1
|
Ji M, Ran X, Zuo H, Zhang Q. Novel Insights into the Kallikrein-Kinin System in Fulminant Myocarditis: Physiological Basis and Potential Therapeutic Advances. J Inflamm Res 2024; 17:7347-7360. [PMID: 39429854 PMCID: PMC11490248 DOI: 10.2147/jir.s488237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
Fulminant myocarditis (FM) is characterized by rapid cardiac deterioration often instigated by an inflammatory cytokine storm. The kallikrein-kinin system (KKS) is a metabolic cascade known for releasing vasoactive kinins, such as bradykinin-related peptides, possessing diverse pharmacological activities that include inflammation, regulation of vascular permeability, endothelial barrier dysfunction, and blood pressure modulation. The type 1 and type 2 bradykinin receptors (B1R and B2R), integral components of the KKS system, mediate the primary biological effects of kinin peptides. This review aims to offer a comprehensive overview of the primary mechanisms of the KKS in FM, including an examination of the structural components, regulatory activation, and downstream signaling pathways of the KKS. Furthermore, it explores the involvement of the tissue kallikrein/B1R/inducible nitric oxide synthase (TK/B1R/iNOS) pathway in myocyte dysfunction, modulation of the immune response, and preservation of endothelial barrier integrity. The potential therapeutic advances targeting the inhibition of the KKS in managing FM will be discussed, providing valuable insights for the development of clinical treatment strategies.
Collapse
Affiliation(s)
- Mengmeng Ji
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Xiao Ran
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Houjuan Zuo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Qin Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
2
|
Zhang CY, Hung CH, Hsiao YL, Chang TM, Su YC, Wang LC, Wang SM, Chen SH. Miltefosine reduces coxsackievirus B3 lethality of mice with enhanced STAT3 activation. Antiviral Res 2024; 223:105824. [PMID: 38309307 DOI: 10.1016/j.antiviral.2024.105824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/13/2024] [Accepted: 01/26/2024] [Indexed: 02/05/2024]
Abstract
Coxsackievirus B3 (CVB3), one serotype of enteroviruses, can induce fatal myocarditis and hepatitis in neonates, but both treatment and vaccine are unavailable. Few reports tested antivirals to reduce CVB3. Several antivirals were developed against other enterovirus serotypes, but these antivirals failed in clinical trials due to side effects and drug resistance. Repurposing of clinical drugs targeting cellular factors, which enhance viral replication, may be another option. Parasite and cancer studies showed that the cellular protein kinase B (Akt) decreases interferon (IFN), apoptosis, and interleukin (IL)-6-induced STAT3 responses, which suppress CVB3 replication. Furthermore, miltefosine, the Akt inhibitor used in the clinic for parasite infections, enhances IL-6, IFN, and apoptosis responses in treated patients, suggesting that miltefosine could be the potential antiviral for CVB3. This study was therefore designated to test the antiviral effects of miltefosine against CVB3 in vitro and especially, in mice, as few studies test miltefosine in vitro, but not in vivo. In vitro results showed that miltefosine inhibited viral replication with enhanced activation of the cellular transcription factor, STAT3, which is reported to reduce CVB3 both in vitro and in mice. Notably, STAT3 knockdown abolished the anti-CVB3 activity of miltefosine in vitro. Mouse studies demonstrated that miltefosine pretreatment reduced CVB3 lethality of mice with decreased virus loads, organ damage, and apoptosis, but enhanced STAT3 activation. Miltefosine could be prophylaxis for CVB3 by targeting Akt to enhance STAT3 activation in the mechanism, which is independent of IFN responses and hardly reported in pathogen infections.
Collapse
Affiliation(s)
- Chun Yu Zhang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Cheng-Huei Hung
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Yi-Ling Hsiao
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Tung-Miao Chang
- Statistical Analysis Laboratory, Department of International Business Management, Tainan University of Technology, Tainan, 710, Taiwan
| | - Yu-Chieh Su
- Department of Hematology and Oncology, E-Da Hospital, Kaohsiung, 824, Taiwan
| | - Li-Chiu Wang
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, 402, Taiwan
| | - Shih-Min Wang
- Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, 701, Taiwan
| | - Shun-Hua Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan; Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 701, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
3
|
Kao YS, Wang LC, Chang PC, Lin HM, Lin YS, Yu CY, Chen CC, Lin CF, Yeh TM, Wan SW, Wang JR, Ho TS, Chu CC, Zhang BC, Chang CP. Negative regulation of type I interferon signaling by integrin-linked kinase permits dengue virus replication. PLoS Pathog 2023; 19:e1011241. [PMID: 36930690 PMCID: PMC10057834 DOI: 10.1371/journal.ppat.1011241] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 03/29/2023] [Accepted: 02/25/2023] [Indexed: 03/18/2023] Open
Abstract
Dengue virus (DENV) infection can induce life-threatening dengue hemorrhagic fever/dengue shock syndrome in infected patients. DENV is a threat to global health due to its growing numbers and incidence of infection in the last 50 years. During infection, DENV expresses ten structural and nonstructural proteins modulating cell responses to benefit viral replication. However, the lack of knowledge regarding the cellular proteins and their functions in enhancing DENV pathogenesis impedes the development of antiviral drugs and therapies against fatal DENV infection. Here, we identified that integrin-linked kinase (ILK) is a novel enhancing factor for DENV infection by suppressing type I interferon (IFN) responses. Mechanistically, ILK binds DENV NS1 and NS3, activates Akt and Erk, and induces NF-κB-driven suppressor of cytokine signaling 3 (SOCS3) expression. Elevated SOCS3 in DENV-infected cells inhibits phosphorylation of STAT1/2 and expression of interferon-stimulated genes (ISGs). Inhibiting ILK, Akt, or Erk activation abrogates SOCS3 expression. In DENV-infected mice, the treatment of an ILK inhibitor significantly reduces viral loads in the brains, disease severity, and mortality rate. Collectively, our results show that ILK is a potential therapeutic target against DENV infection.
Collapse
Affiliation(s)
- Yi-Sheng Kao
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Chiu Wang
- School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Po-Chun Chang
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Heng-Ming Lin
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yi Yu
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Chiou-Feng Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Trai-Ming Yeh
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Wen Wan
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Jen-Ren Wang
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzong-Shiann Ho
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Chou Chu
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bo-Cheng Zhang
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Peng Chang
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
4
|
Khaleel A, Zakariya AB, Niazi M, Qinna NA, Dayyih WA, Tarkhan AH. Pathway Analysis of Patients with Severe Acute Respiratory Syndrome. Drug Res (Stuttg) 2022; 72:466-472. [PMID: 35952682 DOI: 10.1055/a-1886-2094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
BACKGROUND Coronaviruses are emerging threats for human health, as demonstrated by the ongoing coronavirus disease 2019 (COVID-19) pandemic that is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is closely related to SARS-CoV-1, which was the cause of the 2002-2004 SARS outbreak, but SARS-CoV-1 has been the subject of a relatively limited number of studies. Understanding the potential pathways and molecular targets of SARS-CoV-1 will contribute to current drug repurposing strategies by helping to predict potential drug-disease associations. METHODS A microarray dataset, GSE1739, of 10 SARS patients and 4 healthy controls was downloaded from NCBI's GEO repository, and differential expression was identified using NCBI's GEO2R software. Pathway and enrichment analysis of the differentially expressed genes was carried out using Ingenuity Pathway Analysis and Gene Set Enrichment Analysis, respectively. RESULTS Our findings show that the drugs dexamethasone, filgrastim, interferon alfacon-1, and levodopa were among the most significant upstream regulators of differential gene expression in SARS patients, while neutrophil degranulation was the most significantly enriched pathway. CONCLUSION An enhanced understanding of the pathways and molecular targets of SARS-CoV-1 in humans will contribute to current and future drug repurposing strategies, which are an essential tool to combat rapidly emerging health threats.
Collapse
Affiliation(s)
- Anas Khaleel
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | | | - Mohammad Niazi
- Department of Pharmacology and Biomedical Sciences, Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | - Nidal A Qinna
- University of Petra Pharmaceutical Center (UPPC), Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, Jordan
| | | | | |
Collapse
|
5
|
Tsai MS, Chen SH, Chang CP, Hsiao YL, Wang LC. Integrin-Linked Kinase Reduces H3K9 Trimethylation to Enhance Herpes Simplex Virus 1 Replication. Front Cell Infect Microbiol 2022; 12:814307. [PMID: 35350437 PMCID: PMC8957879 DOI: 10.3389/fcimb.2022.814307] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Histone modifications control the lytic gene expression of herpes simplex virus 1 (HSV-1). The heterochromatin mark, trimethylation of histone H3 on lysine (K) 9 (H3K9me3), is detected on HSV-1 genomes at early phases of infection to repress viral gene transcription. However, the components and mechanisms involved in the process are mostly unknown. Integrin-linked kinase (ILK) is activated by PI3K to phosphorylate Akt and promote several RNA virus infections. Akt has been shown to enhance HSV-1 infection, suggesting a pro-viral role of ILK in HSV-1 infection that has not been addressed before. Here, we reveal that ILK enhances HSV-1 replication in an Akt-independent manner. ILK reduces the accumulation of H3K9me3 on viral promoters and replication compartments. Notably, ILK reduces H3K9me3 in a manner independent of ICP0. Instead, we show an increased binding of H3K9 methyltransferase SUV39H1 and corepressor TRIM28 on viral promoters in ILK knockdown cells. Knocking down SUV39H1 or TRIM28 increases HSV-1 lytic gene transcription in ILK knockdown cells. These results show that ILK antagonizes SVU39H1- and TRIM28-mediated repression on lytic gene transcription. We further demonstrate that ILK knockdown reduces TRIM28 phosphorylation on serine 473 and 824 in HSV-1-infected cells, suggesting that ILK facilitates TRIM28 phosphorylation to abrogate its inhibition on lytic gene transcription. OSU-T315, an ILK inhibitor, suppresses HSV-1 replication in cells and mice. In conclusion, we demonstrate that ILK decreases H3K9me3 on HSV-1 DNA by reducing SUV39H1 and TRIM28 binding. Moreover, our results suggest that targeting ILK could be a broad-spectrum antiviral strategy for DNA and RNA virus infections, especially for DNA viruses controlled by histone modifications.
