1
|
Kotlyarov S, Kotlyarova A. Clinical significance of polyunsaturated fatty acids in the prevention of cardiovascular diseases. Front Nutr 2022; 9:998291. [PMID: 36276836 PMCID: PMC9582942 DOI: 10.3389/fnut.2022.998291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases are one of the most important problems of modern medicine. They are associated with a large number of health care visits, hospitalizations and mortality. Prevention of atherosclerosis is one of the most effective strategies and should start as early as possible. Correction of lipid metabolism disorders is associated with definite clinical successes, both in primary prevention and in the prevention of complications of many cardiovascular diseases. A growing body of evidence suggests a multifaceted role for polyunsaturated fatty acids. They demonstrate a variety of functions in inflammation, both participating directly in a number of cellular processes and acting as a precursor for subsequent biosynthesis of lipid mediators. Extensive clinical data also support the importance of polyunsaturated fatty acids, but all questions have not been answered to date, indicating the need for further research.
Collapse
Affiliation(s)
| | - Anna Kotlyarova
- Department of Pharmacy Management and Economics, Ryazan State Medical University, Ryazan, Russia
| |
Collapse
|
2
|
Shi Z, He Z, Wang DW. CYP450 Epoxygenase Metabolites, Epoxyeicosatrienoic Acids, as Novel Anti-Inflammatory Mediators. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123873. [PMID: 35744996 PMCID: PMC9230517 DOI: 10.3390/molecules27123873] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/25/2022]
Abstract
Inflammation plays a crucial role in the initiation and development of a wide range of systemic illnesses. Epoxyeicosatrienoic acids (EETs) are derived from arachidonic acid (AA) metabolized by CYP450 epoxygenase (CYP450) and are subsequently hydrolyzed by soluble epoxide hydrolase (sEH) to dihydroxyeicosatrienoic acids (DHETs), which are merely biologically active. EETs possess a wide range of established protective effects on many systems of which anti-inflammatory actions have gained great interest. EETs attenuate vascular inflammation and remodeling by inhibiting activation of endothelial cells and reducing cross-talk between inflammatory cells and blood vessels. EETs also process direct and indirect anti-inflammatory properties in the myocardium and therefore alleviate inflammatory cardiomyopathy and cardiac remodeling. Moreover, emerging studies show the substantial roles of EETs in relieving inflammation under other pathophysiological environments, such as diabetes, sepsis, lung injuries, neurodegenerative disease, hepatic diseases, kidney injury, and arthritis. Furthermore, pharmacological manipulations of the AA-CYP450-EETs-sEH pathway have demonstrated a contribution to the alleviation of numerous inflammatory diseases, which highlight a therapeutic potential of drugs targeting this pathway. This review summarizes the progress of AA-CYP450-EETs-sEH pathway in regulation of inflammation under different pathological conditions and discusses the existing challenges and future direction of this research field.
Collapse
Affiliation(s)
- Zeqi Shi
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
| | - Zuowen He
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (Z.H.); (D.W.W.)
| | - Dao Wen Wang
- Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiological Disorders, Wuhan 430030, China;
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (Z.H.); (D.W.W.)
| |
Collapse
|
3
|
Cyp2c44 epoxygenase-derived epoxyeicosatrienoic acids in vascular smooth muscle cells elicit vasoconstriction of the murine ophthalmic artery. Sci Rep 2021; 11:18764. [PMID: 34548575 PMCID: PMC8455677 DOI: 10.1038/s41598-021-98236-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
Cytochrome P450 (CYP) signalling pathway has been shown to play a vital role in the vasoreactivity of wild type mouse ophthalmic artery. In this study, we determined the expression, vascular responses and potential mechanisms of the CYP-derived arachidonic acid metabolites. The expression of murine CYP (Cyp2c44) and soluble epoxide hydrolase (sEH) in the wild type ophthalmic artery was determined with immunofluorescence, which showed predominant expression of Cyp2c44 in the vascular smooth muscle cells (VSMC), while sEH was found mainly in the endothelium of the wild type ophthalmic artery. Artery of Cyp2c44-/- and sEH-/- mice were used as negative controls. Targeted mass spectrometry-based lipidomics analysis of endogenous epoxide and diols of the wild type artery detected only 14, 15-EET. Vasorelaxant responses of isolated vessels in response to selective pharmacological blockers and agonist were analysed ex vivo. Direct antagonism of epoxyeicosatrienoic acids (EETs) with a selective inhibitor caused partial vasodilation, suggesting that EETs may behave as vasoconstrictors. Exogenous administration of synthetic EET regioisomers significantly constricted the vessels in a concentration-dependent manner, with the strongest responses elicited by 11, 12- and 14, 15-EETs. Our results provide the first experimental evidence that Cyp2c44-derived EETs in the VSMC mediate vasoconstriction of the ophthalmic artery.
Collapse
|
4
|
Fan F, Ge Y, Lv W, Elliott MR, Muroya Y, Hirata T, Booz GW, Roman RJ. Molecular mechanisms and cell signaling of 20-hydroxyeicosatetraenoic acid in vascular pathophysiology. Front Biosci (Landmark Ed) 2016; 21:1427-63. [PMID: 27100515 DOI: 10.2741/4465] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cytochrome P450s enzymes catalyze the metabolism of arachidonic acid to epoxyeicosatrienoic acids (EETs), dihydroxyeicosatetraenoic acid and hydroxyeicosatetraeonic acid (HETEs). 20-HETE is a vasoconstrictor that depolarizes vascular smooth muscle cells by blocking K+ channels. EETs serve as endothelial derived hyperpolarizing factors. Inhibition of the formation of 20-HETE impairs the myogenic response and autoregulation of renal and cerebral blood flow. Changes in the formation of EETs and 20-HETE have been reported in hypertension and drugs that target these pathways alter blood pressure in animal models. Sequence variants in CYP4A11 and CYP4F2 that produce 20-HETE, UDP-glucuronosyl transferase involved in the biotransformation of 20-HETE and soluble epoxide hydrolase that inactivates EETs are associated with hypertension in human studies. 20-HETE contributes to the regulation of vascular hypertrophy, restenosis, angiogenesis and inflammation. It also promotes endothelial dysfunction and contributes to cerebral vasospasm and ischemia-reperfusion injury in the brain, kidney and heart. This review will focus on the role of 20-HETE in vascular dysfunction, inflammation, ischemic and hemorrhagic stroke and cardiac and renal ischemia reperfusion injury.
Collapse
Affiliation(s)
- Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Ying Ge
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Wenshan Lv
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216 and Department of Endocrinology and Metabolism, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Matthew R Elliott
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Yoshikazu Muroya
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216 and Department of General Medicine and Rehabilitation, Tohoku Medical and Pharmaceutical University School of Medicine, Sendai, Japan
| | - Takashi Hirata
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216 and Taisho Pharmaceutical Co., Ltd., Saitama, Japan
| | - George W Booz
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216,
| |
Collapse
|
5
|
Mukai Y, Toda T, Takeuchi S, Senda A, Yamashita M, Eliasson E, Rane A, Inotsume N. Simultaneous Determination Method of Epoxyeicosatrienoic Acids and Dihydroxyeicosatrienoic Acids by LC-MS/MS System. Biol Pharm Bull 2015; 38:1673-9. [DOI: 10.1248/bpb.b15-00480] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yuji Mukai
- Division of Clinical Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy
| | - Takaki Toda
- Division of Clinical Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy
| | - Satoya Takeuchi
- Division of Clinical Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy
| | - Asuna Senda
- Division of Clinical Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy
| | - Miki Yamashita
- Division of Clinical Pharmaceutics, Hokkaido Pharmaceutical University School of Pharmacy
| | - Erik Eliasson
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institutet
| | - Anders Rane
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institutet
| | - Nobuo Inotsume
- Division of Clinical Pharmacology, Hokkaido Pharmaceutical University School of Pharmacy
| |
Collapse
|
6
|
Ulu A, Lee KSS, Miyabe C, Yang J, Hammock BG, Dong H, Hammock BD. An omega-3 epoxide of docosahexaenoic acid lowers blood pressure in angiotensin-II-dependent hypertension. J Cardiovasc Pharmacol 2014; 64:87-99. [PMID: 24691274 PMCID: PMC4092041 DOI: 10.1097/fjc.0000000000000094] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mediators of antihypertensive actions of docosahexaenoic acid (DHA) are largely unknown. The omega-3 epoxide of DHA, 19, 20-EDP (epoxy docosapentaenoic acid), is metabolized by soluble epoxide hydrolase (sEH), which also metabolizes the anti-inflammatory and antihypertensive arachidonic acid epoxides, epoxyeicosatrienoic acids (EETs). Based in part on plasma levels of EDPs after a DHA-rich diet, we hypothesized that 19, 20-EDP contributes to the antihypertensive actions of DHA in angiotensin-II (Ang-II)-dependent hypertension. Treatment individually with 19, 20-EDP and a potent sEH inhibitor TPPU (1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea) significantly lowered blood pressure (BP) as compared with Ang-II-infused animals. The largest reduction in BP was obtained with the combination of 19, 20-EDP and TPPU, which was more efficacious than the combination of 14, 15-EET and TPPU. Oxylipin profiling revealed that 19, 20-EDP and 14, 15-EET infusion affected not only most metabolites of the P450 pathway but also renal levels of prostaglandin-E2. Our findings suggest that 19, 20-EDP is a mediator of the antihypertensive effects of DHA in Ang-II-dependent hypertension. It seems that 19, 20-EDP requires metabolic stabilization with a sEH inhibitor to be most effective in lowering BP, although both TPPU and 19, 20-EDP are so effective on their own that demonstrating additive or synergistic interactions is difficult.
Collapse
Affiliation(s)
- Arzu Ulu
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, USA
| | - Kin Sing Stephen Lee
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, USA
| | - Christina Miyabe
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, USA
| | - Jun Yang
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, USA
| | - Bruce G. Hammock
- School of Veterinary Medicine, Anatomy, Physiology and Cell Biology, University of California, Davis, USA
| | - Hua Dong
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, USA
| | - Bruce D. Hammock
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, USA
| |
Collapse
|
7
|
15-PGDH/15-KETE plays a role in hypoxia-induced pulmonary vascular remodeling through ERK1/2-dependent PAR-2 pathway. Cell Signal 2014; 26:1476-88. [DOI: 10.1016/j.cellsig.2014.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 02/20/2014] [Accepted: 03/10/2014] [Indexed: 11/19/2022]
|
8
|
Shahabi P, Siest G, Visvikis-siest S. Influence of inflammation on cardiovascular protective effects of cytochrome P450 epoxygenase-derived epoxyeicosatrienoic acids. Drug Metab Rev 2013; 46:33-56. [DOI: 10.3109/03602532.2013.837916] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
Snyder NW, Revello SD, Liu X, Zhang S, Blair IA. Cellular uptake and antiproliferative effects of 11-oxo-eicosatetraenoic acid. J Lipid Res 2013; 54:3070-7. [PMID: 23945567 PMCID: PMC3793611 DOI: 10.1194/jlr.m040741] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cyclooxygenases (COX) metabolize arachidonic acid (AA) to hydroxyeicosatetraenoic acids (HETE), which can then be oxidized by dehydrogenases, such as 15-hydroxyprostaglandin dehydrogenase (15-PGDH), to oxo-eicosatetraenoic acids (ETE). We have previously established that 11-oxo-eicosatetraenoic acid (oxo-ETE) and 15-oxo-ETE are COX-2/15-PGDH-derived metabolites. Stable isotope dilution (SID) chiral liquid chromatography coupled with electron capture atmospheric pressure chemical ionization (ECAPCI) single reaction monitoring (SRM) MS has been used to quantify uptake of 11-oxo-ETE and 15-oxo-ETE in both LoVo cells and human umbilical vein endothelial cells (HUVEC). Intracellular 11-oxo- and 15-oxo-ETE concentrations reached maximum levels within 1 h and declined rapidly, with significant quantitative differences in uptake between the LoVo cells and the HUVECs. Maximal intracellular concentrations of 11-oxo-ETE were 0.02 ng/4 × 105 cells in the LoVo cells and 0.58 ng/4 × 105 cells in the HUVECs. Conversely, maximal levels of 15-oxo-ETE were 0.21 ng/4 × 105 in the LoVo cells and 0.01 ng/4 × 105 in the HUVECs. The methyl esters of both 11-oxo- and 15-oxo-ETE increased the intracellular concentrations of the corresponding free oxo-ETEs by 3- to 8-fold. 11-oxo-ETE, 15-oxo-ETE, and their methyl esters inhibited proliferation in both HUVECs and LoVo cells at concentrations of 2–10 μM, with 11-oxo-ETE methyl ester being the most potent inhibitor. Cotreatment with probenecid, an inhibitor of multiple drug resistance transporters (MRP)1 and 4, increased the antiproliferative effect of 11-oxo-ETE methyl ester in LoVo cells and increased the intracellular concentration of 11-oxo-ETE from 0.05 ng/4 × 105 cells to 0.18 ng/4 × 105 cells. Therefore, this study has established that the COX-2/15-PGDH-derived eicosanoids 11-oxo- and 15-oxo-ETE enter target cells, that they inhibit cellular proliferation, and that their inhibitory effects are modulated by MRP exporters.
