1
|
Mobilia M, Karakashian A, Neupane KR, Hage O, Whitus C, Carter A, Voy C, Johnson LA, Graf GA, Gordon SM. Enhancement of high-density lipoprotein-associated protease inhibitor activity prevents atherosclerosis progression. Atherosclerosis 2024; 396:118544. [PMID: 39126769 PMCID: PMC11404725 DOI: 10.1016/j.atherosclerosis.2024.118544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/28/2024] [Accepted: 07/11/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND AND AIMS Inflammatory cells within atherosclerotic lesions secrete proteolytic enzymes that contribute to lesion progression and destabilization, increasing the risk for an acute cardiovascular event. Elastase is a serine protease, secreted by macrophages and neutrophils, that may contribute to the development of unstable plaque. We previously reported interaction of endogenous protease-inhibitor proteins with high-density lipoprotein (HDL), including alpha-1-antitrypsin, an inhibitor of elastase. These findings support a potential role for HDL as a modulator of protease activity. In this study, we test the hypothesis that enhancement of HDL-associated elastase inhibitor activity is protective against atherosclerotic lesion progression. METHODS We designed an HDL-targeting protease inhibitor (HTPI) that binds to HDL and confers elastase inhibitor activity. Lipoprotein binding and the impact of HTPI on atherosclerosis were examined using mouse models. Histology and immunofluorescence staining of aortic root sections were used to examine the impact of HTPI on lesion morphology and inflammatory features. RESULTS HTPI is a small (1.6 kDa) peptide with an elastase inhibitor domain, a soluble linker, and an HDL-targeting domain. When incubated with human plasma ex vivo, HTPI predominantly binds to HDL. Intravenous administration of HTPI to mice resulted in its binding to plasma HDL and increased elastase inhibitor activity on isolated HDL. Accumulation of HTPI within plaque was observed after administration to Apoe-/- mice. To examine the effect of HTPI treatment on atherosclerosis, prevention and progression studies were performed using Ldlr-/- mice fed Western diet. In both study designs, HTPI-treated mice had reduced lipid deposition in plaque. CONCLUSIONS These data support the hypothesis that HDL-associated anti-elastase activity can improve the atheroprotective potential of HDL and highlight the potential utility of HDL enrichment with anti-protease activity as an approach for stabilization of atherosclerotic lesions.
Collapse
Affiliation(s)
- Maura Mobilia
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | | | - Khaga R Neupane
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Olivia Hage
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Callie Whitus
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Abigail Carter
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA
| | - Clairity Voy
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Lance A Johnson
- Department of Physiology, University of Kentucky, Lexington, KY, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Gregory A Graf
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA; Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Scott M Gordon
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY, USA; Department of Physiology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
2
|
Mobilia M, Karakashian A, Whitus C, Neupane KR, Johnson LA, Graf GA, Gordon SM. Enhancement of High-Density Lipoprotein-Associated Protease Inhibitor Activity Prevents Atherosclerosis Progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.551670. [PMID: 37609198 PMCID: PMC10441367 DOI: 10.1101/2023.08.07.551670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Background Inflammatory cells within atherosclerotic lesions secrete various proteolytic enzymes that contribute to lesion progression and destabilization, increasing the risk for an acute cardiovascular event. The relative contributions of specific proteases to atherogenesis is not well understood. Elastase is a serine protease, secreted by macrophages and neutrophils, that may contribute to the development of unstable plaque. We have previously reported interaction of endogenous protease-inhibitor proteins with high-density lipoprotein (HDL), including alpha-1-antitrypsin, an inhibitor of elastase. These findings support a potential role for HDL as an endogenous modulator of protease activity. In this study, we test the hypothesis that enhancement of HDL-associated elastase inhibitor activity is protective against atherosclerotic lesion progression. Methods We designed an HDL-targeting protease inhibitor (HTPI) that binds to HDL and confers elastase inhibitor activity. Lipoprotein binding and the impact of HTPI on atherosclerosis was examined using mouse models. Results HTPI is a small (1.6 kDa) peptide with an elastase inhibitor domain, a soluble linker, and an HDL-targeting domain. When incubated with human plasma ex vivo , HTPI predominantly binds to HDL. Intravenous administration of HTPI to mice resulted in its binding to plasma HDL and increased elastase inhibitor activity on isolated HDL. Accumulation of HTPI within plaque was observed after systemic administration to Apoe -/- mice. To examine the effect of HTPI treatment on atherosclerosis, prevention and progression studies were performed using Ldlr -/- mice fed Western diet. In both study designs, HTPI-treated mice had reduced lipid deposition in plaque. Histology and immunofluorescence staining of aortic root sections were used to examine the impact of HTPI on lesion morphology and inflammatory features. Conclusions These data support the hypothesis that HDL-associated anti-elastase activity can improve the atheroprotective potential of HDL and highlight the potential utility of HDL enrichment with anti-protease activity as an approach for stabilization of atherosclerotic lesions.
Collapse
|
3
|
The Interplay of Endothelial P2Y Receptors in Cardiovascular Health: From Vascular Physiology to Pathology. Int J Mol Sci 2022; 23:ijms23115883. [PMID: 35682562 PMCID: PMC9180512 DOI: 10.3390/ijms23115883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
The endothelium plays a key role in blood vessel health. At the interface of the blood, it releases several mediators that regulate local processes that protect against the development of cardiovascular disease. In this interplay, there is increasing evidence for a role of extracellular nucleotides and endothelial purinergic P2Y receptors (P2Y-R) in vascular protection. Recent advances have revealed that endothelial P2Y1-R and P2Y2-R mediate nitric oxide-dependent vasorelaxation as well as endothelial cell proliferation and migration, which are processes involved in the regeneration of damaged endothelium. However, endothelial P2Y2-R, and possibly P2Y1-R, have also been reported to promote vascular inflammation and atheroma development in mouse models, with endothelial P2Y2-R also being described as promoting vascular remodeling and neointimal hyperplasia. Interestingly, at the interface with lipid metabolism, P2Y12-R has been found to trigger HDL transcytosis through endothelial cells, a process known to be protective against lipid deposition in the vascular wall. Better characterization of the role of purinergic P2Y-R and downstream signaling pathways in determination of the endothelial cell phenotype in healthy and pathological environments has clinical potential for the prevention and treatment of cardiovascular diseases.
Collapse
|
4
|
Masuda R, Lodge S, Whiley L, Gray N, Lawler N, Nitschke P, Bong SH, Kimhofer T, Loo RL, Boughton B, Zeng AX, Hall D, Schaefer H, Spraul M, Dwivedi G, Yeap BB, Diercks T, Bernardo-Seisdedos G, Mato JM, Lindon JC, Holmes E, Millet O, Wist J, Nicholson JK. Exploration of Human Serum Lipoprotein Supramolecular Phospholipids Using Statistical Heterospectroscopy in n-Dimensions (SHY- n): Identification of Potential Cardiovascular Risk Biomarkers Related to SARS-CoV-2 Infection. Anal Chem 2022; 94:4426-4436. [PMID: 35230805 DOI: 10.1021/acs.analchem.1c05389] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SARS-CoV-2 infection causes a significant reduction in lipoprotein-bound serum phospholipids give rise to supramolecular phospholipid composite (SPC) signals observed in diffusion and relaxation edited 1H NMR spectra. To characterize the chemical structural components and compartmental location of SPC and to understand further its possible diagnostic properties, we applied a Statistical HeterospectroscopY in n-dimensions (SHY-n) approach. This involved statistically linking a series of orthogonal measurements made on the same samples, using independent analytical techniques and instruments, to identify the major individual phospholipid components giving rise to the SPC signals. Thus, an integrated model for SARS-CoV-2 positive and control adults is presented that relates three identified diagnostic subregions of the SPC signal envelope (SPC1, SPC2, and SPC3) generated using diffusion and relaxation edited (DIRE) NMR spectroscopy to lipoprotein and lipid measurements obtained by in vitro diagnostic NMR spectroscopy and ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The SPC signals were then correlated sequentially with (a) total phospholipids in lipoprotein subfractions; (b) apolipoproteins B100, A1, and A2 in different lipoproteins and subcompartments; and (c) MS-measured total serum phosphatidylcholines present in the NMR detection range (i.e., PCs: 16.0,18.2; 18.0,18.1; 18.2,18.2; 16.0,18.1; 16.0,20.4; 18.0,18.2; 18.1,18.2), lysophosphatidylcholines (LPCs: 16.0 and 18.2), and sphingomyelin (SM 22.1). The SPC3/SPC2 ratio correlated strongly (r = 0.86) with the apolipoprotein B100/A1 ratio, a well-established marker of cardiovascular disease risk that is markedly elevated during acute SARS-CoV-2 infection. These data indicate the considerable potential of using a serum SPC measurement as a metric of cardiovascular risk based on a single NMR experiment. This is of specific interest in relation to understanding the potential for increased cardiovascular risk in COVID-19 patients and risk persistence in post-acute COVID-19 syndrome (PACS).
Collapse
Affiliation(s)
- Reika Masuda
- Australian National Phenome Center, and Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth 6150, Western Australia, Australia
| | - Samantha Lodge
- Australian National Phenome Center, and Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth 6150, Western Australia, Australia
| | - Luke Whiley
- Australian National Phenome Center, and Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth 6150, Western Australia, Australia
| | - Nicola Gray
- Australian National Phenome Center, and Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth 6150, Western Australia, Australia
| | - Nathan Lawler
- Australian National Phenome Center, and Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth 6150, Western Australia, Australia
| | - Philipp Nitschke
- Australian National Phenome Center, and Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth 6150, Western Australia, Australia
| | - Sze-How Bong
- Australian National Phenome Center, and Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth 6150, Western Australia, Australia
| | - Torben Kimhofer
- Australian National Phenome Center, and Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth 6150, Western Australia, Australia
| | - Ruey Leng Loo
- Australian National Phenome Center, and Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth 6150, Western Australia, Australia
| | - Berin Boughton
- Australian National Phenome Center, and Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth 6150, Western Australia, Australia
| | - Annie X Zeng
- Australian National Phenome Center, and Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth 6150, Western Australia, Australia
| | - Drew Hall
- Australian National Phenome Center, and Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth 6150, Western Australia, Australia
| | | | - Manfred Spraul
- Bruker Biospin GmbH, Silberstreifen, Ettlingen 76275, Germany
| | - Girish Dwivedi
- Department of Cardiology, Fiona Stanley Hospital, Medical School, University of Western Australia, Perth 6150, Western Australia, Australia
| | - Bu B Yeap
- Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Medical School, University of Western Australia, Perth 6150, Western Australia, Australia
| | - Tammo Diercks
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Parque Tecnológico de Bizkaia, Bld. 800, 48160 Derio, Spain
| | - Ganeko Bernardo-Seisdedos
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Parque Tecnológico de Bizkaia, Bld. 800, 48160 Derio, Spain
| | - José M Mato
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Parque Tecnológico de Bizkaia, Bld. 800, 48160 Derio, Spain
| | - John C Lindon
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, U.K
| | - Elaine Holmes
- Australian National Phenome Center, and Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth 6150, Western Australia, Australia.,Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, U.K
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Parque Tecnológico de Bizkaia, Bld. 800, 48160 Derio, Spain
| | - Julien Wist
- Australian National Phenome Center, and Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth 6150, Western Australia, Australia.,Chemistry Department, Universidad del Valle, 76001 Cali, Colombia
| | - Jeremy K Nicholson
- Australian National Phenome Center, and Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth 6150, Western Australia, Australia.,Department of Cardiology, Fiona Stanley Hospital, Medical School, University of Western Australia, Perth 6150, Western Australia, Australia.,Institute of Global Health Innovation, Faculty of Medicine, Imperial College London, Level 1, Faculty Building, South Kensington Campus, London SW7 2NA, U.K
| |
Collapse
|
5
|
Kotlyarov S. Diversity of Lipid Function in Atherogenesis: A Focus on Endothelial Mechanobiology. Int J Mol Sci 2021; 22:11545. [PMID: 34768974 PMCID: PMC8584259 DOI: 10.3390/ijms222111545] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Atherosclerosis is one of the most important problems in modern medicine. Its high prevalence and social significance determine the need for a better understanding of the mechanisms of the disease's development and progression. Lipid metabolism and its disorders are one of the key links in the pathogenesis of atherosclerosis. Lipids are involved in many processes, including those related to the mechanoreception of endothelial cells. The multifaceted role of lipids in endothelial mechanobiology and mechanisms of atherogenesis are discussed in this review. Endothelium is involved in ensuring adequate vascular hemodynamics, and changes in blood flow characteristics are detected by endothelial cells and affect their structure and function.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| |
Collapse
|
6
|
Velagapudi S, Rohrer L, Poti F, Feuerborn R, Perisa D, Wang D, Panteloglou G, Potapenko A, Yalcinkaya M, Hülsmeier AJ, Hesse B, Lukasz A, Liu M, Parks JS, Christoffersen C, Stoffel M, Simoni M, Nofer JR, von Eckardstein A. Apolipoprotein M and Sphingosine-1-Phosphate Receptor 1 Promote the Transendothelial Transport of High-Density Lipoprotein. Arterioscler Thromb Vasc Biol 2021; 41:e468-e479. [PMID: 34407633 PMCID: PMC8458249 DOI: 10.1161/atvbaha.121.316725] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Objective: ApoM enriches S1P (sphingosine-1-phosphate) within HDL (high-density lipoproteins) and facilitates the activation of the S1P1 (S1P receptor type 1) by S1P, thereby preserving endothelial barrier function. Many protective functions exerted by HDL in extravascular tissues raise the question of how S1P regulates transendothelial HDL transport. Approach and Results: HDL were isolated from plasma of wild-type mice, Apom knockout mice, human apoM transgenic mice or humans and radioiodinated to trace its binding, association, and transport by bovine or human aortic endothelial cells. We also compared the transport of fluorescently-labeled HDL or Evans Blue, which labels albumin, from the tail vein into the peritoneal cavity of apoE-haploinsufficient mice with (apoE-haploinsufficient mice with endothelium-specific knockin of S1P1) or without (control mice, ie, apoE-haploinsufficient mice without endothelium-specific knockin of S1P1) endothelium-specific knockin of S1P1. The binding, association, and transport of HDL from Apom knockout mice and human apoM-depleted HDL by bovine aortic endothelial cells was significantly lower than that of HDL from wild-type mice and human apoM-containing HDL, respectively. The binding, uptake, and transport of 125I-HDL by human aortic endothelial cells was increased by an S1P1 agonist but decreased by an S1P1 inhibitor. Silencing of SR-BI (scavenger receptor BI) abrogated the stimulation of 125I-HDL transport by the S1P1 agonist. Compared with control mice, that is, apoE-haploinsufficient mice without endothelium-specific knockin of S1P1, apoE-haploinsufficient mice with endothelium-specific knockin of S1P1 showed decreased transport of Evans Blue but increased transport of HDL from blood into the peritoneal cavity and SR-BI expression in the aortal endothelium. Conclusions: ApoM and S1P1 promote transendothelial HDL transport. Their opposite effect on transendothelial transport of albumin and HDL indicates that HDL passes endothelial barriers by specific mechanisms rather than passive filtration.
