events.
Collapse
Affiliation(s)
- Suryono Suryono
- Doctoral Program of Medical Science, Brawijaya University, Malang, East Java, Indonesia.
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Jember University, Jember, East Java, Indonesia.
| | - Mohammad Saifur Rohman
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
- Brawijaya Cardiovascular Research Centre, Brawijaya University, Malang, East Java, Indonesia
| | - Edi Widjajanto
- Department of Clinical Pathology, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
| | - Seskoati Prayitnaningsih
- Department of Ophthalmology, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
| | - Titin Andri Wihastuti
- Department of Biomedical, Nursing Science, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
| | - Yudi Her Oktaviono
- Department of Cardiology and Vascular Medicine, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
13
|
Lin W, Yang X, Zheng F, Yang J, Zhang Y. Smad2/3 signaling involved in urotensin II-induced phenotypic differentiation, collagen synthesis and migration of rat aortic adventitial fibroblasts. ITALIAN JOURNAL OF MEDICINE 2023; 17. [DOI: 10.4081/itjm.2023.1637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Objective. To investigate whether Smad2/3 signaling is involved in urotensin II (UII) induced activation of aortic adventitial fibroblasts. Materials and Methods. Growth-arrested adventitial fibroblasts were stimulated with UII in the presence or absence of urotensin II receptor (UT) antagonist SB710411 or transfected with Smad2/3 small inhibitory RNA (siRNA). UII stimulated Smad2/3 phosphorylation, α-smooth muscle actin (α-SMA), and collagen I expression and migration of adventitial fibroblasts were evaluated by western blot analysis, real-time reverse transcription polymerase chain reaction, immunofluorescence, ELISA, and transwell migration assay, respectively. Results. In cultured adventitial fibroblasts, UII time- and dose-dependently stimulated Smad2/3 protein phosphorylation, with maximal effect at 10-8 mol/l (increased by 147.2%, P<0.001). UII stimulated Smad2/3 upregulation and nuclear translocation. SB710411 significantly inhibited these effects. In addition, UII potently induced α-SMA and procollagen 1 protein or mRNA expression (P<0.01), which were completely blocked by Smad2 (decreased by 75.1%, 54.2% in protein, and by 73.3% and 38.2% in mRNA, respectively, P<0.01) or Smad3 siRNA (decreased by 80.3% and 47.0% in protein, and by 72.3% and 47.7% in mRNA, respectively, P<0.01). Meanwhile, Smad2 or smad3 siRNA significantly inhibited the UII-induced collagen 1 secretion and cell migration. Conclusions. UII may stimulate adventitial-fibroblast phenotype conversion, migration, and collagen I synthesis via phosphorylated-Smad2/3 signal transduction pathways.
Collapse
|
14
|
Ito S, Amioka N, Franklin MK, Wang P, Liang CL, Katsumata Y, Cai L, Temel RE, Daugherty A, Lu HS, Sawada H. Association of NOTCH3 with Elastic Fiber Dispersion in the Infrarenal Abdominal Aorta of Cynomolgus Monkeys. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.04.530901. [PMID: 37767086 PMCID: PMC10522327 DOI: 10.1101/2023.03.04.530901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Background The regional heterogeneity of vascular components and transcriptomes is an important determinant of aortic biology. This notion has been explored in multiple mouse studies. In the present study, we examined the regional heterogeneity of aortas in non-human primates. Methods Aortic samples were harvested from the ascending, descending, suprarenal, and infrarenal regions of young control monkeys and adult monkeys provided with high fructose for 3 years. The regional heterogeneity of aortic structure and transcriptomes was examined by histological and bulk RNA sequencing analyses. Results Immunostaining of CD31 and αSMA revealed that endothelial and smooth muscle cells were distributed homogeneously across the aortic regions. In contrast, elastic fibers were less abundant and dispersed in the infrarenal aorta compared to other regions and associated with collagen deposition. Bulk RNA sequencing identified a distinct transcriptome related to the Notch signaling pathway in the infrarenal aorta with significantly increased NOTCH3 mRNA compared to other regions. Immunostaining revealed that NOTCH3 protein was increased in the media of the infrarenal aorta. The abundance of medial NOTCH3 was positively correlated with the dispersion of elastic fibers. Adult cynomolgus monkeys provided with high fructose displayed vascular wall remodeling, such as smooth muscle cell loss and elastic fiber disruption, predominantly in the infrarenal region. The correlation between NOTCH3 and elastic fiber dispersion was enhanced in these monkeys. Conclusions Aortas of young cynomolgus monkeys display regional heterogeneity of their transcriptome and the structure of elastin and collagens. Elastic fibers in the infrarenal aorta are dispersed along with upregulation of medial NOTCH3. HIGHLIGHTS - The present study determined the regional heterogeneity of aortas from cynomolgus monkeys.- Aortas of young cynomolgus monkeys displayed region-specific aortic structure and transcriptomes.- Elastic fibers were dispersed in the infrarenal aorta along with increased NOTCH3 abundance in the media. GRAPHIC ABSTRACT
Collapse
|
15
|
Yugavathy N, Abdullah BM, Lim SK, Abdul Gafor AHB, Wong MG, Bavanandan S, Wong HS, Huri HZ. Precision Medicine in Erythropoietin Deficiency and Treatment Resistance: A Novel Approach to Management of Anaemia in Chronic Kidney Disease. Curr Issues Mol Biol 2023; 45:6550-6563. [PMID: 37623232 PMCID: PMC10453742 DOI: 10.3390/cimb45080413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
The study of anaemia is a well-developed discipline where the concepts of precision medicine have, in part, been researched extensively. This review discusses the treatment of erythropoietin (EPO) deficiency anaemia and resistance in cases of chronic kidney disease (CKD). Traditionally, erythropoietin-stimulating agents (ESAs) and iron supplementation have been used to manage anaemia in cases of CKD. However, these treatments pose potential risks, including cardiovascular and thromboembolic events. Newer treatments have emerged to address these risks, such as slow-release and low-dosage intravenous iron, oral iron supplementation, and erythropoietin-iron combination therapy. Another novel approach is the use of hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHIs). This review highlights the need for precision medicine targeting the genetic components of EPO deficiency anaemia in CKD and discusses individual variability in genes such as the erythropoietin gene (EPO), the interleukin-β gene (IL-β), and the hypoxia-inducible factor gene (HIF). Pharmacogenetic testing aims to provide targeted therapies and interventions that are tailored to the specific characteristics of an individual, thus optimising treatment outcomes and minimising resistance and adverse effects. This article concludes by suggesting that receptor modification has the potential to revolutionise the treatment outcomes of patients with erythropoietin deficiency anaemia through the integration of the mentioned approach.
Collapse
Affiliation(s)
- Nava Yugavathy
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | | | - Soo Kun Lim
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | | | - Muh Geot Wong
- Department of Renal Medicine, Royal North Shore Hospital, Sydney, NSW 2065, Australia;
- The George Institute for Global Health, University of New South Wales, Kensington, NSW 2052, Australia
| | - Sunita Bavanandan
- Department of Nephrology, Hospital Kuala Lumpur, Kuala Lumpur 50586, Malaysia;
| | - Hin Seng Wong
- Department of Nephrology, Hospital Selayang, Batu Caves 68100, Malaysia;
| | - Hasniza Zaman Huri
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
16
|
Brown S, Nores GDG, Sarker A, Ly C, Li C, Park HJ, Hespe GE, Gardenier J, Kuonqui K, Campbell A, Shin J, Kataru RP, Aras O, Mehrara BJ. Topical captopril: a promising treatment for secondary lymphedema. Transl Res 2023; 257:43-53. [PMID: 36736951 PMCID: PMC10192126 DOI: 10.1016/j.trsl.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Transforming growth factor-beta 1 (TGF-β1)-mediated tissue fibrosis is an important regulator of lymphatic dysfunction in secondary lymphedema. However, TGF-β1 targeting can cause toxicity and autoimmune complications, limiting clinical utility. Angiotensin II (Ang II) modulates intracellular TGF-β1 signaling, and inhibition of Ang II production using angiotensin-converting enzyme (ACE) inhibitors, such as captopril, has antifibrotic efficacy in some pathological settings. Therefore, we analyzed the expression of ACE and Ang II in clinical lymphedema biopsy specimens from patients with unilateral breast cancer-related lymphedema (BCRL) and mouse models, and found that cutaneous ACE expression is increased in lymphedematous tissues. Furthermore, topical captopril decreases fibrosis, activation of intracellular TGF-β1 signaling pathways, inflammation, and swelling in mouse models of lymphedema. Captopril treatment also improves lymphatic function and immune cell trafficking by increasing collecting lymphatic pumping. Our results show that the renin-angiotensin system in the skin plays an important role in the regulation of fibrosis in lymphedema, and inhibition of this signaling pathway may hold merit for treating lymphedema.
Collapse
Affiliation(s)
- Stav Brown
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gabriela D G Nores
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ananta Sarker
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Catherine Ly
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Claire Li
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Hyeung Ju Park
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Geoffrey E Hespe
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason Gardenier
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kevin Kuonqui
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Adana Campbell
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jinyeon Shin
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Raghu P Kataru
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Omer Aras
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Babak J Mehrara
- Department of Surgery, Plastic and Reconstructive Surgery Service, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
17
|
Ma J, Li Y, Yang X, Liu K, Zhang X, Zuo X, Ye R, Wang Z, Shi R, Meng Q, Chen X. Signaling pathways in vascular function and hypertension: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 2023; 8:168. [PMID: 37080965 PMCID: PMC10119183 DOI: 10.1038/s41392-023-01430-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/22/2023] Open
Abstract
Hypertension is a global public health issue and the leading cause of premature death in humans. Despite more than a century of research, hypertension remains difficult to cure due to its complex mechanisms involving multiple interactive factors and our limited understanding of it. Hypertension is a condition that is named after its clinical features. Vascular function is a factor that affects blood pressure directly, and it is a main strategy for clinically controlling BP to regulate constriction/relaxation function of blood vessels. Vascular elasticity, caliber, and reactivity are all characteristic indicators reflecting vascular function. Blood vessels are composed of three distinct layers, out of which the endothelial cells in intima and the smooth muscle cells in media are the main performers of vascular function. The alterations in signaling pathways in these cells are the key molecular mechanisms underlying vascular dysfunction and hypertension development. In this manuscript, we will comprehensively review the signaling pathways involved in vascular function regulation and hypertension progression, including calcium pathway, NO-NOsGC-cGMP pathway, various vascular remodeling pathways and some important upstream pathways such as renin-angiotensin-aldosterone system, oxidative stress-related signaling pathway, immunity/inflammation pathway, etc. Meanwhile, we will also summarize the treatment methods of hypertension that targets vascular function regulation and discuss the possibility of these signaling pathways being applied to clinical work.