Collapse
Affiliation(s)
- Meng-Shan Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shun-Hua Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Peng Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ling Hsiao
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Chiu Wang
- School of Medicine, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
6
|
Small molecule screening identified cepharanthine as an inhibitor of porcine reproductive and respiratory syndrome virus infection in vitro by suppressing integrins/ILK/RACK1/PKCα/NF-κB signalling axis. Vet Microbiol 2021; 255:109016. [PMID: 33677370 DOI: 10.1016/j.vetmic.2021.109016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/14/2021] [Indexed: 12/18/2022]
Abstract
Porcine Reproductive and Respiratory Syndrome (PRRS) is a devastating disease among the most notorious threats to the swine industry worldwide and is characterized by respiratory distress and reproductive failure. Highly evolving porcine reproductive and respiratory syndrome virus (PRRSV) strains with complicated genetic diversity make the current vaccination strategy far from cost-effective and thus urge identification of potent lead candidates to provide prevention and treatment approaches. From an in vitro small molecule screening with the TargetMol Natural Compound Library comprising 623 small molecules, cytopathic effect (CPE) observations and RT-qPCR analysis of viral ORF7 gene expression identified cepharanthine (CEP) to be one of the most protent inhibitors of PRRSV infection in Marc-145 cells. When compared with tilmicosin, which is one of the most commonly used antibiotics in swine industry to inhibit infections, CEP more prominently inhibited PRRSV infection represented by both RNA and protein levels, further reduced the TCID50 by 5.6 times, and thus more remarkably protected Marc-145 cells against PRRSV infection. Mechanistically, western blot analyses of the Marc-145 cells and the porcine alveolar macrophages (PAMs) with or without CEP treatment and PRRSV infection at various time points revealed that CEP can inhibit the expression of integrins β1 and β3, integrin-linked kinase (ILK), RACK1 and PKCα, leading to NF-κB suppression and consequent alleviation of PRRSV infection. Collectively, our small molecule screening identified cepharanthine as an inhibitor of PRRSV infection in vitro by suppressing Integrins/ILK/RACK1/PKCα/NF-κB signalling axis, which may enlighten the deeper understanding of the molecular pathogenesis of PRRSV infection and more importantly, suggested CEP as a potential promising drug for PRRS control in veterinary clinics.
Collapse
|
7
|
Suchita W, Tilotma S, Saurabh S, Abhishek K, Sagar S, Lokesh K. Molecular Elucidation and Therapeutic Targeting for combating COVID19: Current Scenario and Future Prospective. Curr Mol Med 2021; 22:894-907. [PMID: 33535951 DOI: 10.2174/1566524021666210203113849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 11/22/2022]
Abstract
A corona virus disease 2019 (COVID-19) is a contagious disease which is caused by a novel corona virus. Human corona virus (HCoV) recognized as one of the most rapidly evolving viruses owing to its high genomic nucleotide substitution rates and recombination. Among the severe acute respiratory syndrome (SARS) and Middle-East respiratory syndrome (MERS), COVID-19 has spread more rapidly and increased the level of globalization and adaptation of the virus in every environmental condition due to their high rate of molecular diversity. The whole article highlights the general characteristics of corona virus, their molecular diversity, and molecular protein targeting against COVID-19 with their newer approaches. Through this review, an attempt has made to critically evaluate the recent advances and future aspects helpful to the treatment of COVID-19 based on the present understanding of SARS-CoV-2 infections, which may help offer new insights and potential therapeutic targets for the treatment of the COVID-19.
Collapse
Affiliation(s)
- Wamankar Suchita
- ShriRawatpura Sarkar Institute of Pharmacy, Kumhari, Durg,490042,Chhattisgarh. India
| | - Sahu Tilotma
- ShriRawatpura Sarkar Institute of Pharmacy, Kumhari, Durg,490042,Chhattisgarh. India
| | - Shrivastava Saurabh
- ShriRawatpura Sarkar Institute of Pharmacy, Kumhari, Durg,490042,Chhattisgarh. India
| | - Kumar Abhishek
- Division of Pharmacology,KIET School of Pharmacy,KIET Group ofInstitutions,Delhi-NCR,Ghaziabad,201206,Uttar Pradesh. India
| | - Sahu Sagar
- Columbia Institute of Pharmacy, Tekari, Raipur, 493111, Chhattisgarh. India
| | - Kumar Lokesh
- Siddhi Vinayaka Institute of Technology & Sciences (College of Pharmacy), Bilaspur,495001, Chhattisgarh. India
| |
Collapse
|
8
|
Bristow MR, Zisman LS, Altman NL, Gilbert EM, Lowes BD, Minobe WA, Slavov D, Schwisow JA, Rodriguez EM, Carroll IA, Keuer TA, Buttrick PM, Kao DP. Dynamic Regulation of SARS-Cov-2 Binding and Cell Entry Mechanisms in Remodeled Human Ventricular Myocardium. ACTA ACUST UNITED AC 2020; 5:871-883. [PMID: 32838074 PMCID: PMC7314447 DOI: 10.1016/j.jacbts.2020.06.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
Abstract
Using serial analysis of myocardial gene expression employing endomyocardial biopsy starting material in a dilated cardiomyopathy cohort, we show that mRNA expression of the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) cardiac myocyte receptor ACE2 is up-regulated with remodeling and with reverse remodeling down-regulates into the normal range. The proteases responsible for virus-cell membrane fusion were expressed but not regulated with remodeling. In addition, a new candidate for SARS-CoV-2 cell binding and entry was identified, the integrin encoded by ITGA5. Up-regulation in ACE2 in remodeled left ventricles may explain worse outcomes in patients with coronavirus disease 2019 who have underlying myocardial disorders, and counteracting ACE2 up-regulation is a possible therapeutic approach to minimizing cardiac damage.
Collapse
Key Words
- ACE, angiotensin converting enzyme
- ACE2, angiotensin converting enzyme 2
- ARB, angiotensin receptor blocker
- BNP, B-type natriuretic peptide
- COVID-19, coronavirus disease-2019
- EmBx, endomyocardial biopsies
- F/NDC, nonischemic dilated cardiomyopathy with heart failure
- HFrEF, heart failure with reduced (<0.50) left ventricular ejection fraction
- IQR, interquartile range
- LOCF, last observation carried forward
- LV, left ventricle (ventricular)
- LVEF, left ventricular ejection fraction
- NF, nonfailing
- NR, nonresponder
- PCR, polymerase chain reaction
- R, responder
- RAS, renin-angiotensin system
- RGD, arginine-glycine-aspartic acid
- RNA-Seq, ribonucleic acid sequencing
- RV, right ventricle (ventricular)
- SARS-CoV-2, severe acute respiratory syndrome-coronavirus-2
- angiotensin converting enzyme 2
- coronavirus disease 2019
- integrins
- mRNA, messenger ribonucleic acid
- proteases
- ventricular remodeling
Collapse
Affiliation(s)
- Michael R. Bristow
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado
- ARCA Biopharma, Westminster, Colorado
- University of Colorado Cardiovascular Institute Pharmacogenomics, Aurora, Colorado
- Address for correspondence: Dr. Michael R. Bristow, Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, B-139 Research 2, 12700 East 19th Avenue, Aurora, Colorado 80045.
| | | | - Natasha L. Altman
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cardiovascular Institute Pharmacogenomics, Aurora, Colorado
| | - Edward M. Gilbert
- Division of Cardiology, University of Utah Medical Center, Salt Lake City, Utah
| | - Brian D. Lowes
- Division of Cardiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Wayne A. Minobe
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado
| | - Dobromir Slavov
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado
| | - Jessica A. Schwisow
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado
| | - Erin M. Rodriguez
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado
| | - Ian A. Carroll
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado
- ARCA Biopharma, Westminster, Colorado
| | | | - Peter M. Buttrick
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cardiovascular Institute Pharmacogenomics, Aurora, Colorado
| | - David P. Kao
- Division of Cardiology, University of Colorado, Denver/Anschutz Medical Campus, Aurora, Colorado
- University of Colorado Cardiovascular Institute Pharmacogenomics, Aurora, Colorado
| |
Collapse
|
9
|
Cava C, Bertoli G, Castiglioni I. In Silico Discovery of Candidate Drugs against Covid-19. Viruses 2020; 12:E404. [PMID: 32268515 PMCID: PMC7232366 DOI: 10.3390/v12040404] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 12/13/2022] Open
Abstract
Previous studies reported that Angiotensin converting enzyme 2 (ACE2) is the main cell receptor of SARS-CoV and SARS-CoV-2. It plays a key role in the access of the virus into the cell to produce the final infection. In the present study we investigated in silico the basic mechanism of ACE2 in the lung and provided evidences for new potentially effective drugs for Covid-19. Specifically, we used the gene expression profiles from public datasets including The Cancer Genome Atlas, Gene Expression Omnibus and Genotype-Tissue Expression, Gene Ontology and pathway enrichment analysis to investigate the main functions of ACE2-correlated genes. We constructed a protein-protein interaction network containing the genes co-expressed with ACE2. Finally, we focused on the genes in the network that are already associated with known drugs and evaluated their role for a potential treatment of Covid-19. Our results demonstrate that the genes correlated with ACE2 are mainly enriched in the sterol biosynthetic process, Aryldialkylphosphatase activity, adenosylhomocysteinase activity, trialkylsulfonium hydrolase activity, acetate-CoA and CoA ligase activity. We identified a network of 193 genes, 222 interactions and 36 potential drugs that could have a crucial role. Among possible interesting drugs for Covid-19 treatment, we found Nimesulide, Fluticasone Propionate, Thiabendazole, Photofrin, Didanosine and Flutamide.
