1
|
Afshar A, Khoradmehr A, Zare A, Basouli N, Keshtkar M, Nabipour I, Mahdipour M, Mahmoudpour M, Kaliyev AA, Mussin NM, Baspakova A, Tamadon A. Histological evaluation of renal progenitor/stem cells, renal mesenchymal stem-like cells, and endothelial progenitor cells in chronic kidney disease and end-stage renal disease, and molecular docking analysis of drug-receptor interactions. Tissue Cell 2024; 90:102527. [PMID: 39181089 DOI: 10.1016/j.tice.2024.102527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/02/2024] [Accepted: 08/17/2024] [Indexed: 08/27/2024]
Abstract
Chronic kidney disease (CKD) and end-stage renal disease (ESRD) are prevalent and debilitating conditions with a significant impact on patients' quality of life. In this study, we conducted a comprehensive investigation into the histological characteristics of renal progenitor/stem cells (RPCs), renal mesenchymal stem-like cells, and endothelial progenitor cells (EPCs) in CKD and ESRD patients. Additionally, we performed a molecular docking analysis to explore potential drug-receptor interactions involving common medications prescribed to CKD patients. Our histological examination revealed a noteworthy increase in the number of CD24- and CD133-positive cells in CKD and ESRD patients, representing RPCs. These cells are implicated in kidney repair and regeneration, underscoring their potential role in CKD management. Moreover, we observed an elevation in the number of EPCs within the kidneys of CKD and ESRD patients, suggesting a protective role of EPCs in kidney preservation. The molecular docking analysis unveiled intriguing insights into potential drug interventions. Notably, digoxin exhibited the highest in-silico binding affinity to numerous receptors associated with the functions of RPCs, renal mesenchymal stem-like cells, and EPCs, emphasizing the potential multifaceted effects of this cardiac glycoside in CKD patients. Other drugs, including apixaban, glimepiride, and glibenclamide, also displayed strong in-silico affinities to specific receptors, indicating their potential influence on various renal cell functions. In conclusion, this study provides valuable insights into the histological alterations in renal cell populations in CKD and ESRD patients and underscores the potential roles of RPCs and EPCs in kidney repair and preservation. The molecular docking analysis reveals the complex interactions between common drugs and renal cells, suggesting the need for further in-vitro and in-vivo research to fully understand these relationships. These findings contribute to our understanding of CKD and offer new avenues for research into potential therapeutic interventions.
Collapse
Affiliation(s)
- Alireza Afshar
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Nahid Basouli
- Student Research Committee, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Mahmoudpour
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Asset A Kaliyev
- General Surgery, West-Kazakhstan Medical University named after Marat Ospanov, Aktobe, Kazakhstan
| | - Nadiar M Mussin
- General Surgery, West-Kazakhstan Medical University named after Marat Ospanov, Aktobe, Kazakhstan
| | - Akmaral Baspakova
- Department for Scientific Work, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan
| | - Amin Tamadon
- PerciaVista R&D Co., Shiraz, Iran; Department of Natural Sciences, West Kazakhstan Marat Ospanov Medical University, Aktobe, Kazakhstan; Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Quinn M, Zhang RYK, Bello I, Rye KA, Thomas SR. Myeloperoxidase as a Promising Therapeutic Target after Myocardial Infarction. Antioxidants (Basel) 2024; 13:788. [PMID: 39061857 PMCID: PMC11274265 DOI: 10.3390/antiox13070788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Coronary artery disease (CAD) and myocardial infarction (MI) remain leading causes of death and disability worldwide. CAD begins with the formation of atherosclerotic plaques within the intimal layer of the coronary arteries, a process driven by persistent arterial inflammation and oxidation. Myeloperoxidase (MPO), a mammalian haem peroxidase enzyme primarily expressed within neutrophils and monocytes, has been increasingly recognised as a key pro-inflammatory and oxidative enzyme promoting the development of vulnerable coronary atherosclerotic plaques that are prone to rupture, and can precipitate a MI. Mounting evidence also implicates a pathogenic role for MPO in the inflammatory process that follows a MI, which is characterised by the rapid infiltration of activated neutrophils into the damaged myocardium and the release of MPO. Excessive and persistent cardiac inflammation impairs normal cardiac healing post-MI, resulting in adverse cardiac outcomes and poorer long-term cardiac function, and eventually heart failure. This review summarises the evidence for MPO as a significant oxidative enzyme contributing to the inappropriate inflammatory responses driving the progression of CAD and poor cardiac healing after a MI. It also details the proposed mechanisms underlying MPO's pathogenic actions and explores MPO as a novel therapeutic target for the treatment of unstable CAD and cardiac damage post-MI.
Collapse
Affiliation(s)
| | | | | | | | - Shane R. Thomas
- Cardiometabolic Disease Research Group, School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
3
|
McAllister IL, Vijayasekaran S, McLenachan S, Bhikoo R, Chen FK, Zhang D, Kanagalingam E, Yu DY. Cytokine Levels in Experimental Branch Retinal Vein Occlusion Treated With Either Bevacizumab or Triamcinolone Acetonide. Transl Vis Sci Technol 2024; 13:13. [PMID: 38899953 PMCID: PMC11193067 DOI: 10.1167/tvst.13.6.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/01/2024] [Indexed: 06/21/2024] Open
Abstract
Purpose To compare gene expression changes following branch retinal vein occlusion (BRVO) in the pig with and without bevacizumab (BEV) and triamcinolone acetonide (TA). Methods Photothrombotic BRVOs were created in both eyes of four groups of nine pigs (2, 6, 10, and 20 days). In each group, six pigs received intravitreal injections of BEV in one eye and TA in the fellow eye, with three pigs serving as untreated BRVO controls. Three untreated pigs served as healthy controls. Expression of mRNA of vascular endothelial growth factor (VEGF), glial fibrillary acidic protein (GFAP), dystrophin (DMD), potassium inwardly rectifying channel subfamily J member 10 protein (Kir4.1, KCNJ10), aquaporin-4 (AQP4), stromal cell-derived factor-1α (CXCL12), interleukin-6 (IL6), interleukin-8 (IL8), monocyte chemoattractant protein-1 (CCL2), intercellular adhesion molecule 1 (ICAM1), and heat shock factor 1 (HSF1) were analyzed by quantitative reverse-transcription polymerase chain reaction. Retinal VEGF protein levels were characterized by immunohistochemistry. Results In untreated eyes, BRVO significantly increased expression of GFAP, IL8, CCL2, ICAM1, HSF1, and AQP4. Expression of VEGF, KCNJ10, and CXCL12 was significantly reduced by 6 days post-BRVO, with expression recovering to healthy control levels by day 20. Treatment with BEV or TA significantly increased VEGF, DMD, and IL6 expression compared with untreated BRVO eyes and suppressed BRVO-induced CCL2 and AQP4 upregulation, as well as recovery of KCNJ10 expression, at 10 to 20 days post-BRVO. Conclusions Inflammation and cellular osmohomeostasis rather than VEGF suppression appear to play important roles in BRVO-induced retinal neurodegeneration, enhanced in both BEV- and TA-treated retinas. Translational Relevance Inner retinal neurodegeneration seen in this acute model of BRVO appears to be mediated by inflammation and alterations in osmohomeostasis rather than VEGF inhibition, which may have implications for more specific treatment modalities in the acute phase of BRVO.
Collapse
Affiliation(s)
- Ian L. McAllister
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Sarojini Vijayasekaran
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Riyaz Bhikoo
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Fred K. Chen
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
- Department of Ophthalmology, Royal Perth Hospital, Perth, Western Australia, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia
| | - Dan Zhang
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Emily Kanagalingam
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Dao-Yi Yu
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Western Australia, Australia
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
4
|
Nguyen TV, Yamanaka K, Tomita K, Zubcevic J, Gouraud SSS, Waki H. Impact of exercise on brain-bone marrow interactions in chronic stress: potential mechanisms preventing stress-induced hypertension. Physiol Genomics 2023; 55:222-234. [PMID: 36939204 PMCID: PMC10151049 DOI: 10.1152/physiolgenomics.00168.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/15/2023] [Accepted: 03/15/2023] [Indexed: 03/21/2023] Open
Abstract
We examined the effect of chronic restraint stress and the counteractive effects of daily exercise on the molecular basis of the brain-bone marrow (BM) interactions, by especially focusing on the paraventricular nucleus (PVN) of the hypothalamus. Male Wistar rats were assigned into control, restraint stress, and stress + daily spontaneous exercise (SE) groups. BM and hypothalamic gene expression profiles were examined through the undertaking of RT-PCR and microarrays, respectively. The inflammatory blood cell population was investigated through flow cytometry. Through the use of immunohistochemistry, we examined the presence of BM-derived C-C chemokine receptor type 2 (CCR2)-expressing microglial cells in the rat PVN. The gene expression levels of BM inflammatory factors such as those of interleukin 1 beta and CCR2, and the inflammatory blood cell population were found to be significantly higher in both restrained groups compared with control group. Interestingly, chronic restraint stress alone activated the recruitment of BM-derived CCR2-expressing microglial cells into the PVN, whereas daily spontaneous exercise prevented it. A notable finding was that restraint stress upregulated relative gene expression of hypothalamic matrix metalloproteinase 3 (MMP3), which increases the permeability of the blood-brain barrier (BBB), and that exercise managed to normalize it. Moreover, relative expression of some hypothalamic genes directly involved in the facilitation of cell migration was downregulated by daily exercise. Our findings suggest that daily spontaneous exercise can reduce the numbers of BM-derived CCR2-expressing microglial cells into the PVN through the prevention of stress-induced changes in the hypothalamic gene expression.NEW & NOTEWORTHY Chronic restraint stress can upregulate MMP3 gene expression in the rat hypothalamus, whereas daily spontaneous exercise can prevent this stress-induced effect. Stress-induced BM-derived inflammatory cell recruitment into the rat PVN can be prevented by daily spontaneous exercise. Stress-induced increase of hypothalamic MMP3 gene expression may be responsible for BBB injury, thereby allowing for BM-derived inflammatory cells to be recruited and to accumulate in the rat PVN, and to be subsequently involved in the onset of stress-induced hypertension.
Collapse
Affiliation(s)
- Thu Van Nguyen
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
- Department of Military Occupational Medicine, Vietnam Military Medical University, Hanoi, Vietnam
| | - Ko Yamanaka
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Keisuke Tomita
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Jasenka Zubcevic
- Department of Physiology and Pharmacology, University of Toledo, Toledo, Ohio, United States
| | - Sabine S S Gouraud
- College of Liberal Arts, International Christian University, Tokyo, Japan
| | - Hidefumi Waki
- Department of Physiology, Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| |
Collapse
|
5
|
Zhao T, Wu X, Zhao X, Yao K, Li X, Ni J. Identification and validation of chemokine system-related genes in idiopathic pulmonary fibrosis. Front Immunol 2023; 14:1159856. [PMID: 37122736 PMCID: PMC10140527 DOI: 10.3389/fimmu.2023.1159856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/29/2023] [Indexed: 05/02/2023] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial lung disease with limited therapeutic options. Recent studies have demonstrated that chemokines play a vital role in IPF pathogenesis. In the present study, we explored whether the gene signature associated with chemokines could be used as a reliable biological marker for patients with IPF. Methods Chemokine-related differentially expressed genes (CR-DEGs) in IPF and control lung tissue samples were identified using data from the Gene Expression Omnibus database. A chemokine-related signature of the diagnostic model was established using the LASSO-Cox regression. In addition, unsupervised cluster analysis was conducted using consensus-clustering algorithms. The CIBERSORT algorithm was used to calculate immune cell infiltration across patient subgroups. Finally, we established a mouse model of bleomycin-induced pulmonary fibrosis and a model of fibroblasts treated with TGFβ1. Expression levels of chemokine-related signature genes were determined using real-time quantitative polymerase chain reaction (RT-qPCR). Results We established a chemokine-related eleven-gene signature of a diagnostic model consisting of CXCL2, CCRL2, ARRB1, XCL1, GRK5, PPBP, CCL19, CCL13, CCL11, CXCL6, and CXCL13, which could easily distinguish between IPF patients and controls. Additionally, we identified two subtypes of IPF samples based on chemokine-related gene expression. Pulmonary function parameters and stromal scores were significantly higher in subtype 1 than in subtype 2. Several immune cell types, especially plasma cells and macrophages, differ significantly between the two subtypes. RT-qPCR results showed that the expression levels of Cxcl2 and Ccl2 increased considerably in bleomycin-induced mice. Meanwhile, Arrb1, Ccrl2, Grk5, and Ppbp expression was significantly reduced. Furthermore, multiple chemokine-related genes were altered in TGFβ1 or TNFα-induced fibroblast cells. Conclusions A novel chemokine-related eleven-signature of diagnostic model was developed. These genes are potential biomarkers of IPF and may play essential roles in its pathogenesis.
Collapse
Affiliation(s)
- Tianming Zhao
- Department of Respiratory and Critical Care Medicine, The People’s Hospital of China Three Gorges University, The First People’s Hospital of Yichang, Yichang, China
| | - Xu Wu
- Department of Respiratory and Critical Care Medicine, The People’s Hospital of China Three Gorges University, The First People’s Hospital of Yichang, Yichang, China
| | - Xuelei Zhao
- Department of Gastroenterology, The People’s Hospital of China Three Gorges University, The First People’s Hospital of Yichang, Yichang, China
| | - Kecheng Yao
- Department of Geriatrics, The People’s Hospital of China Three Gorges University, The First People’s Hospital of Yichang, Yichang, China
| | - Xiaojuan Li
- Department of Respiratory and Critical Care Medicine, The People’s Hospital of China Three Gorges University, The First People’s Hospital of Yichang, Yichang, China
| | - Jixiang Ni
- Department of Respiratory and Critical Care Medicine, The People’s Hospital of China Three Gorges University, The First People’s Hospital of Yichang, Yichang, China
- *Correspondence: Jixiang Ni,
| |
Collapse
|
6
|
The Potential Importance of CXCL1 in the Physiological State and in Noncancer Diseases of the Cardiovascular System, Respiratory System and Skin. Int J Mol Sci 2022; 24:ijms24010205. [PMID: 36613652 PMCID: PMC9820720 DOI: 10.3390/ijms24010205] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
In this paper, we present a literature review of the role of CXC motif chemokine ligand 1 (CXCL1) in physiology, and in selected major non-cancer diseases of the cardiovascular system, respiratory system and skin. CXCL1, a cytokine belonging to the CXC sub-family of chemokines with CXC motif chemokine receptor 2 (CXCR2) as its main receptor, causes the migration and infiltration of neutrophils to the sites of high expression. This implicates CXCL1 in many adverse conditions associated with inflammation and the accumulation of neutrophils. The aim of this study was to describe the significance of CXCL1 in selected diseases of the cardiovascular system (atherosclerosis, atrial fibrillation, chronic ischemic heart disease, hypertension, sepsis including sepsis-associated encephalopathy and sepsis-associated acute kidney injury), the respiratory system (asthma, chronic obstructive pulmonary disease (COPD), chronic rhinosinusitis, coronavirus disease 2019 (COVID-19), influenza, lung transplantation and ischemic-reperfusion injury and tuberculosis) and the skin (wound healing, psoriasis, sunburn and xeroderma pigmentosum). Additionally, the significance of CXCL1 is described in vascular physiology, such as the effects of CXCL1 on angiogenesis and arteriogenesis.