Collapse
Affiliation(s)
- Jun Ma
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Yanan Li
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiangyu Yang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Kai Liu
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xin Zhang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xianghao Zuo
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Runyu Ye
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ziqiong Wang
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Rufeng Shi
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China
| | - Qingtao Meng
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| | - Xiaoping Chen
- Department of Cardiology, West China Hospital, Sichuan University, No. 37, Guo Xue District, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
18
|
Huang Z, Shen S, Wang M, Li W, Wu G, Huang W, Luo W, Liang G. Mouse endothelial OTUD1 promotes angiotensin II-induced vascular remodeling by deubiquitinating SMAD3. EMBO Rep 2023; 24:e56135. [PMID: 36579465 PMCID: PMC9986815 DOI: 10.15252/embr.202256135] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/30/2022] Open
Abstract
Understanding the molecular mechanisms of pathological vascular remodeling is important for treating cardiovascular diseases and complications. Recent studies have highlighted a role of deubiquitinases in vascular pathophysiology. Here, we investigate the role of a deubiquitinase, OTUD1, in angiotensin II (Ang II)-induced vascular remodeling. We detect upregulated OTUD1 in the vascular endothelium of Ang II-challenged mice and show that OTUD1 deletion attenuates vascular remodeling, collagen deposition, and EndMT. Conversely, OTUD1 overexpression aggravates these pathological changes both in vivo and in vitro. Mechanistically, SMAD3 is identified as a substrate of OTUD1 using co-immunoprecipitation followed by LC-MS/MS. We find that OTUD1 stabilizes SMAD3 and facilitates SMAD3/SMAD4 complex formation and subsequent nuclear translocation through both K48- and K63-linked deubiquitination. OTUD1-mediated SMAD3 activation regulates transcription of genes involved in vascular EndMT and remodeling in HUVECs. Finally, SMAD3 inhibition reverses OTUD1-promoted vascular remodeling. Our findings demonstrate that endothelial OTUD1 promotes Ang II-induced vascular remodeling by deubiquitinating SMAD3. We identify SMAD3 as a target of OTUD1 and propose OTUD1 as a potential therapeutic target for diseases related to vascular remodeling.
Collapse
Affiliation(s)
- Zhuqi Huang
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Department of CardiologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Sirui Shen
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Department of CardiologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Mengyang Wang
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Weixin Li
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Gaojun Wu
- Department of CardiologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Weijian Huang
- Department of CardiologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Wu Luo
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouChina
- Department of CardiologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
- School of Pharmaceutical SciencesHangzhou Medical CollegeHangzhouChina
| |
Collapse
|
19
|
Li Z, Belozertseva E, Parlakian A, Bascetin R, Louis H, Kawamura Y, Blanc J, Gao-Li J, Pinet F, Lacy-Hulbert A, Challande P, Humphrey JD, Regnault V, Lacolley P. Smooth muscle α v integrins regulate vascular fibrosis via CD109 downregulation of TGF-β signalling. EUROPEAN HEART JOURNAL OPEN 2023; 3:oead010. [PMID: 36909248 PMCID: PMC9998030 DOI: 10.1093/ehjopen/oead010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 01/16/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Aims αv integrins are implicated in fibrosis in a number of organs through their ability to activate TGF-β. However their role in vascular fibrosis and collagen accumulation is only partially understood. Here we have used αv conditional knockout mice and cell lines to determine how αv contributes to vascular smooth muscle cell (VSMC) function in vascular fibrosis and the role of TGF-β in that process. Methods and results Angiotensin II (Ang II) treatment causes upregulation of αv and β3 expression in the vessel wall, associated with increased collagen deposition. We found that deletion of αv integrin subunit from VSMCs (αv SMKO) protected mice against angiotensin II-induced collagen production and assembly. Transcriptomic analysis of the vessel wall in αv SMKO mice and controls identified a significant reduction in expression of fibrosis and related genes in αv SMKO mice. In contrast, αv SMKO mice showed prolonged expression of CD109, which is known to affect TGF-β signalling. Using cultured mouse and human VSMCs, we showed that overexpression of CD109 phenocopied knockdown of αv integrin, attenuating collagen expression, TGF-β activation, and Smad2/3 signalling in response to angiotensin II or TGF-β stimulation. CD109 and TGF-β receptor were internalized in early endosomes. Conclusion We identify a role for VSMC αv integrin in vascular fibrosis and show that αv acts in concert with CD109 to regulate TGF-β signalling.
Collapse
Affiliation(s)
- Zhenlin Li
- Biological Adaptation and Ageing, Sorbonne Université, CNRS, INSERM, IBPS, 7 quai Saint Bernard, 75005 Paris, France
| | | | - Ara Parlakian
- Biological Adaptation and Ageing, Sorbonne Université, CNRS, INSERM, IBPS, 7 quai Saint Bernard, 75005 Paris, France
| | | | - Huguette Louis
- Université de Lorraine, INSERM, DCAC, F-54000, Nancy, France
| | - Yuki Kawamura
- Department of Biomedical Engineering and Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
| | - Jocelyne Blanc
- Biological Adaptation and Ageing, Sorbonne Université, CNRS, INSERM, IBPS, 7 quai Saint Bernard, 75005 Paris, France
| | - Jacqueline Gao-Li
- Biological Adaptation and Ageing, Sorbonne Université, CNRS, INSERM, IBPS, 7 quai Saint Bernard, 75005 Paris, France
| | - Florence Pinet
- U1167-RID-AGE-Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Univ. Lille, CHU Lille, INSERM, Institut Pasteur de Lille, F-59000, Lille, France
| | - Adam Lacy-Hulbert
- Department of Immunology, University of Washington, Seattle, WA, 98109
| | - Pascal Challande
- Sorbonne Université, CNRS, Institut Jean Le Rond d'Alembert, 4 place Jussieu, 75005, Paris, France
| | - Jay D Humphrey
- Department of Biomedical Engineering and Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
| | | | | |
Collapse
|
20
|
Dong CX, Malecki C, Robertson E, Hambly B, Jeremy R. Molecular Mechanisms in Genetic Aortopathy-Signaling Pathways and Potential Interventions. Int J Mol Sci 2023; 24:ijms24021795. [PMID: 36675309 PMCID: PMC9865322 DOI: 10.3390/ijms24021795] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Thoracic aortic disease affects people of all ages and the majority of those aged <60 years have an underlying genetic cause. There is presently no effective medical therapy for thoracic aneurysm and surgery remains the principal intervention. Unlike abdominal aortic aneurysm, for which the inflammatory/atherosclerotic pathogenesis is well established, the mechanism of thoracic aneurysm is less understood. This paper examines the key cell signaling systems responsible for the growth and development of the aorta, homeostasis of endothelial and vascular smooth muscle cells and interactions between pathways. The evidence supporting a role for individual signaling pathways in pathogenesis of thoracic aortic aneurysm is examined and potential novel therapeutic approaches are reviewed. Several key signaling pathways, notably TGF-β, WNT, NOTCH, PI3K/AKT and ANGII contribute to growth, proliferation, cell phenotype and survival for both vascular smooth muscle and endothelial cells. There is crosstalk between pathways, and between vascular smooth muscle and endothelial cells, with both synergistic and antagonistic interactions. A common feature of the activation of each is response to injury or abnormal cell stress. Considerable experimental evidence supports a contribution of each of these pathways to aneurysm formation. Although human information is less, there is sufficient data to implicate each pathway in the pathogenesis of human thoracic aneurysm. As some pathways i.e., WNT and NOTCH, play key roles in tissue growth and organogenesis in early life, it is possible that dysregulation of these pathways results in an abnormal aortic architecture even in infancy, thereby setting the stage for aneurysm development in later life. Given the fine tuning of these signaling systems, functional polymorphisms in key signaling elements may set up a future risk of thoracic aneurysm. Multiple novel therapeutic agents have been developed, targeting cell signaling pathways, predominantly in cancer medicine. Future investigations addressing cell specific targeting, reduced toxicity and also less intense treatment effects may hold promise for effective new medical treatments of thoracic aortic aneurysm.