Collapse
Affiliation(s)
- Claudia Cava
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, 20090 Segrate-Milan, Milan, Italy
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, 20090 Segrate-Milan, Milan, Italy
| | - Isabella Castiglioni
- Department of Physics “Giuseppe Occhialini”, University of Milan-Bicocca Piazza dell’Ateneo Nuovo, 1 - 20126, Milan, Italy;
| |
Collapse
|
10
|
Loebel M, Holzhauser L, Hartwig JA, Shukla PC, Savvatis K, Jenke A, Gast M, Escher F, Becker SC, Bauer S, Stroux A, Beling A, Kespohl M, Pinkert S, Fechner H, Kuehl U, Lassner D, Poller W, Schultheiss HP, Zeller T, Blankenberg S, Papageorgiou AP, Heymans S, Landmesser U, Scheibenbogen C, Skurk C. The forkhead transcription factor Foxo3 negatively regulates natural killer cell function and viral clearance in myocarditis. Eur Heart J 2019; 39:876-887. [PMID: 29136142 DOI: 10.1093/eurheartj/ehx624] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 10/09/2017] [Indexed: 02/05/2023] Open
Abstract
Aims Foxo3 is a transcription factor involved in cell metabolism, survival, and inflammatory disease. However, mechanistic insight in Foxo3 effects is still limited. Here, we investigated the role of Foxo3 on natural killer (NK) cell responses and its effects in viral myocarditis. Methods and results Effects of Foxo3 on viral load and immune responses were investigated in a model of coxsackie virus B3 myocarditis in wild-type (WT) and Foxo3 deficient mice. Reduced immune cell infiltration, viral titres, and pro-inflammatory cytokines in cardiac tissue were observed in Foxo3-/- mice 7 days post-infection (p.i.). Viral titres were also attenuated in hearts of Foxo3-/- mice at Day 3 while interferon-γ (IFNγ) and NKp46 expression were up-regulated suggesting early viral control by enhanced NK cell activity. CD69 expression of NK cells, frequencies of CD11b+CD27+ effector NK cells and cytotoxicity of Foxo3-/- mice was enhanced compared to WT littermates. Moreover, microRNA-155 expression, essential in NK cell activation, was elevated in Foxo3-/- NK cells while its inhibition led to diminished IFNγ production. Healthy humans carrying the longevity-associated FOXO3 single nucleotide polymorphism (SNP) rs12212067 exhibited reduced IFNγ and cytotoxic degranulation of NK cells. Viral inflammatory cardiomyopathy (viral CMI) patients with this SNP showed a poorer outcome due to less efficient virus control. Conclusion Our results implicate Foxo3 in regulating NK cell function and suggest Foxo3 playing an important role in the antiviral innate immunity. Thus, enhanced FOXO3 activity such as in the polymorphism rs12212067 may be protective in chronic inflammation such as cancer and cardiovascular disease but disadvantageous to control acute viral infection.
Collapse
Affiliation(s)
- Madlen Loebel
- Institute of Medical Immunology, Charité, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Luise Holzhauser
- Department of Cardiology, University of Chicago, 5841S Maryland Avenue, Chicago, IL 60637, USA
| | - Jelka A Hartwig
- Institute of Medical Immunology, Charité, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Praphulla C Shukla
- Department of Cardiology, Charité, CBF, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Konstantinos Savvatis
- Department of Cardiology, Charité, CBF, Hindenburgdamm 30, 12200 Berlin, Germany.,Department of Cardiology, St-Bartholomew's Hospital, West Smithfield, London EC1A7BE, UK
| | - Alexander Jenke
- Department of Cardiology, Charité, CBF, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Martina Gast
- Department of Cardiology, Charité, CBF, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Felicitas Escher
- Department of Cardiology, Charité, CBF, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Sonya C Becker
- Institute of Medical Immunology, Charité, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sandra Bauer
- Institute of Medical Immunology, Charité, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Andrea Stroux
- Department of Biometry and Clinical Epidemiology, Charité, CBF, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Antje Beling
- Institute of Biochemistry, Charité, Chariteplatz 1, 10117 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Oudenarder Strasse 16, 13347 Berlin, Germany
| | - Meike Kespohl
- Institute of Biochemistry, Charité, Chariteplatz 1, 10117 Berlin, Germany
| | - Sandra Pinkert
- Department of Biochemistry, University of Technology, Gustav-meyer Allee 25, 13355 Berlin, Germany
| | - Henry Fechner
- Department of Biochemistry, University of Technology, Gustav-meyer Allee 25, 13355 Berlin, Germany
| | - Uwe Kuehl
- Department of Cardiology, Charité, CBF, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Dirk Lassner
- Institute for Cardiac Diagnostics and Therapy (IKDT), Molthestrasse 31, 12203 Berlin, Germany
| | - Wolfgang Poller
- Department of Cardiology, Charité, CBF, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Heinz-Peter Schultheiss
- Institute for Cardiac Diagnostics and Therapy (IKDT), Molthestrasse 31, 12203 Berlin, Germany
| | - Tanja Zeller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Germany-DZHK, Partner Site Hamburg/Lübeck/Kiel, Martinistrasse 52, 20246 Hamburg, Germany
| | - Stefan Blankenberg
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Germany-DZHK, Partner Site Hamburg/Lübeck/Kiel, Martinistrasse 52, 20246 Hamburg, Germany
| | - Anna-Pia Papageorgiou
- Cardiovascular Research Institute, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, NL, Netherlands
| | - Stephane Heymans
- Cardiovascular Research Institute, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, NL, Netherlands
| | - Ulf Landmesser
- Department of Cardiology, Charité, CBF, Hindenburgdamm 30, 12200 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Oudenarder Strasse 16, 13347 Berlin, Germany
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité, Augustenburger Platz 1, 13353 Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Südstrasse 2, 13353 Berlin, Germany
| | - Carsten Skurk
- Department of Cardiology, Charité, CBF, Hindenburgdamm 30, 12200 Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Oudenarder Strasse 16, 13347 Berlin, Germany
| |
Collapse
|
11
|
Li S, Wang Y, Zhao C, Zhang M, Wang W, Yu X, Huang J, Wang Z, Zhu B, Yin C, Cai H. Akt inhibitor deguelin aggravates inflammation and fibrosis in myocarditis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:1275-1282. [PMID: 32128091 PMCID: PMC7038425 DOI: 10.22038/ijbms.2019.35518.8473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 05/12/2019] [Indexed: 11/16/2022]
Abstract
OBJECTIVES Myocarditis is characterized by inflammatory cell infiltration in myocardial stroma. Attenuation of tumor necrosis factor (TNF)-α and interleukin (IL)-1β is a reliable mark for improving the prognosis. Protein kinase B (Akt) plays an important role in the development and progression of myocarditis. The specific role of the natural inhibitor of Akt, Deguelin, on myocarditis has not been reported. In this study, we used deguelin to investigate the effects of natural Akt inhibitor on myocarditis in experimental autoimmune myocarditis (EAM) rats. MATERIALS AND METHODS EAM rat models were made by using Lewis rats and Deguelin was injected intraperitoneally on day 3, 6, 9, 12 and 15 after successful modeling. On day 18, rats were sacrificed and the heart weight (HW)/ body weight (BW) ratio were measured. The pathological changes, pathological scores and fibrosis area were evaluated after H.&E. and Masson's trichrome staining. The mRNA levels of TNF-α and IL-1β were measured by RT-qPCR, while the protein expressions of TNF-α and IL-1β were detected by immunohistochemical staining and Western bolt. The protein expressions of Akt, Akt1, phosphorylated (p-) Akt and nuclear factor (NF)-κB were detected by Western bolt. RESULTS We found that the TNF-α and IL-1β levels, inflammatory scores and fibrosis areas were markedly increased after 18 days deguelin administration. CONCLUSION Akt inhibition with deguelin may aggravate myocarditis of EAM rats.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Yue Wang
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Chunming Zhao
- Human anatomy and Histology and Embryology, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Meixiang Zhang
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Wei Wang
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Xiaowei Yu
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Jiao Huang
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Zhao Wang
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Bo Zhu
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Chengqian Yin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | - Hongxing Cai
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| |
Collapse
|
12
|
Agrawal M, Rastogi M, Dogra S, Pandey N, Basu A, Singh SK. Chandipura virus changes cellular miRNome in human microglial cells. J Med Virol 2019; 94:480-490. [PMID: 31017674 DOI: 10.1002/jmv.25491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/17/2019] [Accepted: 04/21/2019] [Indexed: 12/16/2022]
Abstract
Chandipura virus (CHPV) is a neurotropic virus, known to cause encephalitis in humans. The microRNAs (miRNA/miR) play an important role in the pathogenesis of viral infection. The present study is focused on the role of miRNAs during CHPV (strain 1653514) infection in human microglial cells. The deep sequencing of CHPV-infected human microglial cells identified a total of 12 differentially expressed miRNA (DEMs). To elucidate the role of DEMs, the target gene prediction, Gene Ontology term (GO Term), pathway enrichment analysis, and miRNA-messenger RNA (mRNA) interaction network analysis was performed. The GO terms and pathway enrichment analysis provided 146 enriched genes; which were involved in interferon response, cytokine and chemokine signaling. Further, the WGCNA (weighted gene coexpression network analysis) of the enriched genes were discretely categorized into three modules (blue, brown, and turquoise). The hub genes in the blue module may correlate to CHPV induced neuroinflammation. Altogether, the miRNA-mRNA interaction network and WGCNA study revealed the following pairs, hsa-miR-542-3p and FAF1, hsa-miR-92a-1-5p and MYD88, and hsa-miR-3187-3p and TNFRSF21, which may contribute to neuroinflammation during CHPV infection in human microglial cells.
Collapse
Affiliation(s)
- Meghna Agrawal
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Meghana Rastogi
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Smriti Dogra
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Neha Pandey
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Anirban Basu
- Division of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, India
| | - Sunit K Singh
- Molecular Biology Unit, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
13
|
Alterations in the host transcriptome in vitro following Rift Valley fever virus infection. Sci Rep 2017; 7:14385. [PMID: 29085037 PMCID: PMC5662566 DOI: 10.1038/s41598-017-14800-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/16/2017] [Indexed: 01/01/2023] Open
Abstract
Rift Valley fever virus (RVFV) causes major outbreaks among livestock, characterized by "abortion storms" in which spontaneous abortion occurs in almost 100% of pregnant ruminants. Humans can also become infected with mild symptoms that can progress to more severe symptoms, such as hepatitis, encephalitis, and hemorrhagic fever. The goal of this study was to use RNA-sequencing (RNA-seq) to analyze the host transcriptome in response to RVFV infection. G2/M DNA damage checkpoint, ATM signaling, mitochondrial dysfunction, regulation of the antiviral response, and integrin-linked kinase (ILK) signaling were among the top altered canonical pathways with both the attenuated MP12 strain and the fully virulent ZH548 strain. Although several mRNA transcripts were highly upregulated, an increase at the protein level was not observed for the selected genes, which was at least partially due to the NSs dependent block in mRNA export. Inhibition of ILK signaling, which is involved in cell motility and cytoskeletal reorganization, resulted in reduced RVFV replication, indicating that this pathway is important for viral replication. Overall, this is the first global transcriptomic analysis of the human host response following RVFV infection, which could give insight into novel host responses that have not yet been explored.