Collapse
Affiliation(s)
- Srividya Velagapudi
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland (S.V., L.R., D.P., D.W., G.P., A.P., M.Y., A.J.H., A.v.E.)
| | - Lucia Rohrer
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland (S.V., L.R., D.P., D.W., G.P., A.P., M.Y., A.J.H., A.v.E.)
| | - Francesco Poti
- Unit of Neurosciences, Department of Medicine and Surgery, University of Parma, Italy (F.P.)
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy (F.P., M. Simoni, J.-R.N.)
| | - Renate Feuerborn
- Central Laboratory Facility, University Hospital of Münster, Germany (R.F., J.-R.N.)
| | - Damir Perisa
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland (S.V., L.R., D.P., D.W., G.P., A.P., M.Y., A.J.H., A.v.E.)
| | - Dongdong Wang
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland (S.V., L.R., D.P., D.W., G.P., A.P., M.Y., A.J.H., A.v.E.)
| | - Grigorios Panteloglou
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland (S.V., L.R., D.P., D.W., G.P., A.P., M.Y., A.J.H., A.v.E.)
| | - Anton Potapenko
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland (S.V., L.R., D.P., D.W., G.P., A.P., M.Y., A.J.H., A.v.E.)
| | - Mustafa Yalcinkaya
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland (S.V., L.R., D.P., D.W., G.P., A.P., M.Y., A.J.H., A.v.E.)
| | - Andreas J Hülsmeier
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland (S.V., L.R., D.P., D.W., G.P., A.P., M.Y., A.J.H., A.v.E.)
| | - Bettina Hesse
- Department of Medicine D, Division of General Internal Medicine, Nephrology, and Rheumatology, University Hospital Münster, Germany (B.H., A.L.)
| | - Alexander Lukasz
- Department of Medicine D, Division of General Internal Medicine, Nephrology, and Rheumatology, University Hospital Münster, Germany (B.H., A.L.)
| | - Mingxia Liu
- Department of Internal Medicine/Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC (M.L., J.S.P.)
| | - John S Parks
- Department of Internal Medicine/Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC (M.L., J.S.P.)
| | - Christina Christoffersen
- Department of Biomedical Science, University of Copenhagen, Denmark (C.C.)
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark (C.C.)
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zurich, Switzerland (M. Stoffel)
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy (F.P., M. Simoni, J.-R.N.)
| | - Jerzy-Roch Nofer
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Italy (F.P., M. Simoni, J.-R.N.)
- Central Laboratory Facility, University Hospital of Münster, Germany (R.F., J.-R.N.)
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Germany (J.-R.N.)
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland (S.V., L.R., D.P., D.W., G.P., A.P., M.Y., A.J.H., A.v.E.)
| |
Collapse
|
7
|
Huang K, Jo H, Echesabal-Chen J, Stamatikos A. Combined LXR and RXR Agonist Therapy Increases ABCA1 Protein Expression and Enhances ApoAI-Mediated Cholesterol Efflux in Cultured Endothelial Cells. Metabolites 2021; 11:640. [PMID: 34564456 PMCID: PMC8466889 DOI: 10.3390/metabo11090640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Endothelial ABCA1 expression protects against atherosclerosis and this atheroprotective effect is partially attributed to enhancing apoAI-mediated cholesterol efflux. ABCA1 is a target gene for LXR and RXR; therefore, treating endothelial cells with LXR and/or RXR agonists may increase ABCA1 expression. We tested whether treating cultured immortalized mouse aortic endothelial cells (iMAEC) with the endogenous LXR agonist 22(R)-hydroxycholesterol, synthetic LXR agonist GW3965, endogenous RXR agonist 9-cis-retinoic acid, or synthetic RXR agonist SR11237 increases ABCA1 protein expression. We observed a significant increase in ABCA1 protein expression in iMAEC treated with either GW3965 or SR11237 alone, but no significant increase in ABCA1 protein was observed in iMAEC treated with either 22(R)-hydroxycholesterol or 9-cis-retionic acid alone. However, we observed significant increases in both ABCA1 protein expression and apoAI-mediated cholesterol efflux when iMAEC were treated with a combination of either 22(R)-hydroxycholesterol and 9-cis-retinoic acid or GW3965 and SR11237. Furthermore, treating iMAEC with either 22(R)-hydroxycholesterol and 9-cis-retinoic acid or GW3965 and SR11237 did not trigger an inflammatory response, based on VCAM-1, ICAM-1, CCL2, and IL-6 mRNA expression. Based on our findings, delivering LXR and RXR agonists precisely to endothelial cells may be a promising atheroprotective approach.
Collapse
Affiliation(s)
- Kun Huang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (K.H.); (J.E.-C.)
| | - Hanjoong Jo
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA;
| | - Jing Echesabal-Chen
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (K.H.); (J.E.-C.)
| | - Alexis Stamatikos
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, SC 29634, USA; (K.H.); (J.E.-C.)
| |
Collapse
|
8
|
Medina-Leyte DJ, Zepeda-García O, Domínguez-Pérez M, González-Garrido A, Villarreal-Molina T, Jacobo-Albavera L. Endothelial Dysfunction, Inflammation and Coronary Artery Disease: Potential Biomarkers and Promising Therapeutical Approaches. Int J Mol Sci 2021; 22:3850. [PMID: 33917744 PMCID: PMC8068178 DOI: 10.3390/ijms22083850] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022] Open
Abstract
Coronary artery disease (CAD) and its complications are the leading cause of death worldwide. Inflammatory activation and dysfunction of the endothelium are key events in the development and pathophysiology of atherosclerosis and are associated with an elevated risk of cardiovascular events. There is great interest to further understand the pathophysiologic mechanisms underlying endothelial dysfunction and atherosclerosis progression, and to identify novel biomarkers and therapeutic strategies to prevent endothelial dysfunction, atherosclerosis and to reduce the risk of developing CAD and its complications. The use of liquid biopsies and new molecular biology techniques have allowed the identification of a growing list of molecular and cellular markers of endothelial dysfunction, which have provided insight on the molecular basis of atherosclerosis and are potential biomarkers and therapeutic targets for the prevention and or treatment of atherosclerosis and CAD. This review describes recent information on normal vascular endothelium function, as well as traditional and novel potential biomarkers of endothelial dysfunction and inflammation, and pharmacological and non-pharmacological therapeutic strategies aimed to protect the endothelium or reverse endothelial damage, as a preventive treatment for CAD and related complications.
Collapse
Affiliation(s)
- Diana Jhoseline Medina-Leyte
- Genomics of Cardiovascular Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (D.J.M.-L.); (O.Z.-G.); (M.D.-P.); (A.G.-G.); (T.V.-M.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Mexico City 04510, Mexico
| | - Oscar Zepeda-García
- Genomics of Cardiovascular Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (D.J.M.-L.); (O.Z.-G.); (M.D.-P.); (A.G.-G.); (T.V.-M.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Mexico City 04510, Mexico
| | - Mayra Domínguez-Pérez
- Genomics of Cardiovascular Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (D.J.M.-L.); (O.Z.-G.); (M.D.-P.); (A.G.-G.); (T.V.-M.)
| | - Antonia González-Garrido
- Genomics of Cardiovascular Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (D.J.M.-L.); (O.Z.-G.); (M.D.-P.); (A.G.-G.); (T.V.-M.)
| | - Teresa Villarreal-Molina
- Genomics of Cardiovascular Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (D.J.M.-L.); (O.Z.-G.); (M.D.-P.); (A.G.-G.); (T.V.-M.)
| | - Leonor Jacobo-Albavera
- Genomics of Cardiovascular Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (D.J.M.-L.); (O.Z.-G.); (M.D.-P.); (A.G.-G.); (T.V.-M.)
| |
Collapse
|
9
|
Apolipoprotein-AI and AIBP synergetic anti-inflammation as vascular diseases therapy: the new perspective. Mol Cell Biochem 2021; 476:3065-3078. [PMID: 33811580 DOI: 10.1007/s11010-020-04037-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/22/2020] [Indexed: 12/24/2022]
Abstract
Vascular diseases (VDs) including pulmonary arterial hypertension (PAH), atherosclerosis (AS) and coronary arterial diseases (CADs) contribute to the higher morbidity and mortality worldwide. Apolipoprotein A-I (Apo A-I) binding protein (AIBP) and Apo-AI negatively correlate with VDs. However, the mechanism by which AIBP and apo-AI regulate VDs still remains unexplained. Here, we provide an overview of the role of AIBP and apo-AI regulation of vascular diseases molecular mechanisms such as vascular energy homeostasis imbalance, oxidative and endoplasmic reticulum stress and inflammation in VDs. In addition, the role of AIBP and apo-AI in endothelial cells (ECs), vascular smooth muscle (VSMCs) and immune cells activation in the pathogenesis of VDs are explained. The in-depth understanding of AIBP and apo-AI function in the vascular system may lead to the discovery of VDs therapy.
Collapse
|
10
|
Jang E, Robert J, Rohrer L, von Eckardstein A, Lee WL. Transendothelial transport of lipoproteins. Atherosclerosis 2020; 315:111-125. [PMID: 33032832 DOI: 10.1016/j.atherosclerosis.2020.09.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
The accumulation of low-density lipoproteins (LDL) in the arterial wall plays a pivotal role in the initiation and pathogenesis of atherosclerosis. Conversely, the removal of cholesterol from the intima by cholesterol efflux to high density lipoproteins (HDL) and subsequent reverse cholesterol transport shall confer protection against atherosclerosis. To reach the subendothelial space, both LDL and HDL must cross the intact endothelium. Traditionally, this transit is explained by passive filtration. This dogma has been challenged by the identification of several rate-limiting factors namely scavenger receptor SR-BI, activin like kinase 1, and caveolin-1 for LDL as well as SR-BI, ATP binding cassette transporter G1, and endothelial lipase for HDL. In addition, estradiol, vascular endothelial growth factor, interleukins 6 and 17, purinergic signals, and sphingosine-1-phosphate were found to regulate transendothelial transport of either LDL or HDL. Thorough understanding of transendothelial lipoprotein transport is expected to elucidate new therapeutic targets for the treatment or prevention of atherosclerotic cardiovascular disease and the development of strategies for the local delivery of drugs or diagnostic tracers into diseased tissues including atherosclerotic lesions.