Collapse
Affiliation(s)
- Charlotte Xue Dong
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Cassandra Malecki
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
- The Baird Institute, Camperdown, NSW 2042, Australia
| | - Elizabeth Robertson
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Brett Hambly
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Richmond Jeremy
- Faculty of Health and Medical Sciences, University of Sydney, Sydney, NSW 2006, Australia
- The Baird Institute, Camperdown, NSW 2042, Australia
- Correspondence:
| |
Collapse
|
21
|
Suryono S, Rohman MS, Widjajanto E, Prayitnaningsih S, Wihastuti TA. Colchicine as potential inhibitor targeting MMP-9, NOX2 and TGF-β1 in myocardial infarction: a combination of docking and molecular dynamic simulation study. J Biomol Struct Dyn 2023; 41:12214-12224. [PMID: 36636837 DOI: 10.1080/07391102.2023.2166590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/01/2023] [Indexed: 01/14/2023]
Abstract
The global data revealed that myocardial infarction (MI) in coronary heart disease has been the leading cause of mortality worldwide in both developing and developed countries. The remodeling process after MI is essential to be the leading cause of heart failure due to cardiac remodeling. The evidence showed the increment of MMP-9, NOX2 and TGF-β1 expressions are biomarkers that influence cardiac remodeling. Lately, colchicine is widely used in the treatment of cardiovascular diseases. The effects of colchicine on NOX2, MMP-9 and TGF-β1 in the molecular models are still not yet discussed. We proposed a molecular docking and molecular dynamics simulation study to show the interaction between colchicine, NOX2, MMP-9 and TGF-β1. Colchicine has a good binding affinity with MMP-9, NOX2 and TGF-β1 based on the value, which are -8.3 Kcal/mol, -6.7 Kcal/mol and -6.5 Kcal/mol, respectively. Colchicine also binds to some catalytic residues in MMP-9, NOX2 and TGF-β1 that are responsible for inhibitor effects. The RMSD values between colchicine and MMP-9, NOX2 and TGF-β1 are 2.4 Å, 2 Å and 2.1 Å, respectively. The RMSF values of ligand and receptors complex showed relatively similar fluctuations. The SASA analysis showed that colchicine could create a more stable interaction with MMP-9. PCA analysis revealed that colchicine is capable of creating a solid and stable interaction with MMP-9 mainly, also NOX2 and TGF-β1. In conclusion, docking and molecular dynamics analysis showed evidence of colchicine roles in the inhibition of MMP-9, NOX2 and TGF-β1 in order to inhibit the remodeling process after MI.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suryono Suryono
- Doctoral Program of Medical Science, Brawijaya University, Malang, East Java, Indonesia
- Department of Cardiology and Cardiovascular Medicine, Faculty of Medicine, Jember University, Jember, East Java, Indonesia
| | - Mohammad Saifur Rohman
- Department of Cardiology and Cardiovascular Medicine, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
- Brawijaya Cardiovascular Research Centre, Brawijaya University, Malang, East Java, Indonesia
| | - Edi Widjajanto
- Department of Clinical Pathology, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
| | - Seskoati Prayitnaningsih
- Department of Ophthalmology, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
| | - Titin Andri Wihastuti
- Department of Biomedical, Nursing Science, Faculty of Medicine, Brawijaya University, Malang, East Java, Indonesia
| |
Collapse
|
22
|
Balint B, Federspiel J, Kollmann C, Teping P, Schwab T, Schäfers HJ. SMAD3 contributes to ascending aortic dilatation independent of transforming growth factor-beta in bicuspid and unicuspid aortic valve disease. Sci Rep 2022; 12:15476. [PMID: 36104385 PMCID: PMC9474869 DOI: 10.1038/s41598-022-19335-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022] Open
Abstract
We sought to determine whether there are differences in transforming growth factor-beta (TGFß) signaling in aneurysms associated with bicuspid (BAV) and unicuspid (UAV) aortic valves versus normal aortic valves. Ascending aortic aneurysms are frequently associated with BAV and UAV. The mechanisms are not yet clearly defined, but similarities to transforming growth factor-beta TGFß vasculopathies (i.e. Marfan, Loeys-Dietz syndromes) are reported. Non-dilated (ND) and aneurysmal (D) ascending aortic tissue was collected intra-operatively from individuals with a TAV (N = 10ND, 10D), BAV (N = 7ND, 8D) or UAV (N = 7ND, 8D). TGFß signaling and aortic remodeling were assessed through immuno-assays and histological analyses. TGFß1 was increased in BAV/UAV-ND aortas versus TAV (P = 0.02 and 0.04, respectively). Interestingly, TGFß1 increased with dilatation in TAV (P = 0.03) and decreased in BAV/UAV (P = 0.001). In TAV, SMAD2 and SMAD3 phosphorylation (pSMAD2, pSMAD3) increased with dilatation (all P = 0.04) and with TGFß1 concentration (P = 0.04 and 0.03). No relationship between TGFß1 and pSMAD2 or pSMAD3 was observed for BAV/UAV (all P > 0.05). pSMAD3 increased with dilatation in BAV/UAV aortas (P = 0.01), whereas no relationship with pSMAD2 was observed (P = 0.56). Elastin breaks increased with dilatation in all groups (all P < 0.05). In TAV, elastin degradation correlated with TGFß1, pSMAD2 and pSMAD3 (all P < 0.05), whereas in BAV and UAV aortas, elastin degradation correlated only with pSMAD3 (P = 0.0007). TGFß signaling through SMAD2/SMAD3 contributes to aortic remodeling in TAV, whereas TGFß-independent activation of SMAD3 may underlie aneurysm formation in BAV/UAV aortas. Therefore, SMAD3 should be further investigated as a therapeutic target against ascending aortic dilatation in general, and particularly in BAV/UAV patients.
Collapse
|
23
|
Gkaliagkousi E, Lazaridis A, Dogan S, Fraenkel E, Tuna BG, Mozos I, Vukicevic M, Yalcin O, Gopcevic K. Theories and Molecular Basis of Vascular Aging: A Review of the Literature from VascAgeNet Group on Pathophysiological Mechanisms of Vascular Aging. Int J Mol Sci 2022; 23:ijms23158672. [PMID: 35955804 PMCID: PMC9368987 DOI: 10.3390/ijms23158672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/29/2022] Open
Abstract
Vascular aging, characterized by structural and functional alterations of the vascular wall, is a hallmark of aging and is tightly related to the development of cardiovascular mortality and age-associated vascular pathologies. Over the last years, extensive and ongoing research has highlighted several sophisticated molecular mechanisms that are involved in the pathophysiology of vascular aging. A more thorough understanding of these mechanisms could help to provide a new insight into the complex biology of this non-reversible vascular process and direct future interventions to improve longevity. In this review, we discuss the role of the most important molecular pathways involved in vascular ageing including oxidative stress, vascular inflammation, extracellular matrix metalloproteinases activity, epigenetic regulation, telomere shortening, senescence and autophagy.
Collapse
Affiliation(s)
- Eugenia Gkaliagkousi
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece
- Correspondence: (E.G.); (K.G.)
| | - Antonios Lazaridis
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Faculty of Medicine, Aristotle University of Thessaloniki, 56429 Thessaloniki, Greece
| | - Soner Dogan
- Department of Medical Biology, School of Medicine, Yeditepe University, 34755 Istanbul, Turkey
| | - Emil Fraenkel
- 1st Department of Internal Medicine, University Hospital, Pavol Jozef Šafárik University of Košice, Trieda SNP 1, 04066 Košice, Slovakia
| | - Bilge Guvenc Tuna
- Department of Biophysics, School of Medicine, Yeditepe University, 34755 Istanbul, Turkey
| | - Ioana Mozos
- Department of Functional Sciences-Pathophysiology, Center for Translational Research and Systems Medicine, “Victor Babes” University of Medicine and Pharmacy, 300173 Timisoara, Romania
| | - Milica Vukicevic
- Cardiac Surgery Clinic, Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Ozlem Yalcin
- Department of Physiology, School of Medicine, Koc University, 34450 Istanbul, Turkey
| | - Kristina Gopcevic
- Laboratory for Analytics of Biomolecules, Department of Chemistry in Medicine, Faculty of Medicine, 11000 Belgrade, Serbia
- Correspondence: (E.G.); (K.G.)
| |
Collapse
|
24
|
Schimmel K, Ichimura K, Reddy S, Haddad F, Spiekerkoetter E. Cardiac Fibrosis in the Pressure Overloaded Left and Right Ventricle as a Therapeutic Target. Front Cardiovasc Med 2022; 9:886553. [PMID: 35600469 PMCID: PMC9120363 DOI: 10.3389/fcvm.2022.886553] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/06/2022] [Indexed: 12/31/2022] Open
Abstract
Myocardial fibrosis is a remodeling process of the extracellular matrix (ECM) following cardiac stress. "Replacement fibrosis" is a term used to describe wound healing in the acute phase of an injury, such as myocardial infarction. In striking contrast, ECM remodeling following chronic pressure overload insidiously develops over time as "reactive fibrosis" leading to diffuse interstitial and perivascular collagen deposition that continuously perturbs the function of the left (L) or the right ventricle (RV). Examples for pressure-overload conditions resulting in reactive fibrosis in the LV are systemic hypertension or aortic stenosis, whereas pulmonary arterial hypertension (PAH) or congenital heart disease with right sided obstructive lesions such as pulmonary stenosis result in RV reactive fibrosis. In-depth phenotyping of cardiac fibrosis has made it increasingly clear that both forms, replacement and reactive fibrosis co-exist in various etiologies of heart failure. While the role of fibrosis in the pathogenesis of RV heart failure needs further assessment, reactive fibrosis in the LV is a pathological hallmark of adverse cardiac remodeling that is correlated with or potentially might even drive both development and progression of heart failure (HF). Further, LV reactive fibrosis predicts adverse outcome in various myocardial diseases and contributes to arrhythmias. The ability to effectively block pathological ECM remodeling of the LV is therefore an important medical need. At a cellular level, the cardiac fibroblast takes center stage in reactive fibrotic remodeling of the heart. Activation and proliferation of endogenous fibroblast populations are the major source of synthesis, secretion, and deposition of collagens in response to a variety of stimuli. Enzymes residing in the ECM are responsible for collagen maturation and cross-linking. Highly cross-linked type I collagen stiffens the ventricles and predominates over more elastic type III collagen in pressure-overloaded conditions. Research has attempted to identify pro-fibrotic drivers causing fibrotic remodeling. Single key factors such as Transforming Growth Factor β (TGFβ) have been described and subsequently targeted to test their usefulness in inhibiting fibrosis in cultured fibroblasts of the ventricles, and in animal models of cardiac fibrosis. More recently, modulation of phenotypic behaviors like inhibition of proliferating fibroblasts has emerged as a strategy to reduce pathogenic cardiac fibroblast numbers in the heart. Some studies targeting LV reactive fibrosis as outlined above have successfully led to improvements of cardiac structure and function in relevant animal models. For the RV, fibrosis research is needed to better understand the evolution and roles of fibrosis in RV failure. RV fibrosis is seen as an integral part of RV remodeling and presents at varying degrees in patients with PAH and animal models replicating the disease of RV afterload. The extent to which ECM remodeling impacts RV function and thus patient survival is less clear. In this review, we describe differences as well as common characteristics and key players in ECM remodeling of the LV vs. the RV in response to pressure overload. We review pre-clinical studies assessing the effect of anti-fibrotic drug candidates on LV and RV function and their premise for clinical testing. Finally, we discuss the mode of action, safety and efficacy of anti-fibrotic drugs currently tested for the treatment of left HF in clinical trials, which might guide development of new approaches to target right heart failure. We touch upon important considerations and knowledge gaps to be addressed for future clinical testing of anti-fibrotic cardiac therapies.
Collapse
Affiliation(s)
- Katharina Schimmel
- Division Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, United States,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Kenzo Ichimura
- Division Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, United States,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Sushma Reddy
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States,Pediatric Cardiology, Stanford University, Stanford, CA, United States
| | - Francois Haddad
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, United States,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States,Cardiovascular Medicine, Stanford University, Stanford, CA, United States
| | - Edda Spiekerkoetter
- Division Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA, United States,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States,*Correspondence: Edda Spiekerkoetter,
| |
Collapse
|
25
|
An ACE inhibitory peptide from Isochrysis zhanjiangensis exhibits antihypertensive effect via anti-inflammation and anti-apoptosis in HUVEC and hypertensive rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
26
|
Golosova D, Levchenko V, Kravtsova O, Palygin O, Staruschenko A. Acute and long-term effects of cannabinoids on hypertension and kidney injury. Sci Rep 2022; 12:6080. [PMID: 35413977 PMCID: PMC9005691 DOI: 10.1038/s41598-022-09902-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 03/28/2022] [Indexed: 11/30/2022] Open
Abstract
Cannabinoids and their endogenous and synthetic analogs impact blood pressure and contribute to the incidence of hypertension. It was previously reported that the endocannabinoid system plays an important role in developing hypertension; however, it was also shown that cannabinoids elicit profound hypotension associated with hemorrhagic, cardiogenic, and endotoxic shock. This study aimed to test acute and chronic effects of an endogenous ligand of cannabinoid receptor anandamide (AEA) on blood pressure and kidney injury in vivo in conscious Dahl salt-sensitive (SS) rats. We demonstrated that acute i.v. bolus administration of a low or a high doses (0.05 or 3 mg/kg) of AEA did not affect blood pressure for 2 h after the injection in Dahl SS rats fed a normal salt diet (0.4% NaCl). Neither low nor high doses of AEA had any beneficial effects on blood pressure or kidney function. Furthermore, hypertensive rats fed a HS diet (8% NaCl) and chronically treated with 3 mg/kg of AEA exhibited a significant increase in blood pressure accompanied by increased renal interstitial fibrosis and glomerular damage at the late stage of hypertension. Western blot analyses revealed increased expression of Smad3 protein levels in the kidney cortex in response to chronic treatment with a high AEA dose. Therefore, TGF-β1/Smad3 signaling pathway may play a crucial role in kidney injury in SS hypertension during chronic treatment with AEA. Collectively, these data indicate that prolonged stimulation of cannabinoid receptors may result in aggravation of hypertension and kidney damage.