Collapse
Affiliation(s)
- Nathaniel W Snyder
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania, Philadelphia, PA
| | | | | | | | | |
Collapse
|
10
|
Bruins MJ, Dane AD, Strassburg K, Vreeken RJ, Newman JW, Salem N, Tyburczy C, Brenna JT. Plasma oxylipin profiling identifies polyunsaturated vicinal diols as responsive to arachidonic acid and docosahexaenoic acid intake in growing piglets. J Lipid Res 2013; 54:1598-1607. [PMID: 23543770 DOI: 10.1194/jlr.m034918] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The dose-responsiveness of plasma oxylipins to incremental dietary intake of arachidonic acid (20:4n-6; ARA) and docosahexaenoic acid (22:6n-3; DHA) was determined in piglets. Piglets randomly received one of six formulas (n = 8 per group) from days 3 to 27 postnatally. Diets contained incremental ARA or incremental DHA levels as follows (% fatty acid, ARA/DHA): (A1) 0.1/1.0; (A2) 0.53/1.0; (A3-D3) 0.69/1.0; (A4) 1.1/1.0; (D1) 0.66/0.33; and (D2) 0.67/0.62, resulting in incremental intake (g/kg BW/day) of ARA: 0.07 ± 0.01, 0.43 ± 0.03, 0.55 ± 0.03, and 0.82 ± 0.05 at constant DHA intake (0.82 ± 0.05), or incremental intake of DHA: 0.27 ± 0.02, 0.49 ± 0.03, and 0.81 ± 0.05 at constant ARA intake (0.54 ± 0.04). Plasma oxylipin concentrations and free plasma PUFA levels were determined at day 28 using LC-MS/MS. Incremental dietary ARA intake dose-dependently increased plasma ARA levels. In parallel, ARA intake dose-dependently increased ARA-derived diols 5,6- and 14,15-dihydroxyeicosatrienoic acid (DiHETrE) and linoleic acid-derived 12,13-dihydroxyoctadecenoic acid (DiHOME), downstream metabolites of cytochrome P450 expoxygenase (CYP). The ARA epoxide products from CYP are important in vascular homeostatic maintenance. Incremental DHA intake increased plasma DHA and most markedly raised the eicosapentaenoic acid (EPA) metabolite 17,18-dihydroxyeicosatetraenoic acid (DiHETE) and the DHA metabolite 19,20-dihydroxydocosapentaenoic acid (DiHDPE). In conclusion, increasing ARA and DHA intake dose-dependently influenced endogenous n-6 and n-3 oxylipin plasma concentrations in growing piglets, although the biological relevance of these findings remains to be determined.
Collapse
Affiliation(s)
| | - Adrie D Dane
- Netherlands Metabolomics Centre (NMC), Leiden/Amsterdam Center for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Katrin Strassburg
- Netherlands Metabolomics Centre (NMC), Leiden/Amsterdam Center for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - Rob J Vreeken
- Netherlands Metabolomics Centre (NMC), Leiden/Amsterdam Center for Drug Research (LACDR), Leiden University, Leiden, The Netherlands
| | - John W Newman
- Obesity and Metabolism Research Unit, US Department of Agriculture (USDA), Agricultural Research Service (ARS), Western Human Nutrition Research Center, Davis, CA
| | | | - Cynthia Tyburczy
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - J Thomas Brenna
- Division of Nutritional Sciences, Cornell University, Ithaca, NY.
| |
Collapse
|
11
|
Wang HX, Zhang DM, Zeng XJ, Mu J, Yang H, Lu LQ, Zhang LK. Upregulation of cytochrome P450 2J3/11,12-epoxyeicosatrienoic acid inhibits apoptosis in neonatal rat cardiomyocytes by a caspase-dependent pathway. Cytokine 2012; 60:360-8. [PMID: 22717287 DOI: 10.1016/j.cyto.2012.04.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 02/10/2012] [Accepted: 04/18/2012] [Indexed: 11/19/2022]
Abstract
Short, nonlethal ischemic episodes administered to hearts directly after ischemic events (ischemic postconditioning, IPost) have an advantage over ischemic preconditioning (IPC). The endogenous cytochrome P450 2J3/11,12-epoxyeicosatrienoic acid (CYP2J3/11,12-EET) is upregulated by IPost, but not IPC, in the rat heart. The CYP epoxygenase inhibitor N-methylsulphonyl-6-(2-propargyloxyphenyl) hexanamide (MS-PPOH) reduces the cardioprotective effects of IPost, but not IPC. We proposed that upregulation of CYP2J3/11,12-EET during IPost induces cardioprotection by inhibiting cardiomyocyte apoptosis and that multiple apoptotic signals, including changes in mitochondrial membrane potential (MMP) and mitochondrial permeability transition pore (mPTP) opening, mitochondrial cytochrome c leakage, caspase-3 levels, and levels of protective kinases such as Bcl-2 and Bax, are involved in the process. Neonatal rat cardiomyocytes underwent 3-h hypoxia followed by 2-, 5-, or 6-h reoxygenation (H/R) or three cycles of 5-min reoxygenation followed by 5-min hypoxia before 90-min reoxygenation (HPost); or were transfected with pcDNA3.1-CYP2J3 for 48 h before H/R; or were treated with MS-PPOH for 10 min before HPost. For HPost alone, pcDNA3.1-CYP2J3 transfection attenuated cardiomyocyte apoptosis to 68.4% (p<0.05) of that with H/R. pcDNA3.1-CYP2J3 transfection significantly decreased MMP and inhibited mPTP opening induced by H/R, reduced mitochondrial cytochrome c leakage, cleaved caspase-3 protein expression, and increased the ratio of Bcl-2 to Bax expression. MS-PPOH abolished this effect. Therefore, upregulation of CYP2J3/11,12-EET during HPost is involved in cardioprotection by inhibiting apoptosis via a caspase-dependent pathway, and the apoptosis-suppressive effect may have important clinical implications during HPost.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/metabolism
- Amides/pharmacology
- Animals
- Animals, Newborn
- Apoptosis/drug effects
- Caspase 3/metabolism
- Cell Survival/drug effects
- Cytochrome P-450 Enzyme Inhibitors
- Cytochrome P-450 Enzyme System/metabolism
- Cytochromes c/metabolism
- Hypoxia/enzymology
- Hypoxia/pathology
- Membrane Potential, Mitochondrial/drug effects
- Mitochondrial Membrane Transport Proteins/metabolism
- Mitochondrial Permeability Transition Pore
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Oxygen/metabolism
- Rats
- Rats, Wistar
- Up-Regulation/drug effects
- bcl-2-Associated X Protein/metabolism
Collapse
Affiliation(s)
- Hong-Xia Wang
- Department of Pathophysiology, Capital Medical University, Beijing 100069, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Zhao TT, Wasti B, Xu DY, Shen L, Du JQ, Zhao SP. Soluble epoxide hydrolase and ischemic cardiomyopathy. Int J Cardiol 2011; 155:181-7. [PMID: 21704394 DOI: 10.1016/j.ijcard.2011.05.067] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/08/2011] [Accepted: 05/13/2011] [Indexed: 02/01/2023]
Abstract
BACKGROUND The development of cardiovascular disease has been linked to lowered levels of epoxyeicosatrienoic acids (EETs) in the cardiovascular system. Ischemic cardiomyopathy is caused by atherosclerotic lesions in multi-coronary arteries especially diffusive lesions, which can lead to severe myocardial dysfunction, heart enlargement, heart failure, or arrhythmia, and so on. The EETs are metabolized by the soluble epoxide hydrolase (sEH) encoded by the EPHX2 gene that has several known polymorphisms. CONTENT The EPHX2 gene polymorphism is associated with sEH catalytic activity and various cardiovascular diseases. sEH is distributed in a variety of organs and tissues and regulated by multiple factors. Research in the area has led to the presence of multiple powerful soluble epoxide hydrolase inhibitors (sEHIs), whose molecular structure and function has been optimized gradually. sEHIs increase EETs' concentration by inhibiting hydration of EETs into their corresponding vicinal diols. EETs are important signaling molecules and known as endothelium-derived hyperpolarizing factors (EDHF). sEHIs have been developed for their ability to prevent atherosclerosis, dilate the coronary artery, promote angiogenesis, ameliorate postischemic recovery of heart contractile function, decrease ischemia/reperfusion injury, modulate postischemic arrhythmia, and prevent heart failure. SUMMARY sEH is one of the etiological factors of cardiovascular diseases, and plays an important role in the progression of myocardium ischemia. This indicates that sEHIs provide a new method for the prevention and treatment of ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Ting-Ting Zhao
- Department of Cardiovascular Internal Medicine, Second Xiangya Hospital, Central South University Changsha, 410011, PR China
| | | | | | | | | | | |
Collapse
|
13
|
Edwards G, Félétou M, Weston AH. Endothelium-derived hyperpolarising factors and associated pathways: a synopsis. Pflugers Arch 2010; 459:863-79. [PMID: 20383718 DOI: 10.1007/s00424-010-0817-1] [Citation(s) in RCA: 280] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 02/22/2010] [Accepted: 02/24/2010] [Indexed: 12/29/2022]
Abstract
The term endothelium-derived hyperpolarising factor (EDHF) was introduced in 1987 to describe the hypothetical factor responsible for myocyte hyperpolarisations not associated with nitric oxide (EDRF) or prostacyclin. Two broad categories of EDHF response exist. The classical EDHF pathway is blocked by apamin plus TRAM-34 but not by apamin plus iberiotoxin and is associated with endothelial cell hyperpolarisation. This follows an increase in intracellular [Ca(2+)] and the opening of endothelial SK(Ca) and IK(Ca) channels preferentially located in caveolae and in endothelial cell projections through the internal elastic lamina, respectively. In some vessels, endothelial hyperpolarisations are transmitted to myocytes through myoendothelial gap junctions without involving any EDHF. In others, the K(+) that effluxes through SK(Ca) activates myocytic and endothelial Ba(2+)-sensitive K(IR) channels leading to myocyte hyperpolarisation. K(+) effluxing through IK(Ca) activates ouabain-sensitive Na(+)/K(+)-ATPases generating further myocyte hyperpolarisation. For the classical pathway, the hyperpolarising "factor" involved is the K(+) that effluxes through endothelial K(Ca) channels. During vessel contraction, K(+) efflux through activated myocyte BK(Ca) channels generates intravascular K(+) clouds. These compromise activation of Na(+)/K(+)-ATPases and K(IR) channels by endothelium-derived K(+) and increase the importance of gap junctional electrical coupling in myocyte hyperpolarisations. The second category of EDHF pathway does not require endothelial hyperpolarisation. It involves the endothelial release of factors that include NO, HNO, H(2)O(2) and vasoactive peptides as well as prostacyclin and epoxyeicosatrienoic acids. These hyperpolarise myocytes by opening various populations of myocyte potassium channels, but predominantly BK(Ca) and/or K(ATP), which are sensitive to blockade by iberiotoxin or glibenclamide, respectively.
Collapse
Affiliation(s)
- Gillian Edwards
- Faculty of Life Sciences, University of Manchester, CTF Building, 46 Grafton St, Manchester, M13 9NT, UK
| | | | | |
Collapse
|
14
|
Campbell WB, Fleming I. Epoxyeicosatrienoic acids and endothelium-dependent responses. Pflugers Arch 2010; 459:881-95. [PMID: 20224870 DOI: 10.1007/s00424-010-0804-6] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 02/08/2010] [Accepted: 02/12/2010] [Indexed: 12/28/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are cytochrome P450 metabolites of arachidonic acid that are produced by the vascular endothelium in response to agonists such as bradykinin and acetylcholine or physical stimuli such as shear stress or cyclic stretch. In the vasculature, the EETs have biological actions that are involved in the regulation of vascular tone, hemostasis, and inflammation. In preconstricted arteries in vitro, EETs activate calcium-activated potassium channels on vascular smooth muscle and the endothelium causing membrane hyperpolarization and relaxation. These effects are observed in a variety of arteries from experimental animals and humans; however, this is not a universal finding in all arteries. The mechanism of EET action may vary. In some arteries, EETs are released from the endothelium and are transferred to the smooth muscle where they cause potassium channel activation, hyperpolarization, and relaxation through a guanine nucleotide binding protein-coupled mechanism or transient receptor potential (TRP) channel activation. In other arteries, EETs activate TRP channels on the endothelium to cause endothelial hyperpolarization that is transferred to the smooth muscle by gap junctions or potassium ion. Some arteries use a combination of mechanisms. Acetylcholine and bradykinin increase blood flow in dogs and humans that is inhibited by potassium channel blockers and cytochrome P450 inhibitors. Thus, the EETs are endothelium-derived hyperpolarizing factors mediating a portion of the relaxations to acetylcholine, bradykinin, shear stress, and cyclic stretch and regulate vascular tone in vitro and in vivo.