Collapse
|
14
|
Coxsackievirus B heart infections and their putative contribution to sudden unexpected death: An 8-year review of patients and victims in the coastal region of Tunisia. Forensic Sci Int 2016; 268:73-80. [PMID: 27697628 DOI: 10.1016/j.forsciint.2016.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/24/2016] [Accepted: 09/14/2016] [Indexed: 11/22/2022]
Abstract
Coxsackieviruses B (CV B) are known as the most common viral cause of human heart infections. Cardiac inflammations contribute to sudden unexpected death (SUD) significantly. The diagnosis remains difficult with the traditional diagnostic tests and must be substantially improved. This has prompted health professionals to seek new diagnostic procedures which may provide important clues regarding underlying etiology. The present study is based on patients with infectious heart diseases and SUD victims with no relevant pathologies. They were investigated for possible CV-B infection. Patients with coronary artery diseases and unnatural road and domestic accident victims served as controls. The samples were studied for CV-B applying PCR. Histopathology for inflammatory markers, immunohistochemistry (IHC) for immune inflammatory cells and the enteroviral VP1-capsid protein were performed. Overall, 102 patients and 87 SUD victims were studied. As controls, 100 patients and 54 SUD unnatural accident victims were enrolled. CV-B were detected in 28 patients and 15 SUD victims. The control group samples were completely virus negative. Compared to controls, IHC revealed a significant presence of T and B lymphocytes within the myocardium. Furthermore, enteroviral VP1-capsid protein were detected from samples by IHC. Applying a comprehensive combination of methods, our results demonstrate the involvement of CV-B in cases of heart infection suggesting they play a significant role in SUD. Our results emphasize the importance of opting for a combination of methods.
Collapse
|
15
|
Zhuang X, Lv M, Zhong Z, Zhang L, Jiang R, Chen J. Interplay between intergrin-linked kinase and ribonuclease inhibitor affects growth and metastasis of bladder cancer through signaling ILK pathways. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:130. [PMID: 27576342 PMCID: PMC5006283 DOI: 10.1186/s13046-016-0408-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/17/2016] [Indexed: 12/29/2022]
Abstract
Background Integrin-linked kinase (ILK) is a multifunctional adaptor protein which is involved with protein signalling within cells to modulate malignant (cancer) cell movement, cell cycle, metastasis and epithelial–mesenchymal transition (EMT). Our previous experiment demonstrated that ILK siRNA inhibited the growth and induced apoptosis of bladder cancer cells as well as increased the expression of Ribonuclease inhibitor (RI), an important cytoplasmic protein with many functions. We also reported that RI overexpression inhibited ILK and phosphorylation of AKT and GSK3β. ILK and RI gene both locate on chromosome 11p15 and the two genes are always at the adjacent position of same chromosome during evolution, which suggest that ILK and RI could have some relationship. However, underlying interacting mechanisms remain unclear between them. Here, we postulate that RI might regulate ILK signaling pathway via interacting with ILK. Methods Co-immunoprecipitation, GST pull-down and co-localization under laser confocal microscope assay were used to determine the interaction between ILK and RI exogenously and endogenously. Furthermore, we further verified that there is a direct binding between the two proteins by fluorescence resonance energy transfer (FRET) in cells. Next, The effects of interplay between ILK and RI on the key target protein expressions of PI3K/AKT/mTOR signaling pathway were determined by western blot, immunohistochemistry and immunofluorescence assay in vivo and in vitro. Finally, the interaction was assessed using nude mice xenograft model. Results We first found that ILK could combine with RI both in vivo and in vitro by GST pull-down, co-immunoprecipitation (Co-IP) and FRET. The protein levels of ILK and RI revealed a significant inverse correlation in vivo and in vitro. Subsequently, The results showed that up-regulating ILK could increase cell proliferation, change cell morphology and regulate cell cycle. We also demonstrated that the overexpression of ILK remarkably promoted EMT and expressions of target molecules of ILK signaling pathways in vitro and in vivo. Finally, we found that ILK overexpression significantly enhanced growth, metastasis and angiogenesis of xenograft tumor; Whereas, RI has a contrary role compared to ILK in vivo and in vitro. Conclusions Our findings, for the first time, directly proved that the interplay between ILK and RI regulated EMT via ILK/PI3K/AKT signaling pathways for bladder cancer, which highlights the possibilities that ILK/RI could be valuable markers together for the therapy and diagnosis of human carcinoma of urinary bladder.
Collapse
Affiliation(s)
- Xiang Zhuang
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, 400016, China
| | - Mengxin Lv
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, 400016, China
| | - Zhenyu Zhong
- The First Clinical College, Chongqing Medical University, Chongqing, 400016, China
| | - Luyu Zhang
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, 400016, China
| | - Rong Jiang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Junxia Chen
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
16
|
Abstract
Viral myocarditis remains a prominent infectious-inflammatory disease for patients throughout the lifespan. The condition presents several challenges including varied modes of clinical presentation, a range of timepoints when patients come to attention, a diversity of approaches to diagnosis, a spectrum of clinical courses, and unsettled perspectives on therapeutics in different patient settings and in the face of different viral pathogens. In this review, we examine current knowledge about viral heart disease and especially provide information on evolving understanding of mechanisms of disease and efforts by investigators to identify and evaluate potential therapeutic avenues for intervention.
Collapse
Affiliation(s)
- Gabriel Fung
- From the Department of Pathology and Laboratory Medicine (G.F., H.L., Y.Q., D.Y., B.M.), Centre for Heart Lung Innovation (G.F., H.L., Y.Q., D.Y., B.M.), Centre of Excellence for Prevention of Organ Failure (PROOF Centre), and Institute for Heart + Lung Health, St. Paul's Hospital (B.M.), University of British Columbia, Vancouver, British Columbia, Canada
| | - Honglin Luo
- From the Department of Pathology and Laboratory Medicine (G.F., H.L., Y.Q., D.Y., B.M.), Centre for Heart Lung Innovation (G.F., H.L., Y.Q., D.Y., B.M.), Centre of Excellence for Prevention of Organ Failure (PROOF Centre), and Institute for Heart + Lung Health, St. Paul's Hospital (B.M.), University of British Columbia, Vancouver, British Columbia, Canada
| | - Ye Qiu
- From the Department of Pathology and Laboratory Medicine (G.F., H.L., Y.Q., D.Y., B.M.), Centre for Heart Lung Innovation (G.F., H.L., Y.Q., D.Y., B.M.), Centre of Excellence for Prevention of Organ Failure (PROOF Centre), and Institute for Heart + Lung Health, St. Paul's Hospital (B.M.), University of British Columbia, Vancouver, British Columbia, Canada
| | - Decheng Yang
- From the Department of Pathology and Laboratory Medicine (G.F., H.L., Y.Q., D.Y., B.M.), Centre for Heart Lung Innovation (G.F., H.L., Y.Q., D.Y., B.M.), Centre of Excellence for Prevention of Organ Failure (PROOF Centre), and Institute for Heart + Lung Health, St. Paul's Hospital (B.M.), University of British Columbia, Vancouver, British Columbia, Canada
| | - Bruce McManus
- From the Department of Pathology and Laboratory Medicine (G.F., H.L., Y.Q., D.Y., B.M.), Centre for Heart Lung Innovation (G.F., H.L., Y.Q., D.Y., B.M.), Centre of Excellence for Prevention of Organ Failure (PROOF Centre), and Institute for Heart + Lung Health, St. Paul's Hospital (B.M.), University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
17
|
Gaaloul I, Riabi S, Evans M, Hunter T, Huber S, Aouni M. Postmortem diagnosis of infectious heart diseases: A mystifying cause of Sudden Infant Death. Forensic Sci Int 2016; 262:166-72. [PMID: 27016640 DOI: 10.1016/j.forsciint.2016.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/04/2016] [Accepted: 03/05/2016] [Indexed: 12/20/2022]
Abstract
Sudden infant death (SID) is an unresolved problem of high relevance and previous studies have indicated a role of viral heart infections. The diagnosis remains difficult in clinical practice using routine diagnostic tests and must be substantially improved. A prospective study based on post-mortem samples from SID victims whose heart disease was not clinically recognized was conducted for 4 years in a Tunisian University Hospital. Pediatric cases of unnatural death served as controls. Both SID victims and controls were investigated for possible coxsackievirus-B (CV-B) infection in heart tissue. During the study period, 39 cases with a male predominance (77%) were reported. There was no positive family history of coronary artery disease among the victims. In 35 cases (90%), low birth weight and/or critical development period were reported. All SID victims had complained of mild fever and insomnia for a few days preceding death, which required infectious laboratory investigations marked with an elevated white blood cell count (WBC) and C-reactive protein (CRP). The cardiac biomarkers were also elevated. The histopathological investigations of the heart tissue samples revealed signs of myocardial and pericardial inflammation. Enterovirus was detected by immunohistochemistry (IHC) and PCR from myocardial samples from 6 cases (15.3%) having myocarditis and 3 cases (7.7%) having perimyocarditis. The current study is of great interest and is aimed at urging health professionals to adopt systematically long intensive heart care in infants with underlying vulnerability as well as new diagnostic approaches including histopathology complemented with IHC and molecular pathology.
Collapse
Affiliation(s)
- Imed Gaaloul
- Laboratory of Transmissible Diseases LR99-ES27, Faculty of Pharmacy, Avenue Avicenne 5000, Monastir, Tunisia; University of Vermont, Department of Pathology, Division of Experimental Pathology, Burlington, USA; University of Vermont, DNA Microarray Facility, 305 Health Science Research Facility, Burlington, USA; University of Vermont, Department of Pathology, 208 South Park Drive, Suite #2, Colchester, VT 05446, USA.