Collapse
Affiliation(s)
- Daria Golosova
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| | - Vladislav Levchenko
- Department of Molecular Pharmacology and Physiology, University of South Florida, 560 Channelside Dr., Tampa, FL, 33602, USA
| | - Olha Kravtsova
- Department of Molecular Pharmacology and Physiology, University of South Florida, 560 Channelside Dr., Tampa, FL, 33602, USA
| | - Oleg Palygin
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Alexander Staruschenko
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA. .,Department of Molecular Pharmacology and Physiology, University of South Florida, 560 Channelside Dr., Tampa, FL, 33602, USA. .,Hypertension and Kidney Research Center, University of South Florida, Tampa, FL, 33602, USA. .,Clement J. Zablocki VA Medical Center, Milwaukee, WI, 53295, USA.
| |
Collapse
|
27
|
Sulaiman A, Chambers J, Chilumula SC, Vinod V, Kandunuri R, McGarry S, Kim S. At the Intersection of Cardiology and Oncology: TGFβ as a Clinically Translatable Therapy for TNBC Treatment and as a Major Regulator of Post-Chemotherapy Cardiomyopathy. Cancers (Basel) 2022; 14:1577. [PMID: 35326728 PMCID: PMC8946238 DOI: 10.3390/cancers14061577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/13/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer that accounts for the majority of breast cancer-related deaths due to the lack of specific targets for effective treatments. While there is immense focus on the development of novel therapies for TNBC treatment, a persistent and critical issue is the rate of heart failure and cardiomyopathy, which is a leading cause of mortality and morbidity amongst cancer survivors. In this review, we highlight mechanisms of post-chemotherapeutic cardiotoxicity exposure, evaluate how this is assessed clinically and highlight the transforming growth factor-beta family (TGF-β) pathway and its significance as a mediator of cardiomyopathy. We also highlight recent findings demonstrating TGF-β inhibition as a potent method to prevent cardiac remodeling, fibrosis and cardiomyopathy. We describe how dysregulation of the TGF-β pathway is associated with negative patient outcomes across 32 types of cancer, including TNBC. We then highlight how TGF-β modulation may be a potent method to target mesenchymal (CD44+/CD24-) and epithelial (ALDHhigh) cancer stem cell (CSC) populations in TNBC models. CSCs are associated with tumorigenesis, metastasis, relapse, resistance and diminished patient prognosis; however, due to plasticity and differential regulation, these populations remain difficult to target and continue to present a major barrier to successful therapy. TGF-β inhibition represents an intersection of two fields: cardiology and oncology. Through the inhibition of cardiomyopathy, cardiac damage and heart failure may be prevented, and through CSC targeting, patient prognoses may be improved. Together, both approaches, if successfully implemented, would target the two greatest causes of cancer-related morbidity in patients and potentially lead to a breakthrough therapy.
Collapse
Affiliation(s)
- Andrew Sulaiman
- Department of Basic Science, Kansas City University, 1750 Independence Ave, Kansas City, MO 64106, USA; (S.C.C.); (V.V.); (R.K.); (S.K.)
| | - Jason Chambers
- Schulich School of Medicine, Western University, London, ON N6A5C1, Canada;
| | - Sai Charan Chilumula
- Department of Basic Science, Kansas City University, 1750 Independence Ave, Kansas City, MO 64106, USA; (S.C.C.); (V.V.); (R.K.); (S.K.)
| | - Vishak Vinod
- Department of Basic Science, Kansas City University, 1750 Independence Ave, Kansas City, MO 64106, USA; (S.C.C.); (V.V.); (R.K.); (S.K.)
| | - Rohith Kandunuri
- Department of Basic Science, Kansas City University, 1750 Independence Ave, Kansas City, MO 64106, USA; (S.C.C.); (V.V.); (R.K.); (S.K.)
| | - Sarah McGarry
- Children’s Mercy Hospital Kansas City, 2401 Gillham Rd, Kansas City, MO 64108, USA;
| | - Sung Kim
- Department of Basic Science, Kansas City University, 1750 Independence Ave, Kansas City, MO 64106, USA; (S.C.C.); (V.V.); (R.K.); (S.K.)
| |
Collapse
|
28
|
miR-424/322 protects against abdominal aortic aneurysm formation by modulating the Smad2/3/runt-related transcription factor 2 axis. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:656-669. [PMID: 35036072 PMCID: PMC8752907 DOI: 10.1016/j.omtn.2021.12.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
Rupture of abdominal aortic aneurysms (AAAs) is one of the leading causes of sudden death in the elderly population. The osteogenic transcription factor runt-related gene (RUNX) encodes multifunctional mediators of intracellular signal transduction pathways in vascular remodeling and inflammation. We aimed to evaluate the roles of RUNX2 and its putative downstream target miR-424/322 in the modulation of several AAA progression-related key molecules, such as matrix metalloproteinases and vascular endothelial growth factor. In the GEO database, we found that male patients with AAAs had higher RUNX2 expression than did control patients. Several risk factors for aneurysm induced the overexpression of MMPs through RUNX2 transactivation, and this was dependent on Smad2/3 upregulation in human aortic smooth muscle cells. miR-424 was overexpressed through RUNX2 after angiotensin II (AngII) challenge. The administration of siRUNX2 and miR-424 mimics attenuated the activation of the Smad/RUNX2 axis and the overexpression of several AAA progression-related molecules in vitro. Compared to their littermates, miR-322 KO mice were susceptible to AngII-induced AAA, whereas the silencing of RUNX2 and the administration of exogenous miR-322 mimics ameliorated the AngII-induced AAA in ApoE KO mice. Overall, we established the roles of the Smad/RUNX2/miR-424/322 axis in AAA pathogenesis. We demonstrated the therapeutic potentials of miR-424/322 mimics and RUNX2 inhibitor for AAA progression.
Collapse
|
29
|
Mitochondrial Pathophysiology on Chronic Kidney Disease. Int J Mol Sci 2022; 23:ijms23031776. [PMID: 35163697 PMCID: PMC8836100 DOI: 10.3390/ijms23031776] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
In healthy kidneys, interstitial fibroblasts are responsible for the maintenance of renal architecture. Progressive interstitial fibrosis is thought to be a common pathway for chronic kidney diseases (CKD). Diabetes is one of the boosters of CKD. There is no effective treatment to improve kidney function in CKD patients. The kidney is a highly demanding organ, rich in redox reactions occurring in mitochondria, making it particularly vulnerable to oxidative stress (OS). A dysregulation in OS leads to an impairment of the Electron transport chain (ETC). Gene deficiencies in the ETC are closely related to the development of kidney disease, providing evidence that mitochondria integrity is a key player in the early detection of CKD. The development of novel CKD therapies is needed since current methods of treatment are ineffective. Antioxidant targeted therapies and metabolic approaches revealed promising results to delay the progression of some markers associated with kidney disease. Herein, we discuss the role and possible origin of fibroblasts and the possible potentiators of CKD. We will focus on the important features of mitochondria in renal cell function and discuss their role in kidney disease progression. We also discuss the potential of antioxidants and pharmacologic agents to delay kidney disease progression.
Collapse
|
30
|
Cytokine-Mediated Alterations of Human Cardiac Fibroblast's Secretome. Int J Mol Sci 2021; 22:ijms222212262. [PMID: 34830141 PMCID: PMC8617966 DOI: 10.3390/ijms222212262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 11/17/2022] Open
Abstract
Fibroblasts contribute to approximately 20% of the non-cardiomyocytic cells in the heart. They play important roles in the myocardial adaption to stretch, inflammation, and other pathophysiological conditions. Fibroblasts are a major source of extracellular matrix (ECM) proteins whose production is regulated by cytokines, such as TNF-α or TGF-β. The resulting myocardial fibrosis is a hallmark of pathological remodeling in dilated cardiomyopathy (DCM). Therefore, in the present study, the secretome and corresponding transcriptome of human cardiac fibroblasts from patients with DCM was investigated under normal conditions and after TNF-α or TGF-β stimulation. Secreted proteins were quantified via mass spectrometry and expression of genes coding for secreted proteins was analyzed via Affymetrix Transcriptome Profiling. Thus, we provide comprehensive proteome and transcriptome data on the human cardiac fibroblast’s secretome. In the secretome of quiescent fibroblasts, 58% of the protein amount belonged to the ECM fraction. Interestingly, cytokines were responsible for 5% of the total protein amount in the secretome and up to 10% in the corresponding transcriptome. Furthermore, cytokine gene expression and secretion were upregulated upon TNF-α stimulation, while collagen secretion levels were elevated after TGF-β treatment. These results suggest that myocardial fibroblasts contribute to pro-fibrotic and to inflammatory processes in response to extracellular stimuli.