Collapse
Affiliation(s)
- William B Campbell
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| | | |
Collapse
|
15
|
Lin JHC, Kobari Y, Zhu Y, Stemerman MB, Pritchard KA. Human Umbilical Vein Endothelial Cells Express P450 2C8 mRNA: Cloning of Endothelial P450 Epoxygenase. ACTA ACUST UNITED AC 2009. [DOI: 10.3109/10623329609024698] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
16
|
Birkenmeier K, Staudt A, Schunck WH, Janke I, Labitzke C, Prange T, Trimpert C, Krieg T, Landsberger M, Stangl V, Felix SB. COX-2-dependent and potentially cardioprotective effects of negative inotropic substances released after ischemia. Am J Physiol Heart Circ Physiol 2007; 293:H2148-54. [PMID: 17660401 DOI: 10.1152/ajpheart.00074.2007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During reperfusion, cardiodepressive factors are released from isolated rat hearts after ischemia. The present study analyzes the mechanisms by which these substances mediate their cardiodepressive effect. After 10 min of global stop-flow ischemia, rat hearts were reperfused and coronary effluent was collected over a period of 30 s. We tested the effect of this postischemic effluent on systolic cell shortening and Ca(2+) metabolism by application of fluorescence microscopy of field-stimulated rat cardiomyocytes stained with fura-2 AM. Cells were preincubated with various inhibitors, e.g., the cyclooxygenase (COX) inhibitor indomethacin, the COX-2 inhibitors NS-398 and lumiracoxib, the COX-1 inhibitor SC-560, and the potassium (ATP) channel blocker glibenclamide. Lysates of cardiomyocytes and extracts from whole rat hearts were tested for expression of COX-2 with Western blot analysis. As a result, in contrast to nonischemic effluent (control), postischemic effluent induced a reduction of Ca(2+) transient and systolic cell shortening in the rat cardiomyocytes (P < 0.001 vs. control). After preincubation of cells with indomethacin, NS-398, and lumiracoxib, the negative inotropic effect was attenuated. SC-560 did not influence the effect of postischemic effluent. The inducibly expressed COX-2 was detected in cardiomyocytes prepared for fluorescence microscopy. The effect of postischemic effluent was eliminated with applications of glibenclamide. Furthermore, postischemic effluent significantly reduced the intracellular diastolic and systolic Ca(2+) increase (P < 0.01 vs. control). In conclusion, the cardiodepressive effect of postischemic effluent is COX-2 dependent and protective against Ca(2+) overload in the cells.
Collapse
|
17
|
Xiao YF. Cyclic AMP-dependent modulation of cardiac L-type Ca2+ and transient outward K+ channel activities by epoxyeicosatrienoic acids. Prostaglandins Other Lipid Mediat 2007; 82:11-8. [PMID: 17164128 DOI: 10.1016/j.prostaglandins.2006.05.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Accepted: 05/11/2006] [Indexed: 10/24/2022]
Abstract
The three major enzyme systems, cyclo-oxygenase, lipoxygenase, and cytochrome P450 (P450/CYP), metabolize arachidonic acid (AA) to biologically active compounds. P450 and its associated monooxygenase activities have been identified in mammalian cardiac tissue, including humans. The four regioisomeric eicosanoids, 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs) of AA metabolites derived by P450 epoxygenases have shown to possess potent biological effects in numerous tissues. In the coronary circulation the EETs are leading candidates for endothelial-derived hyperpolarizing factors that hyperpolarize vascular smooth muscle cells by opening Ca2+-activated K+ channels. Recently, the effects of the CYP pathways and their metabolites on cardiac ischemia-reperfusion injury have been evaluated in animal models. Some of these AA metabolites are cardioprotective and some are detrimental. However, EETs appear to be cardioprotective in CYP2J2 transgenic mice and in a canine ischemic model. Multiple effects of EETs on cardiac ion channels have been observed, such as activation of ATP-sensitive K+ channels and L-type Ca2+ channels in cardiomyocytes and inhibition of cardiac Na+ channels and L-type Ca2+ channels reconstructed in planar lipid bilayers. This brief review summarizes EET-induced modulation of cardiac ion channels.
Collapse
Affiliation(s)
- Yong-Fu Xiao
- Cardiac Rhythm Disease Management, Medtronic Inc., 7000 Central Avenue NE, B252, Minneapolis, MN 55432-3576, and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA.
| |
Collapse
|
18
|
Aggarwal NT, Holmes BB, Cui L, Viita H, Yla-Herttuala S, Campbell WB. Adenoviral expression of 15-lipoxygenase-1 in rabbit aortic endothelium: role in arachidonic acid-induced relaxation. Am J Physiol Heart Circ Physiol 2006; 292:H1033-41. [PMID: 17040969 DOI: 10.1152/ajpheart.00624.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endothelium-dependent vasorelaxation of the rabbit aorta is mediated by either nitric oxide (NO) or arachidonic acid (AA) metabolites from cyclooxygenase (COX) and 15-lipoxygenase (15-LO) pathways. 15-LO-1 metabolites of AA, 11,12,15-trihydroxyeicosatrienoic acid (THETA), and 15-hydroxy-11,12-epoxyeicosatrienoic acid (HEETA) cause concentration-dependent relaxation. We tested the hypothesis that in the 15-LO pathway of AA metabolism, 15-LO-1 is sufficient and is the rate-limiting step in inducing relaxations in rabbit aorta. Aorta and rabbit aortic endothelial cells were treated with adenoviruses containing human 15-LO-1 cDNA (Ad-15-LO-1) or beta-galactosidase (Ad-beta-Gal). Ad-15-LO-1-transduction increased the expression of a 75-kDa protein corresponding to 15-LO-1, detected by immunoblotting with an anti-human15-LO-1 antibody, and increased the production of HEETA and THETA from [(14)C]AA. Immunohistochemical studies on Ad-15-LO-1-transduced rabbit aorta showed the presence of 15-LO-1 in endothelial cells. Ad-15-LO-1-treated aortic rings showed enhanced relaxation to AA (max 31.7 +/- 3.2%) compared with Ad-beta-Gal-treated (max 12.7 +/- 3.2%) or control nontreated rings (max 13.1 +/- 1.6%) (P < 0.01). The relaxations in Ad-15-LO-1-treated aorta were blocked by the 15-LO inhibitor cinnamyl-3,4-dihydroxy-a-cyanocinnamate. Overexpression of 15-LO-1 in the rabbit aortic endothelium is sufficient to increase the production of the vasodilatory HEETA and THETA and enhance the relaxations to AA. This confirms the role of HEETA and THETA as endothelium-derived relaxing factors.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/metabolism
- Adenoviridae/genetics
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Arachidonate 15-Lipoxygenase/biosynthesis
- Arachidonate 15-Lipoxygenase/genetics
- Arachidonic Acid/metabolism
- Arachidonic Acid/pharmacology
- Cells, Cultured
- Chromatography, High Pressure Liquid
- Dose-Response Relationship, Drug
- Endothelial Cells/metabolism
- Genetic Vectors
- Hydroxyeicosatetraenoic Acids/metabolism
- Immunohistochemistry
- In Vitro Techniques
- Lipoxygenase Inhibitors/pharmacology
- Molecular Structure
- Rabbits
- Tandem Mass Spectrometry
- Transduction, Genetic
- Vasodilation/drug effects
- Vasodilator Agents/metabolism
- Vasodilator Agents/pharmacology
Collapse
Affiliation(s)
- Nitin T Aggarwal
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
19
|
Seubert JM, Sinal CJ, Graves J, DeGraff LM, Bradbury JA, Lee CR, Goralski K, Carey MA, Luria A, Newman JW, Hammock BD, Falck JR, Roberts H, Rockman HA, Murphy E, Zeldin DC. Role of soluble epoxide hydrolase in postischemic recovery of heart contractile function. Circ Res 2006; 99:442-50. [PMID: 16857962 PMCID: PMC2072806 DOI: 10.1161/01.res.0000237390.92932.37] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cytochrome P450 epoxygenases metabolize arachidonic acid to epoxyeicosatrienoic acids (EETs) which are converted to dihydroxyeicosatrienoic acids (DHETs) by soluble epoxide hydrolase (Ephx2, sEH). To examine the functional role of sEH in the heart, mice with targeted disruption of the Ephx2 gene were studied. Hearts from sEH null mice have undetectable levels of sEH mRNA and protein and cannot convert EETs to DHETs. sEH null mice have normal heart anatomy and basal contractile function, but have higher fatty acid epoxide:diol ratios in plasma and cardiomyocyte cell culture media compared with wild type (WT). sEH null hearts have improved recovery of left ventricular developed pressure (LVDP) and less infarction compared with WT hearts after 20 minutes ischemia. Perfusion with the putative EET receptor antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (10 to 100 nmol/L) before ischemia abolishes this cardioprotective phenotype. Inhibitor studies demonstrate that perfusion with phosphatidylinositol-3 kinase (PI3K) inhibitors wortmannin (200 nmol/L) or LY294002 (5 micromol/L), the ATP-sensitive K+ channel (K(ATP)) inhibitor glibenclamide (1 micromol/L), the mitochondrial K(ATP) (mitoK(ATP)) inhibitor 5-hydroxydecanoate (100 to 200 micromol/L), or the Ca2+-sensitive K+ channel (K(Ca)) inhibitor paxilline (10 micromol/L) abolishes the cardioprotection in sEH null hearts. Consistent with increased activation of the PI3K cascade, sEH null mice exhibit increased cardiac expression of glycogen synthase kinase-3beta (GSK-3beta) phospho-protein after ischemia. Together, these data suggest that targeted disruption of sEH increases the availability of cardioprotective EETs that work by activating PI3K signaling pathways and K+ channels.
Collapse
Affiliation(s)
- John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The importance of endothelium-derived nitric oxide in coronary vascular regulation is well-established and the loss of this vasodilator compound is associated with endothelial dysfunction, tissue hypoperfusion and atherosclerosis. Numerous studies indicate that the endothelium produces another class of compounds, the epoxyeicosatrienoic acids (EETs), which may partially compensate for the loss of nitric oxide in cardiovascular disease. The EETs are endogenous lipids which are derived through the metabolism of arachidonic acid by cytochrome P450 epoxygenase enzymes. Also, EETs hyperpolarize vascular smooth muscle and induce dilation of coronary arteries and arterioles, and therefore may be endogenous mediators of coronary vasomotor tone and myocardial perfusion. In addition, EETs have been shown to inhibit vascular smooth muscle migration, decrease inflammation, inhibit platelet aggregation and decrease adhesion molecule expression, therefore representing an endogenous protective mechanism against atherosclerosis. Endogenous EETs are degraded to less active dihydroxyeicosatrienoic acids by soluble epoxide hydrolase. Pharmacological inhibition of soluble epoxide hydrolase has received considerable attention as a potential approach to enhance EET-mediated vascular protection, and several compounds have appeared promising in recent animal studies. The present review discusses the emerging role of EETs in coronary vascular function, as well as recent advancements in the development of pharmacological agents to enhance EET bioavailability.
Collapse
Affiliation(s)
- B T Larsen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Veterans Administration Medical Center, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
21
|
Benter IF, Francis I, Cojocel C, Juggi JS, Yousif MHM, Canatan H. Contribution of cytochrome P450 metabolites of arachidonic acid to hypertension and end-organ damage in spontaneously hypertensive rats treated with l-NAME. ACTA ACUST UNITED AC 2005; 25:143-54. [PMID: 16176445 DOI: 10.1111/j.1474-8673.2005.00343.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
1 The purpose of this study was to examine the effect of inhibition of the formation of cytochrome P450 metabolites of arachidonic acid with 1-aminobenzotriazole (ABT) on the development of hypertension and end-organ damage in spontaneously hypertensive rats (SHR) chronically treated with nitric oxide synthesis inhibitor L-NAME (SHR-L-NAME). 2 Administration of L-NAME in drinking water (80 mg l(-1)) to SHR for 3 weeks significantly elevated mean arterial blood pressure (MABP) (223 +/- 4 mmHg) as compared to SHR controls drinking regular water (165 +/- 3 mmHg). The administration of ABT (50 mg kg(-1) i.p. alt diem) for 6 days significantly attenuated elevation of blood pressure in SHR-L-NAME (204 +/- 4 mmHg). 3 L-NAME-induced increase in urine volume and protein was significantly lower in ABT-treated animals. 4 The impaired vascular responsiveness to noradrenaline and isoprenaline in the perfused mesenteric vascular bed of SHR-L-NAME-treated animals was significantly improved by ABT treatment. 5 Morphological studies of the kidneys and hearts showed that treatment with ABT minimized the extensive arterial fibrinoid necrosis, arterial thrombosis, significant narrowing of arterial lumen with marked arterial hyperplastic arterial changes that were observed in vehicle treated SHR-L-NAME. 6 In isolated perfused hearts, recovery of left ventricular function from 40 min of global ischaemia was significantly better in ABT-treated SHR-L-NAME. 7 These results suggest that in hypertensive individuals with endothelial dysfunction and chronic NO deficiency, inhibitors of 20-HETE synthesis may be able to attenuate development of high blood pressure and end-organ damage.