Collapse
|
7
|
Potential contribution of early endothelial progenitor cell (eEPC)-to-macrophage switching in the development of pulmonary plexogenic lesion. Respir Res 2022; 23:290. [PMID: 36274148 PMCID: PMC9590182 DOI: 10.1186/s12931-022-02210-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/04/2022] [Indexed: 11/12/2022] Open
Abstract
Background Plexiform lesions, which have a dynamic appearance in structure and cellular composition, are the histological hallmark of severe pulmonary arterial hypertension in humans. The pathogenesis of the lesion development remains largely unknown, although it may be related to local inflammation and dysfunction in early progenitor endothelial cells (eEPCs). We tested the hypothesis that eEPCs contribute to the development of plexiform lesions by differentiating into macrophages in the setting of chronic inflammation. Methods The eEPC markers CD133 and VEGFR-2, macrophage lineage marker mannose receptor C-type 1 (MRC1), TNFα and nuclear factor erythroid 2-related factor 2 (Nrf2) in plexiform lesions in a broiler model were determined by immunohistochemistry. eEPCs derived from peripheral blood mononuclear cells were exposed to TNFα, and macrophage differentiation and angiogenic capacity of the cells were evaluated by phagocytotic and Matrigel plug assays, respectively. The role of Nrf2 in eEPC-to-macrophage transition as well as in MRC1 expression was also evaluated. Intratracheal installation of TNFα was conducted to determine the effect of local inflammation on the formation of plexiform lesions. Results Cells composed of the early lesions have a typical eEPC phenotype whereas those in more mature lesions display molecular and morphological characteristics of macrophages. Increased TNFα production in plexiform lesions was observed with lesion progression. In vitro studies showed that chronic TNFα challenge directed eEPCs to macrophage differentiation accompanied by hyperactivation of Nrf2, a stress-responsive transcription factor. Nrf2 activation (Keap1 knockdown) caused a marked downregulation in CD133 but upregulation in MRC1 mRNA. Dual luciferase reporter assay demonstrated that Nrf2 binds to the promoter of MRC1 to trigger its expression. In good agreement with the in vitro observation, TNFα exposure induced macrophage differentiation of eEPCs in Matrigel plugs, resulting in reduced neovascularization of the plugs. Intratracheal installation of TNFα resulted in a significant increase in plexiform lesion density. Conclusions This work provides evidence suggesting that macrophage differentiation of eEPCs resulting from chronic inflammatory stimulation contributes to the development of plexiform lesions. Given the key role of Nrf2 in the phenotypic switching of eEPCs to macrophages, targeting this molecular might be beneficial for intervention of plexiform lesions. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-02210-7.
Collapse
|
8
|
Neutrophil Count as Atrioventricular Block (AVB) Predictor following Pediatric Heart Surgery. Int J Mol Sci 2022; 23:ijms232012409. [PMID: 36293263 PMCID: PMC9604473 DOI: 10.3390/ijms232012409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/07/2022] [Accepted: 10/15/2022] [Indexed: 11/23/2022] Open
Abstract
Neutrophils play a significant role in immune and inflammatory reactions. The preoperative inflammatory activation may have a detrimental effect on postoperative outcomes. The aim of the study was to investigate the relation between preoperative hematological indices on postoperative complications’ risk in pediatric cardiac congenital surgery. The retrospective single center analysis included 93 pediatric patients (48 (65%) males and 45 (35%) females), mean age of 7 (3−30) months referred for cardiac surgery in cardiopulmonary bypass due to functional single ventricle disease (26 procedures), shunts lesions (40 procedures) and cyanotic disease (27 procedures). Among simple hematological indices, the receiver-operating-characteristic curve showed that a neutrophil count below 2.59 K/uL was found as an optimal cut-off point for predicting postoperative atrioventricular block following pediatric cardiac surgery (AUC = 0.845, p < 0.0001) yielding a sensitivity of 100% and a specificity of 65.62%. Preoperative values of neutrophil count below 2.59 K/uL in whole blood analysis can be regarded as a predictive factor (AUC = 0.845, p < 0.0001) for postoperative atrioventricular block in pediatric cardiac surgery.
Collapse
|
9
|
Targeting CXCR1 and CXCR2 receptors in cardiovascular diseases. Pharmacol Ther 2022; 237:108257. [DOI: 10.1016/j.pharmthera.2022.108257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022]
|
10
|
Wang B, Zhang Y, Lou Y, Hu X, Li F. Initial research on the effect and mechanism of Tivozanib on pulsed dye laser induced angiogenesis. Lasers Surg Med 2022; 54:1157-1166. [PMID: 35916102 DOI: 10.1002/lsm.23586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Pulsed dye laser (PDL) is the main treatment for port wine stain (PWS), but a considerable number of patients show low clearances. The reason for the poor efficacy is related to PDL-induced angiogenesis. Vascular endothelial growth factor (VEGF) plays an important role in PDL-induced angiogenesis and can activate the tyrosine kinase activity of VEGF receptor (VEGFR) in endothelial cells. It triggers a full range of responses, and then participates in the regulation of angiogenesis. Tivozanib is an inhibitor of VEGFR tyrosine kinase activity, which can block the pro-angiogenic effect of VEGF and reduce vascular permeability. METHOD Different energy densities of PDL were used to irradiate the abdominal skin of rats. According to the general and pathological changes of the irradiated area, the energy density of 8 J/cm2 with smaller scab and stronger vascular effect was selected for follow-up experiments. Divided the rat abdomen skin into four areas, irradiated three of them uniformly with an energy density of 8 J/cm2 , and applied different concentrations of Tivozanib coating agent to the laser irradiation area, and grouped them as follows: (1) vacant group, (2) control group, (3) 0.5% Tivozanib group, (4) 1% Tivozanib group. Camera and dermoscopy were used to observe skin changes. Hematoxylin-eosin staining, immunohistochemical staining, and blood vessels were counted to detect dermal vascular regeneration. Transcriptome sequencing and real-time polymerase chain reaction (PCR) were conducted to elucidate the mechanism and validate the reliability. RESULTS The number of blood vessels in the 0.5% Tivozanib group and 1% Tivozanib group was significantly reduced on the 7, 10, and 14 days compared with the control group. The number of blood vessels in the 1% Tivozanib group was significantly reduced compared with the 0.5% Tivozanib group, indicating that Tivozanib successfully inhibited PDL-induced angiogenesis, and the inhibitory effect of 1% Tivozanib was more significant than that of 0.5% Tivozanib. Transcriptome sequencing results showed a total of 588 significantly differentially expressed genes, including 90 upregulated genes and 498 downregulated genes. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis showed that the significantly differentially expressed genes were mainly enriched in the metabolic pathways which were closely related to angiogenesis. Finally, real-time PCR was used to verify the genes with higher expression differences, the top ranking and closely related to angiogenesis, namely, Cxcl1, Cxcl2, Cxcl3, Cxcl6, Ccl3, Csf3, IL1β, iNOS, Mmp9, Mmp13, Plau, Ets1, Spp1, Nr4a1. The results were consistent with the trend of transcriptome sequencing results, which proved the reliability of this study. CONCLUSION This study explored the inhibitory effect of Tivozanib on PDL-induced angiogenesis, and provided a new idea for the treatment of clinical PWS. Transcriptome sequencing explored the mechanism and provided reliable clues for later in-depth research.
Collapse
Affiliation(s)
- Bing Wang
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yaqin Zhang
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Yan Lou
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, P.R. China
| | - Xin Hu
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fuqiu Li
- Department of Dermatology, The Second Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
11
|
Oxidative stress-induced endothelial cells-derived exosomes accelerate skin flap survival through Lnc NEAT1-mediated promotion of endothelial progenitor cell function. Stem Cell Res Ther 2022; 13:325. [PMID: 35850692 PMCID: PMC9290268 DOI: 10.1186/s13287-022-03013-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022] Open
Abstract
Background Flap transplantation is commonly used in reconstructive surgery. A prerequisite for skin flap survival is sufficient blood supply. However, such approaches remain unclear. This study aimed to explore the underlying mechanisms of exosomes derived from human umbilical vascular endothelial cells (HUVECs) exposed to oxidative stress on endothelial progenitor cells (EPCs) and their subsequent influence on the survival of skin flaps. Methods HUVECs were treated with various concentrations of H2O2 to establish an oxidative stress model. To investigate the effects of H2O2-HUVEC-Exos and HUVEC-Exos, Cell Counting Kit-8, tube formation, invasion assays, and quantitative real-time polymerase chain reaction (qRT-PCR) were performed in EPCs. Microarray analysis was used to reveal the differentially expressed long non-coding RNAs (lncRNAs) in the H2O2-HUVEC-Exos and HUVEC-Exos. In addition, gene silencing and western blotting were employed to determine the mechanism behind lncRNA nuclear enrichment enriched transcript 1 (Lnc NEAT1) in EPCs. Further, a rat skin flap model was used to determine the role of the exosomes in skin flap survival in vivo. Results HUVECs were stimulated with 100 μmol/L H2O2 for 12 h to establish an oxidative stress model. H2O2-HUVEC-Exos promoted the proliferation, tube formation, and invasion of EPCs and remarkably increased skin flap survival compared to the HUVEC-Exos and control groups. Sequencing of exosome RNAs revealed that the Lnc NEAT1 level was dramatically increased in the H2O2-HUVEC-Exos, leading to activation of the Wnt/β-catenin signaling pathway. Comparatively, knockdown of Lnc NEAT1 in HUVEC-Exos and H2O2-HUVEC-Exos significantly inhibits the angiogenic capacity of EPCs, reduced the survival area of skin flap and downregulated the expression levels of Wnt/β-catenin signaling pathway proteins, whereas Wnt agonist partly reversed the negative effect of NEAT1 downregulation on EPCs through the Wnt/β-catenin signaling pathway. Conclusions Exosomes derived from HUVECs stimulated by oxidative stress significantly promoted the pro-angiogenic ability of EPCs through the Wnt/β-catenin signaling pathway mediated by Lnc NEAT1 and hence enhanced random flap survival in vivo. Therefore, the application of H2O2-HUVEC-Exos may serve as an alternative therapy for improving random skin flap survival. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03013-9.
Collapse
|
12
|
Wu Q, Tu H, Li J. Multifaceted Roles of Chemokine C-X-C Motif Ligand 7 in Inflammatory Diseases and Cancer. Front Pharmacol 2022; 13:914730. [PMID: 35837284 PMCID: PMC9273993 DOI: 10.3389/fphar.2022.914730] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Over recent years, C-X-C motif ligand 7 (CXCL7) has received widespread attention as a chemokine involved in inflammatory responses. Abnormal production of the chemokine CXCL7 has been identified in different inflammatory diseases; nevertheless, the exact role of CXCL7 in the pathogenesis of inflammatory diseases is not fully understood. Persistent infection or chronic inflammation can induce tumorigenesis and progression. Previous studies have shown that the pro-inflammatory chemokine CXCL7 is also expressed by malignant tumor cells and that binding of CXCL7 to its cognate receptors C-X-C chemokine receptor 1 (CXCR1) and C-X-C chemokine receptor 2 (CXCR2) can influence tumor biological behavior (proliferation, invasion, metastasis, and tumor angiogenesis) in an autocrine and paracrine manner. CXCL7 and its receptor CXCR1/CXCR2, which are aberrantly expressed in tumors, may represent new targets for clinical tumor immunotherapy.
Collapse
Affiliation(s)
- Qianmiao Wu
- Department of Hematology, Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Medicine, Nanchang University, Nanchang, China
| | - Huaijun Tu
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jian Li
- Department of Hematology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Mansanguan C, Maneerat Y. PPBP gene as a biomarker for coronary heart disease risk in postmenopausal Thai women. PeerJ 2022; 10:e13615. [PMID: 35734636 PMCID: PMC9208370 DOI: 10.7717/peerj.13615] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/31/2022] [Indexed: 01/17/2023] Open
Abstract
Background Estrogen is an important ovarian hormone with anti-atherogenic and cardioprotective effects. Postmenopausal women have lower estrogen levels, associated with significantly higher risks of coronary heart disease (CHD) and CHD-related death. Effective biomarkers for the diagnosis, prediction, and treatment of CHD are needed to address this problem and thus reduce the mortality due to CHD in postmenopausal women. We recently reported that the PPBP and DEFA1/DEFA3 genes may be feasible synergistic biomarkers for CHD risk in Thai men with hyperlipidemia. The PPBP gene encodes pro-platelet basic protein (PPBP) from activated platelets, and DEFA1/DEFA3 encodes human neutrophil peptides (HNP) 1-3, mainly produced by activated neutrophils. Both platelets and neutrophils are involved in chronic inflammation during the development of atherogenesis and CHD. This study investigated the potential roles of PPBP and DEFA1/DEFA3 and their proteins as biomarkers for CHD risk in postmenopausal Thai women. Methods This cross-sectional study enrolled 90 postmenopausal Thai women, including 12 healthy controls (N), 18 patients with hyperlipidemia (H), and 21 patients diagnosed with CHD. The remaining 39 women were receiving cholesterol-lowering drugs for hyperlipidemia (HD) were excluded from the study. All CHD patients underwent coronary bypass grafting or coronary angioplasty. PPBP and DEFA1/DEFA3 mRNA expression levels in peripheral blood mononuclear cells isolated from heparinized blood were determined by quantitative reverse-transcription polymerase chain reaction. Levels of PPBP and HNP-1-3 proteins in corresponding plasma samples were assessed by enzyme-linked immunosorbent assay. Differences in parameters were compared among groups and correlations between parameters and clinical manifestations were analyzed. Results PPBP mRNA and protein levels were significantly increased in the CHD group compared with the N and H groups. In contrast, DEFA1/DEFA3 mRNA and HNP-1-3 protein levels did not differ significantly among the groups. None of the levels were associated with any of the clinical parameters analyzed in this study. Conclusion The results indicate that gene and protein expression levels of PPBP, but not DEFA1/DEFA3, and HNP-1-3, may be feasible biomarkers for assessing CHD risk in postmenopausal Thai women with hyperlipidemia.
