1
|
Koch J, Broeks MH, Gautschi M, Jans J, Laemmle A. Inborn errors of the malate aspartate shuttle - Update on patients and cellular models. Mol Genet Metab 2024; 142:108520. [PMID: 38945121 DOI: 10.1016/j.ymgme.2024.108520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/30/2024] [Accepted: 06/21/2024] [Indexed: 07/02/2024]
Abstract
The malate aspartate shuttle (MAS) plays a pivotal role in transporting cytosolic reducing equivalents - electrons - into the mitochondria for energy conversion at the electron transport chain (ETC) and in the process of oxidative phosphorylation. The MAS consists of two pairs of cytosolic and mitochondrial isoenzymes (malate dehydrogenases 1 and 2; and glutamate oxaloacetate transaminases 1 and 2) and two transporters (malate-2-oxoglutarate carrier and aspartate glutamate carrier (AGC), the latter of which has two tissue-dependent isoforms AGC1 and AGC2). While the inner mitochondrial membrane is impermeable to NADH, the MAS forms one of the main routes for mitochondrial electron uptake by promoting uptake of malate. Inherited bi-allelic pathogenic variants in five of the seven components of the MAS have been described hitherto and cause a wide spectrum of symptoms including early-onset epileptic encephalopathy. This review provides an overview of reported patients suffering from MAS deficiencies. In addition, we give an overview of diagnostic procedures and research performed on patient-derived cellular models and tissues. Current cellular models are briefly discussed and novel ways to achieve a better understanding of MAS deficiencies are highlighted.
Collapse
Affiliation(s)
- Jasmine Koch
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Melissa H Broeks
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Matthias Gautschi
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Judith Jans
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, Lundlaan 6, 3584 EA Utrecht, the Netherlands
| | - Alexander Laemmle
- Division of Pediatric Endocrinology, Diabetology and Metabolism, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
John S, Calmettes G, Xu S, Ribalet B. Real-time resolution studies of the regulation of pyruvate-dependent lactate metabolism by hexokinases in single cells. PLoS One 2023; 18:e0286660. [PMID: 37917627 PMCID: PMC10621844 DOI: 10.1371/journal.pone.0286660] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 05/21/2023] [Indexed: 11/04/2023] Open
Abstract
Lactate is a mitochondrial substrate for many tissues including neuron, muscle, skeletal and cardiac, as well as many cancer cells, however little is known about the processes that regulate its utilization in mitochondria. Based on the close association of Hexokinases (HK) with mitochondria, and the known cardio-protective role of HK in cardiac muscle, we have investigated the regulation of lactate and pyruvate metabolism by hexokinases (HKs), utilizing wild-type HEK293 cells and HEK293 cells in which the endogenous HKI and/or HKII have been knocked down to enable overexpression of wild type and mutant HKs. To assess the real-time changes in intracellular lactate levels the cells were transfected with a lactate specific FRET probe. In the HKI/HKII double knockdown cells, addition of extracellular pyruvate caused a large and sustained decrease in lactate. This decrease was rapidly reversed upon inhibition of the malate aspartate shuttle by aminooxyacetate, or inhibition of mitochondrial oxidative respiration by NaCN. These results suggest that in the absence of HKs, pyruvate-dependent activation of the TCA cycle together with the malate aspartate shuttle facilitates lactate transformation into pyruvate and its utilization by mitochondria. With replacement by overexpression of HKI or HKII the cellular response to pyruvate and NaCN was modified. With either hexokinase present, both the decrease in lactate due to the addition of pyruvate and the increase following addition of NaCN were either transient or suppressed altogether. Blockage of the pentose phosphate pathway with the inhibitor 6-aminonicotinamide (6-AN), abolished the effects of HK replacement. These results suggest that blocking of the malate aspartate shuttle by HK may involve activation of the pentose phosphate pathway and increased NADPH production.
Collapse
Affiliation(s)
- Scott John
- Department of Medicine (Division of Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Guillaume Calmettes
- Department of Medicine (Division of Cardiology), David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Shili Xu
- California NanoSystems Institute (CNSI) 2151, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Bernard Ribalet
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| |
Collapse
|
3
|
Holm J, Vanky F, Svedjeholm R. Glutamate Infusion Reduces Myocardial Dysfunction after Coronary Artery Bypass Grafting According to NT-proBNP: Summary of 2 Randomized Controlled Trials (GLUTAmate for Metabolic Intervention in Coronary Surgery [GLUTAMICS I-II]). Am J Clin Nutr 2023; 118:930-937. [PMID: 37657522 DOI: 10.1016/j.ajcnut.2023.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/14/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Glutamate is reported to enhance the recovery of oxidative metabolism and contractile function of the heart after ischemia. The effect appears to be blunted in diabetic hearts. Elevated plasma N-terminal pro-brain natriuretic peptide (NT-proBNP) reflects myocardial dysfunction. In the GLUTAmate for Metabolic Intervention in Coronary Surgery (GLUTAMICS) II trial, the proportion of patients with diabetes had nearly doubled to 47% compared with the cohort used for sample size estimation, and a significant effect on the postoperative rise in NT-proBNP was only observed in patients without diabetes. OBJECTIVE We aimed to summarize the pooled NT-proBNP results from both GLUTAMICS trials and address the impact of diabetes. METHODS Data from 2 prospective, randomized, double-blind multicenter trials with similar inclusion criteria and endpoints were pooled. Patients underwent a coronary artery bypass grafting (CABG) ± valve procedure and had a left-ventricular ejection fraction of ≤0.30 or a European System for Cardiac Operative Risk Evaluation II (EuroSCORE II) of ≥3.0 with at least 1 cardiac risk factor. Intravenous infusion of 0.125 M L-glutamic acid or saline at 1.65 mL/kg/h was started 10-20 min before reperfusion and continued for 150 min. The primary endpoint was the difference between preoperative and day 3 postoperative NT-proBNP levels. RESULTS A total of 451 patients, 224 receiving glutamate and 227 controls, fulfilled the inclusion criteria. Glutamate was associated with a reduced primary endpoint (5344 ± 5104 ng/L and 6662 ± 5606 ng/L in glutamate and control groups, respectively; P = 0.01). Postoperative mortality at ≤30 d was 0.9% and 3.5% (P = 0.11), whereas stroke at ≤24 h was 0.4% and 2.6% in glutamate and control groups, respectively (P = 0.12). No adverse events related to glutamate were observed. A significant interaction regarding the primary endpoint was only detected between glutamate and insulin-treated diabetes groups (P = 0.04). Among patients without insulin-treated diabetes, the primary endpoint was 5047 ± 4705 ng/L and 7001 ± 5830 ng/L in the glutamate and control groups, respectively (P = 0.001). CONCLUSIONS Infusion of glutamate reduced the postoperative rise in NT-proBNP after CABG in medium- to high-risk patients. A significantly blunted effect was observed only in insulin-treated patients with diabetes. CLINICAL TRIAL DETAILS This trial was registered at www. CLINICALTRIALS gov as NCT02592824.
Collapse
Affiliation(s)
- Jonas Holm
- Department of Thoracic and Vascular Surgery, Department of Health, Medicine and Caring Sciences, Unit of Cardiovascular Medicine, Linköping University, Sweden
| | - Farkas Vanky
- Department of Thoracic and Vascular Surgery, Department of Health, Medicine and Caring Sciences, Unit of Cardiovascular Medicine, Linköping University, Sweden
| | - Rolf Svedjeholm
- Department of Thoracic and Vascular Surgery, Department of Health, Medicine and Caring Sciences, Unit of Cardiovascular Medicine, Linköping University, Sweden.
| |
Collapse
|
4
|
MDH2 produced OAA is a metabolic switch rewiring the fuelling of respiratory chain and TCA cycle. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148532. [PMID: 35063410 DOI: 10.1016/j.bbabio.2022.148532] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 12/14/2022]
Abstract
The mitochondrial respiratory chain (RC) enables many metabolic processes by regenerating both mitochondrial and cytosolic NAD+ and ATP. The oxidation by the RC of the NADH metabolically produced in the cytosol involves redox shuttles as the malate-aspartate shuttle (MAS) and is of paramount importance for cell fate. However, the specific metabolic regulations allowing mitochondrial respiration to prioritize NADH oxidation in response to high NADH/NAD+ redox stress have not been elucidated. The recent discovery that complex I (NADH dehydrogenase), and not complex II (Succinate dehydrogenase), can assemble with other respiratory chain complexes to form functional entities called respirasomes, led to the assumption that this supramolecular organization would favour NADH oxidation. Unexpectedly, characterization of heart and liver mitochondria demonstrates that the RC systematically favours electrons provided by the 'respirasome free' complex II. Our results demonstrate that the preferential succinate driven respiration is tightly controlled by OAA levels, and that OAA feedback inhibition of complex II rewires RC fuelling increasing NADH oxidation capacity. This new regulatory mechanism synergistically increases RC's NADH oxidative capacity and rewires MDH2 driven anaplerosis of the TCA, preventing malate production from succinate to favour oxidation of cytosolic malate. This regulatory mechanism synergistically adjusts RC and TCA fuelling in response to extramitochondrial malate produced by the MAS.
Collapse
|
5
|
Qi L, Martin-Sandoval MS, Merchant S, Gu W, Eckhardt M, Mathews TP, Zhao Z, Agathocleous M, Morrison SJ. Aspartate availability limits hematopoietic stem cell function during hematopoietic regeneration. Cell Stem Cell 2021; 28:1982-1999.e8. [PMID: 34450065 PMCID: PMC8571029 DOI: 10.1016/j.stem.2021.07.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/03/2021] [Accepted: 07/21/2021] [Indexed: 02/08/2023]
Abstract
The electron transport chain promotes aspartate synthesis, which is required for cancer cell proliferation. However, it is unclear whether aspartate is limiting in normal stem cells. We found that mouse hematopoietic stem cells (HSCs) depend entirely on cell-autonomous aspartate synthesis, which increases upon HSC activation. Overexpression of the glutamate/aspartate transporter, Glast, or deletion of glutamic-oxaloacetic transaminase 1 (Got1) each increased aspartate levels in HSCs/progenitor cells and increased the function of HSCs but not colony-forming progenitors. Conversely, deletion of Got2 reduced aspartate levels and the function of HSCs but not colony-forming progenitors. Deletion of Got1 and Got2 eliminated HSCs. Isotope tracing showed aspartate was used to synthesize asparagine and purines. Both contributed to increased HSC function as deletion of asparagine synthetase or treatment with 6-mercaptopurine attenuated the increased function of GLAST-overexpressing HSCs. HSC function is thus limited by aspartate, purine, and asparagine availability during hematopoietic regeneration.
Collapse
Affiliation(s)
- Le Qi
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Misty S Martin-Sandoval
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Salma Merchant
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wen Gu
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn, North Rhine-Westphalia 53115, Germany
| | - Thomas P Mathews
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhiyu Zhao
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michalis Agathocleous
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sean J Morrison
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
6
|
Mitochondrial Oxidation of the Cytoplasmic Reducing Equivalents at the Onset of Oxidant Stress in the Isoproterenol-Induced Rat Myocardial Infarction. Antioxidants (Basel) 2021; 10:antiox10091444. [PMID: 34573076 PMCID: PMC8469278 DOI: 10.3390/antiox10091444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
We have developed and characterized a model of isoproterenol (ISO)-induced myocardial necrosis, identifying three stages of cardiac damage: a pre-infarction (0-12 h), infarction (24 h), and post-infarction period (48-96 h). Using this model, we have previously found alterations in calcium homeostasis and their relationship with oxidant stress in mitochondria, which showed deficient oxygen consumption and coupled ATP synthesis. Therefore, the present study was aimed at assessing the mitochondrial ability to transport and oxidize cytoplasmic reducing equivalents (NADH), correlating the kinetic parameters of the malate-aspartate shuttle, oxidant stress, and mitochondrial functionality. Our results showed only discreet effects during the cardiotoxic ISO action on the endogenous malate-aspartate shuttle activity, suggesting that endogenous mitochondrial NADH oxidation capacity (Nohl dehydrogenase) was not affected by the cellular stress. On the contrary, the reconstituted system showed significant enhancement in maximal capacity of the malate-aspartate shuttle activity only at later times (post-infarction period), probably as a compensatory part of cardiomyocytes' response to the metabolic and functional consequences of the infarcted tissue. Therefore, these findings support the notion that heart damage associated with myocardial infarction suffers a set of sequential biochemical and metabolic modifications within cardiomyocytes, where mitochondrial activity, controlling the redox state, could play a relevant role.