Collapse
Affiliation(s)
- I F Benter
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait Univesity, P.O. box 24923, Safat 13110, Kuwait
| | | | | | | | | | | |
Collapse
|
22
|
Fang X, Hu S, Xu B, Snyder GD, Harmon S, Yao J, Liu Y, Sangras B, Falck JR, Weintraub NL, Spector AA. 14,15-Dihydroxyeicosatrienoic acid activates peroxisome proliferator-activated receptor-alpha. Am J Physiol Heart Circ Physiol 2005; 290:H55-63. [PMID: 16113065 DOI: 10.1152/ajpheart.00427.2005] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Epoxyeicosatrienoic acids (EETs), lipid mediators synthesized from arachidonic acid by cytochrome P-450 epoxygenases, are converted by soluble epoxide hydrolase (SEH) to the corresponding dihydroxyeicosatrienoic acids (DHETs). Originally considered as inactive degradation products of EETs, DHETs have biological activity in some systems. Here we examined the capacity of EETs and DHETs to activate peroxisome proliferator-activated receptor-alpha (PPARalpha). We find that among the EET and DHET regioisomers, 14,15-DHET is the most potent PPARalpha activator in a COS-7 cell expression system. Incubation with 10 microM 14,15-DHET produced a 12-fold increase in PPARalpha-mediated luciferase activity, an increase similar to that produced by the PPARalpha agonist Wy-14643 (20 microM). Although 10 microM 14,15-EET produced a threefold increase in luciferase activity, this was abrogated by the SEH inhibitor dicyclohexylurea. 14-Hexyloxytetradec-5(Z)-enoic acid, a 14,15-EET analog that cannot be converted to a DHET, did not activate PPARalpha. However, PPARalpha was activated by 2-(14,15-epoxyeicosatrienoyl)glycerol, which was hydrolyzed and the released 14,15-EET converted to 14,15-DHET. COS-7 cells incorporated 14,15-[3H]DHET from the medium, and the cells also retained a small amount of the DHET formed during incubation with 14,15-[3H]EET. Binding studies indicated that 14,15-[3H]DHET binds to the ligand binding domain of PPARalpha with a Kd of 1.4 microM. Furthermore, 14,15-DHET increased the expression of carnitine palmitoyltransferase 1A, a PPARalpha-responsive gene, in transfected HepG2 cells. These findings suggest that 14,15-DHET, produced from 14,15-EET by the action of SEH, may function as an endogenous activator of PPARalpha.
Collapse
Affiliation(s)
- Xiang Fang
- Dept. of Biochemistry, Univ. of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Taniguchi J, Honda H, Shibusawa Y, Iwata T, Notoya Y. Alteration in endothelial function and modulation by treatment with pioglitazone in rabbit renal artery from short-term hypercholesterolemia. Vascul Pharmacol 2005; 43:47-55. [PMID: 15953770 DOI: 10.1016/j.vph.2005.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2004] [Revised: 03/07/2005] [Accepted: 03/24/2005] [Indexed: 11/25/2022]
Abstract
The present study was undertaken to investigate endothelial function and epoxyeicosatrienoic acids (EETs), which is a cytochrome P-450 monooxygenase (CYP) metabolite and one of the candidates as an endothelium-derived hyperpolarizing factor (EDHF) in the renal artery isolated from short-term hypercholesterolemic rabbits, and also to characterize the effects of pioglitazone on it. Rabbits were fed normal, 0.5% cholesterol chow, or 0.5% cholesterol chow plus 300 ppm pioglitazone for 5 weeks. The tension of isolated renal artery rings was measured isometrically. Serum lipid levels were measured and morphometric analysis was performed. EET contents in the renal artery were also determined. The cholesterol chow diet for 5 weeks increased serum lipid levels, and pioglitazone had no influence on it. In the phenylephrine precontracted renal artery, the cholesterol chow did not affect acetylcholine-induced relaxation. The N(G)-nitro-l-arginine- and indomethacin-resistant endothelium-dependent relaxation induced by acetylcholine was significantly enhanced in rabbits receiving the cholesterol chow as compared to rabbits receiving the control diet, and pioglitazone normalized it. The resistant part of acetylcholine-induced relaxation was significantly inhibited when the renal artery was treated with charybdotoxin, an inhibitor of large- and intermediate-conductance Ca(2+)-activated K(+) channels, or N,N-di-ethylaminoethyl-2,2-diphenylvalerate hydrochloride (SKF 525a), a nonselective CYP inhibitor, and it was significantly inhibited by sulfaphenazole, a selective CYP2C9 inhibitor in rabbits receiving only the cholesterol chow. In KCl-precontracted renal artery, the cholesterol chow inhibited acetylcholine-induced relaxation and pioglitazone normalized it. The cholesterol chow increased the production of EETs and reduced nitrate/nitrite contents in the renal artery, and pioglitazone strongly suppressed them. These results suggest that the EETs may be one of the EDHFs in the rabbit renal artery and beneficial effects of pioglitazone on alterations in endothelial function induced by cholesterol feeding are due, in part, to the protective action on the nitric oxide system and/or the suppression of increased production of EETs.
Collapse
Affiliation(s)
- Jun Taniguchi
- Department of Internal Medicine, Tokyo Medical University, 6-7-1, Nishi-shinjuku, Shinjuku, Tokyo 160-0023, Japan
| | | | | | | | | |
Collapse
|
24
|
Li F, Malik KU. Angiotensin II-induced Akt activation is mediated by metabolites of arachidonic acid generated by CaMKII-stimulated Ca2+-dependent phospholipase A2. Am J Physiol Heart Circ Physiol 2005; 288:H2306-16. [PMID: 15637121 DOI: 10.1152/ajpheart.00571.2004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin II (ANG II) promotes vascular smooth muscle cell (VSMC) growth, stimulates Ca2+-calmodulin (CaM)-dependent kinase II (CaMKII), and activates cytosolic Ca2+-dependent phospholipase A2(cPLA2), which releases arachidonic acid (AA). ANG II also generates H2O2and activates Akt, which have been implicated in ANG II actions in VSMC. This study was conducted to investigate the relationship of these signaling molecules to Akt activation in rat aortic VSMC. ANG II increased Akt activity, as measured by its phosphorylation at serine-473. ANG II (200 nM)-induced Akt phosphorylation was decreased by extracellular Ca2+depletion and calcium chelator EGTA and inhibitors of CaM [ N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide] and CaMKII {(2-[ N-(2-hydroxyethyl)]- N-(4-me-thoxybenzenesulfonyl)]amino- N-(4-chlorocinnamyl)- N-methylbenzyl-amine)}. cPLA2inhibitor pyrrolidine-1, antisense oligonucleotide, and retroviral small interfering RNA also attenuated ANG II-induced Akt phosphorylation. AA increased Akt phosphorylation, and AA metabolism inhibitor 5,8,11,14-eicosatetraynoic acid (ETYA) blocked ANG II- and AA-induced Akt phosphorylation (199.03 ± 27.91% with ANG II and 110.18 ± 22.40% with ETYA + ANG II; 405.00 ± 86.22% with AA and 153.97 ± 63.26% with ETYA + AA). Inhibitors of lipoxygenase (cinnamyl-3,4-dihydroxy-α-cyanocinnamate) and cytochrome P-450 (ketoconazole and 17-octadecynoic acid), but not cyclooxygenase (indomethacin), attenuated ANG II- and AA-induced Akt phosphorylation. Furthermore, 5( S)-, 12( S)-, 15( S)-, and 20-hydroxyeicosatetraenoic acids and 5,6-, 11,12-, and 14,15-epoxyeicosatrienoic acids increased Akt phosphorylation. Catalase inhibited ANG II-increased H2O2production but not Akt phosphorylation. Oleic acid, which also increased H2O2production, did not cause Akt phosphorylation. These data suggest that ANG II-induced Akt activation in VSMC is mediated by AA metabolites, most likely generated via lipoxygenase and cytochrome P-450 consequent to AA released by CaMKII-activated cPLA2and independent of H2O2production.
Collapse
Affiliation(s)
- Fang Li
- Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | |
Collapse
|
25
|
Tanaka M, Kanatsuka H, Ong BH, Tanikawa T, Uruno A, Komaru T, Koshida R, Shirato K. Cytochrome P-450 metabolites but not NO, PGI2, and H2O2 contribute to ACh-induced hyperpolarization of pressurized canine coronary microvessels. Am J Physiol Heart Circ Physiol 2003; 285:H1939-48. [PMID: 12881219 DOI: 10.1152/ajpheart.00190.2003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The endothelium-dependent hyperpolarization of cells has a crucial role in regulating vascular tone, especially in microvessels. Nitric oxide (NO) and prostacyclin (PGI2), in addition to endothelium-derived hyperpolarizing factor (EDHF), have been reported to hyperpolarize vascular smooth muscle in several organs. Studies have reported the hyperpolarizing effects of these factors are increased by a stretch in large coronary arteries. EDHF has not yet been identified and cytochrome P-450 metabolites and H2O2 are candidates for EDHF. With the use of the membrane potential-sensitive fluorescent dye bis-(1,3-dibutylbarbituric acid)trimethione oxonol [DiBAC4(3)], we examined whether NO, PGI2, cytochrome P-450 metabolites, and H2O2 contribute to ACh-induced hyperpolarization in pressurized coronary microvessels. Canine coronary arterial microvessels (60-356 mum internal diameter) were cannulated and pressurized at 60 cmH2O in a vessel chamber perfused with physiological salt solution containing DiBAC4(3). Fluorescence intensity and diameter were measured on a computer. There was a linear correlation between changes in the fluorescence intensity and membrane potential. ACh significantly decreased the fluorescence intensity (hyperpolarization) of the microvessels without any inhibitors. Endothelial damage caused by air perfusion abolished the ACh-induced decrease in fluorescence intensity. The inhibitors of NO synthase and cyclooxygenase did not affect the ACh-induced decreases in the fluorescence intensity. The addition of 17-octadecynoic acid, a cytochrome P-450 monooxygenase inhibitor, to those inhibitors significantly attenuated the ACh-induced decreases in fluorescence intensity, whereas catalase, an enzyme that dismutates H2O2 to form water and oxygen, did not. Furthermore, catalase did not affect the vasodilation produced by ACh. These results indicate that NO and PGI2 do not contribute to the ACh-induced hyperpolarization and that the cytochrome P-450 metabolites but not H2O2 are involved in EDHF-mediated hyperpolarization in canine coronary arterial microvessels.
Collapse
Affiliation(s)
- Mitsuaki Tanaka
- Department of Comprehensive Medicine, Tohoku University School of Medicine, 1-1 Seiryo-machi, Aobaku, Sendai 980-8574, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Falck JR, Krishna UM, Reddy YK, Kumar PS, Reddy KM, Hittner SB, Deeter C, Sharma KK, Gauthier KM, Campbell WB. Comparison of vasodilatory properties of 14,15-EET analogs: structural requirements for dilation. Am J Physiol Heart Circ Physiol 2003; 284:H337-49. [PMID: 12388250 DOI: 10.1152/ajpheart.00831.2001] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epoxyeicosatrienoic acids (EETs) are endothelium-derived eicosanoids that activate potassium channels, hyperpolarize the membrane, and cause relaxation. We tested 19 analogs of 14,15-EET on vascular tone to determine the structural features required for activity. 14,15-EET relaxed bovine coronary arterial rings in a concentration-related manner (ED(50) = 10(-6) M). Changing the carboxyl to an alcohol eliminated dilator activity, whereas 14,15-EET-methyl ester and 14,15-EET-methylsulfonimide retained full activity. Shortening the distance between the carboxyl and epoxy groups reduced the agonist potency and activity. Removal of all three double bonds decreased potency. An analog with a Delta8 double bond had full activity and potency. However, the analogs with only a Delta5 or Delta11 double bond had reduced potency. Conversion of the epoxy oxygen to a sulfur or nitrogen resulted in loss of activity. 14(S),15(R)-EET was more potent than 14(R),15(S)-EET, and 14,15-(cis)-EET was more potent than 14,15-(trans)-EET. These studies indicate that the structural features of 14,15-EET required for relaxation of the bovine coronary artery include a carbon-1 acidic group, a Delta8 double bond, and a 14(S),15(R)-(cis)-epoxy group.
Collapse
Affiliation(s)
- J R Falck
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee 53226, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Quignard JF, Chataigneau T, Corriu C, Edwards G, Weston A, Félétou M, Vanhoutte PM. Endothelium-dependent hyperpolarization to acetylcholine in carotid artery of guinea pig: role of lipoxygenase. J Cardiovasc Pharmacol 2002; 40:467-77. [PMID: 12198333 DOI: 10.1097/00005344-200209000-00016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This study was designed to determine whether lipoxygenase-dependent metabolites of arachidonic acid are involved in the endothelium-dependent hyperpolarization of the guinea pig carotid artery. The membrane potential of vascular smooth muscle cells was measured with intracellular microelectrodes and potassium channels were studied on freshly isolated cells with the patch-clamp technique. Acetylcholine-induced hyperpolarizations were not affected by arachidonyl trifluoromethyl ketone (AACOCF3), quinacrine (phospholipase A inhibitors), or eicosatetraenoic acid (nonspecific inhibitor of lipoxygenase, cytochrome P450, and cyclooxygenase). In contrast, cinnamyl-3,4 dihydroxy-alpha-cyanocinnamate (CDC) and AA861 (lipoxygenase inhibitors) as well as 1-(6-(17beta-3-methoxyestra-1,3,5(10)-trien-17-yl)amino) hexyl)-1H-pyrrole-2,5-dione (U-73122) (phospholipase C inhibitor) produced a significant inhibition of the hyperpolarization. An opener of intermediate conductance calcium-activated potassium channels, 1-ethyl-2-benzamidazolinone (1-EBIO), induced a hyperpolarization that was unaffected by AACOCF3, CDC, AA861, or U-73122 but was inhibited by charybdotoxin. (+/-)12-hydroxy-eicosatetraenoic acid (12-HETE) and 12(S)-hydroperoxy-eicosatetraenoic acid (12(S)-HpETE) did not induce any significant changes in membrane potential. CDC inhibited the voltage-gated potassium current and increased the large conductance calcium-activated potassium current whereas AA861 inhibited both potassium currents. These results confirm that, in the isolated carotid artery of the guinea pig, stimulation of endothelial muscarinic receptors involves phospholipase C activation and indicate that the activation of phospholipase A2 and the release of lipoxygenase metabolites is unlikely to explain endothelium-dependent hyperpolarization.