Collapse
|
31
|
Li Y, Li H, Xing W, Li J, Du R, Cao D, Wang Y, Yang X, Zhong G, Zhao Y, Sun W, Liu C, Gao X, Li Y, Liu Z, Jin X, Zhao D, Tan Y, Wang Y, Liu S, Yuan M, Song J, Chang YZ, Gao F, Ling S, Li Y. Vascular smooth muscle cell-specific miRNA-214 knockout inhibits angiotensin II-induced hypertension through upregulation of Smad7. FASEB J 2021; 35:e21947. [PMID: 34637552 DOI: 10.1096/fj.202100766rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 01/13/2023]
Abstract
Vascular remodeling is a prominent trait during the development of hypertension, attributable to the phenotypic transition of vascular smooth muscle cells (VSMCs). Increasing studies demonstrate that microRNA plays an important role in this process. Here, we surprisingly found that smooth muscle cell-specific miR-214 knockout (miR-214 cKO) significantly alleviates angiotensin II (Ang II)-induced hypertension, which has the same effect as that of miR-214 global knockout mice in response to Ang II stimulation. Under the treatment of Ang II, miR-214 cKO mice exhibit substantially reduced systolic blood pressure. The vascular medial thickness and area in miR-214 cKO blood vessels were obviously reduced, the expression of collagen I and proinflammatory factors were also inhibited. VSMC-specific deletion of miR-214 blunts the response of blood vessels to the stimulation of endothelium-dependent and -independent vasorelaxation and phenylephrine and 5-HT induced vasocontraction. In vitro, Ang II-induced VSMC proliferation, migration, contraction, hypertrophy, and stiffness were all repressed with miR-214 KO in VSMC. To further explore the mechanism of miR-214 in the regulation of the VSMC function, it is very interesting to find that the TGF-β signaling pathway is mostly enriched in miR-214 KO VSMC. Smad7, the potent negative regulator of the TGF-β/Smad pathway, is identified to be the target of miR-214 in VSMC. By which, miR-214 KO sharply enhances Smad7 levels and decreases the phosphorylation of Smad3, and accordingly alleviates the downstream gene expression. Further, Ang II-induced hypertension and vascular dysfunction were reversed by antagomir-214. These results indicate that miR-214 in VSMC established a crosstalk between Ang II-induced AT1R signaling and TGF-β induced TβRI /Smad signaling, by which it exerts a pivotal role in vascular remodeling and hypertension and imply that miR-214 has the potential as a therapeutic target for the treatment of hypertension.
Collapse
Affiliation(s)
- Youyou Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- School of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Hongxing Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Wenjuan Xing
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- School of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Jianwei Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Ruikai Du
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Dengchao Cao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yinbo Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- School of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Xueyi Yang
- Institute of Biomechanics and Medical Engineering, Tsinghua University, Beijing, China
| | - Guohui Zhong
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- School of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Yinlong Zhao
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Weijia Sun
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Caizhi Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xingcheng Gao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yeheng Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- School of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Zizhong Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiaoyan Jin
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Dingsheng Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yingjun Tan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yanqing Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Shujuan Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Min Yuan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Jinping Song
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yan-Zhong Chang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Feng Gao
- School of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Shukuan Ling
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yingxian Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
32
|
Aranda-Rivera AK, Cruz-Gregorio A, Aparicio-Trejo OE, Ortega-Lozano AJ, Pedraza-Chaverri J. Redox signaling pathways in unilateral ureteral obstruction (UUO)-induced renal fibrosis. Free Radic Biol Med 2021; 172:65-81. [PMID: 34077780 DOI: 10.1016/j.freeradbiomed.2021.05.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/14/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
Unilateral ureteral obstruction (UUO) is an experimental rodent model that mimics renal fibrosis associated with obstructive nephropathy in an accelerated manner. After UUO, the activation of the renin-angiotensin system (RAS), nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) and mitochondrial dysfunction lead to reactive oxygen species (ROS) overproduction in the kidney. ROS are secondary messengers able to induce post-translational modifications (PTMs) in redox-sensitive proteins, which activate or deactivate signaling pathways. Therefore, in UUO, it has been proposed that ROS overproduction causes changes in said pathways promoting inflammation, oxidative stress, and apoptosis that contribute to fibrosis development. Furthermore, mitochondrial metabolism impairment has been associated with UUO, contributing to renal damage in this model. Although ROS production and oxidative stress have been studied in UUO, the development of renal fibrosis associated with redox signaling pathways has not been addressed. This review focuses on the current information about the activation and deactivation of signaling pathways sensitive to a redox state and their effect on mitochondrial metabolism in the fibrosis development in the UUO model.
Collapse
Affiliation(s)
- Ana Karina Aranda-Rivera
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico; Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Laboratorio F-225, Ciudad de México, 04510, Mexico.
| | - Alfredo Cruz-Gregorio
- Laboratorio F-225, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - Omar Emiliano Aparicio-Trejo
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - Ariadna Jazmín Ortega-Lozano
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| | - José Pedraza-Chaverri
- Laboratorio F-315, Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510, Ciudad de México, Mexico.
| |
Collapse
|
33
|
Souza-Neto FV, Jiménez-González S, Delgado-Valero B, Jurado-López R, Genty M, Romero-Miranda A, Rodríguez C, Nieto ML, Martínez-Martínez E, Cachofeiro V. The Interplay of Mitochondrial Oxidative Stress and Endoplasmic Reticulum Stress in Cardiovascular Fibrosis in Obese Rats. Antioxidants (Basel) 2021; 10:antiox10081274. [PMID: 34439522 PMCID: PMC8389298 DOI: 10.3390/antiox10081274] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
We have evaluated the role of mitochondrial oxidative stress and its association with endoplasmic reticulum (ER) stress activation in the progression of obesity-related cardiovascular fibrosis. MitoQ (200 µM) was orally administered for 7 weeks to male Wistar rats that were fed a high-fat diet (HFD, 35% fat) or a control diet (CT, 3.5% fat). Obese animals presented cardiovascular fibrosis accompanied by increased levels of extracellular matrix proteins and profibrotic mediators. These alterations were associated with ER stress activation characterized by enhanced levels (in heart and aorta vs. CT group, respectively) of immunoglobulin binding protein (BiP; 2.1-and 2.6-fold, respectively), protein disulfide-isomerase A6 (PDIA6; 1.9-fold) and CCAAT-enhancer-binding homologous protein (CHOP; 1.5- and 1.8-fold, respectively). MitoQ treatment was able to prevent (p < 0.05) these modifications at cardiac and aortic levels. MitoQ (5 nM) and the ER stress inhibitor, 4-phenyl butyric acid (4 µM), were able to block the prooxidant and profibrotic effects of angiotensin II (Ang II, 10−6 M) in cardiac and vascular cells. Therefore, the data show a crosstalk between mitochondrial oxidative stress and ER stress activation, which mediates the development of cardiovascular fibrosis in the context of obesity and in which Ang II can play a relevant role.
Collapse
Affiliation(s)
- Francisco V. Souza-Neto
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (B.D.-V.); (R.J.-L.); (M.G.); (A.R.-M.)
| | - Sara Jiménez-González
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (B.D.-V.); (R.J.-L.); (M.G.); (A.R.-M.)
| | - Beatriz Delgado-Valero
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (B.D.-V.); (R.J.-L.); (M.G.); (A.R.-M.)
| | - Raquel Jurado-López
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (B.D.-V.); (R.J.-L.); (M.G.); (A.R.-M.)
| | - Marie Genty
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (B.D.-V.); (R.J.-L.); (M.G.); (A.R.-M.)
| | - Ana Romero-Miranda
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (B.D.-V.); (R.J.-L.); (M.G.); (A.R.-M.)
| | - Cristina Rodríguez
- Institut de Recerca del Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain;
- Instituto de Investigación Biomédica Sant Pau (IB Sant Pau), 08025 Barcelona, Spain
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28220 Majadahonda, Spain;
| | - María Luisa Nieto
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28220 Majadahonda, Spain;
- Instituto de Biología y Genética Molecular, CSIC-Universidad de Valladolid, 47002 Valladolid, Spain
| | - Ernesto Martínez-Martínez
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (B.D.-V.); (R.J.-L.); (M.G.); (A.R.-M.)
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28220 Majadahonda, Spain;
- Correspondence: (E.M.-M.); (V.C.); Tel.: +34-913941483 (E.M.-M.); +34-913941489 (V.C.)
| | - Victoria Cachofeiro
- Departamento de Fisiología, Facultad de Medicina, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Universidad Complutense de Madrid, 28040 Madrid, Spain; (F.V.S.-N.); (S.J.-G.); (B.D.-V.); (R.J.-L.); (M.G.); (A.R.-M.)
- Ciber de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28220 Majadahonda, Spain;
- Correspondence: (E.M.-M.); (V.C.); Tel.: +34-913941483 (E.M.-M.); +34-913941489 (V.C.)
| |
Collapse
|
34
|
Wang L, Wang HL, Liu TT, Lan HY. TGF-Beta as a Master Regulator of Diabetic Nephropathy. Int J Mol Sci 2021; 22:7881. [PMID: 34360646 PMCID: PMC8345981 DOI: 10.3390/ijms22157881] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most common complications in diabetes mellitus and the leading cause of end-stage renal disease. TGF-β is a pleiotropic cytokine and has been recognized as a key mediator of DN. However, anti-TGF-β treatment for DN remains controversial due to the diverse role of TGF-β1 in DN. Thus, understanding the regulatory role and mechanisms of TGF-β in the pathogenesis of DN is the initial step towards the development of anti-TGF-β treatment for DN. In this review, we first discuss the diverse roles and signaling mechanisms of TGF-β in DN by focusing on the latent versus active TGF-β1, the TGF-β receptors, and the downstream individual Smad signaling molecules including Smad2, Smad3, Smad4, and Smad7. Then, we dissect the regulatory mechanisms of TGF-β/Smad signaling in the development of DN by emphasizing Smad-dependent non-coding RNAs including microRNAs and long-non-coding RNAs. Finally, the potential therapeutic strategies for DN by targeting TGF-β signaling with various therapeutic approaches are discussed.
Collapse
Affiliation(s)
- Li Wang
- Research Center for Integrative Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (L.W.); (H.-L.W.); (T.-T.L.)
| | - Hong-Lian Wang
- Research Center for Integrative Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (L.W.); (H.-L.W.); (T.-T.L.)
| | - Tong-Tong Liu
- Research Center for Integrative Medicine, Affiliated Traditional Medicine Hospital of Southwest Medical University, Luzhou 646000, China; (L.W.); (H.-L.W.); (T.-T.L.)
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, and Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
35
|
Gu YY, Dou JY, Huang XR, Liu XS, Lan HY. Transforming Growth Factor-β and Long Non-coding RNA in Renal Inflammation and Fibrosis. Front Physiol 2021; 12:684236. [PMID: 34054586 PMCID: PMC8155637 DOI: 10.3389/fphys.2021.684236] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022] Open
Abstract
Renal fibrosis is one of the most characterized pathological features in chronic kidney disease (CKD). Progressive fibrosis eventually leads to renal failure, leaving dialysis or allograft transplantation the only clinical option for CKD patients. Transforming growth factor-β (TGF-β) is the key mediator in renal fibrosis and is an essential regulator for renal inflammation. Therefore, the general blockade of the pro-fibrotic TGF-β may reduce fibrosis but may risk promoting renal inflammation and other side effects due to the diverse role of TGF-β in kidney diseases. Long non-coding RNAs (lncRNAs) are RNA transcripts with more than 200 nucleotides and have been regarded as promising therapeutic targets for many diseases. This review focuses on the importance of TGF-β and lncRNAs in renal inflammation, fibrogenesis, and the potential applications of TGF-β and lncRNAs as the therapeutic targets and biomarkers in renal fibrosis and CKD are highlighted.