Collapse
Affiliation(s)
- Chayasin Mansanguan
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Yaowapa Maneerat
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
14
|
Mannarino MR, Bianconi V, Gigante B, Strawbridge RJ, Savonen K, Kurl S, Giral P, Smit A, Eriksson P, Tremoli E, Veglia F, Baldassarre D, Pirro M. Neutrophil to lymphocyte ratio is not related to carotid atherosclerosis progression and cardiovascular events in the primary prevention of cardiovascular disease: Results from the IMPROVE study. Biofactors 2022; 48:100-110. [PMID: 34761838 PMCID: PMC9299016 DOI: 10.1002/biof.1801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022]
Abstract
Inflammation is a component of the pathogenesis of atherosclerosis and is associated with an increased risk of atherosclerotic cardiovascular disease (ASCVD). The neutrophil to lymphocyte ratio (NLR) is a possible inflammation metric for the detection of ASCVD risk, although results of prospective studies are highly inconsistent on this topic. We investigated the cross-sectional relationship between NLR and carotid intima-media thickness (cIMT) in subjects at moderate-to-high ASCVD risk. The prospective association between NLR, cIMT progression, and incident vascular events (VEs) was also explored. In 3341 subjects from the IMT-Progression as Predictors of VEs (IMPROVE) study, we analyzed the association between NLR, cIMT, and its 15-month progression. The association between NLR and incident VEs was also investigated. NLR was positively associated with cross-sectional measures of cIMT, but not with cIMT progression. The association between NLR and cross-sectional cIMT measures was abolished when adjusted for confounders. No association was found between NRL and incident VEs. Similarly, there were no significant differences in the hazard ratios (HRs) of VEs across NLR quartiles. NLR was neither associated with the presence and progression of carotid atherosclerosis, nor with the risk of VEs. Our findings do not support the role of NLR as a predictor of the risk of atherosclerosis progression and ASCVD events in subjects at moderate-to-high ASCVD risk, in primary prevention. However, the usefulness of NLR for patients at a different level of ASCVD risk cannot be inferred from this study.
Collapse
Affiliation(s)
- Massimo R. Mannarino
- Unit of Internal Medicine, Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Vanessa Bianconi
- Unit of Internal Medicine, Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | - Bruna Gigante
- Division of Cardiovascular Medicine, Department of Medicine, SolnaKarolinska InstitutetStockholmSweden
| | - Rona J. Strawbridge
- Division of Cardiovascular Medicine, Department of Medicine, SolnaKarolinska InstitutetStockholmSweden
- Institute of Health and WellbeingUniversity of GlasgowGlasgowUK
- Health Data Research UKGlasgowUK
| | - Kai Savonen
- Foundation for Research in Health Exercise and NutritionKuopio & Research Institute of Exercise MedicineKuopioFinland
- Department of Clinical Physiology and Nuclear MedicineKuopio University HospitalKuopioFinland
| | - Sudhir Kurl
- Institute of Public Health and Clinical NutritionUniversity of Eastern FinlandKuopioFinland
| | - Philippe Giral
- Assistance Publique ‐ Hopitaux de ParisParisFrance
- Service Endocrinologie‐Metabolisme, Groupe Hôspitalier Pitie‐SalpetriereUnités de Prévention CardiovasculaireParisFrance
| | - Andries Smit
- Department of MedicineUniversity Medical Center GroningenGroningenthe Netherlands
- Department of MedicineIsala Clinics ZwolleZwolleThe Netherlands
| | - Per Eriksson
- Division of Cardiovascular Medicine, Department of Medicine, SolnaKarolinska InstitutetStockholmSweden
| | | | | | - Damiano Baldassarre
- Centro Cardiologico Monzino, IRCCSMilanItaly
- Department of Medical Biotechnology and Translational MedicineUniversità degli Studi di MilanoMilanItaly
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine and SurgeryUniversity of PerugiaPerugiaItaly
| | | |
Collapse
|
15
|
Calabrese EJ. Hormesis and Endothelial Progenitor Cells. Dose Response 2022; 20:15593258211068625. [PMID: 35221821 PMCID: PMC8874175 DOI: 10.1177/15593258211068625] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/04/2021] [Indexed: 12/11/2022] Open
Abstract
Hormetic-biphasic dose response relationships are reported herein for human endothelial progenitor cells involving estradiol, nicotine, the anti-diabetic agent pioglitazone, resveratrol, and progesterone. In general, these studies demonstrate the capacity of these agents to enhance EPC proliferation and angiogenesis functional applications, having a focus on repairing endothelial tissue damage due to acute injury (e.g., stroke), as well as damage from chronic conditions (e.g., atherosclerosis) and normal aging processes.
Collapse
Affiliation(s)
- Edward J. Calabrese
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
16
|
Zafar M, Mirza MR, Awan FR, Tahir M, Sultan R, Hussain M, Bilal A, Abbas S, Larsen MR, Choudhary MI, Malik IR. Effect of APOB polymorphism rs562338 (G/A) on serum proteome of coronary artery disease patients: a "proteogenomic" approach. Sci Rep 2021; 11:22766. [PMID: 34815491 PMCID: PMC8610978 DOI: 10.1038/s41598-021-02211-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022] Open
Abstract
In the current study, APOB (rs1052031) genotype-guided proteomic analysis was performed in a cohort of Pakistani population. A total of 700 study subjects, including Coronary Artery Disease (CAD) patients (n = 480) and healthy individuals (n = 220) as a control group were included in the study. Genotyping was carried out by using tetra primer-amplification refractory mutation system-based polymerase chain reaction (T-ARMS-PCR) whereas mass spectrometry (Orbitrap MS) was used for label free quantification of serum samples. Genotypic frequency of GG genotype was found to be 90.1%, while 6.4% was for GA genotype and 3.5% was for AA genotypes in CAD patients. In the control group, 87.2% healthy subjects were found to have GG genotype, 11.8% had GA genotype, and 0.9% were with AA genotypes. Significant (p = 0.007) difference was observed between genotypic frequencies in the patients and the control group. The rare allele AA was found to be strongly associated with the CAD [OR: 4 (1.9-16.7)], as compared to the control group in recessive genetic model (p = 0.04). Using label free proteomics, altered expression of 60 significant proteins was observed. Enrichment analysis of these protein showed higher number of up-regulated pathways, including phosphatidylcholine-sterol O-acyltransferase activator activity, cholesterol transfer activity, and sterol transfer activity in AA genotype of rs562338 (G>A) as compared to the wild type GG genotype. This study provides a deeper insight into CAD pathobiology with reference to proteogenomics, and proving this approach as a good platform for identifying the novel proteins and signaling pathways in relation to cardiovascular diseases.
Collapse
Affiliation(s)
- Muneeza Zafar
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences ICCBS), University of Karachi, Karachi, 75270, Pakistan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
- Diabetes and Cardio-Metabolic Disorders Lab, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box. 577, Faisalabad, Pakistan
| | - Munazza Raza Mirza
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences ICCBS), University of Karachi, Karachi, 75270, Pakistan.
| | - Fazli Rabbi Awan
- Diabetes and Cardio-Metabolic Disorders Lab, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box. 577, Faisalabad, Pakistan.
| | - Muhammad Tahir
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Rabia Sultan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Misbah Hussain
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
- Diabetes and Cardio-Metabolic Disorders Lab, Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, P.O. Box. 577, Faisalabad, Pakistan
| | - Ahmed Bilal
- Allied Hospital, Faisalabad Medical University, Faisalabad, Pakistan
| | - Shahid Abbas
- Faisalabad Institute of Cardiology (FIC), Faisalabad, Pakistan
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Muhammad Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Imran Riaz Malik
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan.
| |
Collapse
|
17
|
Ravindran D, Karimi Galougahi K, Tan JTM, Kavurma MM, Bursill CA. The multiple roles of chemokines in the mechanisms of stent biocompatibility. Cardiovasc Res 2021; 117:2299-2308. [PMID: 32196069 DOI: 10.1093/cvr/cvaa072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/11/2020] [Accepted: 03/18/2020] [Indexed: 01/01/2023] Open
Abstract
While the advent of drug-eluting stents has been clinically effective in substantially reducing the rates of major stent-related adverse events compared with bare metal stents, vascular biological problems such as neointimal hyperplasia, delayed re-endothelialization, late stent thrombosis are not eliminated and, increasingly, neoatherosclerosis is the underlying mechanism for very late stent failure. Further understanding regarding the mechanisms underlying the biological responses to stent deployment is therefore required so that new and improved therapies can be developed. This review will discuss the accumulating evidence that the chemokines, small inflammatory proteins, play a role in each key biological process of stent biocompatibility. It will address the chemokine system in its specialized roles in regulating the multiple facets of vascular biocompatibility including neointimal hyperplasia, endothelial progenitor cell (EPC) mobilization and re-endothelialization after vascular injury, platelet activation and thrombosis, as well as neoatherosclerosis. The evidence in this review suggests that chemokine-targeting strategies may be effective in controlling the pathobiological processes that lead to stent failure. Preclinical studies provide evidence that inhibition of specific chemokines and/or broad-spectrum inhibition of the CC-chemokine class prevents neointimal hyperplasia, reduces thrombosis and suppresses the development of neoatherosclerosis. In contrast, however, to these apparent deleterious effects of chemokines on stent biocompatibility, the CXC chemokine, CXCL12, is essential for the mobilization and recruitment of EPCs that make important contributions to re-endothelialization post-stent deployment. This suggests that future chemokine inhibition strategies would need to be correctly targeted so that all key stent biocompatibility areas could be addressed, without compromising important adaptive biological responses.
Collapse
Affiliation(s)
- Dhanya Ravindran
- Heart Research Institute, Sydney 2042, Australia.,The University of Sydney, Sydney Medical School, Sydney 2006, Australia
| | | | - Joanne T M Tan
- South Australian Health and Medical Research Institute, Vascular Research Centre, Adelaide 5000, Australia.,University of Adelaide, Faculty of Health and Medical Science, Adelaide 5000, Australia
| | - Mary M Kavurma
- Heart Research Institute, Sydney 2042, Australia.,The University of Sydney, Sydney Medical School, Sydney 2006, Australia
| | - Christina A Bursill
- South Australian Health and Medical Research Institute, Vascular Research Centre, Adelaide 5000, Australia.,University of Adelaide, Faculty of Health and Medical Science, Adelaide 5000, Australia
| |
Collapse
|
18
|
Sreejit G, Johnson J, Jaggers RM, Dahdah A, Murphy AJ, Hanssen NMJ, Nagareddy PR. Neutrophils in cardiovascular disease: warmongers, peacemakers, or both? Cardiovasc Res 2021; 118:2596-2609. [PMID: 34534269 PMCID: PMC9890471 DOI: 10.1093/cvr/cvab302] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 02/05/2023] Open
Abstract
Neutrophils, the most abundant of all leucocytes and the first cells to arrive at the sites of sterile inflammation/injury act as a double-edged sword. On one hand, they inflict a significant collateral damage to the tissues and on the other hand, they help facilitate wound healing by a number of mechanisms. Recent studies have drastically changed the perception of neutrophils from being simple one-dimensional cells with an unrestrained mode of action to a cell type that display maturity and complex behaviour. It is now recognized that neutrophils are transcriptionally active and respond to plethora of signals by deploying a wide variety of cargo to influence the activity of other cells in the vicinity. Neutrophils can regulate macrophage behaviour, display innate immune memory, and play a major role in the resolution of inflammation in a context-dependent manner. In this review, we provide an update on the factors that regulate neutrophil production and the emerging dichotomous role of neutrophils in the context of cardiovascular diseases, particularly in atherosclerosis and the ensuing complications, myocardial infarction, and heart failure. Deciphering the complex behaviour of neutrophils during inflammation and resolution may provide novel insights and in turn facilitate the development of potential therapeutic strategies to manage cardiovascular disease.
Collapse
Affiliation(s)
- Gopalkrishna Sreejit
- Department of Surgery, The Ohio State University Wexner Medical Center, 473 W, 12th Ave, DHLRI 611A, Columbus, OH 43210, USA
| | - Jillian Johnson
- Department of Surgery, The Ohio State University Wexner Medical Center, 473 W, 12th Ave, DHLRI 611A, Columbus, OH 43210, USA
| | - Robert M Jaggers
- Department of Surgery, The Ohio State University Wexner Medical Center, 473 W, 12th Ave, DHLRI 611A, Columbus, OH 43210, USA
| | - Albert Dahdah
- Department of Surgery, The Ohio State University Wexner Medical Center, 473 W, 12th Ave, DHLRI 611A, Columbus, OH 43210, USA
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Nordin M J Hanssen
- Amsterdam Diabetes Centrum, Amsterdam University Medical Centre, Location Academic Medical Centre Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
19
|
Role of Stromal Cell-Derived Factor-1 in Endothelial Progenitor Cell-Mediated Vascular Repair and Regeneration. Tissue Eng Regen Med 2021; 18:747-758. [PMID: 34449064 PMCID: PMC8440704 DOI: 10.1007/s13770-021-00366-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Endothelial progenitor cells (EPCs) are immature endothelial cells that participate in vascular repair and postnatal neovascularization and provide a novel and promising therapy for the treatment of vascular disease. Studies in different animal models have shown that EPC mobilization through pharmacological agents and autologous EPC transplantation contribute to restoring blood supply and tissue regeneration after ischemic injury. However, these effects of the progenitor cells in clinical studies exhibit mixed results. The therapeutic efficacy of EPCs is closely associated with the number of the progenitor cells recruited into ischemic regions and their functional abilities and survival in injury tissues. In this review, we discussed the regulating role of stromal cell-derived factor-1 (also known CXCL12, SDF-1) in EPC mobilization, recruitment, homing, vascular repair and neovascularization, and analyzed the underlying machemisms of these functions. Application of SDF-1 to improve the regenerative function of EPCs following vascular injury was also discussed. SDF-1 plays a crucial role in mobilizing EPC from bone marrow into peripheral circulation, recruiting the progenitor cells to target tissue and protecting against cell death under pathological conditions; thus improve EPC regenerative capacity. SDF-1 are crucial for regulating EPC regenerative function, and provide a potential target for improve therapeutic efficacy of the progenitor cells in treatment of vascular disease.