Collapse
Affiliation(s)
- Erika Jang
- Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | - Jerome Robert
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland
| | - Lucia Rohrer
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland
| | - Arnold von Eckardstein
- Institute of Clinical Chemistry, University of Zurich and University Hospital of Zurich, Switzerland.
| | - Warren L Lee
- Keenan Centre for Biomedical Research, St. Michael's Hospital, Toronto, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada; Interdepartmental Division of Critical Care, Department of Medicine, University of Toronto, Canada; Department of Biochemistry, University of Toronto, Canada; Institute of Medical Science, University of Toronto, Canada.
| |
Collapse
|
11
|
Crist RM, Dasa SSK, Liu CH, Clogston JD, Dobrovolskaia MA, Stern ST. Challenges in the development of nanoparticle-based imaging agents: Characterization and biology. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1665. [PMID: 32830448 DOI: 10.1002/wnan.1665] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Despite imaging agents being some of the earliest nanomedicines in clinical use, the vast majority of current research and translational activities in the nanomedicine field involves therapeutics, while imaging agents are severely underrepresented. The reasons for this lack of representation are several fold, including difficulties in synthesis and scale-up, biocompatibility issues, lack of suitable tissue/disease selective targeting ligands and receptors, and a high bar for regulatory approval. The recent focus on immunotherapies and personalized medicine, and development of nanoparticle constructs with better tissue distribution and selectivity, provide new opportunities for nanomedicine imaging agent development. This manuscript will provide an overview of trends in imaging nanomedicine characterization and biocompatibility, and new horizons for future development. This article is categorized under: Diagnostic Tools > in vivo Nanodiagnostics and Imaging Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Rachael M Crist
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Siva Sai Krishna Dasa
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Christina H Liu
- Nanodelivery Systems and Devices Branch, Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, Maryland, USA
| | - Jeffrey D Clogston
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Stephan T Stern
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
12
|
Srivastava N, Cefalu AB, Averna M, Srivastava RAK. Rapid degradation of ABCA1 protein following cAMP withdrawal and treatment with PKA inhibitor suggests ABCA1 is a short-lived protein primarily regulated at the transcriptional level. J Diabetes Metab Disord 2020; 19:363-371. [PMID: 32550187 DOI: 10.1007/s40200-020-00517-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 03/12/2020] [Indexed: 01/08/2023]
Abstract
Objectives ATP-binding cassette transporter A1 (ABCA1) is a key player in the reverse cholesterol transport (RCT) and HDL biogenesis. Since RCT is compromised as a result of ABCA1 dysfunction in diabetic state, the objective of this study was to investigate the regulation of ABCA1 in a stably transfected 293 cells expressing ABCA1 under the control of cAMP response element. Methods To delineate transcriptional and posttranscriptional regulation of ABCA1, 293 cells were stably transfected with the full length ABCA1 cDNA under the control of CMV promoter harboring cAMP response element. cAMP-mediated regulation of ABCA1 and cholesterol efflux were studied in the presence of 8-Br-cAMP and after withdrawal of 8-Br-cAMP. The mechanism of cAMP-mediated transcriptional induction of the ABCA1 gene was studied in protein kinase A (PKA) inhibitors-treated cells. Results The transfected 293 cells expressed high levels of ABCA1, while non-transfected wild-type 293 cells showed very low levels of ABCA1. Treatments of transfected cells with 8-Br-cAMP increased ABCA1 protein by 10-fold and mRNA by 20-fold. Cholesterol efflux also increased in parallel. Withdrawal of 8-Br-cAMP caused time-dependent rapid diminution of ABCA1 protein and mRNA, suggesting ABCA1 regulation at the transcriptional level. Treatment with PKA inhibitors abolished the cAMP-mediated induction of the ABCA1 mRNA and protein, resulting dampening of ABCA1-dependent cholesterol efflux. Conclusions These results demonstrate that transfected cell line mimics cAMP response similar to normal cells with natural ABCA1 promoter and suggest that ABCA1 is a short-lived protein primarily regulated at the transcriptional level to maintain cellular cholesterol homeostasis.
Collapse
|
13
|
Raz BD, Dimitry C, Andrea SS. The uptake mechanism and intracellular fate of Paraoxonase-1 in endothelial cells. Free Radic Biol Med 2020; 153:26-33. [PMID: 32244050 DOI: 10.1016/j.freeradbiomed.2020.03.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/18/2020] [Accepted: 03/30/2020] [Indexed: 12/16/2022]
Abstract
Paraoxonase-1 (PON1) is a high-density lipoprotein (HDL)-associated lactonase that plays a significant role in the anti-atherosclerotic activity of HDL. However, several studies have shown that PON1 localizes in cells, where it operates independently of HDL. Previously, we showed that PON1 localizes in endothelial cells (ECs), and impairs vasodilation mediated by the endothelium-derived hyperpolarizing factor (EDHF) 5,6-δ-DHTL. However, the internalization pathway of PON1 into ECs, and the intracellular fate of PON1 are unknown. Therefore, the present study aimed to elucidate the uptake mechanism, intracellular trafficking and the function of PON1 in ECs. We conducted a series of inhibition experiments of fluorescently labeled recombinant PON1 (rePON1) in ECs, followed by FACS analyses. We found that rePON1 binds the EC membrane via specific binding sites located in lipid-rafts/caveolae microdomains that are shared with HDL, and internalized through dynamin-dependent endocytosis. Qualitative assessments of the intracellular trafficking of rePON1, using confocal z-stack images, showed colocalization of the labeled rePON1 with early and late endosome/lysosome markers. Accordingly, a "pulse-chase" incubation of rePON1, followed by lactonase activity measurement in EC lysate, revealed that rePON1 retains its lactonase activity after binding to the cells. However, this activity decreases over time. Finally, induction of endothelial dysfunction with high glucose, angiotensin II, or palmitic acid increased rePON1 uptake by ECs. In conclusion, these results indicate that free PON1 interacts with ECs via binding sites located in lipid-rafts/caveolae, where it is enzymatically active and regulates endothelial functions. However, once internalized, PON1 is degraded. Additionally, alteration in endothelial function affects PON1 uptake by ECs.
Collapse
Affiliation(s)
- Ben-David Raz
- Laboratory of Vascular Signaling Research, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel
| | | | - Szuchman-Sapir Andrea
- Laboratory of Vascular Signaling Research, MIGAL-Galilee Research Institute, Ltd., Kiryat Shmona, Israel; Tel-Hai College, Upper Galilee, Israel.
| |
Collapse
|
14
|
Castaño D, Rattanasopa C, Monteiro-Cardoso VF, Corlianò M, Liu Y, Zhong S, Rusu M, Liehn EA, Singaraja RR. Lipid efflux mechanisms, relation to disease and potential therapeutic aspects. Adv Drug Deliv Rev 2020; 159:54-93. [PMID: 32423566 DOI: 10.1016/j.addr.2020.04.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023]
Abstract
Lipids are hydrophobic and amphiphilic molecules involved in diverse functions such as membrane structure, energy metabolism, immunity, and signaling. However, altered intra-cellular lipid levels or composition can lead to metabolic and inflammatory dysfunction, as well as lipotoxicity. Thus, intra-cellular lipid homeostasis is tightly regulated by multiple mechanisms. Since most peripheral cells do not catabolize cholesterol, efflux (extra-cellular transport) of cholesterol is vital for lipid homeostasis. Defective efflux contributes to atherosclerotic plaque development, impaired β-cell insulin secretion, and neuropathology. Of these, defective lipid efflux in macrophages in the arterial walls leading to foam cell and atherosclerotic plaque formation has been the most well studied, likely because a leading global cause of death is cardiovascular disease. Circulating high density lipoprotein particles play critical roles as acceptors of effluxed cellular lipids, suggesting their importance in disease etiology. We review here mechanisms and pathways that modulate lipid efflux, the role of lipid efflux in disease etiology, and therapeutic options aimed at modulating this critical process.
Collapse
|
15
|
Mózner O, Bartos Z, Zámbó B, Homolya L, Hegedűs T, Sarkadi B. Cellular Processing of the ABCG2 Transporter-Potential Effects on Gout and Drug Metabolism. Cells 2019; 8:E1215. [PMID: 31597297 PMCID: PMC6830335 DOI: 10.3390/cells8101215] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 02/07/2023] Open
Abstract
The human ABCG2 is an important plasma membrane multidrug transporter, involved in uric acid secretion, modulation of absorption of drugs, and in drug resistance of cancer cells. Variants of the ABCG2 transporter, affecting cellular processing and trafficking, have been shown to cause gout and increased drug toxicity. In this paper, we overview the key cellular pathways involved in the processing and trafficking of large membrane proteins, focusing on ABC transporters. We discuss the information available for disease-causing polymorphic variants and selected mutations of ABCG2, causing increased degradation and impaired travelling of the transporter to the plasma membrane. In addition, we provide a detailed in silico analysis of an as yet unrecognized loop region of the ABCG2 protein, in which a recently discovered mutation may actually promote ABCG2 membrane expression. We suggest that post-translational modifications in this unstructured loop at the cytoplasmic surface of the protein may have special influence on ABCG2 processing and trafficking.
Collapse
Affiliation(s)
- Orsolya Mózner
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary.
| | - Zsuzsa Bartos
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary.
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Tűzoltó u. 37-47, 1094 Budapest, Hungary.
| | - Boglárka Zámbó
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary.
| | - László Homolya
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary.
| | - Tamás Hegedűs
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Tűzoltó u. 37-47, 1094 Budapest, Hungary.
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary.
| | - Balázs Sarkadi
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudosok krt. 2, 1117 Budapest, Hungary.
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary.
| |
Collapse
|
16
|
Cabou C, Honorato P, Briceño L, Ghezali L, Duparc T, León M, Combes G, Frayssinhes L, Fournel A, Abot A, Masri B, Parada N, Aguilera V, Aguayo C, Knauf C, González M, Radojkovic C, Martinez LO. Pharmacological inhibition of the F 1 -ATPase/P2Y 1 pathway suppresses the effect of apolipoprotein A1 on endothelial nitric oxide synthesis and vasorelaxation. Acta Physiol (Oxf) 2019; 226:e13268. [PMID: 30821416 DOI: 10.1111/apha.13268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/14/2019] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
AIM The contribution of apolipoprotein A1 (APOA1), the major apolipoprotein of high-density lipoprotein (HDL), to endothelium-dependent vasodilatation is unclear, and there is little information regarding endothelial receptors involved in this effect. Ecto-F1 -ATPase is a receptor for APOA1, and its activity in endothelial cells is coupled to adenosine diphosphate (ADP)-sensitive P2Y receptors (P2Y ADP receptors). Ecto-F1 -ATPase is involved in APOA1-mediated cell proliferation and HDL transcytosis. Here, we investigated the effect of lipid-free APOA1 and the involvement of ecto-F1 -ATPase and P2Y ADP receptors on nitric oxide (NO) synthesis and the regulation of vascular tone. METHOD Nitric oxide synthesis was assessed in human endothelial cells from umbilical veins (HUVECs) and isolated mouse aortas. Changes in vascular tone were evaluated by isometric force measurements in isolated human umbilical and placental veins and by assessing femoral artery blood flow in conscious mice. RESULTS Physiological concentrations of lipid-free APOA1 enhanced endothelial NO synthesis, which was abolished by inhibitors of endothelial nitric oxide synthase (eNOS) and of the ecto-F1 -ATPase/P2Y1 axis. Accordingly, APOA1 inhibited vasoconstriction induced by thromboxane A2 receptor agonist and increased femoral artery blood flow in mice. These effects were blunted by inhibitors of eNOS, ecto-F1 -ATPase and P2Y1 receptor. CONCLUSIONS Using a pharmacological approach, we thus found that APOA1 promotes endothelial NO production and thereby controls vascular tone in a process that requires activation of the ecto-F1 -ATPase/P2Y1 pathway by APOA1. Pharmacological targeting of this pathway with respect to vascular diseases should be explored.