Collapse
Affiliation(s)
- Yue-Yu Gu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jing-Yun Dou
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Nephrology, Weihai Hospital of Traditional Chinese Medicine, Weihai, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Xu-Sheng Liu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
36
|
Huang Y, Li Z, Zhang L, Tang H, Zhang H, Wang C, Chen SY, Bu D, Zhang Z, Zhu Z, Yuan P, Li K, Yu X, Kong W, Tang C, Jung Y, Ferreira RB, Carroll KS, Du J, Yang J, Jin H. Endogenous SO 2-dependent Smad3 redox modification controls vascular remodeling. Redox Biol 2021; 41:101898. [PMID: 33647858 PMCID: PMC7933484 DOI: 10.1016/j.redox.2021.101898] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/14/2022] Open
Abstract
Sulfur dioxide (SO2) has emerged as a physiological relevant signaling molecule that plays a prominent role in regulating vascular functions. However, molecular mechanisms whereby SO2 influences its upper-stream targets have been elusive. Here we show that SO2 may mediate conversion of hydrogen peroxide (H2O2) to a more potent oxidant, peroxymonosulfite, providing a pathway for activation of H2O2 to convert the thiol group of protein cysteine residues to a sulfenic acid group, aka cysteine sulfenylation. By using site-centric chemoproteomics, we quantified >1000 sulfenylation events in vascular smooth muscle cells in response to exogenous SO2. Notably, ~42% of these sulfenylated cysteines are dynamically regulated by SO2, among which is cysteine-64 of Smad3 (Mothers against decapentaplegic homolog 3), a key transcriptional modulator of transforming growth factor β signaling. Sulfenylation of Smad3 at cysteine-64 inhibits its DNA binding activity, while mutation of this site attenuates the protective effects of SO2 on angiotensin II-induced vascular remodeling and hypertension. Taken together, our findings highlight the important role of SO2 in vascular pathophysiology through a redox-dependent mechanism.
Collapse
Affiliation(s)
- Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Zongmin Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences • Beijing, Beijing Institute of Lifeomics, Beijing, 102206, China; Anhui Medical University, Hefei, 230032, China
| | - Lulu Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Huan Tang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Heng Zhang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100020, China
| | - Chu Wang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Selena Ying Chen
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Dingfang Bu
- Laboratory Center, Peking University First Hospital, Beijing, 100034, China
| | - Zaifeng Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Zhigang Zhu
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Piaoliu Yuan
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiaoqi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191, China; Key Laboratory of Cardiovascular Sciences, Ministry of Education, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191, China; Key Laboratory of Cardiovascular Sciences, Ministry of Education, China
| | - Youngeun Jung
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Renan B Ferreira
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Kate S Carroll
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China; Key Laboratory of Cardiovascular Sciences, Ministry of Education, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences • Beijing, Beijing Institute of Lifeomics, Beijing, 102206, China; Anhui Medical University, Hefei, 230032, China.
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China; Key Laboratory of Cardiovascular Sciences, Ministry of Education, China.
| |
Collapse
|
37
|
The Impact of microRNAs in Renin-Angiotensin-System-Induced Cardiac Remodelling. Int J Mol Sci 2021; 22:ijms22094762. [PMID: 33946230 PMCID: PMC8124994 DOI: 10.3390/ijms22094762] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023] Open
Abstract
Current knowledge on the renin-angiotensin system (RAS) indicates its central role in the pathogenesis of cardiovascular remodelling via both hemodynamic alterations and direct growth and the proliferation effects of angiotensin II or aldosterone resulting in the hypertrophy of cardiomyocytes, the proliferation of fibroblasts, and inflammatory immune cell activation. The noncoding regulatory microRNAs has recently emerged as a completely novel approach to the study of the RAS. A growing number of microRNAs serve as mediators and/or regulators of RAS-induced cardiac remodelling by directly targeting RAS enzymes, receptors, signalling molecules, or inhibitors of signalling pathways. Specifically, microRNAs that directly modulate pro-hypertrophic, pro-fibrotic and pro-inflammatory signalling initiated by angiotensin II receptor type 1 (AT1R) stimulation are of particular relevance in mediating the cardiovascular effects of the RAS. The aim of this review is to summarize the current knowledge in the field that is still in the early stage of preclinical investigation with occasionally conflicting reports. Understanding the big picture of microRNAs not only aids in the improved understanding of cardiac response to injury but also leads to better therapeutic strategies utilizing microRNAs as biomarkers, therapeutic agents and pharmacological targets.
Collapse
|
38
|
Chen J, Wang W, Tang Y, Huang XR, Yu X, Lan HY. Inflammatory stress in SARS-COV-2 associated Acute Kidney Injury. Int J Biol Sci 2021; 17:1497-1506. [PMID: 33907513 PMCID: PMC8071761 DOI: 10.7150/ijbs.58791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/01/2021] [Indexed: 01/08/2023] Open
Abstract
Increasing clinical evidence shows that acute kidney injury (AKI) is a common and severe complication in critically ill COVID-19 patients. The older age, the severity of COVID-19 infection, the ethnicity, and the history of smoking, diabetes, hypertension, and cardiovascular disease are the risk factor for AKI in COVID-19 patients. Of them, inflammation may be a key player in the pathogenesis of AKI in patients with COVID-19. It is highly possible that SARS-COV-2 infection may trigger the activation of multiple inflammatory pathways including angiotensin II, cytokine storm such as interleukin-6 (IL-6), C-reactive protein (CRP), TGF-β signaling, complement activation, and lung-kidney crosstalk to cause AKI. Thus, treatments by targeting these inflammatory molecules and pathways with a monoclonal antibody against IL-6 (Tocilizumab), C3 inhibitor AMY-101, anti-C5 antibody, anti-TGF-β OT-101, and the use of CRRT in critically ill patients may represent as novel and specific therapies for AKI in COVID-19 patients.
Collapse
Affiliation(s)
- Junzhe Chen
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Nephrology, The Third Affiliated hospital, Southern Medical university, Guangzhou, China
| | - Wenbiao Wang
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Guangdong Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Ying Tang
- Department of Nephrology, The Third Affiliated hospital, Southern Medical university, Guangzhou, China
| | - Xiao-ru Huang
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Xueqing Yu
- Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Science, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Hui-Yao Lan
- Departments of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
39
|
Haese NN, Burg JM, Andoh TF, Jones IK, Kreklywich CN, Smith PP, Orloff SL, Streblow DN. Macrophage depletion of CMV latently infected donor hearts ameliorates recipient accelerated chronic rejection. Transpl Infect Dis 2021; 23:e13514. [PMID: 33205500 PMCID: PMC8068575 DOI: 10.1111/tid.13514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/01/2020] [Accepted: 11/08/2020] [Indexed: 12/21/2022]
Abstract
Cytomegalovirus (CMV) infection is linked to acceleration of solid organ transplant vascular sclerosis (TVS) and chronic rejection (CR). Donor latent CMV infection increases cardiac-resident macrophages and T cells leading to increased inflammation, promoting allograft rejection. To investigate the role of cardiac-resident passenger macrophages in CMV-mediated TVS/CR, macrophages were depleted from latently ratCMV (RCMV)-infected donor allografts prior to transplantation. Latently RCMV-infected donor F344 rats were treated with clodronate, PBS, or control liposomes 3 days prior to cardiac transplant into RCMV-naïve Lewis recipients. Clodronate treatment significantly increased graft survival from post-operative day (POD)61 to POD84 and decreased TVS at rejection. To determine the kinetics of the effect of clodronate treatment's effect, a time study revealed that clodronate treatment significantly decreased macrophage infiltration into allograft tissues as early as POD14; altered allograft cytokine/chemokine protein levels, fibrosis development, and inflammatory gene expression profiles. These findings support our hypothesis that increased graft survival as a result of allograft passenger macrophage depletion was in part a result of altered immune response kinetics. Depletion of donor macrophages prior to transplant is a strategy to modulate allograft rejection and reduce TVS in the setting of CMV + donors transplanted into CMV naïve recipients.
Collapse
Affiliation(s)
- Nicole N. Haese
- Vaccine and Gene Therapy Institute, Oregon Health Sciences University, Beaverton, OR 97006
| | - Jennifer M. Burg
- Department of Surgery, Oregon Health Sciences University, Portland, OR 97239
| | - Takeshi F. Andoh
- Vaccine and Gene Therapy Institute, Oregon Health Sciences University, Beaverton, OR 97006
| | - Iris K.A. Jones
- Vaccine and Gene Therapy Institute, Oregon Health Sciences University, Beaverton, OR 97006
| | - Craig N. Kreklywich
- Vaccine and Gene Therapy Institute, Oregon Health Sciences University, Beaverton, OR 97006
| | - Patricia P. Smith
- Vaccine and Gene Therapy Institute, Oregon Health Sciences University, Beaverton, OR 97006
| | - Susan L. Orloff
- Department of Surgery, Oregon Health Sciences University, Portland, OR 97239
- Department of Molecular Microbiology & Immunology, Oregon Health Sciences University, Portland, OR, USA
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health Sciences University, Beaverton, OR 97006
| |
Collapse
|
40
|
Dong L, Li JC, Hu ZJ, Huang XR, Wang L, Wang HL, Ma RCW, Lan HY, Yang SJ. Deletion of Smad3 protects against diabetic myocardiopathy in db/db mice. J Cell Mol Med 2021; 25:4860-4869. [PMID: 33733577 PMCID: PMC8107104 DOI: 10.1111/jcmm.16464] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 01/07/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a common diabetic complication characterized by diastolic relaxation abnormalities, myocardial fibrosis and chronic heart failure. Although TGF‐β/Smad3 signalling has been shown to play a critical role in chronic heart disease, the role and mechanisms of Smad3 in DCM remain unclear. We reported here the potential role of Smad3 in the development of DCM by genetically deleting the Smad3 gene from db/db mice. At the age of 32 weeks, Smad3WT‐db/db mice developed moderate to severe DCM as demonstrated by a marked increase in the left ventricular (LV) mass, a significant fall in the LV ejection fraction (EF) and LV fractional shortening (FS), and progressive myocardial fibrosis and inflammation. In contrast, db/db mice lacking Smad3 (Smad3KO‐db/db) were protected against the development of DCM with normal cardiac function and undetectable myocardial inflammation and fibrosis. Interestingly, db/db mice with deleting one copy of Smad3 (Smad3 ± db/db) did not show any cardioprotective effects. Mechanistically, we found that deletion of Smad3 from db/db mice largely protected cardiac Smad7 from Smurf2‐mediated ubiquitin proteasome degradation, thereby inducing IBα to suppress NF‐kB‐driven cardiac inflammation. In addition, deletion of Smad3 also altered Smad3‐dependent miRNAs by up‐regulating cardiac miR‐29b while suppressing miR‐21 to exhibit the cardioprotective effect on Smad3KO‐db/db mice. In conclusion, results from this study reveal that Smad3 is a key mediator in the pathogenesis of DCM. Targeting Smad3 may be a novel therapy for DCM.