Collapse
|
7
|
Broeks MH, van Karnebeek CDM, Wanders RJA, Jans JJM, Verhoeven‐Duif NM. Inborn disorders of the malate aspartate shuttle. J Inherit Metab Dis 2021; 44:792-808. [PMID: 33990986 PMCID: PMC8362162 DOI: 10.1002/jimd.12402] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/08/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
Over the last few years, various inborn disorders have been reported in the malate aspartate shuttle (MAS). The MAS consists of four metabolic enzymes and two transporters, one of them having two isoforms that are expressed in different tissues. Together they form a biochemical pathway that shuttles electrons from the cytosol into mitochondria, as the inner mitochondrial membrane is impermeable to the electron carrier NADH. By shuttling NADH across the mitochondrial membrane in the form of a reduced metabolite (malate), the MAS plays an important role in mitochondrial respiration. In addition, the MAS maintains the cytosolic NAD+ /NADH redox balance, by using redox reactions for the transfer of electrons. This explains why the MAS is also important in sustaining cytosolic redox-dependent metabolic pathways, such as glycolysis and serine biosynthesis. The current review provides insights into the clinical and biochemical characteristics of MAS deficiencies. To date, five out of seven potential MAS deficiencies have been reported. Most of them present with a clinical phenotype of infantile epileptic encephalopathy. Although not specific, biochemical characteristics include high lactate, high glycerol 3-phosphate, a disturbed redox balance, TCA abnormalities, high ammonia, and low serine, which may be helpful in reaching a diagnosis in patients with an infantile epileptic encephalopathy. Current implications for treatment include a ketogenic diet, as well as serine and vitamin B6 supplementation.
Collapse
Affiliation(s)
- Melissa H. Broeks
- Department of Genetics, Section Metabolic DiagnosticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Clara D. M. van Karnebeek
- Departments of PediatricsAmsterdam University Medical CenterAmsterdamThe Netherlands
- Department of Pediatrics, Amalia Children's Hospital, Radboud Center for Mitochondrial DiseasesRadboud University Medical CenterNijmegenThe Netherlands
- On behalf of “United for Metabolic Diseases”The Netherlands
| | - Ronald J. A. Wanders
- Departments of Pediatrics and Laboratory Medicine, Laboratory Genetic Metabolic DiseasesAmsterdam University Medical Center, University of AmsterdamAmsterdamThe Netherlands
| | - Judith J. M. Jans
- Department of Genetics, Section Metabolic DiagnosticsUniversity Medical Center UtrechtUtrechtThe Netherlands
- On behalf of “United for Metabolic Diseases”The Netherlands
| | - Nanda M. Verhoeven‐Duif
- Department of Genetics, Section Metabolic DiagnosticsUniversity Medical Center UtrechtUtrechtThe Netherlands
- On behalf of “United for Metabolic Diseases”The Netherlands
| |
Collapse
|
8
|
Cluntun AA, Badolia R, Lettlova S, Parnell KM, Shankar TS, Diakos NA, Olson KA, Taleb I, Tatum SM, Berg JA, Cunningham CN, Van Ry T, Bott AJ, Krokidi AT, Fogarty S, Skedros S, Swiatek WI, Yu X, Luo B, Merx S, Navankasattusas S, Cox JE, Ducker GS, Holland WL, McKellar SH, Rutter J, Drakos SG. The pyruvate-lactate axis modulates cardiac hypertrophy and heart failure. Cell Metab 2021; 33:629-648.e10. [PMID: 33333007 PMCID: PMC7933116 DOI: 10.1016/j.cmet.2020.12.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 10/12/2020] [Accepted: 12/02/2020] [Indexed: 12/21/2022]
Abstract
The metabolic rewiring of cardiomyocytes is a widely accepted hallmark of heart failure (HF). These metabolic changes include a decrease in mitochondrial pyruvate oxidation and an increased export of lactate. We identify the mitochondrial pyruvate carrier (MPC) and the cellular lactate exporter monocarboxylate transporter 4 (MCT4) as pivotal nodes in this metabolic axis. We observed that cardiac assist device-induced myocardial recovery in chronic HF patients was coincident with increased myocardial expression of the MPC. Moreover, the genetic ablation of the MPC in cultured cardiomyocytes and in adult murine hearts was sufficient to induce hypertrophy and HF. Conversely, MPC overexpression attenuated drug-induced hypertrophy in a cell-autonomous manner. We also introduced a novel, highly potent MCT4 inhibitor that mitigated hypertrophy in cultured cardiomyocytes and in mice. Together, we find that alteration of the pyruvate-lactate axis is a fundamental and early feature of cardiac hypertrophy and failure.
Collapse
Affiliation(s)
- Ahmad A Cluntun
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
| | - Rachit Badolia
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Sandra Lettlova
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
| | - K Mark Parnell
- Vettore Biosciences, 1700 Owens Street Suite 515, San Francisco, CA 94158, USA
| | - Thirupura S Shankar
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Nikolaos A Diakos
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Kristofor A Olson
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
| | - Iosif Taleb
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Sean M Tatum
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Jordan A Berg
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
| | - Corey N Cunningham
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
| | - Tyler Van Ry
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA; Metabolomics, Proteomics and Mass Spectrometry Core Facility, University of Utah, Salt Lake City, UT 84112, USA
| | - Alex J Bott
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
| | - Aspasia Thodou Krokidi
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Sarah Fogarty
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA; Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Sophia Skedros
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Wojciech I Swiatek
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
| | - Xuejing Yu
- University of Utah, School of Medicine, Salt Lake City, UT 84132, USA; Division of Cardiothoracic Surgery, Department of Surgery, Salt Lake City, UT 84132, USA
| | - Bai Luo
- Drug Discovery Core Facility, University of Utah, Salt Lake City, UT 84112, USA
| | - Shannon Merx
- Vettore Biosciences, 1700 Owens Street Suite 515, San Francisco, CA 94158, USA
| | - Sutip Navankasattusas
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - James E Cox
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA; Metabolomics, Proteomics and Mass Spectrometry Core Facility, University of Utah, Salt Lake City, UT 84112, USA
| | - Gregory S Ducker
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA
| | - William L Holland
- Department of Nutrition and Integrative Physiology and the Diabetes and Metabolism Research Center, University of Utah, Salt Lake City, UT 84112, USA
| | - Stephen H McKellar
- University of Utah, School of Medicine, Salt Lake City, UT 84132, USA; Division of Cardiothoracic Surgery, Department of Surgery, Salt Lake City, UT 84132, USA; U.T.A.H. (Utah Transplant Affiliated Hospitals) Cardiac Transplant Program: University of Utah Healthcare and School of Medicine, Intermountain Medical Center, Salt Lake VA (Veterans Affairs) Health Care System, Salt Lake City, UT, USA
| | - Jared Rutter
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84132, USA; Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | - Stavros G Drakos
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT 84112, USA; U.T.A.H. (Utah Transplant Affiliated Hospitals) Cardiac Transplant Program: University of Utah Healthcare and School of Medicine, Intermountain Medical Center, Salt Lake VA (Veterans Affairs) Health Care System, Salt Lake City, UT, USA.
| |
Collapse
|
9
|
Borst P. The malate-aspartate shuttle (Borst cycle): How it started and developed into a major metabolic pathway. IUBMB Life 2020; 72:2241-2259. [PMID: 32916028 PMCID: PMC7693074 DOI: 10.1002/iub.2367] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
This article presents a personal and critical review of the history of the malate-aspartate shuttle (MAS), starting in 1962 and ending in 2020. The MAS was initially proposed as a route for the oxidation of cytosolic NADH by the mitochondria in Ehrlich ascites cell tumor lacking other routes, and to explain the need for a mitochondrial aspartate aminotransferase (glutamate oxaloacetate transaminase 2 [GOT2]). The MAS was soon adopted in the field as a major pathway for NADH oxidation in mammalian tissues, such as liver and heart, even though the energetics of the MAS remained a mystery. Only in the 1970s, LaNoue and coworkers discovered that the efflux of aspartate from mitochondria, an essential step in the MAS, is dependent on the proton-motive force generated by the respiratory chain: for every aspartate effluxed, mitochondria take up one glutamate and one proton. This makes the MAS in practice uni-directional toward oxidation of cytosolic NADH, and explains why the free NADH/NAD ratio is much higher in the mitochondria than in the cytosol. The MAS is still a very active field of research. Most recently, the focus has been on the role of the MAS in tumors, on cells with defects in mitochondria and on inborn errors in the MAS. The year 2019 saw the discovery of two new inborn errors in the MAS, deficiencies in malate dehydrogenase 1 and in aspartate transaminase 2 (GOT2). This illustrates the vitality of ongoing MAS research.
Collapse
Affiliation(s)
- Piet Borst
- Division of Cell BiologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| |
Collapse
|
10
|
Hipólito A, Nunes SC, Vicente JB, Serpa J. Cysteine Aminotransferase (CAT): A Pivotal Sponsor in Metabolic Remodeling and an Ally of 3-Mercaptopyruvate Sulfurtransferase (MST) in Cancer. Molecules 2020; 25:molecules25173984. [PMID: 32882966 PMCID: PMC7504796 DOI: 10.3390/molecules25173984] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022] Open
Abstract
Metabolic remodeling is a critical skill of malignant cells, allowing their survival and spread. The metabolic dynamics and adaptation capacity of cancer cells allow them to escape from damaging stimuli, including breakage or cross-links in DNA strands and increased reactive oxygen species (ROS) levels, promoting resistance to currently available therapies, such as alkylating or oxidative agents. Therefore, it is essential to understand how metabolic pathways and the corresponding enzymatic systems can impact on tumor behavior. Cysteine aminotransferase (CAT) per se, as well as a component of the CAT: 3-mercaptopyruvate sulfurtransferase (MST) axis, is pivotal for this metabolic rewiring, constituting a central mechanism in amino acid metabolism and fulfilling the metabolic needs of cancer cells, thereby supplying other different pathways. In this review, we explore the current state-of-art on CAT function and its role on cancer cell metabolic rewiring as MST partner, and its relevance in cancer cells' fitness.
Collapse
Affiliation(s)
- Ana Hipólito
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculty of Medical Sciences, University NOVA of Lisbon, Campus dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (A.H.); (S.C.N.)
- Institute of Oncology Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - Sofia C. Nunes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculty of Medical Sciences, University NOVA of Lisbon, Campus dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (A.H.); (S.C.N.)
- Institute of Oncology Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
| | - João B. Vicente
- Institute of Technology, Chemistry and Biology António Xavier (ITQB NOVA), Avenida da República (EAN), 2780-157 Oeiras, Portugal
- Correspondence: (J.B.V.); (J.S.)
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculty of Medical Sciences, University NOVA of Lisbon, Campus dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal; (A.H.); (S.C.N.)