Collapse
|
20
|
Chen R, Zhang X, Gu L, Zhu H, Zhong Y, Ye Y, Xiong X, Jian Z. New Insight Into Neutrophils: A Potential Therapeutic Target for Cerebral Ischemia. Front Immunol 2021; 12:692061. [PMID: 34335600 PMCID: PMC8317226 DOI: 10.3389/fimmu.2021.692061] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/16/2021] [Indexed: 12/25/2022] Open
Abstract
Ischemic stroke is one of the main issues threatening human health worldwide, and it is also the main cause of permanent disability in adults. Energy consumption and hypoxia after ischemic stroke leads to the death of nerve cells, activate resident glial cells, and promote the infiltration of peripheral immune cells into the brain, resulting in various immune-mediated effects and even contradictory effects. Immune cell infiltration can mediate neuronal apoptosis and aggravate ischemic injury, but it can also promote neuronal repair, differentiation and regeneration. The central nervous system (CNS), which is one of the most important immune privileged parts of the human body, is separated from the peripheral immune system by the blood-brain barrier (BBB). Under physiological conditions, the infiltration of peripheral immune cells into the CNS is controlled by the BBB and regulated by the interaction between immune cells and vascular endothelial cells. As the immune response plays a key role in regulating the development of ischemic injury, neutrophils have been proven to be involved in many inflammatory diseases, especially acute ischemic stroke (AIS). However, neutrophils may play a dual role in the CNS. Neutrophils are the first group of immune cells to enter the brain from the periphery after ischemic stroke, and their exact role in cerebral ischemia remains to be further explored. Elucidating the characteristics of immune cells and their role in the regulation of the inflammatory response may lead to the identification of new potential therapeutic strategies. Thus, this review will specifically discuss the role of neutrophils in ischemic stroke from production to functional differentiation, emphasizing promising targeted interventions, which may promote the development of ischemic stroke treatments in the future.
Collapse
Affiliation(s)
- Ran Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xu Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingze Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Mause SF, Ritzel E, Deck A, Vogt F, Liehn EA. Endothelial Progenitor Cells Modulate the Phenotype of Smooth Muscle Cells and Increase Their Neointimal Accumulation Following Vascular Injury. Thromb Haemost 2021; 122:456-469. [PMID: 34214997 DOI: 10.1055/s-0041-1731663] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Smooth muscle cells (SMCs) are the main driver of neointima formation and restenosis following vascular injury. In animal models, endothelial progenitor cells (EPCs) accelerate endothelial regeneration and reduce neointima formation after arterial injury; however, EPC-capture stents do not reduce target vessel failure compared with conventional stents. Here we examined the influence of EPCs on features of SMCs pivotal for their impact on injury-induced neointima formation including proliferation, migration, and phenotype switch. METHODS AND RESULTS EPCs, their conditioned medium, and EPC-derived microparticles induced proliferation of SMCs while limiting their apoptosis. In transwell membrane experiments and scratch assays, EPCs stimulated migration of SMCs and accelerated their recovery from scratch-induced injury. Treatment of SMCs with an EPC-derived conditioned medium or microparticles triggered transformation of SMCs toward a synthetic phenotype. However, co-cultivation of EPCs and SMCs enabling direct cell-cell contacts preserved their original phenotype and protected from the transformative effect of SMC cholesterol loading. Adhesion of EPCs to SMCs was stimulated by SMC injury and reduced by blocking CXCR2 and CCR5. Interaction of EPCs with SMCs modulated their secretory products and synergistically increased the release of selected chemokines. Following carotid wire injury in athymic mice, injection of EPCs resulted not only in reduced neointima formation but also in altered cellular composition of the neointima with augmented accumulation of SMCs. CONCLUSION EPCs stimulate proliferation and migration of SMCs and increase their neointimal accumulation following vascular injury. Furthermore, EPCs context-dependently modify the SMC phenotype with protection from the transformative effect of cholesterol when a direct cell-cell contact is established.
Collapse
Affiliation(s)
- Sebastian F Mause
- Department of Internal Medicine I, Cardiology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Elisabeth Ritzel
- Department of Otorhinolaryngology Head and Neck Surgery, Klinikum Stuttgart, Stuttgart, Germany.,Institute for Molecular Cardiovascular Research, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Annika Deck
- Department of Internal Medicine I, Cardiology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Felix Vogt
- Department of Internal Medicine I, Cardiology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Elisa A Liehn
- Department of Internal Medicine I, Cardiology, University Hospital Aachen, RWTH Aachen University, Aachen, Germany.,Institute for Molecular Cardiovascular Research, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
22
|
Li S, Jiang Z, Chao X, Jiang C, Zhong G. Identification of key immune-related genes and immune infiltration in atrial fibrillation with valvular heart disease based on bioinformatics analysis. J Thorac Dis 2021; 13:1785-1798. [PMID: 33841968 PMCID: PMC8024788 DOI: 10.21037/jtd-21-168] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Atrial fibrillation (AF) is the most common persistent arrhythmia. Valvular heart disease (VHD) and AF frequently coexist. In our study, from performing bioinformatics analysis, we sought to identify immune-related genes (IRGs) and explore the role of immune cell infiltration in AF-VHD in depth, aiming at investigating the potential molecular mechanism and developing new therapeutic targets for AF, including AF-VHD. Methods The gene expression of the GSE41177 and GSE79768 datasets were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were analyzed via the limma package in Bioconductor with R software. Differentially expressed immune-related genes (DEIRGs) were selected via combination ImmPort database with DEGs, and the enrichment function and pathway analysis were explored. A protein-protein interaction (PPI) network was built with a Search Tool for the Retrieval of Interacting Genes/Proteins plugin in Cytoscape. The CIBERSORT algorithm was used to evaluate immune infiltration in the left atrial (LA) tissues between AF-VHD and sinus rhythm (SR) patients. Finally, a correlation analysis between key DEIRGs and infiltrating immune cells was performed. Results A total of 130 DEIRGs were detected. Enrichment function of DEIRGs demonstrated that they are significant in immune and inflammatory responses. The key DEIRGs assessed by the PPI network and involved in both the immune and inflammatory responses were the C-X-C motif chemokine ligand (CXCL) 1, pro-platelet basic protein (PPBP), CXCL12, and C-C motif chemokine ligand 4 (CCL4). The immune infiltration findings indicated that, compared with the LA tissues from SR patients, the tissues from AF-VHD patients contained a higher proportion of gamma delta T cells, but a lower proportion of CD8 and regulatory T cells. The results of correlation analysis demonstrated that CXCL1 was positively correlated with activated mast cells and significantly negatively correlated with resting mast cells. PPBP, CXCL12, and CCL4 were positively correlated with the infiltration of various immune cells, such as neutrophils, plasma cells, and resting dendritic cells. Conclusions The key immune-related genes and the differences in immune infiltration in LA tissues play an essential role in the occurrence and progression of AF-VHD.
Collapse
Affiliation(s)
- Shuo Li
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Zhiyuan Jiang
- Department of Cardiology, Division of Hypertension, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Xiaoying Chao
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Chenyang Jiang
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| | - Guoqiang Zhong
- Department of Cardiology, First Affiliated Hospital, Guangxi Medical University, Nanning, China
| |
Collapse
|
23
|
Li Y, Wu T, Gong S, Zhou H, Yu L, Liang M, Shi R, Wu Z, Zhang J, Li S. Analysis of the Prognosis and Therapeutic Value of the CXC Chemokine Family in Head and Neck Squamous Cell Carcinoma. Front Oncol 2021; 10:570736. [PMID: 33489879 PMCID: PMC7820708 DOI: 10.3389/fonc.2020.570736] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/29/2020] [Indexed: 12/24/2022] Open
Abstract
The CXC chemokines belong to a family which includes 17 different CXC members. Accumulating evidence suggests that CXC chemokines regulate tumor cell proliferation, invasion, and metastasis in various types of cancers by influencing the tumor microenvironment. The different expression profiles and specific function of each CXC chemokine in head and neck squamous cell carcinoma (HNSCC) are not yet clarified. In our work, we analyzed the altered expression, interaction network, and clinical data of CXC chemokines in patients with HNSCC by using the following: the Oncomine dataset, cBioPortal, Metascape, String analysis, GEPIA, and the Kaplan–Meier plotter. The transcriptional level analysis suggested that the mRNA levels of CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL8, CXCL9, CXCL10, CXCL11, and CXCL13 increased in HNSCC tissue samples when compared to the control tissue samples. The expression levels of CXCL9, CXCL10, CXCL11, CXCL12, and CXCL14 were associated with various tumor stages in HNSCC. Clinical data analysis showed that high transcription levels of CXCL2, CXCL3, and CXCL12, were linked with low relapse-free survival (RFS) in HNSCC patients. On the other hand, high CXCL14 levels predicted high RFS outcomes in HNSCC patients. Meanwhile, increased gene transcription levels of CXCL9, CXCL10, CXCL13, CXCL14, and CXCL17 were associated with a higher overall survival (OS) advantage in HNSCC patients, while high levels of CXCL1, and CXCL8 were associated with poor OS in all HNSCC patients. This study implied that CXCL1, CXCL2, CXCL3, CXCL8, and CXCL12 could be used as prognosis markers to identify low survival rate subgroups of patients with HNSCC as well as be potential suitable therapeutic targets for HNSCC patients. Additionally, CXCL9, CXCL10, CXCL13, CXCL14, and CXCL17 could be used as functional prognosis biomarkers to identify better survival rate subgroups of patients with HNSCC.
Collapse
Affiliation(s)
- Yongchao Li
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar, China
| | - Tinghui Wu
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar, China
| | - Shujuan Gong
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar, China
| | - Hangzheng Zhou
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar, China
| | - Lufei Yu
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar, China
| | - Meiyan Liang
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar, China
| | - Ruijun Shi
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar, China
| | - Zhenhui Wu
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar, China
| | - Jinpei Zhang
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar, China
| | - Shuwei Li
- Key Laboratory of Protection & Utilization of Biological Resources in Tarim Basin, College of Life Sciences, Tarim University, Alar, China
| |
Collapse
|
24
|
Zhai X, Wang X, Wang L, Xiu L, Wang W, Pang X. Treating Different Diseases With the Same Method-A Traditional Chinese Medicine Concept Analyzed for Its Biological Basis. Front Pharmacol 2020; 11:946. [PMID: 32670064 PMCID: PMC7332878 DOI: 10.3389/fphar.2020.00946] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/10/2020] [Indexed: 12/28/2022] Open
Abstract
Introduction The fundamental theory of traditional Chinese medicine (TCM) implies that when different diseases have the same pathogen, the syndromes of these individual diseases will be the same. “Treating different diseases with the same method” is a TCM principle suggesting that when different diseases have similar pathological changes during different stages of their development, the same method of treatment can be applied. Our study aims to analyze the concept “treating different diseases with the same method” from a molecular perspective, in order to clarify its biological basis and to objectively standardize future TCM syndrome research. Objective The TCM syndromes Qi deficiency and blood stasis have similar pathogenesis in relation to coronary heart disease (CHD) and stroke. We aim to use big data technology and complex network theory to mine the genes specifically relevant to these TCM syndromes. This study aims to explore the correlation between the biological indicators of CHD and stroke from a scientific perspective. Methods Mining the relevant neuroendocrine-immune (NEI) genes by means of gene entity recognition, complex network construction, network integration, and decomposition to categorize relevant syndrome terms and establish a digital dictionary of gene specifically related to individual diseases. We analyzed the biological basis of “treating different diseases with the same method” from a molecular level using the TCMIP v2.0 platform in order to categorize the TCM syndromes most relevant to CHD and stroke. Results We found 46 genes were involved in the TCM syndromes of Qi deficiency and blood stasis of CHD and stroke. The same genes and their molecular mechanism also appeared to be in close relation to inflammatory response, apoptosis, and proliferation. Conclusion By using information extraction and complex network technology, we discovered the biological indicators of the TCM syndromes Qi deficiency and blood stasis of CHD and stroke. In the era of big data, our results can provide a new method for the researchers of TCM syndrome differentiation, as well as an effective and specific methodology for standardization of TCM.