Collapse
Affiliation(s)
- Li Dong
- Department of Cardiovascular Medicine, Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jian-Chun Li
- Department of Cardiovascular Medicine, Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhong-Jing Hu
- Department of Cardiovascular Medicine, Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Li Wang
- Department of Cardiovascular Medicine, Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hong-Lian Wang
- Department of Cardiovascular Medicine, Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Si-Jin Yang
- Department of Cardiovascular Medicine, Research Center of Integrated Traditional Chinese and Western Medicine, The TCM Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
41
|
Arbi S, Bester MJ, Pretorius L, Oberholzer HM. Adverse cardiovascular effects of exposure to cadmium and mercury alone and in combination on the cardiac tissue and aorta of Sprague-Dawley rats. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:609-624. [PMID: 33720805 DOI: 10.1080/10934529.2021.1899534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/26/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
The aim of this study was to identify cardiovascular effects of relevant concentrations of Cd and Hg alone and in combination as a mixture in water. This was achieved by administering to male Sprague-Dawley rats via gavage 0.62 mg/kg Cd or 1.23 mg/kg Hg, or a combination of 0.62 mg/kg Cd and 1.23 mg/kg Hg in the co-exposure group for 28 days. Concentrations were the rat equivalence dosages of 1,000 times the World Health Organization's limits of 0.003 mg/L and 0.006 mg/L for Cd and Hg, respectively, for water. With termination, blood levels of the metals were increased. For all metal exposed groups, histological evaluation and transmission electron microscopy of the myocardium revealed myofibrillar necrosis, increased fibrosis, vacuole formation and mitochondrial damage. Cd caused the most mitochondrial damage while Hg to a greater degree induced fibrosis. In the aorta, both Cd and Hg also increased collagen deposition adversely altering the morphology of the fenestrated elastic fibers in the tunica media. Co-exposure resulted in increased cardiotoxicity with increased mitochondrial damage, fibrosis and distortion of the aortic wall as a result of increased collagen deposition, as well as altered elastin deposition, fragmentation and interlink formation. These are typical features of oxidative damage that correlates with a phenotype of premature ageing of the CVS that potentially can lead to hypertension and premature cardiac failure.
Collapse
Affiliation(s)
- Sandra Arbi
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Megan Jean Bester
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | - Liselle Pretorius
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Arcadia, South Africa
| | | |
Collapse
|
42
|
Danoy M, Tauran Y, Poulain S, Jellali R, Bruce J, Leduc M, Le Gall M, Gilard F, Kido T, Arakawa H, Araya K, Mori D, Kato Y, Kusuhara H, Plessy C, Miyajima A, Sakai Y, Leclerc E. Multi-omics analysis of hiPSCs-derived HLCs matured on-chip revealed patterns typical of liver regeneration. Biotechnol Bioeng 2021; 118:3716-3732. [PMID: 33404112 DOI: 10.1002/bit.27667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/13/2020] [Accepted: 12/20/2020] [Indexed: 12/17/2022]
Abstract
Maturation of human-induced pluripotent stem cells (hiPSCs)-derived hepatocytes-like cells (HLCs) toward a complete hepatocyte phenotype remains a challenge as primitiveness patterns are still commonly observed. In this study, we propose a modified differentiation protocol for those cells which includes a prematuration in Petri dishes and a maturation in microfluidic biochip. For the first time, a large range of biomolecular families has been extracted from the same sample to combine transcriptomic, proteomic, and metabolomic analysis. After integration, these datasets revealed specific molecular patterns and highlighted the hepatic regeneration profile in biochips. Overall, biochips exhibited processes of cell proliferation and inflammation (via TGFB1) coupled with anti-fibrotic signaling (via angiotensin 1-7, ATR-2, and MASR). Moreover, cultures in this condition displayed physiological lipid-carbohydrate homeostasis (notably via PPAR, cholesterol metabolism, and bile synthesis) coupled with cell respiration through advanced oxidative phosphorylation (through the overexpression of proteins from the third and fourth complex). The results presented provide an original overview of the complex mechanisms involved in liver regeneration using an advanced in vitro organ-on-chip technology.
Collapse
Affiliation(s)
- Mathieu Danoy
- CNRS UMI 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, Tokyo, Japan.,Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yannick Tauran
- CNRS UMI 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, Tokyo, Japan.,Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Univ Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Stéphane Poulain
- RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, Japan.,Biomedical Microsystems Lab, Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Rachid Jellali
- Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319-60203 Compiègne Cedex, Compiègne, France
| | - Johanna Bruce
- Plateforme 3P5 Proteomi'ic, Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, 22 rue Méchain, Paris, France
| | - Marjorie Leduc
- Plateforme 3P5 Proteomi'ic, Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, 22 rue Méchain, Paris, France
| | - Morgane Le Gall
- Plateforme 3P5 Proteomi'ic, Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, 22 rue Méchain, Paris, France
| | - Francoise Gilard
- Plateforme Métabolisme Métabolome, Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Univ. Paris-Diderot, Univ. Paris Saclay, Gif-sur-Yvette Cedex, France
| | - Taketomo Kido
- Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Arakawa
- Laboratory of Molecular Pharmacokinetics, Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa City, Ishikawa, Japan
| | - Karin Araya
- Laboratory of Molecular Pharmacokinetics, Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa City, Ishikawa, Japan
| | - Daiki Mori
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukio Kato
- Laboratory of Molecular Pharmacokinetics, Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa City, Ishikawa, Japan
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Charles Plessy
- RIKEN Center for Integrative Medical Science, Yokohama, Kanagawa, Japan
| | - Atsushi Miyajima
- Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Eric Leclerc
- CNRS UMI 2820, Laboratory for Integrated Micro Mechatronic Systems, Institute of Industrial Science, Tokyo, Japan.,Université de Technologie de Compiègne, CNRS, Biomechanics and Bioengineering, Centre de Recherche Royallieu-CS 60319-60203 Compiègne Cedex, Compiègne, France
| |
Collapse
|
43
|
Monteonofrio L, Florio MC, AlGhatrif M, Lakatta EG, Capogrossi MC. Aging- and gender-related modulation of RAAS: potential implications in COVID-19 disease. VASCULAR BIOLOGY 2020; 3:R1-R14. [PMID: 33537555 PMCID: PMC7849461 DOI: 10.1530/vb-20-0014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is a new infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 is frequently characterized by a marked inflammatory response with severe pneumonia and respiratory failure associated with multiorgan involvement. Some risk factors predispose patients to develop a more severe infection and to an increased mortality; among them, advanced age and male gender have been identified as major and independent risk factors for COVID-19 poor outcome. The renin-angiotensin-aldosterone system (RAAS) is strictly involved in COVID-19 because angiotensin converting enzyme 2 (ACE2) is the host receptor for SARS-CoV-2 and also converts pro-inflammatory angiotensin (Ang) II into anti-inflammatory Ang(1–7). In this review, we have addressed the effect of aging and gender on RAAS with emphasis on ACE2, pro-inflammatory Ang II/Ang II receptor 1 axis and anti-inflammatory Ang(1–7)/Mas receptor axis.
Collapse
Affiliation(s)
- Laura Monteonofrio
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Maria Cristina Florio
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Majd AlGhatrif
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA.,Longitudinal Study Section, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA.,Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Maurizio C Capogrossi
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA.,Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
44
|
Ni J, Yang F, Huang X, Meng J, Chen J, Bader M, Penninger JM, Fung E, Yu X, Lan H. Dual deficiency of angiotensin-converting enzyme-2 and Mas receptor enhances angiotensin II-induced hypertension and hypertensive nephropathy. J Cell Mol Med 2020; 24:13093-13103. [PMID: 32971570 PMCID: PMC7701568 DOI: 10.1111/jcmm.15914] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 12/14/2022] Open
Abstract
Angiotensin-converting enzyme-2 (ACE2) and Mas receptor are the major components of the ACE2/Ang 1-7/Mas axis and have been shown to play a protective role in hypertension and hypertensive nephropathy individually. However, the effects of dual deficiency of ACE2 and Mas (ACE2/Mas) on Ang II-induced hypertensive nephropathy remain unexplored, which was investigated in this study in a mouse model of hypertension induced in either ACE2 knockout (KO) or Mas KO mice and in double ACE2/Mas KO mice by subcutaneously chronic infusion of Ang II. Compared with wild-type (WT) animals, mice lacking either ACE2 or Mas significantly increased blood pressure over 7-28 days following a chronic Ang II infusion (P < .001), which was further exacerbated in double ACE2/Mas KO mice (P < .001). Furthermore, compared to a single ACE2 or Mas KO mice, mice lacking ACE2/Mas developed more severe renal injury including higher levels of serum creatinine and a further reduction in creatinine clearance, and progressive renal inflammation and fibrosis. Mechanistically, worsen hypertensive nephropathy in double ACE2/Mas KO mice was associated with markedly enhanced AT1-ERK1/2-Smad3 and NF-κB signalling, thereby promoting renal fibrosis and renal inflammation in the hypertensive kidney. In conclusion, ACE2 and Mas play an additive protective role in Ang II-induced hypertension and hypertensive nephropathy. Thus, restoring the ACE2/Ang1-7/Mas axis may represent a novel therapy for hypertension and hypertensive nephropathy.