- Institute of Oncology Francisco Gentil (IPOLFG), Rua Prof Lima Basto, 1099-023 Lisbon, Portugal
- Correspondence: (J.B.V.); (J.S.)
| |
Collapse
|
11
|
Le CH, Benage LG, Specht KS, Li Puma LC, Mulligan CM, Heuberger AL, Prenni JE, Claypool SM, Chatfield KC, Sparagna GC, Chicco AJ. Tafazzin deficiency impairs CoA-dependent oxidative metabolism in cardiac mitochondria. J Biol Chem 2020; 295:12485-12497. [PMID: 32665401 DOI: 10.1074/jbc.ra119.011229] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 07/07/2020] [Indexed: 12/20/2022] Open
Abstract
Barth syndrome is a mitochondrial myopathy resulting from mutations in the tafazzin (TAZ) gene encoding a phospholipid transacylase required for cardiolipin remodeling. Cardiolipin is a phospholipid of the inner mitochondrial membrane essential for the function of numerous mitochondrial proteins and processes. However, it is unclear how tafazzin deficiency impacts cardiac mitochondrial metabolism. To address this question while avoiding confounding effects of cardiomyopathy on mitochondrial phenotype, we utilized Taz-shRNA knockdown (TazKD ) mice, which exhibit defective cardiolipin remodeling and respiratory supercomplex instability characteristic of human Barth syndrome but normal cardiac function into adulthood. Consistent with previous reports from other models, mitochondrial H2O2 emission and oxidative damage were greater in TazKD than in wild-type (WT) hearts, but there were no differences in oxidative phosphorylation coupling efficiency or membrane potential. Fatty acid and pyruvate oxidation capacities were 40-60% lower in TazKD mitochondria, but an up-regulation of glutamate oxidation supported respiration rates approximating those with pyruvate and palmitoylcarnitine in WT. Deficiencies in mitochondrial CoA and shifts in the cardiac acyl-CoA profile paralleled changes in fatty acid oxidation enzymes and acyl-CoA thioesterases, suggesting limitations of CoA availability or "trapping" in TazKD mitochondrial metabolism. Incubation of TazKD mitochondria with exogenous CoA partially rescued pyruvate and palmitoylcarnitine oxidation capacities, implicating dysregulation of CoA-dependent intermediary metabolism rather than respiratory chain defects in the bioenergetic impacts of tafazzin deficiency. These findings support links among cardiolipin abnormalities, respiratory supercomplex instability, and mitochondrial oxidant production and shed new light on the distinct metabolic consequences of tafazzin deficiency in the mammalian heart.
Collapse
Affiliation(s)
- Catherine H Le
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado, USA
| | - Lindsay G Benage
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Kalyn S Specht
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Lance C Li Puma
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Christopher M Mulligan
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, USA
| | - Adam L Heuberger
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado, USA
| | - Jessica E Prenni
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado, USA
| | - Steven M Claypool
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kathryn C Chatfield
- Department of Pediatrics, University of Colorado School of Medicine, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Genevieve C Sparagna
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Adam J Chicco
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado, USA .,Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.,Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
12
|
Muthu M, Kumar R, Syed Khaja AS, Gilthorpe JD, Persson JL, Nordström A. GLUL Ablation Can Confer Drug Resistance to Cancer Cells via a Malate-Aspartate Shuttle-Mediated Mechanism. Cancers (Basel) 2019; 11:cancers11121945. [PMID: 31817360 PMCID: PMC6966511 DOI: 10.3390/cancers11121945] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Glutamate-ammonia ligase (GLUL) is important for acid-base homeostasis, ammonia detoxification, cell signaling, and proliferation. Here, we reported that GLUL ablation conferred resistance to several anticancer drugs in specific cancer cell lines while leaving other cell lines non-resistant to the same drugs. To understand the biochemical mechanics supporting this drug resistance, we compared drug-resistant GLUL knockout (KO) A549 non-small-cell lung carcinoma (NSCLC) cells with non-resistant GLUL KO H1299 NSCLC cells and found that the resistant A549 cells, to a larger extent, depended on exogenous glucose for proliferation. As GLUL activity is linked to the tricarboxylic acid (TCA) cycle via reversed glutaminolysis, we probed carbon flux through both glycolysis and TCA pathways by means of 13C5 glutamine, 13C5 glutamate, and 13C6 glucose tracing. We observed increased labeling of malate and aspartate in A549 GLUL KO cells, whereas the non-resistant GLUL KO H1299 cells displayed decreased 13C-labeling. The malate and aspartate shuttle supported cellular NADH production and was associated with cellular metabolic fitness. Inhibition of the malate-aspartate shuttle with aminooxyacetic acid significantly impacted upon cell viability with an IC50 of 11.5 μM in resistant GLUL KO A549 cells compared to 28 μM in control A549 cells, linking resistance to the malate-aspartate shuttle. Additionally, rescuing GLUL expression in A549 KO cells increased drug sensitivity. We proposed a novel metabolic mechanism in cancer drug resistance where the increased capacity of the malate-aspartate shuttle increased metabolic fitness, thereby facilitating cancer cells to escape drug pressure.
Collapse
Affiliation(s)
- Magesh Muthu
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden; (M.M.); (R.K.); (A.S.S.K.); (J.L.P.)
| | - Ranjeet Kumar
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden; (M.M.); (R.K.); (A.S.S.K.); (J.L.P.)
| | | | - Jonathan D. Gilthorpe
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 90187 Umeå, Sweden;
| | - Jenny L. Persson
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden; (M.M.); (R.K.); (A.S.S.K.); (J.L.P.)
| | - Anders Nordström
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden; (M.M.); (R.K.); (A.S.S.K.); (J.L.P.)
- Correspondence: ; Tel.: +46-90-785-25-61; Fax: +46-90-77-26-30
| |
Collapse
|
13
|
Studneva IM, Palkeeva ME, Veselova OM, Molokoedov AS, Lubimov RO, Ovchinnikov MV, Sidorova MV, Pisarenko OI. [Protective action of a modified fragment of galanine in rats with doxorubicin-induced heart failure]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 65:51-56. [PMID: 30816097 DOI: 10.18097/pbmc20196501051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The use of the anticancer drug doxorubicin (Dox) is limited due to its cardiotoxic effect. Using the method of automatic solid-phase peptide synthesis, we obtained a synthetic agonist of galanin receptors GalR1-3 [RAla14, His15]-galanine (2-15) (G), exhibiting cardioprotective properties. It was purified by high performance liquid chromatography (HPLC). The homogeneity and structure of the peptide was confirmed by HPLC, 1H-NMR spectroscopy and mass spectroscopy. The purpose of this study was to study the effect of G on the metabolism and cardiac function of rats with chronic heart failure (CHF) caused by Dox. Experiments were performed using male Wistar rats weighing 280-300 g. The control group of animals (C) was intraperitoneally treated with saline for 8 weeks; the doxorubicin group (D) of rats was intraperitoneally treated with Doх; the group of Doх + peptide G (D+G) received intraperitoneally injections of Doх and subcutaneously injections of peptide G; the peptide G group (G) was subcutaneously treated with G. At the beginning and at the end of the study, the concentration of thiobarbituric acid reactive substances (TBARS) and the activity of creatine kinase-MB (CK-MB) were determined in blood plasma; the animals were weighed, and cardiac function was assessed using echocardiography. At the end of the experiments, the hearts were used for determination of metabolites and assessment of oxidative phosphorylation in mitochondria. After 8-week treatment, animals of group D were characterized by severe heart failure, the lack of weight gain and an increase in plasma TBARS concentration and CK-MB activity. These disorders were accompanied by a decrease in the content of myocardial high-energy phosphates, a reduction inmitochondrial respiratory parameters, accumulation of lactate and glucose in the heart, and disturbances in the metabolism of alanine and glutamic and aspartic acids. Coadministration of G and Dox prevented the increase in plasma CK-MB activity and significantly reduced the plasma TBARS concentration. At the end of the experiments animals of group D+G had higher myocardial energy state and the respiratory control index of mitochondria than animals of group D, there was a decrease in anaerobic glycolysis and no changes in the amino acid content compared to the control. The peptide G significantly improved the parameters of cardiac function and caused weight gain in animals of group D+G in comparison with these parameters in group D. The obtained results demonstrate the ability of a novel agonist of galanin receptors GalR1-3 to attenuate Dox-indiced cardiotoxicity.
Collapse
Affiliation(s)
- I M Studneva
- National Medical Research Center for Cardiology, Moscow, Russia
| | - M E Palkeeva
- National Medical Research Center for Cardiology, Moscow, Russia
| | - O M Veselova
- National Medical Research Center for Cardiology, Moscow, Russia
| | - A S Molokoedov
- National Medical Research Center for Cardiology, Moscow, Russia
| | - R O Lubimov
- National Medical Research Center for Cardiology, Moscow, Russia
| | - M V Ovchinnikov
- National Medical Research Center for Cardiology, Moscow, Russia
| | - M V Sidorova
- National Medical Research Center for Cardiology, Moscow, Russia
| | - O I Pisarenko
- National Medical Research Center for Cardiology, Moscow, Russia
| |
Collapse
|
14
|
Distinct modes of mitochondrial metabolism uncouple T cell differentiation and function. Nature 2019; 571:403-407. [PMID: 31217581 DOI: 10.1038/s41586-019-1311-3] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/22/2019] [Indexed: 12/25/2022]
Abstract
Activated CD4 T cells proliferate rapidly and remodel epigenetically before exiting the cell cycle and engaging acquired effector functions. Metabolic reprogramming from the naive state is required throughout these phases of activation1. In CD4 T cells, T-cell-receptor ligation-along with co-stimulatory and cytokine signals-induces a glycolytic anabolic program that is required for biomass generation, rapid proliferation and effector function2. CD4 T cell differentiation (proliferation and epigenetic remodelling) and function are orchestrated coordinately by signal transduction and transcriptional remodelling. However, it remains unclear whether these processes are regulated independently of one another by cellular biochemical composition. Here we demonstrate that distinct modes of mitochondrial metabolism support differentiation and effector functions of mouse T helper 1 (TH1) cells by biochemically uncoupling these two processes. We find that the tricarboxylic acid cycle is required for the terminal effector function of TH1 cells through succinate dehydrogenase (complex II), but that the activity of succinate dehydrogenase suppresses TH1 cell proliferation and histone acetylation. By contrast, we show that complex I of the electron transport chain, the malate-aspartate shuttle and mitochondrial citrate export are required to maintain synthesis of aspartate, which is necessary for the proliferation of T helper cells. Furthermore, we find that mitochondrial citrate export and the malate-aspartate shuttle promote histone acetylation, and specifically regulate the expression of genes involved in T cell activation. Combining genetic, pharmacological and metabolomics approaches, we demonstrate that the differentiation and terminal effector functions of T helper cells are biochemically uncoupled. These findings support a model in which the malate-aspartate shuttle, mitochondrial citrate export and complex I supply the substrates needed for proliferation and epigenetic remodelling early during T cell activation, whereas complex II consumes the substrates of these pathways, which antagonizes differentiation and enforces terminal effector function. Our data suggest that transcriptional programming acts together with a parallel biochemical network to enforce cell state.
Collapse
|
15
|
Chen AP, Lau AZ, Gu YP, Schroeder MA, Barry J, Cunningham CH. Probing the cardiac malate-aspartate shuttle non-invasively using hyperpolarized [1,2- 13 C 2 ]pyruvate. NMR IN BIOMEDICINE 2018; 31:e3845. [PMID: 29106770 DOI: 10.1002/nbm.3845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 06/07/2023]
Abstract
Previous studies have demonstrated that using hyperpolarized [2-13 C]pyruvate as a contrast agent can reveal 13 C signals from metabolites associated with the tricarboxylic acid (TCA) cycle. However, the metabolites detectable from TCA cycle-mediated oxidation of [2-13 C]pyruvate are the result of several metabolic steps. In the instance of the [5-13 C]glutamate signal, the amplitude can be modulated by changes to the rates of pyruvate dehydrogenase (PDH) flux, TCA cycle flux and metabolite pool size. Also key is the malate-aspartate shuttle, which facilitates the transport of cytosolic reducing equivalents into the mitochondria for oxidation via the malate-α-ketoglutarate transporter, a process coupled to the exchange of cytosolic malate for mitochondrial α-ketoglutarate. In this study, we investigated the mechanism driving the observed changes to hyperpolarized [2-13 C]pyruvate metabolism. Using hyperpolarized [1,2-13 C]pyruvate with magnetic resonance spectroscopy (MRS) in the porcine heart with different workloads, it was possible to probe 13 C-glutamate labeling relative to rates of cytosolic metabolism, PDH flux and TCA cycle turnover in a single experiment non-invasively. Via the [1-13 C]pyruvate label, we observed more than a five-fold increase in the cytosolic conversion of pyruvate to [1-13 C]lactate and [1-13 C]alanine with higher workload. 13 C-Bicarbonate production by PDH was increased by a factor of 2.2. Cardiac cine imaging measured a two-fold increase in cardiac output, which is known to couple to TCA cycle turnover. Via the [2-13 C]pyruvate label, we observed that 13 C-acetylcarnitine production increased 2.5-fold in proportion to the 13 C-bicarbonate signal, whereas the 13 C-glutamate metabolic flux remained constant on adrenergic activation. Thus, the 13 C-glutamate signal relative to the amount of 13 C-labeled acetyl-coenzyme A (acetyl-CoA) entering the TCA cycle was decreased by 40%. The data strongly suggest that NADH (reduced form of nicotinamide adenine dinucleotide) shuttling from the cytosol to the mitochondria via the malate-aspartate shuttle is limited on adrenergic activation. Changes in [5-13 C]glutamate production from [2-13 C]pyruvate may play an important future role in non-invasive myocardial assessment in patients with cardiovascular diseases, but careful interpretation of the results is required.