Collapse
Affiliation(s)
- Cendrine Cabou
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
- Department of Human Physiology, Faculty of Pharmacy University Paul Sabatier Toulouse France
| | - Paula Honorato
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
| | - Luis Briceño
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
| | - Lamia Ghezali
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
| | - Thibaut Duparc
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
| | - Marcelo León
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
| | - Guillaume Combes
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
| | - Laure Frayssinhes
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
| | - Audren Fournel
- UMR 1220, IRSD, INSERM, INRA, ENVT, European Associated Laboratory NeuroMicrobiota (INSERM/UCL) University of Toulouse Toulouse France
| | - Anne Abot
- UMR 1220, IRSD, INSERM, INRA, ENVT, European Associated Laboratory NeuroMicrobiota (INSERM/UCL) University of Toulouse Toulouse France
| | - Bernard Masri
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
| | - Nicol Parada
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
| | - Valeria Aguilera
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
| | - Claudio Aguayo
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
- Group of Research and Innovation in Vascular Health (GRIVAS Health) Chillan Chile
| | - Claude Knauf
- UMR 1220, IRSD, INSERM, INRA, ENVT, European Associated Laboratory NeuroMicrobiota (INSERM/UCL) University of Toulouse Toulouse France
| | - Marcelo González
- Group of Research and Innovation in Vascular Health (GRIVAS Health) Chillan Chile
- Vascular Physiology Laboratory, Department of Physiology, Faculty of Biological Sciences, and Department of Obstetrics and Gynecology, Faculty of Medicine Universidad de Concepción Concepción Chile
| | - Claudia Radojkovic
- Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy Universidad de Concepción Concepción Chile
| | - Laurent O. Martinez
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases University of Toulouse, Paul Sabatier University Toulouse France
| |
Collapse
|
17
|
Wu BJ, Sun Y, Ong KL, Li Y, Tang S, Barter PJ, Rye KA. Apolipoprotein A-I Protects Against Pregnancy-Induced Insulin Resistance in Rats. Arterioscler Thromb Vasc Biol 2019; 39:1160-1171. [PMID: 31018664 DOI: 10.1161/atvbaha.118.312282] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- Insulin resistance and inflammation in pregnancy are risk factors for gestational diabetes mellitus. Increased plasma HDL (high-density lipoprotein) and apo (apolipoprotein) A-I levels have been reported to improve glucose metabolism and inhibit inflammation in animals and humans. This study asks whether increasing plasma apoA-I levels improves insulin sensitivity and reduces inflammation in insulin-resistant pregnant rats. Approach and Results- Insulin-resistant pregnant rats received intravenous infusions of lipid-free apoA-I (8 mg/kg) or saline on days 6, 9, 12, 15, and 18 of pregnancy. The rats were then subjected to a euglycemic-hyperinsulinemic clamp. Glucose uptake was increased in white and brown adipose tissue by 57±13% and 32±10%, respectively ( P<0.05 for both), and in quadriceps and gastrocnemius muscle by 35±9.7% and 47±14%, respectively ( P<0.05 for both), in the apoA-I-treated pregnant rats relative to saline-infused pregnant rats. The pregnant rats that were treated with apoA-I also had reduced plasma TNF-α (tumor necrosis factor-α) levels by 57±8.4%, plasma IL (interleukin)-6 levels by 67±9.5%, and adipose tissue macrophage content by 54±8.2% ( P<0.05 for all) relative to the saline-treated pregnant rats. Conclusions- These studies establish that apoA-I protects against pregnancy-induced insulin resistance in rats by increasing insulin sensitivity in adipose tissue and skeletal muscle and inhibiting inflammation. This identifies apoA-I as a potential target for preventing pregnancy-induced insulin resistance and reducing the incidence of gestational diabetes mellitus.
Collapse
Affiliation(s)
- Ben J Wu
- From the Lipid Research Group, School of Medical Sciences, University of New South Wales Sydney, Australia (B.J.W., Y.S., K.-L.O., Y.L., S.T., P.J.B., K.-A.R.)
| | - Yidan Sun
- From the Lipid Research Group, School of Medical Sciences, University of New South Wales Sydney, Australia (B.J.W., Y.S., K.-L.O., Y.L., S.T., P.J.B., K.-A.R.)
- Division of Immunology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Austria (Y.S.)
| | - Kwok-Leung Ong
- From the Lipid Research Group, School of Medical Sciences, University of New South Wales Sydney, Australia (B.J.W., Y.S., K.-L.O., Y.L., S.T., P.J.B., K.-A.R.)
| | - Yue Li
- From the Lipid Research Group, School of Medical Sciences, University of New South Wales Sydney, Australia (B.J.W., Y.S., K.-L.O., Y.L., S.T., P.J.B., K.-A.R.)
| | - Shudi Tang
- From the Lipid Research Group, School of Medical Sciences, University of New South Wales Sydney, Australia (B.J.W., Y.S., K.-L.O., Y.L., S.T., P.J.B., K.-A.R.)
| | - Philip J Barter
- From the Lipid Research Group, School of Medical Sciences, University of New South Wales Sydney, Australia (B.J.W., Y.S., K.-L.O., Y.L., S.T., P.J.B., K.-A.R.)
| | - Kerry-Anne Rye
- From the Lipid Research Group, School of Medical Sciences, University of New South Wales Sydney, Australia (B.J.W., Y.S., K.-L.O., Y.L., S.T., P.J.B., K.-A.R.)
| |
Collapse
|
18
|
Nicholls SJ, Nelson AJ. HDL and cardiovascular disease. Pathology 2019; 51:142-147. [PMID: 30612759 DOI: 10.1016/j.pathol.2018.10.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/28/2018] [Accepted: 10/28/2018] [Indexed: 12/31/2022]
Abstract
High-density lipoprotein (HDL) has received increasing interest due to observations of an inverse relationship between its systemic levels and cardiovascular risk and targeted interventions in animal models that have had favourable effects on atherosclerotic plaque. In addition to its pivotal role in reverse cholesterol transport, HDL has been reported to possess a range of functional properties, which may exert a protective influence on inflammation, oxidation, angiogenesis and glucose homeostasis. This has led to the development of a range of HDL targeted therapeutics, which have undergone evaluation in clinical trials. The current state of HDL in cardiovascular prevention will be reviewed.
Collapse
Affiliation(s)
- Stephen J Nicholls
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia; Monash University, Adelaide, SA, Australia.
| | - Adam J Nelson
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
19
|
Stamatikos A, Dronadula N, Ng P, Palmer D, Knight E, Wacker BK, Tang C, Kim F, Dichek DA. ABCA1 Overexpression in Endothelial Cells In Vitro Enhances ApoAI-Mediated Cholesterol Efflux and Decreases Inflammation. Hum Gene Ther 2018; 30:236-248. [PMID: 30079772 DOI: 10.1089/hum.2018.120] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Atherosclerosis, a disease of blood vessels, is driven by cholesterol accumulation and inflammation. Gene therapy that removes cholesterol from blood vessels and decreases inflammation is a promising approach for prevention and treatment of atherosclerosis. In previous work, we reported that helper-dependent adenoviral (HDAd) overexpression of apolipoprotein A-I (apoAI) in endothelial cells (ECs) increases cholesterol efflux in vitro and reduces atherosclerosis in vivo. However, the effect of HDAdApoAI on atherosclerosis is partial. To improve this therapy, we considered concurrent overexpression of ATP-binding cassette subfamily A, member 1 (ABCA1), a protein that is required for apoAI-mediated cholesterol efflux. Before attempting combined apoAI/ABCA1 gene therapy, we tested whether an HDAd that expresses ABCA1 (HDAdABCA1) increases EC cholesterol efflux, whether increased cholesterol efflux alters normal EC physiology, and whether ABCA1 overexpression in ECs has anti-inflammatory effects. HDAdABCA1 increased EC ABCA1 protein (∼3-fold; p < 0.001) and apoAI-mediated cholesterol efflux (2.3-fold; p = 0.007). Under basal culture conditions, ABCA1 overexpression did not alter EC proliferation, metabolism, migration, apoptosis, nitric oxide production, or inflammatory gene expression. However, in serum-starved, apoAI-treated EC, ABCA1 overexpression had anti-inflammatory effects: decreased inflammatory gene expression (∼50%; p ≤ 0.02 for interleukin [IL]-6, tumor necrosis factor [TNF]-α, and vascular cell adhesion protein-1); reduced lipid-raft Toll-like receptor 4 (80%; p = 0.001); and a trend towards increased nitric oxide production (∼55%; p = 0.1). In ECs stimulated with lipopolysaccharide, ABCA1 overexpression markedly decreased inflammatory gene expression (∼90% for IL-6 and TNF-α; p < 0.001). Therefore, EC ABCA1 overexpression has no toxic effects and counteracts the two key drivers of atherosclerosis: cholesterol accumulation and inflammation. In vivo testing of HDAdABCA1 is warranted.
Collapse
Affiliation(s)
- Alexis Stamatikos
- 1 Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - Nagadhara Dronadula
- 1 Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - Philip Ng
- 2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Donna Palmer
- 2 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ethan Knight
- 1 Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - Bradley K Wacker
- 1 Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - Chongren Tang
- 1 Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - Francis Kim
- 1 Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - David A Dichek
- 1 Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
20
|
Zhang X, Sessa WC, Fernández-Hernando C. Endothelial Transcytosis of Lipoproteins in Atherosclerosis. Front Cardiovasc Med 2018; 5:130. [PMID: 30320124 PMCID: PMC6167422 DOI: 10.3389/fcvm.2018.00130] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022] Open
Abstract
Seminal studies from Nikolai Anichckov identified the accumulation of cholesterol in the arteries as the initial event that lead to the formation of atherosclerotic plaques. Further studies by Gofman and colleagues demonstrated that high levels of circulating low-density lipoprotein cholesterol (LDL-C) was responsible for the accelerated atherosclerosis observed in humans. These findings were confirmed by numerous epidemiological studies which identified elevated LDL-C levels as a major risk factor for cardiovascular disease. LDL infiltrates in the arterial wall and interacts with the proteoglycan matrix promoting the retention and modification of LDL to a toxic form, which results in endothelial cell (EC) activation and vascular inflammation. Despite the relevance of LDL transport across the endothelium during atherogenesis, the molecular mechanism that control this process is still not fully understood. A number of studies have recently demonstrated that low density lipoprotein (LDL) transcytosis across the endothelium is dependent on the function of caveolae, scavenger receptor B1 (SR-B1), activin receptor-like kinase 1 (ALK1), and LDL receptor (LDLR), whereas high-density lipoproteins (HDL) and its major protein component apolipoprotein AI transcytose ECs through SR-B1, ATP-Binding cassette transporter A1 (ABCA1) and ABCG1. In this review article, we briefly summarize the function of the EC barrier in regulating lipoprotein transport, and its relevance during the progression of atherosclerosis. A better understanding of the mechanisms that mediate lipoprotein transcytosis across ECs will help to develop therapies targeting the early events of atherosclerosis and thus exert potential benefits for treating atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Xinbo Zhang
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - William C Sessa
- Vascular Biology and Therapeutics Program, Department of Pharmacology, Yale University School of Medicine, New Haven, CT, United States
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
21
|
Götz A, Lehti M, Donelan E, Striese C, Cucuruz S, Sachs S, Yi CX, Woods SC, Wright SD, Müller TD, Tschöp MH, Gao Y, Hofmann SM. Circulating HDL levels control hypothalamic astrogliosis via apoA-I. J Lipid Res 2018; 59:1649-1659. [PMID: 29991652 PMCID: PMC6121940 DOI: 10.1194/jlr.m085456] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/09/2018] [Indexed: 01/09/2023] Open
Abstract
Meta-inflammation of hypothalamic areas governing energy homeostasis has recently emerged as a process of potential pathophysiological relevance for the development of obesity and its metabolic sequelae. The current model suggests that diet-induced neuronal injury triggers microgliosis and astrocytosis, conditions which ultimately may induce functional impairment of hypothalamic circuits governing feeding behavior, systemic metabolism, and body weight. Epidemiological data indicate that low circulating HDL levels, besides conveying cardiovascular risk, also correlate strongly with obesity. We simulated that condition by using a genetic loss of function mouse model (apoA-I-/-) with markedly reduced HDL levels to investigate whether HDL may directly modulate hypothalamic inflammation. Astrogliosis was significantly enhanced in the hypothalami of apoA-I-/- compared with apoA-I+/+ mice and was associated with compromised mitochondrial function. apoA-I-/- mice exhibited key components of metabolic disease, like increased fat mass, fasting glucose levels, hepatic triglyceride content, and hepatic glucose output compared with apoA-I+/+ controls. Administration of reconstituted HDL (CSL-111) normalized hypothalamic inflammation and mitochondrial function markers in apoA-I-/- mice. Treatment of primary astrocytes with apoA-I resulted in enhanced mitochondrial activity, implying that circulating HDL levels are likely important for astrocyte function. HDL-based therapies may consequently avert reactive gliosis in hypothalamic astrocytes by improving mitochondrial bioenergetics and thereby offering potential treatment and prevention for obesity and metabolic disease.
Collapse
Affiliation(s)
- Anna Götz
- Institutes for Diabetes and Obesity Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; Department of Internal Medicine I, University Hospital RWTH Aachen, Aachen, Germany
| | - Maarit Lehti
- LIKES Research Centre for Physical Activity and Health, Jyväskylä, Finland
| | - Elizabeth Donelan
- Metabolic Disease Institute, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | - Cynthia Striese
- Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Sebastian Cucuruz
- Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Stephan Sachs
- Diabetes and Regeneration Research, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Chun-Xia Yi
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Stephen C Woods
- Metabolic Disease Institute, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH
| | | | - Timo D Müller
- Institutes for Diabetes and Obesity Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Matthias H Tschöp
- Institutes for Diabetes and Obesity Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Yuanqing Gao
- Nanjing Medical University, College of Pharmacy, Nanjing, China.
| | - Susanna M Hofmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany; Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilian Universität, Munich, Germany.
| |
Collapse
|
22
|
Zanoni P, Velagapudi S, Yalcinkaya M, Rohrer L, von Eckardstein A. Endocytosis of lipoproteins. Atherosclerosis 2018; 275:273-295. [PMID: 29980055 DOI: 10.1016/j.atherosclerosis.2018.06.881] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/04/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023]
Abstract
During their metabolism, all lipoproteins undergo endocytosis, either to be degraded intracellularly, for example in hepatocytes or macrophages, or to be re-secreted, for example in the course of transcytosis by endothelial cells. Moreover, there are several examples of internalized lipoproteins sequestered intracellularly, possibly to exert intracellular functions, for example the cytolysis of trypanosoma. Endocytosis and the subsequent intracellular itinerary of lipoproteins hence are key areas for understanding the regulation of plasma lipid levels as well as the biological functions of lipoproteins. Indeed, the identification of the low-density lipoprotein (LDL)-receptor and the unraveling of its transcriptional regulation led to the elucidation of familial hypercholesterolemia as well as to the development of statins, the most successful therapeutics for lowering of cholesterol levels and risk of atherosclerotic cardiovascular diseases. Novel limiting factors of intracellular trafficking of LDL and the LDL receptor continue to be discovered and to provide drug targets such as PCSK9. Surprisingly, the receptors mediating endocytosis of high-density lipoproteins or lipoprotein(a) are still a matter of controversy or even new discovery. Finally, the receptors and mechanisms, which mediate the uptake of lipoproteins into non-degrading intracellular itineraries for re-secretion (transcytosis, retroendocytosis), storage, or execution of intracellular functions, are largely unknown.