| | - Samira Riabi
- Laboratory of Transmissible Diseases LR99-ES27, Faculty of Pharmacy, Avenue Avicenne 5000, Monastir, Tunisia
| | - Mark Evans
- University of Vermont, Department of Pathology, Division of Experimental Pathology, Burlington, USA
| | - Timothy Hunter
- University of Vermont, DNA Microarray Facility, 305 Health Science Research Facility, Burlington, USA
| | - Sally Huber
- University of Vermont, Department of Pathology, 208 South Park Drive, Suite #2, Colchester, VT 05446, USA
| | - Mahjoub Aouni
- Laboratory of Transmissible Diseases LR99-ES27, Faculty of Pharmacy, Avenue Avicenne 5000, Monastir, Tunisia
| |
Collapse
|
18
|
Kariithi HM, İnce İA, Boeren S, Murungi EK, Meki IK, Otieno EA, Nyanjom SRG, van Oers MM, Vlak JM, Abd-Alla AMM. Comparative Analysis of Salivary Gland Proteomes of Two Glossina Species that Exhibit Differential Hytrosavirus Pathologies. Front Microbiol 2016; 7:89. [PMID: 26903969 PMCID: PMC4746320 DOI: 10.3389/fmicb.2016.00089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/18/2016] [Indexed: 01/19/2023] Open
Abstract
Glossina pallidipes salivary gland hypertrophy virus (GpSGHV; family Hytrosaviridae) is a dsDNA virus exclusively pathogenic to tsetse flies (Diptera; Glossinidae). The 190 kb GpSGHV genome contains 160 open reading frames and encodes more than 60 confirmed proteins. The asymptomatic GpSGHV infection in flies can convert to symptomatic infection that is characterized by overt salivary gland hypertrophy (SGH). Flies with SGH show reduced general fitness and reproductive dysfunction. Although the occurrence of SGH is an exception rather than the rule, G. pallidipes is thought to be the most susceptible to expression of overt SGH symptoms compared to other Glossina species that are largely asymptomatic. Although Glossina salivary glands (SGs) play an essential role in GpSGHV transmission, the functions of the salivary components during the virus infection are poorly understood. In this study, we used mass spectrometry to study SG proteomes of G. pallidipes and G. m. morsitans, two Glossina model species that exhibit differential GpSGHV pathologies (high and low incidence of SGH, respectively). A total of 540 host proteins were identified, of which 23 and 9 proteins were significantly up- and down-regulated, respectively, in G. pallidipes compared to G. m. morsitans. Whereas 58 GpSGHV proteins were detected in G. pallidipes F1 progenies, only 5 viral proteins were detected in G. m. morsitans. Unlike in G. pallidipes, qPCR assay did not show any significant increase in virus titers in G. m. morsitans F1 progenies, confirming that G. m. morsitans is less susceptible to GpSGHV infection and replication compared to G. pallidipes. Based on our results, we speculate that in the case of G. pallidipes, GpSGHV employs a repertoire of host intracellular signaling pathways for successful infection. In the case of G. m. morsitans, antiviral responses appeared to be dominant. These results are useful for designing additional tools to investigate the Glossina-GpSGHV interactions.
Collapse
Affiliation(s)
- Henry M Kariithi
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research OrganizationNairobi, Kenya; Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy AgencyVienna, Austria; Laboratory of Virology, Wageningen UniversityWageningen, Netherlands
| | - İkbal Agah İnce
- Department of Medical Microbiology, Acıbadem University İstanbul, Turkey
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University Wageningen, Netherlands
| | - Edwin K Murungi
- South African National Bioinformatics Institute, University of the Western Cape Cape Town, South Africa
| | - Irene K Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy AgencyVienna, Austria; Laboratory of Virology, Wageningen UniversityWageningen, Netherlands
| | - Everlyne A Otieno
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology Nairobi, Kenya
| | - Steven R G Nyanjom
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology Nairobi, Kenya
| | | | - Just M Vlak
- Laboratory of Virology, Wageningen University Wageningen, Netherlands
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency Vienna, Austria
| |
Collapse
|
19
|
Hussein HAM, Walker LR, Abdel-Raouf UM, Desouky SA, Montasser AKM, Akula SM. Beyond RGD: virus interactions with integrins. Arch Virol 2015; 160:2669-81. [PMID: 26321473 PMCID: PMC7086847 DOI: 10.1007/s00705-015-2579-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022]
Abstract
Viruses successfully infect host cells by initially binding to the surfaces of the cells, followed by an intricate entry process. As multifunctional heterodimeric cell-surface receptor molecules, integrins have been shown to usefully serve as entry receptors for a plethora of viruses. However, the exact role(s) of integrins in viral pathogen internalization has yet to be elaborately described. Notably, several viruses harbor integrin-recognition motifs displayed on viral envelope/capsid-associated proteins. The most common of these motifs is the minimal peptide sequence for binding integrins, RGD (Arg-Gly-Asp), which is known for its role in virus infection via its ability to interact with over half of the more than 20 known integrins. Not all virus-integrin interactions are RGD-dependent, however. Non-RGD-binding integrins have also been shown to effectively promote virus entry and infection as well. Such virus-integrin binding is shown to facilitate adhesion, cytoskeleton rearrangement, integrin activation, and increased intracellular signaling. Also, we have attempted to discuss the role of carbohydrate moieties in virus interactions with receptor-like host cell surface integrins that drive the process of internalization. As much as possible, this article examines the published literature regarding the role of integrins in terms of virus infection and virus-encoded glycosylated proteins that mediate interactions with integrins, and it explores the idea of targeting these receptors as a therapeutic treatment option.
Collapse
Affiliation(s)
- Hosni A M Hussein
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Lia R Walker
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Usama M Abdel-Raouf
- Faculty of Science, Al Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Sayed A Desouky
- Faculty of Science, Al Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | | | - Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
20
|
Garmaroudi FS, Marchant D, Hendry R, Luo H, Yang D, Ye X, Shi J, McManus BM. Coxsackievirus B3 replication and pathogenesis. Future Microbiol 2015; 10:629-53. [DOI: 10.2217/fmb.15.5] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT Viruses such as coxsackievirus B3 (CVB3) are entirely host cell-dependent parasites. Indeed, they must cleverly exploit various compartments of host cells to complete their life cycle, and consequently launch disease. Evolution has equipped this pico-rna-virus, CVB3, to use different strategies, including CVB3-induced direct damage to host cells followed by a host inflammatory response to CVB3 infection, and cell death to super-additively promote target organ tissue injury, and dysfunction. In this update, the patho-stratagems of CVB3 are explored from molecular, and systems-level approaches. In summarizing recent developments in this field, we focus particularly on mechanisms by which CVB3 can harness different host cell processes including kinases, host cell-killing and cell-eating machineries, matrix metalloproteinases and miRNAs to promote disease.
Collapse
Affiliation(s)
- Farshid S Garmaroudi
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
| | - David Marchant
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Reid Hendry
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Honglin Luo
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
| | - Decheng Yang
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
| | - Xin Ye
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
| | - Junyan Shi
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
| | - Bruce M McManus
- UBC James Hogg Research Centre, Institute for Heart & Lung Health, St. Paul's Hospital, University of British Columbia, Vancouver, BC, V6Z, Canada
- Centre of Excellence for Prevention of Organ Failure, Vancouver, BC, Canada
| |
Collapse
|
21
|
Gaaloul I, Riabi S, Harrath R, Hunter T, Hamda KB, Ghzala AB, Huber S, Aouni M. Coxsackievirus B detection in cases of myocarditis, myopericarditis, pericarditis and dilated cardiomyopathy in hospitalized patients. Mol Med Rep 2014; 10:2811-8. [PMID: 25241846 PMCID: PMC4227425 DOI: 10.3892/mmr.2014.2578] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Accepted: 05/21/2014] [Indexed: 11/21/2022] Open
Abstract
Coxsackieviruses B (CV-B) are known as the most common viral cause of human heart infections. The aim of the present study was to assess the potential role of CV-B in the etiology of infectious heart disease in hospitalized patients. The present study is based on blood, pericardial fluid and heart biopsies from 102 patients and 100 control subjects. All of the samples were examined for the detection of specific enteroviral genome using the reverse transcription polymerase chain reaction (RT-PCR) and sequence analysis. Immunohistochemical investigations for the detection of the enteroviral capsid protein, VP1, from the biopsies were performed. The samples were cultured on confluent KB monolayer cell line for possible virus isolation. The epidemiological data were also collected. CV-B was detected in 28 of the 102 patients. The sequence analysis demonstrated that 27 strains were identical to CV-B3 and only one strain was identical to CV-B1. Furthermore, VP1 in the heart biopsies was detected in enterovirus-positive cases, as revealed by RT-PCR. Pericarditis infection was more frequent than myocarditis (P<0.05) or myopericarditis (P=0.05). The epidemiological data demonstrate that CV-B heart infections occur mainly during autumn and winter, and young male adults are more susceptible than adolescents or adults (P<0.5). The present findings demonstrate a higher prevalence of viral heart infections, suggesting that CV-B may significantly contribute to heart infections.
Collapse
Affiliation(s)
- Imed Gaaloul
- Laboratory of Transmissible Diseases LR99-ES27, Faculty of Pharmacy, Monastir 5000, Tunisia
| | - Samira Riabi
- Laboratory of Transmissible Diseases LR99-ES27, Faculty of Pharmacy, Monastir 5000, Tunisia
| | - Rafik Harrath
- Laboratory of Transmissible Diseases LR99-ES27, Faculty of Pharmacy, Monastir 5000, Tunisia
| | - Timothy Hunter
- DNA Microarray Facility, 305 Health Science Research Facility, University of Vermont, Burlington, VT 05405, USA
| | - Khaldoun B Hamda
- Department of Cardiology, University Hospital Fattouma Bourguiba, Monastir 5000, Tunisia
| | - Assia B Ghzala
- Department of Cardiology, University Hospitals Farhat Hached and Sahloul, Sousse 4054, Tunisia
| | - Sally Huber
- Department of Pathology, University of Vermont, Burlington, VT 05405, USA
| | - Mahjoub Aouni
- Laboratory of Transmissible Diseases LR99-ES27, Faculty of Pharmacy, Monastir 5000, Tunisia
| |
Collapse
|
22
|
Deng X, Cong Y, Yin R, Yang G, Ding C, Yu S, Liu X, Wang C, Ding Z. Proteomic analysis of chicken peripheral blood mononuclear cells after infection by Newcastle disease virus. J Vet Sci 2014; 15:511-7. [PMID: 25234324 PMCID: PMC4269593 DOI: 10.4142/jvs.2014.15.4.511] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 07/18/2014] [Indexed: 11/20/2022] Open
Abstract
Characteristic clinical manifestations of Newcastle disease include leukopenia and immunosuppression. Peripheral blood mononuclear cells (PBMCs) are the main targets of Newcastle disease virus (NDV) infection. To survey changes in proteomic expression in chicken PBMCs following NDV infection, PBMC proteins from 30 chickens were separated using two- dimensional electrophoresis (2-DE) and subjected to mass spectrometry analysis. Quantitative intensity analysis showed that the expression of 78 proteins increased more than two-fold. Thirty-five proteins exhibited consistent changes in expression and 13 were identified as unique proteins by matrix assisted laser desorption ionization-time of flight mass spectrometer/mass spectrometer including three that were down-regulated and 10 that were up-regulated. These proteins were sorted into five groups based on function: macromolecular biosynthesis, cytoskeleton organization, metabolism, stress responses, and signal transduction. Furthermore, Western blot analysis confirmed the down-regulation of integrin-linked kinase expression and up-regulation of lamin A production. These data provide insight into the in vivo response of target cells to NDV infection at the molecular level. Additionally, results from this study have helped elucidate the molecular pathogenesis of NDV and may facilitate the development of new antiviral therapies as well as innovative diagnostic methods.