Collapse
Affiliation(s)
- Xing Zhai
- School of Management, Beijing University of Chinese Medicine, Beijing, China
| | - Xi Wang
- College of Humanities,Beijing University of Chinese Medicine, Beijing, China
| | - Li Wang
- School of Management, Beijing University of Chinese Medicine, Beijing, China
| | - Linlin Xiu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Weilu Wang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaohan Pang
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
25
|
Vasculoprotective Effects of Vildagliptin. Focus on Atherogenesis. Int J Mol Sci 2020; 21:ijms21072275. [PMID: 32218354 PMCID: PMC7177465 DOI: 10.3390/ijms21072275] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Vildagliptin is a representative of Dipeptidyl Peptidase-4 (DPP-4) inhibitors, antihyperglycemic drugs, approved for use as monotherapy and combination therapy in type 2 diabetes mellitus. By inhibiting enzymatic decomposition, DPP-4 inhibitors increase the half-life of incretins such as GLP-1 (Glucagon-like peptide-1) and GIP (Gastric inhibitors polypeptide) and prolong their action. Some studies present results suggesting the anti-sclerotic and vasculoprotective effects of vildagliptin reaching beyond glycemic control. Vildagliptin is able to limit inflammation by suppression of the NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) signaling pathway and proinflammatory agents such as TNF-α (tumor necrosis factor α), IL-1β (Interleukin-1β), and IL-8 (Interleukin 8). Moreover, vildagliptin regulates lipid metabolism; attenuates postprandial hypertriglyceridemia; and lowers serum triglycerides, apolipoprotein B, and blood total cholesterol levels. This DPP-4 inhibitor also reduces macrophage foam cell formation, which plays a key role in atheromatous plaque formation and stability. Vildagliptin reduces vascular stiffness via elevation of nitric oxide synthesis, improves vascular relaxation, and results in reduction in both systolic and diastolic blood pressure. Treatment with vildagliptin lowers the level of PAI-1 presenting possible antithrombotic effect. By affecting the endothelium, inflammation, and lipid metabolism, vildagliptin may affect the development of atherosclerosis at its various stages. The article presents a summary of the studies assessing vasculoprotective effects of vildagliptin with special emphasis on atherogenesis.
Collapse
|
26
|
Abstract
Neutrophils have traditionally been viewed as bystanders or biomarkers of cardiovascular disease. However, studies in the past decade have demonstrated the important functions of neutrophils during cardiovascular inflammation and repair. In this Review, we discuss the influence of traditional and novel cardiovascular risk factors on neutrophil production and function. We then appraise the current knowledge of the contribution of neutrophils to the different stages of atherosclerosis, including atherogenesis, plaque destabilization and plaque erosion. In the context of cardiovascular complications of atherosclerosis, we highlight the dichotomous role of neutrophils in pathogenic and repair processes in stroke, heart failure, myocardial infarction and neointima formation. Finally, we emphasize how detailed knowledge of neutrophil functions in cardiovascular homeostasis and disease can be used to generate therapeutic strategies to target neutrophil numbers, functional status and effector mechanisms.
Collapse
|
27
|
Ren J, Zhou T, Pilli VSS, Phan N, Wang Q, Gupta K, Liu Z, Sheibani N, Liu B. Novel Paracrine Functions of Smooth Muscle Cells in Supporting Endothelial Regeneration Following Arterial Injury. Circ Res 2020; 124:1253-1265. [PMID: 30739581 DOI: 10.1161/circresaha.118.314567] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Regeneration of denuded or injured endothelium is an important component of vascular injury response. Cell-cell communication between endothelial cells and smooth muscle cells (SMCs) plays a critical role not only in vascular homeostasis but also in disease. We have previously demonstrated that PKCδ (protein kinase C-delta) regulates multiple components of vascular injury response including apoptosis of SMCs and production of chemokines, thus is an attractive candidate for a role in SMC-endothelial cells communication. OBJECTIVE To test whether PKCδ-mediated paracrine functions of SMCs influence reendothelialization in rodent models of arterial injury. METHODS AND RESULTS Femoral artery wire injury was performed in SMC-conditional Prkcd knockout mice, and carotid angioplasty was conducted in rats receiving transient Prkcd knockdown or overexpression. SMC-specific knockout of Prkcd impaired reendothelialization, reflected by a smaller Evans blue-excluding area in the knockout compared with the wild-type controls. A similar impediment to reendothelialization was observed in rats with SMC-specific knockdown of Prkcd. In contrast, SMC-specific gene transfer of Prkcd accelerated reendothelialization. In vitro, medium conditioned by AdPKCδ-infected SMCs increased endothelial wound closure without affecting their proliferation. A polymerase chain reaction-based array analysis identified Cxcl1 and Cxcl7 among others as PKCδ-mediated chemokines produced by SMCs. Mechanistically, we postulated that PKCδ regulates Cxcl7 expression through STAT3 (signal transducer and activator of transcription 3) as knockdown of STAT3 abolished Cxcl7 expression. The role of CXCL7 in SMC-endothelial cells communication was demonstrated by blocking CXCL7 or its receptor CXCR2, both significantly inhibited endothelial wound closure. Furthermore, insertion of a Cxcl7 cDNA in the lentiviral vector that carries a Prkcd shRNA overcame the adverse effects of Prkcd knockdown on reendothelialization. CONCLUSIONS SMCs promote reendothelialization in a PKCδ-dependent paracrine mechanism, likely through CXCL7-mediated recruitment of endothelial cells from uninjured endothelium.
Collapse
Affiliation(s)
- Jun Ren
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| | - Ting Zhou
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| | - Vijaya Satish Sekhar Pilli
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| | - Noel Phan
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| | - Qiwei Wang
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| | - Kartik Gupta
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| | - Zhenjie Liu
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.).,Department of Vascular Surgery, 2nd Affiliated Hospital School of Medicine, Zhejiang University (Z.L.)
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison (N.S.)
| | - Bo Liu
- From the Division of Vascular Surgery, Department of Surgery, University of Wisconsin-Madison (J.R., T.Z., V.S.S.P., N.P., Q.W., K.G., Z.L., B.L.)
| |
Collapse
|
28
|
Ciftciler R, Haznedaroglu IC. Pathobiological Interactions of Local Bone Marrow Renin-Angiotensin System and Central Nervous System in Systemic Arterial Hypertension. Front Endocrinol (Lausanne) 2020; 11:425. [PMID: 32903745 PMCID: PMC7438890 DOI: 10.3389/fendo.2020.00425] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/28/2020] [Indexed: 01/16/2023] Open
Abstract
Circulating renin-angiotensin system (RAS) and local paracrin-autocrin-intracrin tissue-based RAS participate in numerous pathobiological events. Pro-inflammatory, pro-fibrotic, and pro-thrombotic consequences associated with local RAS activation have been detected at cellular and molecular level. Regenerative progenitor cell therapy in response to RAS modulating pharmacotherapy has emerged as an adjunct in the context of endothelial cell injury and regeneration to improve regeneration of the vascular endothelium. Local hematopoietic bone marrow (BM) RAS symbolizes the place of cross-interaction between vascular biology and cellular events from embryogenesis to definitive hematopoiesis underlying vascular atherosclerosis. The BM microenvironment also contains Mas receptors, which control the proliferative role of Ang 1-7 on hematopoietic stem cells. Ang 1-7 is produced from Ang-II or Ang-I with the help of ACE2. Various tissues and organs also have an effect on the RAS system. The leukocytes contain and synthesize immunoreactive angiotensinogen species capable of producing angiotensin in the basal state or after incubation with renin. The significance of RAS employment in atherosclerosis and hypertension was indicated by novel bidirectional Central Nervous System (CNS) RAS-BM RAS communications. Myeloid cells generated within the context of hematopoietic BM RAS are considered as the initiators and decision shapers in atherosclerosis. Macrophages in the atherosclerotic lesions contain angiotensin peptides by which RAS blockers inhibit monocyte activation and adherence. Furthermore, vascular biology in relation to inflammation and neoplasia is also affected by local tissue RAS. The purpose of this article is to outline interactions of circulating and local angiotensin systems, especially local bone marrow RAS, in the vascular pathobiological microenvironment of CNS.
Collapse
|
29
|
Mesenchymal Stem Cells Attract Endothelial Progenitor Cells via a Positive Feedback Loop between CXCR2 and CXCR4. Stem Cells Int 2019; 2019:4197164. [PMID: 31885605 PMCID: PMC6915119 DOI: 10.1155/2019/4197164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 08/04/2019] [Accepted: 09/11/2019] [Indexed: 01/25/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can attract host endothelial progenitor cells (EPCs) to promote vascularization in tissue-engineered constructs (TECs). Nevertheless, the underlying mechanism remains vague. This study is aimed at investigating the roles of CXCR2 and CXCR4 in the EPC migration towards MSCs. In vitro, Transwell assays were performed to evaluate the migration of EPCs towards MSCs. Antagonists and shRNAs targeting CXCR2, CXCR4, and JAK/STAT3 were applied for the signaling blockade. Western blot and RT-PCR were conducted to analyze the molecular events in EPCs. In vivo, TECs were constructed and subcutaneously implanted into GFP+ transgenic mice. Signaling inhibitors were injected in an orientated manner into TECs. Recruitment of host CD34+ cells was evaluated by immunofluorescence. Eventually, we demonstrated that CXCR2 and CXCR4 were both highly expressed in migrated EPCs and indispensable for MSC-induced EPC migration. CXCR2 and CXCR4 strongly correlated with each other in the way that the expression of CXCR2 and CXCR2-mediated migration depends on the activity of CXCR4 and vice versa. Further studies documented that both of CXCR2 and CXCR4 activated STAT3 signaling, which in turn regulated the expression of CXCR2 and CXCR4, as well as cell migration. In summary, we firstly introduced a reciprocal crosstalk between CXCR2 and CXCR4 in the context of EPC migration. This feedback loop plays critical roles in the migration of EPCs towards MSCs.
Collapse
|
30
|
Wang H, Wang M, Xiao K, Zhang X, Wang P, Xiao S, Qi H, Meng L, Zhang X, Shen F. Bioinformatics analysis on differentially expressed genes of alveolar macrophage in IPF. Exp Lung Res 2019; 45:288-296. [PMID: 31762326 DOI: 10.1080/01902148.2019.1680765] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Objective: This study aimed to explore the differentially expressed genes (DEGs) of pulmonary macrophages in human idiopathic pulmonary fibrosis (IPF) by bioinformatics, and elaborate on IPF on the gene level. Methods: The gene expression profile GSE49072 was downloaded from the gene expression omnibus (GEO) database. Genes of alveolar macrophages between normal volunteers and patients diagnosed as IPF were analyzed by GEO2R tools. Gene ontology (GO) and pathway enrichment analyses of genes were performed in the database for annotation, visualization and integrated discovery (DAVID) database, followed by functional annotation and protein-protein interaction (PPI) network construction in String website. Finally, the results were analyzed in a comprehensive way. Results: A total of 551 DEGs, including 205 down-regulated and 346 up-regulated were identified. The expression of 209875_s_at (secreted phosphoprotein 1, SPP1) and 214146_s_at (pro-platelet basic protein, PPBP) genes are the most significant in upregulated genes. DEGs in the MAPK(mitogen-activated protein kinase) signaling pathway and chemokine signaling pathway play important roles in the development of IPF. Conclusions: The up-regulation of genes such as SPP1 and PPBP affect the secretion of alveolar macrophages, thereby speeding up the process of fibrosis.
Collapse
Affiliation(s)
- Huaibin Wang
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Miaomiao Wang
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Kun Xiao
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Xu Zhang
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Peng Wang
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Shuyu Xiao
- Tangshan Center of Disease Control and Prevention, Tangshan, Hebei, P.R. China
| | - Huisheng Qi
- Tangshan Gongren Hospital, Tangshan, Hebei, P.R. China
| | - Lijun Meng
- Department of Environmental and Chemical Engineering, Tangshan College, Tangshan, Hebei, P.R. China
| | - Xiujun Zhang
- College of Psychology, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| | - Fuhai Shen
- Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, P.R. China
| |
Collapse
|
31
|
He J, Liu X, Su C, Wu F, Sun J, Zhang J, Yang X, Zhang C, Zhou Z, Zhang X, Lin X, Tao J. Inhibition of Mitochondrial Oxidative Damage Improves Reendothelialization Capacity of Endothelial Progenitor Cells via SIRT3 (Sirtuin 3)-Enhanced SOD2 (Superoxide Dismutase 2) Deacetylation in Hypertension. Arterioscler Thromb Vasc Biol 2019; 39:1682-1698. [PMID: 31189433 DOI: 10.1161/atvbaha.119.312613] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Dysfunction of endothelial progenitor cells (EPCs) leads to impaired endothelial repair capacity in patients with hypertension, but the mechanisms remain incompletely understood. Mitochondrial oxidative stress is involved in endothelial injury in hypertension. In this study, we aim to investigate the role of mitochondrial oxidative stress in the deficient endothelial reparative capacity of EPCs and identify enhanced SIRT3 (sirtuin 3)-mediated SOD2 (superoxide dismutase 2) deacetylation as a novel endothelial protective mechanism in hypertension. Approach and Results: Hypertension-EPCs displayed increased mitochondrial reactive oxygen species and mitochondrial damage, including loss of mitochondrial membrane potential, abnormal mitochondrial ultrastructure, and mtDNA oxidative injury, which was coincided with impaired in vitro function and in vivo reendothelialization capacity. The harmful effects of hypertension on mitochondrial function of EPCs were in vitro mimicked by angiotensin II coincubation. Scavenging of mitochondrial reactive oxygen species with mitoTEMPO attenuated mitochondrial oxidative damage and rescued reendothelialization capacity. Enzymatic activity and deacetylation level of SOD2 were significantly reduced in hypertension-EPCs, which was accompanied with decreased SIRT3 expression. Knockdown of SIRT3 in EPCs resulted in mitochondrial oxidative damage, hyperacetylation of SOD2, and suppression of reendothelialization capacity. SIRT3 physically interacted with SOD2 and eliminated excess mitochondrial reactive oxygen species, restored mitochondrial function through enhancing SOD2 activity by deacetylation of K68. Upregulation of SIRT3/SOD2 signaling improved reendothelialization capability of EPCs. CONCLUSIONS The present study demonstrated for the first time that mitochondrial oxidative damage because of deficient SIRT3/SOD2 signaling contributes to the decline in reendothelialization capacity of EPCs in hypertension. Maintenance of mitochondrial redox homeostasis in EPCs may be a novel therapeutic target for endothelial injury.