Collapse
Affiliation(s)
- Paolo Zanoni
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Srividya Velagapudi
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Mustafa Yalcinkaya
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Lucia Rohrer
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Arnold von Eckardstein
- Institute for Clinical Chemistry, University and University Hospital Zurich, Zurich, Switzerland; Centre for Integrative Human Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
23
|
Wacker BK, Dronadula N, Bi L, Stamatikos A, Dichek DA. Apo A-I (Apolipoprotein A-I) Vascular Gene Therapy Provides Durable Protection Against Atherosclerosis in Hyperlipidemic Rabbits. Arterioscler Thromb Vasc Biol 2017; 38:206-217. [PMID: 29122817 DOI: 10.1161/atvbaha.117.309565] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/30/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Gene therapy that expresses apo A-I (apolipoprotein A-I) from vascular wall cells has promise for preventing and reversing atherosclerosis. Previously, we reported that transduction of carotid artery endothelial cells with a helper-dependent adenoviral (HDAd) vector expressing apo A-I reduced early (4 weeks) fatty streak development in fat-fed rabbits. Here, we tested whether the same HDAd could provide long-term protection against development of more complex lesions. APPROACH AND RESULTS Fat-fed rabbits (n=25) underwent bilateral carotid artery gene transfer, with their left and right common carotids randomized to receive either a control vector (HDAdNull) or an apo A-I-expressing vector (HDAdApoAI). Twenty-four additional weeks of high-fat diet yielded complex intimal lesions containing lipid-rich macrophages as well as smooth muscle cells, often in a lesion cap. Twenty-four weeks after gene transfer, high levels of apo A-I mRNA (median ≥250-fold above background) were present in all HDAdApoAI-treated arteries. Compared with paired control HDAdNull-treated arteries in the same rabbit, HDAdApoAI-treated arteries had 30% less median intimal lesion volume (P=0.03), with concomitant reductions (23%-32%) in intimal lipid, macrophage, and smooth muscle cell content (P≤0.05 for all). HDAdApoAI-treated arteries also had decreased intimal inflammatory markers. VCAM-1 (vascular cell adhesion molecule-1)-stained area was reduced by 36% (P=0.03), with trends toward lower expression of ICAM-1 (intercellular adhesion molecule-1), MCP-1 (monocyte chemoattractant protein 1), and TNF-α (tumor necrosis factor-α; 13%-39% less; P=0.06-0.1). CONCLUSIONS In rabbits with severe hyperlipidemia, transduction of vascular endothelial cells with an apo A-I-expressing HDAd yields at least 24 weeks of local apo A-I expression that durably reduces atherosclerotic lesion growth and intimal inflammation.
Collapse
Affiliation(s)
- Bradley K Wacker
- From the Department of Medicine, University of Washington School of Medicine, Seattle
| | - Nagadhara Dronadula
- From the Department of Medicine, University of Washington School of Medicine, Seattle
| | - Lianxiang Bi
- From the Department of Medicine, University of Washington School of Medicine, Seattle
| | - Alexis Stamatikos
- From the Department of Medicine, University of Washington School of Medicine, Seattle
| | - David A Dichek
- From the Department of Medicine, University of Washington School of Medicine, Seattle.
| |
Collapse
|
24
|
Di Bartolo BA, Scherer DJ, Nicholls SJ. Inducing apolipoprotein A-I synthesis to reduce cardiovascular risk: from ASSERT to SUSTAIN and beyond. Arch Med Sci 2016; 12:1302-1307. [PMID: 27904522 PMCID: PMC5108390 DOI: 10.5114/aoms.2016.62906] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/17/2015] [Indexed: 12/29/2022] Open
Abstract
Increasing attention has focused on efforts to promote the biological activities of high-density lipoproteins (HDL) in order to reduce cardiovascular risk. Targeting apolipoprotein A-I (apoA-I), the major protein carried on HDL particles, represents an attractive approach to promoting HDL by virtue of its ability to increase endogenous synthesis of functional HDL particles. A number of pharmacological strategies that target apoA-I, including upregulation of its production with the bromodomain and extraterminal (BET) protein inhibitor RVX-208, development of short peptide sequences that mimic its action, and administration as a component of reconstituted HDL particles, have undergone clinical development. The impact of these approaches on cardiovascular biomarkers will be reviewed.
Collapse
Affiliation(s)
- Belinda A Di Bartolo
- South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, Australia
| | - Daniel J Scherer
- South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, Australia
| | - Stephen J Nicholls
- South Australian Health and Medical Research Institute, University of Adelaide, Adelaide, Australia
| |
Collapse
|
25
|
Mukhamedova N, Hoang A, Cui HL, Carmichael I, Fu Y, Bukrinsky M, Sviridov D. Small GTPase ARF6 Regulates Endocytic Pathway Leading to Degradation of ATP-Binding Cassette Transporter A1. Arterioscler Thromb Vasc Biol 2016; 36:2292-2303. [PMID: 27758770 DOI: 10.1161/atvbaha.116.308418] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/19/2016] [Indexed: 11/16/2022]
Abstract
OBJECTIVE ABCA1 (ATP-binding cassette transporter A1) is the principal protein responsible for cellular cholesterol efflux. Abundance and functionality of ABCA1 is regulated both transcriptionally and post-translationally, with endocytosis of ABCA1 being an important element of post-translational regulation. Functional ABCA1 resides on the plasma membrane but can be internalized and either degraded or recycled back to the plasma membrane. The interaction between the degradative and recycling pathways determines the abundance of ABCA1 and may contribute to the efflux of intracellular cholesterol. APPROACH AND RESULTS Here, we show that the principal pathway responsible for the internalization of ABCA1 leading to its degradation in macrophages is ARF6-dependent endocytic pathway. This pathway was predominant in the regulation of ABCA1 abundance and efflux of plasma membrane cholesterol. Conversely, the efflux of intracellular cholesterol was predominantly controlled by ARF6-independent pathways, and inhibition of ARF6 shifted ABCA1 into recycling endosomes enhancing efflux of intracellular cholesterol. CONCLUSIONS We conclude that ARF6-dependent pathway is the predominant route responsible for the ABCA1 internalization and degradation, whereas ARF6-independent endocytic pathways may contribute to ABCA1 recycling and efflux of intracellular cholesterol.
Collapse
Affiliation(s)
- Nigora Mukhamedova
- From the Department of Lipoproteins and Atherosclerosis, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia (N.M., A.H., H.L.C., I.C., Y.F., D.S.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (H.L.C.); and Department of Microbiology, Immunology and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC (M.B.)
| | - Anh Hoang
- From the Department of Lipoproteins and Atherosclerosis, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia (N.M., A.H., H.L.C., I.C., Y.F., D.S.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (H.L.C.); and Department of Microbiology, Immunology and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC (M.B.)
| | - Huanhuan L Cui
- From the Department of Lipoproteins and Atherosclerosis, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia (N.M., A.H., H.L.C., I.C., Y.F., D.S.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (H.L.C.); and Department of Microbiology, Immunology and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC (M.B.)
| | - Irena Carmichael
- From the Department of Lipoproteins and Atherosclerosis, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia (N.M., A.H., H.L.C., I.C., Y.F., D.S.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (H.L.C.); and Department of Microbiology, Immunology and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC (M.B.)
| | - Ying Fu
- From the Department of Lipoproteins and Atherosclerosis, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia (N.M., A.H., H.L.C., I.C., Y.F., D.S.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (H.L.C.); and Department of Microbiology, Immunology and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC (M.B.)
| | - Michael Bukrinsky
- From the Department of Lipoproteins and Atherosclerosis, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia (N.M., A.H., H.L.C., I.C., Y.F., D.S.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (H.L.C.); and Department of Microbiology, Immunology and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC (M.B.)
| | - Dmitri Sviridov
- From the Department of Lipoproteins and Atherosclerosis, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, Australia (N.M., A.H., H.L.C., I.C., Y.F., D.S.); Department of Medicine, Karolinska Institute, Stockholm, Sweden (H.L.C.); and Department of Microbiology, Immunology and Tropical Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC (M.B.).
| |
Collapse
|
26
|
Hersoug LG, Møller P, Loft S. Gut microbiota-derived lipopolysaccharide uptake and trafficking to adipose tissue: implications for inflammation and obesity. Obes Rev 2016; 17:297-312. [PMID: 26712364 DOI: 10.1111/obr.12370] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 12/12/2022]
Abstract
The composition of the gut microbiota and excessive ingestion of high-fat diets (HFD) are considered to be important factors for development of obesity. In this review we describe a coherent mechanism of action for the development of obesity, which involves the composition of gut microbiota, HFD, low-grade inflammation, expression of fat translocase and scavenger receptor CD36, and the scavenger receptor class B type 1 (SR-BI). SR-BI binds to both lipids and lipopolysaccharide (LPS) from Gram-negative bacteria, which may promote incorporation of LPS in chylomicrons (CMs). These CMs are transported via lymph to the circulation, where LPS is transferred to other lipoproteins by translocases, preferentially to HDL. LPS increases the SR-BI binding, transcytosis of lipoproteins over the endothelial barrier,and endocytosis in adipocytes. Especially large size adipocytes with high metabolic activity absorb LPS-rich lipoproteins. In addition, macrophages in adipose tissue internalize LPS-lipoproteins. This may contribute to the polarization from M2 to M1 phenotype, which is a consequence of increased LPS delivery into the tissue during hypertrophy. In conclusion, evidence suggests that LPS is involved in the development of obesity as a direct targeting molecule for lipid delivery and storage in adipose tissue.
Collapse
Affiliation(s)
- L-G Hersoug
- Section of Environmental Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - P Møller
- Section of Environmental Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - S Loft
- Section of Environmental Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
27
|
Sutter I, Klingenberg R, Othman A, Rohrer L, Landmesser U, Heg D, Rodondi N, Mach F, Windecker S, Matter CM, Lüscher TF, von Eckardstein A, Hornemann T. Decreased phosphatidylcholine plasmalogens – A putative novel lipid signature in patients with stable coronary artery disease and acute myocardial infarction. Atherosclerosis 2016; 246:130-40. [DOI: 10.1016/j.atherosclerosis.2016.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 12/30/2015] [Accepted: 01/03/2016] [Indexed: 10/22/2022]
|
28
|
Perisa D, Rohrer L, Kaech A, von Eckardstein A. Itinerary of high density lipoproteins in endothelial cells. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:98-107. [DOI: 10.1016/j.bbalip.2015.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 11/02/2015] [Accepted: 11/09/2015] [Indexed: 01/30/2023]
|
29
|
Nguyen SD, Maaninka K, Lappalainen J, Nurmi K, Metso J, Öörni K, Navab M, Fogelman AM, Jauhiainen M, Lee-Rueckert M, Kovanen PT. Carboxyl-Terminal Cleavage of Apolipoprotein A-I by Human Mast Cell Chymase Impairs Its Anti-Inflammatory Properties. Arterioscler Thromb Vasc Biol 2015; 36:274-84. [PMID: 26681753 PMCID: PMC4725095 DOI: 10.1161/atvbaha.115.306827] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 11/18/2015] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Apolipoprotein A-I (apoA-I) has been shown to possess several atheroprotective functions, including inhibition of inflammation. Protease-secreting activated mast cells reside in human atherosclerotic lesions. Here we investigated the effects of the neutral proteases released by activated mast cells on the anti-inflammatory properties of apoA-I. APPROACH AND RESULTS Activation of human mast cells triggered the release of granule-associated proteases chymase, tryptase, cathepsin G, carboxypeptidase A, and granzyme B. Among them, chymase cleaved apoA-I with the greatest efficiency and generated C-terminally truncated apoA-I, which failed to bind with high affinity to human coronary artery endothelial cells. In tumor necrosis factor-α-activated human coronary artery endothelial cells, the chymase-cleaved apoA-I was unable to suppress nuclear factor-κB-dependent upregulation of vascular cell adhesion molecule-1 (VCAM-1) and to block THP-1 cells from adhering to and transmigrating across the human coronary artery endothelial cells. Chymase-cleaved apoA-I also had an impaired ability to downregulate the expression of tumor necrosis factor-α, interleukin-1β, interleukin-6, and interleukin-8 in lipopolysaccharide-activated GM-CSF (granulocyte-macrophage colony-stimulating factor)- and M-CSF (macrophage colony-stimulating factor)-differentiated human macrophage foam cells and to inhibit reactive oxygen species formation in PMA (phorbol 12-myristate 13-acetate)-activated human neutrophils. Importantly, chymase-cleaved apoA-I showed reduced ability to inhibit lipopolysaccharide-induced inflammation in vivo in mice. Treatment with chymase blocked the ability of the apoA-I mimetic peptide L-4F, but not of the protease-resistant D-4F, to inhibit proinflammatory gene expression in activated human coronary artery endothelial cells and macrophage foam cells and to prevent reactive oxygen species formation in activated neutrophils. CONCLUSIONS The findings identify C-terminal cleavage of apoA-I by human mast cell chymase as a novel mechanism leading to loss of its anti-inflammatory functions. When targeting inflamed protease-rich atherosclerotic lesions with apoA-I, infusions of protease-resistant apoA-I might be the appropriate approach.