Collapse
Affiliation(s)
- Jun Ni
- Department of Medicine & TherapeuticsLi Ka Shing Institute of Health SciencesLui Che Woo Institute of Innovative MedicineThe Chinese University of Hong KongHong Kong SARChina
- Department of Immunology and MicrobiologyShanghai Institute of ImmunologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fuye Yang
- Department of Medicine & TherapeuticsLi Ka Shing Institute of Health SciencesLui Che Woo Institute of Innovative MedicineThe Chinese University of Hong KongHong Kong SARChina
- Department of NephrologyThe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Xiao‐Ru Huang
- Department of Medicine & TherapeuticsLi Ka Shing Institute of Health SciencesLui Che Woo Institute of Innovative MedicineThe Chinese University of Hong KongHong Kong SARChina
- Guangdong‐Hong Kong Joint Laboratory on Immunological and Genetic Kidney DiseasesGuangdong Provincial Key Laboratory Coronary Heart Disease PreventionGuangdong Cardiovascular InstituteGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Jinxiu Meng
- Guangdong‐Hong Kong Joint Laboratory on Immunological and Genetic Kidney DiseasesGuangdong Provincial Key Laboratory Coronary Heart Disease PreventionGuangdong Cardiovascular InstituteGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Jiaoyi Chen
- Department of Medicine & TherapeuticsLi Ka Shing Institute of Health SciencesLui Che Woo Institute of Innovative MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Michael Bader
- Max‐Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Josef M. Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of SciencesViennaAustria
| | - Erik Fung
- Department of Medicine & TherapeuticsLi Ka Shing Institute of Health SciencesLui Che Woo Institute of Innovative MedicineThe Chinese University of Hong KongHong Kong SARChina
| | - Xue‐Qing Yu
- Guangdong‐Hong Kong Joint Laboratory on Immunological and Genetic Kidney DiseasesGuangdong Provincial Key Laboratory Coronary Heart Disease PreventionGuangdong Cardiovascular InstituteGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Hui‐Yao Lan
- Department of Medicine & TherapeuticsLi Ka Shing Institute of Health SciencesLui Che Woo Institute of Innovative MedicineThe Chinese University of Hong KongHong Kong SARChina
| |
Collapse
|
45
|
Sweeney M, Corden B, Cook SA. Targeting cardiac fibrosis in heart failure with preserved ejection fraction: mirage or miracle? EMBO Mol Med 2020; 12:e10865. [PMID: 32955172 PMCID: PMC7539225 DOI: 10.15252/emmm.201910865] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/30/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiac fibrosis is central to the pathology of heart failure, particularly heart failure with preserved ejection fraction (HFpEF). Irrespective of the underlying profibrotic condition (e.g. ageing, diabetes, hypertension), maladaptive cardiac fibrosis is defined by the transformation of resident fibroblasts to matrix-secreting myofibroblasts. Numerous profibrotic factors have been identified at the molecular level (e.g. TGFβ, IL11, AngII), which activate gene expression programs for myofibroblast activation. A number of existing HF therapies indirectly target fibrotic pathways; however, despite multiple clinical trials in HFpEF, a specific clinically effective antifibrotic therapy remains elusive. Therapeutic inhibition of TGFβ, the master-regulator of fibrosis, has unfortunately proven toxic and ineffective in clinical trials to date, and new approaches are needed. In this review, we discuss the pathophysiology and clinical implications of interstitial fibrosis in HFpEF. We provide an overview of trials targeting fibrosis in HFpEF to date and discuss the promise of potential new therapeutic approaches and targets in the context of underlying molecular mechanisms.
Collapse
Affiliation(s)
- Mark Sweeney
- MRC‐London Institute of Medical SciencesHammersmith Hospital CampusLondonUK
- Wellcome Trust 4i/NIHR Clinical Research FellowImperial CollegeLondonUK
| | - Ben Corden
- MRC‐London Institute of Medical SciencesHammersmith Hospital CampusLondonUK
- National Heart Research Institute SingaporeNational Heart Centre SingaporeSingaporeSingapore
- Cardiovascular and Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- National Heart and Lung InstituteImperial College LondonLondonUK
| | - Stuart A Cook
- MRC‐London Institute of Medical SciencesHammersmith Hospital CampusLondonUK
- National Heart Research Institute SingaporeNational Heart Centre SingaporeSingaporeSingapore
- Cardiovascular and Metabolic Disorders ProgramDuke‐National University of Singapore Medical SchoolSingaporeSingapore
- National Heart and Lung InstituteImperial College LondonLondonUK
| |
Collapse
|
46
|
Meng J, Qin Y, Chen J, Wei L, Huang XR, Yu X, Lan HY. Treatment of Hypertensive Heart Disease by Targeting Smad3 Signaling in Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:791-802. [PMID: 32953930 PMCID: PMC7475647 DOI: 10.1016/j.omtm.2020.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022]
Abstract
Transforming growth factor β (TGF-β)/Smad3 signaling plays a central role in chronic heart disease. Here, we report that targeting Smad3 with a Smad3 inhibitor SIS3 in an established mouse model of hypertension significantly improved cardiac dysfunctions by preserving the left ventricle (LV) ejection fraction (LVEF) and LV fractional shortening (LVFS), while reducing the LV mass. In addition, SIS3 treatment also halted the progression of myocardial fibrosis by blocking α-smooth muscle actin-positive (α-SMA+) myofibroblasts and collagen matrix accumulation, and inhibited cardiac inflammation by suppressing interleukin (IL)-1β, tumor necrosis factor alpha (TNF-α), monocyte chemotactic protein 1 (MCP1), intercellular cell adhesion molecule-1 (ICAM1) expression, and infiltration of CD3+ T cells and F4/80+ macrophages. Interestingly, treatment with SIS3 did not alter levels of high blood pressure, revealing a blood pressure-independent cardioprotective effect of SIS3. Mechanistically, treatment with SIS3 not only directly inactivated TGF-β/Smad3 signaling but also protected cardiac Smad7 from Smurf2-mediated proteasomal ubiquitin degradation. Because Smad7 functions as an inhibitor for both TGF-β/Smad and nuclear factor κB (NF-κB) signaling, increased cardiac Smad7 could be another mechanism through which SIS3 treatment blocked Smad3-mediated myocardial fibrosis and NF-κB-driven cardiac inflammation. In conclusion, SIS3 is a therapeutic agent for hypertensive heart disease. Results from this study demonstrate that targeting Smad3 signaling with SIS3 may be a novel and effective therapy for chronic heart disease.
Collapse
Affiliation(s)
- Jinxiu Meng
- Guangdong Provincial Key Laboratory of Coronary Heart Disease, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuyan Qin
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Junzhe Chen
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Lihua Wei
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao-Ru Huang
- Guangdong-Hong Kong Joint Laboratory for Immune and Genetic Kidney Disease, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, and The Chinese University of Hong Kong, Hong Kong SAR, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiyong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Hui-Yao Lan
- Guangdong-Hong Kong Joint Laboratory for Immune and Genetic Kidney Disease, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, and The Chinese University of Hong Kong, Hong Kong SAR, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, and Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
47
|
Gibb AA, Lazaropoulos MP, Elrod JW. Myofibroblasts and Fibrosis: Mitochondrial and Metabolic Control of Cellular Differentiation. Circ Res 2020; 127:427-447. [PMID: 32673537 DOI: 10.1161/circresaha.120.316958] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiac fibrosis is mediated by the activation of resident cardiac fibroblasts, which differentiate into myofibroblasts in response to injury or stress. Although myofibroblast formation is a physiological response to acute injury, such as myocardial infarction, myofibroblast persistence, as occurs in heart failure, contributes to maladaptive remodeling and progressive functional decline. Although traditional pathways of activation, such as TGFβ (transforming growth factor β) and AngII (angiotensin II), have been well characterized, less understood are the alterations in mitochondrial function and cellular metabolism that are necessary to initiate and sustain myofibroblast formation and function. In this review, we highlight recent reports detailing the mitochondrial and metabolic mechanisms that contribute to myofibroblast differentiation, persistence, and function with the hope of identifying novel therapeutic targets to treat, and potentially reverse, tissue organ fibrosis.
Collapse
Affiliation(s)
- Andrew A Gibb
- From the Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Michael P Lazaropoulos
- From the Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - John W Elrod
- From the Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| |
Collapse
|
48
|
Shi Y, Chen X, Huang C, Pollock C. RIPK3: A New Player in Renal Fibrosis. Front Cell Dev Biol 2020; 8:502. [PMID: 32613000 PMCID: PMC7308494 DOI: 10.3389/fcell.2020.00502] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 05/26/2020] [Indexed: 12/28/2022] Open
Abstract
Chronic kidney disease (CKD) is the end result of a plethora of renal insults, including repeated episodes of acute or toxic kidney injury, glomerular, or diabetic kidney disease. It affects a large number of the population worldwide, resulting in significant personal morbidity and mortality and economic cost to the community. Hence it is appropriate to focus on treatment strategies that interrupt the development of kidney fibrosis, the end result of all forms of CKD, in addition to upstream factors that may be specific to certain diseases. However, the current clinical approach to prevent or manage renal fibrosis remains unsatisfactory. The rising importance of receptor-interacting serine/threonine-protein kinase (RIPK) 3 in the inflammatory response and TGF-β1 signaling is increasingly recognized. We discuss here the biological functions of RIPK3 and its role in the development of renal fibrosis.
Collapse
Affiliation(s)
- Ying Shi
- Nephrology, School of Medicine, Stanford University, Palo Alto, CA, United States
| | - Xinming Chen
- Kolling Institute of Medical Research, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Chunling Huang
- Kolling Institute of Medical Research, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Carol Pollock
- Kolling Institute of Medical Research, Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
49
|
Abstract
Renal fibrosis is a hallmark of chronic kidney disease. Although considerable achievements in the pathogenesis of renal fibrosis have been made, the underlying mechanisms of renal fibrosis remain largely to be explored. Now we have reached the consensus that TGF-β is a master regulator of renal fibrosis. Indeed, TGF-β regulates renal fibrosis via both canonical and noncanonical TGF-β signaling. Moreover, ongoing renal inflammation promotes fibrosis as inflammatory cells such as macrophages, conventional T cells and mucosal-associated invariant T cells may directly or indirectly contribute to renal fibrosis, which is also tightly regulated by TGF-β. However, anti-TGF-β treatment for renal fibrosis remains ineffective and nonspecific. Thus, research into mechanisms and treatment of renal fibrosis remains highly challenging.
Collapse
|
50
|
Gu YY, Liu XS, Huang XR, Yu XQ, Lan HY. Diverse Role of TGF-β in Kidney Disease. Front Cell Dev Biol 2020; 8:123. [PMID: 32258028 PMCID: PMC7093020 DOI: 10.3389/fcell.2020.00123] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/12/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammation and fibrosis are two pathological features of chronic kidney disease (CKD). Transforming growth factor-β (TGF-β) has been long considered as a key mediator of renal fibrosis. In addition, TGF-β also acts as a potent anti-inflammatory cytokine that negatively regulates renal inflammation. Thus, blockade of TGF-β inhibits renal fibrosis while promoting inflammation, revealing a diverse role for TGF-β in CKD. It is now well documented that TGF-β1 activates its downstream signaling molecules such as Smad3 and Smad3-dependent non-coding RNAs to transcriptionally and differentially regulate renal inflammation and fibrosis, which is negatively regulated by Smad7. Therefore, treatments by rebalancing Smad3/Smad7 signaling or by specifically targeting Smad3-dependent non-coding RNAs that regulate renal fibrosis or inflammation could be a better therapeutic approach. In this review, the paradoxical functions and underlying mechanisms by which TGF-β1 regulates in renal inflammation and fibrosis are discussed and novel therapeutic strategies for kidney disease by targeting downstream TGF-β/Smad signaling and transcriptomes are highlighted.
Collapse
Affiliation(s)
- Yue-Yu Gu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xu-Sheng Liu
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Xue-Qing Yu
- Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| | - Hui-Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong-Hong Kong Joint Laboratory for Immunity and Genetics of Chronic Kidney Disease, Guangdong Academy of Medical Sciences, Guangdong Provincial People's Hospital, Guangzhou, China
| |
Collapse
|