Collapse
Affiliation(s)
- Xiaoyu Deng
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Integrins are heterodimeric, transmembrane receptors that are expressed in all cells, including those in the heart. They participate in multiple critical cellular processes including adhesion, extracellular matrix organization, signaling, survival, and proliferation. Particularly relevant for a contracting muscle cell, integrins are mechanotransducers, translating mechanical to biochemical information. Although it is likely that cardiovascular clinicians and scientists have the highest recognition of integrins in the cardiovascular system from drugs used to inhibit platelet aggregation, the focus of this article will be on the role of integrins specifically in the cardiac myocyte. After a general introduction to integrin biology, the article will discuss important work on integrin signaling, mechanotransduction, and lessons learned about integrin function from a range of model organisms. Then we will detail work on integrin-related proteins in the myocyte, how integrins may interact with ion channels and mediate viral uptake into cells, and also play a role in stem cell biology. Finally, we will discuss directions for future study.
Collapse
Affiliation(s)
- Sharon Israeli-Rosenberg
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA, USA, and Veterans Administration San Diego Healthcare System, San Diego, CA, USA
| | - Ana Maria Manso
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA, USA, and Veterans Administration San Diego Healthcare System, San Diego, CA, USA
| | - Hideshi Okada
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA, USA, and Veterans Administration San Diego Healthcare System, San Diego, CA, USA
| | - Robert S Ross
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA, USA, and Veterans Administration San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
24
|
Abstract
Cardiotropic viruses have been implicated as major pathogenetic agents in acute and chronic forms of myocarditis. By the introduction of molecular tools, such as (RT-) polymerase chain reaction ((RT-) PCR) and in situ hybridization in the diagnosis of inflammatory heart disease, genomes of various RNA and DNA viruses comprising enteroviruses, adenoviruses, parvovirus B19 (B19V) and herpesviruses (EBV, HHV6, HCMV) were detected in endomyocardial biopsies of patients with myocarditis and dilated cardiomyopathy. Meanwhile, it is known that the outcome of a virus infection in the heart resulting in myocarditis is determined by genetic host factors as well as by the viral pathogenicity which considerably varies in the different virus infections. A considerable portion of our knowledge about the etiopathogenetic mechanisms in viral heart disease is derived from animal studies. Whereas the evolvement of cardiac inflammation in enterovirus infections is guided by viral cytotoxicity and virus persistence, in herpesvirus infections, the pathophysiology is rather determined by primary immune-mediated pathogenicity. By investigation of immunocompetent and gene-targeted mice, valuable new insights into host and virus factors relevant for the control of cardiac viral infection and inflammation were gained which are reviewed in this paper.
Collapse
MESH Headings
- Adenoviridae/genetics
- Adenoviridae/pathogenicity
- Animals
- Biopsy, Needle
- DNA, Viral/analysis
- Disease Models, Animal
- Enterovirus/genetics
- Enterovirus/pathogenicity
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/pathogenicity
- Herpesvirus 6, Human/genetics
- Herpesvirus 6, Human/pathogenicity
- Humans
- Immunohistochemistry
- Mice
- Mice, Transgenic
- Molecular Diagnostic Techniques/methods
- Myocarditis/genetics
- Myocarditis/pathology
- Myocarditis/virology
- Parvovirus B19, Human/genetics
- Parvovirus B19, Human/pathogenicity
- RNA, Viral/analysis
- Real-Time Polymerase Chain Reaction/methods
- Sensitivity and Specificity
Collapse
Affiliation(s)
- Sabine Pankuweit
- Department of Cardiology, University Hospital Gießen & Marburg, 35043, Marburg, Germany,
| | | |
Collapse
|
25
|
Chen Z, Yang L, Liu Y, Tang A, Li X, Zhang J, Yang Z. LY294002 and Rapamycin promote coxsackievirus-induced cytopathic effect and apoptosis via inhibition of PI3K/AKT/mTOR signaling pathway. Mol Cell Biochem 2013; 385:169-77. [PMID: 24072614 DOI: 10.1007/s11010-013-1825-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/13/2013] [Indexed: 01/23/2023]
Abstract
Coxsackievirus B3 (CVB3) is a common human pathogen for acute myocarditis, pancreatitis, non-septic meningitis, and encephalitis; it induces a direct cytopathic effect (CPE) and apoptosis on infected cells. The Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT/PKB)/mammalian target of Rapamycin (mTOR) signaling pathway regulates several cellular processes and it is one of the most important pathways in human networks. However, the effect and mechanism of PI3K/AKT/mTOR signaling pathway in CVB3 infected cells are poorly understood. In this study, we demonstrate that inhibition of PI3K/AKT/mTOR signaling pathway increased CVB3-induced CPE and apoptosis in HeLa cells. The activity of downstream targets of PI3K and mTOR is attenuated after CVB3 infection and inhibitors of PI3K and mTOR made their activity to decrease more significantly. We further show that LY294002 and Rapamycin, the inhibitor of PI3K and mTOR respectively, promote CVB3-induced CPE and apoptosis. Taken together, these data illustrate a new and imperative role for PI3K/AKT/mTOR signaling in CVB3 infection in HeLa cells and suggest an useful approach for the therapy of CVB3 infection.
Collapse
Affiliation(s)
- Zhiheng Chen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, People's Republic of China,
| | | | | | | | | | | | | |
Collapse
|
26
|
Li X, Li Z, Zhou W, Xing X, Huang L, Tian L, Chen J, Chen C, Ma X, Yang Z. Overexpression of 4EBP1, p70S6K, Akt1 or Akt2 differentially promotes Coxsackievirus B3-induced apoptosis in HeLa cells. Cell Death Dis 2013; 4:e803-9. [PMID: 24030155 PMCID: PMC3789189 DOI: 10.1038/cddis.2013.331] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/04/2013] [Accepted: 08/06/2013] [Indexed: 12/17/2022]
Abstract
Our previous studies have shown that the inhibition of phosphatidylinositol 3-kinase (PI3K) or mTOR complex 1 can obviously promote the Coxsackievirus B3 (CVB3)-induced apoptosis of HeLa cells by regulating the expression of proapoptotic factors. To further illustrate it, Homo sapiens eIF4E-binding protein 1 (4EBP1), p70S6 kinase (p70S6K), Akt1 and Akt2 were transfected to HeLa cells, respectively. And then, we established the stable transfected cell lines. Next, after CVB3 infection, apoptosis in different groups was determined by flow cytometry; the expressions of Bim, Bax, caspase-9 and caspase-3 were examined by real-time fluorescence quantitative PCR and western blot analysis; the expression of CVB3 mRNA and viral capsid protein VP1 were also analyzed by real-time fluorescence quantitative PCR, western blot analysis and immunofluorescence, respectively. At the meantime, CVB3 replication was observed by transmission electron microscope. We found that CVB3-induced cytopathic effect and apoptosis in transfected groups were more obvious than that in controls. Unexpectedly, apoptosis rate in Akt1 group was higher than others at the early stage after viral infection and decreased with the viral-infected time increasing, which was opposite to other groups. Compared with controls, the expression of CVB3 mRNA was increased at 3, 6, 12 and 24 h postinfection (p. i.) in all groups. At the meantime, VP1 expression in 4EBP1 group was higher than control during the process of infection, while the expressions in the other groups were change dynamically. Moreover, overexpression of 4EBP1 did not affect the mRNA expressions of Bim, Bax, caspase-9 and caspase-3; while protein expressions of Bim and Bax were decreased, the self-cleavages of caspase-9 and caspase-3 were stimulated. Meanwhile, overexpression of p70S6K blocked the CVB3-induced Bim, Bax and caspase-9 expressions but promoted the self-cleavage of caspase-9. In the Akt1 group, it is noteworthy that the expressions of Bim protein were higher than controls at 3 and 6 h p. i. but lower at 24 h p. i., and the expression of Bax protein were higher at 6 and 24 h p. i., while their mRNA expressions were all decreased. Furthermore, overexpression of Akt1 stimulated the procaspase-9 and procaspase-3 expression but blocked their self-cleavages. Overexpression of Akt2, however, had little effect on Bim, Bax and caspase-3, while prevented caspase-9 from self-cleavage at the late stage of CVB3 infection. As stated above, our results demonstrated that overexpression of 4EBP1, p70S6K, Akt1 or Akt2 could promote the CVB3-induced apoptosis in diverse degree via different mediating ways in viral replication and proapoptotic factors in BcL-2 and caspase families. As 4EBP1, p70S6K and Akt are the important substrates of PI3K and mammalian target of rapamycin (mTOR), we further illustrated the role of PI3K/Akt/mTOR signaling pathway in the process of CVB3-induced apoptosis.
Collapse
Affiliation(s)
- X Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cohen MM. The AKT genes and their roles in various disorders. Am J Med Genet A 2013; 161A:2931-7. [PMID: 24039187 DOI: 10.1002/ajmg.a.36101] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 04/04/2013] [Indexed: 11/11/2022]
Abstract
AKT (AK mouse plus Transforming or Thymoma) is a common oncogene expressed in most tissues. Both AKT2 and AKT3, although important, have more limited distributions. The regulation of all three genes depends on two receptors-a receptor tyrosine kinase with a growth factor ligand, and a G protein coupled receptor, also with a ligand together with an explanation of how their downsteam components function. AKT2 is amplified or overexpressed in cancer with a higher frequency than those found with AKT1. AKT1 is cardioprotective to the heart by supporting its physiological growth and function. AKT2 is closely linked to Type II diabetes and the implications of various types of mutations are discussed. Various AKT3 mutations are important in neurological disorders, such as microcephaly, hemimegalencephaly, and megalencephaly syndromes. Finally, a reduced level of AKT1 in the frontal cortex has been found during post-mortem brain studies of schizophrenic patients in the populations of many countries.