Collapse
Affiliation(s)
| | - Angus Z Lau
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Yi-Ping Gu
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Marie A Schroeder
- MR Research Centre, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jennifer Barry
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Charles H Cunningham
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
16
|
Hofhuis J, Schueren F, Nötzel C, Lingner T, Gärtner J, Jahn O, Thoms S. The functional readthrough extension of malate dehydrogenase reveals a modification of the genetic code. Open Biol 2017; 6:rsob.160246. [PMID: 27881739 PMCID: PMC5133446 DOI: 10.1098/rsob.160246] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/21/2016] [Indexed: 01/19/2023] Open
Abstract
Translational readthrough gives rise to C-terminally extended proteins, thereby providing the cell with new protein isoforms. These may have different properties from the parental proteins if the extensions contain functional domains. While for most genes amino acid incorporation at the stop codon is far lower than 0.1%, about 4% of malate dehydrogenase (MDH1) is physiologically extended by translational readthrough and the actual ratio of MDH1x (extended protein) to ‘normal' MDH1 is dependent on the cell type. In human cells, arginine and tryptophan are co-encoded by the MDH1x UGA stop codon. Readthrough is controlled by the 7-nucleotide high-readthrough stop codon context without contribution of the subsequent 50 nucleotides encoding the extension. All vertebrate MDH1x is directed to peroxisomes via a hidden peroxisomal targeting signal (PTS) in the readthrough extension, which is more highly conserved than the extension of lactate dehydrogenase B. The hidden PTS of non-mammalian MDH1x evolved to be more efficient than the PTS of mammalian MDH1x. These results provide insight into the genetic and functional co-evolution of these dually localized dehydrogenases.
Collapse
Affiliation(s)
- Julia Hofhuis
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Fabian Schueren
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Christopher Nötzel
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Thomas Lingner
- Microarray and Deep Sequencing Core Facility, University Medical Center Göttingen, University of Göttingen, 37077 Göttingen, Germany
| | - Jutta Gärtner
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Sven Thoms
- Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, University of Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
17
|
Essential role of the Na +-Ca2 + exchanger (NCX) in glutamate-enhanced cell survival in cardiac cells exposed to hypoxia/reoxygenation. Sci Rep 2017; 7:13073. [PMID: 29026150 PMCID: PMC5638850 DOI: 10.1038/s41598-017-13478-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/26/2017] [Indexed: 12/22/2022] Open
Abstract
Myocardial ischemia culminates in ATP production impairment, ionic derangement and cell death. The provision of metabolic substrates during reperfusion significantly increases heart tolerance to ischemia by improving mitochondrial performance. Under normoxia, glutamate contributes to myocardial energy balance as substrate for anaplerotic reactions, and we demonstrated that the Na+/Ca2+ exchanger1 (NCX1) provides functional support for both glutamate uptake and use for ATP synthesis. Here we investigated the role of NCX1 in the potential of glutamate to improve energy metabolism and survival of cardiac cells subjected to hypoxia/reoxygenation (H/R). Specifically, in H9c2-NCX1 myoblasts, ATP levels, mitochondrial activities and cell survival were significantly compromised after H/R challenge. Glutamate supplementation at the onset of the reoxygenation phase significantly promoted viability, improved mitochondrial functions and normalized the H/R-induced increase of NCX1 reverse-mode activity. The benefits of glutamate were strikingly lost in H9c2-WT (lacking NCX1 expression), or in H9c2-NCX1 and rat cardiomyocytes treated with either NCX or Excitatory Amino Acid Transporters (EAATs) blockers, suggesting that a functional interplay between these transporters is critically required for glutamate-induced protection. Collectively, these results revealed for the first time the key role of NCX1 for the beneficial effects of glutamate against H/R-induced cell injury.
Collapse
|
18
|
Chen WW, Freinkman E, Sabatini DM. Rapid immunopurification of mitochondria for metabolite profiling and absolute quantification of matrix metabolites. Nat Protoc 2017. [PMID: 29532801 DOI: 10.1038/nprot.2017.104] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Mitochondria carry out numerous metabolic reactions that are critical to cellular homeostasis. Here we present a protocol for interrogating mitochondrial metabolites and measuring their matrix concentrations. Our workflow uses high-affinity magnetic immunocapture to rapidly purify HA-tagged mitochondria from homogenized mammalian cells in ∼12 min. These mitochondria are extracted with methanol and water. Liquid chromatography and mass spectrometry (LC/MS) is used to determine the identities and mole quantities of mitochondrial metabolites using authentic metabolite standards and isotopically labeled internal standards, whereas the corresponding mitochondrial matrix volume is determined via immunoblotting, confocal microscopy of intact cells, and volumetric analysis. Once all values have been obtained, the matrix volume is combined with the aforementioned mole quantities to calculate the matrix concentrations of mitochondrial metabolites. With shortened isolation times and improved mitochondrial purity when compared with alternative methods, this LC/MS-compatible workflow allows for robust profiling of mitochondrial metabolites and serves as a strategy generalizable to the study of other mammalian organelles. Once all the necessary reagents have been prepared, quantifying the matrix concentrations of mitochondrial metabolites can be accomplished within a week.
Collapse
Affiliation(s)
- Walter W Chen
- Department of Biology, Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Elizaveta Freinkman
- Department of Biology, Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - David M Sabatini
- Department of Biology, Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts, USA.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
19
|
Zhang JY, Kong LH, Lai D, Jin ZX, Gu XM, Zhou JJ. Glutamate protects against Ca(2+) paradox-induced injury and inhibits calpain activity in isolated rat hearts. Clin Exp Pharmacol Physiol 2017; 43:951-9. [PMID: 27279457 DOI: 10.1111/1440-1681.12605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 04/25/2016] [Accepted: 06/02/2016] [Indexed: 01/13/2023]
Abstract
This study determined the effects of glutamate on the Ca(2+) paradoxical heart, which is a model for Ca(2+) overload-induced injury during myocardial ischaemia and reperfusion, and evaluated its effect on a known mediator of injury, calpain. An isolated rat heart was retrogradely perfused in a Langendorff apparatus. Ca(2+) paradox was elicited via perfusion with a Ca(2+) -free Krebs-Henseleit (KH) solution for 3 minutes followed by Ca(2+) -containing normal KH solution for 30 minutes. The Ca(2+) paradoxical heart exhibited almost no viable tissue on triphenyltetrazolium chloride staining and markedly increased LDH release, caspase-3 activity, cytosolic cytochrome c content, and apoptotic index. These hearts also displayed significantly increased LVEDP and a disappearance of LVDP. Glutamate (5 and 20 mmol/L) significantly alleviated Ca(2+) paradox-induced injury. In contrast, 20 mmol/L mannitol had no effect on Ca(2+) paradox. Ca(2+) paradox significantly increased the extent of the translocation of μ-calpain to the sarcolemmal membrane and the proteolysis of α-fodrin, which suggests calpain activation. Glutamate also blocked these effects. A non-selective inhibitor of glutamate transporters, dl-TBOA (10 μmol/L), had no effect on control hearts, but it reversed glutamate-induced cardioprotection and reduction in calpain activity. Glutamate treatment significantly increased intracellular glutamate content in the Ca(2+) paradoxical heart, which was also blocked by dl-TBOA. We conclude that glutamate protects the heart against Ca(2+) overload-induced injury via glutamate transporters, and the inhibition of calpain activity is involved in this process.
Collapse
Affiliation(s)
- Jian-Ying Zhang
- Department of Physiology, The Fourth Military Medical University, Xi'an, China
| | - Ling-Heng Kong
- Department of Physiology, The Fourth Military Medical University, Xi'an, China.,Institute of Basic Medical Science, Xi'an Medical College, Xi'an, China
| | - Dong Lai
- Department of Physiology, The Fourth Military Medical University, Xi'an, China
| | - Zhen-Xiao Jin
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiao-Ming Gu
- Department of Physiology, The Fourth Military Medical University, Xi'an, China
| | - Jing-Jun Zhou
- Department of Physiology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
20
|
Jespersen NR, Yokota T, Støttrup NB, Bergdahl A, Paelestik KB, Povlsen JA, Dela F, Bøtker HE. Pre-ischaemic mitochondrial substrate constraint by inhibition of malate-aspartate shuttle preserves mitochondrial function after ischaemia-reperfusion. J Physiol 2017; 595:3765-3780. [PMID: 28093764 DOI: 10.1113/jp273408] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 01/12/2017] [Indexed: 01/26/2023] Open
Abstract
KEY POINTS Pre-ischaemic administration of aminooxiacetate (AOA), an inhibitor of the malate-aspartate shuttle (MAS), provides cardioprotection against ischaemia-reperfusion injury. The underlying mechanism remains unknown. We examined whether transient inhibition of the MAS during ischaemia and early reperfusion by AOA treatment could prevent mitochondrial damage at later reperfusion. The AOA treatment preserved mitochondrial respiratory capacity with reduced mitochondrial oxidative stress during late reperfusion to the same extent as ischaemic preconditioning (IPC). However, AOA treatment, but not IPC, reduced the myocardial interstitial concentration of tricarboxylic acid cycle intermediates at the onset of reperfusion. The results obtained in the present study demonstrate that metabolic regulation by inhibition of the MAS at the onset of reperfusion may be beneficial for the preservation of mitochondrial function during late reperfusion in an IR-injured heart. ABSTRACT Mitochondrial dysfunction plays a central role in ischaemia-reperfusion (IR) injury. Pre-ischaemic administration of aminooxyacetate (AOA), an inhibitor of the malate-aspartate shuttle (MAS), provides cardioprotection against IR injury, although the underlying mechanism remains unknown. We hypothesized that a transient inhibition of the MAS during ischaemia and early reperfusion could preserve mitochondrial function at later phase of reperfusion in the IR-injured heart to the same extent as ischaemic preconditioning (IPC), which is a well-validated cardioprotective strategy against IR injury. In the present study, we show that pre-ischaemic administration of AOA preserved mitochondrial complex I-linked state 3 respiration and fatty acid oxidation during late reperfusion in IR-injured isolated rat hearts. AOA treatment also attenuated the excessive emission of mitochondrial reactive oxygen species during state 3 with complex I-linked substrates during late reperfusion, which was consistent with reduced oxidative damage in the IR-injured heart. As a result, AOA treatment reduced infarct size after reperfusion. These protective effects of MAS inhibition on the mitochondria were similar to those of IPC. Intriguingly, the protection of mitochondrial function by AOA treatment appears to be different from that of IPC because AOA treatment, but not IPC, downregulated myocardial tricarboxilic acid (TCA)-cycle intermediates at the onset of reperfusion. MAS inhibition thus preserved mitochondrial respiratory capacity and decreased mitochondrial oxidative stress during late reperfusion in the IR-injured heart, at least in part, via metabolic regulation of TCA cycle intermediates in the mitochondria at the onset of reperfusion.