Collapse
Affiliation(s)
- Jiang He
- From the Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (J.H., X.L., C.S., F.W., J.S., J.Z., X.Y., C.Z., Z.Z., X.Z., J.T.)
| | - Xing Liu
- From the Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (J.H., X.L., C.S., F.W., J.S., J.Z., X.Y., C.Z., Z.Z., X.Z., J.T.)
| | - Chen Su
- From the Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (J.H., X.L., C.S., F.W., J.S., J.Z., X.Y., C.Z., Z.Z., X.Z., J.T.)
| | - Fang Wu
- From the Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (J.H., X.L., C.S., F.W., J.S., J.Z., X.Y., C.Z., Z.Z., X.Z., J.T.)
| | - Jiapan Sun
- From the Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (J.H., X.L., C.S., F.W., J.S., J.Z., X.Y., C.Z., Z.Z., X.Z., J.T.)
| | - Jianning Zhang
- From the Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (J.H., X.L., C.S., F.W., J.S., J.Z., X.Y., C.Z., Z.Z., X.Z., J.T.)
| | - Xulong Yang
- From the Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (J.H., X.L., C.S., F.W., J.S., J.Z., X.Y., C.Z., Z.Z., X.Z., J.T.)
| | - Chanjuan Zhang
- From the Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (J.H., X.L., C.S., F.W., J.S., J.Z., X.Y., C.Z., Z.Z., X.Z., J.T.)
| | - Ziting Zhou
- From the Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (J.H., X.L., C.S., F.W., J.S., J.Z., X.Y., C.Z., Z.Z., X.Z., J.T.)
| | - Xiaoyu Zhang
- From the Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (J.H., X.L., C.S., F.W., J.S., J.Z., X.Y., C.Z., Z.Z., X.Z., J.T.)
| | - Xiufang Lin
- Department of Cardiology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China (X.L.)
| | - Jun Tao
- From the Department of Hypertension and Vascular Disease, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China (J.H., X.L., C.S., F.W., J.S., J.Z., X.Y., C.Z., Z.Z., X.Z., J.T.)
| |
Collapse
|
32
|
Wang H, Yin Y, Gong D, Hong L, Wu G, Jiang Q, Wang C, Blinder P, Long S, Han F, Lu Y. Cathepsin B inhibition ameliorates leukocyte-endothelial adhesion in the BTBR mouse model of autism. CNS Neurosci Ther 2019; 25:476-485. [PMID: 30328295 PMCID: PMC6488924 DOI: 10.1111/cns.13074] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/30/2018] [Accepted: 09/17/2018] [Indexed: 01/08/2023] Open
Abstract
AIMS Autism spectrum disorder (ASD) is a wide range of neurodevelopmental disorders involving deficits in social interaction and communication. Unfortunately, autism remains a scientific and clinical challenge owing to the lack of understanding the cellular and molecular mechanisms underlying it. This study aimed to investigate the pathophysiological mechanism underlying leukocyte-endothelial adhesion in autism-related neurovascular inflammation. METHODS Male BTBR T+tf/J mice were used as an autism model. The dynamic pattern of leukocyte-endothelial adhesion in mouse cerebral vessels was detected by two-photon laser scanning microscopy (TPLSM). Using FACS, RT-PCR, and Western blotting, we explored the expression of cell adhesion molecules, the mRNA expression of endothelial chemokine, the protein levels of cathepsin B, and inflammatory mediators. RESULTS We found a significant increase in leukocyte-endothelial adhesion in BTBR mice, accompanied by elevated expression of the adhesion molecule neutrophils CD11b and endothelial ICAM-1. Our data further indicate that elevated neutrophil cathepsin B levels contribute to elevated endothelial chemokine CXCL7 levels in BTBR mice. The pharmacological inhibition of cathepsin B reverses the enhanced leukocyte-endothelial adhesion in the cerebral vessels of autistic mice. CONCLUSION Our results revealed the prominent role of cathepsin B in modulating leukocyte-endothelial adhesion during autism-related neurovascular inflammation and identified a promising novel approach for autism treatment.
Collapse
Affiliation(s)
- Huan Wang
- Key Laboratory of Carbohydrate and Lipid Metabolism Research, College of Life Science and TechnologyDalian UniversityDalianChina
- Institute of Pharmacology and Toxicology, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Yi‐Xuan Yin
- Institute of Pharmacology and Toxicology, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- School of MedicineZhejiang University City CollegeHangzhouChina
| | - Dong‐Mei Gong
- Institute of Pharmacology and Toxicology, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- School of MedicineZhejiang University City CollegeHangzhouChina
| | - Ling‐Juan Hong
- Institute of Pharmacology and Toxicology, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Gang Wu
- Institute of Pharmacology and Toxicology, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Quan Jiang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Cheng‐Kun Wang
- Institute of Pharmacology and Toxicology, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Pablo Blinder
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Sagol School for NeuroscienceTel‐Aviv UniversityTel AvivIsrael
| | - Sen Long
- Institute of Pharmacology and Toxicology, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Department of Pharmacy, Hangzhou No.7 People's HospitalMental Health Center Zhejiang University school of MedicineHangzhouChina
| | - Feng Han
- Institute of Pharmacology and Toxicology, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of PharmacyNanjing Medical UniversityNanjingChina
| | - Ying‐Mei Lu
- School of MedicineZhejiang University City CollegeHangzhouChina
| |
Collapse
|
33
|
Saddala MS, Lennikov A, Mukwaya A, Fan L, Hu Z, Huang H. Transcriptome-wide analysis of differentially expressed chemokine receptors, SNPs, and SSRs in the age-related macular degeneration. Hum Genomics 2019; 13:15. [PMID: 30894217 PMCID: PMC6425613 DOI: 10.1186/s40246-019-0199-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/08/2019] [Indexed: 11/25/2022] Open
Abstract
Background Age-related macular degeneration (AMD) is the most common, progressive, and polygenic cause of irreversible visual impairment in the world. The molecular pathogenesis of the primary events of AMD is poorly understood. We have investigated a transcriptome-wide analysis of differential gene expression, single-nucleotide polymorphisms (SNPs), indels, and simple sequence repeats (SSRs) in datasets of the human peripheral retina and RPE-choroid-sclera control and AMD. Methods and results Adaptors and unbiased components were removed and checked to ensure the quality of the data sets. Molecular function, biological process, cellular component, and pathway analyses were performed on differentially expressed genes. Analysis of the gene expression datasets identified 5011 upregulated genes, 11,800 downregulated genes, 42,016 SNPs, 1141 indels, and 6668 SRRs between healthy controls and AMD donor material. Enrichment categories for gene ontology included chemokine activity, cytokine activity, cytokine receptor binding, immune system process, and signal transduction respectively. A functional pathways analysis identified that chemokine receptors bind chemokines, complement cascade genes, and create cytokine signaling in immune system pathway genes (p value < 0.001). Finally, allele-specific expression was found to be significant for Chemokine (C-C motif) ligand (CCL) 2, 3, 4, 13, 19, 21; C-C chemokine receptor (CCR) 1, 5; chemokine (C-X-C motif) ligand (CXCL) 9, 10, 16; C-X-C chemokine receptor type (CXCR) 6; as well as atypical chemokine receptor (ACKR) 3,4 and pro-platelet basic protein (PPBP). Conclusions Our results improve our overall understanding of the chemokine receptors’ signaling pathway in AMD conditions, which may lead to potential new diagnostic and therapeutic targets. Electronic supplementary material The online version of this article (10.1186/s40246-019-0199-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Madhu Sudhana Saddala
- Mason Eye Institute, University of Missouri, Columbia, MO, 65212, USA.,Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Anton Lennikov
- Mason Eye Institute, University of Missouri, Columbia, MO, 65212, USA.,Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Anthony Mukwaya
- Department of Ophthalmology, Faculty of Health Sciences, Institute for Clinical and Experimental Medicine, Linköping University, SE-581 83, Linköping, Sweden
| | - Lijuan Fan
- Mason Eye Institute, University of Missouri, Columbia, MO, 65212, USA.,Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Zhengmao Hu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Hu Huang
- Mason Eye Institute, University of Missouri, Columbia, MO, 65212, USA. .,Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD, 21287, USA. .,Department of Ophthalmology, School of Medicine, University of Missouri-Columbia, 1 Hospital Drive, MA102C, Columbia, MO, 65212, USA.
| |
Collapse
|
34
|
Protease-activated receptor 2 protects against VEGF inhibitor-induced glomerular endothelial and podocyte injury. Sci Rep 2019; 9:2986. [PMID: 30814628 PMCID: PMC6393426 DOI: 10.1038/s41598-019-39914-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/31/2019] [Indexed: 02/02/2023] Open
Abstract
Vascular endothelial growth factor (VEGF) inhibitors cause glomerular injury. We have recently shown that activation of protease-activated receptor 2 (PAR2) by factor Xa exacerbated diabetic kidney disease. However, the role of PAR2 in glomerular injury induced by VEGF blockade is not known. Herein, we investigated the effect of the lack of PAR2 on VEGF inhibitor-induced glomerular injury. Although administering an anti-VEGF antibody by itself did not show renal phenotype in wild type mice, its administration to mice lacking endothelial nitric oxide synthase (eNOS) caused glomerular injury. Different from what we expected, administration of an anti-VEGF antibody in mice lacking PAR2 and eNOS exacerbated albuminuria and reduced the expression levels of CD31, pro-angiogenic VEGF, and angiogenesis-related chemokines in their kidneys. Podocyte injury was also evident in this model of mice lacking PAR2. Our results suggest that PAR2 is protective against VEGF inhibitor-induced glomerular endothelial and podocyte injury.
Collapse
|
35
|
Shen WC, Chou YH, Huang HP, Sheen JF, Hung SC, Chen HF. Induced pluripotent stem cell-derived endothelial progenitor cells attenuate ischemic acute kidney injury and cardiac dysfunction. Stem Cell Res Ther 2018; 9:344. [PMID: 30526689 PMCID: PMC6288873 DOI: 10.1186/s13287-018-1092-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/31/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022] Open
Abstract
Background Renal ischemia–reperfusion (I/R) injury is a major cause of acute kidney injury (AKI), which is associated with high morbidity and mortality. AKI is a serious and costly medical condition. Effective therapy for AKI is an unmet clinical need, and molecular mechanisms underlying the interactions between an injured kidney and distant organs remain unclear. Therefore, novel therapeutic strategies should be developed. Methods We directed the differentiation of human induced pluripotent stem (iPS) cells into endothelial progenitor cells (iEPCs), which were then applied for treating mouse AKI. The mouse model of AKI was induced by I/R injury. Results We discovered that intravenously infused iEPCs were recruited to the injured kidney, expressed the mature endothelial cell marker CD31, and replaced injured endothelial cells. Moreover, infused iEPCs produced abundant proangiogenic proteins, which entered into circulation. In AKI mice, blood urea nitrogen and plasma creatinine levels increased 2 days after I/R injury and reduced after the infusion of iEPCs. Tubular injury, cell apoptosis, and peritubular capillary rarefaction in injured kidneys were attenuated accordingly. In the AKI mice, iEPC therapy also ameliorated apoptosis of cardiomyocytes and cardiac dysfunction, as indicated by echocardiography. The therapy also ameliorated an increase in serum brain natriuretic peptide. Regarding the relevant mechanisms, indoxyl sulfate and interleukin-1β synergistically induced apoptosis of cardiomyocytes. Systemic iEPC therapy downregulated the proapoptotic protein caspase-3 and upregulated the anti-apoptotic protein Bcl-2 in the hearts of the AKI mice, possibly through the reduction of indoxyl sulfate and interleukin-1β. Conclusions Therapy using human iPS cell-derived iEPCs provided a protective effect against ischemic AKI and remote cardiac dysfunction through the repair of endothelial cells and the attenuation of cardiomyocyte apoptosis. Electronic supplementary material The online version of this article (10.1186/s13287-018-1092-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wen-Ching Shen
- Drug Development Center, Institute of New Drug Development, Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan.,Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Hsiang Chou
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Renal Division, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Renal Division, Department of Internal Medicine, National Taiwan University Hospital Jin-Shan Branch, New Taipei City, Taiwan
| | - Hsiang-Po Huang
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Jenn-Feng Sheen
- Department of Biotechnology, National Formosa University, Yun-Lin, Taiwan
| | - Shih-Chieh Hung
- Drug Development Center, Institute of New Drug Development, Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan.,Integrative Stem Cell Center, Department of Orthopaedics, China Medical University Hospital, Taichung, 404, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, 105, Taiwan
| | - Hsin-Fu Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan. .,Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
36
|
Kwon YW, Lee SJ, Heo SC, Lee TW, Park GT, Yoon JW, Kim SC, Shin HJ, Lee SC, Kim JH. Role of CXCR2 in the Ac-PGP-Induced Mobilization of Circulating Angiogenic Cells and its Therapeutic Implications. Stem Cells Transl Med 2018; 8:236-246. [PMID: 30474937 PMCID: PMC6392381 DOI: 10.1002/sctm.18-0035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023] Open
Abstract
Circulating angiogenic cells (CACs) have been implicated in the repair of ischemic tissues, and their mobilization from bone marrow is known to be regulated by the activations of chemokine receptors, including CXCR2 and CXCR4. This study was conducted to investigate the role of N‐acetylated proline‐glycine‐proline (Ac‐PGP; a collagen‐derived chemotactic tripeptide) on CAC mobilization and its therapeutic potential for the treatment of peripheral artery diseases. Ac‐PGP was administered daily to a murine hind limb ischemia model, and the effects of Ac‐PGP on blood perfusion and CAC mobilization (Sca1+Flk1+ cells) into peripheral blood were assessed. Intramuscular administration of Ac‐PGP significantly improved ischemic limb perfusion and increased limb salvage rate by increasing blood vessel formation, whereas Ac‐PGP‐induced blood perfusion and angiogenesis in ischemic limbs were not observed in CXCR2‐knockout mice. In addition, Ac‐PGP‐induced CAC mobilization was found to occur in wild‐type mice but not in CXCR2‐knockout mice. Transplantation of bone marrow from green fluorescent protein (GFP) transgenic mice to wild‐type mice showed bone marrow‐derived cells homed to ischemic limbs after Ac‐PGP administration and that GFP‐positive cells contributed to the formation of ILB4‐positive capillaries and α smooth muscle actin (α‐SMA)‐positive arteries. These results suggest CXCR2 activation in bone marrow after Ac‐PGP administration improves blood perfusion and reduces tissue necrosis by inducing CAC mobilization. These findings suggest a new pharmaceutical basis for the treatment of critical limb ischemia. stem cells translational medicine2019;8:236&246
Collapse
Affiliation(s)
- Yang Woo Kwon
- Department of Physiology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Seung Jun Lee
- Department of Orthopaedic Surgery, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Soon Chul Heo
- Department of Physiology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Tae Wook Lee
- Department of Physiology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Gyu Tae Park
- Department of Physiology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Jung Won Yoon
- Department of Physiology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Seung-Chul Kim
- Department of Obstetrics and Gynecology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Ho Jin Shin
- Division of Hematology-Oncology, Pusan National University School of Medicine, Yangsan, Republic of Korea
| | - Sang Chul Lee
- Functional Genomics Research Center, KRIBB, Daejeon, Republic of Korea
| | - Jae Ho Kim
- Department of Physiology, Pusan National University School of Medicine, Yangsan, Republic of Korea.,Research Institute of Convergence Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| |
Collapse
|
37
|
Neuronal degeneration and associated alterations in cytokine and protein in an experimental branch retinal venous occlusion model. Exp Eye Res 2018; 174:133-146. [DOI: 10.1016/j.exer.2018.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 05/18/2018] [Accepted: 05/23/2018] [Indexed: 11/22/2022]
|
38
|
Deppermann C, Kubes P. Start a fire, kill the bug: The role of platelets in inflammation and infection. Innate Immun 2018; 24:335-348. [PMID: 30049243 PMCID: PMC6830908 DOI: 10.1177/1753425918789255] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/16/2018] [Accepted: 06/26/2018] [Indexed: 11/19/2022] Open
Abstract
Platelets are the main players in thrombosis and hemostasis; however they also play important roles during inflammation and infection. Through their surface receptors, platelets can directly interact with pathogens and immune cells. Platelets form complexes with neutrophils to modulate their capacities to produce reactive oxygen species or form neutrophil extracellular traps. Furthermore, they release microbicidal factors and cytokines that kill pathogens and influence the immune response, respectively. Platelets also maintain the vascular integrity during inflammation by a mechanism that is different from classical platelet activation. In this review we summarize the current knowledge about how platelets interact with the innate immune system during inflammation and infection and highlight recent advances in the field.