Collapse
Affiliation(s)
- Jean-François Quignard
- Département Diabète et Maladies Métaboliques, Institut de Recherches Servier, Suresnes, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Fuloria M, Smith TK, Aschner JL. Role of 5,6-epoxyeicosatrienoic acid in the regulation of newborn piglet pulmonary vascular tone. Am J Physiol Lung Cell Mol Physiol 2002; 283:L383-9. [PMID: 12114200 DOI: 10.1152/ajplung.00444.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the responses of newborn piglet pulmonary resistance arteries (PRAs) to 5,6-epoxyeicosatrienoic acid (5,6-EET), a cytochrome P-450 metabolite of arachidonic acid. In PRAs preconstricted with a thromboxane A(2) mimetic, 5,6-EET caused a concentration-dependent dilation. This dilation was partially inhibited by the combination of charybdotoxin (CTX) and apamin, inhibitors of large and small conductance calcium-dependent potassium (K(Ca)) channels, and was abolished by depolarization of vascular smooth muscle with KCl. Disruption of the endothelium significantly attenuated the dilation, suggesting involvement of one or more endothelium-derived vasodilator pathways in this response. The dilation was partially inhibited by nitro-L-arginine (L-NA), an inhibitor of nitric oxide synthase (NOS), but was unaffected by indomethacin, a cyclooxygenase (COX) inhibitor. The combined inhibition of NOS and K(Ca) channels with L-NA, CTX, and apamin abolished 5,6-EET-mediated dilation. Similarly, combined inhibition of NOS and COX abolished the response. We conclude that 5,6-EET is a potent vasodilator in newborn piglet PRAs. This dilation is mediated by redundant pathways that include release of nitric oxide (NO) and COX metabolites and activation of K(Ca) channels. The endothelium dependence of this response suggests that 5,6-EET is not itself an endothelium-derived hyperpolarizing factor (EDHF) but may induce the release of one or more endothelium-derived relaxing factors, such as NO and/or EDHF.
Collapse
Affiliation(s)
- Mamta Fuloria
- Department of Pediatrics, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA.
| | | | | |
Collapse
|
29
|
Pratt PF, Rosolowsky M, Campbell WB. Effects of epoxyeicosatrienoic acids on polymorphonuclear leukocyte function. Life Sci 2002; 70:2521-33. [PMID: 12173415 DOI: 10.1016/s0024-3205(02)01533-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
During periods of ischemia and vascular injury, factors are released which recruit monocytes and polymorphonuclear leukocytes (PMNs) to the site of injury by promoting adherence to the endothelium and transmigration across the endothelial cell (EC) layer. During coronary artery stenosis, we have shown that the endothelium-derived, cytochrome P450 metabolites of arachidonic acid, the epoxyeicosatrienoic acids (EETs), are elevated. Therefore, we examined if the EETs could stimulate PMN adherence to cultured ECs. Pretreatment of ECs with EETs for either 30 min or 4 hr did not alter the adherence of 51Cr-labelled PMNs to ECs while phorbol myristate acetate (PMA) produced a 4-fold increase in PMN adherence. The combination of EETs and PMA did not significantly augment or diminish PMA-induced PMN adherence to ECs. When ECs and 51Cr-labelled PMNs were coincubated, treatment with EETs alone did not alter PMN adherence. However, when EETs and PMA were added together during the coincubation of ECs and 51Cr-labelled PMNs, the EETs produced a concentration-related decrease in PMN adherence. Microscopic analysis of the culture media bathing the cells revealed aggregates of the labeled PMNs. We examined the effects of the EETs on PMN aggregation. 8,9-EET (10, 50, and 100 microM) increased PMN aggregation (7 +/- 3, 35 +/- 10, and 65 +/- 11%) and intracellular calcium by 1.7 +/- 0.5, 4.7 +/- 1.4, and 6.8 +/- 2.3-fold above basal. 5,6-, 11,2- and 14,15-EETs also stimulated aggregation. FMLP stimulated the production of superoxide; however, 8,9-EET did not. These observations indicate that the decrease in PMN adherence observed in the coincubation experiment is the result of EET-induced PMN aggregation. Given the increase in EET production during coronary artery stenosis, these data may provide insight into their potential biological significance during myocardial ischemia and vascular injury.
Collapse
Affiliation(s)
- Phillip F Pratt
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | | |
Collapse
|
30
|
Abstract
Recent studies have indicated that arachidonic acid is primarily metabolized by cytochrome P-450 (CYP) enzymes in the brain, lung, kidney, and peripheral vasculature to 20-hydroxyeicosatetraenoic acid (20-HETE) and epoxyeicosatrienoic acids (EETs) and that these compounds play critical roles in the regulation of renal, pulmonary, and cardiac function and vascular tone. EETs are endothelium-derived vasodilators that hyperpolarize vascular smooth muscle (VSM) cells by activating K(+) channels. 20-HETE is a vasoconstrictor produced in VSM cells that reduces the open-state probability of Ca(2+)-activated K(+) channels. Inhibitors of the formation of 20-HETE block the myogenic response of renal, cerebral, and skeletal muscle arterioles in vitro and autoregulation of renal and cerebral blood flow in vivo. They also block tubuloglomerular feedback responses in vivo and the vasoconstrictor response to elevations in tissue PO(2) both in vivo and in vitro. The formation of 20-HETE in VSM is stimulated by angiotensin II and endothelin and is inhibited by nitric oxide (NO) and carbon monoxide (CO). Blockade of the formation of 20-HETE attenuates the vascular responses to angiotensin II, endothelin, norepinephrine, NO, and CO. In the kidney, EETs and 20-HETE are produced in the proximal tubule and the thick ascending loop of Henle. They regulate Na(+) transport in these nephron segments. 20-HETE also contributes to the mitogenic effects of a variety of growth factors in VSM, renal epithelial, and mesangial cells. The production of EETs and 20-HETE is altered in experimental and genetic models of hypertension, diabetes, uremia, toxemia of pregnancy, and hepatorenal syndrome. Given the importance of this pathway in the control of cardiovascular function, it is likely that CYP metabolites of arachidonic acid contribute to the changes in renal function and vascular tone associated with some of these conditions and that drugs that modify the formation and/or actions of EETs and 20-HETE may have therapeutic benefits.
Collapse
Affiliation(s)
- Richard J Roman
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| |
Collapse
|
31
|
Sun SY, Wang W, Schultz HD. Activation of cardiac afferents by arachidonic acid: relative contributions of metabolic pathways. Am J Physiol Heart Circ Physiol 2001; 281:H93-H104. [PMID: 11406473 DOI: 10.1152/ajpheart.2001.281.1.h93] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arachidonic acid (AA) is metabolized via cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P-450 (CP450) pathways to a variety of bioactive products. The sensitivity of cardiac afferent endings to AA and its metabolites, especially those derived from LOX and CP450 pathways, is currently unclear. We examined AA-induced activation of cardiac vagal chemosensitive afferents in non- and postischemic hearts in rats and evaluated the relative contributions of the three metabolic pathways to the effects. Epicardial application of AA activated the cardiac afferents dose dependently in both nonischemic and postischemic hearts, with afferent responses greater in the latter condition. In nonischemic hearts, the afferent response to AA was abolished only after simultaneous administration of indomethacin and 17-octadecynoic acid (COX and CP450 inhibitors, respectively). Nordihydroguaiaretic acid (a LOX inhibitor) had no effect on the afferent response to AA. In postischemic hearts, abolition of the afferent response to AA required simultaneous blockade of all three pathways. None of the AA metabolic inhibitors affected resting activity of cardiac afferents in nonischemic hearts, but each suppressed afferent activity during ischemia-reperfusion. Most COX metabolites, CP450 metabolites, and 5-LOX metabolites tested were capable of activating cardiac afferents. The 12-LOX metabolites and 15-LOX metabolites had no effect on afferent activity. These data indicate that in the nonischemic heart, basal AA metabolism does not contribute to resting afferent activity, but AA is capable of activating cardiac afferents via COX and CP450 but not LOX pathways. During ischemia-reperfusion, all three metabolic pathways contribute to activation of cardiac vagal afferents with an enhanced responsiveness to AA. Our results suggest that induction of the 5-LOX pathway contributes to the enhanced sensitivity of cardiac vagal afferents to AA in the ischemic condition.
Collapse
Affiliation(s)
- S Y Sun
- Department of Physiology and Biophysics, University of Nebraska College of Medicine, Nebraska Medical Center, Omaha, Nebraska 68198-4575, USA
| | | | | |
Collapse
|
32
|
Nourooz-Zadeh J, Smith CC, Betteridge DJ. Measures of oxidative stress in heterozygous familial hypercholesterolaemia. Atherosclerosis 2001; 156:435-41. [PMID: 11395041 DOI: 10.1016/s0021-9150(00)00677-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Familial hypercholesterolaemia (FH) may be associated with increased oxidative stress which may contribute to atherogenesis. Plasma lipid hydroperoxides (ROOHs), 8-epi PGF(2alpha) and alpha-tocopherol were measured in normal subjects and in newly referred heterozygous FH patients and used as indices of oxidative stress. ROOH levels were higher (+16%), albeit non-significantly, in FH patients than in controls subjects (4.4+/-0.3 vs. 3.8+/-0.3 micromol/l; n=51 and 40, respectively). 8-epi PGF(2alpha) levels were significantly greater (+56%) in the FH patients than in controls (0.43+/-0.06 vs. 0.27+/-0.05 nmol/l; P<0.05; n=14 and 16, respectively). FH patients with vascular disease had significantly higher (+32%) levels of ROOH compared with patients without vascular disease (4.9+/-0.40 vs. 3.7+/-0.33 micromol/l; P<0.05; n=27 and 24, respectively). Similarly, 8-epi PGF(2alpha) concentrations were higher (+100%) in the FH patients with vascular disease than in those without it (0.6+/-0.08 vs. 0.3+/-0.10 nmol/l; P<0.05; n=6 and 8, respectively). Absolute alpha-tocopherol levels in FH patients were similar to those in controls (21.0+/-0.70 vs. 23.8+/-1.30 micromol/l). When alpha-tocopherol levels were expressed relative to cholesterol, however, the concentrations were found to be significantly lower (-43%) in FH patients than in controls (2.9+/-0.10 vs. 5.1+/-0.40 micromol/mmol, P<0.0005). There were no differences in absolute or cholesterol standardised alpha-tocopherol levels in patients with and without vascular disease. These data suggest that oxidative stress is increased in FH-patients and is particularly pronounced in those patients with vascular disease. It is possible that increased oxidative stress may precede the development of vascular disease.
Collapse
Affiliation(s)
- J Nourooz-Zadeh
- Division of Medicine, Department of Medicine, Royal Free and University College Medical School, The Middlesex Hospital, Mortimer Street, W1N 8AA, London, UK.
| | | | | |
Collapse
|
33
|
Node K, Ruan XL, Dai J, Yang SX, Graham L, Zeldin DC, Liao JK. Activation of Galpha s mediates induction of tissue-type plasminogen activator gene transcription by epoxyeicosatrienoic acids. J Biol Chem 2001; 276:15983-9. [PMID: 11279071 DOI: 10.1074/jbc.m100439200] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epoxyeicosatrienoic acids (EETs) are products of cytochrome P450 (CYP) epoxygenases that have vasodilatory and anti-inflammatory properties. Here we report that EETs have additional fibrinolytic properties. In vascular endothelial cells, physiological concentrations of EETs, particularly 11,12-EET, or overexpression of the endothelial epoxygenase, CYP2J2, increased tissue plasminogen activator (t-PA) expression by 2.5-fold without affecting plasminogen activator inhibitor-1 expression. This increase in t-PA expression correlated with a 4-fold induction in t-PA gene transcription and a 3-fold increase in t-PA fibrinolytic activity and was blocked by the CYP inhibitor, SKF525A, but not by the calcium-activated potassium channel blocker, charybdotoxin, indicating a mechanism that does not involve endothelial cell hyperpolarization. The t-PA promoter is cAMP-responsive, and induction of t-PA gene transcription by EETs correlated with increases in intracellular cAMP levels and, functionally, with cAMP-driven promoter activity. To determine whether increases in intracellular cAMP levels were due to modulation of guanine nucleotide-binding proteins, we assessed the effects of EETs on Galpha(s) and Galpha(i2). Treatment with EETs increased Galpha(s), but not Galpha(i2), GTP-binding activity by 3.5-fold. These findings indicate that EETs possess fibrinolytic properties through the induction of t-PA and suggest that endothelial CYP2J2 may play an important role in regulating vascular hemostasis.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Animals
- Aorta
- Atropine Derivatives
- Cattle
- Cells, Cultured
- Cyclic AMP/metabolism
- Cytochrome P-450 CYP2J2
- Cytochrome P-450 Enzyme System/metabolism
- Endothelium, Vascular/enzymology
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- GTP-Binding Protein alpha Subunits, Gs/metabolism
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/physiology
- Humans
- Oxygenases/metabolism
- Polymerase Chain Reaction
- Proadifen/pharmacology
- Promoter Regions, Genetic
- Saphenous Vein
- Tissue Plasminogen Activator/genetics
- Transcription, Genetic/drug effects
- Transcription, Genetic/physiology
- Transfection
Collapse
Affiliation(s)
- K Node
- Cardiovascular Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Nithipatikom K, DiCamelli RF, Kohler S, Gumina RJ, Falck JR, Campbell WB, Gross GJ. Determination of cytochrome P450 metabolites of arachidonic acid in coronary venous plasma during ischemia and reperfusion in dogs. Anal Biochem 2001; 292:115-24. [PMID: 11319825 DOI: 10.1006/abio.2001.5044] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Arachidonic acid (AA) can be metabolized by cytochrome P450 enzymes to many biologically active compounds including 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs), their corresponding dihydroxyeicosatrienoic acids (DHETs), as well as 19- and 20-hydroxyeicosatetraenoic acids (HETEs). These eicosanoids are potent regulators of vascular tone. However, their role in the ischemic myocardium has not been well investigated. In this study, we used a gas chromatographic-mass spectrometric technique to analyze total EETs, DHETs, and 20-HETE released into coronary venous plasma during coronary artery occlusion and reperfusion in anesthetized dogs. Pentafluorobenzyl esters (PFB-esters) of EETs and PFB-esters/trimethylsilyl ethers (TMS-ethers) of DHETs and 20-HETE were detected in the negative ion chemical ionization (NICI) using methane as a reagent gas. Under the conditions used, all four regioisomers of EET eluted from the capillary gas chromatographic column at similar retention times while four regioisomers of DHETs and 20-HETE eluted separately. The detection limits in plasma samples are 5 pg for total EETs, 40 pg for DHET, and 15 pg for 20-HETE. 14,15-DHET is the major regioisomer detected in the plasma samples while other regioisomers of DHETs are probably present at too low a concentration for detection. During the first 5 to 15 min of coronary occlusion, a slight decrease in the concentration of EETs, 14,15-DHET, and 20-HETE from the control values was observed in coronary venous plasma. At 60 min of occlusion, their concentrations significantly increased and remained elevated during 5 to 60 min of reperfusion. The concentrations decreased at 120 min of reperfusion. The NICI GC-MS was successfully used as a sensitive technique to determine cP450 metabolites of AA in plasma during prolonged occlusion-reperfusion periods. Furthermore, the results indicate that these metabolites may play a role in mediating ischemic-reperfusion injury.