Collapse
Affiliation(s)
| | - Takashi Yokota
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Andreas Bergdahl
- Department of Exercise Science, Concordia University, Montreal, Canada
| | | | | | - Flemming Dela
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Geriatrics, Bispebjerg University Hospital, Copenhagen, Denmark
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
21
|
Ekström A, Sandblom E, Blier PU, Dupont Cyr BA, Brijs J, Pichaud N. Thermal sensitivity and phenotypic plasticity of cardiac mitochondrial metabolism in European perch, Perca fluviatilis. ACTA ACUST UNITED AC 2016; 220:386-396. [PMID: 27852753 DOI: 10.1242/jeb.150698] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/11/2016] [Indexed: 01/06/2023]
Abstract
Cellular and mitochondrial metabolic capacity of the heart has been suggested to limit performance of fish at warm temperatures. We investigated this hypothesis by studying the effects of acute temperature increases (16, 23, 30, 32.5 and 36°C) on the thermal sensitivity of 10 key enzymes governing cardiac oxidative and glycolytic metabolism in two populations of European perch (Perca fluviatilis) field-acclimated to 15.5 and 22.5°C, as well as the effects of acclimation on cardiac lipid composition. In both populations of perch, the activity of glycolytic (pyruvate kinase and lactate dehydrogenase) and tricarboxylic acid cycle (pyruvate dehydrogenase and citrate synthase) enzymes increased with acute warming. However, at temperatures exceeding 30°C, a drastic thermally induced decline in citrate synthase activity was observed in the cold- and warm-acclimated populations, respectively, indicating a bottleneck for producing the reducing equivalents required for oxidative phosphorylation. Yet, the increase in aspartate aminotransferase and malate dehydrogenase activities occurring in both populations at temperatures exceeding 30°C suggests that the malate-aspartate shuttle may help to maintain cardiac oxidative capacities at high temperatures. Warm acclimation resulted in a reorganization of the lipid profile, a general depression of enzymatic activity and an increased fatty acid metabolism and oxidative capacity. Although these compensatory mechanisms may help to maintain cardiac energy production at high temperatures, the activity of the electron transport system enzymes, such as complexes I and IV, declined at 36°C in both populations, indicating a thermal limit of oxidative phosphorylation capacity in the heart of European perch.
Collapse
Affiliation(s)
- Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Pierre U Blier
- Department of Biology, University of Québec, Rimouski, Québec, Canada G5L 3A1
| | | | - Jeroen Brijs
- Department of Biological and Environmental Sciences, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Nicolas Pichaud
- Department of Biological and Environmental Sciences, University of Gothenburg, 41390 Gothenburg, Sweden.,Department of Biology, University of Québec, Rimouski, Québec, Canada G5L 3A1.,Department of Chemistry and Biochemistry, University of Moncton, Moncton, NB, Canada E1A 3E9
| |
Collapse
|
22
|
Chen WW, Freinkman E, Wang T, Birsoy K, Sabatini DM. Absolute Quantification of Matrix Metabolites Reveals the Dynamics of Mitochondrial Metabolism. Cell 2016; 166:1324-1337.e11. [PMID: 27565352 PMCID: PMC5030821 DOI: 10.1016/j.cell.2016.07.040] [Citation(s) in RCA: 324] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/08/2016] [Accepted: 07/25/2016] [Indexed: 01/08/2023]
Abstract
Mitochondria house metabolic pathways that impact most aspects of cellular physiology. While metabolite profiling by mass spectrometry is widely applied at the whole-cell level, it is not routinely possible to measure the concentrations of small molecules in mammalian organelles. We describe a method for the rapid and specific isolation of mitochondria and use it in tandem with a database of predicted mitochondrial metabolites ("MITObolome") to measure the matrix concentrations of more than 100 metabolites across various states of respiratory chain (RC) function. Disruption of the RC reveals extensive compartmentalization of mitochondrial metabolism and signatures unique to the inhibition of each RC complex. Pyruvate enables the proliferation of RC-deficient cells but has surprisingly limited effects on matrix contents. Interestingly, despite failing to restore matrix NADH/NAD balance, pyruvate does increase aspartate, likely through the exchange of matrix glutamate for cytosolic aspartate. We demonstrate the value of mitochondrial metabolite profiling and describe a strategy applicable to other organelles.
Collapse
Affiliation(s)
- Walter W Chen
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Elizaveta Freinkman
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Tim Wang
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York City, NY 10065, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA.
| |
Collapse
|
23
|
Jong YJI, O'Malley KL. Mechanisms Associated with Activation of Intracellular Metabotropic Glutamate Receptor, mGluR5. Neurochem Res 2016; 42:166-172. [PMID: 27514643 PMCID: PMC5283513 DOI: 10.1007/s11064-016-2026-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/18/2016] [Accepted: 07/29/2016] [Indexed: 12/28/2022]
Abstract
The group 1 metabotropic glutamate receptor, mGluR5, is found on the cell surface as well as on intracellular membranes where it can mediate both overlapping and unique signaling effects. Previously we have shown that glutamate activates intracellular mGluR5 by entry through sodium-dependent transporters and/or cystine glutamate exchangers. Calibrated antibody labelling suggests that the glutamate concentration within neurons is quite high (~10 mM) raising the question as to whether intracellular mGluR5 is maximally activated at all times or whether a different ligand might be responsible for receptor activation. To address this issue, we used cellular, optical and molecular techniques to show that intracellular glutamate is largely sequestered in mitochondria; that the glutamate concentration necessary to activate intracellular mGluR5 is about ten-fold higher than what is necessary to activate cell surface mGluR5; and uncaging caged glutamate within neurons can directly activate the receptor. Thus these studies further the concept that glutamate itself serves as the ligand for intracellular mGluR5.
Collapse
Affiliation(s)
- Yuh-Jiin I Jong
- Department of Neuroscience, Washington University School of Medicine, 660 South Euclid Ave, Saint Louis, MO, 63110, USA
| | - Karen L O'Malley
- Department of Neuroscience, Washington University School of Medicine, 660 South Euclid Ave, Saint Louis, MO, 63110, USA.
| |
Collapse
|
24
|
Vidlund M, Tajik B, Håkanson E, Friberg Ö, Holm J, Vanky F, Svedjeholm R. Post hoc analysis of the glutamics-trial: intravenous glutamate infusion and use of inotropic drugs after cabg. BMC Anesthesiol 2016; 16:54. [PMID: 27484576 PMCID: PMC4971701 DOI: 10.1186/s12871-016-0216-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 07/21/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Intravenous glutamate reduced the risk of developing severe circulatory failure after isolated coronary artery bypass graft surgery (CABG) for acute coronary syndrome (ACS) in a double-blind randomised clinical trial (GLUTAMICS-ClinicalTrials.gov Identifier: NCT00489827 ). Here our aim was to study if glutamate was associated with reduced the use of inotropes. METHODS Post-hoc analysis of 824 patients undergoing isolated CABG for ACS in the GLUTAMICS-trial. ICU-records were retrospectively scrutinised including hourly registration of inotropic drug infusion, dosage and total duration during the operation and postoperatively. RESULTS ICU-records were found for 171 out of 177 patients who received inotropes perioperatively. Only one fourth of the patients treated with inotropes fulfilled study criteria for postoperative heart failure at weaning from cardiopulmonary bypass (CPB) or later in the ICU. Inotropes were mainly given preemptively to facilitate weaning from CPB or to treat postoperative circulatory instability (bleeding, hypovolaemia). Except for a significantly lower use of epinephrine there were only trends towards lower need of other inotropes overall in the glutamate group. In patients treated with inotropes (glutamate n = 17; placebo n = 13) who fulfilled study criteria for left ventricular failure at weaning from CPB the average duration of inotropic treatment (34 ± 20 v 80 ± 77 h; p = 0.014) and the number of inotropes used (1.35 ± 0.6 v 1.85 ± 0.7; p = 0.047) were lower in the glutamate group. CONCLUSIONS Intravenous glutamate was associated with a minor influence on inotrope use overall in patients undergoing CABG for ACS whereas a considerable and significant reduction was observed in patients with heart failure at weaning from CPB.
Collapse
Affiliation(s)
- Mårten Vidlund
- Department of Cardiothoracic and Vascular Surgery, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Bashir Tajik
- Department of Cardiothoracic Surgery and Cardiothoracic Anaesthesia, Faculty of Medicine and Health Sciences, Division of Cardiovascular Medicine, Linköping University, Linköping, Sweden
| | - Erik Håkanson
- Department of Cardiothoracic Surgery and Cardiothoracic Anaesthesia, Faculty of Medicine and Health Sciences, Division of Cardiovascular Medicine, Linköping University, Linköping, Sweden
| | - Örjan Friberg
- Department of Cardiothoracic and Vascular Surgery, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Jonas Holm
- Department of Cardiothoracic Surgery and Cardiothoracic Anaesthesia, Faculty of Medicine and Health Sciences, Division of Cardiovascular Medicine, Linköping University, Linköping, Sweden
| | - Farkas Vanky
- Department of Cardiothoracic Surgery and Cardiothoracic Anaesthesia, Faculty of Medicine and Health Sciences, Division of Cardiovascular Medicine, Linköping University, Linköping, Sweden
| | - Rolf Svedjeholm
- Department of Cardiothoracic Surgery and Cardiothoracic Anaesthesia, Faculty of Medicine and Health Sciences, Division of Cardiovascular Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
25
|
Abstract
The heart is adapted to utilize all classes of substrates to meet the high-energy demand, and it tightly regulates its substrate utilization in response to environmental changes. Although fatty acids are known as the predominant fuel for the adult heart at resting stage, the heart switches its substrate preference toward glucose during stress conditions such as ischemia and pathological hypertrophy. Notably, increasing evidence suggests that the loss of metabolic flexibility associated with increased reliance on glucose utilization contribute to the development of cardiac dysfunction. The changes in glucose metabolism in hypertrophied hearts include altered glucose transport and increased glycolysis. Despite the role of glucose as an energy source, changes in other nonenergy producing pathways related to glucose metabolism, such as hexosamine biosynthetic pathway and pentose phosphate pathway, are also observed in the diseased hearts. This article summarizes the current knowledge regarding the regulation of glucose transporter expression and translocation in the heart during physiological and pathological conditions. It also discusses the signaling mechanisms governing glucose uptake in cardiomyocytes, as well as the changes of cardiac glucose metabolism under disease conditions.
Collapse
Affiliation(s)
- Dan Shao
- Mitochondria and Metabolism Center, University of Washington, Seattle, Washington, USA
| | - Rong Tian
- Mitochondria and Metabolism Center, University of Washington, Seattle, Washington, USA
| |
Collapse
|
26
|
Abstract
Classical angina refers to typical substernal discomfort triggered by effort or emotions, relieved with rest or nitroglycerin. The well-accepted pathogenesis is an imbalance between oxygen supply and demand. Goals in therapy are improvement in quality of life by limiting the number and severity of attacks, protection against future lethal events, and measures to lower the burden of risk factors to slow disease progression. New pathophysiological data, drugs, as well as conceptual and technological advances have improved patient care over the past decade. Behavioral changes to improve diets, increase physical activity, and encourage adherence to cardiac rehabilitation programs, are difficult to achieve but are effective.
Collapse
Affiliation(s)
- Richard Kones
- The Cardiometabolic Research Institute, 8181 Fannin Street, Unit 314, Houston, TX 77054, USA.
| | - Umme Rumana
- The Cardiometabolic Research Institute, 8181 Fannin Street, Unit 314, Houston, TX 77054, USA
| |
Collapse
|
27
|
Birsoy K, Wang T, Chen WW, Freinkman E, Abu-Remaileh M, Sabatini DM. An Essential Role of the Mitochondrial Electron Transport Chain in Cell Proliferation Is to Enable Aspartate Synthesis. Cell 2015; 162:540-51. [PMID: 26232224 DOI: 10.1016/j.cell.2015.07.016] [Citation(s) in RCA: 925] [Impact Index Per Article: 102.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/05/2015] [Accepted: 07/08/2015] [Indexed: 12/16/2022]
Abstract
The mitochondrial electron transport chain (ETC) enables many metabolic processes, but why its inhibition suppresses cell proliferation is unclear. It is also not well understood why pyruvate supplementation allows cells lacking ETC function to proliferate. We used a CRISPR-based genetic screen to identify genes whose loss sensitizes human cells to phenformin, a complex I inhibitor. The screen yielded GOT1, the cytosolic aspartate aminotransferase, loss of which kills cells upon ETC inhibition. GOT1 normally consumes aspartate to transfer electrons into mitochondria, but, upon ETC inhibition, it reverses to generate aspartate in the cytosol, which partially compensates for the loss of mitochondrial aspartate synthesis. Pyruvate stimulates aspartate synthesis in a GOT1-dependent fashion, which is required for pyruvate to rescue proliferation of cells with ETC dysfunction. Aspartate supplementation or overexpression of an aspartate transporter allows cells without ETC activity to proliferate. Thus, enabling aspartate synthesis is an essential role of the ETC in cell proliferation.