Collapse
Affiliation(s)
- M Michael Cohen
- Department of Pediatrics, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
28
|
Gaaloul I, Riabi S, Harrath R, Evans M, Salem NH, Mlayeh S, Huber S, Aouni M. Sudden unexpected death related to enterovirus myocarditis: histopathology, immunohistochemistry and molecular pathology diagnosis at post-mortem. BMC Infect Dis 2012; 12:212. [PMID: 22966951 PMCID: PMC3462138 DOI: 10.1186/1471-2334-12-212] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 09/07/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Viral myocarditis is a major cause of sudden unexpected death in children and young adults. Until recently, coxsackievirus B3 (CVB3) has been the most commonly implicated virus in myocarditis. At present, no standard diagnosis is generally accepted due to the insensitivity of traditional diagnostic tests. This has prompted health professionals to seek new diagnostic approaches, which resulted in the emergence of new molecular pathological tests and a more detailed immunohistochemical and histopathological analysis. When supplemented with immunohistochemistry and molecular pathology, conventional histopathology may provide important clues regarding myocarditis underlying etiology. METHODS This study is based on post-mortem samples from sudden unexpected death victims and controls who were investigated prospectively. Immunohistochemical investigations for the detection of the enteroviral capsid protein VP1 and the characterization and quantification of myocardial inflammatory reactions as well as molecular pathological methods for enteroviral genome detection were performed. RESULTS Overall, 48 sudden unexpected death victims were enrolled. As for controls, 37 cases of unnatural traffic accident victims were studied. Enterovirus was detected in 6 sudden unexpected death cases (12.5 %). The control samples were completely enterovirus negative. Furthermore, the enteroviral capsid protein VP1 in the myocardium was detected in enterovirus-positive cases revealed by means of reverse transcriptase-polymerase chain reaction (RT-PCR). Unlike control samples, immunohistochemical investigations showed a significant presence of T and B lymphocytes in sudden unexpected death victims. CONCLUSIONS Our findings demonstrate clearly a higher prevalence of viral myocarditis in cases of sudden unexpected death compared to control subjects, suggesting that coxsackie B enterovirus may contribute to myocarditis pathogenesis significantly.
Collapse
Affiliation(s)
- Imed Gaaloul
- Laboratory of Transmissible Diseases LR99-ES27, Faculty of Pharmacy, Avenue Avicenne, 5000, Monastir, Tunisia.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Marchant DJ, Boyd JH, Lin DC, Granville DJ, Garmaroudi FS, McManus BM. Inflammation in myocardial diseases. Circ Res 2012; 110:126-44. [PMID: 22223210 DOI: 10.1161/circresaha.111.243170] [Citation(s) in RCA: 215] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inflammatory processes underlie a broad spectrum of conditions that injure the heart muscle and cause both structural and functional deficits. In this article, we address current knowledge regarding 4 common forms of myocardial inflammation: myocardial ischemia and reperfusion, sepsis, viral myocarditis, and immune rejection. Each of these pathological states has its own unique features in pathogenesis and disease evolution, but all reflect inflammatory mechanisms that are partially shared. From the point of injury to the mobilization of innate and adaptive immune responses and inflammatory amplification, the cellular and soluble mediators and mechanisms examined in this review will be discussed with a view that both beneficial and adverse consequences arise in these human conditions.
Collapse
Affiliation(s)
- David J Marchant
- James Hogg Research Centre and Institute for Heart + Lung Health, Department of Pathology and Laboratory Medicine, University of British Columbia, Providence Health Care, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Inhibition of nuclear factor kappa B activation reduces Coxsackievirus B3 replication in lymphoid cells. Virus Res 2012; 163:495-502. [DOI: 10.1016/j.virusres.2011.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 11/10/2011] [Accepted: 11/15/2011] [Indexed: 10/15/2022]
|
31
|
Inhibition of fatty acid synthase by amentoflavone reduces coxsackievirus B3 replication. Arch Virol 2011; 157:259-69. [DOI: 10.1007/s00705-011-1164-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 10/27/2011] [Indexed: 10/15/2022]
|
32
|
Sussman MA, Völkers M, Fischer K, Bailey B, Cottage CT, Din S, Gude N, Avitabile D, Alvarez R, Sundararaman B, Quijada P, Mason M, Konstandin MH, Malhowski A, Cheng Z, Khan M, McGregor M. Myocardial AKT: the omnipresent nexus. Physiol Rev 2011; 91:1023-70. [PMID: 21742795 PMCID: PMC3674828 DOI: 10.1152/physrev.00024.2010] [Citation(s) in RCA: 177] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses.
Collapse
Affiliation(s)
- Mark A Sussman
- Department of Biology, San Diego State University, SDSU Heart Institute, San Diego, California 92182, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Matsui Y, Assi K, Ogawa O, Raven PA, Dedhar S, Gleave ME, Salh B, So AI. The importance of integrin-linked kinase in the regulation of bladder cancer invasion. Int J Cancer 2011; 130:521-31. [PMID: 21351095 DOI: 10.1002/ijc.26008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 01/10/2011] [Indexed: 01/01/2023]
Abstract
It is important to understand the molecular mechanisms of bladder cancer progression not only to prevent cancer progression but also to detect new therapeutic targets against advanced bladder cancer. The integrin-linked kinase (ILK) is a major signaling integrator in mammalian cells and plays an important role in epithelial-mesenchymal transition (EMT) of human cancers, but its mechanisms are not completely understood. In this study, we investigated the importance and mechanisms of ILK in bladder cancer progression. When the expression of ILK in bladder cancer cell lines and N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced murine bladder cancer was evaluated, ILK has a tendency to be overexpressed in invasive cell lines and invasive BBN-induced murine bladder cancer. Overexpression of ILK in 253J bladder cancer cells suppressed E-cadherin expression, resulting in the promotion of cell invasion. Conversely, ILK knockdown by siRNA suppresses cell invasion in invasive bladder cancer cells through the regulation of E-cadherin or matrix metalloprotease 9 (MMP-9). To regulate E-cadherin expression, our results showed that the glycogen synthase kinase 3β (GSK3β)-Zeb1 pathway may play an important role downstream of ILK. Finally, the results of a human bladder tissue microarray (TMA) showed that ILK expression correlates with the invasiveness of human bladder cancer. Our study suggests that ILK is overexpressed in invasive bladder cancer and plays an important role in the EMT of bladder cancer via the control of E-cadherin and MMP-9 expression. ILK may be a new molecular target to suppress tumor progression in advanced and high-risk bladder cancer patients.
Collapse
Affiliation(s)
- Yoshiyuki Matsui
- The Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Gaaloul I, Riabi S, Harrath R, Evans M, Huber S, Aouni M. Coxsackie B3 myocarditis in a case of sudden unexpected death in young athlete: Histopathological, immunohistochemical and molecularpathological for diagnosis. Forensic Sci Int 2011; 208:e10-4. [DOI: 10.1016/j.forsciint.2011.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 01/02/2011] [Accepted: 02/09/2011] [Indexed: 10/18/2022]
|
35
|
An Z, Dobra K, Lock JG, Strömblad S, Hjerpe A, Zhang H. Kindlin-2 is expressed in malignant mesothelioma and is required for tumor cell adhesion and migration. Int J Cancer 2010; 127:1999-2008. [PMID: 20127858 DOI: 10.1002/ijc.25223] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Kindlin-2 is a novel integrin-interacting focal adhesion protein that belongs to the Kindlin family. Focal adhesion proteins control cytoskeleton dynamics and promote cancer cell growth, survival, migration and metastasis. Little is known, however, about expression of Kindlin-2 in association with human cancer. We now reveal high Kindlin-2 expression in malignant mesothelioma (MM) cell lines using an affinity-purified anti-Kindlin-2 antibody. Furthermore, we show by immunohistochemistry that Kindlin-2 is highly expressed in 92 of 102 (90%) MMs with epitheliod; sarcomatoid, biphasic and poorly differentiated morphologies. In addition, Kindlin-2 expression correlates to cell proliferation, suggesting a role for Kindlin-2 in tumor growth. We also detect increased expression of Kindlin-2 at the invasion front of tumors concurrent with increased expression of integrin-linked kinase, a Kindlin-binding protein. Besides the high expression of Kindlin-2 in pleural MMs, pleural metastases of lung adenocarcinoma also express large amounts of Kindlin-2, but not Kindlin-1. Notably, in vitro, when endogenous Kindlin-2 was knocked down with RNAi in MM cells, this impaired cell spreading, adhesion and migration. Overall, our study suggests that heightened expression of Kindlin-2 might contribute to tumor progression in MM.
Collapse
Affiliation(s)
- Zhengwen An
- Unit for Clinical Molecular Biology, Department of Biosciences and Nutrition at Novum, Karolinska Institutet, SE-14183, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
36
|
Maydan M, McDonald PC, Sanghera J, Yan J, Rallis C, Pinchin S, Hannigan GE, Foster LJ, Ish-Horowicz D, Walsh MP, Dedhar S. Integrin-linked kinase is a functional Mn2+-dependent protein kinase that regulates glycogen synthase kinase-3β (GSK-3beta) phosphorylation. PLoS One 2010; 5:e12356. [PMID: 20827300 PMCID: PMC2932980 DOI: 10.1371/journal.pone.0012356] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 07/29/2010] [Indexed: 02/07/2023] Open
Abstract
Background Integrin-linked kinase (ILK) is a highly evolutionarily conserved, multi-domain signaling protein that localizes to focal adhesions, myofilaments and centrosomes where it forms distinct multi-protein complexes to regulate cell adhesion, cell contraction, actin cytoskeletal organization and mitotic spindle assembly. Numerous studies have demonstrated that ILK can regulate the phosphorylation of various protein and peptide substrates in vitro, as well as the phosphorylation of potential substrates and various signaling pathways in cultured cell systems. Nevertheless, the ability of ILK to function as a protein kinase has been questioned because of its atypical kinase domain. Methodology/Principal Findings Here, we have expressed full-length recombinant ILK, purified it to >94% homogeneity, and characterized its kinase activity. Recombinant ILK readily phosphorylates glycogen synthase kinase-3 (GSK-3) peptide and the 20-kDa regulatory light chains of myosin (LC20). Phosphorylation kinetics are similar to those of other active kinases, and mutation of the ATP-binding lysine (K220 within subdomain 2) causes marked reduction in enzymatic activity. We show that ILK is a Mn-dependent kinase (the Km for MnATP is ∼150-fold less than that for MgATP). Conclusions/Significance Taken together, our data demonstrate that ILK is a bona fide protein kinase with enzyme kinetic properties similar to other active protein kinases.