Collapse
Affiliation(s)
- K Nithipatikom
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Zink MH, Oltman CL, Lu T, Katakam PV, Kaduce TL, Lee H, Dellsperger KC, Spector AA, Myers PR, Weintraub NL. 12-lipoxygenase in porcine coronary microcirculation: implications for coronary vasoregulation. Am J Physiol Heart Circ Physiol 2001; 280:H693-704. [PMID: 11158968 DOI: 10.1152/ajpheart.2001.280.2.h693] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Noncyclooxygenase metabolites of arachidonic acid (AA) have been proposed to mediate endothelium-dependent vasodilation in the coronary microcirculation. Therefore, we examined the formation and bioactivity of AA metabolites in porcine coronary (PC) microvascular endothelial cells and microvessels, respectively. The major noncyclooxygenase metabolite produced by microvascular endothelial cells was 12(S)-hydroxyeicosatetraenoic acid (HETE), a lipoxygenase product. 12(S)-HETE release was markedly increased by pretreatment with 13(S)-hydroperoxyoctadecadienoic acid but not by the reduced congener 13(S)-hydroxyoctadecadienoic acid, suggesting oxidative upregulation of 12(S)-HETE output. 12(S)-HETE produced potent relaxation and hyperpolarization of PC microvessels (EC(50), expressed as -log[M] = 13.5 +/- 0.5). Moreover, 12(S)-HETE potently activated large-conductance Ca(2+)-activated K(+) currents in PC microvascular smooth muscle cells. In contrast, 12(S)-HETE was not a major product of conduit PC endothelial AA metabolism and did not exhibit potent bioactivity in conduit PC arteries. We suggest that, in the coronary microcirculation, 12(S)-HETE can function as a potent hyperpolarizing vasodilator that may contribute to endothelium-dependent relaxation, particularly in the setting of oxidative stress.
Collapse
MESH Headings
- 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/metabolism
- Animals
- Arachidonate 12-Lipoxygenase/metabolism
- Arachidonic Acid/pharmacokinetics
- Caffeic Acids/pharmacology
- Calcimycin/pharmacology
- Cells, Cultured
- Coronary Circulation/physiology
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/enzymology
- Ionophores/pharmacology
- Large-Conductance Calcium-Activated Potassium Channels
- Leukotrienes/pharmacology
- Linoleic Acids/pharmacology
- Lipid Peroxides/pharmacology
- Lipoxygenase Inhibitors/pharmacology
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Microcirculation/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Oxidative Stress/physiology
- Potassium Channels/metabolism
- Potassium Channels, Calcium-Activated
- Swine
- Tritium
- Vasoconstrictor Agents/pharmacology
- Vasodilation/drug effects
- Vasodilation/physiology
Collapse
Affiliation(s)
- M H Zink
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Tréluyer JM, Benech H, Colin I, Pruvost A, Chéron G, Cresteil T. Ontogenesis of CYP2C-dependent arachidonic acid metabolism in the human liver: relationship with sudden infant death syndrome. Pediatr Res 2000; 47:677-83. [PMID: 10813596 DOI: 10.1203/00006450-200005000-00020] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A modification of the human monooxygenase system have been previously associated with the sudden infant death syndrome (SIDS): the hepatic CYP2C content was markedly enhanced and resulted from an activation of CYP2C gene transcription. To determine the possible consequence of the up-regulation of CYP2C in SIDS, we examined the metabolism of arachidonic acid (AA) an endogenous substrate of CYP2C involved in the physiologic regulation of vascular tone. The overall AA metabolism was extremely low during the fetal period and rose after birth to generate 14,15 epoxyeicosatrienoic acid (EET), 11,12 EET and the sum of 5,6 dihydroxyeicosatrienoic acid (diHETE)+omega/omega-1 hydroxy AA. In SIDS, the accumulation of CYP2C proteins was associated with a significant increase in the formation of 14,15 and 11,12 diHETE, which were shown to be supported by individually expressed CYP2C8 and 2C9 and HETE1 (presumably 15 HETE). This increase was markedly inhibited by addition of sulfaphenazole, a selective inhibitor of CYP2C9. So, we propose that the higher CYP2C content in SIDS stimulates the production of EETs and diHETEs and might have severe pathologic consequences in children.
Collapse
Affiliation(s)
- J M Tréluyer
- INSERM U 75, Université René Descartes, Paris, France
| | | | | | | | | | | |
Collapse
|
37
|
Huang A, Sun D, Smith CJ, Connetta JA, Shesely EG, Koller A, Kaley G. In eNOS knockout mice skeletal muscle arteriolar dilation to acetylcholine is mediated by EDHF. Am J Physiol Heart Circ Physiol 2000; 278:H762-8. [PMID: 10710344 DOI: 10.1152/ajpheart.2000.278.3.h762] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanisms that account for acetylcholine (ACh)-induced responses of skeletal muscle arterioles of mice lacking endothelial nitric oxide (NO) synthase (eNOS-KO) were investigated. Isolated, cannulated, and pressurized arterioles of gracilis muscle from male eNOS-KO (74.1 +/- 2.3 microm) and wild-type (WT, 87.2 +/- 2.1 microm) mice developed spontaneous tone accounting for 63 and 61% of their passive diameter (116.8 +/- 3.4 vs. 143.2 +/- 2.8 microm, respectively) and dilated dose-dependently to ACh (10(-9)-10(-7) M). These dilations were significantly smaller in vessels of eNOS-KO compared with WT mice (29.2 +/- 2.0 microm vs. 46.3 +/- 2.1 microm, at maximum concentration) but responses to the NO donor, sodium nitrite (NaNO(2), 10(-6)-3 x 10(-5) M), were comparable in the vessels of the two strains. N(G)-nitro-L-arginine (L-NNA, 10(-4) M), an inhibitor of eNOS, inhibited ACh-induced dilations by 60-90% in arterioles of WT mice but did not affect responses in those of eNOS-KO mice. In arterioles of eNOS-KO mice, dilations to ACh were not affected by indomethacin but were essentially abolished by inhibitors of cytochrome P-450, clotrimazole (CTZ, 2 x 10(-6) M) or miconazole (MCZ, 2 x 10(-6) M), as well as by either high K(+) (40 mM) or iberiotoxin [10(-7) M, a blocker of Ca(2+)-dependent K(+) channels (K(Ca) channels)]. On the other hand, in WT arterioles CTZ or MCZ inhibited ACh-induced dilations only by approximately 10% and only in the presence of L-NNA. These results indicate that in arterioles of eNOS-KO mice, endothelium-derived hyperpolarizing factor (EDHF), synthesized via cytochrome P-450, accounts entirely for the mediation of ACh-induced dilation via an increase in K(Ca)-channel activity. In contrast, in arterioles of WT mice, endothelium-derived NO predominantly mediates ACh-induced dilation in which participation of EDHF becomes apparent only after inhibition of NO synthesis.
Collapse
Affiliation(s)
- A Huang
- Department of Physiology, New York Medical College, Valhalla, New York 10595, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Edwards G, Thollon C, Gardener MJ, Félétou M, Vilaine J, Vanhoutte PM, Weston AH. Role of gap junctions and EETs in endothelium-dependent hyperpolarization of porcine coronary artery. Br J Pharmacol 2000; 129:1145-54. [PMID: 10725263 PMCID: PMC1571957 DOI: 10.1038/sj.bjp.0703188] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. The effects of endothelium-derived hyperpolarizing factor (EDHF: elicited using substance P or bradykinin) were compared with those of 11,12-EET in pig coronary artery. Smooth muscle cells were usually impaled with microelectrodes through the adventitial surface. 2. Substance P (100 nM) and 11,12-EET (11,12-epoxyeicosatrienoic acid; 3 microM) hyperpolarized endothelial cells in intact arteries. These actions were unaffected by 100 nM iberiotoxin but were abolished by charybdotoxin plus apamin (each 100 nM). 3. Substance P (100 nM) and bradykinin (30 nM) hyperpolarized intact artery smooth muscle; Substance P had no effect after endothelium removal. 11,12-EET hyperpolarized de-endothelialized vessels by 12.6+/-0.3 mV, an effect abolished by 100 nM iberiotoxin. 4. 11,12-EET hyperpolarized intact arteries by 18.6+/-0.8 mV, an action reduced by iberiotoxin, which was ineffective against substance P. Hyperpolarizations to 11, 12-EET and substance P were partially inhibited by 100 nM charybdotoxin and abolished by further addition of 100 nM apamin. 5. 30 microM barium plus 500 nM ouabain depolarized intact artery smooth muscle but responses to substance P and bradykinin were unchanged. 500 microM gap 27 markedly reduced hyperpolarizations to substance P and bradykinin which were abolished in the additional presence of barium plus ouabain. 6. Substance P-induced hyperpolarizations of smooth muscle cells immediately below the internal elastic lamina were unaffected by gap 27, even in the presence of barium plus ouabain. 7. In pig coronary artery, 11,12-EET is not EDHF. Smooth muscle hyperpolarizations attributed to 'EDHF' are initiated by endothelial cell hyperpolarization involving charybdotoxin- (but not iberiotoxin) and apamin-sensitive K(+) channels. This may spread electrotonically via myoendothelial gap junctions but the involvement of an unknown endothelial factor cannot be excluded.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Animals
- Barium/pharmacology
- Biological Factors/pharmacology
- Charybdotoxin/pharmacology
- Coronary Vessels/drug effects
- Electrophysiology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Female
- Gap Junctions/drug effects
- In Vitro Techniques
- Male
- Membrane Potentials/drug effects
- Microelectrodes
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/innervation
- Ouabain/pharmacology
- Peptides/pharmacology
- Substance P/pharmacology
- Swine
Collapse
Affiliation(s)
- G Edwards
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | | | | | | | | | |
Collapse
|
39
|
Zhu D, Bousamra M, Zeldin DC, Falck JR, Townsley M, Harder DR, Roman RJ, Jacobs ER. Epoxyeicosatrienoic acids constrict isolated pressurized rabbit pulmonary arteries. Am J Physiol Lung Cell Mol Physiol 2000; 278:L335-43. [PMID: 10666118 DOI: 10.1152/ajplung.2000.278.2.l335] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Little information is available regarding the vasoactive effects of epoxyeicosatrienoic acids (EETs) in the lung. We demonstrate that 5, 6-, 8,9-, 11,12-, and 14,15-EETs contract pressurized rabbit pulmonary arteries in a concentration-dependent manner. Constriction to 5,6-EET methyl ester or 14,15-EET is blocked by indomethacin or ibuprofen (10(-5) M), SQ-29548, endothelial denuding, or submaximal preconstriction with the thromboxane mimetic U-46619. Constriction of pulmonary artery rings to phenylephrine is blunted by treatment with the epoxygenase inhibitor N-methylsulfonyl-6-(2-propargyloxyphenyl)hexanamide. Pulmonary arteries and peripheral lung microsomes metabolize arachidonate to products that comigrate on reverse-phrase HPLC with authentic regioisomers of 5,6-, 8,9-, 11,12-, and 14,15-EETs, but no cyclooxygenase products of EETs could be demonstrated. Proteins of the CYP2B, CYP2E, CYP2J, CYP1A, and CYP2C subfamilies are present in pulmonary artery and peripheral lung microsomes. Constriction of isolated rabbit pulmonary arteries to EETs is nonregioselective and depends on intact endothelium and cyclooxygenase, consistent with the formation of a pressor prostanoid compound. These data raise the possibility that EETs may contribute to regulation of pulmonary vascular tone.