Collapse
Affiliation(s)
- Su Duy Nguyen
- From the Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (S.D.N., K.M., J.L., K.N., K.Ö., M.L.-R., P.T.K.); National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum Helsinki, Helsinki, Finland (J.M., M.J.); and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (M.N., A.M.F.)
| | - Katariina Maaninka
- From the Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (S.D.N., K.M., J.L., K.N., K.Ö., M.L.-R., P.T.K.); National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum Helsinki, Helsinki, Finland (J.M., M.J.); and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (M.N., A.M.F.)
| | - Jani Lappalainen
- From the Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (S.D.N., K.M., J.L., K.N., K.Ö., M.L.-R., P.T.K.); National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum Helsinki, Helsinki, Finland (J.M., M.J.); and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (M.N., A.M.F.)
| | - Katariina Nurmi
- From the Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (S.D.N., K.M., J.L., K.N., K.Ö., M.L.-R., P.T.K.); National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum Helsinki, Helsinki, Finland (J.M., M.J.); and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (M.N., A.M.F.)
| | - Jari Metso
- From the Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (S.D.N., K.M., J.L., K.N., K.Ö., M.L.-R., P.T.K.); National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum Helsinki, Helsinki, Finland (J.M., M.J.); and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (M.N., A.M.F.)
| | - Katariina Öörni
- From the Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (S.D.N., K.M., J.L., K.N., K.Ö., M.L.-R., P.T.K.); National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum Helsinki, Helsinki, Finland (J.M., M.J.); and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (M.N., A.M.F.)
| | - Mohamad Navab
- From the Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (S.D.N., K.M., J.L., K.N., K.Ö., M.L.-R., P.T.K.); National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum Helsinki, Helsinki, Finland (J.M., M.J.); and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (M.N., A.M.F.)
| | - Alan M Fogelman
- From the Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (S.D.N., K.M., J.L., K.N., K.Ö., M.L.-R., P.T.K.); National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum Helsinki, Helsinki, Finland (J.M., M.J.); and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (M.N., A.M.F.)
| | - Matti Jauhiainen
- From the Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (S.D.N., K.M., J.L., K.N., K.Ö., M.L.-R., P.T.K.); National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum Helsinki, Helsinki, Finland (J.M., M.J.); and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (M.N., A.M.F.)
| | - Miriam Lee-Rueckert
- From the Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (S.D.N., K.M., J.L., K.N., K.Ö., M.L.-R., P.T.K.); National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum Helsinki, Helsinki, Finland (J.M., M.J.); and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (M.N., A.M.F.)
| | - Petri T Kovanen
- From the Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland (S.D.N., K.M., J.L., K.N., K.Ö., M.L.-R., P.T.K.); National Institute for Health and Welfare, Genomics and Biomarkers Unit, Biomedicum Helsinki, Helsinki, Finland (J.M., M.J.); and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles (M.N., A.M.F.).
| |
Collapse
|
30
|
Huang LH, Elvington A, Randolph GJ. The role of the lymphatic system in cholesterol transport. Front Pharmacol 2015; 6:182. [PMID: 26388772 PMCID: PMC4557107 DOI: 10.3389/fphar.2015.00182] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/12/2015] [Indexed: 11/13/2022] Open
Abstract
Reverse cholesterol transport (RCT) is the pathway for removal of peripheral tissue cholesterol and involves transport of cholesterol back to liver for excretion, starting from cellular cholesterol efflux facilitated by lipid-free apolipoprotein A1 (ApoA1) or other lipidated high-density lipoprotein (HDL) particles within the interstitial space. Extracellular cholesterol then is picked up and transported through the lymphatic vasculature before entering into bloodstream. There is increasing evidence supporting a role for enhanced macrophage cholesterol efflux and RCT in ameliorating atherosclerosis, and recent data suggest that these processes may serve as better diagnostic biomarkers than plasma HDL levels. Hence, it is important to better understand the processes governing ApoA1 and HDL influx into peripheral tissues from the bloodstream, modification and facilitation of cellular cholesterol removal within the interstitial space, and transport through the lymphatic vasculature. New findings will complement therapeutic strategies for the treatment of atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Li-Hao Huang
- Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, MO, USA
| | - Andrew Elvington
- Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, MO, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine , St. Louis, MO, USA
| |
Collapse
|
31
|
Song W, Wang W, Dou LY, Wang Y, Xu Y, Chen LF, Yan XW. The implication of cigarette smoking and cessation on macrophage cholesterol efflux in coronary artery disease patients. J Lipid Res 2015; 56:682-691. [PMID: 25601961 PMCID: PMC4340315 DOI: 10.1194/jlr.p055491] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We investigated ATP-binding cassette transporters A1/G1 expression and function in mediating cholesterol efflux by examining the macrophages of cigarette-smoking patients with coronary artery disease (CAD) before and after smoking abstinence. Peripheral blood monocyte cells were collected from nonsmokers (n = 17), non-CAD (NCAD) smokers (n = 35), and CAD smokers (n = 32) before and after 3 months of smoking cessation. We found that the ABCA1 expression level was lower in macrophages from NCAD and CAD smokers than from nonsmokers at baseline. The ABCA1 function of mediating cholesterol efflux was reduced in NCAD and CAD smokers as compared with nonsmokers. After 3 months of smoking cessation, ABCA1 expression and function were improved in CAD smokers. However, ABCG1 expression and function did not change after smoking cessation. Furthermore, ABCA1 expression was inhibited by tar in human acute monocytic leukemia cell line THP-1-derived macrophages through the inhibition of liver X receptors. Nicotine and carbon monoxide did not inhibit ABCA1 expression. Our results indicate that chronic cigarette smoking impaired ABCA1-mediated cholesterol efflux in macrophages and that tobacco abstinence reversed the function and expression of ABCA1, especially in CAD patients. It was tobacco tar, rather than nicotine or carbon monoxide, that played a major role in the tobacco-induced disturbance of cellular cholesterol homeostasis.
Collapse
Affiliation(s)
- Wei Song
- Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Wang
- Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Li-Yang Dou
- Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Wang
- Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Xu
- Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Lian-Feng Chen
- Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiao-Wei Yan
- Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
32
|
Dai C, Yao X, Vaisman B, Brenner T, Meyer KS, Gao M, Keeran KJ, Nugent GZ, Qu X, Yu ZX, Dagur PK, McCoy JP, Remaley AT, Levine SJ. ATP-binding cassette transporter 1 attenuates ovalbumin-induced neutrophilic airway inflammation. Am J Respir Cell Mol Biol 2015; 51:626-36. [PMID: 24813055 DOI: 10.1165/rcmb.2013-0264oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Apolipoprotein A-I (apoA-I) is an important component of high-density lipoprotein particles that mediates reverse cholesterol transport out of cells by interacting with the ATP-binding cassette transporter 1 (ABCA1). apoA-I has also been shown to attenuate neutrophilic airway inflammation in experimental ovalbumin (OVA)-induced asthma by reducing the expression of granulocyte colony-stimulating factor (G-CSF). Here, we hypothesized that overexpression of the ABCA1 transporter might similarly attenuate OVA-induced neutrophilic airway inflammation. Tie2-human ABCA1 (hABCA1) mice expressing human ABCA1 under the control of the Tie2 promoter, which is primarily expressed by vascular endothelial cells, but can also be expressed by macrophages, received daily intranasal OVA challenges, 5 d/wk for 5 weeks. OVA-challenged Tie2-hABCA1 mice had significant reductions in total bronchoalveolar lavage fluid (BALF) cells that reflected a decrease in neutrophils, as well as reductions in peribronchial inflammation, OVA-specific IgE levels, and airway epithelial thickness. The reduced airway neutrophilia in OVA-challenged Tie2-hABCA1 mice was associated with significant decreases in G-CSF protein levels in pulmonary vascular endothelial cells, alveolar macrophages, and BALF. Intranasal administration of recombinant murine G-CSF to OVA-challenged Tie2-hABCA1 mice for 5 days increased BALF neutrophils to a level comparable to that of OVA-challenged wild-type mice. We conclude that ABCA1 suppresses OVA-induced airway neutrophilia by reducing G-CSF production by vascular endothelial cells and alveolar macrophages. These findings suggest that ABCA1 expressed by vascular endothelial cells and alveolar macrophages may play important roles in attenuating the severity of neutrophilic airway inflammation in asthma.
Collapse
|
33
|
Abstract
High-density lipoproteins (HDLs) exert many beneficial effects which may help to protect against the development or progression of atherosclerosis or even facilitate lesion regression. These activities include promoting cellular cholesterol efflux, protecting low-density lipoproteins (LDLs) from modification, preserving endothelial function, as well as anti-inflammatory and antithrombotic effects. However, questions remain about the relative importance of these activities for atheroprotection. Furthermore, the many molecules (both lipids and proteins) associated with HDLs exert both distinct and overlapping activities, which may be compromised by inflammatory conditions, resulting in either loss of function or even gain of dysfunction. This complexity of HDL functionality has so far precluded elucidation of distinct structure-function relationships for HDL or its components. A better understanding of HDL metabolism and structure-function relationships is therefore crucial to exploit HDLs and its associated components and cellular pathways as potential targets for anti-atherosclerotic therapies and diagnostic markers.
Collapse
Affiliation(s)
- Wijtske Annema
- Institute of Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland,
| | | | | |
Collapse
|
34
|
Ecto-F1-ATPase/P2Y pathways in metabolic and vascular functions of high density lipoproteins. Atherosclerosis 2015; 238:89-100. [DOI: 10.1016/j.atherosclerosis.2014.11.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 12/15/2022]
|
35
|
Zannis VI, Fotakis P, Koukos G, Kardassis D, Ehnholm C, Jauhiainen M, Chroni A. HDL biogenesis, remodeling, and catabolism. Handb Exp Pharmacol 2015; 224:53-111. [PMID: 25522986 DOI: 10.1007/978-3-319-09665-0_2] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this chapter, we review how HDL is generated, remodeled, and catabolized in plasma. We describe key features of the proteins that participate in these processes, emphasizing how mutations in apolipoprotein A-I (apoA-I) and the other proteins affect HDL metabolism. The biogenesis of HDL initially requires functional interaction of apoA-I with the ATP-binding cassette transporter A1 (ABCA1) and subsequently interactions of the lipidated apoA-I forms with lecithin/cholesterol acyltransferase (LCAT). Mutations in these proteins either prevent or impair the formation and possibly the functionality of HDL. Remodeling and catabolism of HDL is the result of interactions of HDL with cell receptors and other membrane and plasma proteins including hepatic lipase (HL), endothelial lipase (EL), phospholipid transfer protein (PLTP), cholesteryl ester transfer protein (CETP), apolipoprotein M (apoM), scavenger receptor class B type I (SR-BI), ATP-binding cassette transporter G1 (ABCG1), the F1 subunit of ATPase (Ecto F1-ATPase), and the cubulin/megalin receptor. Similarly to apoA-I, apolipoprotein E and apolipoprotein A-IV were shown to form discrete HDL particles containing these apolipoproteins which may have important but still unexplored functions. Furthermore, several plasma proteins were found associated with HDL and may modulate its biological functions. The effect of these proteins on the functionality of HDL is the topic of ongoing research.