Collapse
Affiliation(s)
- Mykola Maydan
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Paul C. McDonald
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | | | - Jun Yan
- SignalChem Inc., Richmond, British Columbia, Canada
| | - Charalampos Rallis
- Developmental Genetics Laboratory, London Research Institute, London, United Kingdom
- Department of Genetics, Evolution & Environment and UCL Cancer Institute, University College London, London, United Kingdom
| | - Sheena Pinchin
- Developmental Genetics Laboratory, London Research Institute, London, United Kingdom
- Department of Genetics, Evolution & Environment and UCL Cancer Institute, University College London, London, United Kingdom
| | - Gregory E. Hannigan
- Centre for Cancer Research, Monash Institute of Medical Research, Melbourne, Victoria, Australia
| | - Leonard J. Foster
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Ish-Horowicz
- Developmental Genetics Laboratory, London Research Institute, London, United Kingdom
| | - Michael P. Walsh
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
37
|
Toll-like receptor 4-mediated activation of p38 mitogen-activated protein kinase is a determinant of respiratory virus entry and tropism. J Virol 2010; 84:11359-73. [PMID: 20702616 DOI: 10.1128/jvi.00804-10] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Respiratory viruses exert a heavy toll of morbidity and mortality worldwide. Despite this burden there are few specific treatments available for respiratory virus infections. Since many viruses utilize host cell enzymatic machinery such as protein kinases for replication, we determined whether pharmacological inhibition of kinases could, in principle, be used as a broad antiviral strategy for common human respiratory virus infections. A panel of green fluorescent protein (GFP)-expressing recombinant respiratory viruses, including an isolate of H1N1 influenza virus (H1N1/Weiss/43), was used to represent a broad range of virus families responsible for common respiratory infections (Adenoviridae, Paramyxoviridae, Picornaviridae, and Orthomyxoviridae). Kinase inhibitors were screened in a high-throughput assay that detected virus infection in human airway epithelial cells (1HAEo-) using a fluorescent plate reader. Inhibition of p38 mitogen-activated protein kinase (MAPK) signaling was able to significantly inhibit replication by all viruses tested. Therefore, the pathways involved in virus-mediated p38 and extracellular signal-regulated kinase (ERK) MAPK activation were investigated using bronchial epithelial cells and primary fibroblasts derived from MyD88 knockout mouse lungs. Influenza virus, which activated p38 MAPK to approximately 10-fold-greater levels than did respiratory syncytial virus (RSV) in 1HAEo- cells, was internalized about 8-fold faster and more completely than RSV. We show for the first time that p38 MAPK is a determinant of virus infection that is dependent upon MyD88 expression and Toll-like receptor 4 (TLR4) ligation. Imaging of virus-TLR4 interactions showed significant clustering of TLR4 at the site of virus-cell interaction, triggering phosphorylation of downstream targets of p38 MAPK, suggesting the need for a signaling receptor to activate virus internalization.
Collapse
|
38
|
Woodhouse SD, Narayan R, Latham S, Lee S, Antrobus R, Gangadharan B, Luo S, Schroth GP, Klenerman P, Zitzmann N. Transcriptome sequencing, microarray, and proteomic analyses reveal cellular and metabolic impact of hepatitis C virus infection in vitro. Hepatology 2010; 52:443-53. [PMID: 20683944 PMCID: PMC3427885 DOI: 10.1002/hep.23733] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) is a major cause of liver disease but the full impact of HCV infection on the hepatocyte is poorly understood. RNA sequencing (RNA-Seq) is a novel method to analyze the full transcriptional activity of a cell or tissue, thus allowing new insight into the impact of HCV infection. We conducted the first full-genome RNA-Seq analysis in a host cell to analyze infected and noninfected cells, and compared this to microarray and proteomic analyses. The combined power of the triple approach revealed that HCV infection affects a number of previously unreported canonical pathways and biological functions, including pregnane X receptor/retinoic acid receptor activation as a potential host antiviral response, and integrin-linked kinase signaling as an entry factor. This approach also identified several mechanisms implicated in HCV pathogenesis, including an increase in reactive oxygen species. HCV infection had a broad effect on cellular metabolism, leading to increases in cellular cholesterol and free fatty acid levels, associated with a profound and specific decrease in cellular glucose levels. CONCLUSION RNA-Seq technology, especially when combined with established methods, demonstrated that HCV infection has potentially wide-ranging effects on cellular gene and protein expression. This in vitro study indicates a substantial metabolic impact of HCV infection and highlights new mechanisms of virus-host interaction which may be highly relevant to pathogenesis in vivo.
Collapse
Affiliation(s)
- Stephen D Woodhouse
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Ramamurthy Narayan
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of OxfordOxford, United Kingdom
| | - Sally Latham
- Oxford Glycobiology Institute, Department of Biochemistry, University of OxfordOxford, United Kingdom
| | - Sheena Lee
- Oxford Centre for Gene Function, Department of Human Anatomy, Physiology and Genetics, University of OxfordOxford, United Kingdom
| | - Robin Antrobus
- Oxford Glycobiology Institute, Department of Biochemistry, University of OxfordOxford, United Kingdom
| | - Bevin Gangadharan
- Oxford Glycobiology Institute, Department of Biochemistry, University of OxfordOxford, United Kingdom
| | | | | | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of OxfordOxford, United Kingdom
| | - Nicole Zitzmann
- Oxford Glycobiology Institute, Department of Biochemistry, University of OxfordOxford, United Kingdom
| |
Collapse
|
39
|
Regulating Viral Myocarditis: Allografted Regulatory T Cells Decrease Immune Infiltration and Viral Load. Circulation 2010; 121:2609-11. [DOI: 10.1161/circulationaha.110.960054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
40
|
Esfandiarei M, McManus BM. Molecular biology and pathogenesis of viral myocarditis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2008; 3:127-55. [PMID: 18039131 DOI: 10.1146/annurev.pathmechdis.3.121806.151534] [Citation(s) in RCA: 284] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myocarditis is a cardiac disease associated with inflammation and injury of the myocardium. Several viruses have been associated with myocarditis in humans. However, coxsackievirus B3 is still considered the dominant etiological agent. The observed pathology in viral myocarditis is a result of cooperation or teamwork between viral processes and host immune responses at various stages of disease. Both innate and adaptive immune responses are crucial determinants of the severity of myocardial damage, and contribute to the development of chronic myocarditis and dilated cardiomyopathy following acute viral myocarditis. Advances in genomics and proteomics, and in the use of informatics and biostatistics, are allowing unbiased initial evaluations that can be the basis for testable hypotheses about virus pathogenesis and new therapies.
Collapse
Affiliation(s)
- Mitra Esfandiarei
- The James Hogg iCAPTURE Center for Cardiovascular and Pulmonary Research, St. Paul's Hospital, Providence Health Care Research Institute, Vancouver, Canada.
| | | |
Collapse
|
41
|
Esfandiarei M, Boroomand S, Suarez A, Si X, Rahmani M, McManus B. Coxsackievirus B3 activates nuclear factor kappa B transcription factor via a phosphatidylinositol-3 kinase/protein kinase B-dependent pathway to improve host cell viability. Cell Microbiol 2008; 9:2358-71. [PMID: 17848167 DOI: 10.1111/j.1462-5822.2007.00964.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Coxsackievirus B3 (CVB3) is the most common viral infectant of heart muscle. CVB3 directly injures cardiomyocytes. We have previously reported on a regulatory role for the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (Akt) pathway during CVB3 infection. Yet, the mechanism underlying this regulatory role has not been elucidated. The PI3K/Akt pathway is involved in various cellular processes and exerts its function through the activation of several downstream effectors. Among them, nuclear factor kappa B (NFkappaB) transcription factor is involved in inflammation, survival and apoptosis. In this study, we investigated the role of NFkappaB as a potential downstream mediator of signals through the PI3K/Akt cascade, in regulating CVB3-induced cellular injury. We report that CVB3 infection induces the translocation of NFkappaB into the nucleus of infected cells. Inhibition of the PI3K/Akt pathway markedly decreases virus-induced NFkappaB activation. Further, NFkappaB inhibition significantly suppresses host viability, suggesting a pro-survival role for NFkappaB. Short-term treatment of cells with tumour necrosis factor-alpha (TNF-alpha), a potent activator of NFkappaB, promotes host cell viability without affecting virus replication. However, a prolonged treatment has a detrimental effect on cells, indicating the existence of a delicate balance between the anti- and pro-apoptotic roles of TNF-alpha in the setting of CVB3 infection.
Collapse
Affiliation(s)
- Mitra Esfandiarei
- The James Hogg iCAPTURE Centre for Cardiovascular and Pulmonary Research, Providence Health Care Research Institute/St. Paul's Hospital, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Acconcia F, Barnes CJ, Singh RR, Talukder AH, Kumar R. Phosphorylation-dependent regulation of nuclear localization and functions of integrin-linked kinase. Proc Natl Acad Sci U S A 2007; 104:6782-7. [PMID: 17420447 PMCID: PMC1871862 DOI: 10.1073/pnas.0701999104] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Integrin-linked kinase (ILK) is a phosphorylated protein that regulates physiological processes that overlap with those regulated by p21-activated kinase 1 (PAK1). Here we report the possible role of ILK phosphorylation by PAK1 in ILK-mediated signaling and intracellular translocation. We found that PAK1 phosphorylates ILK at threonine-173 and serine-246 in vitro and in vivo. Depletion of PAK1 decreased the levels of endogenous ILK phosphorylation in vivo. Mutation of PAK1 phosphorylation sites on ILK to alanine reduced cell motility and cell proliferation. Biochemical fractionation, confocal microscopy, and chromatin-interaction analyses of human cells revealed that ILK localizes predominantly in the cytoplasm but also resides in the nucleus. Transfection of MCF-7 cells with point mutants ILK-T173A, ILK-S246A, or ILK-T173A; S246A (ILK-DM) altered ILK localization. Selective depletion of PAK1 dramatically increased the nuclear and focal point accumulation of ILK, further demonstrating a role for PAK1 in ILK translocation. We also identified functional nuclear localization sequence and nuclear export sequence motifs in ILK, delineated an apparently integral role for ILK in maintaining normal nuclear integrity, and established that ILK interacts with the regulatory region of the CNKSR3 gene chromatin to negatively modulate its expression. Together, these results suggest that ILK is a PAK1 substrate, undergoes phosphorylation-dependent shuttling between the cell nucleus and cytoplasm, and interacts with gene-regulatory chromatin.
Collapse
Affiliation(s)
- Filippo Acconcia
- *Department of Molecular and Cellular Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030; and
| | - Christopher J. Barnes
- *Department of Molecular and Cellular Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030; and
| | - Rajesh R. Singh
- *Department of Molecular and Cellular Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030; and
| | - Amjad H. Talukder
- *Department of Molecular and Cellular Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030; and
| | - Rakesh Kumar
- *Department of Molecular and Cellular Oncology, University of Texas M. D. Anderson Cancer Center, Houston, TX 77030; and
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
43
|
|