Collapse
Affiliation(s)
- Carsten Deppermann
- Calvin, Phoebe and Joan Snyder Institute for Chronic
Diseases, University of Calgary, Calgary, AB, Canada
| | - Paul Kubes
- Calvin, Phoebe and Joan Snyder Institute for Chronic
Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
39
|
Yu B, Chen Q, Le Bras A, Zhang L, Xu Q. Vascular Stem/Progenitor Cell Migration and Differentiation in Atherosclerosis. Antioxid Redox Signal 2018; 29:219-235. [PMID: 28537424 DOI: 10.1089/ars.2017.7171] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Atherosclerosis is a major cause for the death of human beings, and it takes place in large- and middle-sized arteries. The pathogenesis of the disease has been widely investigated, and new findings on vascular stem/progenitor cells could have an impact on vascular regeneration. Recent Advances: Recent studies have shown that abundant stem/progenitor cells present in the vessel wall are mainly responsible for cell accumulation in the intima during vascular remodeling. It has been demonstrated that the mobilization and recruitment of tissue-resident stem/progenitor cells give rise to endothelial and smooth muscle cells (SMCs) that participate in vascular repair and remodeling such as neointimal hyperplasia and arteriosclerosis. Interestingly, cell lineage tracing studies indicate that a large proportion of SMCs in neointimal lesions is derived from adventitial stem/progenitor cells. CRITICAL ISSUES The influence of stem/progenitor cell behavior on the development of atherosclerosis is crucial. An understanding of the regulatory mechanisms that control stem/progenitor cell migration and differentiation is essential for stem/progenitor cell therapy for vascular diseases and regenerative medicine. FUTURE DIRECTIONS Identification of the detailed process driving the migration and differentiation of vascular stem/progenitor cells during the development of atherosclerosis, discovery of the environmental cues, and signaling pathways that control cell fate within the vasculature will facilitate the development of new preventive and therapeutic strategies to combat atherosclerosis. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Baoqi Yu
- 1 Department of Emergency, Guangdong General Hospital , Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qishan Chen
- 2 Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China
| | - Alexandra Le Bras
- 3 Cardiovascular Division, King's College London BHF Centre , London, United Kingdom
| | - Li Zhang
- 2 Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China
| | - Qingbo Xu
- 3 Cardiovascular Division, King's College London BHF Centre , London, United Kingdom
| |
Collapse
|
40
|
Yang JX, Pan YY, Wang XX, Qiu YG, Mao W. Endothelial progenitor cells in age-related vascular remodeling. Cell Transplant 2018; 27:786-795. [PMID: 29882417 PMCID: PMC6047273 DOI: 10.1177/0963689718779345] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence has demonstrated that endothelial progenitor cells (EPCs) could facilitate the reendothelialization of injured arteries by replacing the dysfunctional endothelial cells, thereby suppressing the formation of neointima. Meanwhile, other findings suggest that EPCs may be involved in the pathogenesis of age-related vascular remodeling. This review is presented to summarize the characteristics of EPCs and age-related vascular remodeling. In addition, the role of EPCs in age-related vascular remodeling and possible solutions for improving the therapeutic effects of EPCs in the treatment of age-related diseases are discussed.
Collapse
Affiliation(s)
- Jin-Xiu Yang
- 1 Department of Cardiology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, P.R. China.,2 Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Yan-Yun Pan
- 1 Department of Cardiology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, P.R. China
| | - Xing-Xiang Wang
- 2 Department of Cardiology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, P.R. China
| | - Yuan-Gang Qiu
- 1 Department of Cardiology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, P.R. China
| | - Wei Mao
- 1 Department of Cardiology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, P.R. China
| |
Collapse
|
41
|
Sokol J, Skerenova M, Ivankova J, Simurda T, Stasko J. Association of Genetic Variability in Selected Genes in Patients With Deep Vein Thrombosis and Platelet Hyperaggregability. Clin Appl Thromb Hemost 2018; 24:1027-1032. [PMID: 29865896 PMCID: PMC6714740 DOI: 10.1177/1076029618779136] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to evaluate the genetic variability of the selected single nucleotide polymorphisms (SNPs) and examine the association between these SNPs and risk for deep vein thrombosis (DVT) in patients with sticky platelet syndrome (SPS). We examined 84 patients with SPS and history of DVT and 101 healthy individuals. We were interested in 2 SNPs within platelet endothelial aggregation receptor 1 (PEAR1) gene (rs12041331 and rs12566888), 2 SNPs within mkurine retrovirus integration site 1 gene (rs7940646 and rs1874445), 1 SNP within Janus kinase 2 gene (rs2230722), 1 SNP within FCER1G gene (rs3557), 1 SNP within pro-platelet basic protein (rs442155), 4 SNPs within alpha2A adrenergic receptor 2A (ADRA2A; rs1800545, rs4311994, rs11195419, and rs553668), and 1 SNP within sonic hedgehog gene (rs2363910). We identified 2 protective SNPs within PEAR1 gene and 1 risk SNP within ADRA2A gene (PEAR1: rs12041331 and rs12566888; ADRA2A: rs1800545). A haplotype analysis of 4 SNPs within ADRA2A gene identified a risk haplotype aagc ( P = .003). Moreover, we identified 1 protective haplotype within PEAR1 gene (AT, P = .004). Our results support the idea that genetic variability of PEAR1 and ADRA2A genes is associated with platelet hyperaggregability manifested as venous thromboembolism. The study also suggests a possible polygenic type of SPS heredity.
Collapse
Affiliation(s)
- Juraj Sokol
- 1 Department of Haematology and Transfusion Medicine, National Center of Haemostasis and Thrombosis, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova, Martin, Slovakia
| | - Maria Skerenova
- 2 Department of Biochemistry, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova, Martin, Slovakia
| | - Jela Ivankova
- 1 Department of Haematology and Transfusion Medicine, National Center of Haemostasis and Thrombosis, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova, Martin, Slovakia
| | - Tomas Simurda
- 1 Department of Haematology and Transfusion Medicine, National Center of Haemostasis and Thrombosis, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova, Martin, Slovakia
| | - Jan Stasko
- 1 Department of Haematology and Transfusion Medicine, National Center of Haemostasis and Thrombosis, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Kollarova, Martin, Slovakia
| |
Collapse
|
42
|
Li Z, Yang A, Yin X, Dong S, Luo F, Dou C, Lan X, Xie Z, Hou T, Xu J, Xing J. Mesenchymal stem cells promote endothelial progenitor cell migration, vascularization, and bone repair in tissue‐engineered constructs
via
activating CXCR2‐Src‐PKL/Vav2‐Rac1. FASEB J 2018; 32:2197-2211. [DOI: 10.1096/fj.201700895r] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhilin Li
- National and Regional United Engineering Laboratory of Tissue EngineeringDepartment of OrthopedicsSouthwest Hospital, and Third Military Medical UniversityChongqingChina
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing CityChongqingChina
- Tissue Engineering Laboratory of Chongqing CityChongqingChina
- Department of SpineLanzhou General Hospital, Lanzhou Command of the Chinese People's Liberation Army (CPLA)LanzhouChina
| | - Aijun Yang
- National and Regional United Engineering Laboratory of Tissue EngineeringDepartment of OrthopedicsSouthwest Hospital, and Third Military Medical UniversityChongqingChina
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing CityChongqingChina
- Tissue Engineering Laboratory of Chongqing CityChongqingChina
| | - Xiaolong Yin
- National and Regional United Engineering Laboratory of Tissue EngineeringDepartment of OrthopedicsSouthwest Hospital, and Third Military Medical UniversityChongqingChina
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing CityChongqingChina
- Tissue Engineering Laboratory of Chongqing CityChongqingChina
| | - Shiwu Dong
- National and Regional United Engineering Laboratory of Tissue EngineeringDepartment of OrthopedicsSouthwest Hospital, and Third Military Medical UniversityChongqingChina
- Department of Biomedical Materials ScienceCollege of Biomedical Engineering, Third Military Medical UniversityChongqingChina
| | - Fei Luo
- National and Regional United Engineering Laboratory of Tissue EngineeringDepartment of OrthopedicsSouthwest Hospital, and Third Military Medical UniversityChongqingChina
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing CityChongqingChina
- Tissue Engineering Laboratory of Chongqing CityChongqingChina
| | - Ce Dou
- National and Regional United Engineering Laboratory of Tissue EngineeringDepartment of OrthopedicsSouthwest Hospital, and Third Military Medical UniversityChongqingChina
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing CityChongqingChina
- Tissue Engineering Laboratory of Chongqing CityChongqingChina
| | - Xu Lan
- Department of SpineLanzhou General Hospital, Lanzhou Command of the Chinese People's Liberation Army (CPLA)LanzhouChina
| | - Zhao Xie
- National and Regional United Engineering Laboratory of Tissue EngineeringDepartment of OrthopedicsSouthwest Hospital, and Third Military Medical UniversityChongqingChina
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing CityChongqingChina
- Tissue Engineering Laboratory of Chongqing CityChongqingChina
| | - Tianyong Hou
- National and Regional United Engineering Laboratory of Tissue EngineeringDepartment of OrthopedicsSouthwest Hospital, and Third Military Medical UniversityChongqingChina
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing CityChongqingChina
- Tissue Engineering Laboratory of Chongqing CityChongqingChina
| | - Jianzhong Xu
- National and Regional United Engineering Laboratory of Tissue EngineeringDepartment of OrthopedicsSouthwest Hospital, and Third Military Medical UniversityChongqingChina
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing CityChongqingChina
- Tissue Engineering Laboratory of Chongqing CityChongqingChina
| | - Junchao Xing
- National and Regional United Engineering Laboratory of Tissue EngineeringDepartment of OrthopedicsSouthwest Hospital, and Third Military Medical UniversityChongqingChina
- Center of Regenerative and Reconstructive Engineering Technology in Chongqing CityChongqingChina
- Tissue Engineering Laboratory of Chongqing CityChongqingChina
| |
Collapse
|
43
|
Karshovska E, Weber C, Hundelshausen PV. Platelet chemokines in health and disease. Thromb Haemost 2017; 110:894-902. [DOI: 10.1160/th13-04-0341] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 05/17/2013] [Indexed: 12/12/2022]
Abstract
SummaryIn recent years, it has become clear that platelets and platelet-derived chemokines, beyond their role in thrombosis and haemostasis, are important mediators affecting a broad spectrum of (patho)physiological conditions. These biologically active proteins are released from α-granules upon platelet activation, most probably even during physiological conditions. In this review, we give a concise overview and an update on the current understanding of platelet-derived chemokines in a context of health and disease.Note: The review process for this manuscript was fully handled by G. Y. H. Lip, Editor in Chief.
Collapse
|
44
|
Ferratge S, Boyer J, Arouch N, Chevalier F, Uzan G. Circulating endothelial progenitors in vascular repair. Biomed Mater Eng 2017; 28:S65-S74. [PMID: 28372279 DOI: 10.3233/bme-171625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Endothelial Colony Forming Cells (ECFCs) are obtained in culture from Circulating Endothelial Progenitor Cells. They display all characteristics of endothelial cells and they display stem cells features. Cord blood-derived ECFCs (CB-ECFCs) have a high clonogenic and proliferative potentials, and exhibit vascular repair capabilities useful for the treatment of ischemic diseases. However, the link between immaturity and functional properties of CB-ECFCs is still poorly defined. We showed that these cells have a high clonogenic potential and are capable to be efficiently reprogrammed into induced pluripotent stem cells. Moreover, we analyzed the expression of a broad panel of genes involved in embryonic stem cell properties. We define a novel stem cell transcriptional signature for CB-ECFCs fora better characterization and stratification according to their stem cell profile. We then improved the yield of CB-ECFC production for obtaining cells more functional in fewer passages. We used Glycosaminoglycans (GAG), components from the extracellular matrix which potentiate heparin binding growth factor activities. GAG mimetics were designed, having the capacity to increase the yield of ECFC during the isolation process, to increase the number of colonies, improve adhesion, proliferation, migration and self-renewal. GAG mimetics have thus great interest for vascular regeneration in combination with ECFC. Our results show that CB-ECFC are immature cells harboring specific functions such as formation of colonies, proliferation and formation of vascular structures in vitro and in vivo.