Collapse
Affiliation(s)
- Kıvanç Birsoy
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Tim Wang
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Walter W Chen
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Elizaveta Freinkman
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | - Monther Abu-Remaileh
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA.
| |
Collapse
|
28
|
Patel SN, Parikh M, Lau-Cam CA. Impact of light ethanol intake and of taurine, separately and together, on pathways of glucose metabolism in the kidney of diabetic rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 803:279-303. [PMID: 25833505 DOI: 10.1007/978-3-319-15126-7_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sanket N Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY, USA
| | | | | |
Collapse
|
29
|
Comparison of Malated Ringer's with Two Other Balanced Crystalloid Solutions in Resuscitation of Both Severe and Moderate Hemorrhagic Shock in Rats. BIOMED RESEARCH INTERNATIONAL 2015; 2015:151503. [PMID: 26106600 PMCID: PMC4461728 DOI: 10.1155/2015/151503] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 01/25/2023]
Abstract
In preclinical treatment of polytraumatized patients crystalloids are preferentially used. To avoid metabolic acidosis, metabolizable anions like lactate or acetate are used to replace chloride in these solutions. We here studied the effects of malated Ringer's in resuscitation of both shock severities in comparison to lactated and acetated Ringer's. Male Wistar rats underwent severe (mean arterial blood pressure (MAP) of 25–30 mmHg) or moderate (MAP 40–45 mmHg) hemorrhagic shock. Adjacent to the shock period animals were resuscitated with acetated (AR), lactated (LR), or malated Ringer's (MR) and observed for 150 min. MR improved survival compared with LR and AR in severe hemorrhagic shock whereas it was equally effective to LR and superior to AR in moderate hemorrhagic shock. In all other parameters tested, MR was also effective similar to the other solutions under these conditions. We conclude that MR is preferable to AR and LR in resuscitation of hemorrhagic shock independent of shock depth. The positive effects of MR may stem from the absence of any adverse impact on energy metabolism under both conditions.
Collapse
|
30
|
Redox regulation and pro-oxidant reactions in the physiology of circadian systems. Biochimie 2015; 124:178-186. [PMID: 25926044 DOI: 10.1016/j.biochi.2015.04.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/16/2015] [Indexed: 02/08/2023]
Abstract
Rhythms of approximately 24 h are pervasive in most organisms and are known as circadian. There is a molecular circadian clock in each cell sustained by a feedback system of interconnected "clock" genes and transcription factors. In mammals, the timing system is formed by a central pacemaker, the suprachiasmatic nucleus, in coordination with a collection of peripheral oscillators. Recently, an extensive interconnection has been recognized between the molecular circadian clock and the set of biochemical pathways that underlie the bioenergetics of the cell. A principle regulator of metabolic networks is the flow of electrons between electron donors and acceptors. The concomitant reduction and oxidation (redox) reactions directly influence the balance between anabolic and catabolic processes. This review summarizes and discusses recent findings concerning the mutual and dynamic interactions between the molecular circadian clock, redox reactions, and redox signaling. The scope includes the regulatory role played by redox coenzymes (NAD(P)+/NAD(P)H, GSH/GSSG), reactive oxygen species (superoxide anion, hydrogen peroxide), antioxidants (melatonin), and physiological events that modulate the redox state (feeding condition, circadian rhythms) in determining the timing capacity of the molecular circadian clock. In addition, we discuss a purely metabolic circadian clock, which is based on the redox enzymes known as peroxiredoxins and is present in mammalian red blood cells and in other biological systems. Both the timing system and the metabolic network are key to a better understanding of widespread pathological conditions such as the metabolic syndrome, obesity, and diabetes.
Collapse
|
31
|
Stable ischemic heart disease. Cardiol Clin 2014; 32:333-51. [PMID: 25091962 DOI: 10.1016/j.ccl.2014.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Classical angina refers to typical substernal discomfort triggered by effort or emotions, relieved with rest or nitroglycerin. The well-accepted pathogenesis is an imbalance between oxygen supply and demand. Goals in therapy are improvement in quality of life by limiting the number and severity of attacks, protection against future lethal events, and measures to lower the burden of risk factors to slow disease progression. New pathophysiological data, drugs, as well as conceptual and technological advances have improved patient care over the past decade. Behavioral changes to improve diets, increase physical activity, and encourage adherence to cardiac rehabilitation programs, are difficult to achieve but are effective.
Collapse
|
32
|
Dalgas C, Povlsen JA, Løfgren B, Erichsen SB, Bøtker HE. Effects of fatty acids on cardioprotection by pre-ischaemic inhibition of the malate-aspartate shuttle. Clin Exp Pharmacol Physiol 2013; 39:878-85. [PMID: 22831462 DOI: 10.1111/j.1440-1681.2012.05749.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
1. The malate-aspartate shuttle (MAS) is the main pathway for balancing extra- and intramitochondrial glucose metabolism. Pre-ischaemic shutdown of the MAS by aminooxyacetate (AOA) mimics ischaemic preconditioning (IPC) in rat glucose-perfused hearts. The aim of the present study was to determine the effects of fatty acids (FA) on cardioprotection by pre-ischaemic inhibition of the MAS. 2. Isolated rat hearts were divided into four groups (control; pre-ischaemic AOA (0.2 mmol/L); IPC; and AOA + IPC) and were perfused with 11 mmol/L glucose, 3% bovine serum albumin plus 0, 0.4 or 1.2 mmol/L FA. The perfusion protocol included 30 min global no-flow ischaemia and 120 min reperfusion. Infarct size (IS), haemodynamic recovery, glucose oxidation and lactate release were evaluated in all four groups. 3. Pre-ischaemic AOA reduced the IS of the left ventricle in hearts perfused with 0, 0.4 and 1.2 mmol/L FA compared with that in control hearts (26 ± 2% vs 53 ± 4%, 29 ± 3% vs 53 ± 4% and 61 ± 4% vs 81 ± 3%, respectively; P < 0.01 for all). After 2 h reperfusion, AOA improved haemodynamic recovery in the absence (52 ± 2 vs 27 ± 3 mmHg in the AOA and control groups, respectively; P < 0.001) but not in the presence, of FA. Both IPC and AOA + IPC reduced IS and improved haemodynamic recovery regardless of FA levels. Postischaemic glucose oxidation was suppressed by FA and did not differ significantly between the different groups. 4. In conclusion, the reduction in IS induced by pre-ischaemic MAS shutdown is not compromised by physiological FA concentrations. Transient MAS shutdown may be involved in IPC, but is not sufficient on its own as the underlying mechanism for IPC.
Collapse
Affiliation(s)
- Christian Dalgas
- Department of Cardiology, Aarhus University Hospital Skejby, Aarhus, Denmark.
| | | | | | | | | |
Collapse
|
33
|
Schroeder MA, Atherton HJ, Heather LC, Griffin JL, Clarke K, Radda GK, Tyler DJ. Determining the in vivo regulation of cardiac pyruvate dehydrogenase based on label flux from hyperpolarised [1-13C]pyruvate. NMR IN BIOMEDICINE 2011; 24:980-987. [PMID: 21387444 PMCID: PMC4604660 DOI: 10.1002/nbm.1668] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/28/2010] [Accepted: 12/13/2010] [Indexed: 05/15/2023]
Abstract
Pyruvate dehydrogenase (PDH) is a key regulator of cardiac substrate selection and is regulated by both pyruvate dehydrogenase kinase (PDK)-mediated phosphorylation and feedback inhibition. The extent to which chronic upregulation of PDK protein levels, acutely increased PDK activity and acute feedback inhibition limit PDH flux remains unclear because existing in vitro assessment methods inherently disrupt the regulation of the enzyme complex. We have demonstrated previously that hyperpolarised (13)C-labelled metabolic tracers coupled with MRS can monitor flux through PDH in vivo. The aim of this study was to determine the relative contributions of acute and chronic changes in PDK and PDH activities to in vivo myocardial PDH flux. We examined both fed and fasted rats with either hyperpolarised [1-(13)C]pyruvate alone or hyperpolarised [1-(13)C]pyruvate co-infused with malate [to modulate mitochondrial nicotinamide adenine dinucleotide (NADH/NAD(+)) and acetyl-coenzyme A (acetyl-CoA)/CoA ratios, which alter both PDH activity and flux]. To confirm the metabolic fate of infused malate, we performed in vitro (1)H NMR spectroscopy on cardiac tissue extracts. We observed that, in fed rats, where PDH activity was high, the presence of malate increased PDH flux by 27%, whereas, in the fasted state, malate infusion had no effect on PDH flux. These observations suggest that pyruvate oxidation is limited by feedback inhibition from acetyl-CoA only when PDH activity is high. Therefore, in the case of PDH, and potentially other enzymes, hyperpolarised (13)C MRI can be used to assess noninvasively enzymatic regulation.
Collapse
Affiliation(s)
- Marie A. Schroeder
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy & Genetics, University of Oxford
| | - Helen J. Atherton
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy & Genetics, University of Oxford
- Department of Biochemistry, University of Cambridge
| | - Lisa C. Heather
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy & Genetics, University of Oxford
| | | | - Kieran Clarke
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy & Genetics, University of Oxford
| | - George K. Radda
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy & Genetics, University of Oxford
| | - Damian J. Tyler
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy & Genetics, University of Oxford
| |
Collapse
|
34
|
Hatzakorzian R, Carvalho G, Bui H, Sato T, Wykes L, Shum-Tim D, Schricker T. High-dose insulin administration is associated with hypoaminoacidemia during cardiac surgery. Metabolism 2011; 60:1392-7. [PMID: 21616512 DOI: 10.1016/j.metabol.2011.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Revised: 03/07/2011] [Accepted: 03/13/2011] [Indexed: 10/18/2022]
Abstract
Although the effects of insulin on glucose homeostasis are well recognized in surgical patients, its effect on perioperative protein metabolism has received little attention. The purpose of this study was to examine the effect of high-dose insulin therapy on the plasma concentrations of amino acids (AAs) in patients undergoing coronary artery bypass grafting surgery. We studied 20 nondiabetic patients scheduled for elective coronary artery bypass grafting surgery. Patients were randomly allocated to receive either standard metabolic care (target glycemia 6.0-10.0 mmol/L, control group, n = 10) or high-dose insulin therapy (insulin group, n = 10). Insulin was administered at 5 mU·kg(-1)·min(-1) beginning at skin incision. Simultaneously, 20% dextrose was infused at a variable rate adjusted to maintain glycemia between 4.0 and 6.0 mmol/L. Plasma AAs, glucose, cortisol, and insulin were measured immediately before surgery and at sternal closure. Differences in mean values were assessed by Student t test. Plasma concentrations of all AAs decreased in the insulin group, with 15 of 22 AAs, including all branched-chain AAs, being significantly lower at sternal closure when compared with the control group. At the end of surgery, plasma glucose concentration was significantly lower in the insulin group (4.2 ± 0.6 vs 7.3 ± 1.0 mmol/L, P = .0001), whereas plasma cortisol levels did not show any difference between groups. High-dose insulin therapy resulted in a significant reduction in plasma AAs, particularly branched-chain AAs, during cardiac surgery.