Collapse
Affiliation(s)
- Vassilis I Zannis
- Molecular Genetics, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, 02118, USA,
| | | | | | | | | | | | | |
Collapse
|
36
|
Michel CC, Nanjee MN, Olszewski WL, Miller NE. LDL and HDL transfer rates across peripheral microvascular endothelium agree with those predicted for passive ultrafiltration in humans. J Lipid Res 2014; 56:122-8. [PMID: 25398615 DOI: 10.1194/jlr.m055053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms by which LDLs and HDLs cross the vascular endothelium from plasma into interstitial fluid are not understood, and have never been studied in humans in vivo. We determined whether the plasma-to-lymph clearance rates of LDL and HDL conform with those predicted by passive ultrafiltration through intercellular pores, or if it is necessary to invoke an active process such as receptor-mediated transcytosis. Plasma and afferent peripheral lymph were collected under steady-state conditions from 30 healthy men, and assayed for seven globular proteins of molecular radii 2.89-8.95 nm, complement C3, and apo AI, apo AII, and apo B. Plasma-to-lymph clearance rates of the seven proteins fitted the relation expected for molecules of their size when transported through two populations of pores of radius 4.95 and 20.1 nm. The same model parameters were then found to accurately predict the clearance rates of both HDL and LDL. The apparent clearance of complement C3, previously shown to be secreted by cultured endothelium, exceeded that predicted by the model. We conclude that the transport of HDL and LDL from plasma into interstitial fluid across the peripheral vascular endothelium in healthy humans can be explained by ultrafiltration without invoking an additional active process such as transcytosis.
Collapse
Affiliation(s)
| | - M Nazeem Nanjee
- Cardiovascular Genetics Unit, University of Utah School of Medicine, Salt Lake City, UT
| | - Waldemar L Olszewski
- Department of Surgical Research and Transplantology, Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
37
|
Stukas S, Robert J, Lee M, Kulic I, Carr M, Tourigny K, Fan J, Namjoshi D, Lemke K, DeValle N, Chan J, Wilson T, Wilkinson A, Chapanian R, Kizhakkedathu JN, Cirrito JR, Oda MN, Wellington CL. Intravenously injected human apolipoprotein A-I rapidly enters the central nervous system via the choroid plexus. J Am Heart Assoc 2014; 3:e001156. [PMID: 25392541 PMCID: PMC4338702 DOI: 10.1161/jaha.114.001156] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Background Brain lipoprotein metabolism is dependent on lipoprotein particles that resemble plasma high‐density lipoproteins but that contain apolipoprotein (apo) E rather than apoA‐I as their primary protein component. Astrocytes and microglia secrete apoE but not apoA‐I; however, apoA‐I is detectable in both cerebrospinal fluid and brain tissue lysates. The route by which plasma apoA‐I enters the central nervous system is unknown. Methods and Results Steady‐state levels of murine apoA‐I in cerebrospinal fluid and interstitial fluid are 0.664 and 0.120 μg/mL, respectively, whereas brain tissue apoA‐I is ≈10% to 15% of its levels in liver. Recombinant, fluorescently tagged human apoA‐I injected intravenously into mice localizes to the choroid plexus within 30 minutes and accumulates in a saturable, dose‐dependent manner in the brain. Recombinant, fluorescently tagged human apoA‐I accumulates in the brain for 2 hours, after which it is eliminated with a half‐life of 10.3 hours. In vitro, human apoA‐I is specifically bound, internalized, and transported across confluent monolayers of primary human choroid plexus epithelial cells and brain microvascular endothelial cells. Conclusions Following intravenous injection, recombinant human apoA‐I rapidly localizes predominantly to the choroid plexus. Because apoA‐I mRNA is undetectable in murine brain, our results suggest that plasma apoA‐I, which is secreted from the liver and intestine, gains access to the central nervous system primarily by crossing the blood–cerebrospinal fluid barrier via specific cellular mediated transport, although transport across the blood–brain barrier may also contribute to a lesser extent.
Collapse
Affiliation(s)
- Sophie Stukas
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| | - Jerome Robert
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| | - Michael Lee
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| | - Iva Kulic
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| | - Michael Carr
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| | - Katherine Tourigny
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| | - Jianjia Fan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| | - Dhananjay Namjoshi
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| | - Kalistyne Lemke
- Children's Hospital Oakland Research Institute, Oakland, CA (K.L., N.D.V., M.N.O.)
| | - Nicole DeValle
- Children's Hospital Oakland Research Institute, Oakland, CA (K.L., N.D.V., M.N.O.)
| | - Jeniffer Chan
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| | - Tammy Wilson
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| | - Anna Wilkinson
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| | - Rafi Chapanian
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.) Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada (R.C., J.N.K.)
| | - Jayachandran N Kizhakkedathu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.) Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada (R.C., J.N.K.)
| | - John R Cirrito
- Department of Neurology, Washington University, St. Louis, MO (J.R.C.)
| | - Michael N Oda
- Children's Hospital Oakland Research Institute, Oakland, CA (K.L., N.D.V., M.N.O.)
| | - Cheryl L Wellington
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada (S.S., J.R., M.L., I.K., M.C., K.T., J.F., D.N., J.C., T.W., A.W., R.C., J.N.K., C.L.W.)
| |
Collapse
|
38
|
Tran-Dinh A, Diallo D, Delbosc S, Varela-Perez LM, Dang QB, Lapergue B, Burillo E, Michel JB, Levoye A, Martin-Ventura JL, Meilhac O. HDL and endothelial protection. Br J Pharmacol 2014; 169:493-511. [PMID: 23488589 DOI: 10.1111/bph.12174] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/07/2013] [Accepted: 02/24/2013] [Indexed: 12/23/2022] Open
Abstract
High-density lipoproteins (HDLs) represent a family of particles characterized by the presence of apolipoprotein A-I (apoA-I) and by their ability to transport cholesterol from peripheral tissues back to the liver. In addition to this function, HDLs display pleiotropic effects including antioxidant, anti-apoptotic, anti-inflammatory, anti-thrombotic or anti-proteolytic properties that account for their protective action on endothelial cells. Vasodilatation via production of nitric oxide is also a hallmark of HDL action on endothelial cells. Endothelial cells express receptors for apoA-I and HDLs that mediate intracellular signalling and potentially participate in the internalization of these particles. In this review, we will detail the different effects of HDLs on the endothelium in normal and pathological conditions with a particular focus on the potential use of HDL therapy to restore endothelial function and integrity.
Collapse
|
39
|
Van Eck M. ATP-binding cassette transporter A1: key player in cardiovascular and metabolic disease at local and systemic level. Curr Opin Lipidol 2014; 25:297-303. [PMID: 24992457 DOI: 10.1097/mol.0000000000000088] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW ATP-binding cassette transporter A1 (ABCA1) facilitates cellular cholesterol efflux to lipid-poor apolipoprotein AI (apoAI) and plays a key role in the formation and function of HDL. This review summarizes the advances and new insights in the role of ABCA1 in cardiovascular and metabolic diseases from studies in genetically engineered mice. RECENT FINDINGS Recent studies show that low HDL associated with liver-specific deletion of ABCA1 does not affect macrophage reverse cholesterol transport or atherosclerosis susceptibility. In the intestine, ABCA1 contributes to the packaging of dietary cholesterol into HDL. Locally in the arterial wall, ABCA1 influences atherosclerosis by acting not only in bone marrow-derived cells but also in endothelial cells and smooth muscle cells. Furthermore, other than its established role in regulating insulin secretion by β-cells, evidence is provided that adipocyte-specific ABCA1 prevents fat storage and the development of impaired glucose tolerance. Moreover, new insights are provided on the post-transcriptional regulation of ABCA1 expression by microRNAs. SUMMARY Recent studies underscore the importance of ABCA1 in the prevention of cardiovascular and metabolic diseases. Furthermore, the discovery of the extensive regulation of ABCA1 expression by microRNAs has unraveled novel therapeutic targets for ABCA1-based strategies for the treatment of these diseases.
Collapse
Affiliation(s)
- Miranda Van Eck
- Division of Biopharmaceutics, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, The Netherlands
| |
Collapse
|
40
|
Abstract
Low plasma levels of HDL-cholesterol (HDL-C) represent a strong and independent risk factor for cardiovascular disease. HDL particles display a wide spectrum of atheroprotective activities, which include effluxing cellular cholesterol, diminishing cellular death, decreasing vascular constriction, reducing inflammatory response, protecting from pathological oxidation, combating bacterial infection, lessening platelet activation, regulating gene expression by virtue of microRNAs, and improving glucose metabolism. It remains presently indeterminate as to whether some biological activities of HDL are more relevant for the protection of the endothelium from atherogenesis when compared with others. The multitude of such activities raises the question of a proper assay to assess HDL functionality ex vivo. Together with clear understanding of molecular mechanisms underlying atheroprotective properties of HDL, such assay will provide a basis to resolve the ultimate question of the HDL field to allow the development of efficient HDL-targeting therapies.
Collapse
Affiliation(s)
- Anatol Kontush
- National Institute for Health and Medical Research (INSERM), UMR-ICAN 1166, University of Pierre and Marie Curie - Paris 6, Pitié - Salpétrière University Hospital, ICAN, 75651 Paris Cedex 13, France
| |
Collapse
|
41
|
Abstract
Cerebrovascular dysfunction significantly contributes to the clinical presentation and pathoetiology of Alzheimer's disease (AD). Deposition and aggregation of β-amyloid (Aβ) within vascular smooth muscle cells leads to inflammation, oxidative stress, impaired vasorelaxation, and disruption of blood-brain barrier integrity. Midlife vascular risk factors, such as hypertension, cardiovascular disease, diabetes, and dyslipidemia, increase the relative risk for AD. These comorbidities are all characterized by low and/or dysfunctional high-density lipoproteins (HDL), which itself is a risk factor for AD. HDL performs a wide variety of critical functions in the periphery and CNS. In addition to lipid transport, HDL regulates vascular health via mediating vasorelaxation, inflammation, and oxidative stress and promotes endothelial cell survival and integrity. Here, we summarize clinical and preclinical data examining the involvement of HDL, originating from the circulation and from within the CNS, on AD and hypothesize potential synergistic actions between the two lipoprotein pools.
Collapse
|
42
|
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally. For close to four decades, we have known that high density lipoprotein (HDL) levels are inversely correlated with the risk of CVD. HDL is a complex particle that consists of proteins, phospholipids, and cholesterol and has the ability to carry micro-RNAs. HDL is constantly undergoing remodelling throughout its life-span and carries out many functions. This review summarizes many of the different aspects of HDL from its assembly, the receptors it interacts with, along with the functions it performs and how it can be altered in disease. While HDL is a key cholesterol efflux particle, this review highlights the many other important functions of HDL in the innate immune system and details the potential therapeutic uses of HDL outside of CVD.
Collapse
|
43
|
Erbilgin A, Siemers N, Kayne P, Yang WP, Berliner J, Lusis AJ. Gene expression analyses of mouse aortic endothelium in response to atherogenic stimuli. Arterioscler Thromb Vasc Biol 2013; 33:2509-17. [PMID: 23990205 DOI: 10.1161/atvbaha.113.301989] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Endothelial cells are central to the initiation of atherosclerosis, yet there has been limited success in studying their gene expression in the mouse aorta. To address this, we developed a method for determining the global transcriptional changes that occur in the mouse endothelium in response to atherogenic conditions and applied it to investigate inflammatory stimuli. APPROACH AND RESULTS We characterized a method for the isolation of endothelial cell RNA with high purity directly from mouse aortas and adapted this method to allow for the treatment of aortas ex vivo before RNA collection. Expression array analysis was performed on endothelial cell RNA isolated from control and hyperlipidemic prelesion mouse aortas, and 797 differentially expressed genes were identified. We also examined the effect of additional atherogenic conditions on endothelial gene expression, including ex vivo treatment with inflammatory stimuli, acute hyperlipidemia, and age. Of the 14 most highly differentially expressed genes in endothelium from prelesion aortas, 8 were also perturbed significantly by ≥ 1 atherogenic conditions: 2610019E17Rik, Abca1, H2-Ab1, H2-D1, Pf4, Ppbp, Pvrl2, and Tnnt2. CONCLUSIONS We demonstrated that RNA can be isolated from mouse aortic endothelial cells after in vivo and ex vivo treatments of the murine vessel wall. We applied these methods to identify a group of genes, many of which have not been described previously as having a direct role in atherosclerosis, that were highly regulated by atherogenic stimuli and may play a role in early atherogenesis.