Collapse
Affiliation(s)
- S Ferratge
- Inserm U1197, Hôpital Paul Brousse, Bâtiment Lavoisier, 12-14 avenue Paul Vaillant Couturier, 94807 Villejuif Cedex, France
| | - J Boyer
- Inserm U1197, Hôpital Paul Brousse, Bâtiment Lavoisier, 12-14 avenue Paul Vaillant Couturier, 94807 Villejuif Cedex, France
| | - N Arouch
- Inserm U1197, Hôpital Paul Brousse, Bâtiment Lavoisier, 12-14 avenue Paul Vaillant Couturier, 94807 Villejuif Cedex, France
| | - F Chevalier
- Inserm U1197, Hôpital Paul Brousse, Bâtiment Lavoisier, 12-14 avenue Paul Vaillant Couturier, 94807 Villejuif Cedex, France
| | - G Uzan
- Inserm U1197, Hôpital Paul Brousse, Bâtiment Lavoisier, 12-14 avenue Paul Vaillant Couturier, 94807 Villejuif Cedex, France
| |
Collapse
|
45
|
Shi X, Zhang W, Yin L, Chilian WM, Krieger J, Zhang P. Vascular precursor cells in tissue injury repair. Transl Res 2017; 184:77-100. [PMID: 28284670 PMCID: PMC5429880 DOI: 10.1016/j.trsl.2017.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 12/25/2016] [Accepted: 02/14/2017] [Indexed: 12/22/2022]
Abstract
Vascular precursor cells include stem cells and progenitor cells giving rise to all mature cell types in the wall of blood vessels. When tissue injury occurs, local hypoxia and inflammation result in the generation of vasculogenic mediators which orchestrate migration of vascular precursor cells from their niche environment to the site of tissue injury. The intricate crosstalk among signaling pathways coordinates vascular precursor cell proliferation and differentiation during neovascularization. Establishment of normal blood perfusion plays an essential role in the effective repair of the injured tissue. In recent years, studies on molecular mechanisms underlying the regulation of vascular precursor cell function have achieved substantial progress, which promotes exploration of vascular precursor cell-based approaches to treat chronic wounds and ischemic diseases in vital organ systems. Verification of safety and establishment of specific guidelines for the clinical application of vascular precursor cell-based therapy remain major challenges in the field.
Collapse
Affiliation(s)
- Xin Shi
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Weihong Zhang
- Department of Basic Medicine, School of Nursing, Zhengzhou University, Zhengzhou, Henan Province, PR China
| | - Liya Yin
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - William M Chilian
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Jessica Krieger
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio
| | - Ping Zhang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio.
| |
Collapse
|
46
|
Maneerat Y, Prasongsukarn K, Benjathummarak S, Dechkhajorn W. PPBP and DEFA1/DEFA3 genes in hyperlipidaemia as feasible synergistic inflammatory biomarkers for coronary heart disease. Lipids Health Dis 2017; 16:80. [PMID: 28420383 PMCID: PMC5395883 DOI: 10.1186/s12944-017-0471-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 04/12/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Coronary heart disease (CHD) is an important complication of atherosclerosis. Biomarkers, which associate with CHD development, are potential to predict CHD risk. To determine whether genes showing altered expression in hyperlipidaemia (H) and coronary heart disease (CHD) patients compared with controls could be CHD risk biomarkers. METHODS Control, H, and CHD groups represented atherosclerosis to CHD development. Gene profiling was investigated in peripheral blood mononuclear cells using DNA microarrays. Eight selected genes expressed only in H and CHD groups were validated by real-time quantitative reverse transcription PCR and plasma protein determination. RESULTS α-defensin (DEFA1/DEFA3), pro-platelet basic protein (PPBP), and beta and alpha2 hemoglobin mRNA expression was significantly increased in H and CHD groups compared with controls, but only plasma PPBP and α-defensin proteins were correspondingly increased. CONCLUSION PPBP and DEFA1/DEFA3 could be potential CHD biomarkers in Thai hyperlipidaemia patients.
Collapse
Affiliation(s)
- Yaowapa Maneerat
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | | | - Surachet Benjathummarak
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Wilanee Dechkhajorn
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| |
Collapse
|
47
|
Soehnlein O, Steffens S, Hidalgo A, Weber C. Neutrophils as protagonists and targets in chronic inflammation. Nat Rev Immunol 2017; 17:248-261. [PMID: 28287106 DOI: 10.1038/nri.2017.10] [Citation(s) in RCA: 379] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Traditionally, neutrophils have been acknowledged to be the first immune cells that are recruited to an inflamed tissue and have mainly been considered in the context of acute inflammation. By contrast, their importance during chronic inflammation has been studied in less depth. This Review aims to summarize our current understanding of the roles of neutrophils in chronic inflammation, with a focus on how they communicate with other immune and non-immune cells within tissues. We also scrutinize the roles of neutrophils in wound healing and the resolution of inflammation, and finally, we outline emerging therapeutic strategies that target neutrophils.
Collapse
Affiliation(s)
- Oliver Soehnlein
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstr. 9, 80336 Munich, Germany.,Department of Physiology and Pharmacology, Karolinksa Institutet, von Eulers Väg 8, 17177 Stockholm, Sweden
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstr. 9, 80336 Munich, Germany
| | - Andrés Hidalgo
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany.,Fundación Centro Nacional de Investigaciones Cardiovasculares, Calle de Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität Munich, Pettenkoferstr. 9, 80336 Munich, Germany.,German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstr. 9, 80336 Munich, Germany.,Cardiovascular Research Institute Maastricht, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
48
|
Dei Cas A, Spigoni V, Cito M, Aldigeri R, Ridolfi V, Marchesi E, Marina M, Derlindati E, Aloe R, Bonadonna RC, Zavaroni I. Vildagliptin, but not glibenclamide, increases circulating endothelial progenitor cell number: a 12-month randomized controlled trial in patients with type 2 diabetes. Cardiovasc Diabetol 2017; 16:27. [PMID: 28231835 PMCID: PMC5324295 DOI: 10.1186/s12933-017-0503-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 02/03/2017] [Indexed: 12/19/2022] Open
Abstract
Background Fewer circulating endothelial progenitor cells (EPCs) and increased plasma (C-term) stromal cell-derived factor 1α (SDF-1α), a substrate of DPP-4, are biomarkers, and perhaps mediators, of cardiovascular risk and mortality. Short-term/acute treatment with DPP-4 inhibitors improve EPC bioavailability; however, long-term effects of DPP-4i on EPCs bioavailability/plasma (C-term) SDF-1α are unknown. Methods Randomized (2:1) open-label trial to compare the effects of vildagliptin (V) (100 mg/day) vs glibenclamide (G) (2.5 mg bid to a maximal dose of 5 mg bid) on circulating EPC levels at 4 and 12 months of treatment in 64 patients with type 2 diabetes in metformin failure. At baseline, and after 4 and 12 months, main clinical/biohumoral parameters, inflammatory biomarkers, concomitant therapies, EPC number (CD34+/CD133+/KDR+/106 cytometric events) and plasma (C-term) SDF-1α (R&D system) were assessed. Results Baseline characteristics were comparable in the two groups. V and G similarly and significantly (p < 0.0001) improved glucose control. At 12 months, V significantly increased EPC number (p < 0.05) and significantly reduced (C-term) SDF-1α plasma levels (p < 0.01) compared to G, with no differences in inflammatory biomarkers. Conclusions V exerts a long-term favorable effect on EPC and (C-term) SDF-1α levels at glucose equipoise, thereby implying a putative beneficial effect on vascular integrity. Trial registration Clinical Trials number: NCT01822548; name: Effect of Vildagliptin vs. Glibenclamide on Circulating Endothelial Progenitor Cell Number Type 2 Diabetes. Registered 28 March, 2013
Collapse
Affiliation(s)
- Alessandra Dei Cas
- Endocrinology and Metabolic Diseases, Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126, Parma, Italy. .,Azienda Ospedaliero-Universitaria of Parma, Parma, Italy.
| | - Valentina Spigoni
- Endocrinology and Metabolic Diseases, Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126, Parma, Italy
| | - Monia Cito
- Endocrinology and Metabolic Diseases, Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126, Parma, Italy
| | - Raffaella Aldigeri
- Endocrinology and Metabolic Diseases, Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126, Parma, Italy
| | | | | | - Michela Marina
- Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Eleonora Derlindati
- Endocrinology and Metabolic Diseases, Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126, Parma, Italy
| | - Rosalia Aloe
- Biochemistry, Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Riccardo C Bonadonna
- Endocrinology and Metabolic Diseases, Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126, Parma, Italy.,Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
| | - Ivana Zavaroni
- Endocrinology and Metabolic Diseases, Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126, Parma, Italy.,Azienda Ospedaliero-Universitaria of Parma, Parma, Italy
| |
Collapse
|
49
|
Odent Grigorescu G, Rosca AM, Preda MB, Tutuianu R, Simionescu M, Burlacu A. Synergic effects of VEGF-A and SDF-1 on the angiogenic properties of endothelial progenitor cells. J Tissue Eng Regen Med 2016; 11:3241-3252. [PMID: 27943613 DOI: 10.1002/term.2233] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 04/22/2016] [Accepted: 05/17/2016] [Indexed: 11/08/2022]
Abstract
Here we investigated the impact of hypoxic environment on the angiogenic properties of early-outgrowth endothelial progenitor cells (EPCs), with particular focus on the role of secreted vascular endothelial growth factor-A (VEGF-A) and stromal derived factor-1 (SDF-1) in mediating these effects. We found that cultured EPCs secreted factors with paracrine effects on chemotaxis, migration, proliferation and tube formation of mature endothelial cells (ECs), and these properties were not affected by hypoxia. Depletion of VEGF-A did not change the ability of EPC-conditioned medium (CM) to promote EC migration and tube formation in vitro, suggesting that the pro-angiogenic paracrine effects of EPCs did not totally rely on the presence of VEGF-A. These findings were confirmed by in vivo experiments, on a mouse model of hind limb ischaemia, which showed that VEGF-depleted EPC-CM sustained tissue perfusion at the same level as complete EPC-CM. However, concomitant deletion of VEGF-A and SDF-1 in EPC-CM impaired the pro-angiogenic properties of EPC-CM, by inhibition of EC spreading in culture, tube-like structure formation on Matrigel support, in vivo neovessels formation and ischaemic hind limb regeneration. Taken together, our data demonstrate that: (i) hypoxia does not affect the capacity of EPCs to support the angiogenic process; (ii) the absence of either VEGF-A or SDF-1 from EPC-CM can be rescued by the presence of the other one, so that the overall angiogenic effects remain unchanged; and (iii) and the concomitant deletion of VEGF-A and SDF-1 from EPC-CM impairs its pro-angiogenic effect, both in vitro and in vivo. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Ana-Maria Rosca
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu', Bucharest, Romania
| | - Mihai Bogdan Preda
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu', Bucharest, Romania
| | - Raluca Tutuianu
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu', Bucharest, Romania
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu', Bucharest, Romania
| | - Alexandrina Burlacu
- Institute of Cellular Biology and Pathology 'Nicolae Simionescu', Bucharest, Romania
| |
Collapse
|
50
|
Wang H, Yin YG, Huang H, Zhao XH, Yu J, Wang Q, Li W, Cai KY, Ding SF. Transplantation of EPCs overexpressing PDGFR-β promotes vascular repair in the early phase after vascular injury. BMC Cardiovasc Disord 2016; 16:179. [PMID: 27619504 PMCID: PMC5020463 DOI: 10.1186/s12872-016-0353-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/26/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Endothelial progenitor cells (EPCs) play important roles in the regeneration of the vascular endothelial cells (ECs). Platelet-derived growth factor receptor (PDGFR)-β is known to contribute to proliferation, migration, and angiogenesis of EPCs, this study aims to investigate effects of transplantation of EPCs overexpressing PDGFR-β on vascular regeneration. METHODS We transplanted genetically modified EPCs overexpressing PDGFR-β into a mouse model with carotid artery injury. After 3 days of EPCs transplantation, the enhanced green fluorescent protein (EGFP)-expressing cells were found at the injury site and the lining of the lumen by laser scanning confocal microscope (LSCM). At 4, 7, and 14 days of the carotid artery injury, reendothelialization was evaluated by Evans Blue staining. Neointima formation was evaluated at day 14 with hematoxylin and eosin (HE) staining by calculating the neointimal area, medial area, and neointimal/media (NI/M) ratio. Intimal cell apoptosis was evaluated using TUNEL assay. Then we tested whether PDGF-BB-induced VSMC migration and PDGF-BB's function in reducing VSMC apoptosis can be attenuated by EPCs overexpressing PDGFR-β in a transwell co-culture system. RESULTS Our results showed that EPCs overexpressing PDGFR-β accelerates reendothelialization and mitigates neointimal formation at 14 days after injury. Moreover, we found that there is great possibility that EPCs overexpressing PDGFR-β enhanc VSMC apoptosis and suppress VSMC migration by competitive consumption of PDGF-BB in the early phase after carotid artery injury in mice. CONCLUSIONS We report the first in vivo and in vitro evidence that transplantation of genetically modified EPC can have a combined effect of both amplifying the reendothelialization capacity of EPCs and inhibiting neointima formation so as to facilitate better inhibition of adverse remodeling after vascular injury.
Collapse
Affiliation(s)
- Hang Wang
- Cadre Ward Two, Wuhan General Hospital of Guangzhou Military Command, Wuhan, 430070, China
| | - Yang-Guang Yin
- Intensive Care Unit, The sixth people's hospital of Chongqing, Nan'an District, Chongqing, 400060, China
| | - Hao Huang
- Clinic center, Shenzhen Hornetcorn Biotechnology Company, Ltd, Shenzhen, 518400, China
| | - Xiao-Hui Zhao
- Institute of Cardiovascular Science, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Jie Yu
- Institute of Cardiovascular Science, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Qiang Wang
- Institute of Cardiovascular Science, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Wei Li
- Institute of Cardiovascular Science, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Ke-Yin Cai
- Cadre Ward Two, Wuhan General Hospital of Guangzhou Military Command, Wuhan, 430070, China
| | - Shi-Fang Ding
- Institute of Cardiovascular Science, Wuhan General Hospital of Guangzhou Military Command, Wuhan, 430070, China.
| |
Collapse
|