Collapse
Affiliation(s)
- Roupen Hatzakorzian
- Department of Anaesthesia, McGill University Health Center, Royal Victoria Hospital, Montreal, Quebec, Canada H3A 1A1.
| | | | | | | | | | | | | |
Collapse
|
35
|
Nielsen TT, Støttrup NB, Løfgren B, Bøtker HE. Metabolic fingerprint of ischaemic cardioprotection: importance of the malate-aspartate shuttle. Cardiovasc Res 2011; 91:382-91. [PMID: 21349875 DOI: 10.1093/cvr/cvr051] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The convergence of cardioprotective intracellular signalling pathways to modulate mitochondrial function as an end-target of cytoprotective stimuli is well described. However, our understanding of whether the complementary changes in mitochondrial energy metabolism are secondary responses or inherent mechanisms of ischaemic cardioprotection remains incomplete. In the heart, the malate-aspartate shuttle (MAS) constitutes the primary metabolic pathway for transfer of reducing equivalents from the cytosol into the mitochondria for oxidation. The flux of MAS is tightly linked to the flux of the tricarboxylic acid cycle and the electron transport chain, partly by the amino acid l-glutamate. In addition, emerging evidence suggests the MAS is an important regulator of cytosolic and mitochondrial calcium homeostasis. In the isolated rat heart, inhibition of MAS during ischaemia and early reperfusion by the aminotransferase inhibitor aminooxyacetate induces infarct limitation, improves haemodynamic responses, and modulates glucose metabolism, analogous to effects observed in classical ischaemic preconditioning. On the basis of these findings, the mechanisms through which MAS preserves mitochondrial function and cell survival are reviewed. We conclude that the available evidence is supportive of a down-regulation of mitochondrial respiration during lethal ischaemia with a gradual 'wake-up' during reperfusion as a pivotal feature of ischaemic cardioprotection. Finally, comments on modulating myocardial energy metabolism by the cardioprotective amino acids glutamate and glutamine are given.
Collapse
Affiliation(s)
- Torsten Toftegaard Nielsen
- Department of Cardiology, Skejby Hospital, Aarhus University Hospital, Brendstrupgaardsvej 100, Aarhus N, Denmark.
| | | | | | | |
Collapse
|
36
|
Kristiansen SB, Løfgren B, Nielsen JM, Støttrup NB, Buhl ES, Nielsen-Kudsk JE, Nielsen TT, Rungby J, Flyvbjerg A, Bøtker HE. Comparison of two sulfonylureas with high and low myocardial K(ATP) channel affinity on myocardial infarct size and metabolism in a rat model of type 2 diabetes. Diabetologia 2011; 54:451-8. [PMID: 21104069 DOI: 10.1007/s00125-010-1970-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 10/04/2010] [Indexed: 11/28/2022]
Abstract
AIMS/HYPOTHESIS Sulfonylureas (SUs) may impair outcome in patients with acute coronary syndrome. Most experimental studies of the myocardial effects of SU treatment are performed in non-diabetic models. We compared the effect of two widely used SUs, glibenclamide (gb) and gliclazide (gc), with high and low myocardial K(ATP) channel affinity, respectively, at therapeutic concentrations on infarct size, left ventricular (LV) function and myocardial glycogen, lactate and alanine content before and after ischaemia/reperfusion (I/R). METHODS Non-diabetic Wistar and diabetic Goto-Kakizaki rat hearts were investigated in a Langendorff preparation. Gb (0.1 μmol/l) and gc (1.0 μmol/l) were administrated throughout the study. Infarct size was evaluated after 120 min of reperfusion. Myocardial metabolite content was measured before and after ischaemia. RESULTS Infarct size was smaller in diabetic hearts than in non-diabetic hearts (0.33 ± 0.03 vs 0.51 ± 0.05, p < 0.05). Gb increased infarct size (0.54 ± 0.04 vs 0.33 ± 0.03, p < 0.05) and reduced post-ischaemic LV developed pressure (60 ± 3 vs 76 ± 3 mmHg, p < 0.05) and coronary flow (4.9 ± 0.5 vs 7.1 ± 0.4 ml min(-1) g(-1), p < 0.05) in gb-treated diabetic rats compared with untreated diabetic rats. On comparing gb-treated diabetic rats with untreated diabetic rats, glycogen content was reduced before (9.1 ± 0.6 vs 13.6 ± 1.0 nmol/mg wet weight, p < 0.01) and after ischaemia (0.9 ± 0.2 vs 1.8 ± 0.2 nmol/mg wet weight, p < 0.05), and lactate (4.8 ± 0.4 vs 3.2 ± 0.3 nmol/mg wet weight, p < 0.01) and alanine (1.38 ± 0.12 vs 0.96 ± 0.09 nmol/mg wet weight, p < 0.05) contents were increased during reperfusion. Gc-treatment of diabetic and non-diabetic rats did not affect any of the measured variables. CONCLUSIONS/INTERPRETATIONS Gb, but not gc, exacerbates I/R injury and deteriorates LV function in diabetic hearts. These effects of gb on diabetic hearts may be due to detrimental effects on myocardial carbohydrate metabolism.
Collapse
Affiliation(s)
- S B Kristiansen
- Department of Cardiology, Aarhus University Hospital, Skejby Sygehus, Brendstrupgaardsvej 100, DK-8200 Aarhus N, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
De Souza AI, Cardin S, Wait R, Chung YL, Vijayakumar M, Maguy A, Camm AJ, Nattel S. Proteomic and metabolomic analysis of atrial profibrillatory remodelling in congestive heart failure. J Mol Cell Cardiol 2010; 49:851-63. [DOI: 10.1016/j.yjmcc.2010.07.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 07/12/2010] [Accepted: 07/14/2010] [Indexed: 01/03/2023]
|
38
|
Gonzalez-Loyola A, Barba I. Mitochondrial metabolism revisited: a route to cardioprotection. Cardiovasc Res 2010; 88:209-10. [DOI: 10.1093/cvr/cvq258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
39
|
Støttrup NB, Løfgren B, Birkler RD, Nielsen JM, Wang L, Caldarone CA, Kristiansen SB, Contractor H, Johannsen M, Bøtker HE, Nielsen TT. Inhibition of the malate–aspartate shuttle by pre-ischaemic aminooxyacetate loading of the heart induces cardioprotection. Cardiovasc Res 2010; 88:257-66. [DOI: 10.1093/cvr/cvq205] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
40
|
Bhattacharya P, Ross BD, Bünger R. Cardiovascular applications of hyperpolarized contrast media and metabolic tracers. Exp Biol Med (Maywood) 2009; 234:1395-416. [PMID: 19934362 DOI: 10.3181/0904-mr-135] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Modern hyperpolarization technology enhances the recordable magnetic resonance signal four to five orders of magnitude, making in vivo assessments of tracer pathways and metabolic compartments feasible. Existing hyperpolarization instrumentation and previous tracer studies using hydroxyethylpropionate (HEP) as an extracellular marker and 14-carbon label pyruvate as examples are described and reviewed as applicable to the working heart. Future metabolic imaging based on the use of hyperpolarized pyruvate needs to consider extra- and intra-cellular label dilution due to glycolysis, lactate oxidation and protein degradation. This dilution can substantially decrease the recordable signals from PDH flux (oxidative decarboxylation of pyruvate) and other pyruvate pathways. The review of previous literature and data suggests that the (13)C-alanine signal is a better index of mitochondrially oxidized pyruvate than L-lactate. These facts and considerations will help in the interpretation of the in vivo recorded hyperpolarization signals of metabolic tracers and contrast media.
Collapse
Affiliation(s)
- Pratip Bhattacharya
- Enhanced MR Laboratory, Huntington Medical Research Institutes, 10 Pico Street, Pasadena, CA 91105.
| | | | | |
Collapse
|
41
|
Povlsen JA, Løfgren B, Rasmussen LE, Nielsen JM, Nørregaard R, Kristiansen SB, Bøtker HE, Nielsen TT. CARDIOPROTECTIVE EFFECT OF l-GLUTAMATE IN OBESE TYPE 2 DIABETIC ZUCKER FATTY RATS. Clin Exp Pharmacol Physiol 2009; 36:892-8. [DOI: 10.1111/j.1440-1681.2009.05166.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Løfgren B, Povlsen JA, Rasmussen LE, Støttrup NB, Solskov L, Krarup PM, Kristiansen SB, Bøtker HE, Nielsen TT. Amino acid transamination is crucial for ischaemic cardioprotection in normal and preconditioned isolated rat hearts--focus on L-glutamate. Exp Physiol 2009; 95:140-52. [PMID: 19717487 DOI: 10.1113/expphysiol.2009.049452] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have found that cardioprotection by l-glutamate mimics protection by classical ischaemic preconditioning (IPC). We investigated whether the effect of IPC involves amino acid transamination and whether IPC modulates myocardial glutamate metabolism. In a glucose-perfused, isolated rat heart model subjected to 40 min global no-flow ischaemia and 120 min reperfusion, the effects of IPC (2 cycles of 5 min ischaemia and 5 min reperfusion) and continuous glutamate (20 mm) administration during reperfusion on infarct size and haemodynamic recovery were studied. The effect of inhibiting amino acid transamination was evaluated by adding the amino acid transaminase inhibitor amino-oxyacetate (AOA; 0.025 mm) during reperfusion. Changes in coronary effluent, interstitial (microdialysis) and intracellular glutamate ([GLUT](i)) concentrations were measured. Ischaemic preconditioning and postischaemic glutamate administration reduced infarct size to the same extent (41 and 40%, respectively; P < 0.05 for both), without showing an additive effect. Amino-oxyacetate abolished infarct reduction by IPC and glutamate, and increased infarct size in both control and IPC hearts in a dose-dependent manner. Ischaemic preconditioning increased [GLUT](i) before ischaemia (P < 0.01) and decreased the release of glutamate during the first 10 min of reperfusion (P = 0.03). A twofold reduction in [GLUT](i) from the preischaemic state to 45 min of reperfusion (P = 0.0001) suggested increased postischaemic glutamate utilization in IPC hearts. While IPC and AOA changed haemodynamics in accordance with infarct size, glutamate decreased haemodynamic recovery despite reduced infarct size. In conclusion, ischaemic cardioprotection of the normal and IPC-protected heart depends on amino acid transamination and activity of the malate-aspartate shuttle during reperfusion. Underlying mechanisms of IPC include myocardial glutamate metabolism.
Collapse
Affiliation(s)
- Bo Løfgren
- Department of Cardiology B, Arhus University Hospital, Skejby, 8200 Arhus N, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kristiansen SB, Lfgren B, Stttrup NB, Kimose HH, Nielsen-Kudsk JE, Btker HE, Nielsen TT. CARDIOPROTECTION BY l-GLUTAMATE DURING POSTISCHAEMIC REPERFUSION: REDUCED INFARCT SIZE AND ENHANCED GLYCOGEN RESYNTHESIS IN A RAT INSULIN-FREE HEART MODEL. Clin Exp Pharmacol Physiol 2008; 35:884-8. [DOI: 10.1111/j.1440-1681.2008.04914.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
Lu M, Zhou L, Stanley WC, Cabrera ME, Saidel GM, Yu X. Role of the malate-aspartate shuttle on the metabolic response to myocardial ischemia. J Theor Biol 2008; 254:466-75. [PMID: 18603266 DOI: 10.1016/j.jtbi.2008.05.033] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 05/23/2008] [Accepted: 05/23/2008] [Indexed: 11/16/2022]
Abstract
The malate-aspartate (M-A) shuttle provides an important mechanism to regulate glycolysis and lactate metabolism in the heart by transferring reducing equivalents from cytosol into mitochondria. However, experimental characterization of the M-A shuttle has been incomplete because of limitations in quantifying cytosolic and mitochondrial metabolites. In this study, we developed a multi-compartment model of cardiac metabolism with detailed presentation of the M-A shuttle to quantitatively predict non-observable fluxes and metabolite concentrations under normal and ischemic conditions in vivo. Model simulations predicted that the M-A shuttle is functionally localized to a subdomain that spans the mitochondrial and cytosolic spaces. With the onset of ischemia, the M-A shuttle flux rapidly decreased to a new steady state in proportion to the reduction in blood flow. Simulation results suggest that the reduced M-A shuttle flux during ischemia was not due to changes in shuttle-associated enzymes and transporters. However, there was a redistribution of shuttle-associated metabolites in both cytosol and mitochondria. Therefore, the dramatic acceleration in glycolysis and the switch to lactate production that occur immediately after the onset of ischemia is mediated by reduced M-A shuttle flux through metabolite redistribution of shuttle associated species across the mitochondrial membrane.