Collapse
Affiliation(s)
- D Zhu
- Department of Physiology, Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Drummond GR, Selemidis S, Cocks TM. Apamin-sensitive, non-nitric oxide (NO) endothelium-dependent relaxations to bradykinin in the bovine isolated coronary artery: no role for cytochrome P450 and K+. Br J Pharmacol 2000; 129:811-9. [PMID: 10683206 PMCID: PMC1571894 DOI: 10.1038/sj.bjp.0703107] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Since cytochrome P(450)-derived metabolites of arachidonic acid and K(+) have been implicated in endothelium-derived hyperpolarizing factor (EDHF)-dependent responses, the aim of this study was to determine whether such factors contribute to non-nitric oxide (NO), endothelium-dependent relaxation to bradykinin (BK) in bovine isolated coronary artery. In rings of artery contracted with U46619 and treated with indomethacin (3 microM) and N(G)-nitro-L-arginine (L-NOARG; 100 microM), relaxation to BK (0.01 nM-0.3 microM) was blocked by approximately 60% after inhibition of K(+) channels with either high extracellular K(+) (high [K(+)](o); 15 - 67 mM) or apamin (0.3 microM). Ouabain (1 microM), an inhibitor of Na(+)/K(+)-ATPase, decreased the sensitivity to BK without affecting the maximum response. In L-NOARG-treated rings, ouabain had no further effect on the relaxation to BK. An inhibitor of inward-rectifying K(+) channels, Ba(2+) (30 microM), had no effect on relaxations to BK in the absence or presence of either L-NOARG or ouabain. KCl (2.5 - 10 mM) elicited small relaxations ( approximately 20%) that were abolished by nifedipine (0.3 microM) and ouabain. Both the high [K(+)](o)/apamin-sensitive relaxation to BK, and the relaxation to the K(ATP) channel-opener, levcromakalim (0.6 microM), were unaffected by the cytochrome P(450) inhibitor, 7-ethoxyresorufin (10 microM), or by co-treatment with a phospholipase A(2) inhibitor, arachidonyl trifluoromethyl ketone (AACOCF(3); 3 microM) and a diacylglycerol (DAG)-lipase inhibitor, 1, 6-bis-(cyclohexyloximinocarbonylamino)-hexane (RHC 80267; 30 microM). The non-NO/high [K(+)](o)-insensitive, approximately 40% relaxation to BK was, however, abolished by these treatments. Therefore, neither cytochrome P(450)-derived metabolites of arachidonic acid nor K(+) appear to mediate the EDHF-like relaxation to BK (i.e the non-NO, high [K(+)](o)/apamin-sensitive component) in bovine coronary arteries. Cytochrome P(450)-derived metabolites may be released at higher BK concentrations to act in parallel with NO and the high [K(+)](o)/apamin-sensitive mechanism.
Collapse
MESH Headings
- Animals
- Apamin/pharmacology
- Arachidonic Acid/antagonists & inhibitors
- Arachidonic Acid/metabolism
- Arachidonic Acids/pharmacology
- Biological Factors/physiology
- Bradykinin/pharmacology
- Bradykinin/physiology
- Cattle
- Coronary Vessels/drug effects
- Coronary Vessels/enzymology
- Coronary Vessels/metabolism
- Coronary Vessels/physiology
- Cromakalim/pharmacology
- Cyclohexanones/pharmacology
- Cytochrome P-450 Enzyme Inhibitors
- Cytochrome P-450 Enzyme System/metabolism
- Cytochrome P-450 Enzyme System/physiology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Enzyme Inhibitors/pharmacology
- In Vitro Techniques
- Muscle Relaxation/drug effects
- Muscle Relaxation/physiology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Nitric Oxide/physiology
- Ouabain/pharmacology
- Oxazines/pharmacology
- Potassium/metabolism
- Potassium/physiology
- Potassium Chloride/pharmacology
- Protease Inhibitors/pharmacology
Collapse
Affiliation(s)
- Grant R Drummond
- Department of Pharmacology, Tri-radiate Building, University of Melbourne, Victoria 3010, Australia
| | - Stavros Selemidis
- Department of Pharmacology, Tri-radiate Building, University of Melbourne, Victoria 3010, Australia
| | - Thomas M Cocks
- Department of Pharmacology, Tri-radiate Building, University of Melbourne, Victoria 3010, Australia
- Author for correspondence:
| |
Collapse
|
41
|
Abstract
Endothelium-dependent relaxation cannot be fully attributed to the release of nitric oxide or prostacyclin (PGI2). In resistance-sized vessels and coronary arteries a high proportion of endothelium-dependent relaxation, in response to agonist-induced or mechanical stimulation of endothelial cells, can be attributed to the release of 1 or more endothelium-derived hyperpolarizing factor (EDHF). In coronary arteries EDHF has been pharmacologically characterized as a cytochrome P450 (CYP)-derived metabolite of arachidonic acid. We show here that a CYP 2C arachidonic acid epoxygenase, homologous to CYP 2C8/9, is expressed in cultured human endothelial cells and native porcine coronary artery endothelial cells. Down-regulation of CYP 2C protein by transfection of porcine coronary arteries with anti-sense oligonucleotides decreased EDHF-mediated vascular responses while EDHF-mediated hyperpolarisation and relaxation were potentiated by the CYP-inducing compound beta-naphthoflavone. Thus, CYP 2C appears to play a crucial role in the generation of EDHF-mediated responses in porcine coronary arteries.
Collapse
Affiliation(s)
- B Fisslthaler
- Institut für Kardiovaskuläre Physiologie Klinikum der J.W. Goethe-Universität, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
42
|
Weintraub NL, Fang X, Kaduce TL, VanRollins M, Chatterjee P, Spector AA. Epoxide hydrolases regulate epoxyeicosatrienoic acid incorporation into coronary endothelial phospholipids. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H2098-108. [PMID: 10564166 DOI: 10.1152/ajpheart.1999.277.5.h2098] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytochrome P-450-derived epoxyeicosatrienoic acids (EETs) are avidly incorporated into and released from endothelial phospholipids, a process that results in potentiation of endothelium-dependent relaxation. EETs are also rapidly converted by epoxide hydrolases to dihydroxyeicosatrienoic acid (DHETs), which are incorporated into phospholipids to a lesser extent than EETs. We hypothesized that epoxide hydrolases functionally regulate EET incorporation into endothelial phospholipids. Porcine coronary artery endothelial cells were treated with an epoxide hydrolase inhibitor, 4-phenylchalcone oxide (4-PCO, 20 micromol/l), before being incubated with (3)H-labeled 14,15-EET (14,15-[(3)H]EET). 4-PCO blocked conversion of 14,15-[(3)H]EET to 14,15-[(3)H]DHET and doubled the amount of radiolabeled products incorporated into cell lipids, with >80% contained in phospholipids. Moreover, pretreatment with 4-PCO before incubation with 14,15-[(3)H]EET enhanced A-23187-induced release of radiolabeled products into the medium. In contrast, 4-PCO did not alter uptake, distribution, or release of [(3)H]arachidonic acid. In porcine coronary arteries, 4-PCO augmented 14,15-EET-induced potentiation of endothelium-dependent relaxation to bradykinin. These data suggest that epoxide hydrolases may play a role in regulating EET incorporation into phospholipids, thereby modulating endothelial function in the coronary vasculature.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/metabolism
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Animals
- Arachidonic Acid/metabolism
- Arteries/cytology
- Arteries/drug effects
- Arteries/metabolism
- Bradykinin/pharmacology
- Cells, Cultured
- Chalcone/analogs & derivatives
- Chalcone/pharmacology
- Chalcones
- Coenzyme A Ligases/antagonists & inhibitors
- Coronary Vessels/cytology
- Coronary Vessels/drug effects
- Coronary Vessels/metabolism
- Drug Synergism
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Enzyme Inhibitors/pharmacology
- Epoxide Hydrolases/antagonists & inhibitors
- Epoxide Hydrolases/physiology
- Hydroxyeicosatetraenoic Acids/biosynthesis
- Lipid Metabolism
- Phospholipids/metabolism
- Swine
- Vasodilation/physiology
Collapse
Affiliation(s)
- N L Weintraub
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Vanheel B, Calders P, Van den Bossche I, Van de Voorde J. Influence of some phospholipase A2 and cytochrome P450 inhibitors on rat arterial smooth muscle K+ currents. Can J Physiol Pharmacol 1999. [DOI: 10.1139/y99-050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The hyperpolarizing factor that is liberated by vascular endothelial cells in response to various agonists, and known to induce relaxation by opening of smooth muscle K+ channels, has been suggested to be a product of cytochrome P450 dependent arachidonic acid metabolism. In this study, the direct influence of two phospholipase A2 inhibitors and of five structurally and mechanistically different cytochrome P450 inhibitors on K+ currents in freshly isolated vascular smooth muscle cells from the rat aorta was investigated. On stepping the cell membrane potential from -70 mV to a series of depolarized test potentials, a noisy outward current developed at test potentials > +10 mV, which showed no appreciable inactivation during the voltage pulse. It was largely abolished by 3 mM external tetraethylammonium chloride (TEA), suggesting that it predominantly consisted of current through large-conductance Ca2+-activated K+ channels. The phospholipase A2 inhibitor quinacrine considerably inhibited this TEA-sensitive current, while 4-bromophenacylbromide exerted no effect. The cytochrome P450 inhibitors proadifen and miconazole reversibly decreased the amplitude of IK, while clotrimazole and 1-aminobenzotriazole had no effect. Conversely, 17-octadecynoic acid increased whole-cell IK. These results show that some phospholipase A2 and cytochrome P450 inhibitors may interfere with K+ channel activation in the rat arterial smooth muscle cell. The relevance of these findings to studies on the involvement of cytochrome P450 dependent metabolism in the generation of the endothelium-derived hyperpolarizing factor in intact arteries is discussed.Key words: endothelial factors, smooth muscle, membrane currents, vasodilation, endothelium-derived hyperpolarizing factor (EDHF), arachidonic acid.
Collapse
|
44
|
Chen J, Capdevila JH, Zeldin DC, Rosenberg RL. Inhibition of cardiac L-type calcium channels by epoxyeicosatrienoic acids. Mol Pharmacol 1999; 55:288-95. [PMID: 9927620 DOI: 10.1124/mol.55.2.288] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs), products of the cytochrome P-450 monooxygenase metabolism of arachidonic acid, can regulate the activity of ion channels. We examined the effects of EETs on cardiac L-type Ca2+ channels that play important roles in regulating cardiac contractility, controlling heart rate, and mediating slow conduction in normal nodal cells and ischemic myocardium. Our experimental approach was to reconstitute porcine L-type Ca2+ channels into planar lipid bilayers where we could control the aqueous and lipid environments of the channels and the regulatory pathways that change channel properties. We found that 20 to 125 nM EETs inhibited the open probability of reconstituted L-type Ca2+ channels, accelerated the inactivation of the channels, and reduced the unitary current amplitude of open channels. There was no selectivity among different EET regioisomers or stereoisomers. When 11,12-EET was esterified to the sn-2 position of phosphatidylcholine, restricting it to the hydrophobic phase of the planar lipid bilayer, the reconstituted channels were similarly inhibited, suggesting that the EET interacts directly with Ca2+ channels through the lipid phase. The inhibitory effects of EET persisted in the presence of microcystin, an inhibitor of protein phosphatases 1 and 2A, suggesting that dephosphorylation was not the mechanism through which these eicosanoids down-regulate channel activity. This inhibition may be an important protective mechanism in the setting of cardiac ischemia where arachidonic acid levels are dramatically increased and EETs have been shown to manifest preconditioning-like effects.
Collapse
Affiliation(s)
- J Chen
- Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | |
Collapse
|
45
|
Mallat Z, Nakamura T, Ohan J, Lesèche G, Tedgui A, Maclouf J, Murphy RC. The relationship of hydroxyeicosatetraenoic acids and F2-isoprostanes to plaque instability in human carotid atherosclerosis. J Clin Invest 1999; 103:421-7. [PMID: 9927504 PMCID: PMC407895 DOI: 10.1172/jci3985] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Evidence for increased oxidant stress has been reported in human atherosclerosis. However, no information is available about the importance of in situ oxidant stress in relation to plaque stability. This information is relevant because the morbidity and mortality of atherosclerosis are essentially the consequences of acute ischemic syndromes due to unstable plaques. We studied 30 carotid atherosclerotic plaques retrieved by endarterectomy from 18 asymptomatic (stable plaques) and 12 symptomatic patients (unstable plaques). Four normal arteries served as controls. After lipid extraction and ester hydrolysis, quantitation of different indices of oxidant stress were analyzed, including hydroxyeicosatetraenoic acids (HETEs), epoxyeicosatetraenoic acids (EETs), ketoeicosatetraenoic acids (oxo-ETEs), and F2-isoprostanes using online reverse-phase high-performance liquid chromatography tandem mass spectrometry (LC/MS/MS). All measurements were carried out in a strictly double-blind procedure. We found elevated levels of the different compounds in atherosclerotic plaques. Levels of HETEs were 24 times higher than EETs, oxo-ETEs, or F2-isoprostanes. Levels of HETEs, but not those of EETs, oxo-ETEs or F2-isoprostanes, were significantly elevated in plaques retrieved from symptomatic patients compared with those retrieved from asymptomatic patients (1, 738 +/- 274 vs. 1,002 +/- 107 pmol/ micromol lipid phosphorous, respectively; P < 0.01). One monooxygenated arachidonate species, 9-HETE, which cannot be derived from known enzymatic reactions, was the most abundant and significant compound observed in plaques, suggesting that nonenzymatic lipid peroxidation predominates in advanced atherosclerosis and may promote plaque instability.