Collapse
Affiliation(s)
- Ayca Erbilgin
- From the Departments of Microbiology, Immunology, and Molecular Genetics (A.E., A.J.L.), Pathology and Laboratory Medicine (J.B.), Medicine (A.J.L.), and Human Genetics (A.J.L.), University of California, Los Angeles; and Bristol-Myers Squibb, Applied Genomics, Princeton, NJ (N.S., P.K., W.-p.Y.)
| | | | | | | | | | | |
Collapse
|
44
|
Zhang B, Kawachi E, Miura SI, Uehara Y, Matsunaga A, Kuroki M, Saku K. Therapeutic Approaches to the Regulation of Metabolism of High-Density Lipoprotein. Circ J 2013; 77:2651-63. [DOI: 10.1253/circj.cj-12-1584] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bo Zhang
- Department of Biochemistry, Fukuoka University School of Medicine
- The AIG Collaborative Research Institute of Cardiovascular Medicine, Fukuoka University School of Medicine
| | - Emi Kawachi
- Department of Cardiology, Fukuoka University School of Medicine
| | - Shin-ichiro Miura
- The AIG Collaborative Research Institute of Cardiovascular Medicine, Fukuoka University School of Medicine
- Department of Cardiology, Fukuoka University School of Medicine
- Department of Molecular Cardiovascular Therapeutics, Fukuoka University School of Medicine
| | - Yoshinari Uehara
- The AIG Collaborative Research Institute of Cardiovascular Medicine, Fukuoka University School of Medicine
- Department of Cardiology, Fukuoka University School of Medicine
- Department of Molecular Cardiovascular Therapeutics, Fukuoka University School of Medicine
| | - Akira Matsunaga
- The AIG Collaborative Research Institute of Cardiovascular Medicine, Fukuoka University School of Medicine
- Department of Laboratory Medicine, Fukuoka University School of Medicine
| | - Masahide Kuroki
- Department of Biochemistry, Fukuoka University School of Medicine
| | - Keijiro Saku
- The AIG Collaborative Research Institute of Cardiovascular Medicine, Fukuoka University School of Medicine
- Department of Cardiology, Fukuoka University School of Medicine
- Department of Molecular Cardiovascular Therapeutics, Fukuoka University School of Medicine
| |
Collapse
|
45
|
Nagao K, Maeda M, Mañucat NB, Ueda K. Cyclosporine A and PSC833 inhibit ABCA1 function via direct binding. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:398-406. [PMID: 23153588 DOI: 10.1016/j.bbalip.2012.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/06/2012] [Accepted: 11/05/2012] [Indexed: 10/27/2022]
Abstract
ATP-binding cassette protein A1 (ABCA1) plays a key role in generating high-density lipoprotein (HDL). However, the detailed mechanism of HDL formation remains unclear; in order to reveal it, chemicals that specifically block each step of HDL formation would be useful. Cyclosporine A inhibits ABCA1-mediated cholesterol efflux, but it is not clear whether this is mediated via inhibition of calcineurin. We analyzed the effects of cyclosporine A and related compounds on ABCA1 function in BHK/ABCA1 cells. Cyclosporine A, FK506, and pimecrolimus inhibited ABCA1-mediated cholesterol efflux in a concentration-dependent manner, with IC(50) of 7.6, 13.6, and 7.0μM, respectively. An mTOR inhibitor, rapamycin also inhibited ABCA1, with IC(50) of 18.8μM. The primary targets for these drugs were inhibited at much lower concentrations in BHK/ABCA1 cells, suggesting that they were not involved. Binding of [(3)H] cyclosporine A to purified ABCA1 could be clearly detected. Furthermore, a non-immunosuppressive cyclosporine, PSC833, inhibited ABCA1-mediated cholesterol efflux with IC(50) of 1.9μM, and efficiently competed with [(3)H] cyclosporine A binding to ABCA1. These results indicate that cyclosporine A and PSC833 inhibit ABCA1 via direct binding, and that the ABCA1 inhibitor PSC833 is an excellent candidate for further investigations of the detailed mechanisms underlying formation of HDL.
Collapse
Affiliation(s)
- Kohjiro Nagao
- Institute for integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
46
|
Liver X receptor activation attenuates plaque formation and improves vasomotor function of the aortic artery in atherosclerotic ApoE−/− mice. Inflamm Res 2012; 61:1299-307. [DOI: 10.1007/s00011-012-0529-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/11/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022] Open
|
47
|
Abstract
PURPOSE OF REVIEW HDL and their main apolipoprotein (apo) constituent apoA-I are antiatherogenic. This has been predominantly attributed to the ability of apoA-I/HDL to efflux cholesterol from macrophages within atherosclerotic plaques. It is now emerging that a number of the protective properties of HDL may be due to their effects on the endothelium. RECENT FINDINGS In addition to their well characterized anti-inflammatory and antioxidant effects, apoA-I and HDL regulate several other key biological pathways known to preserve endothelial function and promote vascular repair. The ATP-binding cassette (ABC) transporters ABCA1 and ABCG1, and the scavenger receptor B type 1 mediate multiple intracellular signaling pathways as well as the efflux of cholesterol and/or oxysterols in response to apoA-I/HDL. Although cholesterol efflux triggers a host of signaling events in endothelial cells, there is evidence that some of the beneficial actions of HDL may occur independently of efflux. SUMMARY Current data suggest that in endothelial cells ABCA1 and ABCG1 mediate the activation of intracellular signaling pathways primarily through the efflux of cholesterol and oxysterols to apoA-I/HDL. Interaction between HDL and scavenger receptor B type 1 initiates the greatest number of known signaling pathways and there is evidence that some of these are activated independent of efflux.
Collapse
Affiliation(s)
- Hamish C Prosser
- Translational Research Group, Heart Research Institute Department of Cardiology, Royal Prince Alfred Hospital Department of Medicine, University of Sydney, Sydney, New South Wales, Australia Immunobiology Unit, Heart Research Institute
| | | | | |
Collapse
|
48
|
Zhao GJ, Yin K, Fu YC, Tang CK. The interaction of ApoA-I and ABCA1 triggers signal transduction pathways to mediate efflux of cellular lipids. Mol Med 2012; 18:149-58. [PMID: 22064972 DOI: 10.2119/molmed.2011.00183] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 11/01/2011] [Indexed: 12/17/2022] Open
Abstract
Reverse cholesterol transport (RCT) has been characterized as a crucial step for antiatherosclerosis, which is initiated by ATP-binding cassette A1 (ABCA1) to mediate the efflux of cellular phospholipids and cholesterol to lipid-free apolipoprotein A-I (apoA-I). However, the mechanisms underlying apoA-I/ABCA1 interaction to lead to the lipidation of apoA-I are poorly understood. There are several models proposed for the interaction of apoA-I with ABCA1 as well as the lipidation of apoA-I mediated by ABCA1. ApoA-I increases the levels of ABCA1 protein markedly. In turn, ABCA1 can stabilize apoA-I. The interaction of apoA-I with ABCA1 could activate signaling molecules that modulate posttranslational ABCA1 activity or lipid transport activity. The key signaling molecules in these processes include protein kinase A (PKA), protein kinase C (PKC), Janus kinase 2 (JAK2), Rho GTPases and Ca²⁺, and many factors also could influence the interaction of apoA-I with ABCA1. This review will summarize these mechanisms for the apoA-I interaction with ABCA1 as well as the signal transduction pathways involved in these processes.
Collapse
Affiliation(s)
- Guo-Jun Zhao
- Institute of Cardiovascular Research, Key Laboratory for Atherosclerology of Hunan Province, Life Science Research Center, University of South China, Hengyang, China
| | | | | | | |
Collapse
|
49
|
Vaisman BL, Demosky SJ, Stonik JA, Ghias M, Knapper CL, Sampson ML, Dai C, Levine SJ, Remaley AT. Endothelial expression of human ABCA1 in mice increases plasma HDL cholesterol and reduces diet-induced atherosclerosis. J Lipid Res 2012; 53:158-67. [PMID: 22039582 PMCID: PMC3243472 DOI: 10.1194/jlr.m018713] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/26/2011] [Indexed: 01/08/2023] Open
Abstract
The role of endothelial ABCA1 expression in reverse cholesterol transport (RCT) was examined in transgenic mice, using the endothelial-specific Tie2 promoter. Human ABCA1 (hABCA1) was significantly expressed in endothelial cells (EC) of most tissues except the liver. Increased expression of ABCA1 was not observed in resident peritoneal macrophages. ApoA-I-mediated cholesterol efflux from aortic EC was 2.6-fold higher (P < 0.0001) for cells from transgenic versus control mice. On normal chow diet, Tie2 hABCA1 transgenic mice had a 25% (P < 0.0001) increase in HDL-cholesterol (HDL-C) and more than a 2-fold increase of eNOS mRNA in the aorta (P < 0.04). After 6 months on a high-fat, high-cholesterol (HFHC) diet, transgenic mice compared with controls had a 40% increase in plasma HDL-C (P < 0.003) and close to 40% decrease in aortic lesions (P < 0.02). Aortas from HFHC-fed transgenic mice also showed gene expression changes consistent with decreased inflammation and apoptosis. Beneficial effects of the ABCA1 transgene on HDL-C levels or on atherosclerosis were absent when the transgene was transferred onto ApoE or Abca1 knockout mice. In summary, expression of hABCA1 in EC appears to play a role in decreasing diet-induced atherosclerosis in mice and is associated with increased plasma HDL-C levels and beneficial gene expression changes in EC.
Collapse
Affiliation(s)
- Boris L Vaisman
- Cardiovascular-Pulmonary Branch, National Heart, Lung, and Blood Institute, Clinical Center, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Cavelier C, Ohnsorg PM, Rohrer L, von Eckardstein A. The β-Chain of Cell Surface F
0
F
1
ATPase Modulates ApoA-I and HDL Transcytosis Through Aortic Endothelial Cells. Arterioscler Thromb Vasc Biol 2012; 32:131-9. [DOI: 10.1161/atvbaha.111.238063] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Objective—
Both HDLs and their major protein constituent apolipoprotein A-I (apoA-I) are transported through aortic endothelial cells. The knock-down of the ATP-binding cassette transporters A1 (ABCA1), G1 (ABCG1), and of the scavenger receptor-BI (SR-BI) diminishes but does not completely block the transport of apoA-I or HDL, so that other receptors appear to be involved. The ectopic β-chain of F
0
F
1
ATPase has been previously characterized as an apoA-I receptor, triggering HDL internalization in hepatocytes.
Methods and Results—
The ectopic presence of the β-chain of F
0
F
1
ATPase on the surface of endothelial cells was confirmed by cell surface biotinylation. RNA-interference and the F
0
F
1
ATPase inhibitory peptide IF
1
reduced cell binding of apoA-I but not HDL, as well as association and transendothelial transport of both apoA-I and HDL. Furthermore, apoA-I stimulated F
0
F
1
ATPase catalyzed ATP hydrolysis. The generated ADP as well as apoA-I stimulated the binding, cell association, and internalization of HDL. Both in the presence and absence of ADP inhibition of the purinergic receptor P2Y
12
but not P2Y
1
decreased the cell association of apoA-I and HDL. Coinhibition of β-ATPase and ABCA1 had no additive effects on the cell association and transport of apoA-I. Reduced cell association of HDL by β-ATPase inhibition was not further decreased by additional knock-down of ABCG1 or SR-BI.
Conclusion—
Binding of apoA-I to ectopic F
0
F
1
ATPase triggers the generation of ADP, which via activation of the purinergic receptor P2Y
12
stimulates the uptake and transport of HDL and initially lipid-free apoA-I by endothelial cells.
Collapse
Affiliation(s)
- Clara Cavelier
- From the Institute of Clinical Chemistry (C.C., P.M.O., L.R., A.v.E.), University and University Hospital Zurich, Zurich, Switzerland; Life Science Zurich PhD Program on Systems Biology of Complex Diseases (P.M.O.), Competence Center for Systems Physiology and Metabolic Diseases (P.M.O., A.v.E.), Swiss Federal Institute of Technology Zurich and University of Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology (L.R., A.v.E.), University of Zurich, Zurich, Switzerland
| | - Pascale M. Ohnsorg
- From the Institute of Clinical Chemistry (C.C., P.M.O., L.R., A.v.E.), University and University Hospital Zurich, Zurich, Switzerland; Life Science Zurich PhD Program on Systems Biology of Complex Diseases (P.M.O.), Competence Center for Systems Physiology and Metabolic Diseases (P.M.O., A.v.E.), Swiss Federal Institute of Technology Zurich and University of Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology (L.R., A.v.E.), University of Zurich, Zurich, Switzerland
| | - Lucia Rohrer
- From the Institute of Clinical Chemistry (C.C., P.M.O., L.R., A.v.E.), University and University Hospital Zurich, Zurich, Switzerland; Life Science Zurich PhD Program on Systems Biology of Complex Diseases (P.M.O.), Competence Center for Systems Physiology and Metabolic Diseases (P.M.O., A.v.E.), Swiss Federal Institute of Technology Zurich and University of Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology (L.R., A.v.E.), University of Zurich, Zurich, Switzerland
| | - Arnold von Eckardstein
- From the Institute of Clinical Chemistry (C.C., P.M.O., L.R., A.v.E.), University and University Hospital Zurich, Zurich, Switzerland; Life Science Zurich PhD Program on Systems Biology of Complex Diseases (P.M.O.), Competence Center for Systems Physiology and Metabolic Diseases (P.M.O., A.v.E.), Swiss Federal Institute of Technology Zurich and University of Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology (L.R., A.v.E.), University of Zurich, Zurich, Switzerland
| |
Collapse
|