Collapse
Affiliation(s)
- Ming Lu
- Department of Biomedical Engineering, Case Western Reserve University, Wickenden 427, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
45
|
Støttrup NB, Kristiansen SB, Løfgren B, Hansen BF, Kimose HH, Bøtker HE, Nielsen TT. L-glutamate and glutamine improve haemodynamic function and restore myocardial glycogen content during postischaemic reperfusion: A radioactive tracer study in the rat isolated heart. Clin Exp Pharmacol Physiol 2007; 33:1099-103. [PMID: 17042921 DOI: 10.1111/j.1440-1681.2006.04497.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
1. L-Glutamate and glutamine have been suggested to have cardioprotective effects. However, the issue is controversial and the metabolic mechanisms underlying a beneficial effect are not well understood. 2. In the present study we investigated the effects of L-glutamate and glutamine on haemodynamic recovery, the rate of de novo glycogen synthesis and myocardial glucose uptake during postischaemic reperfusion. 3. Hearts from male Wistar rats (250-300 g) were divided into three groups as follows: (i) control (n = 12); (ii) L-glutamate (n = 12); and (iii) glutamine (n = 12). Hearts were mounted in a Langendorff preparation and perfused with oxygenated Krebs'-Henseleit solution at 80 mmHg and 37C. Global ischaemia for 20 min was followed by 15 min reperfusion, during which L-glutamate (50 mmol/L) or glutamine (20 mmol/L) were administered. Left ventricular developed pressure (LVDP), de novo synthesis of glycogen using [14C]-glucose and myocardial glucose uptake using D-[2-3H]-glucose were measured. 4. L-Glutamate and glutamine increased postischaemic LVDP (P < 0.01 vs control hearts for both). L-Glutamate and glutamine increased de novo glycogen synthesis by 78% (P < 0.001) and 55% (P < 0.01), respectively. At the end of reperfusion, total myocardial glycogen content was increased by both L-glutamate and glutamine (5.7 +/- 0.3 and 6.2 +/- 0.7 micromol/g wet weight, respectively; P < 0.05 and 0.01, respectively) compared with that in control hearts (3.6 +/- 0.4 micromol/g wet weight). Neither L-glutamate nor glutamine affected myocardial glucose uptake during reperfusion. 5. Improved postischaemic haemodynamic recovery after L-glutamate and glutamine supplementation during reperfusion is associated with increased de novo glycogen synthesis, suggesting a favourable modulation of intracellular myocardial carbohydrate metabolism.
Collapse
Affiliation(s)
- Nicolaj B Støttrup
- Department of Cardiology, Skejby Sygehus, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | | | | | |
Collapse
|
46
|
Vánky FB, Håkanson E, Jorfeldt L, Svedjeholm R. Does glutamate influence myocardial and peripheral tissue metabolism after aortic valve replacement for aortic stenosis? Clin Nutr 2006; 25:913-22. [PMID: 16737761 DOI: 10.1016/j.clnu.2006.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 03/01/2006] [Accepted: 04/03/2006] [Indexed: 11/28/2022]
Abstract
BACKGROUND & AIMS Glutamate plays an important role for myocardial metabolism in association with ischaemia. Patients with coronary artery disease characteristically demonstrate increased uptake of glutamate. Improved recovery of myocardial metabolism and haemodynamic state after coronary surgery has been reported in patients treated with glutamate infusion. However, the effect of glutamate has not been studied after other cardiac surgical procedures. In addition, the effects of glutamate on peripheral tissue metabolism remain to be described. METHODS Twenty patients undergoing surgery for aortic stenosis were studied after randomisation to blinded infusion of glutamate or saline during 1h immediately after skin closure. Myocardial and leg tissue metabolism were assessed with organ balance techniques. RESULTS Postoperative glutamate infusion induced a marked increase in myocardial and leg tissue uptake of glutamate. This was associated with a significant uptake of lactate in the heart. The negative arterial-venous differences of amino acids and free fatty acids across the leg were significantly smaller in the glutamate group. Haemodynamic state remained stable and did not differ between groups. CONCLUSION The heart and peripheral tissues consumed the exogenously administered glutamate after surgery for aortic stenosis. Potentially favourable effects of glutamate on myocardial and peripheral tissue metabolism are suggested.
Collapse
Affiliation(s)
- Farkas B Vánky
- Department of Cardiothoracic Surgery, Linköping Heart Centre, University Hospital, SE-581 85 Linköping, Sweden
| | | | | | | |
Collapse
|
47
|
Lin H, King N. Demonstration of functional dipeptide transport with expression of PEPT2 in guinea pig cardiomyocytes. Pflugers Arch 2006; 453:915-22. [PMID: 17120020 DOI: 10.1007/s00424-006-0171-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 09/13/2006] [Indexed: 10/23/2022]
Abstract
The transporters PEPT1 and PEPT2 accept a broad spectrum of substrates including small, naturally occurring peptides and peptidomimetic drugs. This study aimed to investigate for the first time whether these transporters are expressed and active in isolated cardiomyocytes. PEPT1/PEPT2 expression in rat kidney (positive control), guinea pig kidney and cardiomyocytes were investigated by reverse transcription polymerase chain reaction. L-Glycyl-L-[(14)C]sarcosine (Gly-sar) uptake was characterised using freshly isolated suspensions of adult male guinea pig cardiomyocytes. PEPT2-specific primers recognised mRNA of appropriate size and sequence in cardiomyocytes and kidney, whilst PEPT1 was expressed in the kidney only. The initial uptake (30 s) of 200 microM Gly-sar was dependent on extracellular pH with a maximum at pH 6.0 (237.8 +/- 12.2 pmol/microl) and a minimum at pH 8.0 (72.1 +/- 13.4 pmol/microl, n = 6 +/- SE, p < 0.01, T test). The K (m) and V (max) of Gly-sar uptake at pH 6.0 were 495.5 +/- 69.6 microM and 1470.5 +/- 69.6 pmol microl(-1) min(-1). The addition of 10 mM fosinopril, cefadroxil, carnosine, cyclacillin or a variety of L-amino acid containing dipeptides/tripeptides significantly reduced Gly-sar uptake. Gly-sar uptake was not affected by 10 mM D-ala-D-ala, glycine or sarcosine. These results support the presence of a functional dipeptide transporter in isolated cardiomyocytes, with accompanying expression of PEPT2.
Collapse
Affiliation(s)
- Hua Lin
- Bristol Heart Institute, University of Bristol, Bristol Royal Infirmary, Bristol BS2 8HW, UK
| | | |
Collapse
|
48
|
King N, Lin H, McGivan JD, Suleiman MS. Expression and activity of the glutamate transporter EAAT2 in cardiac hypertrophy: implications for ischaemia reperfusion injury. Pflugers Arch 2006; 452:674-82. [PMID: 16718509 DOI: 10.1007/s00424-006-0096-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 04/05/2006] [Accepted: 04/19/2006] [Indexed: 11/26/2022]
Abstract
The expression and activity of the glutamate transporter, excitatory amino acid transporter 2 (EAAT2), in cardiac hypertrophy were investigated with respect to glutamate's potential as a cardioprotective agent. Sarcolemmal vesicles (SV) isolated from hypertrophic hearts of male spontaneously hypertensive rats (SHR) or normotrophic hearts from age-matched male Wistar Kyoto rats (WKY) were used to measure the relative level of EAAT2 expression by Western blotting and the initial rate of 0-0.3 mM L-[(14)C]glutamate uptake. The effects of 20-min global normothermic ischaemia +/-0.5 mM glutamate on cardiac function were measured in isolated working SHR/WKY hearts. In a separate series of hearts, glutamate, lactate and ATP levels were measured. Both the level of EAAT2 expression and the V (max) for sodium-dependent L-[(14)C]glutamate uptake were significantly greater in SHR SV compared to WKY SV. The reperfusion cardiac output (CO) of SHR hearts was significantly worse than that of the WKY hearts (24.3+/-2.2 ml/min vs 39.8+/-3.3 ml/min, n=7/9+/-SE, p<0.01). The addition of 0.5 mM L-glutamate improved the SHR reperfusion CO to 45.2+/-5 ml/min, (n=6+/-SE, p<0.01) but had no effect on WKYs (46.2+/-3.8 ml/min, n=6+/-SE). SHR with 0.5 mM L-glutamate had higher glutamate levels at the start of ischaemia, plus higher glutamate and ATP levels at the end of ischaemia compared to any other group. These results suggest that increased glutamate transporter expression and activity in the SHR hearts helped facilitate glutamate entry into the SHR cardiomyocytes leading to improved myocardial metabolism during ischaemia and better functional recovery on reperfusion.
Collapse
Affiliation(s)
- Nicola King
- Bristol Heart Institute, Department of Clinical Science at South Bristol, University of Bristol, Bristol Royal Infirmary, Bristol BS2 8HW, UK.
| | | | | | | |
Collapse
|
49
|
Modi P, Suleiman MS, Reeves BC, Pawade A, Parry AJ, Angelini GD, Caputo M. Free Amino Acids in Hearts of Pediatric Patients With Congenital Heart Disease: The Effects of Cyanosis, Age, and Pathology. Ann Thorac Surg 2006; 81:943-9. [PMID: 16488699 DOI: 10.1016/j.athoracsur.2005.08.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 08/22/2005] [Accepted: 08/25/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND The immature heart has a much greater dependence than the adult heart on amino acid transamination in determining its ischemic tolerance. Compared with adult hearts, experimental models of the immature heart have quantified higher resting concentrations of free amino acids (AA) which are depleted by acute hypoxia. However, we have found no clinical studies that have looked at the free AA profile of the immature human heart or the effects of cyanosis, age, and pathology upon this. METHODS One hundred eighty-one pediatric patients (37 cyanotic, 144 acyanotic) undergoing open-heart surgery were recruited. Myocardial biopsies were collected prior to ischemia and analyzed for free AAs (eg, glutamate, aspartate) using high-performance liquid chromatography. The effects of cyanosis, age, and pathology on amino acid concentrations were estimated by multiple regression modeling with and without controlling for diagnosis; the effects of age and pathology were estimated only in acyanotic children. RESULTS Alanine concentrations were about 20% higher in cyanotic than acyanotic patients (p = 0.04). Cyanosis was not associated with any other amino acid levels. In acyanotic patients, after controlling for diagnosis, concentrations of glutamate, aspartate, and alanine decreased from birth to about 8 to 10 years, then started to increase again (p < 0.05 for both linear and quadratic terms); concentrations of taurine and the branched chain AAs decreased steadily with increasing age (p < 0.05). There were significant effects of pathology on glutamate (p = 0.006), glutamine (p = 0.003), and branched chain AA (p = 0.004) levels. CONCLUSIONS There is no evidence that chronic hypoxia depletes endogenous AAs. Young age is associated with higher resting AA levels.
Collapse
Affiliation(s)
- Paul Modi
- Bristol Heart Institute, University of Bristol, Bristol Royal Infirmary, Bristol, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
50
|
Kugler P. Expression of glutamate transporters in rat cardiomyocytes and their localization in the T-tubular system. J Histochem Cytochem 2004; 52:1385-92. [PMID: 15385585 DOI: 10.1177/002215540405201015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Glutamate and aspartate play important roles in the intermediary metabolism of the myocardium and have been shown to improve cardiac recovery after hypoxia or ischemia. Limited data are available about the expression of glutamate transporters that are involved in the uptake of glutamate and aspartate in cardiomyocytes. In this study, non-radioactive in situ hybridization (ISH) using complementary RNA probes was applied to detect the glutamate transporters GLT1 variant (GLT1v) and EAAC1 mRNA in rat cardiomyocytes. The transporter proteins were demonstrated by Western blotting and immunocytochemistry using affinity-purified antibodies against transporter peptides. ISH and immunocytochemistry showed that both glutamate transporters are coexpressed in cardiomyocytes. The ISH labeling indicates the distribution of transporter mRNA throughout the cytoplasm of cardiomyocytes. GLT1v and EAAC1 proteins, which showed in Western blots a molecular mass of approximately 60 kD, are strongly enriched and colocalized in the transverse (T)-tubular system of cardiomyocytes. These results may indicate that glutamate/aspartate uptake into cardiomyocytes could be mediated by the high-affinity transporters GLT1v and EAAC1. A high efficiency of glutamate/aspartate transport into cardiomyocytes could be achieved by their localization in the T-tubular system, which consists of tubular invaginations of the sarcolemma extending deep into the cell.
Collapse
Affiliation(s)
- Peter Kugler
- Institute of Anatomy and Cell Biology, University of Würzburg, Koellikerstr. 6, D-97070 Würzburg, Germany.
| |
Collapse
|