Collapse
Affiliation(s)
- Z Mallat
- Institut National de la Santé et de la Recherche Médicale, Unité 141, IFR Circulation, Hôpital Lariboisière, 75475 Paris, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Fang X, Moore SA, Stoll LL, Rich G, Kaduce TL, Weintraub NL, Spector AA. 14,15-Epoxyeicosatrienoic acid inhibits prostaglandin E2 production in vascular smooth muscle cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:H2113-21. [PMID: 9843811 DOI: 10.1152/ajpheart.1998.275.6.h2113] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
14,15-Epoxyeicosatrienoic acid (EET), a cytochrome P-450 epoxygenase product of arachidonic acid (AA), reduced PGE2 formation by 40-75% in porcine aortic and murine brain microvascular smooth muscle cells. The inhibition was reversed 6-10 h after removal of 14,15-EET from the medium and was regioisomeric specific; 8,9-EET produced a smaller effect, whereas 11,12- and 5,6-EET were ineffective. Although the cells converted 14,15-EET to 14, 15-dihydroxyeicosatrienoic acid (14,15-DHET), 14,15-DHET did not inhibit PGE2 formation, and the 14,15-EET-induced inhibition was potentiated by 4-phenylchalcone oxide, an epoxide hydrolase inhibitor. The inhibition occurred when substrate amounts of AA were used and was not accompanied by enhanced production of other PGs, suggesting an effect on PGH synthase; however, in murine cells, 14, 15-EET did not reduce PGH synthase mRNA or protein. Moreover, the 14, 15-EET-induced decrease in PGE2 production was overcome by increasing the concentration of AA, but not oleic acid (which is not a substrate for PGH synthase). These findings suggest that 14,15-EET competitively inhibits PGH synthase activity in vascular smooth muscle cells. The 14,15-EET-induced inhibition of PGE2 production resulted in potentiation of platelet-derived growth factor-induced smooth muscle cell proliferation, suggesting that the competitive inhibition of PGH synthase by 14,15-EET can affect growth responses in smooth muscle cells.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Animals
- Aorta/cytology
- Aorta/drug effects
- Aorta/metabolism
- Cell Division/drug effects
- Cells, Cultured
- Cerebrovascular Circulation/physiology
- Dinoprostone/antagonists & inhibitors
- Hydroxyeicosatetraenoic Acids/pharmacology
- Microcirculation/physiology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Platelet-Derived Growth Factor/pharmacology
- Swine
Collapse
Affiliation(s)
- X Fang
- Department of Biochemistry, College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Pfister SL, Spitzbarth N, Nithipatikom K, Edgemond WS, Falck JR, Campbell WB. Identification of the 11,14,15- and 11,12, 15-trihydroxyeicosatrienoic acids as endothelium-derived relaxing factors of rabbit aorta. J Biol Chem 1998; 273:30879-87. [PMID: 9812980 DOI: 10.1074/jbc.273.47.30879] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A number of endothelium-derived relaxing factors have been identified including nitric oxide, prostacyclin, and the epoxyeicosatrienoic acids. Previous work showed that in rabbit aortic endothelial cells, arachidonic acid was metabolized by a lipoxygenase to vasodilatory eicosanoids. The identity was determined by the present study. Aortic homogenates were incubated in the presence of [U-14C]arachidonic acid, [U-14C]arachidonic acid plus 15-lipoxygenase (soybean lipoxidase), or [U-14C]15-hydroxyeicosatetraenoic acid (15-HPETE) and analyzed by reverse phase high pressure liquid chromatography (RP-HPLC). Under both experimental conditions, there was a radioactive metabolite that migrated at 17.5-18.5 min on RP-HPLC. When the metabolite was isolated from aortic homogenates, it relaxed precontracted aortas in a concentration-dependent manner. Gas chromatography/mass spectrometry (GC/MS) of the derivatized metabolite indicated the presence of two products; 11,12,15-trihydroxyeicosatrienoic acid (THETA) and 11,14,15-THETA. A variety of chemical modifications of the metabolite supported these structures and confirmed the presence of a carboxyl group, double bonds, and hydroxyl groups. With the combination of 15-lipoxygenase, arachidonic acid, and aortic homogenate, an additional major radioactive peak was observed. This fraction was analyzed by GC/MS. The mass spectrum was consistent with this peak, containing both the 11-hydroxy-14, 15-epoxyeicosatrienoic acid (11-H-14,15-EETA) and 15-H-11,12-EETA. The hydroxyepoxyeicosatrienoic acid (HEETA) fraction also relaxed precontracted rabbit aorta. Microsomes derived from rabbit aortas also synthesized 11,12,15- and 11,14,15-THETAs from 15-HPETE, and pretreatment with the cyctochrome P450 inhibitor, miconazole, blocked the formation of these products. The present studies suggest that arachidonic acid is metabolized by 15-lipoxygenase to 15-HPETE, which undergoes an enzymatic rearrangement to 11-H-14,15-EETA and 15-H-11,12-EETA. Hydrolysis of the epoxy group results in the formation of 11,14,15- and 11,12,15-THETA, which relaxed rabbit aorta. Thus, the 15-series THETAs join prostacyclin, nitric oxide, and epoxyeicosatrienoic acids as new members of the family of endothelium-derived relaxing factors.
Collapse
Affiliation(s)
- S L Pfister
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | |
Collapse
|
48
|
Ivey CL, Stephenson AH, Townsley MI. Involvement of cytochrome P-450 enzyme activity in the control of microvascular permeability in canine lung. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:L756-63. [PMID: 9755108 DOI: 10.1152/ajplung.1998.275.4.l756] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Products of cytochrome P-450 enzymes may play a role in capacitative Ca2+ entry in endothelial cells, which can promote a rise in vascular permeability. Thapsigargin (150 nM) stimulated capacitative Ca2+ entry and increased the capillary filtration coefficient (Kf,c) in isolated normal canine lung lobes. Pretreatment of the lobes with cytochrome P-450 inhibitors clotrimazole (10 microM) or 17-octadecynoic acid (5 microM) abolished the thapsigargin-induced increases in Kf,c. Because clotrimazole also blocks Ca2+-activated K+ channels, the K+-channel blocker tetraethylammonium (10 mM) was used to ensure that permeability was not influenced by this mechanism. Tetraethylammonium did not affect thapsigargin-induced permeability. The effects of the cytochrome P-450 arachidonic acid metabolite 5,6-epoxyeicosatrienoic acid (EET) were also investigated in lobes taken from control dogs and dogs with pacing-induced heart failure (paced at 245 beats/min for 4 wk). 5,6-EET (10 microM) significantly increased Kf,c in lobes from the control but not from the paced animals. We conclude that cytochrome P-450 metabolites are involved in mediating microvascular permeability in normal canine lungs, but an absence of 5,6-EET after heart failure does not explain the resistance of lungs from these animals to permeability changes.
Collapse
Affiliation(s)
- C L Ivey
- Department of Physiology, University of South Alabama, Mobile, Alabama 36688, USA
| | | | | |
Collapse
|
49
|
Hayabuchi Y, Nakaya Y, Matsuoka S, Kuroda Y. Endothelium-derived hyperpolarizing factor activates Ca2+-activated K+ channels in porcine coronary artery smooth muscle cells. J Cardiovasc Pharmacol 1998; 32:642-9. [PMID: 9781934 DOI: 10.1097/00005344-199810000-00018] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Although endothelium-derived hyperpolarizing factor (EDHF) activity has been demonstrated in arteries from various species, EDHF has not been chemically identified, nor its mechanism of action characterized. To elucidate this mechanism, we tested the effect of EDHF on large-conductance Ca2+-activated K+ (K(Ca)) channels in porcine coronary artery smooth muscle cells. By using a patch-clamp technique, single-channel currents were recorded in cultured smooth muscle cells; the organ bath also contained a strip of porcine coronary with endothelium, which served as the source of endothelium-derived relaxing factor(s) including EDHF. Exposure of endothelium to 10(-6) M bradykinin activated K(Ca) channels in cultured smooth muscle cells in cell-attached patches. When the experiment was performed in the presence of 10 microM indomethacin and 30 microM N(G)-nitro-L-arginine (L-NNA), which block the generation of prostaglandin I2 (PGI2) and NO, respectively, K(Ca) channel activity was stimulated by bradykinin, indicating the direct involvement of EDHF in K(Ca) channel stimulation. Neither 10 microM methylene blue nor 25 microM Rp-cAMPS inhibited bradykinin-induced K(Ca) channel activity. In inside-out patches, the addition of bradykinin to the solution was without effect on K(Ca) channel activation. However, in the presence of 0.5 mM guanosine triphosphate (GTP) and 1.0 mM adenosine triphosphate (ATP) in the bath solution, K(Ca) channels was activated by bradykinin. In outside-out patches, the addition of bradykinin also increased K(Ca) channel activity, when GTP and ATP were added to the pipette solution. The addition of GDP-beta-S (100 microM) in the cytosolic solution completely blocked the activation K(Ca) channels induced by bradykinin in inside-out and outside-out patches. Pretreatment with 30 microM quinacrine, a phospholipase A2 inhibitor, or 3 microM 17-octadecynoic acid (17-ODYA), a cytochrome P450 inhibitor, in addition to indomethacin and L-NNA, abolished bradykinin-stimulated K(Ca) channel activity in cell-attached patches. Both 14,15-epoxyeicosatrienoic acid (EET) and 11,12-EET increased the open probabilities of K(Ca) channels in cell-attached patches. These results suggest that EDHF, released from endothelial cells in response to bradykinin, hyperpolarizes smooth muscle cells by opening K(Ca) channels. Furthermore, our data suggest that EDHF is an endothelium-derived cytochrome P450 metabolite of arachidonic acid. The effect of EDHF on K(Ca) channels is not associated with an increase of cAMP and cGMP. The activation of K(Ca) channels appears to be due to the activation of GTP-binding protein.
Collapse
Affiliation(s)
- Y Hayabuchi
- Department of Pediatrics, School of Medicine, University of Tokushima, Japan
| | | | | | | |
Collapse
|
50
|
Stephenson AH, Sprague RS, Lonigro AJ. 5,6-Epoxyeicosatrienoic acid reduces increases in pulmonary vascular resistance in the dog. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:H100-9. [PMID: 9688901 DOI: 10.1152/ajpheart.1998.275.1.h100] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We recently reported that canine pulmonary microsomes metabolize arachidonic acid to all four regioisomeric epoxyeicosatrienoic acids (EET). 5,6-EET dilates blood vessels in several nonpulmonary vascular beds, often in a cyclooxygenase-dependent manner. The present study was designed to determine whether 5,6-EET can decrease pulmonary vascular resistance (PVR) in the intact pulmonary circulation. In isolated canine lungs perfused with physiological salt solution, a constant infusion of U-46619 (3.28 +/- 0.99 nmol/min) increased PVR 62.1 +/- 4.5%. Administration of 5,6-EET (10(-5) M) into the perfusate reduced the U-46619-mediated increase in PVR by 23.6 +/- 6.1%. These effects of U-46619 and 5,6-EET were limited to changes in resistance solely in the pulmonary venous segment. In contrast, venous as well as arterial segmental resistances were increased in 5-hydroxytryptamine (5-HT)-treated lungs. However, in the latter instance, 5,6-EET reduced arterial but not venous segmental resistance. 5,6-EET increased pulmonary PGI2 synthesis from 70.5 +/- 18.4 to 675.9 +/- 125.4 ng/min. In the presence of indomethacin (10(-4) M), 5,6-EET did not increase PGI2 synthesis nor did it decrease U-46619- or 5-HT-mediated increases in PVR. In canine intrapulmonary vessels, 5,6-EET decreased active tension in veins contracted with U-46619. 5,6-EET decreased active tension in arteries but not veins contracted with 5-HT, consistent with results in the perfused lungs. These results demonstrate that 5, 6-EET is a vasodilator in the intact pulmonary circulation. Its dilator activity depends on the constrictor agent present, the segmental resistance, and cyclooxygenase activity.
Collapse
MESH Headings
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/antagonists & inhibitors
- 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology
- 6-Ketoprostaglandin F1 alpha/metabolism
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Animals
- Blood Pressure/drug effects
- Dogs
- Indomethacin/pharmacology
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Pulmonary Artery/drug effects
- Pulmonary Artery/physiology
- Pulmonary Circulation/drug effects
- Pulmonary Circulation/physiology
- Pulmonary Veins/drug effects
- Pulmonary Veins/physiology
- Regional Blood Flow/drug effects
- Serotonin/pharmacology
- Thromboxane B2/metabolism
- Vascular Resistance/drug effects
Collapse
Affiliation(s)
- A H Stephenson
- Department of Pharmacological and Physiological Science, St. Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | |
Collapse
|